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Abstract

This article considers the stability of n-input n-output, linear time

invariant convolution feedback systems. Stability theorems are expressed

in terms of the Nyquist plots of the eigenvalues of G(s) where s varies along a

Nyquist contour in the complex plane and G(s) is the transfer function of

the open loop system which is allowed to have poles in the right half plane.

Our objectives are to state clearly these theorems and to prove them. The

paper investigates the geometry of the eigenvalues in the complex plane;

in particular, the properties of the eigenvalues on and near the exceptional

points, and the graph theoretic properties of the loci of the eigenvalues

are studied. The stability theorems are proved using these geometric

properties.
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the Nyquist plots of the eigenvalues. Since the only practical way to

obtain these plots is by the use of a digital computer, some remarks

on the computational procedure are included.

Section 2 contains a precise definition of the linear feedback system

whose stability is investigated here. Section 3 contains a discussion of

the geometry of the eigenvalues of the transfer function G(s) in the complex

plane. The lemmas proved in Section 2 are used to prove the theorems of

Section 4. These theorems present necessary and sufficient conditions

for stability in terms of the plots of the eigenvalues. Section 5 contains

some concluding remarks.

Theorems 1 and 2 state stability conditions for open loop stable

system. This result is extended in Theorem 3 to the open loop unstable

case. It turns out that in this case to determine stability, one has to

check the encirclements of the Nyquist plots of the eigenvalues and the

encirclements of an additional plot, yR) . Theorem 4states conditions

on the compensators so that the introduction of the compensator does not

require recalculation of ^(R) for determining stability.

Appendix A contains some definitions of mathematical terms used in

the paper. These terms are well known to the mathematician but are not

commonly used by the engineer. The terms are mentioned here in order to

help the reader and not to replace mathematical texts.

Appendix B contains some further stability results. Appendix C

contains simple examples of the Nyquist plots of eigenvalues.

2. Definition of the System

Consider a continuous time, linear, time invariant, feedback system
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1. Introduction

This article considers the stability of n-input n-output, linear

time invariant convolution feedback systems. Necessary and sufficient

stability conditions are expressed in terms of the Nyquist plots of the

eigenvalues of G(s) where s varies along a Nyquist contour in the complex

a.

plane and G(s) is the transfer function of the open loop system. Our

objectives are to clearly state these conditions and to prove the corres

ponding theorems.

The idea of expressing the stability conditions in terms of the

Nyquist plots o"f the eigenvalues orgignated by A. G. J. MacFarlane [1, ,

17]. MacFarlane used these loci for the design of compensators for

n-dimensional systems. Generally speaking, MacFarlane uses these plots

to compensate each eigenvalue "by itself," and thus by solving n one-

dimenslonal compensation problems the stability requirement of the n-input

n-output compensator problem is satisfied. The advantage of the eigen

value approach is similar to the advantages of the use of the (single-input

single-output) Nyquist criterion: it provides the designer with the

insight which enables him to choose a compensator. Although not all the

aspects of this design approach have been completely explored at this time,

the provision of insight is of great importance and justifies further

work on MacFarlanefs design approach.

To the best of our knowledge, a clear statement of the conditions of

stability via Nyquist plots of the eigenvalues and their proof does not

appear-in the literature. It is the paper's objective to provide a

statement and a proof. Another contribution of this work is the investi

gation of the role played by the exceptional points in the description of
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complex variable s.

II and G are referred to as the closed loop and the open loop systems,

respectively.

H is said to be stable if and only if H(s) is a proper matrix whose

poles are in the open left half of the complex plane.

Note that since H(s) is rational the above definition is equivalent

to the requirement that the closed loop system H be LP stable for all

1 < P < «,

3. The Geometry of the Eigenvalues in the Complex Plane

Consider a point s which is not a pole of G(s) . Let X (s) ,i = 1,

..., n, denote the n (not necessarily distinct) eigenvalues of 6(s).

Generally speaking, our objective is to define nanalytic functions, X(.),

such that at (almost) any point s, their values at the point are the set

of eigenvalues of G(s). In this section we shall investigate the proper

ties of the Xt(s). These properties will be used in Section 4 to express

stability conditions of H.

Let F(X,s) be

F(X,s) 4det[XI -6(8)] -Xn +p1(s)Xn"1 +... +pn(s). (6)

F(X,s) is a polynomial in X whose coefficients are proper rational

functions of s. Let PQ(s) be the least common denominator of p (s) ,

i • 1, ..., n. Then

F(X,s) --i- £ p£(s)Xn-k &-A- fV.s) •
P0(s) k=0 k pj(s)

-5-
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with n inputs and n outputs. The input u, output y and the error e are

functions mapping R+ (defined as [0,«)) to Rn or corresponding distribu

tions on R . y, e and u are related by

y = G * e (1)

e = u-y (2)

where * denotes convolution and G is a convolution operator whose Laplace

transform G(s) is given by

m
% a R

akG(s) - Ga(s) + £ £ «_^ (3)
a=l k=l (s - p )k

a

where Ga(s) is a proper (bounded at s = «) matrix whose elements are

rational functions of the complex variable s. Poles of G (s) are in the
a

open left half plane only; %and ma, a-1 ... \ are finite integers;

the matrices R are elements of Cn*n and the poles p are either real or
ot

occur in complex conjugate pairs and Re(p )>0 for all a= 1 Jl,

Furthermore, assume that det [I + G(s)] t 0. This is needed for

defining the closed loop convolution operator H. Under the above

assumptions there exists a convolution operator H such that

y » H * u . (4)

Moreover H(s) exists and is given by

H(s) =• G(s)[I + G(s)]""1 . (5)

Thus H(s) is also a matrix whose elements are rational functions of the
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i = 1, ... n, approaches a constant as |s| -• «>. Thus, at s = »,

instead of considering F (X,s) = Owe consider F(X,s) = 0.

As |s| -• », F(X,s) = 0 reduces to a polynomial.with constant coef

ficients denoted by F(X,») =0. If this polynomial has multiple rccts

we call the point s = » the exceptional point of the second kind

at infinity.

Let us choose a point jdQ on the jw axis such that F(X,jdQ) = 0 has

n distinct roots and introduce branch cuts from all the (finite) excep

tional points in a manner described by Figure 1.

Fact 1 [3, page 103].

There exist n functions X-(.), ..., X (•) defined on (C - Q
J. n ^

which are analytic everywhere except possibly on the branch cuts; and for

any finite s, s E c - Q,{X (s), ..., X (s)} is the set of roots of
x n

F1(X,s) = 0.

Remarks

(1) From Fact 1 and our previous discussion it follows that for any

sGC-Q, (X1(s), ..., An(s)} is the set of eigenvalues of G(s). It will

be shown that at infinity the values of functions are the eigenvalues of

G(»), the limit of G(s) as |s| -»- ».

(2) Fact 1 holds when F(X,s) is irreducible. It is now clear that if
K

F(A,s) = n F (X,s) where each F.(X,s) is irreducible, for i«l v

then by Fact 1we can define n± functions X*(0 ... X1 (.) for each
ni

irreducible part Fi(x,s) with properties stated in Fact 1. Thus Fact 1

also holds for the case that F(X,s) is reducible and hence at this point

we eliminate the irreducibility restriction on F(x,s).
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F (X,s) is a polynomial in X whose coefficients are polynomials in s.

At this point we assume that F (X,s) is an irreducible polynomial in

(X,s); i.e., F (X,s) can not be factored as a product of two polynomials

in X whose coefficients are polynomials in s. This restriction will be

removed later.

Let Q and P be the set of all poles of G(s) and the set of poles of

G(s) in the closed right half plane, respectively. It is clear that for

any s£ Q and |s| ^ « the roots and their corresponding multiplicates of

F(X,s) • 0 are exactly the same as those of F (X,s) = 0. This is a key

observation which allows us to make use of the extensive results obtained

for roots of polynomials [3,4],

Except for a finite number of points, which we label the exceptional

points, for any s £ Q, F (X,s) » 0 (and hence F(s,X) = 0) has n-distinct

roots. The set of exceptional points fall into three categories [3,page 93]:

(1) roots of Pq(s) = 0. These roots are some of the poles of G(s) and

thus they belong to Q.

(2) Points s£Q for which F1(X,s) =0 (or F(X,s) = 0) has multiple

roots".' These points are the roots of a polynomial in s (called

the discriminant) [18, page 292] and thus are finite in number. It

is also interesting to note that they occur in complex conjugate

pairs and that they correspond to the solutions of the system of

3equations F(X,s) = 0 and ^-r-F(X,s) = 0. These points are called
a A

the (finite) exceptional points of the second kind.

(3) The point s = «. This point is a possible pole of some of the

p.(s), i = 1, ... n; in which case F (X,s) = 0 becomes meaning

less at s = «. But since G(s) is bounded at infinity, p.(s),
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F(X,°°) = 0. Given 6 > 0 there exists an R > 0 such that for any R > R and
o J — o

any s= Re-'*, tt/2 <_ <f> <_ ti/2, and any i, i=l, ..., q, F(X,s) has exactly m

roots, counting multiplicities,in N(X.(«),6).

(iii)

film X±(s), i=1,..., nj =&<•), i=l,...,q |.

Remark:

Note that (ii) and (iii) are statements of Fact 2 when s = <».
o

Proof;

(i) follows directly from Fact 2 and (iii) follows from

(ii). The difficulty with (ii) is that the s = « point is not 'covered'

by Fact 2. Consider the maping z = -, which maps the infinity point to
s

zero. Let F2(X,z) be defined by F2(X,z) =F1(X,-).
2

It is clear that F (X,z) is a polynomial in X with rational coefficients

in z which satisfies the conditions of Fact 2 with s = 0. However, the
o

2
roots of F (X,0) = 0 are the roots of F(X,«) = 0 and all z such that |z| < c

maps to all s such that |s| > —which completes the proof. a

Let us now define functions which are commonly called the Nyquist

contours.

Since G(s) is rational the set consisting of the open L.H.P. poles of

G(s) and the open left half plane zeros of det[l+G(s)] is bounded away

from the jw axis. Thus, there exists an e > 0 such that -e is such a
. o o

bound.

Let N : [a,b] -• <E be a bisection whose image (N ) is plotted
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The following fact is a restatement of Hurwitz Theorem [4, page 4] in

terms of polynomials.

Let s -e G. Let N(s ,6) denote an open ball, centered at s with
O O Q

radius 6.

Fact 2

Let s € <E and sQ £ Q. Let X.(s ), i = 1, ..., q be the distinct roots

of F(X,sq) = 0. Let m±, i = 1, ..., q, be the multiplicity of X.(s ) as

a root of F(X,s ) =0. Under these conditions, given any 6 > 0 there

exists an e > 0 such that for any s, |s-s | < e, and for any i, i • l,...,q,

F(X,s) = 0 has exactly m roots, counting multiplicities, in N(X (s ),6).

The following lemma is an immediate consequence of Fact 2. The lemma

will be often used in the sequel.

Denote by jd., jd., .. jd , with d < d, < ... d , the exceptional
± z m o i m

points of the second kind on the jw axis. Note that these points occur

in complex conjugate pairs. Let G(») be defined by G(«») = lim 6(s) (the
|s|-m»

limit exists since G(s) is rational. Let {>[(•) , ..., x («)} where

q <^n, be the distinct eigenvalues of G(»). Let F(X,«) « det(XI - G(»)).

Let e be real and positive.

Lemma 1:

(i) For all k, k = 1 m,

flim A±(jd +je), i =1, ..., n\ - f lim *±ti\ +Je), i - 1, ..., n\
\e -> 0+ J \e •*- 0- J

(ii) Let m±, i = 1, ..., q, be the multiplicity of X.(«>) as roots of

-8-



families of paths. In the sequel we do not distinguish between the class

and a representative member of it. No confusion arises and a simplification

of discussion results from this convenience.

In the sequel the following notation is used: let y be a continuous

function defined on acompact interval I. Y is another notation for y(D ,

the image of I under Y. When y is a bijection a direction is associated

with y in an obvious manner. If Y is an indexed family of functions, y

denotes the indexed family of images.

Lemma 3;

The members of r(R) (r and F(R)) can be juxtaposed to form an

indexed family of closed paths.

Proof:

In this proof we shall show that if the members of r(R) are

appropriately juxtaposed [5, page 217] then the result is an indexed family

of closed paths. The proof for r and ?(R) is similar and therefore we only

prove Lemma 3 for T(R).

The points {X^jdy., i = 1, ..., n, k= 0, ..., m} play an impor

tant role in the geometry of the eigenvalues. We call these points

X-nodes. Each of these nodes is the image of both the beginning of one

interval and the end of another. It follows from lemma 1 that (1) each

Yik leaves a A-no<te and enters (possibly another) X-node; (2) The number

°f Yik'S enterin8 a A-node is equal to the number of Y±k's leaving the same
X-node.

Construct a directed graph Q whose nodes are in one to one corres

pondence with the x-nodes and whose branches are in one to one correspondence

-12-



in Fig. 2a: and where indentations to the L.H.P. of radius

et 0 < e < e0, are taken around the poles of G(s) on the jw axis.

Similarly, let Nq (R) s[a',b»] + <E and Nq(R) :[a'»,b'»] - <B be bijections whose
images (Nq(R) and Nq(R) are plotted in Fig. 2b and Fig. 2c respectively.

Note that Nq(R) is a closed path while, strictly speaking, N and N (R)

are not paths since their images are not compact.

For any £, £=0, ..., m+2, let I£: [c£,d£] +Cbea bijection whose

image (I£) is plotted in Fig. 2a; where e-indentations to the L.H.P. of

radius e, 0 < e < eQ, are taken around the poles of G(s) on the jw axis.

Let lm¥2 be the path opposite to I^^5, page 217].

Let I-«, :tc_oo»d_J •"" <& and ^^-Ko^+J "*• c be bijections whose

images (1^ and I^J are plotted in Fig. 2a; where we assume that

Lco^-J " -J" an<* ^(d^) -+j».

We emphasize that there is no need in exhibiting these functions

explicitely.

It is thus clear that if the domains of the above defined

bijections are appropriately chosen then:

(i) N is obtained by juxtaposing I, 0 < A < m+1, I and I

(this involves a slight abuse of terminology [5, page 217] since,

strictly speaking, 1^, 1^ are not paths).

(ii) N (R) is obtained by juxtaposing I ,0 _< I <_ m+2;

(iii) N (R) is obtained by juxtaposing I. , I , f..
q +oo —oo m+^ #

For every 1< i<n and 1 <. k £ m+2, let Yik be functions defined

by Yik " *i ° Xk where ° denotes the composition of two functions.

tot *W* "holu*2 and !« Y^ "V1*- •"* *i- =*lo1-' Let ua
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with the Yik of r(R). To each Yik between X-nodes there corresponds a

branch between the corresponding nodes of Q with a direction corresponding

to the direction of the y ,.

Each node of (j that has Z branches, £ > 1, entering it is now split

to I nodes. The branches incident to the original node are now assigned

arbitrarily to the new nodes such that each new node has exactly one

branch entering it and one branch leaving it. It is clear that this new

graph Q now consists of subgraphs each consisting of one loop only.

Considering r(R) again; from the construction above, it follows that

to each loop of Q there corresponds acollection of Ylk which forms a

closed path. Since to each Yik there corresponds a branch and since each

branch of the graph is included in a loop, it follows that the members of

r(R) can be juxtaposed to form an indexed family of closed paths each

path corresponding to a loop of Q.

Consider the members of r(R). A number of these y ,'b 'go through'
IK

Xi^dk^ * i*e* Xi^V is eitner the origin or the extremity of y.,1, or both.

The multiplicity of ^(jd^ as aroot of F(X,jdfc) -0 is equal to the number

of Yik's which enter X±(jdk). An equal number of Y±k leave that X-node.

To prove the lemma for r and F(R) we add the eigenvalues of G(»)

to our collection of X-nodes. Yi+W and Yi-00 are paths entering and leaving

X-nodes. Using now Fact 2 and Lemma 1 and a directed graph the proof

proceeds as in the case of r(R). a

An indexed family of closed paths obtained by juxtaposition of members

of r(R) is said to describe r(R) . To simplify notations we shall use the

notation r(R) for this indexed family whenever the exact meaning is evident

from the text.
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families of paths. In the sequel we do not. distinguish between the class

and a representative member of it. No confusion arises and a simplification

of discussion results from this convenience.

In the sequel the following notation is used: let y be a continuous

function defined on a compact interval I. y is another notation for y(I),

the image of I under y. When y is a bijection a direction is associated

with y in an obvious manner. If y is an indexed family of functions, y

denotes the indexed family of images.

Lemma 3:

The members of T(R) (T and F(R)) can be juxtaposed to form an

indexed family of closed paths.

Proof:

In this proof we shall show that if the members of r(R) are

appropriately juxtaposed [5, page 217] then the result is an indexed family

of closed paths. The proof for r and f(R) is similar and therefore we only

prove Lemma 3 for T(R).

The points (A^jd^), i-1, ...,n, k = 0, ...,m} play an impor

tant role in the geometry of the eigenvalues. We call these points

X-nodes. Each of these nodes is the image of both the beginning of one

interval and the end of another. It follows from lemma 1 that (1) each

Y.k leaves a X-node and enters (possibly another) X-node; (2) The number

of Yik's entering a X-node is equal to the number of Yji-'s leaving the same

X-node.

Construct a directed graph Q whose nodes are in one to one corres

pondence with the x-nodes and whose branches are in one to one correspondence
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is well defined. The same holds for r(R) and F(P).

Proof:

We will prove this lemma for r(R). The proofs for r and f(R) are

i

describing T(R). Then

similar. Let (Y.«)~ be any collection of closed paths
J 1=1

2ttj C(r(R), a) =2irJ V* C(y4,a) =V l -^
j-i j=»i *

n m+2

EL J dz
i=l k=0 «*

z - a

Y,

z - a

(8)

ik

Note that the integrals above are well defined since a £ r(R) . Each y

and each y., can be covered by open sets such that is analytic on
J-X z—a

each set. Thus the integration along these paths is well defined [appendix

A and page 251 in [5]].

The right hand side of (16) is independent of the way that the

indexed family of closed paths r(R) is constructed from
riK/

o _< k _< m+2

Lemma 5:

Let a £ C and a £ r.

For any 6 > 0 there exists an R such that for any R > R
o ' — o

(i) if s € r(R) then either s € f or

s € u N (x. («), 6) or both where {X.(»): i»l, ...q) is the set
i«l L i

-15-
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The encirclement of a point a, a £ <C,by a closed path y,

a € y is defined as the index of a with respect to the curve y [see

appendix A and note in particular the discussion of the relation between

the argument function and the index]. The encirclement of a by y is denoted

by C(y,a).

Let y be an indexed family of closed paths y« (Y,)* .
k k-1

The encirclement of a point a by y, a £ yt is defined as:

C(Y,a) S L c<Yw,a).
k=l K

Note the use of the term "indexed family" rather than "set" in the

definition of y". The reason is the following: if, say, y , and y are

identical we still want to sum their encirclements to define the

encirclement of y.

We have shown that r, (T(R) and T(r)), is an indexed family of closed

paths. Thus, given this indexed family of closed paths C(T,a), a£ f,

is well defined. Note, however, that the construction of the closed paths

has some degree of arbitrariness to it: when a node of Q is split the

branches are arbitrarily connected to the new nodes; the only requirement

being that each node has one and only one branch which enters it and one

and only one branch which leaves it. Thus, it has to be proven that the

actual construction of the closed paths does not change C(r,a) (and the same

for T(R) and F(R)).

Lemma 4:

For any a, a € c, a £ r, all indexed families of closed paths which

describe T have the same encirclement with respect to a. Thus, C(r»a)

-14-



Proof:

(10) and the fact that a £ y implies 0£ y •

For all i, i=l, ..., n, since a£ y± there exists an open set A

such that Y± CA±> â A± and ^ ,is analytic in A±; let y^ be loop-
homotopic to Yi (page 218, [5]) such that y' Ca . Let A be defined as

n

(s: s= " (Si-a), s± GA i«l, ..., n}. It is clear that A is open;
i-1 o r '

the image of Yq and of YQ(t) = n Y^(t-a), t<E [0>1]
i=l

Aq; - is analytic on Aq. It is also clear that Yq is loop homotopic to
y . Thus we have [5, page 251],

dz

i-1 i itiJY^ *" a
n -1 ^(0

= £ / dt dt
•i-1-% Yj[(t) - a

-r e dt dt.r <*Y°(t)
J0 i«l y^(t) - a Jo YqW

=[f =27rjC(yo,0).
o

4. Stability Theorems

dt

In this section we present Nyquist type theorems to check the stability
of the n-input, n-output feedback system. Unless atheorem explicitly
states otherwise, the assumptions on G are stated in Section 2.
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of distinct eigenvalues of G(»),

(ii) a?f(R);

(iii) C(r(R),a) o C(r,a).

Proof:

Part (i) is a direct result of Lemma 1. Since a £ T

a£ {X±(»), i=l, ..., q>. Let d» min |X («>) - a| . Given 6=4» ±tL
l<i<o, x 2

follows from part (i) of this lemma that those points of r(R) which are

q -' dnot on T are in U N(Ai(») ,y) and thus cannot include the point a among
i=l

them; which proves part (ii).

From a £ f and a£ f(R), it follows that a£ ?(R). Now, from the

definition of the encirclement it follows that

C(r,a) = C(r(R),a) + C(r(R),a). (9)

- q - dBut^ if R >R then T(R) C U N(A («),f). Thus a lies in the unbounded
A»l X l

domain of C- image f(R) which means that if R.^ R then C(F(R) ,a) « 0

[9.8.3 and 9.86 in 5]. Thus from (9) we obtain that if R > R then
— o

C(r,a) » C(r(R),a). n

Lemma 6:

Let y1? [0.1] +«, i"l, ...,n,be closed paths. Let y« CyJ?.

be the indexed family of the y . Let a G C, a £ y, and define

n

Y0(t) » n (y±(t) - a) for all t, 0 < t <_ 1. (i0)
i°l

Under these conditions, 0 £ y and C(y ,0) • C(y»a).
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for any s, Re s >_0 and any j, 1 <. j <_ n.

Hence,

|l + A (s) | >_ -—• for any i, 0 < i < n and for any s, Re s > 0;
(1 + k)n"x " "" .

which completes the proof. n

At this point it is logical to discuss conditions for checking for

each i, i»l, ..., n whether |l + X (s)| > 0 Res _> 0.

A theorem discussing this question and its difficulties is presented

in Appendix B. We have moved this theorem to Appendix B since its

presentation requires some additional notations and lemmas which are not

used in theorems 2, 3 and 4.

Theorem 2:

Let G be stable. Under this condition

H is stable4==> inf |det[I + G(s)]| > 0
Re s >^0

«=Ki) The point -1 $ ?;

and

(ii) C(r, -1) = 0.

Note: Since G is stable the'N used is the one described in Figure la

which has no e indentation.

Proof:

For any radius R define I\ (R) as
det

rdet(R): ^det[I +G(Nq(R)(t))],t€l (12)

where Iis the interval on which Nq(R) is defined. Since det [I +G(s)]
is analytic on Nq(R) and N (R) is aclosed path, so is V (R) .
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Theorem 1:

Let G be stable. Under this condition

H is stable <=^ inf |det[I + G(s)]| > 0
Re s > 0

Proof:

inf |l + X (s)| > 0 for all i, i = 1, 2, ..., n,
Re s > 0

The first equivalence is shown in [6]. We shall prove the second

equivalence only.

Since elements of G(s) are bounded on Re s >_ 0, there exist a number

k such that |6(s)| <k on Re s >_ 0, where |G(s)| denote any induced

matrix norm of G(s).

max |x.(s) | <_ |G(s) | <_ k for any s, Re s > 0.
l<i<n

Thus,the fact that elements of G(s) are bounded on Re s > 0 implies that

all the eigenvalues are bounded on Re s ^ 0.

(*=) The proof of (**) follows directly from the fact that

n

det[I + G(s)] = n (1 + X (s)).
i=l

(**) Let d be defined as

0 < d = inf |det[I + G(s)]|.
Re s > 0

Thus, since each X±(s) is bounded on Re s > Obyk,

n i
d < |det[I + G(s)]| = n |l + X.(s)| < (1 + k)11"1!! + X,(s)|

i=l x J
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Using lemma 6 we get

C(Idet(R)'0) " WOO.-*) - 0. (16)

n

Since det [(I + G(s))]= n (1 + X.(s)), -1 £ r(R) implies 0? ?J (R).
i=l x det

The principle of argument can be now applied to det[ I + G(s)] which is

analytic on Re s> 0 and non zero on N (R) and together with (16) it

implies that det [(I + G(s))] does not have any zeros in any compact subset

of Res ^ 0. This together with (15) completes the proof. n

We shall now consider the general open loop unstable case.

Fact 3:

The proper (bounded at s «= «) matrix G(s) can be factored as

G(s) - N(s)D~1(s)

where,

(a) N(s) and D(s) are nxn matrices whose elements are polynomials in s•

(b) N(s) and D(s) are right coprime;

(c) det D(s) t 0;

(d) p is a pole of G(s) if and only if it is a zero of det D(s).

This fact is due to several authors [8, 9, 10, 11]. For definitions

and algorithms for this factorization see [12], [13].

Let rD(R) :t-r det D(Nq(R)(t)), t€ I;

TND(R): t-det[N(Nq(R)(t)) +D(Nq(R) (t))], teI, where Iis the
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From the analiticity of detfi + G(s)] on Cand since det[I + G(s)] >0

on Nq(R) we can use the principle of argument to obtain

_L- C d det [I + G(s)]
2irj / l T^^ =C(r (R),0) =0 • (13)\ (R) det[I+G(s)] det C13)

q

From Theorem 1 follows that under the conditions of Theorem 2

1+ Ai(s) * 0, Re s >,0, i= 0, ..., n. Therefore, -1 £ r(R).

Since r(R) is an indexed family of closed paths (Lemma 3), -1 £ ?(R) and

det [I + G(s)] = n (1 + A (s)), then, it follows from Lemma 6 that
1=1 x

c(r(R), -l) = c(rdet(R), o) = o. (14)

Consider Lemma 5. For R sufficiently large points on f(R) are on f

or within 6of (At(«)J^which are on f. Therefore -1 g fCR) for any R
implies -1 £ fwhich proves (i) . From (14) and Lemma 5 follows that for R

large enough C(r,-1) » C(r(R),-1) = 0.

(«•) The proof of this part essentially requires retracing the steps of (=*).

Since s = + j» is on N and -1 £ P,

r • - qdet[I + G(»)]« n (1 + A.(«)) * 0. (15)
i=l x

As above, using Lemma 5, R sufficiently large implies that

-1 £ f(R) and C(r(R),-l) = C(r,-1) which is equal to zero by (ii) of

this theorem.

-20-



that

det[I + G(s)] f 0 for all s € ii (R). (19)

(19) now implies that

1+ A±(s) t 0 for all s e N (R) and i = 1, ..., n. (20)

* q
Now, (b) and the fact that det[ I + G(~)] = n [1 + A («) ] implies that

i=l

1+ A±(«) i 0 for all i, i-1 qr. (21)

(21) and (20) now imply

°*?det(R); C22>

-1 * f; (23)

where ^det(R) is defined in the proof of Theorem 2.

(23) proves (i).

To show (ii) we observe that (22) , (a) and the fact that det D(s) ^0

on N (R) , guarantee that all conditions of Lemma 5 are satisfied for

equation (17) and hence

c(rND(R),0) - c(rdet(R),0) + c(rD(R),o). (24)

n

Moreover, since det[I + G(s)] • n [1 + A.(s)], (20)guarantees
i»l X

that all conditions of Lemma 6 are satisfied and hence,

c(rND(R),o) = c(r(R),-i) + c(rD(R),o). (25)

(23) and Lemma 1 imply that there exists an R. such that if R >_ R,,
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interval on which N (R) is defined and where R>max(dm> |dj ,R3) where R3

is such that all the roots of det D(s) -0 lies in the inter or of Nq(R).

Let e > 0 be chosen sufficiently small such that det(N(s) + D(s))= 0

does not have any roots in the open left half plane with real part greater

than or equal to -e.

Theorem 3:

H is stable<=4(a) |det(N(s) + D(s))| j 0 for all Re s >, 0

and

(b) det[I + G(«)] f 0

(i) -1? I*;

and

(ii) there exists an R^ >0 such that for all R >_ R4

c(r,-i) + c(rD(R),o) = 0.

Proof:

The first equivalence is shown in [14]. We shall prove the second

equivalence.

(=»)

By construction there are no poles of G(s) on N (R). Thus,
°»

det D(s) ^ 0, for all s G N (R); and

det[N(s) + D(s)] = det[I + G(s)]det D(s) for all s G N (R) . (17)

Moreover (a) implies that

det(N(s) + D(s)) * 0 for all s e N (R) (18)

and since det D(s) ^ 0 for all s € N (R) , we obtain from (17) and (18)
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tion of the rQ(R), The following results are used in the sequel.

Callier and Desoer's [15] result concerning the open loop unstable

case is as follows

H is stable <> C(rdet(R),0) - £ A[R,p ]
a=l

I \ R

(26)

where R(s) » £ £ ak

a«l k=l (s-p )
— and A[R,p ] is the McMillan degree of R at

P . It is also pointed out that

where

H «
a

and that

A[R,pa] « Rank(Ha)

val '
s

y : s

R ' /
am' . y

s

/

a-1

s

am

/

/

/

s «-l / a

/

/

det D(s) = c n (s-p ) a
a=l a

(27)

(28)

(29)

where c is a nonzero constant. Thus (29) asserts that the multiplicity

of pk as a zero of det D(s) is equal to the KcMillan degree of R at p

which in turn equals to Rank (Hfc). From (29) it thus follows that there
exists an R such that for any R > R_,

•^ 5
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C(r(R),-l) = C(r,-1). Since det(D(s) + N(s)) is analytic and different

from zero on Re s ^0, C(r (R) ,0) = 0.

Thus, C(r,-1) + C(rD(R),0) = 0 for R sufficiently large; which

completes the proof.

The proof is similar to («*) and is thus omitted. n

Remarks:

(1) If is of paramount importance to note that the c-indentations

are taken to be in the left half plane rather than in the right half

plane. The reason for doing this is that in the multiple-input, multiple

output case it is possible to have both detD(s) ° 0 and det(N(s) + D(s)) • 0

for some point s on the jw axis. If an e-indentation is taken to the

right C(r,-1) + C(rD,0) » C(rND,0) = 0 and det(N(s) + D(s)) ^OonN do

not imply that det(N(s) + D(s)) ^0 for Re s >_0, as the possible zero of

det(N(s) + D(s)) « 0 at s is not taken into account. Thus Theorem 3 does
o

not hold with right indentations. Note, however, that this situation

does not arise in the single input single output case since both det D(s)

and det(N(s) + D(s)) cannot be zero at the same point s = s .
o

(2) Let [A,B,C,D] be a minimal realization of G(s). Then from [8,10]

follows that det[8I-A] = c det(D(s)) for some c f 0. Thus instead of

checking the encirclement of TD(R) one can check the encirclement of

the mapping of N (R) by det [sI-A].

In the following theorem sufficient conditions are given under which

the introduction of a compensating system does not require the recomputa-
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Remark:

(1) Condition (a) and (3) of Section 2 imply that

G0(s) » G (s) + V" t—SL_ where the superscript 2 in R .
I a *-* (s-p ) al

a»l ra

denote the association with G_(s).

(2) Our interest in the above theorem and the way that conditions

on G. (s) are stated have to do with the design of compensator using Mac

Farlane's procedure. The procedure involves choosing {A±G (s), i=l, ...n)

to change the r , the Nyquist plots of the eigenvalues of the compensated

system. When G2(s) is unstable such a procedure will change both

C(rG,-l) and C(T (R),0) which seems to require a recomputation of D(s)

and C(T (R),0); which is, to say the least, awkward. This theorem

states that if the compensator is stable, and its X„ 4(a), which are

1
the functions which used in compensation procedure, have no zeros in

the closed right half plane, C(TD(R),0) - C(TD2(R),0) and thus only

TD2(R) has to be checked.

(3) From the proof it becomes clear that the X_ .(s) have to be

non-zero only at poles of G„(s).

(4) Note that if XiG (s) are rational, then conditions (b) and (c)

imply that X.p (s) is minimum phase for all i»l, ..., n.
1

Proof:

Since G. (s) has no poles in Re s ^ 0 the unstable part of G(s) =
a R

G1(s) G2(s) is given by R(s) » £ ** .

Thus

Ral a Ks-p^Cs) G2(s)] =g:(p OR2, ^31)
„-« la al
s-p

a
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C(r (R),0) = £ A[R,p J C30)
k=l K

- I

Thus equation (30) gives a geometric way to calculate £ A[R,p, ].
k=l k

Let G(s) = G1(s)62(s) where G^s) and G2(s) are nxn matrices of proper

rational functions satisfying the conditions imposed on G in section 2. Let

the right coprime factorization of G(s), 6.(8) and (L(s) be

G(s) = N(s)D"1(s),

G1(s) =N1(8)D^1(s),

G2(s) «N2.(s)D21(s).

Let XiG, X±G ,XiG and 1^, rG ,TQ ,TD , Y^ be appropriately defined

using N of Figure 2.

Theorem 4:

Let G. and G2 satisfy the following conditions:

(a) Poles of G2(s) in Re s > 0 are simple.

(b) G (s) has no poles in Re s >_ 0 (G.. is stable);

(c) X._ (s) + 0 for all s, Re s > 0, all i, 1=1, ..., n,
*G1

Under these conditions,

Hstable«*=»(i) -l$TQt
and

(11)"-there exists an R such that for all R, R >^ R_

C(rG,-D + c(rD (r),o) - o.
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cases, the practical way to obtain such plots is by using a digital com

puter. It is therefore important to consider the numerical methods for

obtaining these curves. The followLng are some remarks about the compu

tation algorithms. We believe that this topic is far from being exhausted

and it requires more theoretical and experimental work.

Consider first the size of n, the dimensions of G(s). The size of

n gives one (among many) indication of the complexity of the compution.

In many current applications of control theory this number is small; i.e.

n » 5 is a fairly large problem. This implies that if other parameters

are 'well behaved1 we are not faced with a large computational problem.

To obtain r, the problem of finding X.(ju>), jw € I k = Q, ..., m,

m + 2; (or k stands for +» or -») is reduced to the solution of n ordinary

differential equations. This is a method similar to the one commonly

used for the calculation of the root-locus.

Given a point s where s is not a pole of G(s) the eigenvalue of

G(s ) can be calculated using, for example, the QR algorithm [16] (a

subroutine which is commonly available at most computation centers).

It is not necessary to use the QR algorithm for each point of N . If

the eigenvalues at s are distinct the problem can be reduced to the

solution of n differential equation where {X (s ): i = 1, ... n} are the

initial values:

FCA^jcoKju)) = 0 and

d 3F(A (jw),ju)) dA. 3F(A,(jo>),jo))
-=- F(X^ (jio) ,ju>) - - - + i = 0
d(jco) iU >J / 3A± d(ju>r 3(ju>) °
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From (26) it follows that if R is large enough

C(r (R),0) = £ A[R2,p ]=£ Rank(H^) (32)
2 a»l a a=l a

where, since p is a simple pole of G0(s), H - R _. Also from (26) it
a z a al

follows that if R is large enough

I %

C(rD(R),0) - £ A[R,Pa] = £ Rank(Ha) (33).
a=l a=l

where

H = R ..
a al

From (c) it follows that.

X. (p ) ^ 0 for all i *» 1, ..., n,

and hence det (L (p ) $ 0. (34)

(31) and (34) imply that

2
Rank(R J - Rank(R ) for all a « 1, ...,£. (35)

From (35), (32) and (33) it now follows that C(r (R),0) = C(r (R),0) for
2

all sufficiently large R. This result and Theorem 4 now establish Theorem 5.

a

5. Some Concluding Remarks

This section contains some remarks concerning computational methods

and future extensions of this work.

In order to use the above theorems for the design of compensators

one needs r and r_(R) in the complex plane. Except in trivial
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evaluate the derivatives and D(s) symbolically and check for the appearance

of small differences between large numbers. If such numbers appear we have

to return to point by point evaluation of the derivatives of det[I + G(s)]

and D(s) ; i.e. the value of s Is substituted in G(s) and Gaus triangulariza-

tion with pivots is performed to evaluate the determinant. A similar pro

cedure is recommended for the factorization to N(s)D (s).

In conclusion further work has to be done on the numerical aspects of

the problem. Other possible extensions are generalization to distributed

systems along lines persued by Callier and Desoer, [15]. The generalization

to sampled data systems is straightforward.

In the distributed case, however, the exceptional points of the second

kind of det[XI-G(s)] • 0 are isolated on Res > 0 but might be dense on

Res - 0. The technique used in this paper is applicable when the

exceptional points of the second are isolated on Res _> 0. Thus further work

has to be done on the general distributed case.
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Therefore,
dX 3F
i _ 3jw

djw * " 3F ! s J-, ..., n ;
3X

which is the differential equation to be solved numerically.

Having presented the main idea we have as usual to consider the

questions of roundoff errors and sensitivity to changes in parameters

(ill-conditioning). First, note that as we approach an exceptional point

of the second kind —aj[ approaches zero [3]. While we still can determine
dX±

arfid(jw)' Lowaccuracy is expected in the evaluation of

3F
^j— remains finite (note that the analyticity of the X (s) imply

differentiability but the X±(s) might not be analytic and differentiable

at the ends of the interval). At this point one can proceed in one of
dX,

several alternatives: one alternative Is to use arg . \ . where i
d(jw)

ranges over those X^jw) which are close in value to each other, to

determine an estimation of the location of the singular point.

If the -1 point is not near the image of an exceptional point the

above possible inaccuracy does not effect the stability result. We have

just to record that an exceptional point has been met and repeat the above

procedure (applying the QR algorithm, etc.) to the next interval of the

ju> axis. On the other hand, it seems that if the -1 point is near one

of the exceptional points of the second kind we have to evaluate r ac

curately and may expect trouble.

The actual evaluation of det[I + G(s)] is needed for the evaluation

of the partial derivatives; also needed is the factorization of G(s) to

N(s)D (s) to find r . For small systems of the order of n = 5 one can

-30-
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the juxtaposition of y and y .

We shall extend this term to the case where I = [af,bf], a1 not

necessarily equal to b but Y(b) • YiCa1).

Let y2 be a path defined on [ajb+b'-a1], y is equal to y in I

and to Y3:t -»• y^t-bM-b) in [b,b+b'-a'] then y2 is denoted by y vy and

is called the juxtaposition of y and y •

Let y be a road defined in I = [a,b], and let f be a continuous

mapping of the compact set Y(I) into «. t -*- f(Y(t)) y'U) is a regulated

function in I; the integral \ f(Y(t)) Yf(t)df is called the integral
a cof f along the road y and is denoted by I f(z)dz. If y is a road

Y

equivalent to Yl then J f(z)dz =• ff(z)dz and; if Y]vY2 is defined then,
Yl

j f(z)dz -1 f(z)dz +I f(z)dz

Let Yq.Yj^ be two paths defined on the same interval I, and let A be

an open set in <C such that yq(I) c A and Yl(D c A. A homotopy of y

into yx in A is a continuous mapping p of I x [a,3] (a<3 in R) into A

such that p(t,a) = Y()(t) and p(t,3) »Y^t) in I; Yl is said to be homotopic

to YQ in A if such apexists. When both yQ and y are closed paths,

P is a closed path homotopy if t ->• p(t,£) is a closed path for any

Ke[a,b]; when we say that two loops yq and y are homotopic in Awe mean

that there is a closed path homotopy.

Fact A'1 (9.6.4 in [5]): Let Yl, Y2 be two roads in an open set AC $,

having the same origin u and the same extremity v, such that there is a
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Appendix A: Mathematical Terma

The appendix contains a short exposition of several mathematical

terms which are used in the paper and which are not often used by

engineers. The definitions and statement of theorems follow Dieudonne'

[5] and the reader is referred to that text for more detail and examples.

We have introduced some remarks related to the usage of the mathematical

concepts in this work, and to avoid conflict with terms common in

electrical engineering-, we have introduced some changes in terminology.

A path in (K is a continuous mapping Y of a compact interval

I« [a,b] C r, not reduced to a point, into (t. If Y(I) C AC «; we say

that Y is a path in A; Y(a) and Y(b) are called the origin and the

extremity of Y. If Y(a) = Y(b), Y is called a closed path.

Amapping Y° of Iinto Csuch that Y°(t) -Y(a+b-t) is apath
which is said to be opposite to Y.

A path Y is called a road if Y is a primitive of a regulated function

(i.e. there exists a regulated function whose integral is Y). If

Y(a) » Y(b),Y is called a closed road.

Let y» y1 be two roads defined in the intervals I, I , respectively.

Y and yx are called equivalent if there exists a bijection p of I into

Ix, such that p and p~ are primitives of regulated functions and

Y* Y1op(y1«yop~ ).where o denotes composition).

Let I1 » [b,c] be a compact inberval in R, and let I • I U I • [a,cj.

Yl be apath defined in 1^ such that Yl(b) -Y(b); if we define Y2

to equal to Y in I and to Yl in 1^ Y2 is a path denoted by YvY and called
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C(r'0) "J r7^"dz " £ C(^a> " 2 C(Y,a).
Jy zw a e T a e S

The above definition and facts consider roads. Our objective is

to state the same properties with respect to paths. This extension is

done In [5] by the use of the concept of homotopy.

Fact A.6 (Ap. 1.1 in [5]) If t -»• y(t) (a<t<b) is a path in an open subset

A of C, there is in A a homotopy p of y into a road Yi» such that p is

defined in [a,b] x [0,1] and p(a,£) « Y(a) and p(b,£) = Y0>) for every

5 e [0,1].

The line integral along a path is defined in the following way:

Let A be a simply connected open domain in C, fa complex valued function

analytic in A, y a path such that y(l) C A, y a road homotopic to y

such that y,(I) c A; then

I f(s) ds » I f(s) ds.

Note that from Cauchy theorem (9.6.3 in [5], Fact A.l) follows that the

definition is independent of the particular road y which is chosen. The

method of actually finding a y. which is homotopic to y is illustrated in

the proof of Ap. 1.1 in [5]: A partition (t *=a, t , ..., t, = b) is

chosen and a piecewise linear function Yi is constructed with f, (tj = Y(t )
'k k i ' i

and Yfc(t) -T(tl) +^+i .̂ (Y(t1+1) -y(tj)i for t± <t«.1+1,

0 £ i £ k-1. The partition is now chosen fine enough to that YuCO is

included in A. This y* is the desired y,•
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homotopy of Y;L into y2 in A which leaves u and v fixed Ci.e. p(a,£) - u

and p(b,£) - v for any £ G[0,3]). Then, for every analytic function f

in A

J f(z)dz -J f(z)dz .
Yl Y2

The index of a closed road y with respect to a point a€ <B,

a£ y(D ,is defined by C(Y,a) =^rV i — .
2irj J z-a

Y

Fact A*2 (9.8.1 of [5]). For any y and any y satisfying the above

condition the index C(Y,a) is an integer.

Fact A.3 (9.8.5 of [5]) If a closed road is contained in a closed ball

D: |z-a| <_ r, then C(y,z) - 0 for any point z exterior to D.

The following fact is called the principle of the argument.

Fact A.4 (9.17.1 in [5]): Let A be a simply connected domain in C, f a

complex valued meromorphic function in A, S( resp. T) the set of its

poles (resp. zeros). Then, for any closed road in A -(S Ut)

( l^dz" £ C(Y.a) - Yi C(Y,a).
Jy K ' a e T a e s

Fact A.5 (9.17.2 in [5]) With the assumption of A.4,let t •+ Y(t) be a

closed road in A-(S U T) . If r is the closed road t -*• f(Y(t)), then
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Z(t)-a =dt 1°8lz<t>-al +J%£ arg(z(t)-a) (A.l)

and when the cut is crossed we choose the branch of arg(z(t)-a) which

maintains this equality. To make the integral of both sides of (A.l)

the initial value of arg(z(t)-a) is taken to be equal to Im (%ffi )at
the initial value of t.
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The index C(Y,a), y is a closed path and a £ y(I), is defined as

C(Y1>a) where y- is any closed path homotopic to y. Thus facts A.l

through A.5 hold with the word 'road1 replaced by 'path1. Since usually

we use paths we shall in an obvious way extend also the definition of

equivalence and juxtaposition to include paths.

Remark: The argument function.

(1) The index of the curve with respect to a point is commonly

thought as the net< increase in the argument function^ ~ arg(z-a) as z

travels around y. This point of view is supported by

/!=! =Jd(l08(«-«))- Jd(log|z-a|)+ jfd(arg(z-a)).
y Y Y Y

The first integral is zero on aclosed curve. The trouble is([i8], pg. 115)

that the function arg(z-a) whose value has to be taken into account,

above equation is meaningless without specifying at each point of the Integra-

tion the branch of arg(z-a) whose value has to be taken into account.

One proper way for the choice of the branches (i.e. the choice which

guarantees c(Y,a) =~j J d(arg(z-a))) is the following. Choose acut
Y

{s: Re s ^ Re a, Ims = Ima}. The branches of arg(z-a) are ..., [-2tt,0],

[Of27r], [2tt,4tt], ... One starts, say at the branch [0,2tt], When y crosses

the cut from "up" to "down" one moves to a lower branch, say from [0,2tt] to

[-2tt,0], When y crosses the cut from "down" to "up" one moves to a higher

branch, say, from [0,2tt] to [2tt,4tt]. The correctness of this procedure

follows from the fact that inside each branch we have
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Figure 3b and 3c.

In Figure 3c it is understood that N and N3 contain a portion of

the branch cut (between jd and B) and that two lines have been drawn

along the cut in the way of illustration only. Similarly, a portion of

the circle |s-sq| = 6 is common to N and kL(N and NJ .

Let -I2 c Iand x3 c Ibe the two intervals on which iL «*L. The

path t+ N2(t), t € i2> is equivalent to the opposite of the path

t -• N,(t), t € i a similar statement can be made with regard to N,

and N2, etc. '" '

We shall define N (R) in detail. Let us define the following:

I - (s: s G d, Res > 0, s on the branch cut};

t -»• 0.(t): a continuous one-to-one mapping from [-1,0] onto I
x c

such that 31(-D • jdQ, 3 (6) - sq;

t •*• 3«(t): a continuous one-to-one mapping from [0,1] onto I
* c

such that 82(o) = sq, 3 (l) » jd ;

The path t •*• N .(R,t) is defined as the juxtaposition

IoV02veivIlvI2V-" vIm+2.

t + NqY(t)"is defined similarly with 1^ and 1^ replacing I (with a

slight abuse of the juxtaposition notation since I , for example, is not

compact).

The path rx±(R,6) is defined as t+ X±(N x(R,6,t)),t e I. Similarly
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iNl!t "* ^i^i^^* t€ I. The definition of r (R) requires more work:
i

Let \^ be a mapping defined on I in the following way: for any s € I

X~(s) - lim xi(s1>
s + a

Re(s1-s) « 0

Vv8* <o

Since X (s), i»l, ..., n, are continuous and bounded, the limit

exists. Since the X (s) , i«l n are the function elements of an

algebraic function then for s ^ s the result of the limit operation is a

value of another function elements at s. From this, or alternatively

by using analytic continuation argument, it follows that X"(s) is continuous

on I .
c

Let the paths Iq be defined on [-2,-1]; I ,1 <_ ft. £ m+1 be defined

on U-l,ftJ; &1 be defined on [m+l,m+2];32 be defined on [-1,0]. The

mapping t -• r (R,t) is defined as

ru(R,t) - X~(N (R,t)) for t€ [-2,-1] or tG [0,m+2J

TXi(R,t) - X^N (R,t)) for t e [-1,0].

Txi is defined similarly to V ±(R). The definition of r. and

r±N can be done in the same detail. For simplicity we shall use a
3

general description only:

Consider r.M . Let s be the origin of N,. As t is increased and
IN- o I

Nj(t) is on the branch cut, r^ (t) - X~(N (t). As the point B is

reached and N.(t) is on the circle, \Aa) is used. X.(s) is used again

when the branch cut is transversed again.

Consider I\„ . When N0(t) € I ,
.lw« j c
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t ~* FiN ^ " Xi^N3^t:^i otherwise, X±(s) is used.

Lemma l.B

Let G be stable (i.e. R . - 0 for all 1 < a < £, 1 < k < m ), then
ak — — — a

for all i, 1=1, ..., n,

(i) rx±, rxi(R), TXi(R,6) are closed paths.

(ii) Let a€ (C be apoint such that a£ f±. There exists an

R > 0 and a 6 > 0 such that for all R > R . and all 0 < 6 < 6 ,
•» o o -~o — o

(ii.l) a£ fx±(R), a£ ?Xi(R,S);

(ii.2) C(rxi,a) « C(ru(R),a) « C(ru(R,6) ,a) .

Proof:

(i) follows from the continuity of the eigenvalues (Fact 1 and

Lemma 1), the properness of G(s), and the construction of the paths.

(ii.l) is proven similarly to Lemma 5 and, therefore, details are omitted.

Consider (ii.2). Let a £ f and let R and 6 be such that (ii.l)

holds.

We claim that

c(rxl(R,6) ,a) -c(rxi(R),a) + c(rN1,a) + C(rN2,d) + c(rN3,a). (B.l)

This follows from the definitions and the fact that each of r„
Nl

and FN2 and FN3 is a ^uxtaP°sition of paths which are either equivalent

to portions of rxi(R»<5) or opposite to portions of I\.(R) .

For 6 small enough, (ii.l) and A.3(9.8.5 of [5]) imply that

c(rN1,a) - 0.

Let ae c be given and let 6q and R be such that (ii.l) holds; under

these conditions a£ X£(A) where A denotes the interior of N9(NJ.

-41-



(Otherwise, by choosing a smaller 6 we shall get a G f (R,6).)

This and 9.8.7 of [5] imply that C(r ,a) -» 0 (0(1^ ,a) - 0), which

together with (B.l) imply that C(rx±(R,6) ,a) - C(rx±(R),a). Using

the same procedure as in Lemma 5 it can be shown that for R sufficiently

large C(r_(R) ,a) = C(r ,a) which completes the proof. °

Theorem B:

Let G be stable (i.e. R = 0 for all l<a<£,l<k<m).
ak — — — — a

Under this condition

H is stable <ae> for all i, i-1, ..., n

<i> -i*?u;
and

(ii) c(fxi,-i) - 0.
Proof:

(=*) Theorem I implies that

inf |l+X.(s)| > 0 for all 1-1, ..., n. (B.2)
Res > 0

(i) now follows from (B.2) (note that the definition of X"(s) as a limit

of a sequence of values of X.(s), with Res > 0).

Since, for all i, 1 + X (s) is analytic in the interior and on the

closed path N (R,6) and since (i) now implies that 1 + X (s) is different

from zero on N .(R,6), the principle of argument implies that, for all

i, C(r (R,6), -1) « 0. (ii) now follows from (ii.2) of Lemma l.B.

(«=)

(i) implies that 1 + X.(s), i»l, ..., n, is bounded away from zero
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n

on the jo) axis, at «, and on the branch cuts. Since n [1 + X. (s)] «
i=l

det[I + G(s)], and the X (s) are bounded, zeros of 1 + X.(s) , any i, are

zeros of det[I + G(s)]. Since the zeros of the determinant are isolated

and since 1 + X.(s) 4 0 on the jw and the branch cuts, we can find a

6 sufficiently small and R sufficiently large such that inside the

interiors of Nj., N2 and N3 there are not zeros of 1+ X.(s) ,

i=l, .•., n.

From Lemma l.B, part (ii) and condition (ii) of this theorem follows

that

c(rxl(R,6), -l) - c(rXi, -1) - 0;

Since 1 + X.(s) is analytic on and in the interior of N .(R,6) and dif-
^ q«

ferent from zero on N ,(R,6) the principle of argument can be used to
qA

imply that 1 + X. (s) , 1-1., ..., n has no zeros in any bounded subset of

Re s ^ 0. Since, for i«l, ..., n, 1 + X.(») + 0 we get that

inf |l + X.(s)| > 0 and by Theorem 1, H is stable. n
Re 8 > 0

Remark:

Note that in order to apply the theorem the exceptional point of the
!

second kind have to be found which is an obvious practical limitation.
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Appendix C: Some Simple Examples.

The appendix contains some simple examples of the Nyquist plots of

the eigenvalues. These examples illustrate the role that the exceptional

points of the second kind play in the Nyquist plots of the eigenvalues.

Note that if there are no finite exceptional points of the second kind

in Re s > 0 then the image of N under each eigenvalue forms a closed

curve.
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Captions

Figure 1: Cuts for the definitions of the X..

Figure 2: The images of the paths N , N (R( and N(R) .

Figure 3: Images of the Nyquist paths (a) N (R) (b) N .(R,6) and

(c) the images of the paths N., N„ and N«.

Figure 4: (a) The plots of the eigenvalues on N which corresponds to

3 1
a 3 x 3 matrix G(s) such that X • -rr . No finite

exceptional point of the second kind appears on Re s ^L 0.

s B + j« is an exceptional point of the second kind. The

image of N under each eigenvalue is a closed curve.

(b) The plot eigenvalues on N for a 2x2 matrix G(s) such

2 1
that X » — ; note the e indentation in N . A pole is present

s q

on the jio axis.

(c) The plot of the eigenvalues on N for a 3 x 3 matrix G(s)

3 s-1
such that X m --rr ; there is an exceptional point of the

second kind at s = + 1. The image of N under each eigenvalue

does not form a closed curve.

(d) The plot of x, and X^ on N for example c (the branch

cut is shown in (c)). Note that the image of N is a closed

curve.

(e) The plot of the eigenvalues on N for a 2 x 2 matrix G(s) ,

2 s
X = —rr" . A singular point on the jo> axis, s = 0. No

singular points on Re s > 0. The image of N under each

eigenvalue forms a close curve.
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