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ABSTRACT

A graph~theoretic study of the computational efficiency of the generalized

loop analysis and the generalized cut-set analysis is presented. It is shown

that the choice of an optimum mode of analysis will give rise to the sparsest

loop impedance matrix and the sparsest cut-set admittance matrix, respectively.

The problem of formulating efficient algorithms for determining the optimum choice

is shown to be strictly a problem in non-oriented linear graph. Two algorithms

based on the concept of basis graph are presented and illustrated in details with
examples. A non-planar version of the mesh analysis which generally yields a

rather sparse loop impedance matrix is also included.

Research sponsored in part by the U. S. Naval Electronic Systems Command, Contract
N00039-71-C-0255 and the National Science Foundation, Grant GK-32236.



I. INTRODUCTION

This paper is concerned with the computational efficiency of the two standard

methods for formulating network equilibrium equations; namely, loop analysis, which

includes mesh analysis as a special case, and cut-set analysis, which includes node

analysis as a special case [1]. From the computer-aided analysis point of view,
node analysis is preferred because it usually gives rise to a nodal admittance
matrix ¥n ézégéi which is much sparser (i.e., contains less nonzero terms) than a
corresponding cut—-set admittance matrix ¥q é:gggT [2]1.1 This observation is one of
those "folk theorems" which has not been given a rigorous proof. In fact, as will
be shown in the sequel, it is false that node analysis always gives rise to the
sparsest cut-set admittance matrix;‘on the other hand, it is usually not worth the
effort to try to find a cut-set admittance matrix which is sparser than the nodal
admittance matrix. There would not be much point therefore in writing this paper
if all networks can be analyzed via node analysis. Unfortunately, there exists a
large class of networks which do not admit this mode of analysis. For example,

networks containing nonlinear (non-monotonic) current-controlled resistors and/or

dependent voltage sources require the loop analysis formulation,

The main motivation for this work is best illustrated by examining the non-
linear network shown in Fig. 1(a), where each nonlinear resistor Ri is character-
ized by a non-invertible function vy = Ri(ji)' Hence, node analysis is not possible
for this network. The loop equations relative to the fundamental loop matrix B in
Fig. 1(b) 1is given by:

Rjo(J3) - Rgo(-jq+igp-33+i4-35) - Rgo(-i1+ip-i3+is-is5) = O
Rpo(j2) + Rgo(-i1+is-i3+is=i5) + Rgo(=31+iz-33+is—=is) - Rygo(-3a+iz-i4tis)
R3o(33) - Rgo(-31+i2-13+i4-35) - Reo(=Jy+ia-iztis—is) + Rygo(~iptiz-ist+is)

0
0

R0 (34)-Ry0 (=344 5)+Rgo (-31+3 -3 3+34-35)+Rgo (-31+i2-33+i4~I5) “Rygo (=2+i3-14+]5)=0

R50(35)-Rgo (=3 5)+R70 (=34 +i5) -Rgo(~31+iz-33+i4~35)~Rgo (~i1+iz-33+i4-35)
’ +Ry go(-32+i3-34+i5)=0

"0"

where j1, J2,5 33, 4 35 are the link currents and denotes the composition

operation. This system is strongly coupled in the sense that the argument of each

function involves many‘variables. Had we chosen a different mode of loop analysis --

which in this planar network happens to be the mesh matrix M in Fig. 1(c), the
loop equations assume the greatly simplified form:

(1
©



Rjo(ij+ig) - Rgo(-i;) .- Rgo(-i;) = 0
Rypo(ig+is) + R3o(12+i3) =0
R3o(i,+i3) + R4o(igtis) - Ryo(-i3) = 0 > (2)
R40(i3+i4) + Rso(iy) - R6°('ilo) =0
R]_o(il'l"i_r,) + R20(12+15) - Rloo(—is) =0

J
where iy, i3, i3, i4, i5 are the mesh currents. These two systems of equations

are equivalent in the sense that one can be derived from the other by elementary
row operations. Yet (2) is so much simpler! The saving in computation may not
be crucial for small linear networks; but for nonlinear networks where the
Jacobian had to be evaluated numerically at each time step as in the Newton-
Raphson iteration [2], or where the degree of coupling betweén terms is important
in determining the existence and uniqueness of solution in a theoretical analysis
[3 - 5], the advantage of (2) over (1) is indeed a decisive one — both from the
computational and theoretical point of view. Consequently, this work is motivated
mainly by the need for devising algorithms for formulating a system of equations
of nonlinear networks having the least coupling among terms. The fact that these
algofithma also lead to the sparsest (in the local optimal sense) loop impedance
matrix gz A BRBT for linear networks provides yet another, although secondary,
motivation.

A careful analysis of this problem shows that it involves only graph-theoretic
concepts [6 - 10]. 1In fact, only the non-oriented graph is relevant. The basic
definitions and terminologies are given in section II along with the formulation of
a generalized method of loop analysis -- cycle analysis, and a generalized method of

cut-set analysis -- coboundary analysis. In section III, the detailed vector space
structure associated with these methods of analysis is developed and an exact
formula for determining by inspection the "degree of coupling", or sparsity, of the
associated matrices is derived. The concept of a basis graph is introduced as a
useful aid toward the formulation of the desired algorithms. Two algorithms which
provide a local optimal solution to the problem alluded earlier are presented in
sections IV and V; they are called the nearest neighbor algorithm and the row-length

minimization algorithm, respectively. Both of these algorithms are designed for

large networks and are suitable for computer implementation. . For smaller but non-
planar networks, an algorithm is offered in section VI which can be interpreted as

a pseudo-dual of node analysis. This algorithm can be implemented manually.



II. CYCLE AND COBOUNDARY ANALYSES

Consider the fundamental loop matrix B of a comnected oriented graph g] having b
branches and n nodes. It is well known that B is a v X b matrix of entries
-1, 0, and 1, where v A b-ntl, and that the row vectors of B constitute a basis
for a v-dimensional vector subspace -- the cycle space <2;(€3) -- of ﬁ{b over the
field R_of real numbers. Each cycle basis (i.e., basis for the cycle space)
Clgz of ‘2;(€3) is therefore uniquely specified by a v x b matrix ﬁ ~- henceforth
called the cycle matrix. The fundamental loop matrix B and the mesh matrix M are

only two of the many distinct cycle matrices.

It is also understood that relative to any cycle matrix §, KVL takes the
form ég = 0 and the cut-set trangformation takes the form i = gTi, where v is the
b x 1 branch voltage vector, i is the b x 1 branch current vector, and i is a

v X 1 vector —- called the generalized current coordinates [6 - 8]. Hence, for a

resistive network with a b x b branch resistance matrix R and using the standard
composite branch containing the sources as in [1], the network equilibrium

equation takes the general form:
~ AT A~ = -'A a_
(BRET) = - Bv_ + BRj_ (3

We refer to (3) as the cycle analysis and the v X v matrix gﬁ Q:ﬁRﬁT as the cycle

~ o~

impedance matrix.2 In the special case where g equals B or M, g5 reduces to the

loop impedance matrix Z, or mesh impedance matrix Z;, and i reduces to the link
current vector or mesh current vector, respectively.
For a nonlinear network containing current-controlled resistors, (3)

assumes the form:
BRO(BTL) = - Byg + BRY, 4)

where R(:): RDP » RP denotes the b nonlinear functions. Since (3) and (4) are
similar in form, it is clear that an algorithm which produces a sparser cycle
impedance matrix gz will also give rise to a weaklier coupled system of equations.
A dual development shows that the row vectors of a v* x b fundamental cut-set
matrix Q, where v* A n-1, constitute a basis for the v*-dimensional coboundary
space <E;*(€3) [7 - 8]. Each foboundary basisclgg*pf E;*((]) is uniquely defined
by a v*¥ x b coboundary matrix Q. The fundamental cut-set matrix Q and the reduced

incidence matrix A are only two special cases of the coboundary matrices.

Corresponding to the cycle analysis (3), we now have:



Q6QT) v = - Qy¢ + Q6v (5)

~ o~

where § is called the generalized voltage coordinates. We refer to (5) as the

coboundary analysis and the v* x v* matrix ga*:g ég@T as the coboundary admit-

tance matrix. In the special case where é equals Q or A, Ya* reduces to the

cut-set admittance Yq or the node admittance matrix Y.» and § reduces to the tree-
branch voltage vector or node-to-datum voltage vector, respectively.

We now see the cycle analysis as a generalized loop analysis and the co-
boundary analysis as a generalized cut-set analysis.3 1In either case, the problem
is to devise algorithms for finding the sparsest cycle impedance (coboundary
admittance) matrix ga (¥5*)'

It will be clear in the sequel that the orientation of the branches is ir-
relevant so far as constructing the algorithm is concerned. Consequently, through-
out the remaining sections, only non-oriented graphs are considered and hence the

cycle (coboundary) space needs only to be defined with respect to a mod 2 field.
III. THE CYCLE AND COBOUNDARY BASIS GRAPHS AND SPARSITY COEFFICIENTS

- As a precise measure of the sparsity of égﬁT and ég@T, we define the
following:
Definition 1. The cycle sparsity coefficient ¢ of a cycle impedance matrix §§§T is

the number of nonzero terms in BRBT.

Definition 2. The cycle matrix intersection coefficient, ny, of row i of a cycle

matrix ﬁ is the number of rows of ﬁ that have nonempty intersection with row i.
Two rows @i and ﬁj (i#j), denoting the ith and jth row vectors of ﬁ, are said to

have nonempty intersection if there exists at least one k such that both columm

k of B4 and column k of §j contain nonzero entries (i.e., By r‘ﬁj # 0.
Definition 3. The cycle matrix nondiagonal interseetion coefficient, Mys of row i

of a cycle matrix § is the number of rows j, j#i, such that

(a) By NBy=0;

(b) (B4R) N By # 0.

Definition 4., We define the coboundary sparsity coefficient o*, the coboundary matrix

intersection coefficient ni » and the coboundary matrix nondiagonal intersection

coefficient ug to be the dual of those in Definitions 1 -~ 3.
Theorem 1. Let 23 = ﬁgﬁT where ﬁ is a cycle matrix with dimension v A b-n+l for

a commected graph with b branches and n nodes, R is the b x b branch resistance



matrix which need not be symmetric, then

. v v
o(ga) =v + 2 ny + Z Uy (@)
i=1 i=1

Proof: The diagonal terms of 25 are nonzero since
b

(Zg)13 = 2 (BR) 3By = Z By RicBik = E (Byp)? Ry # 0,

for all i=1, 2, . . ., v; otherwise 131 = 0 which can not be pért of a basis.
Let i#j, let 13D be the matrix containing only the diagonal terms of R and with

the remaining entries zero, and let Zg = IEBD@T, then
b b

g = L BRDyy By = 3 Byy By RRe # 0 © By NBy 7 0.
9 k=1 k=1
A, v A~
The number of nonzero elements of {(gg,) ij kz=:1 ng. Since (Z,]g) 13 # 0 implies
(25)13 # 0, the number of nonzero entries of 25 v + 12:1 ng. We know (ZD)ij =0
b =

® By N l}j = @ and (%5)13 = 1?‘:1 (g‘l})ik Bjk #$ 0% (gl})i N ]}j +0, therefore, the
number of nonzero entries of 25 that has corresponding zero entry in 23 is equal

v
to E ug. It is obvious, then, (7) holds. o

If we define the cycle matrix intersection coefficient slightly differently

as,

Definition 5. The cycle matrix intersection coefficient, 0y, of row i of a cycle
matrix ]3 is the number of row j such that

(a) 3 € {i+1, 1i+2, . . ., v};

(b) By NBy # 0.

Then some immediate consequences from Theorem 1 can be stated as follows:

v-1 v
Corollary 1. o(ZZ) = v+ 2 z o+ Y uy (8)
i=1
Corollary 2. If R is diagonal, then
v=1
o(gg) = v+ 2 3, o4 ¢))
i=1

The above theorem defines a mapping between any cycle matrix and the number

of nonzero terms of its corresponding cycle impedance matrix. The part "y in (8)
w V-1 "
can not be minimized; we can only try to minimize the part 2 Z o3 + Z By
i=1 i=1



v v=-1
In general, 2: uy << 2 2: o4, and because uj is much harder to find by inspection
i=1 i=1

v v=1
than o4 (see Appendix A), we shall ignore 2: u; and work only on minimizing 2 2: Oj.
i=1 i=1

In other words, we assume R to be diagonal. By this assumption, we can make our
algorithms much more efficient.
Before introducing the concept of basis graph, we need another theorem:

Theorem 2. For a cycle space %;(g}) of dimension v A b-n+l, there are exactly
v-1

N, A ;% I (2V-21) distinct cycle bases.
i=0

Proof: Since there are v elements in the basis and the vector space is modulo 2,

by either take or not take each element in the given basis, we come up with 2V-1
nonzero element in <%;(£3). The number of choices for the first element of a

basis can be any one of the 2V-1 nonzero terms. The number of choices for the

second element of a basis is restricted in the semnse that it has to be independent

on the first element. In other words, the second element can be any nonzero element
outside the subspace generated by the first element. Therefore, the number of choices
for the second element of a basis is (2“-1)-(21—1) = 2v-21, similarly, the number of
choices for the third element of a basis is (2v-1)-(22-1) = 2v-22 ., . ., the number

of choices for the vth element of a basis is 2v-2v=1, The total number of choices
v=-1

s (2v-1)(2v-21) (2v-22) . . . (2¥-2¥"1) = 1 (2v-21). Since there is a redundancy
i=0 . v-1

of vl for choosing bases, the number of distinct cycle basis is<;T m (2v-21), =
i=0

Since the'number of distinct cycle bases (or cycle matrices) in f%;(g]) is
finite, there exists a cycle matrix with its corresponding impedance matrix having
the smallest ¢ value, Ogpt, denoted as éopt' The flow chart fdr generating all N,
distinct cycle bases without duplication and for finding ogpt 1s given in Appendix B.
An exhaustive search over all cycle matrices will obviously yield the optimum cycle
matrix ﬁopt' However, this is clearly impractical except for very small networks,
say v < 5. This motivates the search for more efficient algorithms.

Definition 6. A cycle basis graph €3612 of a cycle space Tz;(EZ) is a graph with
)

each node corresponding to a distinct cycle basis (or cycle matrix) of Z;((]) and

and a branch connecting nodes ﬁ and B' ®



(a) - one and only one k such that l:ik = I:Sfc + 135' where % # Kk,
() V& #k, By = By.

Definition 7. Nodes § and é' are said to be neighbors to each other iff they are

connected by a branch in the cycle basis graph QJCI; .
3

Observe that in the cycle basis graph QZCI; of a cycle space %;(gz) with

3
dimension v, each node has exactly v(v-1) neighbors. This observation will be
used in the algorithm to be presented in the next section.

From duality, we have

. vk-1 v¥
o*(gg*) = vk +2 Y oi + ), ui 9)
i=1 i=1
and the coboundary basis graph gch; is defined accordingly.
K

An example is given next to illustrate (8) and (9). Consider the circuit
shown in Fig. 2(a), aﬁd assume no dependent sources or coupling elements. Let B
be the fundamental loop matrix with respect to the tree {11, 12, . . ., 21}, M
be the mesh matrix, Q be the fundamental cutset matrix with respect to the tree
{11, 12, . . ., 21}, A be the reduced incidence matrix, and é be a coboundary
matrix. B, M, Q, A, é are represented in Figs. 2(b), (c), (d), (e), (£),
respectively. '

Consider Fig. 2(b), the "x" denotes the nonzero term while the zero terms
are left blank. The rightmost coiumn contains the cycle matrix intersection
coefficient o4. Since By intersects By (at columns 17 and 18), By (at columns 17
and 18), By and §5, g1 = 4 as shown in the first row of the rightmost column. By
intersects B3 (at colums 17, 18, and 19), B, and Bs, therefore, g9 = 3. And in

v-1
the last row of the rightmost column we have the value of Y. oy as abbreviated by
i=1
‘ v-1 v-1
"$". For the fundamental loop matrix B, 3, oy = 25. From (9), o(BRBT) = v+2 Y ooy
i=1 ci=1

=10 + 2 x 25 = 60. Similarly, o(RMT) = 28, o*(Q6eQT) = 121, o*(aGAT) = 39, and
o*(QeQT) = 31.

This example also showed the following facts:
(a) the mesh (node) matrix usually results in sparser impedance (admittance)

matrix than the fundamental loop (cut-set) matrix;



(b) the node admittance matrix does not always result in the sparsest coboundary

admittance matrix.
Iv. THE NEAREST NEIGHBOR ALGORITHM

We shall first define what is a local optimum cycle matrix with respect to

the cycle basis graph; we do it by the following recursive definition:
Definition 8. A cycle matrix is a local optimum cycle matrix with respect to the

cycle basis graph iff

(a) no neighbor of this cycle matrix has smaller ¢ value;

(b) all neighbors with same ¢ value must themselves satisfy (a) and (b).
From the above definition, it is obvious to formulate the algorithm as

follows:

(a) given any cycle métrix, take it as the initial iteration matrix;

(b) check all the neighbors of the iteration matrix;

(c) if any neighbor has smaller ¢ value, take it as the new iteration matrix
and go to (b); otherwise,

(d) 1if any neighbor has equal o value and it has not been iterated on before,
take it as the new iteration matrix and go to (b); otherwise,

(e) stop -- we have already reached a local optimum in the sense of Def. 8.
The flow chart for this algorithm is given in Fig. 3 and we shall use the

example in Fig. 1(a) to illustrate this algorithm.
Let us start out with the fundamental loop matrix éo with respect to the

tree {6, 7, 8, 9, 10}. EO is shown in Fig. 4(a) with the rightmost colummn

containing the cycle matrix intersection coefficient ci's and the last row of this
v-1 :

column containing ), o4. From (9), c(goggg) = 25.
i=1

Iterate on éo, a neighbor with improvement in o is shown in Fig. 4(b) (note,
the o value for this new cycle matrix is 19), take it as the new iteration matrix
§01 and set Kiptrak = {501} where Kiptrak is the set containing all cycle matrices
already iterated on that have the-same ¢ as the current iteration _
matrix. Iterate on §01, a neighbor with improvement in o is shown in Fig. 4(c)

(o0 = 17), take it as the new iteration matrix 302 and set Kiptrak = {§02}. Iterate
on ?02, another neighbor with improvement in ¢ is shown in Fig. 4(d) (o = 15), take
it as the new iteration matrix @03 and set Kiptrak = {§03}.

Iterate on @03, no neighbor with improvement in ¢ can be found; however, there



are several neighbors that have the same ¢ value as shown in Fig. 4(e), (f), (g), and
(h). Take the matrix in Fig. 4(e) as the new iteration basis §04 while putting
the matrices in Fig. 4(f), (g), and (h) into Minbase which is a set containing all
cycle matrices not yet iterated on but have the same o as the current iteration
matrix. Set Kiptrak = {§03, 304}. Iterate on §04, again no neighbbr with
improvement can be found. Those neighbors, not in either Minbase or Kiptrak, but
with same o as §04 are shown in Fig. 4(i), (j), and (k). Take the matrix in Fig. 4(i)
as the next iteration matiix 305 while adding the matrices in Fig. 4(j) and (k) to
the set Minbase. Set Kiptrak = {503, @04, 505}. Iterate on Bps, again no
improvement can be found. Those neighbors, not in Minbase or Kiptrak, but with
same ¢ as §05 are shown in Fig. 4(L), (m). Take the matrix in Fig. 4(L) as the
new lteration matrix §06 while putting the matrix in Fig. 4(m) into Minbase. Set
Kiptrak = {§03, @04, éOS’ @06}' Iterate on @06’ no improvement exists. Those
neighbors, not in either Minbase or Kiptrak, but with same o as'§06 are shown in
Fig. 4(n), (o). Take the matrix in Fig. 4(n) as the new iteration matrix §07
while adding the matrix in Fig. 4(o) to Minbase. Note, Minbase now contains the
matrices in Figs. 4(f), (g), (h), (3), (k), (m), (o). Set Kiptrak = {303, §04,
Boss Bogs Bo7)-

Iterate on §07, improvement can be found in the neighbor (o = 13) as in
Fig. 4(p). Take it as the next iteration matrix §08’ and set Kiptrak = {§08}'
Note, we also set Minbase = § according to the algorithm. Iterate on §08’ no
improvement can be found, those neighbors,not in Kiptrak or Minbase, but have the
same O as §08 are shown in Fig. 4(q), (r). Take the neighbor in Fig. 4(q) as the
next iteration matrix §09 while putting the neighbor in Fig. 4(r) into Minbase.
Set Kiptrak ='{§08, §09}. Iterate on §09’ no improvement can be found, the neighbor,
not in Kiptrak or Minbase, but have the same ¢ as ﬁog«is shown in Fig. 4(s). Take
it as the new iteration matrix §010 and set Kiptrak = {éog, §09’ §010}. Iterate
on Byyg, no improvement can be found; besides, no neighbor, not in Kiptrak or Minbase,
but have the same ¢ as §010 can be found. Take the last element in Minbase, i.e.,
the cycle matrix in Fig. 4(r) (note, this is also the only element in Minbase at
this time) as the next iteration matrix @011. Now Minbase contains one less element,
hence becomes f. Set Kiptrak ='{§08, @09, §010, §011}. Iterate on 5011, no improve-
ment can be found; besides, no neighbor, not in Kiptrak or Minbase, but have the same
o as @011 can be found. Since Minbase = @, this will terminate the algorithm with



3011 as the solution to this problem.

A flow diagram of the path of the above example is shown in Fig. 4(t). In
the flow diagram, the arrow shows the direction of the path of iteration matrices,
the alphabets correspond to the cycle matrices in Fig. 4, and the numbers correspond
to the o values of each cycle matrix. Note that only relevant neighbors are shown
in the flow diagram. In the cycle basis graph for this example, every cycle matrix

has v(v-1) or 20 neighbors.
V. THE ROW-LENGTH MINIMIZATION ALGORITHM

The next algorithm is motivated by the idea that the less nonzero terms a
row vector has, the less chances of this row vector being intersected by other
row vectors. Hence, we associate this algorithm with the concept of row-length related
basis graph.
Definition 9. The row-length related cycle basis graph is a subgraph of the cycle

basis graph such that it has the same distinct cycle matrices in E;((}) as nodes

and an oriented branch incident from node B to node B iff

(a) B and B' are neighbors in the cycle basis graph (E;(. )3

(b) 1if § and g' differ by row k (note, g and é' differ by one and only one row in view
of (a)),. then length (gé) < length (ﬁk) where length (gk) is the number
of nonzero terms in row k of B.

Definition 10. From Def. 9, §' is said to be a successor of é. é' is a proper

successor of § if length (gi) < length (ﬁk), and @' is a pseudo successor of g if
length (@i) = length (§k).
Definition 11. A cycle matrix § is a local optimum with respect to the row-length

related cycle basis graph iff

(a) no prdper successor of B has equal or smaller o;

~
~

(b) no pseudo successor of B has smaller o.
From the above definitions, the row-length minimization algorithm is formulated

as:

(a) given any cycle matrix, take it as the initial iteration matrix;

(b) £find the row with maximal row length (i.e., maximal number of nonzero terms
amohg the row vectors), take it as the iteration row;

(c) find all the successors with respect to the iteration row;

(d) 1if any proper successor has improving o, take it as the new iteration matrix

and go to (b); otherwise,

..10..



(e) 1if any proper successor has same o, take it as the new iteration matrix and
go to (b); otherwise,
(f) 1if any pseudo successor has improving o, take it as the new iteration matrix
and go to (b); otherwise,
(g) 1if there are rows that have not been iterated on, find the row with maximal
length among them, take it as the new iteration row and go to (c); otherwise,
(h) stop -~ we have already reached a local optimum in the sense of Def. 11l.
The flow chart of this algorithm is given in Fig. 5 and we shall again use
the example in Fig. 1(a) to illustrate this algorithm.
Let us start out with the same fundamental loop matrix §0 as in Fig. 4(a).
The set containing the number of nonzero entries for each row of §0 is
RL(@O) = (3, 4, 4, 5, 6). Since zmax=6’ Rmaxﬁ{S}, 1payx=5s we have MfEEEEBl as in
Fig. 6(a). The rightmost columm of EEQEEEB; is blank because we do not calculate ¢ for
this matrix, and the fifth row is blank because we do not ring sum row 5 with itself.
RL'(ﬂgﬂzggml) = (5, 4, 4, 3, =), &, =3, Rﬁ1n={4}’ ki,~4s replace (go)imax by

(M’odZSuml)kmi and the result is in Fig. 6(b), denote it as Bl. Note that Bl is
P g n -~ ~

a proper successor of §0 and has smaller ¢ value -- gince from the last row of the
v-1 .~ A

rightmost column of Fig. 6(b) (which contains ), o04) we have 0(§18§1T) = 19,
i=1

while from Fig. 4(a) we have °<§0§§g) = 25. According to the algorithm, we take
§1 as the next iteration matrix §01.

Iterate on 501, RL(@OI) = (3, 4, 4, 5, 3), %pay=5, Rpay={4}, ipax=4, and
@gggggpz is in Fig. 6(c). Since RL'(Mod2sum?) = (4, 3, 3, —, 6), Lpin=3>
R;in={2, 31, kpin=2, we obtain @2 (as in Fig. 6(d)) by replacing (§01)imax by
(ggggfggg)kmin. §2 is a proper successor of §01, and since it has improving o

value (0=15), we take it as the next iteration matrix 302.

Iterate on By, RL(Bgp) = (3, 4, 4, 3, 3), Rpay=4, Rya={2,3}, iy =2,
and §g225393 is in Fig. 6(e): Since RL' (Mod2sum3) = (3, -, 2, ?, D, Lnin=2
R;in={3}, knin=3, we obtain B3 (as in Fig. 6(f)) by replacing (goz)imax by
(ygggggg?)kmin. §3 is a proper successor of §02, and fince it has improving o
value (0=13), we take it as the next iteration matrix Bpj.

Iterate on Bz, RL(By) = (3, 2, 4, 3, 3), a4, Ry, ={3), 1, =3, and

Mod2sum® 1s in Fig. 6(g). Since RL' (Mod2sum®) = (3, 4, -, 7, 7), Lnin=3>
—— o —

-~11-



Réin;{l}, kpin=l, we obtain §4 (as in Fig. 6(?)) by replacing (§03)imax by
(ModZsumA)kmin. B4 18 a proper successor of B, and since it has same o(0=13),
T —~—— ~ ~
we take it as the next iteration matrix Bgy.

Iterate on Bgy, RL(Bg,) = (3, 2, 3, 3, 3), %5a,=3, Ry ={1, 3, 4, 5},
i .41, and M/o_d\Zs_u/m5 is in Fig. 6(i). Since RL'(EgdZixm/S‘) = (-, 5, 4, 6, 6),
Lmin=% > %max» We take the next element in R, as imax’ i.e., ipa4=3. Then
Mod2sum® is in Fig. 6(j). Since m'(wé) = (4, 3, -, 6, 6), Lpig=3=Lo.,
Rhgn=12}, kpi =2, we obtain B5 (as in Fig. 6(k)) by replacing (Bgs)i . by
(§g§g§29§)kmin. ?5 is a pseudo successor of @04, and since it has larger ¢
value (0=15), take the next element in Rp,, as ip,y, i.e., imax=4' Then Mod2sum’/
is in Fig. 6(2). Since RL'(Mod2sun’) = (6, 3, 6, =» 4), fnin=3=Rpays Rpin=(2},
kpin=2, we obtain §6 (as in Fig. 6(m)) by replacing (§04)imax by (¥9§Efzfz)kmin'
@6 is a pseudo successor of @04, and since it has larger o value (o=15), take

. 8 . ,
the next element in Roax @ .4 1., i =5, Then @gggfgej is in Fig. 6(n).
Since RL'(MM) = (6, 5, 6, 4, -),Azmin=4>zmax.,
left in Ry ., we re-evaluate RL as RL(Bgy) = (-, 2, -, =, =), Zpax=2, Rpa=1{21,
1hax=2, and ggggfgg? is in Fig. 6(o). Since RL'(ModZsumg) = (5, -, 3, 3, 5),
~ —_——— ~

zmin=3>2max’ we re-evaluate RL as RL(By,) = (-, -, -, -, -). Since RL(Bj,) = 9,
this terminates the algorithm.

and because no more element

A flow diagram of the path of this algorithm is included in Fig. 6(p). 1In
the flow diagram, single-arrowed branch leads to proper successors, and double-
arrowed branch leads to pseudo successors. The ordered 5-tuple near each node is

the row length associated with it.
VI. A SUBOPTIMAL NONPLANAR ALGORITHM

This is a generalized version of mesh analysis in nonplanar networks. The
basic concept is to find the maximal planar subgraph, take the meshes of this
subgraph as part of the cycle basis. The remainder of the cycle basis is filled
when the original nonplanar graph is constructed from its maximal planar subgraph.
The algorithm formulatés as follows:

(2) number the branches of the graph (3 arbitrarily from 1 to b (assume b branches
in (53

(b) 1let subgraph {]0 contain only nodes of g} and no branches, let i=l;

(c) add branch i to subgraph g}i—l; if branch i makes the resulting graph non-
planar, store i in the set Nonplanar and g}i = (ji-l’ otherwise

-12-



(\i = gji—l U branch i;

(d) 1i=1+1, 1f 1 < b, go to (c), otherwise,

'(e) let Mg be the mesh matrix of subgraph g}b, let CL(MO) be the set containing
the number of nonzero terms in each column of Mp, let j=1;

(f) we obtain subgraph €3b+j by adding branch (Ndnplanar aGgn to subgraph €]b+j-l:
find a cycle 33 containing branch (Nonplanar (j)) such that the row length
of 74 is minimal and in the resulting graph 5j will leave the number of entries of

CL(yj) as small as possible where M; = ?5-1 L’5j5
(g) J =3+, 1f 3 j_INonplanar| (i.e., cardinality of the set Nonplanar); go to

(f), otherwise,
(b)  stop, g b+|Nonplanar |

We shall illustrate this algorithm by the example shown in Fig. 7(a). The
maximal planar subgraph gjls is shown in Fig. 7(b), the associated mesh matrix
Mo is shown in first seven rows of Fig. 7(f), and the column length of My is shown
in the eleventh row of Fig. 7(f) demoted by CL(Mp). The set Nonplanar contains
three elements {13, 14, 15}.

For j—l Nonplanar (1) = 13, €]16 is shown in Fig. 7(c). Observe £;16

arefully and we will find only qne cycle containing branch 13 that has row
length = 3; namely, 31 = {6, 9, 13} We obtain M; by adding 3, to Mg, i.e.,
putting 31 in the eighth row of Fig. 7(f). The column length of M; is shown in
. the twelfth row of Fig. 7(f) denoted by CL(M;).

For j=2, Nonplanar (2) = 14: €317 is shown in Fig. 7(d). Observe €317
carefully and we will find there are four cycles containing branch 14 that have
row length = 3; namely, 52 {5, 13, 14} 52= {3, 4, 14}, 52 {7, 9, 14}, and
32 = {2, 11, 14}. Among them, both 52 and 52 will yield CL(M;) with entries as
small as possible. The choice here is arbitrary, we put 5% in the ninth row of
Fig. 7(£) and CL(Mp) with respect to 3% is shown in the thirteenth row of Fig. 7(f).

For j=3, Nomplanar (3)=15, £318 is shown in Fig. 7(e). Observe €318 care-
fully and we will find there are four cyclea containing branch 15 that has row
length =33 namely,53 = {4, 5, 15} 33 = {6, 8, 15}, 03 = {3, 13 15}, and
54 = {10, 12, 15}., Among them, 33 will yield CL(M3) with entries as small as
possible. 5g is put in the tenth row of Fig. 7(f) and the corresponding CL(y3) is

g} and we have reached a suboptimal basis.

shown in the fourteenth row of Fig. 7(f). The generalized mesh matrix & is same

as M, and is shown in the first ten rows of Fig. 7(f).

-13-



In the rightmost column of Fig. 7(f), we have the values of Ui's, and
v=-1 " " A oA .
o4 is denoted by §:== 19, therefore o(ygyT) = 48, Take a fundamental loop
i=1 :

matrix B with respect to the tree {1, 2, 3, 4, 5} as shown in Fig. 7(g) , we
have o(@ggT) = 90. @‘results in obviously sparser cycle impedance matrix than B.

VII. CONCLUSION

Another algorithm based on the idea that a ¢olumn with k nonzero elements
- k-1
will contribute 2 E: i to the o value has been explored. This approach is
i=1

called the column-length minimization algorithm. So far, this approach yields

results not very fruitful.

' Comparing the nearest neighbor algorithm (Alg. 1) with the row-length
minimization algorithm (Alg. 2), we find Alg. 2 is more efficient than Alg. 1
because Alg.. 2 does not need to calculate ¢ values for all v(v-1) neighbors while
Alg. 1 does. However, the local optimum of Alg. 2 is usually not as sparse as the
local optimum of Alg. 1. A hybrid model of algorithms can utilize the advantages
of both Algs. 1 and 2; “je., to start with Alg. 2 while finishing up with
Alg. 1. Nevertheless, this hybrid model will not work out for matrices of
dimension v > 15 very efficiently.

Because of the problem that local optimum with respect to the basis graph is
not the global optimém (see Appendix B), an efficient global 6ptimum algorithm
(sée Appendix C) is not found yet. However, in most practical studies, the local
optimum seems to be very close to the global optimum such that it is not worth-
while to implement a global algorithm even if one exists. Nevertheless, from the
theoretical_standpoint, such a global algorithm would be desirable.
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Appendix A. Computing u 1’

Assume there 1s only one nondiagonal term in R, let it be qu # 0, p# q.

Definition A-l. =1 1£ff

uij
(a) B, NB, =9
N A ‘ n ~
) BE N5 40
From Def. A-1, it 1is obvious that u = u .
i j;:t 13

The A-1. =1 iff B 0 and B 0
orem iq-#»an jp"

Proof: If By = 0, then u;, = 0. 1If ﬁiq $ 0, ﬁjp = 0 then y;, = 0. If By # 0,

0, B, ¢ 0, then this is contradictory since ﬁi NB, = @. If ﬁiq # 0,
0

]
3q = 0, then uij = 1. Therefore Biq ¢ 0, ij # 0 iff My = 1.

-15-
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Appendix B. Local Optimum is not Global Optimum

Consider the example in Fig. A-1(a), let M be the mesh matrix as in
Fig. A-1(b), we find o (MRMT) = 89. ILet ﬁ be the cycle matrik shown in Fig. A-1(c),
we can obtain § from M by adding the eighth row through the seventeenth row except the
sixteenth row and replacing the seventeenth row by the ring sum. o(ﬁg@T) = 87.
Through exhaustive checking of y's neighbors, we will find M is a local optimum
with respect to the cycle basis graph. However, M is not the global optimum

because of the existence of @.

-16-



Appendix C. Enumerating all Distinct Cycle Basis

v-1
The flow chart to enumerate all N, A:;% n (¥ - 21) distinct cycle
i=0

matrices without redundancy is presented in Fig. A~2(a). And the flow chart

to determine the global optimum cycle matrix gopt is presented in Fig. A-2(b).
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FOOTNOTES

1. To conserve space; all symbols and notations in this paper that are not
defined are used as in [1].

2. We consider a linear resistive network here for conveniemce. Equation (3)
applies, of course, also to a linear RLC network with R replaced by the
branch impedance matrix Z.

3. The term "cycle" ("coboundary") may not be too fémiliar in circuit theory .
literature; but they appear to be more descriptive since a cycle (coboundary)
is generally the union of disjoint loops (cut-sets). The terminologies

adopted in this section are well known in graph-theoretic literatures [7 - 81.
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(a) A network with current-controlled resistors. (b) Fundamental loop

matrix w.r.t. tree {6, 7, 8, 9, 10}. (c) Mesh matrix w.r.t. meshes

©,2.0,8.01.

(a) An illustrative example. (b) Fundamental loop matrix B w.r.t. tree

{11, 12, . . ., 21}. (c) Mesh matrix M. (d) Fundamental cut-set matrix

Q w.r.t. tree {11, 12, . . ., 21}. (e) Reduced ineidence matrix A.

(f) Coboundary matrix é.

Flow chart of the nearest neighbor-algorithm.

(a) By () Boy (c) Bop () Bog (e) By, (£) Minbase; (g) Minbase,
(h) Minbase; (i) Bos (4) Minbase, (k) Minbases (%) Byg (m) Minbase
(@) Bo7 (o) Mimbase; (p) Bog (a) Bog (r) Minbase; and Byyy (s) Boyg
(t) flow diagram. |

Flow chart of the row-length minimization algorithm.

1 -1 ~ 2 ~2 o 3

(a) Mod2sum™ (b) B™ and Byy (c) Mod2sum™ (d) B” and Bpp (e) Mod2sum
~ ~ ~ ~ 6
(£) 8 and Bo3 (@) Mod2eun’ () * and By (1) Mod2ewn® (4) Mod2ewn

8

~5 7 ~6
(m) B (n) Mod2sum

(k) B* () Mod2sum

@ G ® (5 @ Gy @ Gy; @ (g (0 Generalized
mesh matrix @. (g) Fundamental loop matrix w.r.t. tree {1, 2, 3, 4, 5}.

(o) MbdZSumg ()] fiow diagfam
T N—

A-1 An illustrative example. (b) Mesh matrix M. (c) Cycle matrix B.

A-2 (a) Flow chart for enumerating all basis. (b) Flow chart for generating

oopt"
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LEGEND:

Memory - the set containing all
neighbors of the iteration

Given a cycle matrix §
= o(ﬁ

‘
0 Bg)

Memory = all neighbors of @

g

0

Sigma = all neighbors' o value

o = Min(Sigma)

min

basis.

Sigma - the set containing o values
of all neighbors of the
iteration basis

Kiptrak - the set containing cycle
matrices already iterated on
that have the same ¢ as the
current iteration matrix

l

°min>°0?

|

omin<00?

e

Take the corresponding cycle
matrix as go, store it in
Kiptrak, set Minbase = §

0

STOP

Yes

No

Minbase - the set containing cycle
matrices not yet iterated on
that have the same o as the
current iteration matrix

Find all cycle matrices in Memory that have
their o value = opin, store those that are
not in Kiptrak or Minbase in Minbase

———

Yes

Minbase = $#?

"

Take the last entry in Minbase as §0’ store it in Kiptrak

Fig. 3
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X | XX XX 2
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Given a cycle matrix @0 with dimension v

l,

g

o = 9(By) Ri={lemgth((By),), i=1, 2, . .

v}

\

[} xnmax(RL)

B> ma

—

/

©

Yes

=17
N

O,

L
max
R oy ~1:length ((Bp)y) = 2}, take

1

the first i
max
row j of Mod2eum = (Iéo)im@l}ja i=1{1,2,

LEGEND:

RL - the set containing the row length
of the iteration matrix of rows that
have not been iterated on yet.

Rmax =~ the set containing next iteration
row

Mod2sum - ring sum of the iteration

T~

row with other rows

RL' - the set containing the row length
of the ring sum that have not been
iterated on yet.

Rpin - the set containing next replace-

R ment row

B' - successor of the iteration matrix

;..,\})} -1 RL'={1ength((M/ogZﬂnl)j), jé#
max @___. STOP
\ No W
@ o .zmianin(RL') @e——- RL = @7
zmin > R’max? _Y_e_: Have we exhausted Rmax? Yes RL={RL(i) :RL(1) < g‘max}

“J:§;-~—‘_-"“"“‘——-:==st

o

' [l eRT.! =
Rmin {k:RL"' (k) zmin}’ take the first km

take the next i
max

—0

in
B' = B except B = (mod2sum) ,» 0, = o(B")
~0 ~imax S~ km.'!.n 1 ~
Yes
° 9 > 00? -
Yes NOL
. Yes -
2min " “max 9% 00?
No No&
00 @ 01, 90 @ g' » RL={length ((go)i), @
i= {192:'“\’}} \G

Have we exhausted R', ?
min

Nol

take the next k
min

RL'={RL'(3)+] § R}, )
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