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ABSTRACT

This paper represents a sequel to the recent work on algebraic n—ports

[1]. It relates the external representation of nonlinear n-ports in terms
of the constitutive relations of the internal elements composing the n-ports,
and the topological matrices defining the elements' interconnection. Various

closure properties associated with interconnection of nonlinear l-ports are

presented. The problem of synthesis leads naturally to a consideration of
canonic decomposition of nonlinear n-ports into basic building blocks. In
particular, every voltage-controlled (current-controlled) resistive 2-port
is shown to be realizable in a canonic form consisting of a series (parallel)
connection between a reciprocal nonlinear 2-port, and a new class of non-

linear 2-ports called quasi-antireciprocal 2-ports. This basic result is

then generalized to allow the synthesis of a very large class of nonlinear

n-ports in terms of only two building blocks; namely, reciprocal n-ports and

quasi-antireciprocal n-ports. Moreover, the class of quasi-antireciprocal

n-ports is shown to be realizable in terms of only nonlinear resistive

l-ports, reciprocal 2-ports, and gyrators.
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I. INTRODUCTION

A theory of nonlinear n-ports has recently been presented strictly from
a "black box" approach [1]. In this paper, we '"open" the box and express
the external black box charactérizations of nonlingar algebraic n-ports in
terms of their internal constituents. This study is motivated by the ob-
servation that most n-ports with n>2 do not represent intrinsic devices but
are often created conceptually or physically through an interconnection of
l-ports and 2—ports,l Such "composite" n-ports have served as invaluable
tools for both analysis [2,3] and synthesis [4] purposes. Since any (n+l)-
terminal element can be considered as a grounded n-port and since any n-port

can be considered as a system of "n" controlled l-ports -- i.e., n 1-ports

with mutual couplings among the port variables -- there is no loss of
generality in assuming that our n-ports consist of an interconnection of
only l-ports and controlled l-ports. We adopt this point of view in this

paper because each n-port can then be represented topologically by n separate

branches, thereby allowing standard graph-theoretic techniques to be brought
to bear.

In Section II, we consider the problem of expressing the external
representation 2f an n-port in terms of the constitutive relations of the
internal elements and the topological matrices defining the interconnection.
To understand why appropriate conditions must be imposed not only on the

nature of the element's nonlinearity, but also on the network topology,

lTo economize on symbols, the index "n" is used in a generic sense. Hence
two n-ports need not have the same number of ports. We will assume that
whenever necessary, our n-ports are provided with internal isolation trans-
formers so that arbitrary interconnection among n-ports will not introduce
circulation currents.



congider the following examples:

Example 1. This example illustrates the types of composite v-i characteristics
of a l-port that could arise as a result of a simple series connection of

two l-ports Rl and R2 as shown in Fig. 1. Observe that with only two seg-
ments per vj-ij curve, j = 1, 2, it is possible to obtain a composite

curve having self-intersections, branching segments, and a finite perimeter

as in (a), (b), and (c), respectively. More complicated v-i curves can be

obtained as in (d)-(f) with only three segments per v curves, j = 1,2.
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When interconnections of multiports are involved, the problem is even

more acute as indicated in Examples 2, 3, 4 and 5.

Example 2. The circuit in Fig. 2(a) consists of a 2-p6rt N (in fact, a

current-controlled current source) and two l-ports RA ;nd RB characterized

by the v ,-i . curves shown in Figs. 2(b) and (c). The composite v-i curve
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shown in Fig. 2(d) consists of the union of a closed line segment and two
isolated points. It is easy to see that if we replace RB by a short circuit,
the composite v-i curve would reduce to 3 isolated points; namely, (0,-1),
(0,0), and (0,1). If we also replace RA by an open circuit, the composite
v-1 curve degenerates into one point at the origin and becomes a nullator

[4].

Example 3. The circuit in Fig. 3(a) consists of a 2-port N and three l-ports.
With the vj-ij curves shown in Figs. 3(b) and (c) for kA and RB’ the composite
v-i relationship covers an entire area, as shown in Fig. 3(d). In fact, if
we replace RA and RC by short circuits, and RB by an open circuit, the
composite v-i relationship would cover the entire v-i plane and become a

norator [4].

Example 4. To show that any unicursal v-i curve [5] v = v(p), 1 = i(p),



p € R;, including those with self-intersections and cusps, could be synthe-
sized, we introduce a new linear 3-port Np in Fig. 4(a)--called a unicursal

3-port--characterized by the hybrid matrix:

1 1
Vol = 0O 0 1 12
13 -1 0 O vy

If we connect two voltage-controlled resistors RA and RB (characterized by

iA = gA(VA) and iB = gB(vB) respectively) across ports 2 and 3 of Np, as

1—11 curve i1 =

gA(p), v, = gB(p). To show that the unicursal 3-port is nothing exotic,

shown in Fig. 4(b), we obtain a l-port with the composite v

we offer a simple realization using only a voltage-controlled voltage source
Na and a current-controlled voltage source Nb’ as shown in Fig. 4(c).

Example 5. To show that v-i curves more complicated than unicursal curves
could be realized, we introduce yet another linear 3-port in Fig. 5(a)--
called an intersection 3—por£-—character1zed by: v, =v,=v,and i = -i, =

1 2 3 1 2

-13. If we connect two 1l-ports RA and RB across ports 2 and 3 of an inter-

section 3-port as in Fig. 5(b), then the composite v

1-11 relationship of the

resulting l-port is simply the point set intersection of the v-i curves of

RA and RB. Some examples of v-1i curves that can be realized with the in-

tersection 3-port are shown in Figs. 5(c)-(e) where RA and RB are connected

as in Fig. 5(b). Notice that in all cases, RA and RB are unicursal resistors

which can be realized by a unicursal 3-port, a v-controlled resistor and an

i-controlled resist:or.2 To show that even an intersection 3-port is not too

21t has been shown in [6] that every voltage-controlled or current-current
l-port resistor can be realized by a linear 2-port called an LTC (linear
transformation converter) and an increasing l-port resistor.



exotic, we offer a simple realization in Fig. 5(f) using only three common
2~-ports, namely: two voltage-controlled voltage sources Na and Nc’ and a

current-controlled current source Nb.

Observe that there exist an infinitely many distinct pairs of RA and

RB for realizing a prescribed v relationship. What is required is

1™

merely that the point set intersection of the v-1 characteristics of R.A

and RB consists of only the points of the prescribed vl-il relationship,
no more and no less.

In Section III, we will be mainly concerned with the closure properties
of l-port elements. That is, we are trying to answer the basic question:
"Does a composite l-port resulting from an in‘terconnection3 of l-ports all
having property P also possess property P?" This question is of great im-

portance in the qualitative analysis of nonlinear networks.

In Section IV, we introduce an important class of nonlinear n-ports—-

called quasi-antireciprocal n-ports--which represents a generalization of

anti-reciprocal n-ports. It is shown that every i-controlled or v-controlled
nonlinear 2-port can be realized using only a reciprocal 2-port and a quasi-
antireciprocal 2-port. Properties of quasi-antireciprocal n-ports are in-
vestigated. 1In addition, certain classes of nonlinear n-ports are shown
to be realizable by an appropriate interconnection of a reciprocal n-port
and a quasi-antireciprocal n-port.

Throughout this paper, we let Rk denote the Euclidean k-space and [ -l
the usual Euclidean norm. Vectors are denoted by lower case letters and

matrices by upper case letters. A column vector x = [xl,xz,"°,xn] € "

3All networks considered in this paper are assumed to be connected and

non-separable.




- s o0 k =
is partitioned into x [xa,xb] if x, = [xl,xz, ,xk] € R and X [xk+1,

xk+2’.“’xn] €

Jf(x) denote the Jacobian matrix of a function £f: R - R® at the point x

Rn-k. In addition, we let x denote the time-derivative of X,

(when n=1, we use f'(x) instead of Jf(x)) and (+,* ) denote the Euclidean
inner product.

In this paper, we will use the symbols v and i instead of £ and n as
used in [1] for general discussion even though most results are applicable to
algebraic n-ports. To distinguish results that are applicable to algebraic
n-ports from those that are applicable to n-port resistors only, we will
use the word "elements" for results associated with the former case4 and

the word "resistors" for results associated with the latter case.

II. EXPLICIT REPRESENTATION OF NONLINEAR N-PORTS VIA TOPOLOGICAL MATRICES

In this section, we will derive conditions which guarantee a "composite"
n-port resulting from an arbitrary interconnection of l-porfs and controlled
l-ports to possesé a hybrid representation. Additional conditions will be

imposed to guarantee that the n-port is either increasiqg or non-decreasing [1].5

The hybrid representations will be derived in explicit topological forms. Un-

like the results presented in [7] which are valid only for reciprocal networks,

4Throughout: this paper, we assume that all charge variables and flux-linkage
variables at the initial time are zero. Under this assumption, any topological
equations which apply for resistive n-ports would also apply for algebraic n-
ports. Otherwise, appropriate constants of integration will have to be intro-
duced. )

5The class of increasing n-ports is the appropriate generalization of 1l-ports
characterized by a strictly monotonically increasing v-i curve. Similarly,
the class of non-decreasing n-ports is the generalization of l-ports with a
monotone increasing v-1 curve. It is important to observe that for n>1, the
class of increasing n-ports is a proper subset of homeomorphic n-ports [1].
The study of increasing n-ports is of basic importance because most results
involving strictly monotone increasing v-i curves have a natural generaliza-
tion only for this class of n-ports but not for homeomorphic n-ports.




our results in this section allow coupled elements, such as controlled
sources, and are therefore much more general.

For a given (connected and nonseparable) network”,A‘with m nodes and b
branches, let T be a spanning tree and L be the corresponding co-tree. Let
Tl be any subset of T; L1 be the subset of L that form loops with elements
in T1; T2 = T - Tl and L2 = L - L1, where the symbol "-" denotes set sub-
traction. Let t, tl’ t2’ 2, 21, and 22 be correspondingly the number of
elements in T, T1, T2, L, L1, and L2. Then t = t1 + tz = m-1 and 2 = 11 +
22 = b - m+l. By numbering the branches ofg,A‘in the order of L1, L2, T1

and T2, we obtain the following topological equations [7-9]:6

A'AN B 0 v, . ]
o <[], _[Pu AL w
L B,, B, |{ve,] TT
L VL2 21 “224U72
A t t1r
1ry By By [t At
i, = . = . it . = Bl (2)
177 | 22J g

where

(1) Bll’ BZl and B22 are topological submatrices of dimensions llx tys Lg% ty

and 2, X tz respectively;

2

(1i) The superscript "t" of a matrix A indicates the transpose matrix of A;

(ii1) z =lz)525,00052, 1,2, = [zzl+l,z£1+2,"',z£], Zgy = [z£+1,2£+2,"',zz+tl],
1 :
[

Zr2 = [Zppe 43 20 4207 0B ls 2 = 2110291 2p = [2q9,2q)) and 2z =

1 1
[zL,zT] where the generic symbol z stands for either v or i.
Let;JAl be an n-port resulting from an interconnection of l-ports, i.e.

two-terminal elements. Since each port of QA( can be considered as a branch

as far as network topology is concerned, we will call these branches port

For convenience, we simply use "0" to denote a zero matrix of appropriate
dimension.



~

branches. Let<,A]be the network consisting of the l-ports inside LA} and
the port branches of uﬂj , and let g} be the graph representingng. Then
(3 g]p'J (} » where (3 represents the set of n "external' port branches

of‘vA] and g] represents the set of "internal" l-ports contained in bA(
We will write, for example, g}p = L2 if the port branches consist of the set
of L2 elements associated with a particular tree T under consideration.7

Due to the sign convention that we have adopted for ports and port-
branches as shown in Fig. 6, the port currents oijﬂ are the negative of
the port-branch currents of g}p of(jU, while the port voltages of LEJ are
equal to the port-branch voltages of g}p ovaL

Let Z be a set of elements inc,A]numbered from a to B inclusively.
Let x, = [X X 410" s%gls ¥z = [¥0s¥ugs to¥gls Vg = [V,sVoyy 07t svgl and
1= Woodgrr™ 2'Yz

2: described in [1], N and ik are the port variables associated with the k

element in Z. We will say that the elements in Z can be represented by Yy =

°,iB]; where [x 1= 2:[vz,iz] for some permutation matrix

th

§Z(xz) if each element in Z, say the kth element, can be represented by
Yy = §k(xa,xa+l,"',x8) = §k(xz) for k = a, atl,***, B
and §Z(') = [§a('),§a+1('),"',§8(')]. It is clear that if element k in 2
is not a controlled l-port, then Vi = yk(xk).
Since the theorems to be presented in this section share a number of
common hypotheses, we have collected these conditions in Table 1 in order

to conserve space. Observe that each hypothesis is identified by a literal-

numeric code. Hence, rather than stating the entire hypothesis in a par-

7Throughout Section II, we will use v;\l,to denote an n—poft,;JM the cor-
responding network, g} the graph ofh)U, g}p the port branches of\JU, and
g;q the graph representing the elements inside L}U .



ticular theorem, we simply state the corresponding identification code.
The symbols in Table 1 which have not been previousl& defined carry the
following meanings:
(1) k is a nonnegative integer;
(11) L2a VU L2b = L2, Lla VU L1b = L1, T2a U T2b = T2 and Tla U Tlb = T1;
(1ii) £2a’ £2b’ 21%, zlb, t2a’ t2b’ tla and tlb denote the number of elements in
L2a, L2b, Lla, Llb, T2a, T2b, Tla, Tlb, respectively;
(iv) pd, psd, and upd stand for positive definite, positive semidefinite and
uniformly positive definite respectively.8
Theorem la.
Suppose there exists a tree T such that gjp =Tl UV L2,
and T2

(H;) If L1, hold, then(vkladmits a Ck-hybrid representation.

A(k) A(k)
(Ha) If L1 T2 T2_ and L1_ hold thencdﬁf admits a Ck-hybrid
2 A(k)> "TAK)’ "B B ?

representation and LA] is nondecreasing.

a

3) T2

(H If L1 M, and M, are satisfied, then N ad-

AK)® T2aqk)’ Mo T2

mits a hybrid representation and(JA] is an increasing n port, where
n= tl - 22.
Proof. Let ip = [iPl’iPZJ = [—iTl,-iLz] and vp = [VPi’vPZ] = [le’vLZ]’

where iP and vp are the port-current and port-voltage vectors of LAJ’

regpectively. Then (1) and (2) become:

8Let S be a subset of R" and A(x) be an nxn matrix. A(x) is positive definite
{positive semidefinite; uniformly positive definite} at x if ztA(x)z > 0

¥ z#0€RY {ztA(x)z > 0 ¥ z € RB; there exists a conmstant c > 0 such that
ztA(x)z z_cﬂzﬂz ¥ z € R%}. A(*) is said to be positive definite {positive
semidefinite; uniformly positive definite} on S if A(x) is positive definite
{positive semidefinite; uniformly positive definite} for every x € S.

In addition, a function f£: R + R® is said to be non-decreasing {increas-
ing, uniformly increasing} if a(xa,xb) S £ (x))-f(xp), X, ~Xp ) >0 ¥ x5, xp
€RY{ >0 ¥ x, # x,, € R?; there exists a positive constant c such that
a(x_,x ) 5_¢nxa-xbn2}.




Vi1 = “Bi1ve1 (32)

Vpa = “By1Vpy ~ ByoVpy (3b)
t t )

1pp = “Bpydy + Byip, (3c)
t

1pp = ~Byolp, (3d)

Substituting LlA(k) and (3a) into (3c); and TZA(k) and (3d) into (3b), we

obtain:
= -B- 1 o(-B,,v,.) +BE éi( ) (4a)
1py = By L1° 11'p1 211p2 = Vp121p; a
V,, ==B v . -B v o(-BL1 )83 (v. ,i ) (4b)
P2 217p1 ~ B22Vr2° "Byylp, p2Vp121p)

"

That is, LA] admits a hybrid representation, given by (4).
a 1 1
To prove (Hz), let [vP1’1P2] and [vPl’iPZ] be any two distinct points

in R® where n = t. + £,. Then, we have:

114
i2 (v,,,1 )-ia (v!,,1'.) v, ,-v.!
. P1'Vp1°1p2)71p1 (Vpy21py P17VpP1
! 1 a :
a(Vpyslpyivpyalpy) = ¢ ’ )
1
Vpg (Vppsipy)=vp, (v »1po) 1 | 1po-ipy
= 'y - ' !
{ B 2o By vp )= e ( B11vp1) 15Vp~Vpy !
+(B

Zl[iPZ 1pa1svpy=vpy ¥ = (Byy [vpy-vp Thip,-1p, )

- - 1
+ {=Byy [Vppe (- Bzz p2) ~Vpp® (- 3221P2>] »1py=1p, )
= : - —A - ' - -
Clipyo(-BygVpy)=1p1°(-Bygvpy) ], [-By vy =(-By v )])
~ t ~
+ (Vg0 (-Byyipy)=vi,e (- B22 1p1s I Bzzipz - Bzz p2) 1 (3)

] \ ]
By assumptions TZB and Llc, a(vPl, P2’VP1’ P2) >0¥ [vPl,iPZ] and [VPl’iPZ]

in R". Hence LAJ is a nondecreasing n-port.

-10-



To prove (Hg), assumptions MA and ME imply that it is not possible to

have

=R u! t = rt 41
B11Vp1 = BypVpy and Byylp, = Booip,

\ L}
whenever [ipl,va] # [iPl’VPZ] due to the maximal golumn rank requirements

t
of the matrices B11 and B22. That is
L t
B11Ve1 By1vp1 Vp1 4 Vp1 )
¢ # ¢ whenever ,
s 1 ]
Baaipa]  |Baalp: ipo) Lip

: exp? 1
Together, assumptions TZC, LlC and (6) imply that a(vPl’lPZ’vPl’iPz) >0
' ' n " -
¥ [vPl’iPZ] # [VPl’lPZ] in R°. Hence, LAJ is an increasing n-port. Q.E.D.
Theorem 1b.

Suppose there exists a tree T such that g}p = T1 U L2b.

b : ; .
(H) If TZA(k+1)’ TZB, LlA(k+l) and LzaA(k+l) hold? then.bAi admits a
hybrid representation.
Proof. With iPl = -iTl’ 1P2 = -1L2b’ Vp1 = V1 and Vpy = Viop® (1) and (2)
become:
Vi1 = “*1iver : (72)
Vi2a = "B21aVp1 T Bo2aV12 (75)
Vp2 = “Bo1pVp1 T BazpVr2 (7¢)
_ ot _at t
ipy = “Biitny 7 Baialroa * Bomnips (7d)
_ ot _ ot
112 = Byoalroa ~ Baoplps (7e)
where
B B
s 8P| . 5 & P22
21~ |, 22 5
21b 22b

-11-



and the partitioned matrices are of appropriate dimensions. Substituting

A(k+1) and (7a) into (7d); TzA(k+l) and (7e) into (7c); and L2a

qp(k+1) ?
A(k+1) and (7e) into (7b); we obtain:
i =-B* % o(-B,.v.)-BE 1. +BE i (8a)
P1 11101°CBy1vey 21a'12a * Bo1pip2
_ ) R t
Vpa = “By1pVp1 = BygyVppe (Byy. 1 12a ~ Bazpipd) (8b)
-~ -~ t
V12at12a) = “B21aVp1 = Bp2a¥12° BralroaBoopips) (8c)
3 t %
Let £f: R 2a x R 2 + R 2a be the Ck+1 function defined by
£, ,-BS 1 )85 . (L. )+ B v .ot -8t i1
12a’ B22p1p2 L2a'* 124’ T B22aV72° (Bo2at12a7Boopips
“B21a"p1" (92)
jz'Za
By assumptions T2 and Laa AkHL) ? Bf(iLZa 22b P2)/ i is upd on R
£, +1 2a t 222
R ". By a lemma in [10], there is a Ck function g: R xR“~+R
defined by
_ _ - t
112a = 8By Vp1 5 Boopipy) (9b)
and g(-,+) satisfies the following:
g(f(1,. ,-BS 1 ),-BE 1 )44
L2a’ "222p%p2’ *“Bogpips L2a
£(g(-B,, v ,-BL. 1 y,-Bt 1 )y & 5
21a"P1° 222p1p2) " Byoplps 21a"P1°
Substituting (9b) into (8a) and (8b), we obtain:
~b
i = '3111L1°( ~B11%1) B21ag( “B51a"pP1° B22b p2) * BZlbiPZ iPl(vPl’iPZ) (10a)
. A
o b
Vpy = “ByypVpy® (Byy B(-By v - Byonipa) Boopies) - By - P2( p1°ipp)| (10D)
Thus, LR[ admits a hybrid representation given by (10). Q.E.D.

Theorem lc.

Suppose there exists a tree T such that g}p = L2,

-12-



‘ isfied, th 1
If TlA(k+l)’ TZA(k+1)’ LlA(k+1)’ Ll and N, are satisfied, en N\l
has a Ck+l i-controlled representation.

C

If, in addition to the assumptions in (Ri), T2B holds, then LAJ

admits a Ck+l i-controlled representation and QA] is nondecreasing.

If, in addition to the assumptions in (Ri), one of the following two

conditions holds:

(1) TZB and MD are satisfied

(1i) TZC and ME are satisfied

Then (\| is an increasing i-controlled n-port with a Ck+l representation
function.
Proof. 1In this case, we have iP = -iL2 and Vp = Vi Thus, (1) and (2)
become:

Vi = —Bllle (1l1a)

Vp = “Bo1Vr17B20Vr0 (11b)

N -
1y = BualriBaale (1le)
___t

iT2 = BzziP (114d)
Substituting TlA(k+1)’ TzA(k+1) and (11d) into (11b); and LlA(k+1) and
(11a) into (llc), we obtain:

= _ ~ _ A _t
Vp T Ba1Vpy (py) -BypVggye (Byyip) | (12a)
=gt { R O _at

Tpp = Bypdpge OBV (Bpy))-Byy1p (12b)
Rearranging (12b), we obtain:

B(i,) 21 Y o(-B,.v. (i) = -BE 1 (13a)

Tl Tl "11°L1 11'T1Y Tl 21°P
~ t t k+1 F:

where £f: R~ + R ~ is clearly a C map and the Jacobian matrix of f(.) is
9

We let 1k denote the identity matrix of order k.

-13-
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JE(iTl) = 1t +

t A
) BllJiL °('311"T1(1T1))311JGT (13 (13b)

1 1
k 1 -1 k
Since JG (*) 18 C" and pd on R ~, [JG (*)] ~ exists and is C and pd on
t Tl Tl ’
R 1 [10]. Postmultiplying (13b) by [JG ()] 1, we obtain:
Tl

A -1
Mig) = Tl g )]

-1 t
a [J~ (1..)] ~ + B, .J
le Tl 11

i °0Byyveypy))Byy (14a)
L1
1
i €
It follows from TlA(k+l) and LlD that A(iTl) is pd and symmetric ¥ iry R ™.

Since both A(’.I'Tl) and J\;Tl(iTl) are pd and symmetric, it follows from Lemma

4.2.5 of [11] that all eigenvalues of
A(iTl)JGTl(iTl) = Jf(iTl) (14b)

t
are positive and real ¥ iTl € R 1. Hence,

t

1
- €
det Jf(iTl) >0 ¥ iTl R (15)
- f1 o h kel
Together, (15) and NA imply that £: R~ + R ~ is a C ~-diffeomorphic onto
10 K+l S T
mapping [12,13]. That is, there exists a unique C function g: R ~ =+ R
such that
' ~ ot
= - 16
in, = &°( Byyip) (16)

t
where g(-) is the inverse function of £(:) on R 1. Substituting (1b) into

(12a), we obtain:

- & ono(-BY i 3-B ¢ o(-pt 4 ga 17
Vp = By Vp1°8° (-Byyip) =By, (=Byyip) S vi(ip) an

lOA function f: R -+ R" is said to be a Ck-diffeomorphic onto mapping on

R" if its inverse function g: R" + R" exists and both f(*) and g(-:) are

Ck onto functions on Rp.

14~



This proves (Ri).

Let hl(°) and hz(-) be two mappings from R" into Rn, where n = 22, defined
by
h, (1) & -B, %, ogo(-BE 1) (18a)
1P 21Tl 21°P
ho(i) & =B, % o(-BE. 1) (18b)
2P 22°T2 22°7P

Clearly, h1(~) and h2(-) are Ck+1 functions on R". Taking derivatives, we

obtain:
J. (ip) = B,.J~ o(g(-BL i1))J.o(~-BL 1,)Bt (19a)
hy P 217V, 21°P//%g 21°P/ 721
J. (ip) = B, J~ "o(-BE 1,)BE (19b)
h2 P 22 2 227P %22 ,

t
It follows from assumption TZB that GTZ(-) is nondecreasing on R 2 and
t
J~ () is psd on R 2 [14,15]. Hence J,. (+) is psd on R®. That is, h,(*)
Voo h2 2
is nondecreasing on R [14,15].

To discuss h,(+), let us first note that gef(di and hence

1) = i
= t . -1 _

Jé(f(iTl))Jf(iTl) = 1tl. Therefore, Jé(-BZIiP) [Jf(iTl)] , with the relation

ship of iTl and —B;liP constrained by (13a) and (16). With the help of (14b),

further manipulations give:

€. L o _ -1
JGTl(iTl)Jg( Byile) = Jle(iTl)]Jf(iTl)]

. .
Joo () [A(LG)I2 (1,)]
Ve T1 T1 vy, TL

= Ao(a(-pt
A(1g)) = A°(8(-B,,ip).

~ t t .
Since A(iTl) has been shown to be pd ¥ iTl’ Jle(g(—821iP))Jé(—8211p) is

pd ¥ ir,e R". Hence, Jh (+) is psd on R". Thus, hl(-) is nondecreasing on
1
R". Consequently, 92{-) as defined in (11) is nondecreasing on Rn, and this

proves (R;).
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t

Suppose now the assumptions of (Ri) and condition (i) hold, then 821
is of maximal column rank. By Lemma 4.2.7 of [11] and the fact that

t n n
go( BZliP) is pd ¥ iP € R, Jhl( ) 1s pd on R'. Hence,

hl(-) is increasing on R" [14,15]. 1t has been shown that hz(-) is non-

o -at
J‘;Tl (8(-B5;1.))J

decreasing on Rp. Hence, G;(') is increasing on R".
On the other hand, if the assumptions of (R;) and condition (ii) hold,

then hl(-) is nondecreasing by previous result and hz(-) is increasing on

a

b n .
P and iP in R", we have:

R® since, for any two distinct points i

a b a ,b
<h2(1p)'h2(ip)’ iP-iP>

-~ t a ~ t b a b
(B lVppo(=Byip) = Vip,o(-Byoip) ], dp-ip)

A t ;a, ~ t ,b t,a_ , . t.b
Vg (-Byplp) Vg (-Byylp) s ~Byyip = (-By,ip) )

- a - b a b
(Vpa(p) = Vg (tpg)s 1p,-1y, ) > 0

The last inequality was due to the fact that a). GTZ(-) is increasing on
t
R ) and b). the rank of B;2 equals its number of columns by assumption ME’

a A _t .a b A _t b a b ~a
and hence iTZ BzziP #1i B221P whenever i, # ip. Consequently, vp(-)

T2
is increasing on R®. This proves (Rg). Q.E.D.
Remarks 1.

Several additional theorems analogous to Theorems la, b, and ¢ can be
formulated to account for other combinations and interconnections of l-ports

and controlled l-ports. To conserve space, these results, including Theorems

11

la, b, and ¢, are sﬁmmarized in Table 2. The interpretation of this table

11For ease of reference, each assertion in Theorems la, b, and ¢, as well as(j)
those listed in Table 2, are identified with a literal code H£j2 R£J), and Gi ,
j=a,b,c,d;i=1, 2, 3, where the letters are chosen to correspond to

the hybrid (H), resistance (R), or conductance (G) representation of the n-
port under consideration.

-16—-



is as follows: If there exists a tree T of\JA]such that the assumptions

of a row in the left column are satisfied, then the conclusions of the cor-
responding row in the center column are true. The symbols used under the
"assumptions" column are explained in Table 1. Those under the 'conclusions"
column are explained in the rightmost column "Notations and Definitions' of
Table 2., Examples of this interpretation can be made by referring to Theorem
1. Note that we have further partitioned the submatrices of the fundamental
loop matrix B,, as follows:

T

B
= | 11a] _ =
By = . [Bllc Blld]’ Bo1
11b

B

2la B

_ = | 22ay _
[lec B21d]’ Bs2 5 [BZZC BZZd}

B 22b

21b

where the partitioned matrices are of appropriate dimensions.

(ii) In Table 2, the proofs for cases (Ha), (Hb) and (Ra) are shown in Theorem 1.
The proof for (Rb) is similar to that of (Ra). Case (Rc) is a special case
of (Rb). Cases (G?), (Gb) and (G%) are dual cases of (RY), (Rb) and (R%),
respectively. The proofs for cases (Hc) and (Hd) are similar to the proofs
for cases (Hb) and (Ha), respectively.

(iii) Concerning the norm conditions,
t

(a) N, is true if BZZGTZ(') is a globally bounded mapping12 on R 2.

(b) NB is true if either GL2(°) satisfies th: norm condition12 and BZZGTZ(') ist
globally bounded; or JGLz(.) is upd on R 2 and GTZ(-) is nondecreasing on R 2
12

A function f£: R" -+ R" is said to be globally bounded if there exists a
constant ¢ > 0 such that

sup BE(x)I < ¢
x € R?

The function f is said to satisfy the norm condition 1if

lim Hfx)] = o,
lxfl » o
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(c)
(d)

(iv)

2

N, 1s true if BiliLl(-) is globally bounded on R L
ND is true if either le(-) satisfies thi norm condition and BiliLl(-) is
giobally bounded; or JiTl(-) is upd on R 1 and iLl(-) is non-decreasing on
R 1.
It should be noted that the maximal column rank requirements in those
cases involving the increasing property of n-ports are necessary. These
conditions guarantee that the port-branches do not form loops or cutsets.
It is clear that if the port-branches form a loop or a cutset, then the
Jacobian matrix of the function describing the n-port in question will
always be singular. That is, the representation function of the n-port
can never be increasing on R®. A case in point is as follows:
Example 6. Consider the 3-port bﬂj shown in Fig. 7(a). The corresponding
graph (} is shown in Fig. 7(b). Let the tree T = {branches 4, 5 and 6}.
Hence the corresponding co~tree L = {branches 1, 2 and 3} = g}p. Obviously
TA(k) and TB are aafisfied. Hence case (R;) implies thét LK‘ can be repre-
sented by an i~controlled representation as

- - — 10

vpl r4+r5 T T, ipl
p 4 vpz = -r5 r5+r6 r6 ipz 4 RiP

1 I A I

Since the matrix R defined above is singular, VA[ can not be an increasing
3-port. An examination of case (Rg) shows that all conditions are satisfied

except the condition MF since in this case
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is of rank 2 and is not equal to the number of columns (which is 3 for this

example).

III. CLOSURE PROPERTIES
In [1], we have classified algebraic n-ports in terms of four dis-

tinguishing properties: (1) constitutive relation (resistor, inductor,

capacitor, memrisﬁor, etc. (2) global mathematical property (parametrizable,

v-controlled, i-controlled, non-decreasing, increasing, uniformly increasing,

strongly uniformly increasing, proper, bijective, etc. (3) local mathematical

property (reciprocal and anti-reciprocal) and (4) circuit-theoretic property

(passive, active, logsless, and non-energic). Now suppose all internal
elements of a composite n-port Lﬂj are known to possess a given property,
say all of them are passive. A fundamental question to raise is whether the
composite n-port LKj also possesses the passivity property. The answer in
this case is of course yes. However, not all properties are preserved under
arbitrary interconnections. Before we present some examples to illustrate
this point, let us define the notion of "closure' more precisely.

Definition 1. Closure Property

A property P is said to be closed relative to some prescribed internal

constraint K if any composite n-port LAI containing elements having property
P and satisfying the prescribed internal constraint K also possesses property
P. If no internal constraint is necessary, then the class of n-ports having

property P is said to be closed.
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It can be shown that passive n-ports are closed since arbitrary inter-
connection of passiQe n-ports always result in another passive n-port.
However, the following examples show that most other classes of n-ports
are not closed.

Example 7. Exambles illustrating non-closure properties

(a) Let qu be a l-port resulting from a series connection of two
algebrais l-ports; namely; a resistor and a capacitor as shown in Fig. 8(a).
The composite l-port LRJ is clearly not an algebraic n-port. Hence,

algebraic n-ports are not clbsed.

(b) Case (d) of Example 1 shows that v-controlled n~ports are not closed.

(c) By taking the dual [16] of Example (b), we conclude that i-controlled

n-ports are not closed.

(d) Let LjU be the l-port shown in Fig. 8(b). Let R1 = 1Q and R2 = -1Q.

Then both R1 and R2 are proper l-ports. However, LAj is not. Hence, proper

n-ports are not closed.

(e) Example (d) shows that homeomorphic n-ports are not closed.

(f) Example (d) shows that bijective n-ports are not closed.

(g) Let LRJ be the l-port as shown in Fig. 8(b), where R1 and R, are

defined as follows:

R1: il = 3 + exp(vl) for vy <0
=5 - exp(-vl) for vy >0
R2: 12 = exp(vz) for v, < 0
=2 - exp(—vz) for v, >0

It can pe shown that both R1 and R2 are Cl-increasing l-ports. However



v 1
the v-1 relaticnship of vA] is an empty set in the v-i plane. 3 Hence,

increasing n-ports are not closed.

(h) Example (g) shows that non-decreasing n-ports are not closed.
14

(1) Example (g) shows that regular n-ports are not closed.

(j) Let gAJ be the l-port shown in Fig. 8(b), with the characteristics
of Rl and R2 shown in Figs. 8(c) and (d). It is clear that the resulting
v-1 relationship of LAI is 1). An empty set (i.e. LAI is singular) if a < -1

and 2). A horizontal line (i.e. L)U is regular) if a = -1 as shown in Fig.

8(e). Hence, dense n-ports are not closed. To see that both Rl and R2 are

dense l-ports, the following is a Cl-parametrizable description of Rlz

1

v(p) ¥p, ER

1 1

i(p) 1-(1-+-pz)"l for p, 2 0

~1
(l-pz) -1 for Py <0

where p = [pl,pé] € Rz. It can be shown easily thath[v,i](p) is of rank 2
¥p€ RZ.

(k) Let Lj“ be the l-port shown in Fig. 8(b), where the characteristics
of Rl and R2 are shown in Figs. 8(f) and (g). Then the v-i relationship of

LAj is shown in Fig. 8(h). Clearly both R1 and R2 are active but LJU is

3A l-port element characterized by an empty subset of V x I, where V = R1
and I = Rl is called an empty resistor. Analytically, an empty_ resistor is
characterized by a constitutive relation f(i,v) = O where £: Rl x Rt - Rl
is always positive or always negative. It has been shown in [11] that the
concept of an empty resistor is required to prove that l-port resistors are
closed under an arbitrary interconnection, i.e., a l-port resulting from
an arbitrary interconnection of l-port resistors is a resistor. An empty
resistor is said to have a dimension [1l] equal to -1, in accordance with
the dimension theory [17]. A similar statement can be made for an empty

inductor, capacitor, and memistor [18].

14An n-port is said to be regular {singular, dense} if it has dimension

[1,19] equal to {less than, greater than} n.
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passive. Hence, active n-ports are not closed.

'Ihe preceding éxamples demonstrate that additional constraints must be
imposed in order for a composite n-port to preserve the common properties
shared by its internal elements. Some of these constraints pertaining to
increasing and non-decreasing n-ports are already formulated in Table 2.

In the remainder of this section, we will restrict our attention to the

formulation of closure property of composite l-ports. Except for properties

1, 6, and 7, the generalization to composite n-ports where n > 1 is a much
more difficult problem.
Property 1. Closure Property for Similar-Kind l-Po::t:sl5
Let ﬂ be a l-port resulting from an arbitrary interconnection of
l-port resistors {inductors, capacitors, memristors}. Then ui[ is also a
l-port resistor {inductor, capacitor, memristor}.
Proof. The proof of this property is rather straightforward and can be
found in {11].
Property 2. Closuré Property for Non-decreasing l-ports.
LetLN be a network containing l-port elements only. Suppose there
exists a tree T such that all its tree branch elements are i-controlled
and all its link elements are v-controlled. If the representation function
of each l-port in Jj is continuous and non-decreasing, then the driving-point
characteristic of a l-port Jl 1 {J‘z}, created by a soldering-iron entry
acrogs any two nodes {plier-type entry through any wire} in ﬂ , 1s i-con~-
trolled {v-controlled} and the representation function is continuous and
15l.’»y a straightforward generalization of the proof of Preperty 1 [11], one
can show that the following is true: Let Rbe"an n-port (n > 1) resulting

from an arbitrary interconnections of l-port resistors {inductors, capacitors,
memristors}. Then LN is an n~port resistor {inductor, capacitor, memristor}.
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non-decreasing.

Proof. The proof of tﬁia property can be found in [20]. Some extensions
of this property are given in a recent paper by Desoer and Wu [21].
Property 3. Closure Property for Increasing 1-Ports.
Let\JRi be a l-port resulting from a series-parallel connection [16]
of increasing l-ports. Then LR‘ is either an increasing l-port with a
~v-controlled or i-controlled representation, or is an empty resistor.
Proof. Follows from the graphical construction techniques presented in [16].
Property 4. Closure Property for Increasing and Proper l-Ports.16
LetQJU be a network containing increasing and proper l-ports only. Let
Lﬂ] be a l-port created either by a soldering-iron entry across any two nodes
in<JAL or by a plier-type entry through any wire ing,”. Then Lﬂ[ is increas-
ing and proper.
Proof. The proof of this property follows from results in [20] and [22] and
is given in Appendix A.
Before we proceed to the discussion of uniformly increasing and strongly

uniformly increasing l-ports17 [1], we would like to point out that stromgly

uniformly increasing l-ports are uniformly increasing while uniformly increas-

ing l-ports are increasing and proper. However, the converse statements are

16A proper l-port is represented by a function mapping from R1 onto Rl. An
increasing and proper l-port is represented by an increasing function mapping
from RL onto RI.

It can be shown easily that an increasing and proper l-port can be described
both by 1 = g(v) and v = £(i), where £(-) and g(.) are inverse functions of
each other on RL.

Conversely, if a l-port admits a continuous v-controlled {i-controlled}
representation i = g(v) {v = £(i)} where g(-) {£(-)} is nondecreasing and
if the l-port is also i-controlled {v-controlled}, then the l-port is in-
creasing and proper.

17A Cl-uniformly increasing l-port is represented by a function whose

derivative is always greater than a positive constant. A Cl—stronglx
uniformly increasing l-port is represented by a function whose derivative
is always bounded by two finite positive constants.
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‘not true as shown by the following examples:
Example 8.
(a) An example of an increasing proper l-port which is not uniformly in-
creasing.
Let bﬂ] be a l-port represented by
ve=f () =1Q + 215714
Then £1(1) = (1 + 1%)/(1 + 2197’4 1t can be shown that |£,(1)] » = as
|i] + » and £'(1) > 0 ¥ 1 € R, This implies that (N is increasing and
Proper. However, LXI is not uniformly increasing since
£1(1) +0 as [1] + =,
(b) An example of a uniformly increasing l-port which is not strongly
uniformly increasing.
Let bﬂ] be a l-port represented by
v = fz(i) =41+ 1 for 1 <0
= exp(1) for i > 0

1 on Rl, and fé(i) >1 ¥iE€ Rl. Hence

It can be shown that f2(~) is C
vxl is uniformly increasing. However Lﬂj is not strongly uniformly increas-
ing since f£'(i) is not bounded on Rl.

Property 5. Closure Property for Strongly Uniformly Increasing 1-Ports.

Let L)U be a l-port containing Ck'+l strongly uniformly increasing
l-ports. Then ij is Ck+1 strongly uniformly increasing, where k is a non-
negative integer.

Proof. Since ij contains only strongly uniformly increasing l-ports, each
element inside Lﬂj can have both a Ck+1 v-controlled and a Ck+l i-controlled

representation with uniformly positive definite and bounded derivatives [1].

Clearly, the assumptions of case (Gg) of Table 2 are satisfied with Tl being
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the only port-branch. Hence LA] has a Ck+1 v-controlled representation:
1 =1 (v) 8 -851 o(-B v )-BL ge(-B. v.) (20)
P PP 1111 11'p" 21 21'P

where g(+) 1s the inverse function of the Ck+l-diffeomorphic onto mapping

of

by b g G oy - -
£(p5) = vpo(p,) + Byyin,o(Byyl;)) = =By vy (21a)

L
on R 2. Since GLz(-) and GTZ(-) are uniformly increasing with bounded

Jacobian matrices,
. t . t
Jplpy) = JGLZ(le) + BzzJGT;(Bzzle)Bzz (21b)

is upd with bounded Jacobian matrix. This implies that Jé(w) is upd with
bounded Jacobian matrix ([23,24], where w 4 -BZIVP'

Since B11 is 21 x 1 and B21 is 22 x 1 and the only port-branch Tl
must belong to at least one fundamental loop, we know that at least one of

these two matrices; namely, B 1 and B has rank 1. Taking derivative of

1 21°

(20), we obtain:

£ = t n - t o(-
1p(vp) BllJiLlo( B,vpBy; + 1321Jé (-B,,Vp)B,y

Since both Ji (+) and Jé(-) are upd matrices with bounded entries and
Ll

either Bll or B21 or both has a maximal column rank, i.e. one, {ﬁ(') is upd
and bounded. That is, Lﬂj is strongly uniformly increasing. Note that, by
a theorem in [23,24], we can also write vp = GP(iEQ where GP(-) is the in-
verse function of i (+) defined in (20), and v (+) is also a Ck-i-l uniformly
increasing function with bounded derivative on Rl. Q.E.D.
Due to some technical difficulties, we are unable to present a closure
property on uniformly increasing l-ports. However, based on the works of

[21] and the preceding two properties, we conjecture that uniformly increas-

ing l-ports are closed.
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Property 6. Closure Property for Singular l-Ports.14

Arbitrary interconnection of singular l-ports 1s also singular.
Proof. Let L}“ be a l-port containing singular l-ports only. Since each
element in<dR]is chéracterized either by an empty set (dimension = -1) or
by a set of isolated points (dimension = 0) on the v-iiplane, the driving
point characteristic of LR] contains at mosﬁ a set of isolated points and
hence is singular. Q.E.D.
Property 7. Closure Properties for Passive, Lossless and Nonenergic 1-Ports,
Let LRJ be an n-~port containing passive {lossless, nonenergic} l-ports.
Then LR‘ is passive {lossless, nonenergic}.
ggggg; Let iP = [ipl,ipz,'°',ipn] and vp = [vpl,vpz,-°',vpn] be the port-
current and port-voltage vectors, ik and Vi be the kth element's current and

voltage, k = 1, 2, **+, b, where b 18 the total number of elements inside L}U.

Then Tellegen's Theorem [25] states

b
(ip,vp) =j{=:l vyl (22a)
T (1p(8) ,vp(t) ) d 1T£ ()1, (6)d | (22b)
1 ip(t) ,vp(t t == v, (t t)dt ‘
f‘( LA Th =1 3773

Equatiod (22a) implies the closure of lossless and nonenergic l-ports while

(22b) implies the closure of passive l-ports. Q.E.D.

IV. DECOMPOSITION AND SYNTHESIS OF NONLINEAR N-PORTS

In [1], we have shown that every antireciprocal n-port with a hybrid
representation (including i-controlled and v-controlled representations)
can be described by y = Hx + ¢, where H is an nxn constant matrix, c an

n-vector and [x,y] = z:[v,i] for some 2n x 2n permutation matrix 2:. Hence,

14Op. Cit.
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it is clear that the well-known result "Every linear n-port can be decomposed
into a reciprocal and an antireciprocal n-port' does not admit a nonlinear
generalization. In this section, we introduce a new class of n-ports which
permits a éartial generalization of this result to nonlinear n-ports.

Definition 1. An n—portgdﬂ/with a Cl i-controlled representation v = f£(i)

{a ct v-controlled representation i = g(v)} is sald to be quasi-antireciprocal

if Jf(i) {Jg(v)} can be written as:

Jf(i) Jl(i) + Jz(i) (23a)

{Jg(v) 3l(v) + 32(v)} (23b)

where J1(°) {31(°)} is a diagonal matrix and Jz(-) {32(‘)} is a skew symmetric
matrix. Notice that the decomposition in (23) is unique. We will henceforth

call a matrix that admits the above decomposition a quasi-skew symmetric

matrix.

The motivation for introducing quasi-antireciprocal n-ports is partly
given by the next theorem.
Theorem 2.

Every Z-portng with a C2 i-controlled {v-controlled} representation
can be realized by a series {parallel} connection of a reciprocal 2-port
ujj and a quasi-antireciprocal 2-port Lﬂ/ .

Proof. Since the proofs for both cases are similar, we will present the
i-controlled case only. |

Let the desired 2—portng be represented by

vi|_ [f1Upetp)

v = = = f(i) | (24)
vy fz(il’iz)
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where i = [il ,12]. Let the quasi-antireciprocal 2-port ij be represented by

v g, (1 ,1,)
v = ol D e (252)
Y2l |82

and the reciprocal 2-port W be represented by

The problem is to find g(*) and h(+) of (25) such that when JU and _\V are

connected in series, as shown in Fig. 9, i.e., il = il = il and 12 =i, =

iz, the resulting 2-port is represented by (24).
Taking the Jacobian matrix of (24), we obtain:

8f1 (1) Bfl (i)_
ai ol

1 2
Je(1) 2£,(1) 3, (1)
31, o1,
Let
2g, (1) g 1|25 @ B _1 e 3f2(i)] 262
i, 2| 1 2 o1, o1,
i=1
9g,(1) , dg (D) o , (1) af, (D)
== =-3 — - - (26b)
oi, o1, - o1, a1,
_ 2 ~ ~ ~ |
g, (1,i,) = 1 ) = [af (1 »Z, )ai ]dz + k(1)) (27a
1'71°72 z : 2 :,

Y=

gz(il,i ) = - —f [af (zl, 2)/612]dz +— f (il,i ) + kz(iz) (27b)
%

where a; and a, are arbitrary constants, kl(') and kz(') are arbitrary
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functions of i, and 1 respectively. Let the quasi-antireciprocal 2-port

1 2
J/ be represented by (27). It remains to find the representation h(:) of

the reciprocal 2-port JU . Let

oh, (1) A 3£ (1) ) Egl(i) _ 3£ (1) ) 28, (1) 282
A ai ~ ~ A
ai 1 ol . ai i
1 =1 1523 1 1
3h, (1) é~9f2(i) ) 28, (1) i 3£, (1) i dg, (1) 285)
ol ai 31 of of
2 2 |1 2 7.1 2 r2

From (28), we can certainly find h(-) (by integration). If the computed

h(:) satisfies the following two equations

ohy (1) | [, B, (1) N O ¢S
= = + = = + (29a)
ai 2 i, o1, . 2 ai ai
2 i=i 2 1
oh, (1) oh, (1)
2A _ 1A (29b)
cE CE

then W is clearly reciprocal and it can be shown easily that

J (1) = Jg(i) ) + Jh({)

i=1

i=1
By an appropriate choice of the constants of integration in (28), we obtain

£(1) = g(d)

~

i=i

+ h(d)|
i=1i

Hence, it suffices to compute h(*) from (28) and show that the resulting

function satisfies (29). Integrating (28), we obtain:

i
2
a~ A _ _]; ~ ~ i f ~ ~ _ ~
hl(il,iz) =3 fl(il,iz) + 2 J [afz(il,zz)/ail]dzz kl(il) (30a)
i 2
~ A 1 f 1 ~ P 1 ~ ~ ~
hz(il’iZ) =3 ] [afl(zl,iz)/Z)iz]dzl +3 fZ(il’iZ) - kz(iz) (30b)
1
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1)

By taking appropriate partial derivatives of the functions in (30), we

obtain (29) easily. This concludes the proof of Theorem 2. Q.E.D.

Example 8. An Example to Illustrate Theorem 2.

Suppose we want to realize a 2-port d‘/ defined by the following Ebers-

Moll equations:

1) = A [exp(Xv))-1]-B, [exp(kv,)-1] 4 £1(v5v,)

i,

~Aylexp(kv,)-1] + B, [exp(kv,)-1] & £,(v,,v,)

By Theorem 2, W can be realized by a parallel connection of a quasi-

antireciprocal 2-port ﬂ defined by (from (27)):

~

i) = 8,(7),7)) = 5 A lexp(¥))-1] - 3 B [exp (K¥,)-1)

B
~ ~ 2 .
+ = sz2 [exp(Kvl)-ll - % I [exp(sz)-I]

B
= 2 [A +A vZ][exp(Kv )-1] - 2 [Bl'i' f@_ ][exp(K{rz)-l]

1 A1

1)=8,(v,V)) = -5 [+ 4 L1lexp(kv))-1] + 3 2 [B,7,+ B,][exp(kv,)-1]

and a reciprocal 2-port W defined by (from (30)):

B
1) =) (5),9) = 5 [A-4,7,] [exp(5))-1] - & [B - 7 Mem &7,)-1]

A
[- &+ Ayl [exp (kv )-1] + 3 [-B,v)+B,] [exp (k¥ ,)-1]

N

12 = h2 (vl’VZ)

Here, we have let k1(°) 4

0 4 kz(-). Notice that each 2-port ul/' can be de-
composed into many distinct pairs of LN and JU .

Definition 2. A cl v-controlled {i-controlled} n-portJU is said to be

in the class JU+Q if Jl/' can be decomposed into a reciprocal i-controlled

{v-controlled} n-port and a quasi-antireciprocal i-controlled {v-controlled}

n-port.
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(1i) separable ifLJU can be represented by

- k‘é:l FCREREH k§l g ()3 3= 1,2, -y m

(iii) simply coupled if LAjcan be represented by

n n
= f i.,i i.= . . j = N 2’ ctt,
v ggi jk( ; ) { ; ééi ng(vJ v)ri=1 n

where i = [il, g0 "t in] 5nd v = [vl,vz, IR vn].
Lemma 1.
(1) Every separable n-port is simply coupled.
(i1) Every simply coupled n-port is in the classg/bR+Q
Proof. Statement (1) is obvious. We shall prove the i-controlled case of
Statement (ii) pnly.

LetLjU be represented by

kgl ka(ij’ik) i=1, 2, ccey N, (31)
For each j >‘k =1, 2, *++, n, let us define the following:18
i
i) 8L f @i - 1fkaf . )/91.1d 2
gjk j,lk = 2 jk ,11(. [ kj (zk’ij) ij] zk (3 a)
g, . ( 1)9-—1-fj[af (zi)/ai]dz+ (1,1, (32b)
kj oty 2 : 1k (30 k 2 i j
i
h, (1,,1) 8L¢ (1. .1 +1fk
k
a1 (3 1. .
hkj(ij,ik) =3 [3f, k(zj k)/aik]dz + = l k (i ij) (33b)
a

A

181t doesn't matter whether one chooses j>k, or k>3j. The resulting

decompositions may not be identical, but lemma 1 remains valid in either
case. Observe that (32) and (33) are modeled after (27) and (30) with
k (+) Aky() = 0.
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kZ‘,l g ;L) fory=1,2, - m (34)
ke

kglh ,ik)+fjj(ij j) for j =1, 2, *++, n (35)
k#j

where a Alal,a s esey 8 ] is8 a constant n-vector.

Let<¢A[ be an n-port represented by (34) and let LA] be an n—port represented
by (35). It is clear that LA‘ is quasi-antireciprocal and LAJ is reciprocal.
Furthermore, if we connect(JU andbﬂf in series, the result is the desired
n—portgdklpreecribed by (31). Q.E.D.
Remarks 2.

It has been shown in [26] that nonlinear systems with prescribed singu-

larities can be realized by the following canonical form:
x) = & (=)

%, = £,(x,)8,(%5) + hy(x,)

.
L)
.

xn-l = fn l( n- l)gn l<x ) + hn l(xn—l)

in = fn(xn)gn(xl) + hn(xh)

This system can be synthesized by connecting n linear capacitors across a
simply-coupled resistive n-port characterized by the above equations (with
xj and ij replaced by vj and ij’ respectively). It follows that a nonlinear
network with prescribed singularities can always be synthesized with a

reciprocal and a quasi-anti-reciprocal n-port and n linear capacitors.

Since a very large class of nonlinear n-ports can be decomposed into
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1)

(i1)

(1i4)

a reciprocal and a quasi-antireciprocal n-port, the problem of synthesizing
n-ports belonging to the c;assL)UR+Q reduces to that of synthesizing a re-
ciprocal and a quasi-antireciprocal n-port. This observation motivqtes the
following study on the structure and realization of quasi-antireciprocal n-

ports.

Lemma 2. Properties of Representation Functions of Quasi-antireciprocal
n~-Ports.
n n 2
Let £ = [fl’fZ’ LREIN fn]: R" + R be a C” map such that Jf(x) =
Jl(x) + Jz(x), where x = [xl,xz, TN xn], Jl(x) is diagonal and Jz(x) is
an nxn skew-symmetric matrix. Then

afj(x)/'c)xk is a function of x:l and X, only for all

J#k=1,2, -+, n (36a)

afj(x)/ax can be written as:

]

n .
afj(x)/axj = ééi hjk(xj,xk) j=1,2, «+e, n (36b)
fj(x) can be written as:
n
fj(x) = k=§:l fjk(xj %)  §=1,2, ", n 37

Proof. Let A(x) = [a,, (x)] 4 T, deer, 2y, (x) = 3, (x)/ox
2

i

¥i, j=1, 2, «++, n. Since f(+) is C° on Rp, we have:

9 =9 =
axj [aik(x)] axk [aij(x)] ¥ is js k 1, 2, s I (38)

By hypothesis, we have:

aij(x) = - aji(x) ¥i#j=1,2, -, n (39)

Assume 1 # j # k. By repeated use of (38) and (39), we obtain:
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[a,, (0] = - ;,%j— la,, ()] = - -a—i—i (2, (0] = g 2, O] (40a)

axj 1
5o [a,, (0] = 5 - layy (0] - MOIE 2 la, (x)] (40b)
axj 84k ij xk xi jk

Equation (40) implies that ajk(x) is independent of Xy fori#j#k=1,

2, ***, n, Consequently ajk(x) depends (at most) on xj and Xy only ¥ j #

k=1, 2, **+, n. Hence, (i) is true.
Let k = 4 in (38), we obtain:

+— [a,,(x)] = [a (X)] (41)
j ii xi

Equation (41) holds for all i, j =1, 2, *+-, n. Assume i # j. Since

j(x) is a function of x, and x, only, we conclude that B[a (x)]laxj is

i 3

also a function of Xy and xj only; namely,

n
aii(x) = égi hik(xi’xk) ¥i=1, 2, **+, n.

This proves (ii).

Since ij(x) is always a state function19 [27,1] on Rn, we have [28]:

n 1 9f (tx)
£.(x) = ) f —-j—xkdt (42)
3 =1 ax
Substituting (36) into (42), we obtain:
n 1
£.(x) = f a,. (tx,,tx )x, dt
j k=]§k=ﬁj b ik %%k
+ Z hji(t:xj,tx )xjdt : (43)

19Let S be a convex subset of R°. A ¢! function h: S -+ R® is said to be
a state function on S if Jh(x) is symmetric for all x € S.
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For each j # k = 1, 2, «+«-, n, let

1
A
£, 08y 8 JL [, (6t )%, + By (e, e )%, 1de (44a)

and for each j = 1, 2, *++, n, let
s> . 44b

Substituting (44) into (43), we obtain (37). This completes the proof of

Lemma i:nr ) 7 Q.E.D.

In view of Lemma 2, we have the following theorem on the structure
of quasi~-antireciprocal n-ports.

Theorem 3.

Let\jU be a quasi-antireciprocal n-port with a C2 v-controlled {i-con-
trolled} representation i = g(v) {v=f(i)}. ThenkJU can be realized by an
appropriate parallel {series} connection of n(n-1)/2 quasi-antireciprocal
c? v-controlled {i-controlled} 2-ports and n C2 v-controlled {02 i-controlled}
1-ports.

Proof. Since tﬁe proofs for both cases are similar, we will consider the v-
controlled case only. |

In view of Lemma 2, we can write g = [gl,gz, ey, gn] as follows:

g;(v) = Z 8y (Viovy)  3=1,2, (45)

2 2
where gjk(xj,xk) are C° functions on R". Let‘“&Gk be a 2-port described

by:
iy = 8V ‘ (46a)
e = B ety (en)
where j > k=1, 2, *+*+, n. Since agj(v)/avk = - agk(v)/avj ¥k#3j=1,
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(1)
(11)

(1ii)

2, +++, n, (45) implies

agkj(vk’vj)
avk 8vj

ngk(vika)

47)

Hence,gdAGk is a quasi-antireciprocal 2-port with a C2 conductance repre-
sentation as given by (46). This is true for all j > k=1, 2, *-*, n.

That is, there are n(n-1)/2 of them. For convenience, let us label the

two ports Of‘“AGk as follows: the port defined by (46a) is called the j(k)
port and the port defined by (46b) is called the k(j) port. In addition,

let(dAé denote the l-port described by
ij(j)) = gjj(vj’vj) j = l’ 2’ ...) n (48)

Then&JkG is a v-controlled l-port. Let,JA/ be the n-port obtained by con-
necting in parallel across each port, say port k, the following:

port k(j) of “Aék for j = k+1l, k+2, *++, n

port k(j) of;udij for j 1, 2, v+, k-1

the l-port ;Aé
where j =1, 2, +++, n. Fig. 10 shows how these connections are made in
the case when n = 4. Hence, we have

n

n
ik = 2 ik(j) = Z gkj(vk’vj) = gk(v)

j=1 i=1

-~

where ik’ v, are the port current and port voltage at port k Of\Jb . That
is,ij is represented by i = g(v). Henceg/D andc,A]are equivalent. This
completes the proof of Theorem 3. Q.E.D.
Remarks 3.

In view of Theorem 3, the problem of realizing a quasi-antireciprocal

n-port is reduced to that of realizing quasi-antireciprocal 2-ports. It

can be shown that a quasi-antireciprocal 2-port can be synthesized by
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(a) a cascade connection of a reciprocal 2-port and a gyrator.
(b) a cascade connection of a reciprocal 2-port and an NIC.

(c) an appropriate connection of a reciprocal 2-port and a controlled

-

source.
We will establish the validity of remarks 3 for the case of i-controlled

2-ports only. The case of v-controlled 2-ports can be established by duality.

Suppose we wish to realiie a 2-pof£\/U iépresented by

v, = gl(il,iz) (49a)
vy = 82(11,12) (49b)
o 2
vhere 3g,(1;,1,)/31, = 3g,(1,,1,) /31, ¥ [1,,1,] € RY, i.e., \ is

quasi-antireciprocal.
(a) Consider the circuit in Fig. 11(a). The problem is 1). To find the
representation.of;Jb& so that the composite 2-port has the characteristics
represented by (49), and 2). To show thatLjUR is reciprocal.

With the references shown in Fig. 11(a), we find that if vy = g1(13,-v4)
and i4 = - 32(13’-v4)’ then the composite 2-port;jU is represented by (49).

Hence,LjUR is represented by

= h(i3,v4) = =
14 h4(i3av4) -gz(i3s-v4)
= 2
Note that 3h4(13,v4)/313 = - 3h3(13,v4)/3v4 ¥ [13,v4] € R", Hence,‘/LR

is reciprocal [1].
(b) Consider the circuit in Fig. 11(b). With the references defined in

Fig. 11(b), we can show that ifkij is represented by

>

1
e

. = h(is,i,) (50)
V4 h4(i3’14) 32(13:-14)
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then t;é overall Z-éort;/U'is repres;ﬁtedALyr(4§5; In addition, the Jacobian
matrix Jh(i3,i4) is symmetric. HenceijR is reciprocal [1].
(c) Consider the circuit in Fig. 11(c). It is clear that ifijR is repre-
sented by (50), thenL]U is represented by (49). From (b)’LJUR is reciprocal.
Remarks 4.

It follows from Remarks 3 that every v-controlled or i-controlled

2-port can be realized by two reciprocal nonlinear 2-ports and a

non-reciprocal linear 2-port. Moreover, it follows from case (b) of

Remarks 3 that the two reciprocal nonlinear 2-ports can be combined into
one equivalent reciprocal nonlinear 2-port. Similarly, every nonlinear
n-port belonging to the clasngUR*Q can be realized by two reciprocal

nonlinear n-ports and a non-reciprocal linear n-port.

V. CONCLUDING REMARKS

The representation of composite nonlinear n-ports in explicit topological
form as presented in Section II constitutes only the first step toward the
formulation of a unified theory of nonlinear n-ports. The numerous criteria
summarized in Table 2 could serve as the vital link toward a systematic
study of dynamic nonlinear networks where the dynamic elements are extracted
as "loads" across a resistive n-port. The closure properties presented in
Section III and the decomposition theorems derived in Section IV could serve
as a foundation for the synthesis of nonlinear n-ports. Since not ail n~-ports
(n > 2) can be decomposed into a reciprocal and a quasi~antireciprocal n-ports,
we close this paper by posing the following unsolved fundamental problem:
Characterize the class&]U(?) of nonlinear n-ports such that every resistive

n-port (n > 2) can be decomposed into a reciprocal n-port and a member of

N@).
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APPENDIX A

Proof of Closure Property 4. Let v and i be the port voltage and port

current of the created l-port ij, respectively.

Suppose ij is created by a plier-type entry through a wire in\JU as
shown in Figs. 12(a) and (b). SincekJU contains only increasing and proper
l-ports, any tree T oijU will satisfy the assumptions of Property 2. Hence
;jf is v-controlled and the representation function i = g(v) is continuous
and non-decreasing.

Let\JMI be the network obtained from bﬂ[ by terminating the only port
of gij with a current source as shown in Fig. 12(c). Since bﬁf is created
by a plier type'entty, there is a loop iRLJUI containing the port current
source. By i-shift theorem [16,20], the port current source is shifted
through that loop of\J&& containing the port current source. The composite
elements (containing the original l-port in parallel with the shifted current
source) in the loop is still increasing and proper, and the port voltage v is
equal to the algebraic sum of the voltages of the elements in the loop. Let
QAQS be the network resulting from the i-shift transformation. Then all
elements in;JA&S are increasing and proper. Hence,gjv

IS

tion [20,22]. That is, for each value of the port current source, there

has a unique solu-

corresponds uniquely a value of the port voltage. Hence, Lﬁj is i-controlled.
This means that Lﬁ] is both i-controlled and v-controlled. Hence bﬂ/ is
proper and increasing.

Suppose now the l-port pﬁl is created by soldering-iron entry across
two nodes inLjU as shown in Figs, 12(d) and (e). Since§jU contains only in-
creasing and proper l-ports, by Property 2, ;ﬂj is i-controlled and the

representation function is continuous and non-decreasing. LetLJUE be the



network obtained by terminating the only port of bﬂj with a voltage source

as shown in Fig. 12(f). Since we can always choose a tree T which contains
the port-voltage source for.JUE and that all other elements ing/UE are proper
and increasing, it follows from a theorem in [20] that\jUEhas a unique so-
lution. That is, for each value of the port voltage sourée, there corres-
ponds a unique port current for Vﬂ]. Hence vﬁj is also v-controlled. This

implies that vAj is increasing and proper and our conclusion follows. Q.E.D.
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LIST OF FIGURE CAPTIONS
Examples illustrating the complex nature of the composite v-1
curve corresponding to two resistors with rather simple vj-ij
curves in series.
An example showing simple interconnection of nonlinear resistors
with a current-controlled current source could lead to a composite
v-i relationship consisting of line segments and isolated points.
An example showing simple interconnection of nonlinear resistors
with a current-controlled current source could lead to a composite
v-i relationship consisting of subsets of éoints having a finite
area.,
An example of a unicursal 3-port and its circuit realization in

terms of two controlled sources.

An example of an intersection 3-port and the arbitrary composite

v-i relationships that could be realized in terms of two nonlinear
resistors and three controlled sources.

An illustration of an n-port bﬂ/ and its associated network\JU.

A 3—port,pﬂ] and its associated network graph g] with T = {4,5,6}
and L = {1,2,3} = g}p.

Examples for illustrating the non-closure property of various n-
ports.
A canonic current-controlled 2-port synthesis method consisting

of a series comnnection of a reciprocal 2-port and a quasi-antirecip-
rocal 2-port.

Example illustrating the synthesis of a quasi-antireciprocal voltage-

controlled 4-port in terms of nonlinear l-ports and quasi-anti-



reciprocal 2-ports.

Fig. 11. Synthesis of a quasi—antireciprocal 2-port in terms of a reciprocal
2-port_an&.a gyrator, an NIC, or a controlled source.

Fig. 12, An illugtration of various l-ports created via soldering iron or

plier entry.
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Table 1.

Collection of Hypotheses for the "Assumption Column" in Table 2.

i_Hypcchcsia Statement of the Hypothesis Hypothesis Statement of the lypothesis
i "2 t2 k - - xl ‘l k
QLHA(“ T2: V2 L) Tz(l..u) where VTZ' R“-+R" 18 C, LIA(R) L1l: 11.1 L 1L1(VL1) where 11.1: R*+R*1sc
k - ) 2
T2, v.l.z(-) is nondacreasing on R °. 1.1B Iu(') is nondecreasing on R
r ) t - i
‘o v,rz(-) is increasing on R Llc :I.Ll(c) 18 increasing on R
j ‘2 g
P ¥ J~ (+) is psd and syumetric ou R l‘lh J» (-) is pad and syumetric on R .
: v, . i
i T2 . il
: - X 5, %, ' .58 k+1
. (+1) IL2: 11.2 = 1L2(VL2) where iu: R" =+ g . uA(k+1) T1l: Vo ® vn(i.n) where Yoyt R -; R "is C
and JiL (<) is pd and symmetric on R 2. -and J; (*) 1is pd and symmetric on R 1.
2 ’ T1
} L2: v, = ( ) where V. R£ is Ck+ 1 T T1: (v..,) wnere i Rtl -+ Rtl i Ckﬁ
setl) §°°° Vi2 1)) vhere vi,: LB (xt1) R oL exe in’ s
§ and J‘-, (-) is pd on R 2. and Ji (-) i pd on R 1.
, L2 T1
¢ L L t t
;1 : - v 2 2a — 1b 1b
§ 148, (eb1y [F22% Viga V1 2a(iygg) Vhere v, R Z5 4R by i1y § 705 gy = im( 1p) vhere il'lb R +R
5 2
? is Ckﬂ' and J;' (*) 18 upd on R 2“. is Ck+1 and J; (*) 18 upd on R lb.
i L2a 1)
—
! - - 2 ta - Y1a » tla
PR paat = Ty 02 whers v, 0 R ~ P ne ) whava : R
§ S (k) 26 © “T2b T2 T2b R ag 45 'Lia ™ fiauia) Tt Lt R
! 1a c*, 1s ~.
! 2 %1a
'thB VTZb(') is nondecreasing on R i I.laB iua(-) is nondecreasing on R " .
T T: v, = v.(i) where v,; R" +R® is C* L L: 4 =1 (v)) where i : '+ & 1g
ACK) 2 ovp = vpliy ¢ . AdK) L L L
- ~ 2
Ty vp(*) 1s nondecreasing on RS, Ly 1, () 1is nondecreasing on R.
- . P 2
iy v,r(') is increasing on Rr'. Lc ‘.L(') is increasing on R,
» :
‘ }.-g 311 has rank tl. “D 821 has rank 2.2.
?’ua B, has rank t,. ¥, 22 has rank 2,
]
i
i t
“C BT has rank t. HF B,r has rank &.
t 5 t . .
a - - 1 =
Yy Un  hvp, + Byyvyy o(Bypl (v 08 = = N Ua My =By o150 By vy U = =
v | +o I;LT |l + o
L2 1
N iy = { - 1 =
' Ny La 05, (1,) + Byyin,e(Byy1 )0 = = N Un by (o)) e (B vyt =
! “'LZ' + ® lv*1ﬂ+ ©




Table 2. Conditions for the Existence of Various Nenlinear n-Port Representations Via Topological Matrices
Cases Assumptions Conclusions
- - —
Gp = TL V12 and _\ has a C* hybrid Loy = [y dp,), vp = [vpyo¥pols dpy = =ipys 255 = =115,
a representation
©)  T240 * Laq e Vp1 ® V11 Vp2 7 VL2
1py = ipy (Vpyatpp) (6% 2. nec 42
. . 17 %
~a
Vp2 = Vp2(Vp1rps)
t
- 3. | £ (vpyotpy) & BT o8y v + B30 5
Qp=muilzand | N has a * hybrid .8
@ 1 a S22z vipg) & “Byvpy Bypipe(Baptp))
2) ACK) + Lla(k) + representation (a”)
TZB + l.].B and J[ is nondecreasing.
Op=TiVizand [N has a ¢ hybria .
a.
(33) TzA(k) + uA(k) + 'rzc representation (ua) and
J‘:I.B an‘inci'caai_gg n~-port. .
+Ll, + M, + M, i
1 - '
- [V . 3 - 0 -
Op =71V and (A has a ¢ pybeta 1. dp = [pyslpyls ¥p = [vpyavpols 2y = = ipye 1p = iy,
b
(3) T2 ACKHL) + L1 ACHL) representation: Vp1 ™ Vr1* Yp2 * Vigp
~ b
= (v, ) -
+L2ay 0 + T2 1= 1py (ppip, o 2. met +a,
Ab -
Von ™ Voo (Vo.sl.,) ;
P2 ~ Vp2'Vp1"p2 A ot ot t
: 3. | 25, (vpy. sipg) = Bral1o(By1Ve1) 85108 (Bo1aVe1 *BaanTp2) .
S (a)
W o sing B b v B G oS, gi-B,. vo .85 i ) :
p2'Vp1°'p2 216"P1 22b 12° 2228 %214 p1 7" 22b P2’
T €,
vhere g: R ?a x R Za 13 the C function such that
t
8(E (5855 1p0) By lpy) & 115,
- t t a_
£(8(-By14p1+B22p1p2) »Ba2p1p2) * Ba1a¥p1
3 t 3
and £: R 28 x R 2 + R 28 45 a ! function defined by
t A -~
£(y2aBo0utp2) ® V2ai2a) * Bo2a¥12° (BoaalioaBozplpy)
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