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ABSTRACT

This thesis introduces a new file structure
which is based on the concept of atoms in a Boolean
algebra. Starting with the assumption that the
allowable queries are Boolean combinations of
keywords, the process of answering a query is treated
as evaluatlng a homomorphism which maps a Boolean
algebra of queries into a Boolean algebra of the
file. For implementation burposes, a file structure
18 represented by a nested Sequence of partitions
of the file, and trees and binary trees become
natural choices for the data structure. With this
representation, the process of evaluating a query is
viewed as a sequence of Successive approximations of
a Boolean function.

A program incorporating these ideas has been written
and run on some randomly generated data; the
feasibility of this new file structure is confirmed.
Comparison against inverted file structure, with respect to
both the storage requlrement and the retrieval time,

is given.
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I. INTRODUCTION

In recent years, it has become clear that the
ever increasing demand for systems which can handle
large amounts of data with complex information
structures is taxing the resources of existing
techniques of data management. Thus, the problem
of data base design, more speclfically the problem
of file organization, has become a problem of
considerable importance and urgency in data processing.

Roughly stated, the primary goal of organizing
a data file is to enable it to be interrogated via
its content. Short of exhaustive search, there are
really only two general approaches to achieving this
goal. First, where things are stored can be make to
depend on what 1s stored in such a way that access
can be facillitated via computation. This approach
is exemplified by the familiar hash addressing
techniques. Secondly, information 1in addition %o
the mzin data file can be stored and utilized in
accessing. Indexing is a familiar example of this
approach.

Naturally, how a fiie is organized should depend
on how is 1s to be used. A fairly general and widely

applicable mode of accessing is through keywords



and Boolean combinations of keywords, a keyword being
a pair (attribute néme, attribute values). Focusing
our attention on files which are to be iﬁterrogated
via keywords and Boolean combilnations of keywords,

we shall propose a filexstructure which corresponds
closely to a canonical representation of a finite
Boolean algebra. We'shall consider in detall some
ways in which such a structure can be implemented.
Comparisions wlth the well known inverted file and

multlilist file organizations willl be made.
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IT. EXISTING FILE STRUCTURES

In the field of data management, many articles
have been written on the various aspects of file
organizations. Some of the specific toplcs are:
studies of existing commercial data management systems

[9,12,17,18:}, classification of the existing file
orzanizations [9,10,11] , developments of formal
systems or models for file organizations [2,3,4,5,6,20]
and discussions on particular file organization
techniques [15,21,22} . Different authors use different
techniques to decribe files and file organizations.
The differences are due either to the differences in
thelr basic conceptual framework or to the authors!
preferences in using different terms to describe

the same concepts. Codd [4,5] proposed a relational
model in which a file is described by a collection of
time variant relations and the data base sublanguage
e in a form of the first order predicate calculus;
McGee [2] used the so-called property classification
method to describe a file which can be viewed as a
collection of data elements, each element being a
(property name, property values) pair; relationships
between these collections of data elements are

explicitly indicated by the so called record tvne-«



and ranks. Hsiao[ 6:]define a record as a subset

of the cartisian product A x V, where A is a set of
"attributes", V is a set of "values" and developed

a formal system to describe file organizations, for
example, indexed sequential file and inverted file, and
finally defined some retrieval functions to describe
procedures for retrieving information from files.
Designers of different existing commercial information
systems such as GIS, IDS, TDMS, used their own
languages to describe the systems they had implemented
[9,17,18] . Terminologies that have been used to

descrive logical file structures include: hierarchical

files which are in forms of trees, heterogeneous files

which are in forms of networks; the terminologies

used to describe a file include: data element which

is a synonym for field, item, element, attribute and

property; group which is a synonym for segment, subfile,

group of elements['9] . While terminology does not

appear to be standard, there 1s a good deal of agree-
ment on the lmportance of some of .the underlying concepts
and on the need for a machine independent and data
independent model for files and file structures.

In thls Chapter, we make no attempt to standardize
the terminology of file organizations. We shall adopt

names which to us appear to be most consistent and

.-
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descriptive, and in each instance we shall attempt
to glve a precise definition for the term that we
introduce. Finally, we will give a brief survey of
some existing flle organization techniques.
II.1. DEFINITIONS
Loosely speaking, a file is a collection of

records, each record being a collection of properties
pertalning to the same individual, item, or object.
In its simplest representation, a record can be viewed
as an n-tuple of pair ( attribute name, attribute
value). For example, a record in a personel file may
look like the following:

{ (Employee name, J. Smith), (Date of birth,

6/7/40), (Date employed, 7/1/63), ...}

Thus, an attribute can be viewed as a function fi
mapping a subset of the file into a value set, and
a flle can be viewed as a collection of functions with
overlapping domain. For example, in a personel file,
"Employee name" may be a name of function mapping from
a subset of personel records to a value set which is
a set of names, say, { A. Jones, B. John, J. Smith,
- } ; "Date of birth", "Date of employed" may be other
names of functlions mapping from a subset of personel

records to a value set consisting of dates. A



collection of records will be called homogeneous if
the same set of attributes are defined on every record
in the collection, and will be called inhomogeneous
otherwise. For an example of inhomogeneous file,
conslder a personel file in a university. Suppose
there are three subfiles: an employee file which is
a collection of functions with names { "Employee name",
"Date of birth", "Date of employed" }; a department
file which is a collection of functions with names
{ "Department name", "Population", "Bullding name",}
and a employment flle which is a collection of
functions { "Department name", "Employee name'" }.
Note the inhomogeneity in the file, for not all
these functions have the same domain.

Clearly, a homogeneous file has the advantage

that it admits a tabular representation, e.g.

Employee Date of Date of
name birth employed
J. Smith 7/1/40 6/2/68

A. Jones 5/2/35 7/15/70

M. Chang 7/21/46 6/16/73

=



A homogeneous subfile has the further advantage that

it can be viewed as a subset of the product space
consisting of the product of the value spaces of the
attributes involved,i.e., a relation. Because any

file can be represented as a set of homogeneous subfiles
a file can.be viewed as a collectlon relations,

and this is a data base model that is enjoying
considerable current popularity [4,8] .

Let R be a eollection of records and let f be an
attribute mapping R into some value space V. A
frequently occuring query has the form: Given the name
of the attribute f and a subset S of V, find all
records x in R such that f(x)&S. Thus, such a
query 1s specified by a pair ( attPibute name, a set
of attribute values ). We shall call such a pair a
keyword. For example, ( Employee age, less than 35 )
1s a keyword, and so is ( Employee number, 12345 ).
Frequently, an attribute £ which is a one-to-one

map from R into V 1s designated as the identifying

attribute for R, so that f(x) can take the place of

x for the reference purposes. Even when there 1is no

such attribute to begin with, it 1is often convenlent
to introduce one. A keyword involving the name of an
identifying attribute and a single attribute value

will be called a primary key. Thus, for example,




( Employee number, 12345 ) is a primary key if there
is a single record in R for each employee number.

The rest of this chapter will be devoted to a
survey of some commonly used file organization
techniques which are désignated to facilitate access
via keywords. The main objective of this fthesis, to
be developed in later chapters, however, will be
to present and analyze a class of file structures aimed

at retrieval via Boolean combination of keywords.

IT.2. EXISTING FILE ORGANIZATION TECHNIQUES
We shall examine the following commonly used

file organization techniques: sequential file, indexed
\sequential file, address calculating, inverted file
and multilist file. They are divided into two categories,
namely, retrieval via the primary key and retrieval
via nonprimary keys, according to the classes of
queries that they response to most efficlently. For
example, 1if a file is organized mainly for the retrieval
via the primary key, to answer a query involving

only nonprimary keys could mean a exhaustive search

of the whole file. In practice, comblnatlions of these
techniques can be employed in a single file organization

[10,11] . For example, in an inverted file, the

collection of inverted lists can be viewed as records,

o



the keyword corresponding to a list can be viewed as
the primary key of the record. Thus, the techniques
for retrieval via the primary key can be employed to
access these inverted lists. In fact, many existing
information systems [10,17,18.]are using a mixture

of these file organization techniques.
IT.2.1. RETRIEVAL VIA THE PRIMARY KEY

A. Sequential Method and Indexed Sequential Method:

In the sequential file organization, a file is
stored Sequentially by the ordering of values of the
primary key. When records are to be retrieved, the
file 1s searched sequentially for the speclified values
of primary key. If the file is on a random access
storage device nonsequential techniques, €.8., binary
Search, can be employed.

In the indexed Sequential file organization, records
are usually stored randomly in random access storage
devices, for example, disks. In addition, a directory
consisting of pairs of the form: value of the primary
key versus address of the record, 1is also stored.
Usually, the directory entries are ordered according
to the ordering of the values of the primary key.

Those value-address pairs are referred to as indexes,
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which can be grouped into blocks. The maximum value
of the primary key wlthin one block can be served as
the identifier for the block. Recursively, pairs of
the identifier of a block versus the addrss of the
block can be considered as indexes. Therefore, a
directory may have a hlerarchy structure which speeds
up searches 1f the directory is stored on a disk-type
storage. Conceptually, the file is partitioned into
partitions by the indexes in the directory, each block
representing some records whose values of the primary
key are in the block. Graphically, the lndexed
sequential flle organization can be illustrated in

an example as shown.ln Flg. 2.1, where numbers represnt
values of the primary key, Tij represents the leading
address of a block, ak's represent addresses of records.
Each level in the hierarchy represents a partition of
the file. Each block in a level represents one member
in the partition. For example, at level 2, the
partition consists of members: T21, T22, T23, Toy. In
T21’ there are four indexes, number 1,3,7,10 being the
values of the primary key of four records whose
addresses are aj, 8n, agz, a respectively. A query

is answered by traversing the directory from top to
bottom; at each level values of the primary key

specified in the query is compared to‘the values in

™
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a block. If the values specified in the query are
found to be wlthin ranges of.some blocks, then the
pointers in those blocks are traced and the values

in the next level are again compared. When the last
level 1s reached, records whose values of the primary
key are matched with those specified in the query

are retrieved by tracing the pointers.

Generally, the response time of an indexed
sequentlal file 1s less than that of the corresponding
sequantial file. But additional storage space is
required for the directory in a indexed sequential
file.

B. Address Calculation Method(or Hash Coding)

Let P = %1,2,...,p} be the range of the primary
key, M = { 1,2,..., m } be the set of addresses in
the storage device, r be the number of records in
a file, and assume p>m2r. Let f be a function mapping
from P to M. By address calculation, we mean that
for a given value p, in P, apply £ to p; such that
m, = f(py) and my in M. Usually, f is not an one-one
function, i.e.,two different values in P, may be
assigned to the same address by f. In this case, the
second record may be stored in another location which
is chained to the first one by a polnter in a link

field in the first record, or by another method.

[Tad

[T d
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The advantage of this method is that in most
cases, the compututlion time for f is smaller than
the search time for elther sequential or indexed
sequential method. The disadvantage is that if
conflicts of addresses occur very frequently, the
price paid for maintaining chains among records will
be high. Thus, it is important to choose a mapping
f which keeps the conflicts a a minimum. Such a
function 1is difficult to find. It is commonly done
by performing one or more arithmatic operations on
all or part of the BCD coded representation of the
key value and extracting part of resulting code to
yleld the address. [26] The best function f is then

Selected after several trials.
IT.2.2. RETRIEVAL VIA NONPRIMARY KEYWORDS

Technliques of file organization described in the
previous section are incapable of handling queries
which contain keywords other than the primary key,
without examining every record in the file. In this
section we will describe two file organization
techniques that can handle queries involved nonprimary
keywords without resulting to exhaustive searches.

A. Inverted File
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Let K ='{kl’ Koy ooy kn} be the keyword set,

L = { L(ky) i=1,2,...,r1} be the set of keyword lists,
each L(ki) belng an ordered list of addresses of all
records that have ki as one of their keywords.

Define D = { (ks L(ki)) 1=1,2,...,n} . An inverted
file is the date file together with D, which is
referred to as the directory of the inverted file.

The term "inverted" can be thought of as inverting

a function. Recall that k; is a (attribute name,
attribute value) pair and an attribute can be
considered as a function f,. Let k, = (fi, mi),1
where mi=fi(x) for some x in R, then L(ki) = f (mi)=
(address of x \ f(x) = mi). Addresses in L(ki) are
referred to as pointers.

Graphically, an inverted file can be illustrated
in an example as shown in Fig.2.2, where the symbol
ry—* is representing a pointer which is the address
of the record ry .

The allowable queries for the inverted file
organization fall into two categories: (1) a single
keyword belng specified (2) Boolean combinations of
keywords. The first type of query can be easlly
answered by retrieving a list L(ki) in D, then by
tracing the pointers in L(ki) to fetch the records.

As for the second type of querles, Boolean operations

[{'ed

(L)

we
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on lists L(ki) are necessary for queries to be answered.

Example 1: Given a query "q = kl" which is

interpreted as "Get all records having k,". Assuming

1
we have a file as shown in Fig.2.2. The answer to q,

It

denoted by L(q), is L(q) = L(k,) (rl, r3).
Example 2: Given a query "q = klﬁ‘ku” which is

interpreted as "Get all records having k. and kq". The

1
answer to this query q, denoted by L(q), is L(q) =

MHA%)=MH)HMM)=W§-

Update of an inverted file consists of updating
the data file and putting new entries in the directory.

B. Multilist File

Conceptually, the multilist file is the same as
the inverted file, in the sense that lists L(k;)'s have
to be created. The only difference between these two
file organizations is that the ways of implementing
those L(ki)'s are different. In the inverted file,
the entire 1list L(ki) is stored in the directory. 1In
the case of multilist file, only the head of each 1list
is stored in the directory and the rest of the list is
threaded through the data file. Records that have the
same keyword are chalned together by polinters in records.

Let h be an operation on a list L(ki) such that
hL(ki) = (the first element in L(ki)). The directory

of the multilist file is a collection of (ki; 115

3

~
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hL(ki); 1=1,2,...,n), 1; being the length of L(k,).
Records in the data file are modified and represented
as { (ky/Pyps Kp/Pyps +nes Ky/Pyn)s § = 1,2,...,1‘} ,
where pji is a pointer in record j, assoclated with
keyword ki. pji points to a record which also has ki.
The end of a list can be signified by letting pji =
blank.

Graphically, the multilist file can be illustrated
in an example as shown in Fig.2.3, where ri represents
a pointer to r - List L(ki) can be constructed by
tracing pointers. For example, L(ki) = (rl, r2), and
it’is terminated at I's.

The allowable set of queries for multilist file
is the same as that of inverted file, but the procedure
for answerlng a query for the multilist file is somwhat
different from that for the inverted file. The first
type of query is answered by retrieving the head of
a list in the directory and then tracing pointers to
get the rest of the list. For the second type of query,
records of the shortest list that involves in a query
is retrieved, then examine each record for qualification
of the query.

Update for multilist file involves putting a

record at the end of a list, deleting a record from a

list and changing the number representing the length
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of a 1list in the directory.

There 1s a whole spectrum of file structures
that can be constructed between inverted file and
multilist file, [6, 11] The length of a 1list that
threaded through the data file can be considered as
a design parameter and fixed to a predetermined value
to meet some specific requirements of a particular
file. These flle structures are referred to as
controlied list files. Inverted files and multilist
files are two extreme cases, the former with 1list
length being one, the latter being infinite.

The basic concepts of file structures described
above are very much the same, i.e. lists of keywords
are created. Answering a query always involves list
processing or examining a large portion of the file.
In the next chapters, we will introduce some new
concepts of file structure and propose an alternative
which is advantageous for large data base with

complex Boolean queries.

19
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ITI. A NEW FILE STRUCTURE

In a file organization that admits all Boolean
combination of keywords as 1ts queries, the query
language can be represented in a form of propositional
calculus, and sets of records are usually retrieved
by a sequence of set operations involving union
intersection and complementation. We shall show that
both the query set and the retrievable set of records
are Boolean algebras. And the retrieval procedure
can be viewed as the evaluation of a Boolean algebra
homomorphism. Concepts of Boolean algebra will be
applied to file organization and used as a tool to
construct a new file structure. In Section III.1l, we
.shall introduce some definitions and notations
related to Boolean algebra and propositional
calculus. Theorems of Boolean algebra will be stated
without proof. Postulates of Boolean algebra have
been given by many other authers and we shall not

repeat them here. [33,34]

IIT.1. BOOLEAN ALGEBRA AND PROPOSITIONAL CALCULUS
Terms and notations in connection with Boolean

algebra and propositional calculus are shown as follows:



Notations

V
A

Boolean algebra
Join
meet
complementation
biconditional
implication

null element

Prop. calculus

or

and

not
biconditional
implication

false sentence

2l

(or fornula)

| universal element valid sentence
(or formula)
= and <> are defined as follows:

For any o, B

of well-formed formula in a propositional calculus

in a Boolean algebra or in a set

oL =>B = (LVp)
d<> B = (k=>B) N\ (p=>d)

Notations L}’[\)'_'are used as union, intersection,
and complementation operations respectively in set theory.
Definitions in connection with Boolean algebras

are given as follows:
Subalgebra:

Let A be a Boolean algebra. A subset BE&A

is called a subalgebra of A if B is closed under/\)\/,__
and 0,1 are in B.

Generators: Let E be an arbitrary subset of a Boolean

algebra A. The intersection of all those subalgebras
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that contain E is a subalgebra. That intersection,
sayB, is the smallest subalgebra of A that contains
E. The subalgebra B is called the subalgebra
generated by E. A generating set E is called a

set of generators of B.

Homomorphism: A Boolean Homomorphism is a mapping f

from a Boolean algebra B, to a Boolean A, such
that

(1) £(pAa) = £(p)A £(a)

(2) £(pV q) = £(p)V £(a)

(3) £(p) = T()

for all p and q in B. The kernel of a homomorphism f

Il

is defined as (x|f(x)=0 ).

Free Algebras: Let E be a subset in a Boolean algebra

B. If the elements in E satisfy no condition except

those that can be derived from the set of postulates,

i1t is a natural way to say E is free. A Boolean

algebra is called free if it has a free set of generators.
Let A, B, be two free Boolean algebras, El,E2 be the

sets of generators respectively. If there is a

function f mapping from El to E2, then there exist

an unique homomorphism H mapping from A to B, such

that H(J) = £(j) for all j in E,
Order: It is easy to show that pAq = q iff p\/q = p.

we write p=2q or q<p if pAq = q or equivalently
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pVa =p. < 1is a partial ordering relation.

Atoms: An atom of a Boolean algebra B is an element
that has no nontrivial subelements defined by the
partial order =< . Let q€B, q is an atom of B if

qa # 0 and if p<q, then p = 0 or q. A Boolean algebra
which has atoms is referred to as atomic Boolean
algebra.

It can be shown that a finitely generated Boolean
algebra 1s finite, and in fact, the number of elements
in a Boolean algebra with n generators is = 22n.
Every finitely generated Boolean algebra is atomic and
the number of atoms of a Boolean algebra with n
generators is = 2n. Furthermore, i1f the Boolean
algebra 1s freely generated by n generators, then the

n
number of atoms 1s exactly equal to 2 .

Let E = (el, €y tens en) be a set of generators
n
. = /\ *' * = =
of B An atom ¢ has the form ¢ i=1e1’ ei ei or ey -

Let C = (01’02”"’03) be the set of all atoms of B
and I = (1,2,...,8) be the set of subscripts of cy -
Every element p in B can be represented in the form
p = y ¢y = (Joins of some atoms in C)
where J 1is a siiget of I.
Propositional calculus can be viewed as a formal
system a=(§)§’—, \/'/\), > 1s the set of statement

letters, & 1is the set of all well-formed formulas,



such that 2 ©& and & is closed under -,A Vv [35]
Let QS = (W, W, -, V, A) be a special formal system,
with W = (0, 1). Define

X | X Al 0] 1 v]|io|1
0|1 of of o 0o lo} 1
110 1| of 1 1|1 1

If there is a function j: > —= W, then j can be
extended to a homomorphism K —> W

Definitions: Jj is said to satisfy bed if

vj(b) = 1. b is said to be logically valid if every
J satisfies b. Two formulas ¢ and b are said to be

, logically equivalent if v1.( ¢) = v (b) for all j, we

write ¢ = b. Note that = is an eqiivalence relation.
Let & = (0'1,6'2, cee d’n) be a set of statement

letters in a gilven order. A truth function or a

Boolean function b* associated with a formula b in § ,

n
mapping from W — W, Wn=WXWX...XW, is defined as follows:

n
For any (pl, D o pn) in W, b*(py, Pos -ees

2)
pn) = vj(b), where j is a mapping from = to W, for
which j(0) = p,, 3(0) =, .oy 3(0,) = » . We
call b*¥ the n-place truth function or the n-place
Boolean function defined by b ind . A truth table
of a truth functlion b¥*¥ 1s the tabular representation

of the truth function b¥*¥., The truth table of b*
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consists of two sets of n-tuples: 8, = ( (pl, Poseees
* = = L
Py) v*(pps Py woup )=l ), sy = ( (P spys. D)

b*(pl,pe,...,pn)=0 ). s s, are referred to as the

1?
on-set and the off-set of b* respectively.

It can be shown that the set of equivalence
classes of formulas is a Boolean algebra, or equivalently,
the set of all Boolean functions defined by all formulas

in is a Boolean algebra.

ITI.2. ATOMS OF A FILE:
Let K= (k1,k2,...,k,) be the set of keywords of

a flle F. Let the query set Q be the set of all
Boolean combinations of keywords, 1.e., every q
in Q 1s made up of elements in K , connected by

—5> A,V 1in a obvious way. The formal system

<Q, K,”,V, /\> is a propoitional calculus. After
ldentification of equivalent queries, Q is the free
Boolean algebra B(K), generated by the set K. Let
L be a function mapping from K to the collection
of all subsets of F, such that L(ki) is the set
of all records that have ki as a keywprd. Let
B{&L ) denote the Boolean algrbra generated by

L = ( L(ki); 1=1,2,...,n). L can be considered as
a function mapping from K to B(J{ ). L can be uniquely
extended to a homorphism mapping from B(K) to B(L ).

We shall use the same notation L to denote this
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homomorphism. Once L(ki) are defined , every q in Q
can be answered by finding the homomorphism image
of g in B(L ). 1In other words, for any q in Q, L(q)
is the set of records that satisfy gq. For example,
let @ = kjAko, then L(q) = L{k1)AL(kp). Once
L{ky),L(ko) are defined, L(q) can be obtained by the
intersection of two lists L(k;) and L(kp). That is
why, in the inverted file, by storing lists of addresses
corresponding to L(ki) we can retrieve every set in
B(L. ). Any other ccllection C of subsets in B(& ) can
serve the purpose, provided that B(C) =B(L ). The
question is what lists should be stored. We hope to
show that in many situations, the lists representing
atoms in B({ ) are the best choices. Note that B(L, )
may not be free, i.e., there may be some implicit
relatlionship 1in addition to those universal ones,
existing between elements in the generating Set&ﬁ .
In particular, intersection of some elements in i,
may be the null element. This implies that the number
of atoms of B(4 ) may be much less than 2". This
i1s a favorable situation, because the lists that
we store will correspond to atoms. It is conjectured
that other relationships existing among elements of

may be worthwhile to be explored and taken advantage

of, but in this present work they are not consldered.
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The set of atoms of a flle with respect to a
set of keywords 1s defined to be the set of atoms
of B(L). Let D be the set of atoms of B(K), C be
the set of atoms of B(L ), then C is the range of
the restriction of the homomorphism L on D. Standard
results in Boolean algebra [33] imply that the atoms
of a file have the following properties:
(1) Atoms of a file are the minimal retrievable
set of records in a file, for a given query set.
(2) Atoms of a file are palrwise disjoint sets,
i.e. cif\ Cy # 0, for any two distinct atoms Cys cj.
(3) Any query in the query set can be answered
by using only union operations on atoms of the file.
(4) Atoms of a file are the nonempty sets obtained
by AB(k), BH(ky) = Be) or TR,
We now propose a file structure in which 1lists
of addresses of records which are stored correspond
to the atoms of the file. This flle structure has
the following advantages:[Ql]
(2) Each address appears on one and only one
1ist. Hence the number of addresses to be stored is
always less than the total number of addresses in
( L(ki), i=1,2,...,n).
(b) Every set to be retrieved is a union of

dlsjolnt atoms. We never need to take intersection



28

and we never need to eliminate duplications in taking

unlon.
(c) The computation procedure in translating an .

arbitrary Boolean formula of keywords into a unlon of

atoms is exceedingly simple (but may be time consuming) . o
Assertions (a) and (b) are obvious consequences

of (2), (3), (4). Assertion (c) is justified by

considering the standard procedure for translating a

Boolean formula into its developed disjunctive normal

form.

For an example, consider a file F with 10 records

denoted by F = (1,2,...,10). Let K = (kl,k ,k3,k4) be

2
the set of keywords. The query set Q 1s the Boolean
algebra B(K) generated by K. For the purpose of this
example, we do not distinguish between a record and
its address. Let o = ( L(kl), L(ky), L{ks), L(ky) )
be the set of lists of records that have kl’k2’k3’k4’
respectively. The collection of all retrievable sets
is the Boolean algebra B(L ) generated by £ . Let

F be represented as a tabular form as shown in Table 3.1,

where an entry '1' indicates the record belongs to

(G

L(Ki) and an entry 'O!' indicates it does not. It is
clear that we have
L(k_ )"
(xc))
L{k
(k)

(1,2,4,6,9)
(1;3:4’637)
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(k) ( 2,3,5,7,8,9,10 )
L(ku) = (5,8,10 )

Let C be the set of atoms of the file. The
atoms can be obtained easily from examining Table 3.1.
= Lk )N L(ky) NI TALTK,T = ( 1,4,06 )
= L(k )anL(k )(\T:(E“)' ( 2,9)

3 = TR TNk, )(\L(k )f\i'(TE‘)' =(3,7)
¢y = L(lﬂf\L(k mL(k3mL<k4) = (.5,8,10 )

c = C15CpsC3sCy ), c, are In an arbitrary order.

(e}
I

¢]
\V)
1

@]
il

The set C of all atoms can be represented in a

tabular form as shown in Table 3.2., where an entry

11! indicated L(ki) appears in the disjunctive form,

'0' indicated TI?;T'appears in the disjunctive form.

Let g = (kg A ch,/\.i3 ) be a dquery in Q. The

L(kl/\ k2/\ ’E3 )

L(%, ) NL(k, )N Tk ]

( 20 ) NL(k, )N TR T NIk ) )

( L(kl)ﬂL(kg)ﬂL(k:aTﬂL(ku) )

Lk ) NL(k, ) NI, TN LK)

( 1,4,6)

= L(kl/\ ko /\ '123 )

L( (kl/\ kZAT%/\E'a)\/(kl/\kz

AEAE))

—(Mk)nuk)ﬂuk)ﬂuk))

U ( 20k )/\L(k )/TEFE"Tf\L(k ) )

answer to q is L(q)

t
~~
o]
~

|

or

]

[
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Lk )N L(kp) N T(k3 )N TR, T
(11,4,6)

]

From the example above, we observe that to answer a
query q we can apply the homomorphism L to q and
expand the resulting formula into its developed
disjunctive normal form; the nonempty clauses will

be the atoms that are dominated by L(q). Alternatively,
we can expand q into 1ts disjunctive normal form and then
apply L to 1t. Though the procedure for expanding a
farmula into 1ts disjunctive normal form is stralght-
forward, the procedure for determining which clauses
represent atoms may be time consuming. A simple
procedure for doing this is to intersect the list of
clauses 1n the disjuntive normal form of q with the
list of atoms of the file; those ones that match are
atoms dominated by L(q). Obviously, if the number

of empty clauses in a normal form is large ( very
often it is ), this procedure will be very inefficient,
1n the sense that the whole set of atoms has to be
compared agalnst a long list of clauses and only a
small portion of the set of atoms contained useful
information pertinent to the query. In general, a
brocedure for eliminating clauses corresponding to the
null element in B(JL) for a query q can be viewed as

a procedure for finding atoms of the meet of two
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Boolean formulas in B(K), or equivalently, for finding
the meet of two Boolean functions.

There are many formulas b in B(K) such that L(b)
= C, the set of all atoms. Let f be such a formula
wilith the further property that every clause in the
developed normal form of f corresponds to an atom in
B(L), i.e., L(®) # o, for all clauses (£ in the
developed disjunctive normal form of f. Therefore
there is an one-one relationship between clauses of
f and atoms of B(JZ), we can represent the set of
atoms C of B(f ) by f. Such a formula can be obtained
easlly. In fact, let the tabular representation of C
2 (py

1

PpseesP ) =1 ). Let £* denote the truth function

*
be the On-set Of f ’ ioeo, (pl’pe,ooo’pn

associated with f. Then, f can be constructed from
the on- set of f*. For example, consider the tabular
representation of C as shown in Table 3.2.
f = (kl/\ k2/\'1'<'3/\'fc'4) Vv (kl/\ '122/\ k3/\ Eu)
V (kA kA k3/\ Eu) \% (‘121/\ “122/\ K ku)
1s a Boolean formula associated with a truth function
£* that has a on-set (r* (1) = (1100,1010,0110,0011) ).
The clauses in q corresponding to atoms are those
clauses in fA gq. Therefore to find all nonempty

clauses in q is to find all clauses in fAa. It can

be shown that all clauses in the developed dis junctive



normal form of fA q are not in the kernel of the
homomorphism L. For if there is a clause 90 in fAq
such that L({) = 0, and since ¥ must be a clause in
f, then an element of L(f) 1is equal to O, a
contradiction. One way to find all clauses in
fA q 1s to expand both f and q into thelr developed
disjunctive normal form individually, then the meet
of the two normal forms will consists of all the
clauses in fA q. This is how 1t is done in the simple
procedure stated above . If the number of clauses
in q is large, execution time of thils simple
procedure will be large and require a large block of
working space. -
There are many other procedures which will serve
the purpose for finding clauses in fA q. An alternative
that involves decomposition of Boolean function, or
equivalently, partitioning of a file will be given in
the next section. We hope to show that it will often

be more efficient than the simple procedure.

III.3. PARTITIONS OF A FILE:

In this section, we will present a method for
partitioning a fille into a sequence of partitions
and a procedure for finding clauses in fAq. The

pProcedure will consist of a sequence of steps, at

33
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each step only a portion of a partition of the file

has to be searched and a Boolean function of only m
variables (m4n) has to be dealt with.

Let K = (kl,kg,

AL = L(k,), Lk,),...L(k ) ), B(L ) be the algebra

generated by df . We are to find a sequence of sets

or Oy G2,...,Gm=of ,Gié B(L ),

for i1=1,2,...,m, such that B(GO)C:— B(Gl)c_:_' B(GQ)

ook ) be the set of keywords,

of' generators G G

.S B ) = B(L ). The atom-set C_of each B(G, )
1

is a partition of the file. Therefore, corresponding
to the sequence of Boolean algebras we have a sequence

of partitions P P,...,P on the file; Pi+1 is

O’Pl’ o m
a refinement of Pi° The procedure for answering a

query q is presented as a flow chart as shown in
Flg.3.1. At each step i, instead of the whole file,

only a subset Di

1 3 C X .
subset D, . of C, . such that L(a) _._x\éJDM. Graphically,

assuming m = 2, we can show it in Fig.3.2. Let us

of Ci has to be examined to get a

represent sets of atoms 1n a two dimensional surface
within the largest square, there are squares with
three different slzes, labelledas 1, 2 , 3
respectively. There are nine 1 squares in the
largest square, nine 2 squares 1ln each 1 square,
nine 3 squares in each 2 square. For the sake

of simplicity, we only draw a portion of all squares.



Stop

L(%) T3

not 1n the
Lfile
Stop

Fig. 3.1
2

1

Fig. 3.2
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Let the set of all 1 Squares represent the set of
atoms of B(GO), the set of all 2 squares represent
the set of atoms of B(Gl), the set of 3 squares
represent the set of atoms of B(Gz). Squares
encircled with heavy lines are those satisfying 3
L(q) < U x , finally, squares that are blackened
are ato;:Dgéminated by L(q).

Answering a query in this way can also be viewed
as successively approximating a Boolean function. Let
fO’ 1’ m
by the sets of atoms C

f fg,...,f = [, bhe the Boolean functions defined

0’ 01,02,...,Cm = C respectively.

The tabular representation of C, is the on-set of

i
fis 1.0 C o= ( (Pyspseeespy) / £4(Pyupps..sp ) = 1),
The sequence of fO’ fl,...,fm satisfies the relation

fo> fl> fy2 ... Z fo=f

The procedure for finding clauses in fAQ can be
viewed as the evaluation of L('°°(foA‘Q)/\fl)/\fg)"Afm)’
each (¢ )/\f1 is an approximation of fAqQ, i.e.
(PIAL; > fAaq.

Now, a method for constructing such a sequence
of Boolean algebras is described. First, the notion
of partition of the keyword set is inﬁroduced. By 3
the partition of the keyword set K we mean an ordered

pair of collections denoted by (Y/Z), where Y =

(YI:yQ:---:yS): Z = (z]_’ZQ""’Z'G)’ YUZ=K, yi’ ZJ
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in K for i=1,2,...,8 and j=1,2,...,t with repetitions
allowed, i.e. s+t=2n. When there is no repetition in
Y and Z, Y/Z is said to be disjunctive, otherwise
nondisjunctive.

Let Y/Z = (yl’y2""’ys/zl’22’""Zt) be a
disjunctive partition of K. Let g1 be an arbitrary

Boolean function mapping wt into W, W=(0,1) with Z,s

ZgsensZy 88 variables. Let G_ , = (L(yl),L(y2),...,

-
L(y,)s (g, ;) ). It can be shown that B(a ,) & B(Z),
and if we let [ denote the Boolean function defined

m-1

by the set of atoms of B(Gm 1), then we have f_ = 1.

-1

fm-l is said to be an approximation of f and f 1s said

to be approximated by f

m-1° By consecutively selecting

disjunctive partitions of generating sets, a nested

sequence of Boolean algebras BO 5

= B(Gy) 1=1,...,m and

CBESBC...SB
m

can be obtained, where Bi

B(Gm) = B(K). Corresponding to sets of atoms C_.,C_,...,

0’71

Cp of B ..,Bm respectively, there 1s a sequence

0’71’
of Boolean functions, fo,fl,...,fm such that
f‘0>f‘1>f2> }fm= f
Example: Consider a file F with a keyword set
K = (kp,k,,k3,k,) and the set of atoms C = (cysepsennscn).
Let f be the Boolean function corresponding to C, such

that the tabular representation of C is the on-set of

f which is shown in Table 3.3.
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of the set C1 of atoms of B(Gl) is obtained 1in Table 3.5.

ki ko 8
a, | 1 1 1 (eq)
a, | O 1 0 (CQ’CH)
ag 1 0 1 (c3,c7)
ay 0 1 1 (05)
ag | 1 0 0 (cg)
Table 3.5.

There are five elements in C,, namely, Cl=(al,a2,a3,
34’35)’ The entries in the last column are atoms of

B( ) contained in each atom of B(G,). Next, let 8,

1,k2 as variables defined

by the truth table shown in Table 3.6.

be a Boolean function with k

1 X |8
0 0 1
0 1 1
1 0 0
1 1 0
Table 3.6

Let Gy = ( L(gl), L(gz)). By applying g, to the first
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two columns in Table 3.5, the tabular representation

of the set C, of atoms of B(GO) 1s obtained and shown

in Table 3.7.

B, By
b, |0 1 (e1sc9500) |(ag,a3)
b, | 1 0 (coscy) (as)
by [ 11 (cs5) (ay)
by | ©O 0 (cg) (a5)
Table 3.7

There are four elements in Cgy, namely CO=(bl,b2,b3,b4).
The entries in the last column are atoms of B(Gq)
contained in each atom of B(GO). The entries in the
second last column are atoms of B(&L ) contained in
each atom of B(Gl)' Let Table 3.5 correspond to the

on-set of a Boolean function f Table 3.7 correspond

l,
to the on-set of a Boolean function fo. It 1s clear

thatf>f>f. Since b, =\, a_, # b, in C, and

aj = Y a, in C;, 1t can be seen that B(Gy) &

C)eCGC J 1’
B(ul)§ B(f ). Note that C, 1s a coarser partition
than Cl’ Cl is a coarser partition than C.

Let us use this example to illustrate a procedure

for answering a query as follows. Let W= (0,1,%).

w



2
Let 8,:82 be extended to functions mapping from w*

to W*, 8ys Bp are redefined as

gl 0 1 * 8o 0 1 *
0 o o) o 0 1 1 1
1 0 0 0 1 0 0 0
* %* * * * * * *

Since every query can be written as one of its
disjunctive normal forms, we consider queries involving
the Boolean connector 'meet' only. For each such
query q, we create a vector q, = ( dl,de,d3,du). dj=1,
if kJ 1s presented in q; dy=0, 1if Ej is presented in
a; dJ=*, if neither kJ nor'EJ is in q. From a, we
obtain 4 = ( dl,dz,pz),.where p2=g2(d3,d4). From
q1 we obtain q0=(pl,p2). Before proceeding, we must
define an operator D. Let El’ Ee, E3 be some vector

spaces. D 1s defined as a map from E xE2 to E., such

1 3
that for any V. Dy, U D,, where V = (Vl’vz""’vk)’

U= (ul,u2,...,uk), D(V,;U) = (Vl'ul’vg‘uz""’vk‘uk)’
where "-" is defined by

- 0 1 *
o) o) 1 0
1 1 0] o)
* 0 0 *

b1
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An atom x is said to be relevant to the query q
if xAq # 0. It can be shown that an atom x in ¢, is
relevant to q if D(x,qi) = 0, where O is the zero
vector (000..0). Therefore the set of all relevant
i = ( x in Ci/D(xi,q)=O).

X, can be obtained recursively without searching the

£

atoms in Ci to g is the set X

whole C . Define Y, = inC /x2y, x in X

: ne Yy = (y /*2y, xin X ),
then X, = ( vy in Yi/D(y,q)=O), with XO =( x in co/
D(X:qO)=O) .

In our example above, let g=k;A Eg, a vector

q2=(1 *¥ 0 *) is created. By mapping Qp to the last
two components of q,, Wwe have ql=(l *¥ 1). By applying
g; to the first two components of a5 we have q0=(0 1).

We have Yb=CO, XO=( X in CO/D(x,qO)=O)=(b1). Then

in turn, we can obtain the following sets
Y= (y in Cl/x in X5, X 2 y) = ( 21,85 )
X1= (v in ¥,/D(y,q,)=0) = (a ,as)
Y= (y in 02/~X y, X in Xl) = (01,03,07)
X=(yiny/ D(y,a,)=0) = (01,03,07)

L{q) = X,
Let us conslider another query q=k2/\k3. By

following the same procedure as before we obtain

= * * = *

Xo = (bl,be,b3,bu)

=(*0)



Yy = (a),8,:83,2,85)
X; = (a;)

Y2 = (cz:cu)

Xy = (cge)

L(a) = (c,,0y) = X2-

III.4. DISCUSSION:
Let us deflne a measure of efficiency coefficient

of this flle structure corresponding to a certain

(t_, Al (1)

where |X1| s IY1 l are the number of elements in X_,

query by

1

Yi respectively. 7[‘18 the average ratio of the
number of relevant atoms versus the number of atom to
be searched. For the example in III.3, the coefficient

for the first query is Y = (1/4+1+1)/3 = 0.75,
for the second query 7L = (1+1/5+1)/3 = 2.2/3 = 0.73.

In general, the coefficient 1s high for a certain
class of querlies and low for others, depending on how
the atoms 1n each algebra are distributed. For a
glven flle, distribution of atoms 1n each algebra is
solely determined by the cholce of sets of generators.
If the frequencles of usages of querles are known a

priorl, then, by a certaln cholce of sets of generators,

43



the file structure can be tailored to the one that
responds most efficiently to those queries that are
most frequently used. The response time to a query
is closely related to the coefficient 'TL . It
depends on how the file structure is implemented and
what kind of hardware is being used. But it also
depends on the distribution of atoms. Therefore
the choice of sets of generators plays an important
role in improving both the efficlency and the
response time for the file structure.

An extension of this can be made by considering
the nondisjunctive partitions of the keyword sefb.

Redundant information may be created as a result of

duplications of keywords in the disjunctive partitions.

But it might improve the efficiency of the file
structure with respect to some classes of queries.
Another extension can be made 1if we consider the
resulting set G,of Boolean functions (gl,g2,...,gm_1)
as a set of new keywords and apply the procedure to
Goas is was applied to K, we will have a second
sequence of Boolean algebras whose set of atoms
correspond to some coarser partitions of B(GO).
Therefore by repeated application of this procedure,
a file can be partition into any number of sequences

of partitions. When the file and the keyword set

by



are extremely large, this may result in some

important computational advantages.
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IV. IMPLEMENTATION AS A TREE

The file structure involving a nested sequence
of partitions, as discussed in the preceeding
chapter, leads to the idea of implementing the
proposed flle structure as a tree structure. Each
level in the tree corresponds to a Boolean algebra
in the sequence, and the nodes at that level represent
the atom of the corresponding Boolean algebra in a
one-to-one manner. Succeeding levels in the tree
correspond in an obvious and natural way to succeeding
Boolean algebras in the nested sequence, and descending
nodes represent splitting of atoms in an equally
natural way.

Pirst of all, we will review some notions of tree
and binary trees, as they will be used 1n our

implementation.

IV.1 TREES AND BINARY TREES

The definitions of trees and binary trees that
we introduce here are taken from Knuth [36], in which
trees and binary trees are defined recursively as
follows:

A tree 1s deflned as a finite set T of one

or more nodes such that



(a) there 1s one speclal hode in a tree called
the root of the tree, denoted by root(T);

(b) the remaining nodes (excluding the root) are
partitioned into m > O dlsjoint sets Ty5...,Tp and
each of these sets 1n turn 1s a tree. The trees

Tl,...,T are called the subtrees of T.

m
In a tree T, a node n, is called a son of another
node nl, 1f there is a branch connecting from ny to

n_, and nl 1s called the father of n Two nodes nl

2 2°
and n2 in a tree T are called brothers if n; and n

2
are sons of the same node. The number of sons of a
node n 1s called the degree of n. Nodes with degree
zero are called the terminal nodes or leaves. Other
nodes, excluding the root, are called nonterminal
nodes. The level number of a node 1s the level
number of 1ts father plus one, with the root having
zero as 1ts level number. A level in a tree is a
set of nodes with the same level number. For an
example, in Fig.4.1, consider a tree T in which the
level number of D is 2, or we say D is in the level 2
of the tree T. The helght of a tree is the maximum
level number that a node in a tree can have.

Let the path to a node n be defined as an ordered

concatenation of n with all its ancesters, with the

root at the beginning position of the concatenation.

b7
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level O

level 1

level 2

level 3

Fig.4.1

For an example, the path to H is ABDH. Within a

tree, a node can be labelled with any name, i.e. any
alpha-numeric code. In fact two nodes may have the

same label. Let us call the label of a node code

name of the node. A path of a node can be represented

as a concatenation of code names. We call the
concatenation of the path to a node the path name

of the node. The path name of a node is unique, provided
that sons of a node have distinct names. For an example
» We have a tree T in which nodes are labelled as

shown in Fig. 4.2. There are two nodes in T 1labelled



with B, but one has the path name AB, another has ACB.

Therefore two nodes with the same code name can be

uniquely i1dentified if their path name were used.

Similarly, it applies to two nodes with a code name D.
A forest is defined as a collection of zero or

more dilsjolnt trees. For example, let T T. be two

1° "2
trees as shown in Fig.4.3. { Tl,T2 } is a forest.

A E

Fig. 4.3

Of course, a forest can be transposed into a tree by
connecting all the roots to an extra common node which
serves as the root of the created tree.

A binary tree is a finite set of nodes which is

elther empty or consisting of a root and two disjoint

binary trees which are the left and right subtrees of

the root.

The differences between trees and binary trees are

(1) A tree is never empty, 1.e. it always has

at least one node, and each node of a tree can have

Lo



50

0,1,2,...,m sons.
(2) A binary tree can be empty, and each of its
node can have 0,1,2 sons; when the number of sons > O,
we distinquish between a left son and a right son.
There 18 a natural correspondence between forests
and binary trees, i.e. every forest can be represented
as a binary tree and vise versa. Consider the forest
{Tl,Te'} shown in Fig.4.3, the corresponding binary
tree is obtained by linking root(Tl) with root(TZ)
and linking together sons of a node and eliminating
all branches to the sons except for the left most one.

The corresponding binary tree T_ for the forest Tl’T

3 2

is shown in Fig.4.4.

Fig.4.4.

In general, let F = { Tl""’Tm ) be a forest.
The binary tree B(F) corresponding to F can be obtained
formally as follows:

(1) m = 0, B(F) is empty



(2) m>0, the root of B(F) 1s the root of Ty3
the left subtree of B(F) is B(Tl'i,...Tlr'l),‘ Wwhere
Tll""’Tln are subtrees of Tl, the right subtree of
B(F) is B(Te,...,Tm).

Since trees are representable in binary trees
and many algorithms in applications are of binary
trees nature, it is worthwhile to study binary tree
a little further.

By the nature of the definition of a binary
tree, there 1s a simple way to represent a binary
tree within a random access computer memory. A
node 1s represented by a set of memory cells, in
which there are two fields LLINK and RLINK. LLINK
stores the address of the left subtree of the node
and RLINK stores the address of right subtree of the
node. Within a node there may be another field called
INFO, in which information of data or about the tree
can be stored. Therefore, in general, a node has the

form

LLINK INFO RLINK

There 1ls a variabie T which 1s a pointer to a tree.

If the tree 1is empty, T = 0; otherwise T = address of
the tree, and LLINK(T), RLINK(T) denote pointers to
the left subtree and right subtree of the root

respectively. These rules recursively define a
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memory representation of a binary tree within a
computer memory. For example, for the binary tree
T in Fig.4.5, the corresponding representation in a

computer memory is shown in Fig.4.6, where i in a

Pig.4.5
A /
/ B ° / C
D E z F

N\
N

w40
oD
——0
qll—-_o
XI
o
H
ulH—0
wH—o
<

lll—

Fig. 4.6

|l}"'—o

52



53

fleld indicates the corresponding subtree is empty.

The basic algorithm needed for manipulating a
binary tree 1s the algorithm for traversing a binary
tree, l.e. examining the nodes of the tree systematically
so that every node 1s traversed only once. A traversing
of the whole tree produces a linear ordering of all
nodes 1n a tree. There are three principal ways to

traverse a tree, namely, preorder, postorder and

enorder which are defined recursively as follows:

Preorder:
Visit the root
Traverse the left subtree.

Traverse the right subtree

Postorder:
Traverse the left subtree
Visit the root.

Traverse the right subtree.

Enorder:

Traverse the left subtree
Traverse the right subtree.
Visit the root

For the example in Fig.4.6, if we traverse the
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tree T by preorder, we are examlning the nodes in the
following order

ABDGHCEFIJ
by postorder, we have

GDHBAECIFJ
by enorder, we have

GHDBEIJFCA

Note that fields containing zero are merely a

waste of space, because they convey no information
other than that the link is terminated. To make use
of this extra memory space, the so called "threaded"
tree representation 1s introduced. In this representation,
terminal links contaln pointers to other parts of the
tree, instead of zero. 1In fact LLINK(P) will contain
the precessor of P and RLINK(P) will contain the
successor of P, with respect to a certain traversing
order. For example, with respect to postorder, a
threaded tree representation of the tree T in Fig.4.5
is shown in Fig.U4.7, where the thinner lines representing

threads. Within a computor, a node is modified to

-y

TL | LLINK INFO |TR |RLINK

TL, TR are tags indicating the link fields:to which they

are attached are threads or regular links. For example,



Fig. 4.7

TL = 1 or TR = 1 indicates LLINK or RLINK is a
regular link respectively, and TL = O or TR = O
Indicates LLINK or RLINK is a thread.

The advantage of a threaded tree is that the
traversing algorithms become much simpler, for there
18 no stack to be maintained in the traversing algorithms.
The threads give enough information as to where is the

next node to traverse.

IV.2. IMPLEMENTATION OF THE PROPOSED FILE STRUCTURE
AS A TREE

IV.2.1. TREE REPRESENTATION:
Let B(GO)..C_-B(GI).C_.: ... =B(a ) = B(L) be a
Sequence of Boolean algebras as defined in Chapter III,

c:o,cl,...,cm be the sets of atoms of B(GO), B(Gl),...,
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B(Gm) respectively. Since %_CO’ Cys =vns Cp }
are a nested set, there 1is a nature tree
structure representation.  Let every atom
in Cy be represented by the root of a tree in the
forest. Let U be any node in the tree. U represents
an atom in some set, say Ci’ and sons of U, say
{ Ul,...,Up'} represent atoms in Cj .

The procedure for constructing this forest is
described as follows:

Let K =<{kl,..., n } be the set of keywords.
Let X, /x2/x3/ ... /X, Dbe a disjoint partition of

K, where X, = { kl,...,kvl}’ZXQ = { kv1+1"°"kv2-3 s

m-1

k = Kk 3 , g. be a Boolean function, with X, as the
Vi m i v i
set of variables, mapping from W *— W, for i=1,...,m.
Thus, we have Gj = {gl,...,gm} ,Gl={k1,...,k ,
82:---:gmk 3o Gi={k1,--':k :g+"'°:gm},

G o={ky,. .ok § . Let us assume that C_,...,
Cm are represented in theilr tabular forms, i.e. atoms
are represented as an array of codes which are tuples
of "0" and "1". The code name of the root in a tree
is the code of an atom in CO in the tabular representation.
At level 1, for i =1,...,m, of a tree In the forest,

a node U 1s represented by a partial code of an atom
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in Cy. Let u be a node representing an atom x in ci;
if x appears in the tabular form of Ci as

( ¥iseeesTugoFugqqr - ovm)

then the code name for u is simply

e )

vy, 41, Wy,
Furthermore, 1f u is a descendant of a root T with
a code name ( Py,-++sPp ), then g4 ( yVi-1+1""’yVi)
= Pq- Let us consider the example given in Chapter
IIL, K= kyskpok3,ky)s Xy /X, = (ky,ky/k3,k) is a
disjoint partition of K; g1,8p are defined as follows
in Table 4.1

X1 Xo| 843 i=1,2
0 0 1
0O 1|1
1 0 0
1 1 0
Table 4.1

Co = ( 00,01,10,11 )
( 111,010,101,011,100 )

Q
=
]

( 1100,0110,1000,0111,0101,1011,1001 )

Q
N
]

where tuples of 1 and O are codes of atoms in the
tabular forms of Ci’ The forest 1s represented as

follows in Fig. 4.8.
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The tree representation of the sets of atoms Co,

C .,Cm can be viewed as a compact representation

17+
of the tabular forms of CO,Cl,...,Cm; relationships

between Ci are expressed explicitly by branches in

the tree and codes of atoms can be decoded from paths

in the trees. For the example above, let us use path

name to identify nodes in the tree, we can see that (Fig.4.8)
there are two sons branching from ( O 1 ) at level O

of the second tree, namely 0111,0110, which represent

two atoms 111,101 in C., respectively; 0111 has a son

1
011100; 0110 has two sons 011000,011001; where ( 011100,
011000,011001 ) represent atoms 1100,1000,1001 in C2.
This 1llustrates the fact that by 2 (aj,a3), a; 2 (cy),
a3 2 (03,07) as shown in Chapter III.

The retrieval procedure for thls tree representation
of atom sets is a modification of the retrieval
procedure described in Chapter III. For a given query
q, & vector q.= (pl,...,pn) is constructed, where
(Pys-..sp ) 1s in WP w=(0,1,*%) and p,=1 if k, is
in q; py=0 if k; 1s in q; py=* 1if neither k; nor ky
is in q. From g, , obtain vector Q. = (pvi_1 IREREEY
pvi), for 1=1,...,m. A vector q . = (xl,...,xm) is
constructed from 9y as follows. First of all, d4»
for 1=1,...,m, are extended to functions mapping from

* - *
W (Vi-vii1) ooy , in a well defined way. Then let
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Xj_:qi(pVi_l'l‘l, . o’pvi), fOl" 1=1, .o .,m

these

After we have constructed qu’qml""’qmm’

vectors are used to compare with nodes 1in the trees.
Define the binary operator D between two vectors U,V
as in Chapter III. Starting from i=0, at each level 1,
the value of D(yi,qmi) 1s computed, where vy is a code
name of a node. If D(yi’qm1)=o , then sons of the
node with code name y; are traversed and a subset

Yi+1 of code names of these sons is obtained, where

Yy41= { yi+l/ D(y1+l,qmi) =0 } . Finally , when i=m,
a set Y = { ymm/ D(ymm,qmm)=0 S is the set of code
names representing atams in B(JC ), satisfying q.
Consider the example given in Fig. 4.8. Let
a= k) A k3, then g =( 1 * 0% ), qp=(1%), q=
(0*),qp=(01 ). At level O, the node O1
satisfies the equation D( 01,qm0)=o; at level 1,
two sons (0111),(0110) of 01 , satisfy the equation
D(yl,qm1)=0, ¥=(0111,0110); at level 2, Y= (011100,
011000,011001). Since Y, is a set of leaves, the
procedure stops and atoms of B(L ) are decoded as (1100,
1000,1001), which are atoms in B(L ) satisfying q.
While update of a file consists of inserting a
record into or deleting a record from the file, update
of the atom sets in the trees representation involves

adding nodes to or deletlng nodes from the trees.



An atom of B(L ) consists of one or more records;
inserting a record to or deleting a record from a file
does not always mean adding nodes to or deletlng nodes
from the tree representation. Adding nodes to the tree
is required only if the record to be inserted 1is
contained in an atom that is:not yet represented 1n
the tree structure. Deletion of nodes from the tree
is required if the record to be deleted is the only.
record that 1s contained in an atom or if the whole
atom is to be deleted. By update here, we mean update
of the atom sets. We shall write an "atom" to mean
an atom in B(L ).
The procedure for adding an atom to a tree with

a heilght m can be described as follows. From Qs Wwe
obtain qu’qml”",Qmm as defined earlier. Consider
the following procedure:

(1) 1i=0

(2) 1>m, go to (9)

(3) get the eldest brother x, let y=x

(4) D(y,apy)=0, go to (7)

(5) 4if there are no more brothers, go to (8)

(6) get next younger brother z, let y=z go to

(4)
(7) i=1+41 go to (2)

(8) add a partial path with a name Qpy,...,q;,
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stop

(9) stop

This procedure adds an atom to the tree. Note
that the value * will never appear in qm or dpns
therefore at each level 1, there 1s either no node or
an unique node y, such that D( y,qu )=0. In the
case that there is no node y, such that D( y,qm; )=0,
as in step (8), a partial path has to be added to the

tree, and it has the form:

™~

R

For example, conslder the forest in Flg. 4.8.

Suppose an atom with a code (0011) is to be added to
the tree. Let qm;(0011). Then q_,=10,q,,=00, q ,=11.
The third tree in the forest will look like this after
insertion, (Fig. 4.9)

00 —— 11
10 Fig.4.9

™S 01 — 10

~
11

where the path to be added is — 00 -—11

When an atom 1s to be deleted from the atom
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sets, a partial path will be deleted from the tree.
Let L2 qmo,...,qmm be deflned as earlier for an
atom to be deleted. The partial path to be deleted

from the tree has the form

—> q

m ™ (1) — v — 9

mm

where qm(1+1) 1s the only son of qu, k=1,...,m.

For example, consider Fig.4.8 and suppose that
the atom 1100 in B(L ) 1s to be deleted. Let Q. =
(1100). Construct duo = (01), Q= (11), Q. = (00).
Since the code name T of the root of the second tree
satisfies D(T,qmo) = 0, we know that (1100) is
contalned in the second tree which will has the

following form after deletion (Fig.4.10):

01
T 01
Fig.4.10 k
where 11 —> 0 0 18 thé partial path that

has been deleted. Usually, deletion of a partial

path means disconnecting a liﬁk‘fram the father of

the eldest member in the parﬁial path. The space

that was occupled by the partial path is then returned
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to the free space list. This 1s a problem of garbage

collection which will not be discussed here.[:Bé]

IV.2.2. IMPLEMENTATION PROGRAMS:

The purpose of the programs 1s to demonstrate
feasibility and to serve as a guide to the analysis
of the proposed file structure. The programs were
written 1n FORTRAN and COMPASS. A sample file of
1000 records are generated by a pseudo-random number
generator, each record belng represented by a 100-
bit code and each blt representing one keyword. The
pseudo-random generator 1s written so that each record
it generates 1s a concatenation of ten 10-bit pseudo-
random numbers generated independently. 1In a way, it
simulates the bit patterns of fields in an actual
record. For example, a record in a personel file has
a field name AGE . The values for AGE range from 20
to 65, then codes for these values must have some
bit patterns. A" linear recurrence algorithm is used
in writing of the generator. Output of the generator
is a set of random numbers punched on cards.

The programs accept the deck of cards as the
representation of the set of records. A forest
of trees is bullt up from this representation of records,

under the following specifications:



Let K = { I } s Xy oK, EysesEn
have the same general meaning as defined in
Chapter IV.2.1. In particular, for the purpose of
our programs, we choose n=100, m=10, X1=(kl,...,klo),
Xo=(qqse-skpp)seeesXy=Kpey 1)gqs--skpy)seees
Xlo=(k91,...,kloo); 81,...s81p are chosen to be the OR
function of Xl,Xz,...,Xlo respectively. The reason
for choosing gl,...,glo this way is the ease of
programming, because the validity of an OR function is
relatively easy to verify. The reason for choosing
Xl”"’xlo to have the same number of elements and
to choose n = m2 1s that the computer representation
of a node in a tree will have a fixed format, another
convenlence for programming. All these restrictions
on K, n, m, gi are rather artificlal. But the
programs were written only to illustrate feasibility;
hence we made everything simple.

Within a computer, a forest 1s represented as
a threaded binary tree, more precisely, a half threaded
binary tree, with the LLINK field of a leaf pointing
to 1ts father, and the RLINK field of a leaf storing

an atom number. A node, occupying one CDC 6400

computer word, has the following format

INFO LLT | RLT| LNO

59 12 21 21 6 0
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where INFO, (12 bits, of whichonly 10 bits are used),
stores the code name of a node; LLT, 1 bits), is the
LLINK and LT fields and stores a pointer to its brother,
or, if the node 1s a leaf with a father, storés the
negative of the address of its father, or, if the node
is a leaf wilthout a father, is filled with 1's; RLT,
(21 bits), is the RLINK and RT fields and stores a
pcinter to i1ts son, or, if the'node‘is a leaf, stores
the negative of an'atom number of the atom it
represents; and, LNO, (6 bits), stores the level

number of a node.

Note that negative values in RLT indicate that

the corresponding node is a leaf and the negative
value in RLT is the atom number of an atom it fepresents.
In reallty, RLT may store a pointer to some memory
locations in which other information about the atom
is stored. A negative value in a LLT indicates that
it is a threaded, instead of a regular link. A
thread is the negative of a pointer to the father of
this node. 1If the node does not have a father, i.e.
a node representing the youngest brother at level O
in the forest, 1ts LLT has the value of negative zero
(all 1's).

For example, consider a forest in Fig.4.11. The

binary tree representation for this forest 1s shown



Fig.4,12

In a computer memory, by consldering A, B, C, D,
E, F, G, H as addresses in the memory, this binary
tree has the representation shown in Fig. 4.13,
where PT 1is a pointer to the root of the binary
tree, and the +thinner lines represent threads.
We shall call the binary tree representation within
the computer the tree from now on. The tree will
be traversed by preorder algorithm, 1.e.

Vislt the root,

Traverse the right subtree,

Traverse the left subtree.
"Visilt the root" means to do something with the root;
here 1t means to compare the code name of a root with

a vector qmi as defined earllier for a query. Note
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that we traverse the right.subtree before traversing

the left subtree, which is different from the definition
of preorder given in Sectionm IV.l. However, it

should be clear that 1t 1s Jjust a matter of reordering of
brothers 1n a forest.

Our program consists essentially of eight
subprograms, namely, TREE, CONVERT, DETREE, RETRIEV,
ADDBIT, RETRI, MASH and MATCH. Relationship among
these programs is shown in Fig.4.14, where a link

represents a call from one program to another.

CONVERT  DETREE RETRIEV

/N

ADDBIT 'iﬁ?ﬁi\

MASH MATCH
Fig. U4.14

These programs first convert a set of records 1nto
the tree, then they process a query and print out all
those atoms that satisfy the query. We assume that
each atom in B(Ji) contains one record for the sake of
simplicity. Therefore, the set of records is 1ldentical
with the set of atoms in B(£ ). In practice, each
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atom may contain more than one record. A pointer to
the set of records belonging to that atom must then
be stored in the leaf representing that atom, lnstead
of the record number being stored as we did.

The function of each individual program will
be described as follows:
TREE: It is the main program which accepts the set
of atoms punched on cards; calls CONVERT to convert
each atom into an appropriate form; calls DETREE to
construct the tree; finally calls RETRIEV to read a
query and retrieve from the tree all atoms satisfylng
that query. This main program is written in FORTRAN.
CONVERT: It converts each atom into a vector q . defined
earlier, i.e. for an atom (Xl,...,XloO), construct a

vector q ., = (Pl,...,PlO) such that P,=1, if

i

gi(xm(1-1)+1""’xmi) = V(Xm(i-l)+1""’xmi) =1
or equivalently, if there exist a k in { m(i—1)+1,...,mi}

such that X, =1; =0 oo
s Fy=0, 11 gi(Xm(1-1)+1’ ’Xmi)

V(Xm(i—1)+1,'°f’xmi) = 0 or equivalently, if for all

k in { m(i-1)+1,...,mi } 2 X, =0.

k
Functionally, CONVERT determines codes for nodes

at level O of trees in the forest. CONVERT 1is written

in FORTRAN.

DETREE: Constructs the tree from the set of atoms.

For each atom, DETREE determine what part of the tree
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the atom belongs to. A vector 90 is obtained from
the output of CONVERT. qmi’ for i=1,...,m are obtailned
by left shifting 10 bits of the vector qm of each

atom consecutively into a register M. i=0,...,m

Apy?
are compared one after another with code names in the
tree to determine where in the tree A should be
Stored. DETREE is written in COMPASS.

RETRIEV: Calls ADDBIT to translate a query q from query
language to a vector form that is appropriate for
processing. And then calls RETRI to traverse the

tree and to retrieve atoms satisfying q from the tree.
RETRIEV 1s written in FORTRAN.

ADDBIT: The query language we use here 1s very simple.
To specify a query, a sequence of integers is used to
specify which keywords or complement of keywords are

in the query. All queries are in conjunctive forms.
Negative integers are used to specify the complements

of keywords. For example, ( -5 6 9) means'E5ﬁ\k6/\k§.
Instead of using the symbol *, ADDBIT converts a query

d in a form of a sequence of integers into three vectors:
amo=(275...,2,), where m=10,and z =0 if there exists a

i

i in { m(1-1)+1,...,mL | such that k, is in q;

J
Pmé(xl"°"x100)’ qm=(yl,...,yloo), where xi=0 if

ki is in q, yi=0 if ki 1s in q. For example, if

a=(-5 6 9), we will have qmo=(011...1), P,=(11111011011...1),
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qm;(1111011...1). The reason for doing this will be
given when MATCH is described. ADDBIT is written in
COMPASS.

RETRI: The tree is traversed in preorder by RETRI.
When the rcot of a subtree is belng visited, the code
name of the root 1s compared with a vector which 1is

a result from a call to MASH. A comparison between

a code name and a vector is done by a call to MATCH.
The traversing process stops when the node being
visited has a LLT contalning a negative zero(1l...1l).
It means that there are no more trees in the forest %o
be traversed. RETRI 1s written in COMPASS.

MASH: Since Pm, qm are vectors of 100 bits, each

needs two CDC computer words to be stored. Pm is

stored in IQUERY(1l) and IQUERY(2). q, is stored in

IQUERY(3) and IQUERY(4). MASH leftshifts P 10

m? Im
bits each time consecutively into MM(1) and MM(2)
respectively. MM(1) and MM(2) are used in MATCH
to compare with code names 1n the tree. MASH is

written in COMPASS.

MATCH: MATCH performs a matching procedure between
a code name INFO(n) of a node n and MM(1l), MM(2).
Let q=(Pl,P2,...,P100) be a vector representation of
a query q, as described in Section IV.2.1, i.e. where

P,=1, if k, is in q; P

5 1 =0 1f &y 1s in q; P,=* if neither

i i
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k, nor ky 1s in q. Let qm1=(Pm(i-l)+l:---:Pmi)~

Claim: D(INFO(n),qmi)=O ir MM(1)\/ INFO(n) = (11...1)
and MM(2)\/ TNFO(n) = (11...1).

Proof of the claim:

Let INFO(n) = (ul,...,um), u;=0 or 1. By
definition d(INFO(n), qmi) =0 if uj-Pm(1_1)+j =0
for all jJ=1,...,m. Also by definition MM(1) = (x

m(i-1)+1°
cosXps ), MM(2) = (ym(i-1)+l""’ mi) where
m(1-1)+5 =0 ML Prg )y =l
=1 Aff  Piy ),y =0 or %
Im(1-1)45 =0 HT Puesg)ey =0
=1 ifrf Pm(i-l)+J =1 or ¥

Suppose MM(1) V INFO(n) # (11...1) or MM(2) \/ INFO(n)
#(11...). MM(1) v INFO(n) # (11...1) implies that

there 1s a j such that u’j V/xm(i-1)+J = 0, which implies

=0 and = 1 = =
Uy n xm(i-l)+j"o’ implies uj 0 and Pm(i-1)+j 1,
implies uj'Pm(i-l)+j#b’ implies D(INFO(n),qmi) # 0,
contradicting to the fact that D(INFO(n),qmi) = 0.
MM(2) V INFO(n) # (11...1), implies that there is

a J such that UV Vm(1-1)+4=0 1mplies Uy=0 and

ym(i-1)+J=o’ implies that uJ=1 and Pm(i-l)+j=o’ implies
uJ-Pm(i_l)+j # 0, implies D(INFO(n),qmi) # 0, also a
contradiction to D(INFO(n),qmi) = 0. Q.E.D.

By using this claim we can process the query

without using the symbol *. MATCH is written in COMPASS.
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While the statements of these programs can be

found in the Appendix, the algorithms for these

programs will be given as follows:

TREE:

0. Read N, K. Allocate space for TR.

10.

(N is the number of cards, K is the number of
bits in a code name, TR is the address of the

tree.)

. PT<— TR. (PT stores a pointer to a root.)
. Read Ith card, and I+lth card into B(I) and B(I+l).

Call CONVERT (B,I,M).
(B is a fuffer, storing an atom; I, number of

cards belng read; M, code name of a node!)

. NL=1, J=0. (NL, level number to be stored in

LNO, but actually, NL is a number greater than
the level number by 1, i.e. at level O, NL=1;

J is a counter for number of leftshifts.)

. I3 = (I+1)/2. (Each atom occupying two cards,

I3 is an atom number. )

. Call DETREE (M, NL, TR, PT, 13).
. Leftshift B, (J+1)*10 bits into M, MASK left

most 10 bits of M, put it into M.

. d 10, Go to 10.

. NL =NL+1, J=J+1 Go to 4.

I>N. Go to 12. (All card read?)



11. I =TI + 2. Go to 2. (Read the next two cards.)
12. Print TR. (Print the whole tree.)
13. Call RETRIEV ( TR, KEY, NK ).
(KEY is an array containing keyword numbers
or the negatives of keyword numbers 1n a
query, NK 1s the number of keywords appearing
in a query.)
CONVERT ( B, I, M ):
0. J=0, JA=0. (J 1is a counter for the number of
leftshifts, JA stores the bit position that
has to be a "1" in M.)
. IA — [B(I)l (Content of B go into IA.)
. Leftshift (zero filled) IA, J»10 bits into IA.
. MASK left most 10 bits of IA into IT.
. IT=0. Go to 6.

1
2
3
4
5. Set p®h bit of M to "1", p=Modjy [JA*10) + 1.
6. J=J+1, JA=JA+l.
7. J=6 Go to 10.
8. JA > 10. Go to 11. (Pattern of left most 10
pits of M has been determined.)

9. Go to 2.

10. I=I+l1 Go to 1.

11. Return.
DETREE ( M, NL, TR, PT, RN ):

Notatlons: [:A ] means the content of a variable A.
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p+— B means address of B being put into p; P «—-[B']
means content of B being put 1nto p; F(p) means the
field F in a node p, for example, INFO(p) means the
INFO(p) in P; and -0 = (11...1).

1. pe« TR. (p is a pointer to the root of a

subtree.)
2. [[:p]] =0 Go to 4. (The tree is empty.)
3. Go to 6. (If the tree is not empty.)

y, nFo( [p] ) <«— [ml 5 [p] =TR,

LLT «<— -0, RLT =—— - [RN] , INOo < [NL],
PT =— [PT] + 1, Return.

(PT is a pointer to an avallable space; -0 will
be propagated to the brother of p; RN 1is an
atom number propagated to the son of p.)

5. INO <— [NL] , RLT <— -[RN] , LLT<— -( [PT] -1),
PT < [PT ]+ 1, Return. (Address of its father
being put into ‘LLT.)

6. [INO] = {:NL] Go to 11. (The level number
of a node 1s matched with that of the on-coming
atom.)

7. RLT # -,Go to 9. (If 1t has a son.)

8. RN «—[RLT] , RLT «—[PT], p « [PT] Go to 2.

9. NEXT = 0, p <« ( [PT] - 1) Go to 2.

(NEXT 1s a polnter to the next memory address
to be examined; if NEXT = O, let p be the
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address of a node that is just implemented
before this call of DETREE.)

10. Go to 17. (NEXT # 0.)

11. M # INFO([ p ]), Go to 14. (Code name not
exlsted yet.)

12. RLT([ p ]) = -, Return. (Code name already existed.)

13. Go to 17.

14, [EDT] # - Go to 16. (Not the youngest brother.)

15. TEMP «— [LLT] , LLT«—[PT] , p«— [PT] ,
INFO([ p1)«—[M] , LNO(p)<—[NL] ,

LLT(p) «—[TEMP] , RLT(p) «—- [RN],

NEXT +—[PT], PT«—[PT] + 1, Return.
(A‘neW‘brother node is implemented, NEXT
contains address of a node next to be visited.)

16. p «—[LLT] Go to 11. (Go back to check the
code name of the next younger brother.)

17. p+— [ NEXT] , NEXT « O, Go to 2. (NEXT gives
the next address to be vislted without
traversing any branch.)

18. NEXT «— [RLT( [p])] , Return.

RETRIEV:
1. Read NK. (NK is the number of keywords in
a query.) ’
2. Read KEY(I), I=1, NK. (KEY(I) stores the

keyword numbers.)



3. k1=1, k2=k1+9. (To form a disjoint partition
X,/X for the keyword set K, K = XU X, and
Xo= (g seeenky )e)

4. KEY(I) >0, Go to 6.

5. Go to 2.

6. k, < KEY(I) k

1
J=KEY¥(I).)

Go to 10. (x, in X_,

2’ J 1

7. ky=k,+10. (To form Xe')

8. k > 100, Go to 13.

9. ky=k,+9 Go to 6.

10. NBIT = Mole(KEY(I))-r-l.

11. If there 1s some I,, such that KEY(Il)
KEY(I) and k< KEY(I,) < ky» Go to 2.

12. Call ADDBIT ( M, NBIT ). (To construct a
vector M representing qmo.)

13. Continue.

14, IQERY(I) «— -0, I=1,...,4. (IQUERY(I), I=1,2,
contains information about which keywords are
in the query; IQUERY(I), I=3,4, contains
Information about complements of which keywords
are in the query.)

15. Call RETRI ( TR, IQUERY, M ). (To traverse
the tree.)

16. End.

ADDBIT (X, N ). (X 1is a vector of "O" and "1", and
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N is an integer.)

Set Nth bit of X to zero.

RETRI (TR, IQUERY, M).

0.
1.
2.

o N o =W

9.
10.
11.
12.

13.

14,

15,
16.

J «— 0.

PT «— TR.

INFO([ p ]) = M? Yes, Go to 5. (If M matches
wlth the code name of the root of a Subtree,

go to its son.)

. LLT( [PT] ) = -0? If no, Go to 4, else stop.

PT «—LLT( [PT] ) Go to 2. (Visit its brother.)

. PT«—RLT( [PT] ).

. JJ=J%*k, NLQ=J+2. (Traversing the tree at level 1.)
. Call MASH(JJ,IQUERY, MM).

. If MM(1)=-0 and MM(2)=-0 Go to 16. (If there

1s no keyword or complement Qf keyword of Xi
in a2 query, let i1=1+1.)

Call MATCH (PT, MM, NLQ).

If match Go to 16, else 1if NLQ%LNO Go to 19.
LLT( [PT]) = - Go to 13.

PT «— LLT( [PT]) Go to 9.

PT <— -LLT( [PT] ), J < LBO( [PT] )-2, 1if
J=-1, let J=0, Go to 3.

If LLT( [PT] ) = - Go to 13,

PT« LL([PT] ) Go to 6. (Visit its brother.)
Ir RUT( [PT] )>0 Go to 18.
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18.
19.
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Print -RLT( [PT]) Go to 11. (Print atom
number. )

PT<«— RLT( [PT]} ), J=J+1 Go to 6.

J=J+1 Go to 6.

MASH (JJ, INQUERY, MM):

If JJ=0, TEMP(l)*———[ IQERY(l)] , TEMP(2) «—

1.
[ IQUERY(3) ], Go to 5.
2., If JJ =260 Go to 6.
3. TEMP(1) ﬁ——[IQ,UERY(l)] , TEMP(2) «— [IQUERY(S):I .
4, Left shift TEMP(1) JJ bits — TEMP(1)
Left shift TEMP(2) JJ bits —> TEMP(2).
5. Mask the left most 10 bits of TEMP(1),
TEMP(2) into MM(1), MM(2) Return.
6. If JJ=60 Go to 9.
7. JJ=JJ-60.

8. TEMP(1)<— [IQUERY(2)], TEMP(2) e [IQUERY(4)]

Go to 4.

. TEMP(1) < [IQUERY(2)], TEMP(2)<— [IQUERY(Y4)]

Go to 5.

MATCH (PT, MM, NLQ):

1. If INO( {PT] ) # NLQ Go to 9.

2. If MM(1) = -0 Go to 6.

3.

4, 1f MM(1)=-0 Go to 6. (Indicates keywords 1is

MM(1) ,0R. INFO( [PT ])— MM(1).

matched.)



5. MN=+1 Return.
6. MM(2) ,0R. -INFO( [PT ] )-> MM(2).
7. If MM(2)=-0, then MN <— -0 Return.
(Complements of keywords also matched, return.)
8. MN=+1 Return. (No match.)
9. MN=O Return. ( [NLQ] # [ LNO] , Wrong level.)

IV.3. STORAGE REQUIREMENT AND RETRIEVAL TIME - A
COMPARISON TO AN INVERTED FILE:

The storage requirement of the tree is directly
proportional to the total number of nodes and the
8lze,being the number of bits, of each node in the
tree. In the most general case, the model for our
file structure may have many sequences of Boolean
algebras. For example, 1f we have 1000 keywords, we
can partition them into 100 groups, each group has
10 keywords, and then partition these 100 groups into
10 groups, each new group contains 10 o0ld groups. In
this way, we are actually building two subsequences
of algebras, say B(FO),B(FI),...B(Fg); B(GO),B(Gl),...,
B(Gloo),‘ such that B(F,)< BF )&= ...C B(Fg)gB(Go)

.o &B(6,5y), where Fos FyseFgsGo,...,G10p are

sets of generators. Let Gy = (gl,.. then

. )gloo))
F9=(gl,...,g90,flo), where f1o0 18 a function of
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ggl,ooa,gloo; Fi=(g1,---glo(i_l), fi’oo-,flo), Where

t .
fi is a function of g10(1-1)+1’

to each subsequence of algebras, there is, in the tree

”’gIOi' Corresponding

representation, a set of nodes which are representing
atoms of algebras in the subsequences. Let us call
such a set of nodes a layer of a tree. In our implemen-
tation. example, there is only one subsequence of
algebras, therefore the tree has only one layer.
In general, let n be the number of keywords, m
be the number of bits in the code name of a node, and
n=mk; then the height h of a tree can be calculated
as follows: Kk
m -1 n -1
h = lémdmt, . 4mEt = —— o —
m -1 m -1
Let uy be the average number of nodes at level i. ui
1s defined as

total number of nodes at level i

number of the sets of sons of nodes at level i-1.
As the height of a tree i1s defined as the maximum level
number among all nodes in a tree, the total number N

of nodes in a tree can be calculated as follows:

h J
N =:§£: -rr u1
J=1 1i=1

If u=u, a constant, at all levels, then
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W o R

IR

h
N=ZuJ = u

u -1 W -T
J=1 '
where R = uk the number of leaves that are atoms in
B(L ). Let M be the size of a node in terms of bits
which include bits for the code names, links and other
data. Then, the total storage requirement for the tree

1s

The storage requirement S may be much smaller than
that of storing the atoms of B(L ) in a tabular form,
1f the overhead ratio, M/m, in each node is close to
1. Let C be the number of bits required to code each
atom, the total storage requirement S1 for storing the

tabular form of atoms is

Sl=CR
and
S =M  _u ) M u
57 ¢ ' w<-T S<Sl 1r T wrT <!

If h and R are fixed, the worst case happens when
every node has only one son, l.e. the forest becomes
R linear lists, then
S=hRM
Again, if M/m=1, implies Mh=C, then S=CR. Certainly,
if M>m, then s>sl. For example, 1f h=11, m=10, M=60,
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R=1000, as in our case, S=11x1000x60 = 66x10LL bits,
Sq = 100x1000 = lelO4 bits. S = 6.6Sl is the worst
case.

In order to save storage space,we can store
the node with its only son, if it is the case,
consecutively, without using a pointer. In this way,
the spaces for storing links are saved, but a node
wlll have variable size. Let us define an X-tree as
a rooted tree in which every node (except the leaves)
has at least two sons. For a given R and a given h,
a X-tree exists i1f h+l1< R; a binary tree exists if
h+1< RQ 2h. An upper bound for the maximum storage
requirement for a X-tree with R leaves, if the X-tree
exists, can be shown to be 2R-1 in the following Theorem.
Theorem: The number of nodes including the root and
leaves in a X-tree (including binary X-tree) with a
fixed number R of leaves 1s smaller than 2R-1.

In order to prove this Theorem, we need the following
Lemmas:
Lemma 1: A bilnary X-tree with R leaves has 2R-1 nodes,
including the root and leaves.

Let us denote an X-tree with R leaves by t(R). The
number of nodes of t(R) is denoted by Nt(R). We are
to show that for a binary X-tree tb(R), Neo(R) = 2R-1.

Proof: It can be proven by induction on R.
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(1) Let R=2, Nt (R)=3, as shown in Fig.l4.15,.

//K\\ Ntb(zj = 3

¢

Fig.4.15

(2) Suppose Ntb(R) = 2R - 1, for Rsérm;

(3) Let R=m + 1.

Let us remove two brother leaves from ty(mel).
The result i1s a binary X-tree with m leaves, i.e.
tp(m). It is clear that Nty (m+l) - 2 = Ntb(m). Thus,
Ntb(m+l) = (2R-1) + 2 = 2(R+1) - 1 Q.E.D.
Lemma 2: For a given positive integer R, a binary
X-tree 1s a X-tree that has the maximum number of
nodes, among all X-trees with R leaves.
Proof: It can be proven by showing that for any non-
binary X-tree t(R) with R leaves, there exists a
binary X-tree t,(R), such that

Ntb(R) > Nt(R).

Let t(R) be an abitrary non-binary X-tree with
R leaves. 1In the tree t(R), let S be the set of all
those nodes that have more than two leaves as their
sons. Let us convert t(R) into a binary X-tree with
R leaves by removing one son of a node in S each time
and connecting two leaves to another leaf of t(R).
At each step, the intermediéte result is a X-tree

tl(R), and Ntl(R) = Nt(R+1). Repeat this process until
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S is empty. Now we have a binary X-tree tb(R), and
Ntb(R) > Nt(R). Q.E.D.

Now the proof of the Theorem is obvious from the
results of Lemma 1 and Lemma 2.

Proof of the Theorem:

For any glven non-binary X-tree t(R), by Lemma 2,
there exists a binary X;tree tb(R), such that Ntp(R) >
Nt(R), and by Lemma 1, Ntb(R) = 2R - 1. Thus,

Ne(R) < 2R - 1 . Q.E.D.

The query processing time in a file structure 1s
dependent on how a file is logically organized and
how 1t is physically stored. This query processing
time consists of the processing time of the central
processing unit (CPU) of a computer and the actual
record accessing time of a random access device, say
a disk. When a query is processed, physical records
of a disk are accessed into core in which the
structure of a flle 1s searched. In our case, Wwe
assume that the search time of the tree for a query
is proportional to the number of links in the tree
to be traversed. Let us call the set of all sons of
a node the filial set of the node. Let.ui be the
average number of sons in a fllial set of a node at
level 1 as defined earlier. Let r be the ratlo of

the number of nodes satlsfying a query within a



filial set versus the total number of nodes in a
filial set. The search time t in terms of number of
links to be traversed, can be determined as follows.
At level 1, there will be ri-lui_lu1 nodes that
satisfying the query; therefore there are 3:'1'1111_1u:.L
links to be traversed. Thus, the total expected

number of links t0 be traversed in a h level tree is
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h i_
-1
v = :E ri 71‘ uj
i=1 J=1
In the case of ui=u a constant
h 1 I‘h U.h -
t = E rt-1 u = u e
ru -
i=1
when ru —>»1, t — uh. The limiting case occurs when

there 1s only one atom in B(f ) satisfying the query;
at each level i there is only .one node to be traversed
For many queries, the tree is searched without
traversing down to the leaves level. For example,

if a query consists of keywords from Xl,...Xi of a
disjoint partition X;/ X,/ ... /X, of the keyword
set, then the tree only has to be traversed down to
level i, for all descendants of the satisfying nodes

at level 1 are retrieved as the answer to the query.

Thus, we have
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If we consider all these factors, the average

retrieval time over all queries will be smaller thah

rhouh - 1

r-u - 1

This tree representation of the pioposed file
structure can be viewed as a file organization that
allows retrieval by a pgytial key, with concatenation
of codes of keywords in a record being the primary key.
The level O in the forest can be viewed as an index
to the rest of the forest. Indexes of this kind
are not ordered by the ordering of the primary keys
but are calculated by a evaluation of some Boolean
functions of keywords. It is conjectured that
‘the query processing time is more uniform than
other secondary keys retrieval allowable file
strucfure, sa& inverted file. The uniformity
is Justified by the fact that for those querles
involVing few keywords, few numbers of levels
of the tree have to be searched for those querles
involﬁing many keywords, few numbers of trees
i1n the forest have to be traversed. Further

research 1s in order to justify this hypothesis.



In an inverted file, the CPU processing time is
proportional to the number of inverted lists to be
intersected and the number of elements in each list.
Suppose the intersection of two lists Ll’ L2 is
obtained by two way merge of these two lists. Let
L, have r elements and L, have s elements; the minimum
number of comparisons is the minimum of two numbers
r and s. The maximum number of comparisons has to
be performed as r+s-1. If there are k keywords in
a query, then there are k 1lists to be operated on.

Let Ll”"’Lk denote these k lists. Let us order

these lists so that L1 1s the shortest list among them.

Assuming the intersection of these k 1ists is obtained
by repeatedly intersecting of two lists Li and Ni-e’
Ny o =ILy4N Ny .3+ The final result is a 1list Np_1
which will be a 1ist of addresses of all the records
satisfying the query. Nk-l 1s the shortest list among
all lists belng operated on. The minimum of the
maximum number of comparisons it needs to process
a query with k keywords 1s calculated by

By =Lp + (k- 2) N4
Note that tl 1s a function of the number of keywords
in a query, the length of the shortest 1list and the
number of "hits" of each intersection.

For an example, consider a file with lO6 records,

89
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lO3 keywords. Assuming 20 keywords per record, the
average number of addresses in an inverted keyword

list can be calculated by
20 x 106 4

L = 1000 =2 x 10

Suppose a query-qontains.lO"keywords and assume arbitrarily
that the minimum number of "hits" per intersection is 100.
Then, the minimum maximum number of comparison is

N

I
t. =L+ ( k-2 )N = 2x10 + (8)x100 = 2x10 .

1 k-1
On the other hand, assuming on the average each
f1lial set has 10 nodes, i.e. u=10, and h=6, r=0.3,
then the processing time for the query in the proposed

file structure is

6
3 6
t =10 —— =5 x 3 = 3645
3 -1
Note that u,r are very critical parameters. For
' 4

example, let r=0.5, u=10, then t=3.75x10 . On the
other hand, let r=0.5 and u=4, then t=256.

Suppose we use disk as the storage device; once
the characteristic of disks 1s known, we can compare
the access time for the proposed file structure with
that of the inverted flle. As we mentloned earlier,
level O of the forest can be viewed as a index to the

rest of the forest; we can store level O 1In core and

the rest of the forest can be stored level by level



or by preorder on disk. The basic characteristics
concerning about disks are the head position time,
Tp, the latency time,Tl, the track read time, Tp,
which 1s equal to the time for one rotation of the
disk. T, 1s assumed to be TP/Q. Typlcal value of
these timings for a disk Say an IBM 2311, are

Tp = 75 ns, Tr = 25 ns, Tl = 12.5 ns.

A cylinder of a disk is defined as tracks that
can be read gt one position of the head. Suppose
each tree in the forest is stored in one cylinder.
Assuming at level 0, on the average, there are ru
nodes satisfying a query. We can formulate the

access time as

T =rufT, + 1.51&‘+ 2(n-1)Tr
=rulp + (2n - 0.5) Tp
where n 1s the number of tracks to be read and is
dependent on the size of a tree. The second term
in the formula is the Sum of one track read time plus
one latency time. The third term is the sum of (n-1)
track read time plus one rotation loss for the CPU
Processing time after eévery readlng of one track for
(n-1) traéks. If the whole set of keywords is chosen
for the set of generators for B(L ) and 1ir every
record 1s solely defined by a subset of keywords, then

all those records satisfying a query can be decoded
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from the tree structure and T is the time for processing
the query.
In case of inverted file, the processing time

D
is the decoding time for the index for the inverted

consists of three parts, T T Ta.f t) T
D, "I and ~A

lists; TI 1s the processing time for the inverted lists;
and Ty 1s the access time for accessing the satisfying
records. Let us define some symbols:
L average length of a 1list.
A number of fille record addresses per
physical record (say a track).
N number of keywords in a query.
p ratio of number of satisfied records in a
list over total number in a list.
TmD decoding time for a m-level index decoding
tree.
The formulation for Typ With first level of the index
decoder stored in core is
Tp = o+ 1.5t + 2(m-2)t g m > 1
The total decoding time Tp for a query with N¢ keywords
is Tp = Ng Tpp
Before finding the intersection of Nt lists in core,
we must transfer L/A N, physical records ( say tracks )

from disk into core. Therefore the processing time

TI for Nt Iinverted 1list is
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rpo= Ne[oa]o(r +150)
Finally pL satisfying records must be accessed from
the disk. We have

= 1.

Ty pL ( T, +1.57T)

The total query processing time is

= -2. : 1.

T, + (2m-2.5)T + Ny L/A (T, + 1.5 T.)
+ pL (Tb +1.5 Tr)

[

(L +N, L/A + pL)Tp + (2m + 1.5 N, L/A
+ 1.5pL - 2.5)Tf

Assuming n=10, 1.e. 10 tracks rer cylinder, consider
the previous example, ru=3, T = 10?p + (20-0.5)Tr.
For A=500, L=2x10u, L/A=40, N, =10, m=3 and pL=100,
Tl can be calculated as

T; = (1 + 10x40 + 100)'1'p + (6 + 6Qo + 150 - 2.5)Tr

= 500 Tb + 750 'I'r

For the purpose of comparison, we shall derive the
storage requirement for the inverted file. The total
storage requirement for the inverted file also
consists of three parts: SD, SI, and SA'
SD 1s the storage requirement for the index decoder.
SI is the storage requirement for the inverted lists.
SA 1s the storage for the data file.
Suppose that the decoder has h levels, the branching

factor is m, 1.e. each node has m sons. Let N be
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the number of keywords, N=mh.

The size of the decoding tree can be calculated by

We are only interested in how much information we have
to store in terms of the number of bits to represent
the collection of data. The physical size of storage
we need , say the number of tracks, can be determined
if the capacities of the physical device is known.

For example, 1f the number of the available bits per
track 1s known, we can determine how many tracks we
need to store the collection of data.

Assuming for coding of x objects, we need log2 X
each keyword is coded with log2 N bits. Within a node
there are three portiong, namely a code for ‘a keyword a
code for a storage device address which is a pointer
to its son, and a code for list length. Let us assume
each node have M bits, therefore

m

SD = MD = -

Let us define:

N M

-1

L = average 1list length.

R = number of records.

K = average number of keywords per record.
N = number of keywords.



KxR
It 1s clear that L = —___ and SI=NL loggR.
N

Eventhough we can assume that the collection of lists
contalns as much information as the data file, if there
1s an inverted 1ist for every keyword and every record
is defined by the subset of keywords, the reconstruction
Of a record from the collection of inverted 1lists is
very inefficient. Therefore we still have to store
the data file for the ease of retrieval. We can

calculate SA by

SA = RxKzx log2 N
Now, the total Storage requirement for an inverted file
1s
52 = SD+SI+SA
m

=

—) NM + NL log2 R + RxKzx log2 N
Consider the previous example, N=1000, L=2x104, R=106,
K=20, u=10 and let m=3 and M=100, we have
32=3/2x103x100+1o3x2x104x20
+ 106 X 20 x 10
1.5 x 10° + 4 x 105 4 2 x 108

=6 x 108 bits

n

For the proposed flle structure under the same

assumption, we have
10 x lO6 8
S = 100 = 1.1 x 10 bits.
10 - 1
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From these crude estimates, we can conclude that

(1) The storage requirement and the query
processing time, especlally for large flle and complex
queries, the proposed fille structure has the advantage
over the inverted file.

(2) The CPU processing time for a query in
the proposed file structure depends on a very sensitive
parameter r, for r=3, the CPU processing time may be
larger than that of the inverted file.

(3) The query processing time of the proposed
file structure 1s not directly proportional to the

number of keywords in a query and the list lengths.
Thus, we conjecture that the proposed flle structure
"has an uniform processing time.

The file maintanance problem for the proposed
file structure 1s similar to the problem of retrieval.
For example, to add a record tc the file, a set of
Boolean functions has to be evaluated to determine
what part of the tree this record will belong to, then
the record is broken up into fragments which
correspond to nodes in the tree. But for the inverted
file, to update the file 1s to update the index decoder,
the collection of inverted 1lists and the data file.

By this simple reasoning, we believe that the proposed
file structure will also has an advantage over the

Inverted file.



V. CONCLUSION

We have defined a file as a collection
of functions mapping from a set of records to some
value sets. A homogeneous subfile is defined as a
Subset - of a space of the product of some
value spaces, 1.e. a relation. In general, a file
consists of a collection of homogeneous subfiles.
Thus, our definition of a file is equivalent to Codd's
relational model of a file which is defined as a
collection of normalized relations.[ll]

In this thesis, we have introduced a new file
structure which is based on the concept of atoms
in a Boolean algebra. Starting with the assumption
that the allowable queries are Boolean functions of
keywords, we can vliew the process of answering a query
as evaluating a homomorphism which maps a Boolean
algebra of querles into a Boolean algebra of the
file. From this point of view, a file structure
based on the atoms of the Boolean algebra of the file
arlses naturally. For implementation purposes, we
have found 1t advantageous to represent our file
structure by a nested sequence of partitions of the
file. With this representation,evaluating a query

becomes the problem of successive approximations of a



Boolean function. With the representation of the file
as a nested sequence of partitions, trees and binary
trees become natural choices for the data structure.

A program indorporating these ideas has been written
and run on some randomly generated data. The purpose
of writing this program was to confirm feasibility.

As written, 1t is neither a general data management
package nor an adequate test program for alternative
strategies. Nevertheless, we feel that the experience
that we have obtained in running thils program has
simply confirmed the feasibility of the basic idea.
Our experience from running this program and from a
simple analysis have also demonstrated that our
proposed structure should compare extremely favorable
against competing structures, e.g. inverted file and
multilist, with respect to both storage requirement

and retrieval time.
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We conclude that the Boolean algebra representation

is a natural basic model for a file. Once we have a
basic model, more complex structures can be constructed
for a file organization. For example, by defining a
set of operators on a set of homogeneous subfiles,

we will have a relational model of a file [4, 5],
Since a relational algebra is a Boolean algebra with

a set of additional operators.[34] The tree
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representation of data 1s not new, but the concept of
indexing by Boolean functions 1is believed to be novel.
The sample file is implemented in the core memory
of a CDC computer. The techniques we use can be
applied immediately to a computer system with virtual
memory and associated brogramming facilities. [37,38]
For future work, we plan to Study other aspects
of Boolean algebras applicable to our file struéture.
For example, we will study the possibility of finding
a& reasonable way for Selecting the sets of generators
of those nested Boolean algebras, such that the tree
representation will have a desired form. The
Separability of a file is also worth studying. 1If
a flle can be represented by a linearly Separable
Boolean function, then answering a query can be viewed as
finding the Intersection of the Query with the
separating hyperplane [31] of the Boolean function
representing the file. The Problem of constructing
more complex structure onto the file, say relational

algebras, 1s also an interesting area to be Investigated.
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APPENDIX

" " This appendix contains listings of programs which
are written for the implementation of the sample
flle and for the process of Boolean queries. Results
from several runs of the programs are also included
in this appendix. A set of queries is tested on the
programs. Processing times are recorded by making
a call to a library subroutine , SECOND.

The listings of programs include statements

for the following procedures:

(1). TREE (5). ADDBIT
(2). CONVERT (6). RETRI
(3). DETREE (7). MATCH
(4). RETRIEV (8). MASH

The listings .of outputs from the brograms include :

(1). The set of randomly generated records

(2). The tree representation

(3). A set of queries with various number of

keywords involved

(4). Sets of records pertaining to a query

(5). Processing times for queries

Due to the bulk of the computer print-out, only
a part of the set of records and a part of the tree

representation are listed.
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104

RUN FORTRAN COMPILER VERSION 2,3 B,2

000003
000003
0000603
000003

000003
000003
000003
0600003
000003
000003
000003
000003
000013
000026
030036
£000312
000053
60C0%e
700056
00C060
00005}
000052
020065
100073
00007¢
000075

900077

000077
000192
900105
000107
000111
000113
300114
800116
000120
500122
000123
000127
600130
000130
000132
000133
900133
000136
000187
000150
000152
000153
000155
000157

PROGRAM TREE (INPUT,0JTPUT)

INTEGER B(2000)+TR(S000) 4PT

COMMON K.
1 FORMAT (2020) '
15 FORMAT (/2Xo#NUMBER OFI NODES = #416//2X.4S1ZF OF EACH NODEIS

1 ONE COMPUTER W)ORD#)
14 FORMAT (2X9020)
12 FORMAT (/2Xy®HEQE IS THE DECODING TREE #//(2X4020))
111 FORMAT (l4)
17 FORMAT (//2XeeND, OF <EYWORDS IN THE QUERY#,43//(4X4,110))
222 FORMAT (214)
2 FORMAT (2X99NO, OF REC?RDS NOo OF BITS PER CONE®#//(2Xe214))
3 FORMAT (2Xo®THE SFET OfI RECORDS#®*//(2X42020))

READ 222+ NsK

READ 1o(B(I)s I=1eN)

PRINT 20 NoK

PRINT 3,(B(I)el=ioN)

DO 1c0 I=105009

TR{1)=0
100 CONTINUE

PT=LOCF(TR)

DO G I=1oNe?2

M=0

CALL CONVERT (8,1,M)
PRINT 14M

NL=1

J=0

I1s1

4 CONTINUE
13=(1s1)/2

CALL DETREE (MoNL,TRy2T,1I3)
11 M=B(Il)
IF (J.,EQ06) GO TO 10
JJ=geK
IF (JJLEQ.0) GO To 13
CaLlL LSHIFT (MeJl)
13 M=T774000000000000000nBeAND M
5 NL=NL+1
JaJdsl
IF (NL,GT.Kel) 30 TO o
IF (M,EQo.0) GD TO 11
GO 10 4
10 Il=11s)
J=0
GO 70 11
9 CONTINUE
PRINT 12e(TR(1)s 1=145000)
NODE=0
DD 16 I=105000
IF (TR(1).,EQe0) Gn TO 16
NODE=NODE 1
16 CONTINUE
PRINT 15¢ NODE



RUN: FORTRAN COMPILER VERSION 2,3 8,2

000165
000156
000156
000174
000202
000205
000207
000211

444

IKl=l

CONTINUE

READ 111.NKK

PRINT 17sNKK

CALL RETRIEV (TR,KEes KX}
IK1l=sIK]+1 )

IF (IK1.LEe10) 30 TO 444
END
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106

RUN FORTRAN COMPILER VERSION 2,3 B.2

000006
000006
000006
000006
000007
000011
000012
600013
000015
000017
000021
000023
0000625
000030
000031
£50033
900036
000036
060060
000060
000041
000063
000065
000050
000052
000053
000055
000057
000061
000062
000063
000066
600066

11

12

SUBROUTINE CONVERT (As<KoMT)
INTEGER A({2000)
COMMON K
MT=0Q

JA=Q

K2=KKe 1
DO & I=KKyoKP2

Jd=0

JJ=JUHK

IA=A (D)

IfF (JJL,EQ,0) G0 T9 11
CakL LSHIFT (layJJd)
IT=77740000000000000000B4AND,IA
IF(IT.EQ.0) GO TO 3

GO 70 4

Jz=del

JASJA«]

IF(JeEQo®) GO TD p

IF (JA,EQ,10) GD TO 6
G0 10 5

IF(UACEQ.0) GO TO 12
IT=40000000000000000000R
CALL RSHIFT(IT,JA,
GO0 TO 13
1T=6400000000000000000008
MT=MT ,0RIT

JAzJA+]

IF(JoEQ,5) B30 TO «.
IF(JAEQ0,10) GO To 6
Jadsl
GO TO0 §

CONTINUE
RETURN
END



IDENT DETREE
PROSRAM LENGTH

BLOCKS

PIOSRAM# LocaL

ENTRY POINTS
000000 DETREE

ENTRY DETREE
DETREE BSS 1

SA1 B3

L2 NZ X1l,L4
SA2 B)
BXT X2
SBes Al
NE B3,86,413
MX3 33
MXz2 12
BX2 X3=X2
BX1 X1leX2
SA4 8BS
BX4 =X4
LXé4 6
MX3 54
MX2 33
BX2 X3-X2
BX2 X2#Xé4
B8X1 XleX2
SA2 BR?
BX1 XleX2

SAs¢ B

SXe X4el
SAe6 BRs
BX6  X]
SAg A}
£Q R0+RODETREF

L3 SA2 B2
BX1 X)eX2
SA4 RN
LX4 6
MX3 54
MX2 233
BX2 X3=X2
BX2 X2#X4
BX]l X]eX2
SA4 Bs
SX4 X4=]
BX4 =x4
LX4 27

MX3 33
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L%

L7

L8

Mx2 12
BX2 X3eX2
BX2 X2#X4
BX1 X1eX2
SA4 B4
SX6 Xa4el}
SA6 B4
BXe X
SAe A}
EQ BNyBONETREF
SA4 B2
MX3 60
MX2 54
B8X2 X3=X2
BX2 Xl#x2
BX4 Xo4=X2
IR X408
MX3 5S4
MX2 33
BX2 X3=X2
BX2 XlaXx2
LXx2 33
PL  X2,L7
AX2 39
BXe X2
SAe RN
SA4 B4
LX4 6
MX3 8¢
MX2 33
BX2 X3=X2
BX4 X2#X4
BX2 X2
BX1 X2#X)
BX6 X1+X4
SAe A}
SA] B4
SAl X1
EQ B0¢BOsL?
SA2 NEXT
NZ X2,4L13
SAl B4
SA1 Xl-}
EQ 30+B0sL2
SA2 B1
MX3 12
BX3 Xjux3
BX2 X3eX2
NZ X2,L10
MX3 5S4
MX2 33
HX2 X3=X2
BX2 X1#X2
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109

LX2 33
PL  X2,L14
EQ BO+BOWNETREE
) MX3 133
MX2 12
BXa X3-X2
BX3 ax2
BX2 X1ex2
BX3 Xxjex3
BXe X2
AXe 27
Lx2 12
PL X2,L12
SA6 TEMP
SA4 B4
LXse 27
BXe X3+Xé
- SAs A}
SA] B4
SAl X}
SA2 B8]
BX1 X1eX2
SA2 B2 A
BX1 XieX2
SA2 TEMP
Lx2 27
MX3 33
MXé 12
BX4 X3=X4
BX2 X2ex4
BX1 X1ex2
SA2 Bs
BX2 =x2
LXx2 6
MX3 54
MX4 33
BX4 X3=X4
BX2 X2ex4
BX1 XieXp
SA2 Bs4
SX6 X2
SAe NEXT
SX6 X2e1
SA6 B4
BXe X1
SAe Ay
EQ B0,BO+DETREE
Ll12 MX3 33
Mx2 15
BX2 X3=X2
BX2 Xlexe
AXxa 27
SAl X2



13

Lla

NEXT
TEWP
RN

EQ

SAl
SX6
SAg
EQ

MX3
MX2
BX2
BX2
AX2
BX6
SAS
£

BSS?z
BSSZ
BSS2

END

B0o,BO,LSB
X2
0000008
NEXT
B0.BO,L 2
5¢
36
X3=X2
X1#X2
6
X2
NEXT
B0¢BOSDETREE
1
1
1

166 STATEMENTS

13 SYMBOLS
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IDENT RSHIFT

PROGRAM LENGTH

BLOCKS

PROSRAM# LOCAL

ENTRY POINTS

000000 RSHIFT

ENTRY RSHIFT

RSHIFT BSS
SA1
SA?
SB83
AX3
BX6
SAg
SB3
EQ
AX4
BX6
SA6
JP
END

1
B1
B2
X2
R3¢X1
X3=X1
B1
X2el
B3,B04RSHIFT
B3.X1
X3=X4
B1
RSHIFT

16 STATEMENTS

IDENT LSHIFT
PROGRAM LENGTH

BLOCKS

PROGRAM® LOoCAL

ENTRY POINTS

000000 LSHIFT

ENTRY LSHIFT

LSHIFT BSS

SA}
SA2
SB3
LX3
BXxg
SA6
JP
END

X3
81
LSHIFT

11 STATEMENTS

1

1

SYMBOLS

SYMBOLS
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112

JITRAN COMPILER VERSION 2,3 B,?2 28 AU

300
200

14

100
10)
102

104

103

SUBROUTINE RETRIEV (TR1:XEYNK)
NIMENSION KEY (N<)

DIMENSION IQUERY (4)

FORMAT (2X,#RECORDS S4TISFYING THE QUERY#)
FORMAT (2Xo#CPU TIME FOR ANSWERING THTS QUERY. IN SECe #//(F10.7))
FORMAT (2Xo%END OF FI_E SEARCH®)
FORMAT (2Xe#QUERY#)

PRINT &

Call SECOND (T1)

ENCODE (105 2+ FM) NK

FORMAT (2H( 14, 3HT&))

READ FMy (KEY(I), I=l,NK)

PRINY FMo (KEY(I), I=1,\K)
M=F??7777777777777777778

NB=0

NRIT=0

Kis]

K23K169

Nzlng

CONTINUE

DG 12 [=alyNK

IF (KEY(I)eGBT,0) GO T9 3

GO TO 12 ‘

CONTINUE

KEYC=KEY (1)

CONTINUE ]

IF (KEYCoLEoK2.ANDWKEYCGE K1) GO TO 7
K1=K1+10 _

IF (K1,6T7.,100) 30 TO 11}
K2=K1+9
GO TO 33
NRIT=(KEYC=1)/10 41

IF (NR.EQ.NBIT) Gn TO 12
NB=NBIT ,
CALL ADDBIT (MoNBIT)
CONT INUE
CONTINUE
DO 100 I=1,.6

IQUERY (1) =T7772777777777777771778
CONTINUE
DO 108 I=]1,NK

IF(KEY(I)oGTs0) GO TO 102

GO 7O 103

CONTINUE

IF(KEY(1)oGTen0) GO T9 1064

CalL ADDBIT(IQUERY (1) ,KEY(I))
GO YO 108

KCON=KEY (1) =80 ,

CALL ADDBIT(IQUERY(2),KCON)

G0 TO 108

CONTINUYE

IF{=KEY(I).GT.60) GO 70 195
KCON==KEY(I)



RUN: FORTRAN COMPILER VERSION 2,3 B,2

000211

000214

000217
000222
000225
000232
000235
000261
000243

000245

000253
000257
000260

105
108

CALL ADDBIT(IQUERY(3).KCOV)
GO TO 108

KCONz=KEY (1) =60 ,

CALL ADDBIT (IQUERY (&) KCO\)
CONTINUE

PRINT &

CALL RETRI (TR1,IQUE3N M)
CaLL SECOND(T2)

T3=T2=-T1

PRINT 300,73

PRINT 200

RETURN

END
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IDENT ADDBIT
PROGRAM LENGTH:

BLOCKS
PROGRAM# LOCAL
ENTRYY POINTS

000000 ADD3IT

ENTRY ADDRIT
ADDBIT RSS 1

MX1 1

SA2 B}

SA3 B2

SB3 X3=l

EQ B0.B3,L1

AX4 B3,X)

SB3 B3~}

AX3 B83,X1

BX1 X4=X3
Le BXe X2-X1

SAe Bl .

EQ BO0,B0,ADDBIY
La JP L2

END

17 STATEMENTS

3

SYMBOLS
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IDENT RETRI
PROGRAM LENGTH

BLOCKS
PRO3RAM® LocaL
ENTRY POINTS
000000 RETRI
EXTERNAL SYMBOLS
PRI MASH MATCH

ENTRY RETRI
EXT PRIN
EXT MASH
EXT MATCH
RETRI BSS 1 ,
IXX#X OPDEF IedeK
PXeJ ROsX,J
PXek RO9X,K
DXel XoJ#X,K
UXel BRBT7eX,I
UXeK BT79X.K
UXeJ BT7eX,J -
ENDwM: .
SAVE MACRO 1sJyK
SX6 Bapl
SA6 S}
SX6 Bad
SAe S?
SXé6 BeK
SA6 S3
ENDM
SETT MACRO I,J,K
SA1 S1
SBel X1\
SAl S2
SBeJ X1
SA] S3
S8 X1
ENDM:
SXe 10
SAe K
MXe 60
SA6 ONE
SX6 000000R
SAs  J
SX6 B}
SAs PTR
L2 SA?2 PTR



L3

5

L

L

be !

%

5

)

2

SA2 X2
MX3 12
BX2 X2#X3
SA3 B3
BX2 X2+X3
SA]1 ONE
BX1 X1=X2
ZR  X1,4L5
SA2 PTR
SA2 X2
MX3 133
MX4 12
BX3 X3=X4
BX1 X2#X3
LX1 12
AX1 39
SA2 ONE
BX2 X2«X]
NZ X2,L%
JP  RETRI
BXe X}
SA6 PTR
JP L2

MX3 54
MX4 33
BX3 X3=X4
SA2 PTR
SA2 X2
BXe X2#X3
AXe 6
SAe PTR
SA) J
SA2 K _
IXe Xiwexe
SAe  JJ
SX2 2

IX6 Xlexe
SA6 NLQ
SAVE 19203
s81 JJ
SB3 MM

RJ MASH
SETT 1.293
SA1 MM
SA2 Alel
AX1 48
AX2 48
BX1 =Xl
BX2 =x2
BX1l Xle+X2
IR X1l,L16
SAVE:  142,3

SB1 PTR
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Lt

L13

Lel

L16

SB2 MM
SB3 NLQ
SB4 MN

RJ MATCH
SETT 14243
SA] MN
SA2 ONE
BX2 XleX2
ZR  X2,4L16
IR X1,L19
SAl PTR
SAl xl
LX1 12

NG X1,L13
Axy 39
MX2 60
MX3 39
BX2 X2<X3
BX1 X1#x2
BXe X)
SAe PTR
JP L9

AX] 39
BXe =X
SA6 PTR
SA1 X6
MX2 60
MX3 54
BX2 X2=X3
BX2 Xxiex2
SX6 X2=2
SAe J

SX6 X6e¢l
ZR  X6,L21
SA] PTR
SA1 X1
LX1 12

NG X1,L13
AX1 39
MX2 60
MX3 39
BX2 X2«X3
BX6 X1#x2
SAg PTR
JP Le ‘
SXe 0000008
SAe J

JP L3

SA1 PTR
SA1 X1
MX2 5Ss
MX3 33
BX2 X2-X3
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BX2 X}#X2
LXe 33
PL x2,L18
Ax2 39
BXe =X2
SA6 REC
SAVE. 19243
SB1 REC
RJ PRIN
SETT 142923
JP L1}
L8 AX2 39
BXe X2
SA6e PTR
L19 SAl J
SXe Xlel
SA6  J
JP L6
K BSSz 1
JJ BSSZz 1
J 8SSz 1
NLQ 88S72 1
oTR: 385z 1
S1 88S7 1
52 Bssz 1
s3 BSSz 1
REC BSSZ 1
ONE: BSSZ 1
M BSSz 2
N BSsz 2
END
263 STATEMENTS 28 SyuvBOLS
SUBROUTINE PRIVI(E)
PRINT 19 C
ggggg? 1 FORMAT (2Xo#RECORN#,2X%s110)
00001} RETURN

000012

END
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) IDENT MATCH
PROGRAM LENGTH

BLOCKS

PROSRAMs LocaL

ENTRY POINTS
000000 MATCH

ENTRY MATCH
MATCH BSS 1
MX6 60
SAs MONE
SA1 B}
SAl] X}
SA2 83
MX3 60
MX4 5S4
BX3 X3-Xé
BX3 Xje#Xx3
BX2 X3=X2
IR X2,4L9
SX6 B0
SA6e B4
JP  MATCH
Lo SA2 B2
SA3 MONE
BX3 X2-X3
IR X3,L6
MX3 12
BX3 X1#X3
SA2 B2
BX3 X2+X3
SA2 MONE
BX3 X2eX3
ZR  X3,L6
SX6 1
SA6 B4
JP  MATCH
L6 SA2 B2+l
MX3 12
BX3 Xiex3
BX3 X3
BX3 X2+x3
BX3 x3
IR X3,L10
SXe6 1
SA6 Bs
JP  MATCH
Llo MX6 69
SA6 B4
JP  MATCH
MO NE BSS 1
END

46 STATEMENTS

5 SYMBOLS
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PROGRAM LENGTH
BLOCKS

PROGRAM®

ENTRY POINTS

000000 MASH

MASH
TEMi

VA SK

L12

L3

LT
L8

L1n
L1l

TEWP

Sa2

IDENT MASH
LocaAL

ENTRY MASH

B8SS 1

MACRO P2¢K

SA] B2+K

BXe X1

SAe P?

SA] Als2

BXe Xi

SAG Ak}

ENDM

MACRO K

SA1 TEMP

SA] AleK

MK2 10

BKg X1#X2

MX1 60

BX1 X1=X2

BX6 X1eXb
SA2 B3

SA2 A2+¢K
SA6 A2

ENDM:

SA1 B8l

IR X1l,L12
SX1 X1=60
NG X1,L3
JP LB

TEM TEMP,0
JP L7

TEM TEMP,0

SA]1 TEMP
Bl

SB4 X2

LX6 B4gX1
SAg TEMP

SA] A1+l

LX6 Ba4y,X1
SAg AY

MASK. i}
MASK. 1

JP  MasH
SX6 X\

IR  X6,L11

SAe BI

TEM TEMP,1

JP L4

TEM TEMD,

JP L7

BSS 2

END
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NO. OF RECORDS NO. OF BITS PER CoDs:

998 10
THE SET OF RECORDS

74411406602301146030724347363571674736103
6367513545722751370121213065432615396501
6060674336157067547720235536657327552425
1762447223511644636305214346163071434121
03]17365572675336406176711224512245123757
52270616306143060533466167573675736757467
3572245122451226535564521430614306142645
234604102041020415436136037017407603664]
20660130054026012341)7557707743761771641
0533251524652325123774651464632315146613
535704362161070435713131036417207503645)
6710764372175076543122735236517247523367
1626461230514246065572163571674736356233
2606133055426613216715757107443621771723
0453271534656327126174311506662321150621
2410730354166073156114042609133055425732]
7377623711764762311726512165072435216705
6230604302141060427521675756767373575625
6055324552265132521520306623311544653173
6013557667733755672720053325552665333515
1430262131054426201573676217107443620005
5122561270534256177547154566273135457253
42733455626713344631615264332155066422]1
3732237117447623760712656127053425612575
7154570274136057032527334516247123451663
62653465632715346557562313545562731 35445
4562713345562671243534562711364562271613
6432151064432215040754117307563661731603
3370510244122051137711243061430614377125
7063675736757367471550225532655326553505
2525252525252525252563146303141460630314
2107567673735756767317026552265132456227
7276345162471234516351516427213505643057
4733237517647723703335111644722351165011
1307055426613305477171010324152065033527
5077011404602301046347527713745762771421
4245526653325552641741433155666633374373
4042673335556667365137422271134456226547
1241614706343161433506372055026413294113
75651744762371174071264547243521650724027
3016331154466233130367721110444222110677
552570674336157075534463275536657327533
4356625312545262466741315626713345542223
4067321550664332161740226613305542661205
4015556667333555660340073335556667332201
37751106442221110177125307143466163070053
71450266413205502774750430154066033015243
47427733755766773141353625112644522250737
6466147063431614626523560430214106062155
164574076037017417330543241520650324051]
3272345162471234473766261350564272] 34265
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6127561670734356124357164572275136457141
6415264532255126605323706223111444653747
64T701460620310144620134277357567673734177
673647623711764676320555102561270534256503
5247073635616707222331410264132055027617
0063321550664332133177551164472235116667
03766233115646662267701255606703341551553
1615730754366173150506072675336557247303
T476277127457627712524261530654326152715
3765112645222511362565207063431614707215
4051542661330556270540333375576677336275
42033555666733355321417664532255126456117
52125312545262530621460546663331554567561
0240072035016607372376377517647723751261
105632464152065032423307441140460230114167
52356046702361160536731665742761370574655
0352625312545262445176662151064432215431
1505700740360170061304772775376577277571
71263071434616307641271610306146206173237
27621150664232114565624620730354166073455
11565712764536257024770463271534656327635
5720234116047023507532636137057427612753
2225352565272535331361606463231514647107
3310502261120450276366736776377177477537
6766115046623211515155357047423611795047
5176577277537657771130523251524652355271
1610202101040620235172076017007403690131
66452145062631215515223460430216106094473
5460274136057027517333576257127453624727
1713103441620710340305067013405602701377
6353517647723751741321313045422611304407
7515164472235116544524707223511644722635
11716644722351166566307272355166473234557
56326463231514646257532123571674736356325
27767763771 77477621162535256527253525607
1003001400600300125370010004002001000631
5017003401600700200530050004002001001775
1073011404602301002770250094032015006015
5327053425612705211331150306142061030071
36403733755766773266113765112465222510341
56002661330554266645644001540660330155543
36111564672335157467646047323551664733355
5445726753365572775744372635316547262533
3676211106642221012165521710744362170061
4503255526653325442543026333155466632363
6112031014406203050157057667733755787477
5561712745362571215544572715346563271733
4346627313545662651136422151064632274307
65642173075436617210323360510244122051701
6000666333155466647357742221110644222351
652641600700364016013134637217507643721711
66421260530254126127123606203101440621151
16562161070636421704772336057027413606743
51665752765372575537472145252531254533]1 3
4263347563671734710736211344562271135075
1217065632615306475371710224112045022247
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HERE: IS THE DECODING TREE

TT767777777000632401
744000064336000632502

123

23007773453000432603
23007773652000432704
23007773651000433005
23007773450000433106
14367773667000633207
243677736466000433310
1676477736465000633611
1676477736444000433512
16747773443777777613
6364000435000064337072
T72267773441000434003
T722677736440000434104
72247773437000434205
T2267773436000434306
T40677736350004344607
21207773434000434510
26147773433000634611
2616777364320004364712
261647773431777777513
60600006362000435102
15707773427000435203
15707773426000435304
15707773425000435405
15707773424000435506
6374T7773423000435607
20207773422000435710
732647773421000436011
73247773420000436112
73247773417777777413
176000064374000436302
511647773415000436403
511647773414000436506
511477736413000436605
511677734120006436706
171677736411000437007
05207773410000437110
30707773407000437211
30707773406000437312
30707773405777777313
0316400064406000437502
67507773603000437603
67507773402000437704
67507773401000440005
67507773400000440106
030677733770004640207
76707773376000440310
224647773375000440411
224647773374000440512
22447T773373777777213
52260004420000440702
61407773371000441003
61407773370000641106
61407773367000441205
61407773366000441306
25547773365000641407
46147773364000441510



573647773363000441611
57367773362000441712
57367773361777777113
35700006432000442102
45107773357000442203
451077733560004423064
45107773355000442405
65107773354000642506
56667773353000642607
646507773352000442710
43047773351000443011
¢3067773350000643112
4306777236TTT7777013
234600064464000443302
41007773365000643403
610077733440004643504
4100777233430004643605
41007773342000443706
661677733610006464007
61367773340000444110
407647773337000444211
40767773336000444312
40767773335777776713
206600064560004644502
602677733330004644603
40267773332000444704
40267773331000445005
40267773330000445106
16047773327000445207
17567773326000445310
37607773325000445411
376077733246000445512
37607773323777776613
053000064470000445702
65207773321000446003
65207773320000446104
65207773317000446205
65207773316000446306
51767773315000446407
74647773314000446510
23167773313000446611
23167773312000466712
23167773311777776513
53560006502000447102
61067773307000447203
61067773306000447304
61067773305000447405
61067773304000447506
67447773303000447607
31307773302000447710
207647773301000450011
20747773300000450112
207477732777 77776413
671000046514000450302
175077732750004504073
175077732740004505064
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23707772643000513605
23707772642000513706
03447772641000514007
245647772640000514110
16507772637000514211
16507772636000514312
16507772635777772713
30140005156000514502
46607772633000514603
46607772632000514704
46607772631000515005
46607772630000515106
564167772627000515207
67707772626000515310
42207772625000515411
42207772624000515512
42207772623777772613
55240005170000515702
36147772621000516003
361647772620000516104
36147772617000516205
36147772616000516306
66547772615000516407
44607772614000516510
65707772613000516611
65707772612000516712
65707772611777772513
43540005202000517102
$4507772607000517203
54507772606000517304
54507772605000517405
54507772604000517506
333647772603000517607
41307772602000517710
33447772601000520011
334647772600000520112
33467772577777772413
40640005214000520302
66407772575000520403
66407772574000520504
66407772573000520605
66407772572000520706
707647772571000521007
40207772570000521110
55407772567000521211
55407772566000521312
556407772565777772313
40160005226000521502
33347772563000521603
33347772562000521704
33347772561000522005
33347772560000522106
301647772557000522207
40067772556000522310
666647772555000522411
66647772554000522512
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26347773203777775613
62300006610000457702
14107773201000460003
16107773200000460106
16107773177000460205
14107773176000460306
136477731750004660407
21647773174000460510
73707773173000460611
73707773172000460712
73707773171777775513
60540006622000661102
26507773167000461203
26507773166000461306
26507773165000461405
26507773164000461506
50647773163000461607
20307773162000461710
15467773161000462011
15647773160000462112
15667773157777775413
60100004634000462302
733647773155000462403
73367773154000662504
73367773153000462605
73347773152000462706
35347773151000463007
20067773150000463110
26667773147000463211
26647773146000663312
26647773145777775313
16300004666000463502
05447773143000463603
05467773162000663704
05667773141000464005
05467773140000464106
006477731370004664207
73647773136000664310
74607773135000464411
74607773136000464512
74607773133777775213
51200006660000464702
53407773131000465003
53407773130000665104
53407773127000465205
53407773126000465306
T7667773125000465407
47167773124000465510
313677731230004665611
31347773122000465712
31347773121777775113
42700004672000466102
67107773117000466203
67107773116000466304
67107773115000466405
671077731140004666506
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36147761663001611607
76607761662001611710
77147761661001612011
77167761660001612112
771647761657777701413
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

NUMBER OF NODES =

SIZE: OF EACH NODE!S

NO, OF <EYWORDS IN THE. QUERY

2

QUERY

8 <63

RECORDS SATISFYING THE QUERY
RECIRD 2
RECORD 3
RECORD 4
RECORD 6
RECORD 7
RECORD 17
RECORD 18
RECIRD 22
RECORD 23
RECIRD 31
RECORD 36
RECORD 40
RECORD 42
RECORD 44
RECORD 49
RECORD 51
RECORD 58
RECORD 60
RECORD 61
RECORD 70
RECORD 74
RECORD 84
RECORD 86
RECORD 95
RECIRD 98
RECIRD 103
RECORD 105
RECIRD 11
RECORD 115

RECIRD 116

4991
ONE COMPUTER: WORD
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RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECIORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD
RECIRD
RECORD
RECORD
RECORD
RECIRD
RECORD
RECORD
RECORD
RECORD
RECORD
RECIRD
RECORD
RECORD
RECORD
RECORD
RECORD
RECIORD
RECORD
RECIRD
RECIRD
RECIRD
RECORD
RECORD
RECORD
RECORD
RECORD
RECORD

118
120
124
130
131
132
133
136
145
146
156
155
167
171
174

197
199
201
203
204
206
2164
21s
216
219
222
224
233
261
243
244
249
253
255
256
271
272
278
279
280
284
287
28s
290
294
297
300
301
306
305
307
308
31}
31ls
320

128



129

RECIORD 336
RECIRD 341
RECORD 348
RECORD 346
RECORD 351
RECORD 360
RECORD 366
RECORD 374
RECORD 380
RECORD 388
RECORD 392
RECORD 398
RECIRD 404
RECORD 410
RECORD 413
RECORD 414
RECORD 424
RECIRD 437
RECORD 440
RECIRD 441
RECORD 442
RECORD 447
RECORD 450
RECORD 452
RECORD 454
RECORD 458
RECORD 459 .
RECORD 463
RECORD 465
RECORD 467
RECORD 470
RECORD 482
RECORD 483
RECORD 484
RECORD 485
RECORD 487
RECORD 490
RECORD 492

RECORD 498 :
CPU TIME: FOR ANSWERING THIS QUERY, IN SEC,

04300000
END OF FILE SEARCH



361647761663001611607
766077641662001611710
77147761661001612011
77167761660001612117
771477616577 77701413
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
0000000000000000V00OD
00000006000000000000
000000000N0C0000000000
00000600000000000000

NUM3ER JF NODES =

SIZE JF F£ACH NODEIS

NO, OF <EYWORDS IN THE QUERY

3
QUE3Y
4 20 =70

RECJORNS SATISFYING THE QUERY
RECORD 4
REC2RD 34
RECORD 42
RECIRD 55
RECOJRD 61
RECORD 85
RECIRN 8¢
RECJRD 92
RECORD 104
RECIRD 128
RECHO2N 139
RECORD 142
RECIJRN 149
RECOR’D 154
RECORD 173
RECJR]D 174
RECORD 177
RECORN 186
RECORD 195
RECORD 207
RECOIRN 70A
RECO2R’n 207
RECORND 2lq
RECIRD 224
RECJRD 243
RECIORD 266A
RECIRN ?6R
RECDORD 27>
RECJRD 273

RECHRD 297

ONE COMPUTER:
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RECIRN
RECHRN
RECOJRp
RECJRD
RECI3n
RECIRN
REC)IRD
RECOIRD
REC)IR’n
RECORD
RECOIRN
RECJ3n
RECOJRN
RECORN
RECORN
RECIRD
RECOIR]D
RECIRN
RECOJRD
RECOR’n
RECIRn
REC RN
RECJRN
RECIRD
RECIRD
RECHRD
RECIRD
REC2RD
RECIORN
RECIRD
RECIRD
RECIR)D

CPU TIMe FOR ANSWERING THIS QJERYe IN SEC.

22630000

300
308
348
350
357
35%
357
3613
190
3913
396
401
407
605
407
413
415
427
429
433
435
4473
446k
449
A
468
477
4R2
483
487
494
495

END OF FILE SFEARCH

NO. JF <EYWORDS IN THE QUERY

15
QUERY

RECORD

CPU TIME FOR ANSWFRING THIS QJERYs IN SECe

«0700000

ENN OF FILE SEARCH

6 =25 =2Ah
RECJRNS SATISFYING THE QUERY

444

131
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36167T741663001611607
7T660776166200161L1710
TT147761661001612011
T7L47T761660001612112
1714776165TTTTTCLA4L3
00000NCNN00LoU00NN000
3CouN0NLoaNuouios00no
LGCTN000000000000000
U000 2000000000000 00D
LU CGIDULU0Cul orn
00000000060000000C0000
GOOCAL0N000000000000
QeOCSLOEC00000000000
QUCLR00O0DCYNADLUVVY

NUMEEFR OF NUDES =

S12f 0F EACH NUODEIS

MOo. (GF KEYWORDS T THE

10
CUErY
1 2 =3 -~13 14

L5

PFCURBS SATISFYING THE

TECUOL 206

CFU TIMF FOR ANSWERING

« 0570000
END CF FILE SEAUCH
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4991

CNE COMPUTEK WODRD

QUERY

-28 29 3. 58
NUEFY

THIS QUERY, IM SEC.

v
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36147761663001611607
76607761662001611710
T7147761661001612011
T7147761660001612112
T7T167761657777701413
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

NUM3ER JF NODES = 4991
SIZE OF EACH NODEIS ONE COMPUTER! wWORD

NOo OF XEYWORDS IN THE QUERY

6
QUERY
-1 2 3 =82 =83 =84
RECORDS SATISFYING THE QJUERY

RECORD 7
RECORD 4]
RECIRD 51
RECORD 95
RECORD 214
RECIRD 297
RECORD 424

CPU TIME FOR ANSWERING THIS QJERYs IN SEC.

1130000
END OF FILE SEARCH
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