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ABSTRACT

A restriction of dynamic systems to what we call "quasi-static"

systems is introduced. Two black-box models of the step response of

nonlinear quasi-static systems are then proposed. Parameter identifi

cation is shown to be a simple matter with specific examples being

presented. The first order model is characterized by a relatively simple

form and can be made to mimic the system step response exactly.

The nth order model has an orthogonal feature which separates the

dynamics from the nonlinearity, thus making it suitable for circuit

realization. Extension of the system domain to signals other than steps

is also considered. An essential feature of the two models is the

relatively large class of nonlinear dynamic systems encompassed by the

quasi-static criterion.
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I. INTRODUCTION

The art of model making is as old as man's desire to understand the

world around him. It is somewhat paradoxical that this quest is, in

many ways, yet in its infancy. Volterra proposed the first and only

general nonlinear modeling technique in the form of his functional series

expansion [1], Wiener later enhanced this method making the series

orthogonal relative to Gaussian inputs [2]. Yet for most systems this

technique is still impractical due to the enormous difficulties encountered

in identifying the required number of kernels. In fact the largest number

of terms attempted thus far has been three, and there is no guarantee that

this will suffice to reasonably approximate the response [3 - 4].

We feel, therefore, that it is worthwhile to be less ambitious in

the selection of a domain over which the system is defined. In particular

we propose to model nonlinear systems relative to various

classes of inputs, the simplest of which are the steps. Within this frame

work we can construct models which mimic the system response exactly for

the particular class of inputs in question.

Prior to the introduction of these black box models, we discuss the

assumptions under which we will be working. In particular we limit our

selves to step inputs, and we place certain requirements on the system

stability and the system memory. These requirements constitute the "quasi-

static" criterion which we introduce in Section II. In Sections III and IV

we propose a first order model and an nth order model respectively. Qual

itative properties of the models are discussed and specific examples are

presented. The problem of expanding the domain to signals other than steps

is then discussed in Section V. Section VI is a summary of conclusions.

Throughout this paper we make use of the following notation:

R = set of real n-tuples; Z = set of integers; U = non-negative elements

of U; £ denotes "an element of"; U x V =» set of ordered pair's (u,v),

u £ U, v £V; B denotes "such that"; 3 denotes "there exists"; V denotes

"for all"; =* denotes "implies"; ^denotes "if and only if"; A denotes

"is defined"; ° denotes "composed with"; and •> denotes "tends to."
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II. QUASI-STATIC SYSTEMS

A quasi-static system is a system whose dc input/output characteristic

is single-valued. More precisely:

Definition 1

A system S with input u and output y is quasi-static "** 3 a single-

valued function F: (R -»• R called the dc input/output characteristic 3

u(t) 4 a, (t, a) € R+ xR (2.1)

=* y(t) -»• F(a) as t -> » (2.2)

We emphasize here that the past history of the input:

C& A{u(t) | t e (-co, o)} (2.3)

is left arbitrary in the above definition.

There are many examples of quasi-static systems. Electronic,

mechanical, and hydraulic devices whose dynamics can be characterized as

"parasitic effects" are all quasi-static [5-9]. Delay lines constitute

a less obvious albeit equally valid example of a quasi-static system.

Roughly speaking any dynamic system exhibiting an input/output relationship

in the form of a "loop" under sinusoidal excitation is quasi-static if

that loop "collapses" to a single-valued curve as the tracing frequency

tends to zero.^ Thus a quasi-static system is a system which is "static

at dc."

Systems which are not quasi-static include any system with more than

one stable equilibrium state. Therefore, hysteretic systems [10] and

multi-state logic circuits [11 - 13] are examples of systems which violate

the quasi-static criterion. These systems all have the property that their

dc input/output characteristics are multi-valued. In Fig. 1 we illustrate

this with a quasi-static system (tunnel diode) and a non-quasi-static

system (iron-core inductor).

Our observations of this very effect in various electronic devices such
as junction, tunnel, and zener diodes is, in fact, the motivation behind
the quasi-static criterion.
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Implicit in the quasi-static criterion is the notion of system stability.

We can see this more clearly if we restrict ourselves to the realm of

differential equations. Consider, therefore, the differential-algebraic

system below:

x = f(x, u), x(0) = x (2.4)
~ /K ~0

y = g(x, u) (2.5)

Here "•" denotes differentiation relative to time. We assume

f: R x IR -*- |R is Lipschitz in x and continuous in u ; and

g: R x [R -> R is continuous in both x and u.

Theorem 1

The system depicted in (2.4) and (2.5) is quasi-static if for every

a £ R the autonomous system:

x = f(x, a) , x(0) = x (2.6)
.. .. . „o

has an equilibrium point, h(a), which exhibits global asymptotic

stability [14].

Proof

Let <{>(t, x , a) denote the solution of (2.6) for x £ R arbitrary.

Since h(a) exhibits global asymptotic stability we have

<j>(t, x , a) -+ h(a) as t -> » (2.7)

Then from (2.4) through (2.7)

y(t) -»• F(ct) 4 g°[h(a), a] as t -*• « (2.8)

The relationship between system stability and the quasi-static criterion

assumes a particularly simple form in the linear case:

Theorem 2

2
A lumped linear system is quasi-static ** it is strictly stable.

2
A linear system is said to be "strictly stable" ** all the poles of the
system function lie in the open left half of the complex plane.
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Proof

Let H(s) denote the system function. Then

Y(s) « H(s) U(s)

where
m n

h(s) =Jvk+Ei:
k=o £=1

and

U(s) = f , a £ R.

(2.9)

(2.10)

(2.11)

Combining (2.9) through (2.11) and expanding via partial fractions about

the poles of H(s) we get

r m n
I\ > L._1 1

Y(s "IZ^ V 2^1 p. U-p ~S \
^k=o il=l * L * JJ

Taking inverse Laplace transforms we then have

m n

y(
t. rPtt

1 k=l £=1 £

where 6^(t) is a k -order impulse. Clearly
n

y(t) -> F(ci) Aa|a -V* -A 1

e - 1 }

as t + "

o

Re{p^} < o .& = i, Z, . . *,n

(2.12)

(2.13)

(2.14)

(2.15)

Next let us investigate the behavior of a quasi-static system under

sinusoidal excitation. In particular let

u(t) 4 a Cos(u)t), (t, a) G R+ xR (2.16)

and let y and y denote the complete and steady-state response respectively.
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We define the steady-state response as:

y(t) A Lim {y(t +^ )}, tG [0, ll) (2.17)
s n-><» w «

n€Z+

Here we assume that for any periodic input, y is unique and periodic of

the same fundamental period. Regarding the transient portion of the

response we make the following uniform stability assumption: For every

e>0 3 u > 0 and T > 0 9

W € (0, u> ) =• |y(t) - y (t)| < e, V t > T (2.18)

Finally we assume the system itself is continuous in the following

sense: For every e > 0 and every t > 0 3 6 > 0 3

sup |U;L(t) -u2(t)| <6=> sup |y]L(t) -y2(t)| <e (2.19)
t€ [0, tQ] t€ [ 0, tQ]

Consider the closed curve H(oi) C (R. defined parametrically as:

r» A{(u(t), y (t)) | tG[0,% (2.20)
S 03

where u(*) is as given in (2.16).

Theorem 3

Let S be a system satisfying the uniform stability and continuity

assumptions of (2.18) and (2.19) respectively. Then S is quasi-static

if the closed curve H(aj) "collapses" to a single-valued curve as u •»• 0.

Proof

From (2.18) and (2.20) we know that P(u) "collapses" as go -*• 0 ° 3 a

single-valued function F: R -v R 3 for every e > 0 3 T > 0 and

6 £ (0, oj ) satisfying:

|y(t) -Fo[u(t)] |<f , Vt>T, 03 <6 (2.21)

Now from (2.16) we know that for every e1 > 0 and every fixed tf > 0 3

6» € (0, 6 ) 3
' o

|u(t!) - al < £f, V 03 < 6' (2.22)
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But from (2.19) we know that F(«) as defined in (2.21) is continuous.

Hence from (2.22) B e1 > 0 3

|Fo[u(t')] -F(a) |<j V03 < 61 (2.23)

Since t1 > 0 was arbitrary, let t? > T. Then applying the triangle

inequality to (2.21) and (2.23) we get

|y(tf) -F(a) |<| e, Vo) <6' (2.24)
Next let

u(t) 4 a, (t, a) e R+ x R (2.25)

and let y(*) denote the corresponding response. From (2.16), (2.19), and

(2.25) we know 3 <5 e (0, 6T) 3

|y(tf) -y(t') |<| V 03 <6 (2.26)

Again applying the triangle inequality this time to (2.24) and (2.26) we

get

|y(t!) - F(a) | < e V o) < 6 (2.27)

But all the terms of the above inequality are independent of 03 and t1 > T

was arbitrary. Hence

y(t) + F(a) as t •> °° (2.28)

n

The single-valued curve which H(o3) "collapses" to as w ->• 0 is, of course,

the dc input/output characteristic of S. The hysteresis loop shown in

Fig. 1(b) is an example of a closed curve P(w) which fails to "collapse"

at dc [10].

Note that the link between system stability and the quasi-static

criterion is again evident in Theorem 3. In this case it manifests itself

in the form of assumption (2.18). It is perhaps tempting at this point to

view the quasi-static criterion as essentially a stability statement. This

is not entirely accurate. In insisting that a system be quasi-static we

also place a requirement on the system memory. To see this more clearly

let us classify systems as to the extent to which the system response depends

upon the past history of the input.

We say that a (causal) system is static if the response is independent
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of the past input. Static systems are also referred to as "memoryless"

systems. Clearly a static system is a special case of a quasi-static

system.

Now the response of a quasi-static system will, in general, depend

upon the entire past of the input. However, it is clear from Definition 1

that only the recent past has a significant effect. We, therefore, refer

to a quasi-static system as being amnesic in so much as it appears to

"forget" the contribution of the remote portion of the past input.

Systems which are not quasi-static, on the other hand, can exhibit a

"permanent memory" capability. In fact any system with a multi-valued dc

characteristic has the capacity to function as an information storage

device. The most obvious example of this is the flip-flop.

The relationship between the system memory and the quasi-static

criterion is perhaps best evidenced in the case of the delay line. Any

delay line of finite delay is quasi-static.

We are now in a position to pose the modeling problem formally.

Let S denote a nonlinear quasi-static system with input u and output y.

We restrict our consideration of inputs to the following class of signals:

Qt ={u(t) =a|(t, a) e R+ x1} (2.29)
Here I denotes any compact nonempty interval in R.

Our assumption on the past history of the input is that S be in a

relaxed state that t = 0. Thus we assume:

u(t) = 0, t e [-2T, 0) (2.30)

where T > 0 is taken sufficiently large ^

y(t) * 0 , t e [-t, o) (2.31)

Since S is quasi-static we know 3 a T > 0 ^ (2.31) is satisfied.

We denote the relaxed state response as y(t, u) where we let the

dependence of y on u surface formally in the form of a second argument.

To distinguish between the measured system response measured and the response

predicted by the model we let y (•, u) denote the empirical waveform.

Finally to avoid cumbersome mathematical formulation we abuse standard

notation slightly interchanging u and a as the latter argument of the

response.

-7-



We assume that y (t, u) is continuous in both t and u with continuity

of the latter argument being defined as in (2.19). Finally we assume S is

both causal and time-invariant. The system is shown diagrammatically in

Fig. 2. Here we have taken the output space to be L^, the set of all

g: R -*• R which are bounded in the following sense:

Ngll A sup |g(t)|<- (2.32)
00 ~ te R+

The problem, then, is to construct a black-box model of the system S

restricted to the domain WU .

We now propose two canonic forms for such a model. Each of these

forms will be burdened by an additional assumption regarding the system

response, y . Although a theoretic necessity this assumption, in each

case, will be of little practical significance.

III. A FIRST ORDER CANONIC MODEL

As a first order quasi-static model of S on^U we propose the

following algebraic-differential system:

y = f(x, u) (3.1)

where x(0 is the solution of:

x = f(x, u) + k , x(0) = 0 (3.2)

Here k G R and f: R x nA -*• R . A block diagram of the models is

shown in Fig. 3. We see that the dynamics of the first order model manifest

themselves in the form of an implicit state variable x.

A. Parameter Identification

The constant k and the function f(», •) are identified with the system

S as follows. Let

(3.3)
k 4 e - inf {y (t,u)}

(t,u) e R+ xq(e

Here e is any positive constant. For convenience we often take e = 1.

Note that k is always well-defined since S is continuous and quasi-static

and I (of^U) is compact.

Next we introduce the function (|>:R+ *^U -*• R, defined as follows:

J<Kt, u) A | [ye(x, u) + k] dx (3.4)
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Now (3.3) and (3.4) =>

<j>(t, u) > e >o, (t> u) GR+ xQl (3'5>
Let

x 4 <j>(t, u) (3.6)

Then (3.5) and the global Implicit function theorem [15]

=> 3 £: RA x̂ U - K 3 (x, u) e R xQI
+ + +

t = C(x, u), (3-7>

As the function f: R xQ| -* R we then take the following composition:

f(x, u) 4 ye o[^(x, u), u] (3.8)

B. Qualitative Properties

We can attribute the following properties to the first-order quasi-

static model.

Property 1 (Existance and Uniqueness)

If 3 M > 0 B

|ye(t, u)| <M V (t, u) G R+ xQl (3.9)
then V u £Qa , the first-order model has a unique solution.

Proof

From (3.7) and (3.8) we have

lf^f(x, u)| <|ye(t,u)| |f^5(x, u)| (3.10)
But (3.5) through (3.7) •»

If- ?(x, u)|<A<-, V(x, u) 6 IR+ x01 (3.11)
Hence (3.9) through (3.11) ="

||- f(x. u) |<? v (x. u) eP xq( (3-12)
dX £ t

Thus V x-, x2 € R,, we can apply the mean-value theorem to get:

|f(Xl, u) - f(x2, u)| <f |xx - x2| V ueQA (3.13)
Hence - is a Lipschitz constant for f(-, •). Therefore, a unique solution

exists.
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Remark

We will here-after assume that (3.9) is satisfied. Since "Mother

Nature integrates" this will clearly be the case for most practical systems,

Property 2 (Step Response)

ue(U •* y(t, u) eye(t, u) (3.14)
Proof

From (3.4) we have

i(t, u) =ye(t, u) + k V (t, u) eR+ xQl (3.15)
and

♦(0, u) = 0 V ueQl (3.16)

But (3.6) through (3.8) =>

fo[<j>(t, u), u] =ye(t, u) V (t, u)SR.+ xQi (3.17)
Hence (3.15) through (3.17) and Property 1 =* <J>(t, u) is the unique

solution of (3.2).

Then (3.1) and (3.17) =*

y(t, u) =ye(t, u) V ugQI (3.18)

Property 3 (Integral Form)

The first order model can be represented by the following integral

equation:

[fy(t, u) = f° | I [y(x, u) + k] dx, u

o

Proof

This follows directly from (3.1) and (3.2) n

Property 4 (Static Case)

If S is memoryless, then the first order model gives rise to the

exact system.

Proof

Since S is static, we have

ye(t, u) = F«[u(t)], ueLaj (3.20)

-10-
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Then (3.20) and Property 2 «*

y(t, u) = F°[u(t)] , u e i,^ (3.21)

C. An Example

As an example consider the nonlinear differential system below:

ye - -ufye + i]. ye(°) - ° (3-22>

This example was chosen since it gives rise to a closed form solution.

Namely for

u(t) 4 a, (t, a) e R+ xR (3.23)

we have

ye(t, o) =e"at- 1 (3.24)
Now from (3.3) and (3.24) we have

k = 1 + c , £>o (3.25)

Referring to (3.4) we then have

_ -at

<(>(t, a) = et + — (3.26)
a

In order to obtain an explicit analytical expression for the implicit

function £ of (3.7) we let e -*• 0. Then

t + £(x, a) 4 — An(l-ax) (3.27)

Combining (3.8), (3.24) and (3.27) we then get:

f(x, a) = -ax (3.28)

Thus the resulting model is:

x = - ux + 1, x(0) = 0 (3.29)

y = - ux (3.30)

To verify that this model will indeed mimic the system step response

exactly for any amplitude a, we solve (3.29) with u = a to obtain:

l-e"at
x(t, a) = — (3.31)
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Substituting x(t,a) into (3.30) then yields:

y(t, a) - e'at- 1 * (3.32)

Recalling (3.24) we thus have

y(t, a) =ye(t, a) , ae R (3.33)

TW
IV. AN N ORDER CANONIC MODEL

As an n order quasi-static model of S onHA we propose the following

functional sum:

n

y=F(u) +^ \ **k(u) (4-D
k=l

Here "*" denotes convolution, F: R •*• R is the dc input/output
characteristic, <f>: R -*- Rn is a static nonlinearity, and

\(s) = j^ , k«l,2 n (4.2)

where ^(s) is the Laplace transform of h,(t).
A block diagram of the model is shown in Fig. 4. We see that the

th
n order model is a parallel decomposition of n linear dynamic systems

\(') each preceded by a static nonlinearity <J>k(0 together with a static
subsystem F(»).

A. Parameter Identification

The integer "n" and the static nonlinearity <J>: R •* Rn are identified
with the system S as follows.

Let

ye(t, u) 4ye(t, u) -f(u) , (t, u) eR+ xQi (4.3)

Since F(0 is the dc characteristic, we know that if S is static then

ye(t, u) =o, V ueQi (4.4)

Hence we regard y as the system response minus its memoryless component.

We can also view (4.3) as a signal-dependent change of coordinates since

F(») is an instantanious transformation.

Consider the sequence of negative exponentials:
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<B 4 i «'*t 1 (4.5)
~ I Jk=l

Now Lfc> constitutes abasis for L2, the space of all g: R ->• R. which
are bounded in the following sense [16]:

1/2

•gl2 A \jg2(t)dt 1 <- (4.6)

We can associate an inner product with this linear space; namely,
00

<8» h>2 4 Jg(t) h(t)dt, g, hSL2 (4.7)
o

Suppose we now orthonormalize the negative exponentials in L«.

Let

fi 4 {ek(t) j (4.8)

denote the resulting sequence. We then get

E (s) = /2k1 (s~D(s-2) ... (s-k+1) ,, g.\W - v^k (s+1)(s+2) >## (s+k) ,k-1, 2, . . . (4.9)

where E, (s) denotes the Laplace transform of e, (t) [17].

Applying the inverse Laplace transformation to E, (s) we have
k fc

\(t) - Z yu *~zt (4-10)
£=1

_ k
where the residue vector y. £ ffv is given by:

Y.a 4 Lim {(s+Jl) E, (s)} k=l,2 ,n

As the static nonlinearity <j>: R •+ R we then take

(4.11)

*k(u)^Z T£k<V-.»>, v2 <*-12>
JL=k

B. Qualitative Properties

We can a

static model.

We can attribute the following properties to the n order quasi-
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Property 1 (Step Response)

If y (•, u) GL V u £ ^U, then for every e > o and every

u eQj, 3 N > 0 B

"y(-, u) - ye(-, u)!l2 <e V n>N (4.13)

Proof

Let e > Q, uG Hi be arbitrary. Now y (•, u) £ L« =*" we can
represent y (-, u) in terms of a generalized Fourier series expansion [16]

relative to the orthonormal basis c of (4.8). Hence
00

ye(t, u) =^ 8k(u) e^t) (4.14)
k=l

where

3k(u) 4 %(•» u), ek>2 (4.15)

is the projection of y (•, u) onto the k basis function, e. .
e k

Let

n

yen(t> u) ^^2 3k(u) ek(t) (4-16)
k=l

From (4.14) and (4.16) we know 3 N > 0 3

"ye(', u) - yen(«, u)H2 <e V n >N (4.17)

Now (4.10) and (4.16) =>
n k

?en(t' u) BSS 3k(u) Yk* •"" (4-18>
k=i a=i

Next consider the response of the model. Since u ^ni we can write

♦kOIu(t)] = <l>k(a)l(t) (4.19)

where 1(») denotes the unit step function.

Since the convolution transformation is linear we can commute h,
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and <f>, (a) in (4.1) to get
K n

y(t, a) =F(a) +^ ^(o) \(t) *l(t) (4.20)
k=l

But from (4.2) we have

h^t) *l(t) »e"kt k=1, 2, ... (4.21)
Thus

n

y(t, a) =F(a) +]P <j>k(a)e"kt (4.22)
k=l

Comparing (4.12), (4.15) and (4.22) we then have
n n

y(t, a) -F(a) +]T) ^ ^(a^e"** (4.23)
k=l fc=k

Rearranging the order of summation and replacing a by u we then have
n k

y(t, u) =F(u) +^^k(%e"U (4.24)
k=l £=1

Comparing (4.18) and (4.24) then yields

y(t, u) = F(u) + yen(t, u) (4.25)

Combining (4.3), (4.17) and (4.25) we finally get

HyO, u) -y (., u)H2 <e V n>N (4.26)

Remark

We will hereafter assume that the condition of Property 1 is satisfied;

namely,

y(-, u) e l2 V ueQi (4.27)

Since S is quasi-static we note from Definition 1 and (4.3) that

y(t, u) •* 0 as t -* oo v u G Qi (4.28)

Hence it is clear that for most practical systems (4.28) is indeed satisfied.
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In particular any system which is exponentially stable falls into this

category.

Property 2 (Measuring <f>)

For each u ^HA, the point <|>(u) £ Rn can be measured directly.

Proof

From (4.2) we know that H-(s) can be realized as the voltage transfer

function of the RC 2-port shown in Fig. 5a.
-kt

Furthermore, it is clear from (4.21) that e is the step response

of this 2-port.

Referring to (4.10) we then see that the k basis function, ek(*)i
is the step response of the network N, shown in Fig. 5b.

Finally consider the network shown in Fig. 6. We have
ft n

nt(t, u) =J ;<x. u)[£\,k .t<T>] dx (4.29)
o £=k

or

n

nk(t, u) =̂ y£k I y(T, u) e£(x)dT (4.30)

But from (4.7) and (4.12) we have
n °°

»-LJ♦k(u) =2^ 1 y(T» u> e£(T)dx (4.31)
£=k o

Comparing (4.30) and (4.31) it is clear,that

nk(t, u) -> <j>k(u) as t •*• « (4.32)
a

The synthesis of an n order system generally requires at least n

dynamic elements. The following realization is minimal in the sense that

exactly n (linear) capacitors are required.

Property 3 (Realization)

The n order model can be realized with n linear resistors,
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3
n linear capacitors, n+1 nonlinear resistors and an (n+1)-terminal

summer.

Proof

From Fig. 5a it is clear that H, (s), k=l, 2 n can be realized

with n linear resistors and n linear capacitors. The static non-

linearities F(«) and <t>k(*)» k=l, 2, . . ., n can then be realized with
n+1 nonlinear resistors.

Finally an n+1 terminal summing junction is needed to combine the

outputs of F(.) and BL(s), k=l, 2, . . ., n.
k n

Property 4 (Orthogonality)

Let <(>: R •*• R be arbitrary and let y(*» •) denote the response of

the n order model for <f> = <j> . Then V u ^ "-U

M'» u) -ye(-, u)02 < fly(., n) -y^-, u)l2 (4.33)

Proof

This follows directly from the orthogonality of £in L2. Thus for
"n" fixed, ()> as given in (4.12) (and measured in Property 2) is the

optimal choice for a static nonlinearity in the mean square sense.
•

Property 5 (Static Case)

In the event that S is memoryless, the n order model converges

to the exact system for n = 0.

Proof

Since S is static, we have

ye(t, u) =F(u) V uG^ll (4.34)

Thus (4.3) and (4.34) =>

ye(t, u) =0 y u eQj (4.35)

3
The nonlinear resistor is used here in a generic sense to mean a

memoryless nonlinearity. In practice buffers are needed to minimize
loading effects.
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Hence (4.12) «=>

<t)v(u) =0 V u€ ^, k=l, 2, ... (4.36)
'k

Finally (4.22)

ugQAy(t, u) = F(u) = y (t, u) V u G^IA (4.37)

C. An Example

As an example, consider the following nonlinear differential system:

ye =-3ye +3(ye)2/3u, ye<0) -0 (4.38)
We have selected this particular system as an example since an analytical

expression for the solution can be easily obtained; namely,
Jt ,3

ye(t, u) -̂ Je"(t"T)u(T)dx
o

Now for

(4.39)

u(t) 4 a, (t, a) € R x R (4.40)

y (t, u) reduces to
e

y <t, a) = a3[l - 3e_t + 3e"2t - e'3t] (4.41)

Hence the dc characteristic F(») is

y (t, a) + F(a) 4 a as t -»• » (4.42)

Thus from (4.3) we have

ye(t, a) =-a3[3e_t -3e"2t +e"3t] (4.43)
Clearly

y (-, a) e L2 V a€ R (4.44)

At this point we would normally compute the static nonlinearity <t>: R -*• K

for successively increasing values of n. However, we can refer to the

analytic expression for y in this case and note that y (t, a) does not
e e

contain a power of a beyond the third. Hence let us try n = 3.

If we let 3k(a) be defined as in (4.15) then from (4.7), (4.10) and
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(4.43) we have

k 2
o / \ 3 ^ (JT + bH + 11) ,, Acs$k(a) - -a 2^ YW (Jl+i) (^2) (&+3) (4'45)

Jl=l

Computing the numerical values of y. from (4.11) and substituting them

in to (4.45) we then get

6x(a) ô 3^1 (,3, j2(o) =2g_ ,B(a) =̂ 2_ (4.46)
Then from (4.12) we have

♦ (a) = [-3a3, 3a3, -a3]T G R3 (4.47)

Hence our model is given by:
t

y(t.«) =tu(t)]3 -f {[3e-(t-T)-3e"2(t-T)+ e"3(M)]
° 3[u(x)]J}dT (4.48)

To check the models validity we set u = a in (4.48) to get

y(t,a) = a3[l - 3e't + 3e"2t - e"3t] (4.49)

Comparing (4.43) and (4.49) we thus have:

y(t,a) eye(t,a), a€ R (4.50)
i*b

Note that since the n order model is orthogonal, any choice of n > 3

would have given rise to the above result; that is,

(J>k(a) =0 V k > 3 (4.51)

V. DISCUSSION

We have proposed two canonic forms for a model of the nonlinear

quasi-static system S restricted to the domain^lA . In order for the

first order model to have a unique solution we require that the time rate

of change of the system response be bounded. Alternatively, for the n

order model to converge we must insist that the system response minus
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its memoryless component be Lebesque integrable.

These two assumptions together with those of continuity, causality,

and to a lesser extent time-invariance are not overly restrictive in the

practical realm. Perhaps the most severe assumption, apart from the

quasi-static requirement itself, is our restriction of the domain to step

inputs. The relationship between a model and the domain over which that

model remains valid is indeed a fundamental one. Newton's model relating

force, mass, and acceleration was so immensely successful that it soon

became known as a "law". Yet even this model has a valid domain, the

boundary of which was first proposed by Einstein [18].

Now the black-box models we have proposed are, by construction, valid

on the domain^lA . Let us now attempt to extend the boundaries of this

domain until we see the integrity of our models begin to falter.

Due to the lack of a practical identification theorem for nonlinear

systems no direct statement can be put forth regarding the performance of

our models for signals other than steps. Until the class of "not

necessarily linear" systems is narrowed, it is not likely that such a result

will be found.

With the above limitations in mind suppose we proceed qualitatively.

Let us drive the system with a sinusoidal excitation. Now both models are

exact at dc. Hence invoking continuity arguments we would expect that

there exists a band of frequencies about dc for which the models are

"close to exact."

To demonstrate this phenomenon consider the nonlinear differential

system below:

ye =-3ye +3(ye)2/3u, ye<o) =o (5.1)

This example was previously discussed in Section IV for u ^lA. In this

case suppose

u(t) 4a Cos(a)t), (t,a) e R+ xR (5.2)

From (4.39) we find the system response in this case to be

,. N 31" Cos(tot) + toSin(tot) - e | /r ^\y (t,u) = a *—* 5 L (5.3)
L 1 + a) J
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If we let y denote the steady-state component, then
es

yeg(t, u) = a"
3 9

Cos (a)t) + 3(0 Cos (ait) Sin(ait)

1 + 3o)2

+3u)2 Cos (ait) Sin2 (tot) + oi3 Sin3(o)t)
j. q 4 . 6
+ 3w +o)

Next consider the response of the model. From (4.50) we have

y(t, u) = a' Cos (wt) IL"1 |/-38_38_ _8_\
4 L \\ s+1 s+2 s+3 )

( 2 . 2+ 2 . . 2)f
\s +u s + 9<o ' J

(5.4)

(5.5)

Taking inverse Laplace transforms and letting y denote the steady-state
s

response we get:

and

yg(t, u) = a* Cos (o)t) -*{[ 1+u)2 4+u)2 9+w
« COS(03

+w J
t)

yeg(t, u) -*• [a Cos(o)t)]

y (t, u) -*• [a Cos(a)t)]
s

8 +^ lsin(a)t;
2 2 2

1+ai 4+0) 9+a)

l+£o)2 4+o)2 3+3o)

18

L 1+9.(0 4+9

Upon comparing (5.4) and (5.6) and letting w -*• 0 we get

3
as

as

+3o)2 J
Cos(3o)t)

2Z-5- +-i-Tlsin(3(ot)l
+9o) l+o) J JJ

u -»• 0

oi -> 0

(5.6)

(5.7)

(5.8)

Referring to (4.42), (5.7) and (5.8) we thus see that both the system

and the model "collapse" to the dc characteristic F(»)» as o) •> 0 .
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This is of course, no surprise in view of Theorem 3.

VI. CONCLUSIONS

The notion of a quasi-static system has been introduced. It was

shown that the quasi-static criterion involves requirements on both the

system stability and the system memory. Two canonic forms were then

proposed for models of nonlinear quasi-static systems. In each case the

domain of the model was restricted to step inputs and the system was

assumed to be continuous causal and time-invariant. The first order model

was burdened by the additional assumption that the time rate of change of
•f*fi

the system response be bounded, while the n order model had the require

ment that the system response minus it's memoryless component be Lebesque

integrable.

The principal virtues of the first order model are its relatively

simple form and its ability to mimic the system step response exactly.

It's limitations include the need to identify a function of two variables.

This poses a practical interpolation problem. Furthermore it confines the

first order model to a mathematical realization, at least until hardware

becomes available for generating functions of two variables.
t*Vi

The n order model, on the other hand, can be realized directly with

circuit elements. Although the step response of this model is never, in

general, exact; the orthogonality provides a means for controlling the

overall accuracy. In addition, the parameters of the n order model are

all directly measurable. This is in contrast to the first order model

which is characterized by an implicit function. Finally, all the non-

linearities of the n order model are memoryless. This is analogous to

Weiner's nonlinear model which separates the dynamics from nonlinearity [2].

Collectively the principal feature of the two models can be found in

the assumptions upon which they are based. The class of nonlinear quasi-

static systems is indeed a large one. Perhaps the most limiting assumption

in the practical realm is our restriction of the domain to step inputs.

In the absence of superposition, an extension of this domain to other signals

is not possible. The one claim that can be made in this regard is a

qualitative one; namely, the models should perform reasonably well for smooth

periodic inputs of a sufficiently low frequency. This follows from continuity

arguments and the fact that both models are exact at dc.
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i (current)

I
(a)

»• v (voltage)

<£(flux)

T

i (current)

(b)

Fig. 1. DC Characteristics of Tunnel Diode (a) and Iron-Core

Inductor (b).
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Fig. 5. Realization of ^(s) ; (a), Generation of e (.); (b)
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