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ABSTRACT
An algorithm for constructing a black box model of the sinusoidal

input/steady-state response behavior of nonlinear time-invariant systems

over a set of frequencies and amplitudes is presentéd. It is assumed

that the steady-state response is periodic of the same fundamental frequency
as the excitation, and that the Fourier coefficients are continuous func-
tions of amplitude and square-integrable functions of frequency. The
algorithm converges, in a mean-square sense, to an exact representation

of the first N harmonics of the steady-state response minus its dc com-
ponent. The model constructed by the algorithm admits a relatively simple

physical realization characterized by 2NM+l linear dynamic elements, and

N(2M+1l) + 1 nonlinear static elements. The underlying mathematical

structure of the model is an orthogonal series expansion relative to
tiﬁe whose coefficients aré themselves truncated orthogonal expansions
relative to frequency. Here M, the number of harmonics used for fre-
quency interpolation, is determined by the algorithm. Of the N(2M+l) + 1
memoryless nonlinearities which characterize the model, N of these are

specified ahead of time (Tchebysheff polynomials), and 2NM+l are parameters
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which mold the representation to the specific system being modeled. Each

of these functions of a single variable can be obtained in a pointwise

manner directly from steady-state measurements. The algorithm was imple~-

mented on a digital computer, and forced versions of the classic equations
of Van der Pol and Duffiﬁg were run as examples. An additional analytic

example of a frequency multiplier of prescribed bandwidth was also pre-

sented.



I. Introduction

The need for realistic yet tractable nonlinear device and system models
has long been apparent. The current proliferation of nbnlinear devices to-
gether with the growing emphasis on computer simulation point to the need
for a modeling methodology which is not inherently dependent upon the in-
ternal ﬁechanisms of the system or device being modeled. This invariably
leads us to the black box 6r terminal perspective. Here the efforts of
Volterra [14] and Wiener [15] have resulted in some very general nonlinear
representation theorems. However practical problems are often encountered
in identifying and.representing the kernels required for these functional
series representations. The NEE order kernel is a function of N variables.
However no efficient computational algorithms are currently available for
approximating surfaces of dimension greater than two. Hence until this
computational bottleneck is overcome, the practical problems associated
with the general modeling approach of Volterra and Wiener do not appear
surmountable. Therefore it seems premature, if not unrealistic, to attempt
to solve the general nonlinear modeling problem at this time. Indeed

until we succeed in constructing models which can mimic the system response

to a limited class of input signals, there is little hope that realistic

practical models valid for more general classes of input signals will be
discovered.
As a result we feel it is worthwhile to develop nonlinear representa-

tions valid for various classes of signals. The sinusoidal waveform in

particular is an important paradigm signal around which to structure

such a class. This signal finds extensive use in the electrical industry,

especially with regard to electronic [6] and power systems [5]. We in-



tend to construct a modél whose valid domain consists of sinusoidal signals
whose frequencies and amplitudes range;over any finite set of points in the
open first quadrant of the frequeﬁcy—amplitude plane,

Our fundamental assumptionlwill be that the system response to such a

signal tends to a steady-state waveform which is periodic of the same period

as the excitationiand expressible as a Fouriler series. Hence we eliminate
both subharmonics and incommensurate frequencies. More specifically we will

assume that the Fourier coefficients of the steady-state response are:

i) continuous functions of the amplitude of the excitation in a mean-

square sense yet to be defined, and

ii) square integrable (finite-energy) functions of the frequency of the

excitation,

In addition we will place a uniform convergence requirement on the
representation of the Fourier coefficients of tﬁe steady-state response
with respect to frequency. This assumption will surface formally as a
hypothesis of the convergence theorem of Algorithm 1.

Under these assumptions the algorithm we propose will converge in a
mean-square sense to.an exact representation of the first N harmonics'of
the steady-state response minus its dc (average) component, The model
constructed by the algorithm will consist of an amplitude detection mech-
anism in tandom with a structure whose dynamics are éegregated from the
nonlinearity in a manner not unlike that done by Wiener [15]. As such the
model admits a relatively simple physical realization characterized by 2NM + 1
dynamic elements. Here N and M denote the number of time and frequency har-

monics used respectively.



The underlying mathematical structure of the model is an orthogonal
series expansion relative to time whose coefficients are themselves trun-
cated orthogonal expansions relative to frequency. The parameters which

characterize the model are 2NM functions of a gsingle variable. As a

consequence the problem of identifying and representing these functions is

relatively simple. Indeed, each of these functions can be obtained directly,

in_a pointwise manner, from steady-state terminal measurements.

The algorithm was implemented on a digital computer. As examples,
forced versions of the classic equations of Van der Pol and Duffing were
considered. In addition an analytic example of a frequency multiplier of
prescribed bandwidth was presented. Finflly the steady-state response
characteristics of the amplitude detection subsystem were demonstrated.

Notationally‘we let FQ+ denote the non-negative real numbers,(,&[the
natural numbers,;)Uk the set {1,2, -+« k}, and L2(F3+) the linear space
of square-integrable functions defined on E?+. Due to their frequent
appearance, we denote the interval [1,») by I, and the Cartesian products

2

IxIand R, x F2+ by I° and F?i respectively.

II. Problem Formulation

Let S; denote the nonlinear time-invariant system under consideratiom.

We assume that S} admits the standard 5-tuple dynamical system representa-

tion discussed in [4]:

(2.1) R 2 K‘-u, E,Cy s 8, r}

To conserve space we have adopted the notation defined in [4]. Here the

input u: R+ + R and the output y: R+ +R. LetIC R+ denote the



interval:
(2.2) 1801,
As the input setcnl we take the following class of sinusoidal signals:

(2.3) Uu é'{u(t) = A Cos(uwt)|(t,w,A) € F?+ x 12}

Note that the lower bounds on the frequency w and the amplitude A are not
serious practical limitations since both may be ggglgg to suit the appli-
cation (e,g. Hz, kHz, MHz). Consequently we are, in effect, comsidering
frequencies and amplitudes anywhere in the open first quandrant of the
frequency-amplitude plane.

Let qhe‘reéponse function p: E?+ x 3 x Q]+ R be defined in the

standard manner:
(2.4) p(t,x_,m) & x(a(t,x_,u),u(t))

We require that for each (xo,u) € 2 xCu the system response p(* ,xo,u) be

ultimgtely periodic of the same fundamental frequency as the excitation

u(+). More specifically we assume that the response to a sinusoidal input

of frequency w and amplitude A admits the following decompositionm:

(2.5) p(t,xo,u) = pT(t’xO’u) + pS (t,uw,A).

Here the transient component must satisfy:

(2.6) pplt,x ,u) » Oas t + =, ¥ (x,u) € 2, xQ ,

and the stegdy—state component must be periodic of perioed 2w/w:




2.7) pg (e + 2L, 0,0) = o (£,0,0), ¥ (£,0,0) ER, x 12

Furthermore we require that Pg (-,0,A) be expressible as a Fourier series

[13], Note that the steady-state response is, by hypothesis, independent

of the initial condition, X, € E

We intend to model the transient behavior qualitatively and the steady-
state behavior quantitatively. Let CD cCU xcy denote the set of input-

output pairs (empirical data) upon which the model will be based.

(2.8) D & Al xtpg(-5u,0) | @) € 12}

We can then pose the modeling problem as follows.

Problem Statement:

Given CD construct a dynamical system Q with response f(+,,*)

such that for each (xo,u) € Z xq,(:

(2.9) B3R ,u) = Bylt,x 0 + B (), ¥e€R,
where:

(2.10) 3T(t,io,u) +0ast >+

and

(2~11) 53 (taw’)\) = DS (tswsl)’ ¥t€ R.'-

III. Preliminary Results

By hypothesis, the steady-state response admits a Fourier series

h

representation. Let pSN(',m,A) denote the N° partial sum of that series:



ao(w,,l) N
(3.1) pSN(t,m,A) = —5——+ 3, {a,(w,2) Cos(kut)
' k=1

+ bk(w,k) sin(kwt) }

Here

(3.2a) ak(q,k)

Ps(t:w,:l) Cos (kwt)dt, Vk€ ,Z_,.

>
a{e
}ﬁal?

and .
21

w .

(3.26) b (u,) &2 I o (t,u,)) Sin(ut)at, ¥k €N
0

We will restrict our consideration of the steady-state response to that
component whose average value is zero. Hence we neglect the dc term of

(3.1) by assuming:

(3.3) a () =0, ¥ (w,2) € 12
As we proceed,,it‘will become apparent how to relax this assumption.
However we feel the addéd complexity it entails is not worthwhile since
many systems do satisfy (3.3). |

The algorithm we propose will converge in a mean-squaxe senge to a
model whose steady~state response is pSN(v,w,A) ﬁhe:e-u ﬁgJU is fixed but

otherwise arbitrary.

A. Aasnmgtions

Here we specify the requirements we place upon the Foqxierrcoefficignt

functions ak(-,'), and bk("')’ ¥k GQJUN, Ultimately we will restyict the



domain of the model to (w,A) € 12. However we tactically assume that ak(-,-)

and bk(-,-) are actually defined over m?i.

1. Frequency Dependence

We assume that the Fourier coefficients of the steady-state response

are square-integrable functions of frequemcy, More specifically for each

(A,k) € R+ X&N :

N

B.42) 8 (-, € LR
@3.40) b € AR

Furthermore we will eventually require that an orthonormal series represen-
tation of these functions converge uniformly over w € I. This requirement

will surface formally as a hypothesis of the algorithm convergence theorem.

2. Amplitude Dependence

We assume that the Fourier coefficients are continuous functions of

amplitude in the following mean-square sense. For each € > 0, (A,k) € F{+’<
NyTs>0 3 a-f] <=

(3.58)  Ha (-,0) - ak(-,i)ﬂL2 <e

and

(3.5b) ﬂbk(°,k) - bk(o,A)ﬂL2 <e

B. Representation Relative to Frequency

Let gfk denote the linear space of functions which are square-integrable



over the interval [F, =)
(3.6) S£k. 8 Lz([%’ ©))

The first resylt we need is concerned with the generation of an appropriate

pair of complete orthonormal sets ‘in Efk which admits a simple yet direct

system~theoretic interpretation and realization via circuit elements [12].

To that end consider the scalars:1

k-1

G-V 1 2 (0m) -1}
378 w, & — T ¥ k.0 NN
I {2¢2-m)}
m=1
n#s
k-1
et)M? T (2(m)H)
@.7) By, BT ¥ ) € NN
I {2(%-m)}
mel
m#l

and the corresponding sets of functions they generate:

L a
.80 A Sia,w & @YY —2 @ e = x M
0 A b bt £ e

>

B
3.8) B, & b, W (k)”2 2 —;w-)—z,;—-f 0,0 & [ =) x M

Progosiﬁion 1
For each k ELN j‘k is a complete orthonormal set in -\1’ The

T T 0
1nge for k = 1 the factor T {2(2+m)*l} is taken to be the multiplicative
identity, 1. m=l

-10-



same is true of Cek’

Proof: We consider only the case of J‘a(k The proof for CBk does not

differ in substance. Consider the set:

-(2%- %’- w .
e ¥ 2 e N}

>

(3.9) 82 e,

and the linear map:

~1/2

(3.100  [0£1) £ @ ? £(l0g(kw))

Now (3.9) and (3.10) =

(1) [Ue, 1w =8y ¥ a,0) eN?
‘ (kw)

Next (3.9) and (3.11) =

_ 1
L2' v4e-1

L THICLY

(3.12) ﬂez(o)‘

Hence Uk: 8 +E;€k is a unitary (norm-preserving) map, and the completeness

1/2 .
properties of 8 in L2(R +) are identical to those of {QL)—Z-I IV L ELN} in
- . (kw)

L.
From Clement [3], £ is complete in LZ(R +) @
N 2%k -3
(3.13) ———————2-+°°asN+w
k=1 1 + (2k-1)
But ¥ k > %:

-11-



””% 1

>
1+ (2k-1)2

(3.14) -
Hence the series 13 bounded from below by a diverging (geqm@uric) series,
and the completeness of { 1_2_._.‘v 2 GQJU} in &1 is established.

(kw)

From Kautz [9], we can orthonormalize 55 in L (E% ) as:

' 2
315 e iy s e w, ¥reN
where %m is as in (3.7a). Then (3.8a), (3.11), and the linearity of

Uh 91;4k is a complete orthonormal set in ifk . H

The sets « K apdclgk will appear in the model only in a limiting
sense. Essentially we will employ linear subsystems uk&(a) having the
following property. As the poles of sz(s) approach the origin (and there-
fore instability), the real and imaginary compongnts of the f:eﬁuency re-
spense H , (Ju) converge to &, ,(w) and by, (w) vespecrively, The objective
of the following lemma is to establish the topelogy relative to which this

convergence takes place. Let

2
(3]
(3.6 w ) A S B (DG W WP, v s1x R,
(") m=0
14

(3.369) vy 8 TTLAR z DN EPEAT O Mt CLUCR XRNCE TS A

mPO

and

-12-



2+1

-1
G.17) g, 2 S‘—lzg, VuweETI
(w)
Here
k, k even
k, A 2
(3.18) 51 =
2 k-1
—2—: k odd

and the binomial coefficient is defined:

N |
@19 @ = aremt

Lemma 1

For each 2 Eu\’:

(3.20a) uy, (+51) f*i Yo () as u+0
(3.20b) Uy 7o) > 6() as u-=+>0
C

(3.21a) . v, (,u) > 6() asu-+0

(3'21b) vzz_l(. 511) g ‘1’22_1(') as g > 0

where 6 (-) denotes the zero function (identically zero on I), and _Q

indicates convergence both uniformly over I and in the 321 sense.

Proof: We considér only the case of “2,(' »*). The dual argument for v2(~,-

is nearly identical. From (3.16a):

-13-



-1 .
(3.22)  [uy, s < n&’ (2:;;1) () 2L 2(mm204D)

Clearly (3.22) = (3.20b) both uniformly over I and in the gf; norm.

Next (3,16a) and (3.17) =

[ )2’L <1>2z1
(3.23) (wou) = ¥, (w) = (- i) -
Yag 28 g2
T e Gy (2™ (2
2 2 m=0 o
(")
Hence
2 2);)_II. )4&
, : - (m
(3200 Juppm) = vy, (0| 5 T
& ) zz(uzwz)
21 ,

A binomial expansion of the numerator of the first term then yields:

2%-1
(3.29)  lupylwm) = vy @ < Zo

m=

=1 ,
+ 2 (2m) (u)Z(l-m) (N) 2(“"29:)

Finally (3.25) = (3.20a) both in the %21 rorm and upiformly over I, L
Note that u&(',u) and v, (-,u) of (3.16) are nothing more than the
real and imaginary components of the frequency respense of a linear pystem

with a pole at 8 = (-u,0) of multiplicity % and ynit residye.



C. Representation Relative to Amplitude

Consider the set of functions:

27
A -]; ad w ’ .
(3.268) Ykz_()\) = .".s so ps(t’w:Al)C?_sﬂqwf‘F)uakz(w)mdtdu)i,V(X,k,z) € R+ X JI XU\lk

s

27

]

>
3 |

" ,
(3.26b) sz(l) S’O ps(t,Q,A)Sin(kwt)bkz(m)wdtdw » ¥(A,k,2)

|

= [

€ F2+.XL)U xL)Uk
Here akz(;) and bk2(°) are as in (3.8).

Lemma 2

For each (k,%) E(,AlX(,A&, the functions Ykz(') and ckz(-) are

continuous.

Proof: From (3.2) and (3.26):

(3.27a) g A = a, (0,))a, , (w)do

51#5-5

(3.27b) sz(l) = bk(q,l)bkz(w)dw

N‘It—-'\.s

Let (A,i) € Rf_ . Then



(3.28) Yo (N - Y, A = f [a, (w,2) = a,s(ua.i)]ak,’(w)dm
1
k

Hence the Schwarz inequality = !

(3.2 Iy @) = v D < Ba () - ak(-.ﬁ)ﬂg,,gk ag ()ep
Then Proposition 1 (the normality of akz(.)) =

(3.30) ey *.Ykz(i)l <la (-0 - ak(',i)iggk

Fipally the mean-square continuity of ak(-,-,) in (3.5) = Yk&(') is

continupus, A dual argument reveals that sz(') is also comtinuqus, B

The fqnccions Ykz(') and sz(-) are parameters which will appear in

the model. Note from (2.8) that these parameters are ﬂece:qined solely

on the hasis of.ge;m;palﬂ;nformation contained in the set of imputroutput
pairs, CD?
Next consider the following first order nonlinear differemntial system:

JSAmm e ne e ae e ey g I A

(3.31) k() = £(u(t) - x(t)), x(0) = x

Here £(:) is a piecewise linear function defined as:

- (3.32) £(e) 4 ne +[(g-"- - a)% 1(e), ¥e e R

where 1(+) denotes the unit step function:

16~



l, ¥e>0

(3.33) 1(e) & {
0, ¥e<0

and
(3.34) O<a<x<l

Lemma 3
For each (xo,u) e R xclj,the system depicted in (3.31) has a unique

solution x(-,xo,u). Furthermore
(3.35) x(t,xo,u) -»> xs(t,m,l) as t +
where xs(-,m,x) is continuous and periodic of period 2w/w.

Proof: Refer to Appendix 1, "

Next we consider the effect of the scalar o € (0,1) on the steady-

state solution, xs(-,m,k).

Proposition 2

For each € > 0, (xo,u) € F? X Cll,za §>0 ® o€ (0,8) =

(3.30)  |x (t,0,0) - A <, ¥te [0, &

Proof: Refer to Appendix 1. "

The function of the system depicted in (3.31) is to detect the
amplitude A of u(-). Any system whose steady-state response to u € Cll

can be made to lie within an arbitrarily small band around A € I will

-17-



suffice. We offer (3.31) as one possible candidate for such an amplitude

detection mechanism.

D. Representation of the Model

The model towards which we are working admits the following represen-

tation:

(3.37) x(t) = £(u(t) - x(t)), x(0) = X,

uase)

| Nt
@3 | o =3 f By (£7,%(6) 6, By dr

Here £(*) is as in (3.32), and

Tk("l)o ¥ z € (-»,-1)
(3.39) 4@ (1@, ¥z€lLi]
T, ¥z€ @

th

where Tk(~) denotes the k= Tchebysheff polynomial of the 1St kind [1].

The impulse response surface hk: F?+ x FQ+ + R is defined:

| ‘mei BN 2m—2
M 2 Y., (X)a, t 8, ,(x)B, t
A o 1/2 1B k&7 Tim kg~ fm
(3,40) | by (£,%) = (k) &El (-1) em1 ¢t (e ¢

—ut

T

where x denotes the output of the amplitude detector and where Ykz(.) and

-]18-




6k2(~) are as in (3.26). The integer M eu“, the scalar p > 0, and the

scalar a > 0 (see (3.32)) are scalar parameters of the model which will

be determined by the algorithm.

Lemma 4

For each € > 0, (k,u) € NxU,J >0 > a€ (0,8 =

(3.41) ¢k(ﬁ§ﬁ)—) = Cos (kut) + ey (t,0,1)

where

(3.42) leg (Es0,) | < e, ¥teR,
Here xs(- »0,1) denotes the steady-state solution of (3.37).

Proof: From Proposition 2 9 &'>0 2 g€ (0,8') =

(3.4 | 7o cosr)| <6, ¥ e [0, 2
S0

Then (3.39) and the uniform continuity of o () = 3 6>0 3 a€
(0,6) = (3.41) and (3.42). H

Lemma S5

For each ¢ > 0, (k,A) ENx1, J s>0 >

(3.44) le(t)| <6, wte R, =

t
(3.45) |j‘ b (t-t,)e()dr| <, ¥eER,
0

-19-



Proof: From (3.40) it suffices to consider the case:

t t
(3.46) If gz(t-r)e(';)dtl < Gf ]gz(t—r)ldt
0 0

where

. =1 ~ut
(3.47) g0) EE— 2N

But
. .
(3.48) f Igz(t-r)ldr < aganl
0

where

(3.49) igd , & g, (1) |dt = —%
dat [ ol L

Iv. Tl‘teﬂ Algor:lthm

In order to devise an algorithm stop rule letqc T x I denote the

set of "p" test frequencies and "q" test amplitudes relative to which we

will measure the accuracy of the model.

@D TR @) ST ¥ @) €N, x N

Relative to this set we then define a performance iqdex:

Zﬂ \
“.2) | a8 Zp Zq fwi[ (E,0, 0,) (t,m, 53, 124t
. n= (¢] sW, s -y sy

g )y Pttty T st

=20~



Here yNS(-,Q,A) denotes the steady-state response of the model to a

sinusoidal input of frequency @ and amplitude A. Finally consider the

functions
Byt I1xR, +Rand byys xR +R

defined:

(4.3 a . ( 4 (ytl? ﬁé 3 1"y, , () (kw,u)
.3a) 24 w,u) = (k) P 3;& Tre '3 %om " om V¥

@.3) b, () & @2 § - %0y, () (k1)
y 1% Rakda & mznl Y 4% 20 YO

+ sz(Aj)BszZmyl(km’")]

where uz(f,°) and vz(-,-) are as in (3.16).

Algorithm 1

Step 0: Pick e > 0, p > 0, o > 0, k €_\f, and set £ = 1. Typical values
might be:

(4.4) (ea'Usa’k')v = (1,.5,.1,10)
Step 1: Refer to (3.26). Compute y,(A,) and 6, (A)) ¥ (k,1) ed\IN "qu-

Step 2: Refer to (3.2) and (3.8) and (20). Compute

-21-



8 E P T ey - B v O a0
W - Agdé W,
& A Ay Wyoty mlekmja'k;n 1

3
. 2
Sggg 3: If ez 3_%3 set & = & + 1 and go to gtep 1,

Sggglé: Set M = 4 and refer to (4.3). Compute

qa XN R

+ by lwgady) = Gkﬁ(ww)]?-}
Step 5: Tf e(W) z,% €, set u = J‘é-aamui go ta step 4,

Step 6: Refer tp (4.2) and compute the perfoymance index n.

Step 7: If n> e, seta = %'and go to step 6; otherwise, stop,

Theorem 1

If the Pourier series representations of a, (+,)) relative nqgjik and

bk(',h) relative toClzk converge uniformly over T»¥ (A,k) € I x;JUN, then

for each € > 0 Algoyithm 1 terminates in a finite nuwbev of itevations

yielding a model with performance index n < e,

t
Puoof: Frem (3.27),y,,(A) 1s the m h

' Pourier goeffigient of a (+,))

relatjve to the complete orthonormal seta;*k. Similarly Gkn(i) is the

s Fourier coeffictent of by (+,0) relative to@B,, Hence (4,5) and the

-22~-



uniform convergence hypothesis = 3 M€ N 3

4.7) <3 VLM

82.'

Next Lemma 1, (3.17),and (4.3) =

4.8a) a £ @112 ZM: " v () D" (k+) >0
(4.82)  a C,0) > (k) P m§l e ?y RONCONER

(4.80) b (- )%g(k)l’2 }% )%‘, 8§, (A)(-1)"8, ¥, (k:) as u-~+0
' S hide & e ut om*2m-1 R

where S.‘E denotes uniform convergence over I.

Then (3.8) and (3.17) =

. h M
(4.9a) ﬁkj(-",li) %g 121 Teg(day,(-) as w0

(4.90) b Cw) > Z S @yyy () as w0

Hence (4.3); (4.5), and (4.6) = 3 u>0 3

(4.10)  e(n) < % e, ¥ u€ (0,0

Next refer to Lemma 4. Let Yﬁs("“‘”‘) and yﬁs(-,m,h) denote the steady-~
state solutions of (3.38) due to the sinusoidal and non-sinusoidal terms
of (3.41) respectively.

Then (3.16), (3.40), and reference to a table of integrals [11] =



M

N 2
@3y = 5 5 0012 (1) vy G5, (6000 D g, () |

 8ig (55 (E,0,0))8 1 (k1) 184n (kue) }

szZma

Next (4.3), Proposition 1, and the continuity of v, (+) and §,,(:) = Ja'>0 3
s € (0,a") = |

(4.12) ?:l z J Y trhgltng A - 2 [ g (uy 149 Gos (i, £)

+ Bkj (wi,u)Si:;(kwit)]}zdt < -g-

Hence (4.6) and (4.10) » J o" € (0,a') @ o€ (0,0 =

2n
TREND qfdi[ (tawgah,) = yho(tow, 001848 < 2
» ‘ R -l -y 0, g c= g
- g;-:”%o T AT ALY NSt sgrty! 3

Finally consider ¥§$(' 2W,A) , the steady-gtate xespopse (3,38) due o the
non~ginysoidal term of (3.41). From Lemma 4, (3.40), lemma 5, and the
continuity of by (t,) T o€ (0,0") 2a€ (0,0) =

2u
W
C4,14) ey ! Iy" (t,0,,A,)1%dt < &

Then (4,2), (4.13), and the tyisngle inequality ™ n < e. 5
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2. Physical Realization

Our objective here is to obtain a physical realization of the model
depicted in (3.37) and (3.38) which is minimal in the sense that exactly
2NM + 1 dynamic elements are required. We will employ 1deal elements.
Hence we neglect loading effects in this realization. Conaider the set

of functions:

12 XM
@150) | & 5,0 & ()P0 Y2 2 Gt [ ¥ G el <Ny xR,

4.150) | & , (W) & DPal/? 22 Bundia® ¥ Geom) €M x N, x R,
’ =m

Proposition 3

The model depicted in (3.37) and (3.38) can be realized with the system

shown in Fig. 1 and Fig. 2. This realization is minimal. .

Proof: Refer to Fig. 1. The outpﬁt of the integrator is constrained to

satisfy:

(4.16) x(t) = £(u(t) - x(t)), =x(0) = Z,
Hence this realizes the amplitude detection subsystem of (3;37). The

memoryless subsystems ¢k(-), ¥k GLJU can then be realized with

nonlinear resistors [2].

It remains to realize the impulse response surface hk(-,-). Refer

to Fig, 2. Here the response to an impulse is modulated by x(:), the
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output of the amplitude detection system, as follows:

: tz-lewut
Gy | Rem v 3 5,00 St

TTTI——

Hence (4.13) =

281 2&

. M M Y. (®)a_ 7" (x)B
418 B (6,0 = (0} NS pt| et *“&'WW
=l m=

Ppt

Re~ordering the summation then yilelds:

vm(x)omtz‘“"l by (1B, #v?

- 2 e & e P2 B ~ut
(4.19) Iy (t,x) = (k) 513-:1(1) R T Y T T |

Finally (3.,40) =

(4.200 £ (£,%) = b (4,%), ¥ (t,%)€ Ri 5

Note from Fig., 2 that the transfer function 1/(a+u) can be readily yealized

with a linear capacitor, two linear resistors, and an qperaticnal amplifiex
8.

V. Agglicgnigng
In ovder to substantiate the theoretic claims made thus far, we

censider a number of examples.

1. The Forced Van der Pol Equation

Consider the following second oxder nonlinear differential system dye



to Van der Pol [7]:
L 2.
(5.1) y+y Q-yO)y = ul®)
In this example the scalar parameters of the model were chosen as follows:

G.2) (oM = G5 T30 2)

Here & characterizes the function f£(-) of (3.32), p denotes the location
of the poles of the impulsg ?esponae surface hk(‘,-) of (3.40), and M is
the number of harmonics used for interpolation relative to frequenci.

In order to graphically demonatfate the convergence rate with respect
fo the number of time harmonics, N, two cases were consideréd. In'Fig. 3
we display the results for N = 3 harmonics. Two frequencies and two
amplitudes were plotted. The solid ling indicates the response of the
system, and the dashed ;ine the response of the model. In Fig. 4 the same
results are plotted for N = 6 harmonics. Notice that the terminal
behavior of the model undergoes a definite improvement. However
even with as few as N = 3 harmonics the "fit" to the empirical dafa (area

between solid and dashed curves) is encouraging.

2. The Forced Duffing Equation

Consider the following second order nonlinear differential system due

to Duffing [7]:
(5.3) ¢+ y[lty’] + 3 = u(t)

Duffing's equation is, of course, known to exhibit subharmonic solu-

tions under certain conditions. Care was taken to see that these conditions



were not satisfied since this would clearly violate ope qf oyr asgumptiqus.

In thig example the scalar paramete;a of the model were chosen as followg:
GA el = (G T3 D

The xeqults of the model are_ d;{.eplayed in Fig. p for N » 6 harmanics.
Again the performance of the model is accurate qualitatively, and (for

the number of harmonics employed) a good fit quantitatively.

1 ltipliex of Prescribed Bandwidth
Here we consider an analytic example. We model a nonlinear gygtem
which mpltiplies the frequency of the excitation by a fagtor of n ﬁ;,N

over the interval w & [1,3]. Hence

(X Cos(out), ¥ (t,w,d) € R x [1,0 1x I

0 s ¥ () €ERx @e)x T

Refer to (3,8) and (3.27). Here

a
5,6 v, =a@? ¥ B 1en )

%
kgl 1"2k

Following simplification the model can then be stated as:

(5.7 &(t) » £(u(t)mx(r)), x(0) = x,

¢
(5,8) y(t) = x(t) J; 8, (t-1) 0, G : Ydt

where:
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, Moz D% e, [ 1) 201 -ue
(5.9 g () =n Y T, 2 - (l-Zk) T

4. .An Amplitude Detection Example

Here we graphically display tﬂe steady-state response behavior~of the
amplitude detection subsystem depicted in (3.31). The resulta are shown
in Fig. 6 where we plotted the steady-state response X, (- ,w,A) against
-'the input u(e) for two values of frequency and two values of amplitude.

In this example the scalar parameter chosen was as follows:

Note that the peak-to-peak "ripple" in the steady-state response xs(-,m,k)
is:iérgef for lower frequencies es one would expect. However in all cases
the normalized error is of the order of two percent. We know from Proposition
2 that this result can be reduced by decreasing a, but only at the expense

sf“ﬁﬁte‘éiﬁggish'transieht behavior (try X5 > A)-

VI. . .Conclusions:

:- We have proposed an algorithm which converges to a model whose valid
- domain:consists of sinusoidal signals with frequencies and amplitudes
ranging over any finite set of points in the open first quadrant of ‘the
frequency-amplitude plane.

. The principal assumptions placed upon the nonlinear time-invariant

«:system being modeled were the following:

i) The response to a sinusoidal input tends to a steady-state waveform

which is periodic of the same period as the excitation and expressible'as a

=29~



Fourier series.,

11) The Pourier coefficients of the steady-state yesponse are
cqu;iqgops functions of amplitude in the meanrgquare sgnge indicated in
(305) *

141) The Fourier coefficients of the steady~spate regpense are
§ggarevigtegra§$e functiong of frequency. More spec}ﬁ*ggl%y the senvergence
of their representations velative to the cemplete orthamermal sets of (3,8)
wué; be unjform qver w € I,

It was shown that under these assumptions the algorithm gonverges in
a mean-square sense to an exact representation of the first N harmanies of
the steadyrstate response minus its dc (average) component, Here the
natural number N is fixed during initialization of the algorithm, but ig
othervise arbitrary,

The model constructed by the algorithm congiats of an spplitude Qaw
tection mechanism in tandom with a structure whose dynamics are segregated
from the nonlinearity in a manner similar to that done by Wiener [15). 4s
such the model admits a xelatively simple physical realization #hq:aggﬁr;zed
by 2NM + 1 linear dynamic elements, and N(24+]) + 1 nonlinear static elements.

Here the natural number M denotes the number of terms (bgrgnnica) ysed for
interpolation relative to frequency. It is detexmined by the algerithm, The
underlying mathematical structure of the model is ap orthegopal geries ex~
pansion relative to time whose coefficients are themselves twvnncated eytho-
gonal serles expansions relative to frequency, The bagis ﬁqna;&gnp‘pggd for
freqhency interpolation are nothing more than the £reqqency respenses of

simple linear subsystems. It was shown that as the peles of these linear
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subsystems tend to the origin, the frequency responses tend (both uniformly
and in a mean-square sense) to a set of functions (;4£ andclgk) which were
‘shown to be complete and orthonormal in %Qk,

Of the N(2M+1l) + 1 memoryless ﬁonlinearities employed in the realiza-
tion, N of these are specified ahead of time (the Tchebfsheff polynomials),
and thé remaining 2NM + 1 are parameters uséd to "mold" the‘tepresentation
to the specific system being modeled. Each of the characterizing functions

can be obtained in a pointwise fashion directly from steady-state measurements

of the system. They are, in fact, nothing more than the generalized Fourier
coefficients (relaﬁive to fréquency) of the classic Fourier coefficients
(relative to time) of the steady-state response. As such they are functions

of a single variable, the amplitude of the excitation. It was pointed out

that any amplitude detection subsystem having the properties of the (first
order) one we cited would suffice.:

Finally we acknowledge that a shortcoming of the model we have proposed
is the necessary trade off between accuracy and speed. As the desired
accuracy increases, the transient behavior of the model becomes more slug-
gish. However it was pointed out in the problem formulation that our in-

tention was to model the transient behavior qualitatively, and the steady

state behavior quantitatively. The algorithm was implemented on a

digital computer, and several examples were run. We considered forced
versions of the classic equations of Van der Pol and Duffing. In both
cases the results substantiated the theoretic claims we have put forward.
An analytic example of a frequency multiplier of prescribed bandwidth was
also presented. Finally the ateédy-state response characteristics of the

amplitude detection subsystem were demonstrated graphically. The.necessary
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stability around the amplitude of the excitation was confirmed for

several frequencies and amplitudes.
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" Appendix 1

A. Proof of Lemma 3

Refer to (2.3) and (3.32). Let
(A.1)  gx(t),t) & £u(t) - x(t)
T_hen (3.31) can be stated

(A.2) x = g(x,t), x(0) = X

From (3.34) g(+,t) is Lipschitzian with Lipschitz constant a]-'- >0 [7].

Hence 3 a unique x: R;,_ xR+ R >3

(A.3)  (t,x) = glx(t,x),t), ¥ (t,x)€R, xR

and

(A.4) x(0,x) =x, ¥x €R.
Suppose

(A.5) x(t,xo) ++ © ag t+®
It follows from (3.32) that

(A.6)  x(t,x ) ++o ast=+0

But this is a contradiction. Hence for each x € R 4 >0 3.

@Aa.n  |x(e,x)| <M, veeR
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Then from Massera [10] 3 xa:‘ R,*R »
A8 (0 =g (0,0, ¥eeR,

_and
' \ '21r‘ :
(49 x(t+=D =x ), ¥eeR,

vwhere w € [1,») is the frequency of u(-) I._
Next we will show that for each X, € K, the unique solution x(- ,xo)
is asymptotic to the per:l.odic' solution xe(»).
Let (to,xo) € R+ x R, We cOneidér three cases.
Suppose x(to,xo) > x (t ). Then (3.32) and (3.33) "" k(e ,x)) <
B (t). |
Suppose x(to,xo) = xs(to). Then the uniqueness .of x(-,*) = x(t,xo) -
xs(_t). ¥t€ [to:”)t | |
Finally suppose x(to,xo) < xs(to). In this case (3.32) and (3.33) =

x(to,xo) > xs(to). It follows that for each X eR:

(A.10) |x(t,x°) - xs(t)| +0ast+o

B. Proof of Proposition 2

Here we let the dependence of the steady-state éolut:l.on on w and A

surface formally as additional arguments. Suppose

(A.11) xs(to,m,k) > A + g,for some to € R

Let



(A.12) 5, & nin {1, 7 (2A+e)}

Then (3.32), (3.33) and a € (0,60) =
. 2
(A.13) k(e #T,0,0) <0, ¥TE [0, =
But this contradicts the periodicity of xs(- sw,A). Hence a € (0,60) =

(A.14)  x (t,0,0) <A+, ¥te o, 2

Let Axs(m,k) denote the peak-to~peak ripple of xs(- SWyA) .

(A.15) Axs(w,k) A max xs(t,w,}\) - min xs(t,w,k)
t € [0.2—21 t€ [0,-2-2-1

Then (3.32), (3.33), and a € (0,50) =

(A.16) Axs(aq,)\) <€
Suppose

A1) = (0 <A-¢, ¥ce 0,2
27
Then a (tl,Gl) € (0,—;] X (O,tl] independent of a 3

€
(A.18) u(t) xs(t,u) > ¥te€ [t1-61,t1+61]

Hence (3.32), (3.33) and (A.15) =

=35



esl
(A.19) Axs(u;,x) > ==

Let

A
- (A,20) &, = min{6_,8,}

2

Then o € (0,5,) and (A.19) = a contradiction of (A.16).

o

a € (0,62)
a.21) |x (e ow) = A] < €, for some t € [0."2-31

Finally (A.21) and a re-application of the fact that

(A.22) Axs(w,k) +0 as a-+0

= J € 0,8,) 3 &e(o,c) =

a.23)  |x (t,u,0) - A <, V€ [0,

-36-
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STEADY STATE RESPONSE
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| SINUSOIDAL EXCITATION

Fig. 3b. Steady State Response of System and Model for the Forced Van der Pol Equation with N = 3.
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STEADY STATE RESPONSE

3.00

N

[y

|
[y

.00

.00

.00

.00

3
L 3

FREQUENCY
. | A - '
§j%\g | _ V = 2
PLOT KEY
—— = DATA

MODEL

.00 -5.00 0 5.00 10.00

SINUSOIDAL EXCITATIGON

Fig. 4b. Steady State Response of System and Model for the Forced Van der Pol Equation with N = b,
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STEADY STATE RESPONSE

FREQUENCY

A = |
O « 4
3.000
A
2.980
2.960
2.940 ' A

-4.000 -2.000 0 2.000 4.000
SINUSOIDAL EXCITATION

Fig. 6a. Steady State Response of Amplitude Detection Subsystem
Under Sinusoidal Excitation.
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Fig. 6b. Steady State Response of Amplitude Detection Subsystem

Under Sinusoidal Excitation.
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