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Abstract

In this thesis we present an unified ;pproach to estimation problems,
using the theory of martingales and stochastic integrals. We analyse
the problem of absolute continuity of measures, and obtain the important
result of translation of local martingales under a change of measure.
An application of this result is the calculation of the likelihood
ratio in'detection problems.

In termé of martingales we define a generalized stochastic differential
equation and an observation equation. This forms a stochastic system
which unifies the formulation for problems of observations with
Brownian motion noise and of counting process observations. The
ﬁkaM&pmﬁamnmdmwwmgmwhmamcmﬂumdﬁrwe

two above mentioned stochastic systems. The least squares error

criterion is used, and we derive stochastic differential equations

for the optimal estimates. We discuss the resulting filters.
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1.

Introduction

Over the last few years a number of new proofs and new results have
been obtained for problems in estimation and stochastic control.
These results concern systems with Brownian motion disturbances.
There is also a recent interest in filtering problems for counting
processes, sometimes, called doubly stochastic Poisson processes.
When one studies the methods available to solve the above mentioned
problems, then one concludes that the method that solves most of
them is the theory of martingales and stochastic integrals. In
this thesis we present an approach to a large class of estimation
problems for continuous time processes. The method we use is the

theory of martingales and stochastic integrals. We discuss both the

method and the class of problems in more detail.

Martingéles and stochastic integrals.

As indicated in the book by Doob [1953] on stochastic processes,

there are three main classes of processes: 1. independent increment
processes; 2. martingales; and 3. Markov processés. Although in this
thesis martingales play a prominent role, the other classes are impor-
tant but in an implicit form. The early work bn martingale theory, as
can be found in Doob [1953], deals mainly with martingale inequalities
and the martingale convergence theorem.' Further work by Meyer [1966]
deals with the decomposition of martingales. fﬁe relevant martingale

theory for this thesis consists of the new developments concerning

"the stochastic integral. The concept of stochastic integral with

respect to Brownian motion was developed by Ito [1944]. In a series
of articles, the main ones being [Kunita,Watanabe,1967], [Millar, 1968],

[Doléanstade,Meyer,1970], the concept of stochastic integral has been
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extended to a class of martingales. A related importpnt result in
applications is the differentiation formula, giving the role for
martingale calculus. A complimentary result to this development
is the so called martingale representation theorem, which gives a
representation of certain martingales as a stochastic integral.
Together these new results are the tools in our analysis of

estimation theory. We will call this method the martingale approach.

Estimation problems.

The classical problems considered in estimation are detection,
filtering, prediction, smoothing and identification. Except for
jdentification we will discuss all of these. If for estimation
problems we consider the least squares error criterion, then the
optimal estimate is the conditional expectation of the unknown
variable given the o-field generated by the past of the observed
process.’ Thiébproperty forms the connection between estimation
problems and martingales. We will show later that certain processes
and their conditional expectation are related in a natural way with

associated martingale processes.

The.basig goal.

The basic goal of this thesis is the following:

To analyse and solve estimatién problems with martingale theory.

We will define a general stochastic system model in terms of
martingales, that covers both the system with Bfownian motion
disturfances, and thét with counting process observations. We will
derive.for'this stocﬂastic system a solution to several estimation

PIObleisnaméIYdetection, filtering, prediction and smoothing. This
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way we construct a general theory that handles a large class of
estimation problems. The stochastic control problem is not dis-
cussed here. For systems disturbed by Brownian motion it was con-
sidered by Davis,Varaiya [1973]. The extemsion to other processes

is under investigation.

The results.

We have only partially succeeded in attaining the above stated
goal. The restrictive factor, which is the key to the specific
results; is the martingale representation theorem. This theorem
has only been proven if the underlying process is Brownian motion
or a Poisson process. For these two cases we derive the solution
to the detection 'problem, and a;stochastic differential equation
for the optimal filtering estiméte. The main contribution of this

in

thesis is the frame work ofvmartingale theory that is relevant in
estimation problems. We comment further on the results in Chapter 7.
Outline of contents.

In chapter 2 we give the mathematical preliminaries, mainly ﬁhe

theory of martingales and stochastic integrals. We shortly summarize
the main definitions and results, such as to introduce an unified
notation and an easy reference for the reader.

In chapter 3 we discuss the problem of absolute continuity of measures,
its characterization in terms of martingales, and the translation of

martingales under a change of measure. These results have important

' applications, such as the detection problem which is discussed in

section 3.4.
In chapter 4 we consider generalized stochastic differential equations,

and give a new definition of a stochastic system. We also consider
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the projection of processes on a family of o-fields, which includes
the concept of innovation process.

In'chapter 5 we approach the general estimation problem. After a
review of the literature, we present the elementary concepts of
estimation theory. We then give the elementary rgsqlts for filtering,
prediction and smoothing.

In chapter 6 we derive in detail the filtering formula's for the
observation equations with Brownian motion disturbances and for
counting process observations. The prediction and smoothing formula's
are also derived. Finally a discussion of the martingale approach

to estimation problems is given.

In chapter 7 we conclude our work with a discussion and conclusions.

Notation.

In all chapters, except chapter 2, we number all definitioms,

theorems and o;her results consecutively. The first two digits of
this labél indicate the section in which it is located. In chapter

2 we have labelled every statement and omitted the section labelling.
All real énd vector valued variables are denoted by lower case symbols.

Matrix vaiued variables are denoted by capital symbols.
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2.

2.1.

2.2.

Stochastic processes, martingales and stochastic integrals.

Introductioﬁ

Thié chapter contains the mathematical preliminaries, necessary

for our investigation of estimation theory. We will state the
main definitions and results, so as to give an easy reference of
notation to the reader. Slight extensions of some results and some
new definitions are also given. All items are numbered for
reference, a method we have adopted from Meyer. We start with some
concepts from the theory of stochastic processes, and martingales.
Since Brownian motion and the Poisson process play an important
role in this thesis, we discuss them in Section 2.4. In the fol-
lowing section we define stochastic integrals and discuss its
properties. In the last section we state a number of martingale

representation theorems, which play a crucial role.

The topics presented in this chapter form the essential points of
martingale theory. The application of these results we will call

the martingale approach.

Stochastic‘processes.

In this séction we will introduce the main definitions and notation
cdncernihg stochastic processes. Although the basic reference to
stochastic is Doob's book [1953], we will use concepts introduced

by Meyer and his co-workers in the context of martingale theory.

The relevant references are Meyer's book [1966], a subsequent article

[1968], and primarily the book by Dellacheric [1972]. See also the

first two chapters of the new book by Meyer [1972]. The following

concepts are denoted by the term general theory'of stochastic processes.
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We will number the following definitions and results for easy

reference.-

o-fields.

1.

2.

3.

Let @,F,P) be a probability space, and let F be complete with
respect to P.

Let TC R, be the time interval of interest, usually we will take
T=[0~)or T= [0,1].

(F,t € t) is a family of g-fields satisfying:

a. Sub-o-fields of F : F CF, for all t €T,

b. increasing : if s < t then F_ C:Ft,'

c. right continuous : NF_=F_ for all tE€ T
' s>t t

d. FO contains all the null sets of F.
Arbitrary families of g-fields will be understood tosatisfy all

these conditions.

Define F_ 4 v ¥
tET

£ i.e. the g-field generated by the union of

(Fut €T).

Stochastic processes.

5.

6.

A stochastic process x = (x t’ t €ET) is a collection of random
variables, indexed by the parameter t € T. |

Scalar or vector valued processes will be denoted by scalars,
matrix valued processes by capital letters.

The stochastic process (xt,t € T) is said to be adapted to the

family (Ft,t €T), if for all t €T, x_ is F, measurable.

t
[Meyer, 1966,IV,D31]. Notation (x,,F,,t € T), and this notation

will always imply that x is adapted to (F,t €T).

If x is a stochastic process, then (Fxt’t € T) will always denote

-6-
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8a.

t. x_glimx.

the family of sub-o-fields generated by x, i.e. Fxt = o(xs,Vsit)
We always take the right continuous family (Fxt +,t € T), where

F = N F_.
xt+‘s>txs

" If a stochastic process x has sample functions, which, for all

most all w, are right continuous, and have left hand limits for

all t € T, then Axt 4 X, - X is called the jump of x at time

t t-

t stt 8

Two stochastic processes x and y, defined on ‘the same probability
space (2,F,P), and taking values in the same measurable space,
are called modifications of each other if X =Y, a.s. for all

t € T. [Meyer,1966,IVD5].

Stoppitig times.

9.

10.

11.

12.

A random variable T taking values in T, is called a stopping
time of a given family (Ft’t € T) if for all ‘t €ET:

{w E,er(m) < t} € Ft' If T = [0,°), T may‘ take the value «.
[Meyer ,1966,1V,D33]. There exists a classification of stopping
times, for a detailed account see [Meyer,1966,IV,VII;1968;
Dellacherie,1972,I1I]. |

If (F,,t € T) is an increasing family, and if T is a stopping
time of it, then F_2 (A€ F [AN{w € q|t(=) <t} €F, ¥t €T
A

F'r- 0

| F,. V{AN{uw€aql|t < 't(m.)}|A€Ft, for some
t € T}, [Dellacherie,1972,I11,D27]. |

(Ft’t € T) is called quasileft continuous if F‘r = Fl__ for all
pred';ctable stopping times Tt. [Dellacherie,1972,1I1,D38].
If'(xt’,Ft’t € T) is a process, T a stopping time with respect to
(Ft,_t €T), then x . 4 x, L(t>t) + x_ I(t<t) is called the

process x stopped at t. I A is the indicator function.

-T-



13.

14,

15.

Using stopping times, many properties of prdcesses are

characterized locally. That is, there exists an increasing

sequence of stopping times {1n}, lim T, T a8, such that for
n

N ATn has a certain property. This

procedure of proving certain properties locally, will be referred

all n, the stopped process x

to as a stopping time argument.

If x is a right continuous adapted process, having left hand

limits then:

1. x charges a stopping time 1 if P(xr # X TS w) > 0,

2. x has a jump at T if x_ ¥ x__ a.s. on the set {1<=}
[Dellacherie,1972,1IV,29].

An adapted right continuous stochastic process x, having left

hand limits, is called qua;i—left continuous if it satisfies

one of the following equivalent conditions:

1. the jump times of x are totally inaccessible,

‘2. x does not charge any predictable stopping time,

3. 1if {Tn} is an increasing sequence of stopping times, then

lim xTn = X4 T a.s. on the set {lim T, < w}.
[Dellacherie,1972,1IV,T32].

o-fields. on T x Q.

ia : 16.

17.

18.

‘The o-field P on T x Q generated by all left continuous adapted

proéesses on T x Q, is called the predictable o-field.
[Meyer,1972,1,5].

fhe'o-field‘ﬂ_on T x Q generated by all right continuous adapted
processes that have left hand limits; is called the well
measurable o-field. [Meyer,1972,1,5;Dellacherie,1972,1IV,T26]

A stochastic process (xt’Ft’t € T) is called predictable (well
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measurable), if it is measurable with respect to (T x Q,P)
(respectively (T x Q,W)). It follows that any left continuous
. adapted process is predictable, and any right-continuous adapted
process well measurable. Under certain conditions, processes
have a well measurable or predictable projection, see

[Dellacharie,1972,V].

Increasing processes.
19. The real-valued process (at,t € T) is called an increasing
process if:

1. a, = 0, 2. for all most all w the sample paths of a are

increasing with T: i1if s < t, then as <a_a.s., 3. ais

t
sample right continuous.

We define the following classes:

20. Bv' 2 {a]a is an increasing process},

21. BV = {ala = a, = ay, 8;, a, € BV+}, a € BV is called a process
of bounded variation.

+ . + +
22. IV = {a €BV | sup E(a) <=}, IV as BV from BV . a €1V is
ter

called a process of integrable variation.

+ +
23. LIV = {a € BV IH{Tn}, limt ==a.s., ¥n : a € IV+},
n

tAT
n
LIV, a € LIV is called a process of locally integrable variation.

Integration.

24. 1f a € IV then L,(a) = {¢|¢ adapted, predictable, E[f |¢8| ldasll
T

< co} )
t ’ '
25. Ifa€1lvV, ¢ € Ll(a) then (g q:sdaa,Ft,t € T) is an adapted well
0

measurable process, the integral is well defined

[Dellacharie,l972,IV,39].



[

2.3.

26. It is known that the predictable projection of & process of
bounded variation need not be of bounded variation. However
the following is true.

27. 1f a € IV+, then there exists unique processes a_ € IV+, well

measurable, a_ € IV+,predictable such that for every positive

p A
$ € Ll(a), E[j;¢sdas] = Eﬁf;¢sdaws] = EE{;¢sdaps]. 3>, are

called the dual well measurable; respectively the dual predictable

projection of a. [Dellacherie,1972,V,T28].

Martingales.
In thiéAséction we introduce certain classes of martingales, and the
main resulté of martingale theory. The points given here were developed
by Meyer, the main references are Meyer [1966], Kunita, Watanabe [1967],
Doléans-Dade,Meyer [1970]. In the following let T = [0,»), and we
supposevtﬁat some family of o-fields (Ft,tET) is given, satisfying
the usual conditions.
1. The stochastic (mt,Ft,t € T) is a martingale if:
1. 1t ié adapted, 2. Elmtl <o for all t €T, 3. E[mtIFS] = m
a.s. for all t,s €T, s < t.
We introduce the following classes of martingales:
2. Ml 4 {m|m is a right continuous adapted stochastic process, having
left hand limits, m, = 0, m is a martingale with respect to some
specified family (Ft,t € T), and uniformly integrable.}.
3. M8 (me “1':25 E@) < o}
4. M; A {m € lem is sample continuous}.
5. Mloc = {plm is a right continuous adapted stochastic process,
mo = Q, and there exists an increasing sequence of stopping times
{rn} » lm 1 == a.s., such that for all n, on the set {r_ > 0l,

n

m, . €M.1}.
U\Tn v 1 -10-
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c A

= €
M oe {m Mloc' m is sample continuous}.
A _
MZloc = {m€ Mlocl there exists {‘tn}, lim T, = a.s., such that

n

for all n, m € MZ}'

tAT
Martingales in the abov: classes are called martingales, or

local martingales with adjectives integrable, square integrable,
sample continuous, or locally square integrable where suitable.
Martingale theory was developed by Doob and Meyer. Attention
focused mainly on supermartingales and M2 martingales. Because
these classes are quite restrictive, the class of local-martingales
was introduced, apparently first by 1to, Watanabe [1965]. Kunita,
Watanabe [1967]also used local-martingales, which are locally

square integrable martingales (M210c) according to our definition.

Doléans-Dade, Meyer [1970] distinguished between the classes Mloc

c  _MC
and MZloc' Note that we have Mloc MZloc which can be proven
by a stopping time argument. However Mloc QhMZloc Doléans-Dade

has givén a counter-example.

Decomposition of martingales.

10.

11.

12.

13.

14.

€
The martingales m,n Mloc

€ Mloc [Doléans-Dade,Meyer,1970,Th.7.]. If m,n € M2, then they

are called orthogonal iff (mtnt’Ft’t €T

are orthogonal iff mn € Ml' Similarly m,n € M orthogonal

2loc
iff m €M

loc
Mg 4 {m € M2|m is orthogonal to all n € M;}, such m is called

discontinuous.
d _ c
Mlqc {m € Mloclm is orthogonal to all n € M/ }.
= € i Cc
Mgloc {m leoclm orthogonal to all n € M210c}.
Ifm€EM then there exists an unique decomposition m = o + md,

loc
d d

(o4 Py
where m~ € Mioc, u’ €M) . [Doléan-Dade,Meyer,1970,Th.7.].

-11-



En€ M,, then m® € M, nd evng [DD-M,1970,Th.4.].
15. 1If (Ft,t € T) is quasi-left continuqus, than every m € Mloc is
: quasi-left continuous. Hence the jumps of m are totally
- inaccessible [Dellacherie, 1972,V,T42].
16. If m€M;__NBV, thenm = 0 a.s. [Dellacherie,1972,V,T39].
17. If m€ Mloc N BV and predictable, and if (Ft,t: € T) is quasi-left
continuous then m = 0 a.s. This follows because by 13 m charges
only totally inaccessible stopping times, but:v since it is also

predictable, it must be continuous. Then the result follows

by 16.

Increasing processes and martingales.
18. Two 'processes a3, € IV+ are called associated iff they have
the same dual predictable projection [Dellacherie,1972,V,D35].
19. Two adapted processes a,,a, € IV+ are associated iff (aj,-a Zt’Ft’t €T
€ M [Dellacherie,1972,V,T36].
20. Given an adapted a, € IV+ and a predictable a2'€ IV+. Then a,
is the unique dual predictable projection of a; iff ay and a, are
[Dellacherie,1972,V,T38].

associated iff (a F,t €ET)EM

1t 22e’ 1°
Note that this result can be extended to the classes IV, LIV+, LIV.
- 21. If a, is the dual predictable projection of an adapted process
a, theri. a, is sample continuous iff a; is quasi-left continuous
; . [Dellacherie,1972,V,T40].
Martingales and associated increasing processes.

23. Ifm€ MZ 1is real valued, then there exists-an unique predictable

increasing process ((m,m)t,Ft,t €ET) € IV+, such that

-12-



24.

25.

26.

27.

28.

29.

30.

31.

33.

(mz—(m,m)t, F,t €T) €M, [Meyer,1966,VI1123]. (m,m) will
t - .

be called thepredictable quadratic variation of m,

If m,n € M, then define {m,n) & %_—((m-ln,m-l-'n) -{m,m? =-<n,n) ).

If m €M, is vector valued, then {m,m) is matrix valued and

defined element wise ( mi,mJ) ).

If m € M21oc then there exists an unique predictable process

{m,m) € LIV’ such that (mi—(m,m)t- yFost E T) €M, .- The
proof of this follows by a stopping timej argument from 23.

If m € Mloc and if m = m° + md is its unique decomposition, then

define [m,m], = (n,u®) + 2 (am)%. Tt will be called the
; s<t
well measurable quadratic variation. It is well known that

l[m,m]'t < a.s. for all £t €E T [Doléans-Dade,Meyer,1970,Th.7.]

Note that because M;:.oc = Mgloc’ {m®,m®) is well defined.

If m;yn€ M, , let [m,n] =% ([mn,mn] - [m,m] - [n,n]), then

loc

" also [m,n], ={m%,n%), + Z (Am_) (An ).
4 t t s s

s<t
Both [m,n] and {m,n) , whenever they exist, have a characterization

in terms of limits of sums of the quadratic variation of the
process [Meyer,1967,I1].

It will be shown later (2.5.25) that if m,n € Mloc then

(mtnt-[m,n]t,Ft,t €ET) € Mloc

Note that if m € MZ’ then both the well measurable [m,m] and the
predictable quadratic variation {m,m} are well defined and

([m,m], - (m,m)t ,F,tET) E M. [Doléans-Dade,Meyer,1970,Th5. ]

We therefore define: If m,n € and if [m,n] € LIV then we

Mloc
denote the unique dual predictable projection of [m,n] by (m,n) .
A characterization for (m,n) is, that it is a predictable process,

adapted, of bounded variation and that ([m,n] - (m,n},_>F ,t €ET) €
t t’°t

-13-
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Mloc; The existence and uniqueness follows from (2.3.20).
We will show later that there exists a case where m & M21oc’
but still such an {m,n) exists. (2.5.21).

33. If (Ft,t € T) is quasi-left continuous, then if (m,m) exists,
it is sample continuous (by 2.3.21). {m®,m®) is always

sample continuous.

The °1ass‘M210c°
In subsequent chapters we concentrate our attention on martingales
in the class MZloc' It is therefore of interest to obtain a suf-
ficient condition for a martingale to be in MZloé'
34. The martingale m € Mo is in MZloc if gither of the following
is true:
1. E(mt)z <o for all t € T.
2. [m,m] € LIV+.
Proof. 1. is obvious and 2 follows immediate]'.y‘ because [m,m] is

locally integrable and m2 - [m,m] €E M

loc

Semi-martingales.

35. An adapted stochastic process (xt,Ft,t € I) is called a semi-
martingale if X, = X + a, +m,, where a € BV, m € Mloc' The
clas;s of such processes is denoted by SM. [Doléans-Dade,Meyer,
1970, § 3;Meyer,1971b,D7]. Almost all pfoce.sses we will
encounter in this report are semi-martingales. An important
subclass are those for which the process of bounded variation
is predictable.

36. The decomposition of the semi-martingale is not unique, however
there are certain intrinsic properties: Xq is unique, since
ag = 0, m, = 0. The continuous part of the local martingale

-1~



n° is uﬁique given the family (Ft,t € T). Hence we define

x° 4 nS. Note however that this is not the sample continuous

part of %, since a can be sample continuous too. Axt is also
ﬁnique. [Doléans-Dade ,Meyer,1970, § 3,5].

: 37. Because of the above intrinsic properties we can define:

] if x € SM them [x,x], & (x%,x%)  + Z<: (x)? € Bv'. Both
terms are well defined. Furthermores.((txc,xc) t’Fxt’t €T) is

adapted and unique. To prove this we use the differentiation

t
2 _ .2 c _c 2
rule 2.5.23., x = xp + SO 2x__ dx +(x ,x )t + gt(Axs)
This implies that ((xc,xc)t,Fxt,t € T) is adapted, and the

uniqueness follows similarly. If x has two different
decompositions with respect to different families of o-fields,

X, =a,_+mn_=a

1 € € m €
. . . +m,, where (mt’Ft’t T) € My 0> (mt’Fxt’t T,

t

then the above implies that {m®,m®) = (x%,x%) = (a%,a%) . 1If

m then [%x,x] = [m,m].

X
3. Ifx=a+m, a€ BV, m€E Mloc’ and a is sample continuous,
then [x,x] = [m,m]. This is true because the continuous part

of a does not show up in the definition of [x,x]. If x =a +m

a+m, where a and a are sample continuous, then [m,m] = [x,x]

[ﬁ,ﬁ], irresp?ctive of the family of o-fields to which they

are adapted.
2.4, Brownian motion and counting processes.

! Brownian motion is a natural phenomenon, the existence of which was
first published by Brown 1827. He observed 'small particles in rapid
oscillatory motion.' For a detailed account on Brownian motion see
Nelson [1967]. This book discusses Brown's discovery of the motion

and the many mathematical theories for explaining its behavior,

-15-



including Wiener integrals and certain stochastic differential

equations. An interesting application is the discussion of

quantum physics from a stochastic viewpoint. In this thesis the

name Brownian motion denotes a stochastic process, defined below,

which is a mathematical model of the natural phenomenon. For

reference to the following see Wong [1971a], and Doob [1953].

1.

The process (xt,t.G T) is a Gaussian process iff every finite
n
linear combination of the form ), a;x, is a Gaussian random

. i=1 i
variable.
A stochastic process (wt,t € T) wii:h values in R, is a Brownian
motion if:
1. it is a Gaussian process., 2. E(wt) =0, for all t € T, 3.
E(wtws) = ¢ min(t,s), where ¢ is a strictly positive constant.
Under certain conditions we can choose a sgparable version of
the process, and this version will then be sample continuous.
if ¢ = 1, we will call w standard Brownian motion in R. Standard
Brownian motion in Rp, will denote a vector valued. process,
whose componentsare independent standard Brownian motions in R,
s0 E[wt(ws)T] = min(t,s)I where I is the identity matrix
in R™.
Brown;an motion has the following‘properties: 1. it is a process,
with stationary independent increments, 2. it is a martingale
with reépect to the g-field generated by it, 3. it is a Markov
process. Brownian motion is thus a sample continuous process
that is in all the three main classes of stochastic processes.
The martingales characterization. Note that if T = [0,®)

C

(wt,Fwt,t € T) € Myqoc With <w,w>t =t., IfT= [0,1] then

-16-



(wt’Fwt’t ET) E M; since { w,w) is bounded.

7. Using the martingale characterization, there is an important
equivalent condition. If (w ,F ,t €T) € Mioc, and if (wow) = t,
then w is a sample continuous Brownian motion process.
[Kunita,Watanabe,l967,Th.2.3.]

8. The Brownian motion process belongs to another class of pfocesses,
namely Hunt processes.' This is because any process with stationary
independent increments is a Hunt process. A Hunt process is
essentially a strong Markov process, taking values in a specific
space, that is right continuous, and quasi-left continuous, and
for which the generated o-field satisfies certain conditions.

For references see [Dynkin,l965,Meyer,1967b;Blumenthal,Getoor,l968].

The only result we need is that the o-field generated by a Hunt

process is quasi-left continuous.

Counting processes.

We will now review the Poisson process, and its generalization the
counting process. These topics are needed in later chapters. Let
T = [0,®).

9. A real-valued stochastic process (nt,t € T) is a counting process

2. n is constant, except for positive unit jumps at random times,
3. n has right continuous sample functions almost surely.

Note that the aeove definition implies that n is integer valued.
Since we use only the countability of the space of values of n we
could have generalized the definition, however we have not done

SO.
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10.

11.

Define the stopping times 1 = inf{=,t € Tlnt > m}, for
m=1,2,... . These stopping times are and will be called
the jump times of the counting process n.

The counting process n € LIV+, is locally of integrable

variation. This follows since n < m.
tAT, =

The Poisson process.

12.

13.

14,

15.

A stochastic process (nt,t € T) is a Poisson process with

constant rate A if:

1. n is a counting process,

2. n has independent increments,

3. (nt-ns) has a Poisson distribution, with parameter A(t-s),
where A > 0 is a real-valued constant.

If A = 1 we call n a standard Poisson process. A standard

Poisson process n 1in Rm, will denote a vector valued process,

whose components are independent standard Poisson procesées.

The Poisson process has the following properties: 1. n has

stationary independent increments, which is obvious from the

definition, 2. (nt—t’Fnt’t € T) is a martingale, with respect

to the o-field generated by it, 3. n is a Markov process. The

Poisson process thus is in all the main classes of stochastic

processes.

The martingale characterization: If T [0,») then (nt-t’Fnt’te T)

€ Mgloc and by definition [nt-t’nt_t]t =n
= t. If T =[0,1] then (n,-t) € M).

afe associated. The martingale property fbllows easily from the

. and hence (nt-t,nt--t)t

This implies that n and t

stationary independent increment property. Because n and t are

both in LIV+, (nt-t) must be a discontinuous martingale.
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Because (nt-t,nt—t>t = t, which is bounded on T = [0,1] we
have (nt—t)e M; on T = [0,1].

16. It is interesting to compare the Brownian motion and the Poisson
process. Both are in all the three main classes of stochastic
processes: Stationary independent incfement processes, martingales
and Markov processes. These classes were discussed in detail in
Doob's book [1953]}. The difference between Brownian motion
and the Poisson process is in the character of the sample func-
tions, the first is sample continuous, the second is discontinuous.
This is also shown in that w € Mgloc and (n -t) € Mgloc'

17. There are other characterizations of the Poisson process. Such points
can be found in Ross [1970].

18. Since the Poisson process is a process with stationary independent
increments it is a strong Markov process and a Hunt process.

This implies that (Fnt’t € T) is quasi-left continuous.

19. Since (nt-t,Fnt,t €ET) € Mgloc is adapted, by 2.3.15. (nt-t)v
charges only totally inaccessible stopping times, and this
characterizes the jump times of n.

20. Using the martingale characterization we have the following
equivalent condition: if the process.(nt,Ft;t € T) satisfies:

1. it is adapted, 2. it is a counting process, 3. (nt-t,Ft,t €N
€ Mloc’ then n is a standard Poisson process. The proof will be
deferred to the end of section 2.5. Note that 2 characterizes

the sample functions of n and 3 gives the martingale

characterization.

Counting processes

Using our characterization of the Poisson process, in terms of
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martingale theory, we will now seek a similar approach for arbitrary

counting processes.

21. Given a counting process (nt,Ft,tGET) that is adapted. Then
there exists an unique predictable process (qt’Ft’t €ET)E L’
such that (nt-qt,Ft,t €T)E M‘leoc' The process q is just the
dual predictable projecfion of n, the existence and uniqueness
follows from 2.2.27. and 2.3.20. [Dellacherie,1972,V,T28].

If (Ft?t € T) is quasi-left continuous, then q 1is sampie
continuous.

22. Although q is sample continuous under certain circumstances,
in general it is not absolutely continuous with respect to
Lebesgue measure t. However in the case where this is true
we define the following.

23. Given a counting process n, and an increasing family (Ft’t €T
satisfying the usual conditions, such that n is adapted to it.
If there exists a process (At,Ft,t €17, sgtisfying it > 0 a.s.

Ads < = a.s., such that (nt-g Asds,Ft,t €T

T 0
, then we call A the rate of the counting process n with

for all t € T, and S
€ Mloc
respect to (Ft’t €T).

Note that if such a process A exists, then it is unique almost
surely by 2.2.27. It is necessary to specify the family of
o-fields with respect to the rate process, aé will be seen later.
Sincebthe process q, = St Asds is increasing, we see that it is

0
necessary that )\t > 0 a.s.

24. If (Ft’t € T) is quasi-left continuous, then the jump times of the

counting process are totally inaccessible.

t
25. Let m, =n, - g Asds, then if A is the rate process,
0}
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2.5.

d
- e
(m,,F, >t ’") € Mioc

and hence {(m,m’) ¢ = S

. Furthermore by definition [m,m]t =n,
t

A ds.

o s

Stochastic Integrals.
In this section we‘define stochastic integrals. We start with a
short review on the development of stochastic integrals. We are

t

interested in defining integrals of the form S ¢des. As usual

we call ¢ the integrand process, and x the progess with respect to
which we integrate. If x is a process of bounded.variation, and

¢ satisfies certain integrability conditionms, then we can define the
integral to be a Lebesgue-Stieltjes integral. However this does not
work if x is not of bounded variation, which is the case if x is a
Brownian motion process. The first to consider such integrals was
Wiener, but he dealt with a limited case and did not really integrate
the process. (See Wiener [1958]). TIto [1944] was the first ome to
define stochastic integrals. He considered the case where x is a
Brownian motion process, and ¢ an adapted process in a suitable class.
An important property of this integral is that it is martingale.

Next we have to mention the decomposition theorems of Meyer for square
integrable martingales. Using this result Kunita,Watanabe [1967]
defined stochastic integrals with respect to square integrable
martingales. Their work is based on earlier articles by Motoo,
Watanabe [1965], and Watanabe [1964], where similar integrals were
defined for functionals of a Markov process. Meyer [1967,1/1V]
discusses the work of Kunita, Watanabe. The latest main contribution
to the theory of stochastic integrals is the article by Doléans-Dade,
Meyer [1970], where stochastic integrals are defined for arbitrary

local-martingales and a general differentiation rule is given. See
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also the subsequent survey articles Meyer [1971a,b]. The main

new idea is that stochastic integrals with respect to martingales
should be considered as a mapping of martingales into martingales.
The class of integrand processes which makes this true is precisely
the class éf predictable processes, satisfying certain integrability
conditions. This idea of defining stochastic integrals to be
martingales was published earlier by Millar [1968]. His work is an
extension to the continuous-time case of some results by Burkholder
[1966] for the discrete-time case. The forth coming book by Meyer
on martiﬁgales and stochastic integrals of which the first two
chapters have been published [1972], will undoubtedly contain these

points in detail and should become a major reference.

Integrand pfocesses.
We define several classes of integrand processes, we limit attention
first to real-valued processes. The main reference for this chapter
is [Doléans-Dade,Meyer,1970] which we will abbreviate by [DD-M,1970].
1. If a € IV then
Ll(a) = {(¢t,t'€ T)|¢ is adapted, predictable, and
E[S;|¢s|'|qas|] < w}, The family of o-fields to which ¢ is

adapted is specified in each individual case.

2. Ifm€ MZloc then Lz(m) = {¢|¢ adapted, predictable,
E[L[¢S|zd<m,m> ] <=l
3. IfmEM then L,, (m) = {¢|¢ adapted, predictable, and

2loc

there exists an increasing sequence of stopping times {Tn},

n
1lim T == a.s. such that for all n E[S |¢s|2d(m,m) S] < »}
n 0

A A )
4, If m € Mloc N LIV then Llloc(m) = {¢l¢ adapted, predictable,

and there exists an increasing sequence of stopping times
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T

n
{t }, 1im t_ = = a.s. such that for all n E[S ¢ _|<|dm_|] < =}.
n n n o © s
5. A process ¢ is called locally bounded if there exists an

increasing sequence of stopping times {rn}, 1im L a.S.,
such that for all n, |¢tAIn'I(Tn > 0)| f_Mh fnw, where the (Mn)
are real positive constants.

6. LB 4 {¢|¢ adaptéd, predictable and locally bounded}.

7. A process ¢ € LB is called a predictable locally bounded process.
This class is somewhat restrictive, as has been indicated by
Doléans-Déde,Meyef, but will undoubtedly be extended later on.

This is also the reason for introducing the classes Llloc(m)’

L21°c(m) above.

8. The most usefull example of a locally bounded process, is the
following, if x is a right continuous adapted process, having
left hand limits then (xt_,t € T) € LB. Note that if a € LIV

orm €M, , then a and m, € LB.

loc t- t-

9. TFor multi dimensional processes the definitions are similar using

appropriate norms in R and (¢: d(m,m)s ¢s) instead of ¢§ d(m,m>s.

Stieltjes and stochastic integrals.

t
10. Ifa€1v, ¢ € Ll(a) then the Stieltjes integral (S ¢Sdas,t €T) €E1V.
- tJ0
11. If a €BV, ¢ €LB then the Stieltjes integral (S ¢ da_,t €T) € BV,
0
is well defined [Meyer,1971b,D3].

12. If m€ Ml niv, ¢ € Ll(m) then the Stieltjes integral
t
(¢ am ,F ,e €1 €M NIV [DD-M,1970,prop.2].
0% S t 1
13. If m € My, ¢ € L2(m), then there exists an unique element

t
(¢.m) = (S ¢sdms,Ft,t €T € M2, called the stochastic integral,
. 0 )

2

t
1 . =
such that for all m; €EM,: ((¢.m), ml)t So¢sd(m,ml)s .
[DD-M,1970,th.3]. Also for all my EM,: [(qS.m),ml]t = S0¢Sd[m,m1]s

2
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ic-

14.

15.

16.

17.

18.

19.

20.

21.

[DD-M,1970,th.6].

If m € M2 k\IV, ¢ € L2(m) r"Ll(m) then the Stieltjes integral

and the stochastic integral coincide {DD-M,1970,prop.3].
€
If m MloE

= “int 1
(¢.m) (SO¢Sdms,Ft,t €ET) € Mloc’ called thetstochastic integra

such that for all my € Mloc: [(¢.m),m1]t = So¢8d[m,m1]

, & € LB, then there exists an unique element

s

[DD-M,1970,prop.5].
t
Ifm € Myi0c? ¢ € LZloc(m) then there exists an unique elemen

oc Such that for all my € LIS ((¢.m),m1)t =

21
= So¢sd(m,m1)s.
1f meulocﬂuv, €L

(¢-1:) EM c

lloc(m) then the Stieltjes integral

t
€ € N

(So¢8§ms,Ft,t T) Mloc LIV.
The last two assertions follow by a stopping time argument from
13 respectively 12.
The extension of the above definitions to multi-dimensional
processes is straightforward. Care should be taken in handling
the quadratic variation process.
Examples, the definitions 16 and 17 are given to define:

If w is a standard Brownian motion, ¢ € LZloc(w),-then

t .

emyeMt. =M

(So¢sdws,Ft,t T) MZloc Mloc' If n is a standard Poisson
d

- € € N - - =
process, then (nt t’Fnt’t - T) M210c LIV, (nt t,n, t>t t.
d

» € - - e € N
If ¢ Llloc(nt t) then (So¢s(dns ds),Fnt,t T) Mloc LIV.

Note that ¢ €L (t) imglies that ¢ € L (nT—t) since

a . lloc n 1loc n
E[SO g1 ldn ~ds]] :E[S ¢, |+ (dn_+ds)] = E[S o [-2ds] < =.
0 0

Example: We can now give an example, that even if m, ,m, € Mlo ,

c
but not in M,, ., a predictable process (ml,mz) as defined in

2.3.31. exists. Let n be a standard Poisson process, then

) T
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22.

: d
_ em € .
(-t,F st €T) S My 0 Li10c

m 4 t¢ (dn_-ds) € Mé but not in Md Now
t Pgldhg c

Let ¢ € (t), such that

1o 2loc’

0 t
[m,n -t]_ =\ ¢ dn_, which is in LIV by definition of ¢. It
t "t 08 8 t
has the dual predictable projection (m,nt-t)t = S ¢8ds.

0

Let x € SM with the decomposition x = x, + a, +m, where

t

a€BV, mEM Let ¢ € LB then we define by 11 and 15

loc’
t A t t
Sb¢sdgs = ¢0 - X + S0¢8das + S0¢sdms. All terms are well
defined and the integral is again a semi-martingale.

[Meyér,197lb.,D.8].

The differentiation rule.

23.

24,

25.

If x € SM in R", and if £ : R® » R 18 a twice continuously

' 2 2
differentable function, w:l.t:h-sl-g = Gﬁﬁ_ seoo of ), df 3 £ )
dx ox x 2 9x, 90X

1 n dx i3 13

then f(x) € SM of the form:

t t 2
£(x,) = £(xg) + So &£, ax_ + So 2ol 45 (e ax,x%) ]

2 dx

af
+ §t [£(x)-f(x, ) - 5o (%) ox.] (DD-M,1970,th.8].

where Tr(+) denotes the trace of a matrix. From this equation
the appropriate scalar and multi-dimensional function forms can
be derived. An easy extension is to functions f(t,xt), where
f(t,x) is once continuously differentable in t. We give some
special cases:
1f x,y € SM in R then

t
XYe = X%0 * So

this as the product rule.

t
xa_dy8 + SO ys_dx8 + [x,:y]t We will refer to

A special case of this is if m, ,m, € M then

‘ t ¢
e By~ [mpmple = S Ts- Wy * S

o Bye- A5 € Mygee

0 ocC
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2. 6'

t
26. Also if m €M then mi - [m,m]t = S ZmB'_ dma which gives a

loc 0
characterization of m2 - [m,m] and also of [m,m].
27. Example: We can now prove the sufficiency condition for a
counting process n to be a Poisson process as stated in 2.4.20.

Let T = [0,1], the extension to T = [0,*) follows by a stopping

time argumept. . Since n € LIV+, it is a semi-martingale and by
d

assumption (n -t,F ,t € T) EM,. We apply the differentiation
iunt fun t un__ fun, dun _
rule: e = + S iue dn_ + 2: (e -e
0 s<t<t
iun__
- iue AnT)o Rearranging gives
iu(n,_-n ) iu(n__-n_) dubdn
Ele ¢ *|F]=1+E[ L e T fe  T-nlr)
s<t<t
t fu(n__-n ), iu_
-1+ E[S . - '8’ (e l)dnTIFs]
8
t iu(n__-n_)
=1+ (eiu-l) S Efe -8 IFs]dt
s

This is an integral equation with solution

iu(nt-nb)

Ele lFs] = exp((t-s)(eiu-l)) This implies that n has

stationary independent increments, and (nt-ns) has a Poisson
distribution with rate one, so n is a standard Poisson process.
Martingale representation.
in the previous section we have seen that stochastic integrals cdn
be considered as a mapping of martingales into martingales. An
important question now is, is this mapping onto, or in other words
do certain martingales have a representation as a stochastic integral
with respect to a given martingale. The first to consider this

question implicitly was Ito [1951b]. He considered square integrable
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functionalé, on the o-field generated by a Brownian motion process,

and obtained a representation as a stochastic integral with respect

. to the Brownian motion. Doob [1953,p.449] also considers this

question;.but does not specify the underlying process that generates
the o-field. Under certain conditions the existence of a Brownian
motion is shown with respecﬁ to which the martingale representation
exist. Wong [1971] has.givén an extension of this result to local

martingales. The result by Ito was extended by Kunita, Watanabe [1967].

~ Their work is based on previous articles by Motoo, Watanabe [1965] and

Wat;nabé [1964], who first derived a representation result for certain
functionals of a Markov process. Kunita, Watanabe [1967] extended
tﬁese results to square integrable martingales. The underlying process
th;t generates the family of o-fields to which the'martingale is
adapted, must be a Hunt process. The Brownian motion and the Poisson
process satisfy this condition. Meyer [196711I] discusses these
results. Clark [1970] independently derives a representation theorem
for local martingales on the o-field genera;ed by a Brownian motion
p:ocess.' For the case where the underlying o-field is generated by

a Poisson process, the result by Kunita, Watanabe [1967] only holds

for square integrable martingales. The extension to arbitrary local-
ma;tingales was done by Davis [to appear]

Let (vt,t € T) be a standard Brownian motiom, and let Ewt = o(ws,Vs <t)
be the o-field generated by it. The family CF‘;t ,t €T) will be the
underlying family of o-fields in the following theorems.

1. Theorem: [Kﬁniéa, Watanabe, 1967; Clark, 1970]. 1If (mt’Fwt’t G_T) €

t

e = = .
MZ’ then m has the representation o, So¢sdws (¢ w)t

a.s. for all t € T for an unique process (¢t,Fwt,t €ENeE Lz(w).
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Then m is sample continuous.

Theorem:

If (m,F_ ..t €rT)€ M, then m has the representation m = ($-w)
for an unique process (¢t,Fwt,t €T) € L21°c(ﬁ). Then m is
sample continuous.

Theorem: [Clark,1970]f

1f (mt’Fwt’t €r1) €EM then m has the representation m = (¢-w)

loc
€ €
for an unique process (¢t,Fwt,t T) L210c(w>' Then m is sample
continuous.
Note that the given m are such that m, = 0, otherwise consider
mt - oy Theorem 1 can also be deduced from Ito [1951]. Kunita,
Watanabe's result is more general then 1. Theorem 2 can be
deduced from 1. by a stopping time argument. Because of the
difference of the classes M and M we need result 3, however
loc 2loc
the resulting representations are the same. since m will then
c  _ uC
sample.continuous and Mloc = M210c. The sample continuity
follows from the representation and cannot be asserted on fore
hand.
Let (nt,t € T) be a standard Poisson process, and let (Fnt’t €1T)
be the family generated by it, which will be the underlying family
in ﬁhe following theorems.
Theorem: [Kunita, Watanabe, 1967].
If (m,F ..t €T) € M, then m has the representation
T
m_=\ ¥ (dn_-ds) = (y*(n_-t)) a.s. for all t € T for an unique
t 0 8 8 t
ad

< € - (S

process (wt’Fnt’t T) L2(nt t). Then m MZ'

Theorem:

1f (ﬁt,Fnt,t €T) € M, .. then m has the representation m = (w-(nt—t))
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. d
- (=
for an unique process (wt,Fnt,t €ET) € LZloc(nt t). Then m MZloc

8. Theorem: [Davis, to appear].

e —1 L] -—
If (mt,Fnt,t €1T) Mloc then m has the representation m = (Y (nt t))

3 € -
for an unique process (wt,Fnt,t €1T) Llloc(nt t). Then
d

m € Mloc and in LIV.
The martingale representation theorem plays a crucial role in derving
the results of this thesis. If we could extend the representation
result to a larger class of underlying processes that generate the
family of o-fields, then we could obtain many new results. A quite
general representation theorem was given by Kunita, Watanabe [1967]
but this works only if the martingale is square integrable, and if
the underlying process is a Hunt process. The square integrability
is an important restriction, and there are few examples of Hunt
processes, except stationary independent increment processes. An

extension of the martingale representation theorem is thus of great

importance and a point of future research.
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3.1.

3'2.

Absolute continuity of measures and related topics.

Introduction.

In this chapter we discuss problems of absolute continuity of
measures and its relation with martingales. The main interest

is in the translation of martingales by a change of measure.

A partial converse problem is an abstract version of the detection
problem which is well known in electrical engineering. We will
analyse these problems using the martingale approach. An
important concept is the exponential formula, which was introduced
by Doléans-Dade [1970.a.]. Using this concept we will characterize
a change of measure by a local martingale. Then we can prove

the main result, theorem 3.3.5, of translation of local-
martingales by a predictable process under a change of measure.
This result is a generalization of a transla;ion concept for
Wiener integrals, introduced by Cameron and Martin [1944],

and for Brownian motion by Girsanov [1960]. In the last section
we will show how these results apply in a special case and we

discuss the detection problem.

The exponential formula.

An important concept in the study of absolute continuity of
measures is the solution to a certain stochastic differential
equaticn, which is called the exponential formula. The sample
continuous version was known earlier, but the most general case
for martingales was solved by Doléans-Dade [1970 a.], which is
the basic reference for this section. A special case of the

exponential formula can be considered a martingale analogue of
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3.201‘

the concept of multiplicative functional of a Markov process.

"Theorem: (Doléans-Dade, 1970 a.)

I1f (Xt’Ft’t € T) is a real valued semi-martingale, Xy = 0,
then 1. There exists anunique semi-martingale, (zt’Ft’t €1T)

t
satisfying z, = 1+ SO zg_ dxS

2. z is given by z, = exp (xt—‘% (xc,xc)t) 1 (1+Axs)e-Axs
s<t

Definition: We denote 2z

¢ e(x%) and call it the exponential

formula of x.

Remarks:

1. The solution to the above stochastic differential equation is
called the exponential formula, because it is similar to the

x
differential equation for f(x) = e*: f(x) =1+ S f(y) dy.
0

] c c
2. If x€ Mloc then €(x) € Moo and if x € M oe then ¢(x) € Mloc’

a similar relation holds if x € Mioc'

3. Note however that x € M2 does not imply that z € M2, it only

gives that z€ M

.

loc

4. Doléans-Dade also discussed when the exponential formula has
a multiplicative decomposition. We will not state this result,

but just note the special case: if x € M e then z_ = e(xt)

t
c d c d c n d d

= + = . € (xS €
€(xt xt) E(xt) e(xt), where €(x ) Mloc’ e(x Wloc'

5. Some examples of exponential formula's are:

If w is Brownian motion, themn e(w ) = exp(wt - l"t)eﬂq

2 oc’
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If n is a standard Poisson process then

- : d
e(n_-t) = - e
(n -t) exp(ntzn(Z) £) €M .

Strictly positive exponential formulas.

In the following section we need results concerning exponential
formulas that are strictly positive. We will mention some
conditions for this property and then state a converse result to

the previous theorem. From here on we assume that T = [0,1].

3.2.2. Lemma.

1. If x € sM, X = 0, &x, >-1 a.s. for all t € T, then z, 4 e(x,) € sM

satisfies z, > 0, z, _ >0 a.s. forallterT, IfT-= [0,1]

then we require (xc,xc)l < ® a.s.

t-

for all t € T [Meyer, 1966, VI, T15]. If z, = e(xi), x € SM,

2. If (zt’Ft’t €T E Ml,and if z, > 0 a.s. then Z,s 2 > 0 a.s.

then 2.5 2, >0 a.s. for all t € T implies that Axt > -1 a.s.

for all t € T. I1If T = [0,1] then (xc,xc)l < ® a.8.

Proof. 1. From the expression for z, = s(xt) it follows that
Axt > -1 a.s.implies that zt > 0 a.s. Since zt = zb_ Axt,
we get z = zt/Axt +1>0a.s. 2. Similarly Ax, = (z./2 )

-1>-1a.s. If T = [0,1] then e(x;) > 0 a.s. iff <x°,x°)1 < ®
a.s. from the expression for e(xc). 7]

In the case of real variables we can write x = exp(gn(x)) if

x > 0. We have the following analogous result in our case,

which is mentioned in [Doléans-Dade, 1970a].

3.2.3. Theorem: If (zt,FE,tie T) is a semi-martingale, and zy, z,_ > O

a.s. for all t€ T and zg = 1, then there exists a semi-martingale
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(xt’Ft’t € T) € SM, Xq = 0, Ax > -1 a.s. for all t € T, such
that z, = s(xt).

A€t
Proof. This follows by setting X, = S — dzs, which is well

0 zs--

defined, and applying theorem 3.2.1. to dzt = z, _ dxt. Another
way of getting this result is taking 2n(zt) and applying the
differentiation rule. This will yield the exponential formula
directly whithout refering to 3.2.1.

Remarks:

1. In the case of a positive exponential formula we have an

alternative way of writing it, which one can use. Let x € Mloc

then g(xt) = exp(xz -~% (xc,xc)t) exp(x: - 2;; [AXS - 2n(1+Axs)]).

2. If z € Mloc’ or z € Ml and z = ¢(x), then x € Mloc' Note
however that z € Ml does not imply in general that x € M210c’ only

. c c
if z € Ml then x € MZloc'

3. Some examples. If w is Standard Brownian motion and ¢ € LB,

-

t t I..l 2
then e(s ¢S dws) = exp(S ¢s dwS - S §-¢S ds). If n is a
0 0 0

standard Poisson process, % € LB and ¢ > 0 a.s. for all t € T then

-

[ t t
E(SO (¢s—l)(dns—ds)) = exp(S0 ln(ws) dns - SO (Ws—l) ds). Since

t

wt >0, Aso (ws-l)(dns-ds) = (wt-l) Ant > -1 a.s., so the

exponential formula is strictly positive.
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3.2.4.

3.2.5.

Martingale exponential formula's.
A problem in some applications in the next section is, when is

e(x) a martingale. We will pay some attention to this problem.

. [ €
Lemma: If (xt,Ft,t T) Mloc’ X, 0, and e(xl) >0 a.s.

then e(x) € M, iff E[E(xl)] = 1.

Proof: 1If e€(x) € M., then E[e(xl)] = E[e(xo)] =1

1
. A
Suppose E[e(xl)] = 1. Let ut = E[e(xl)lFt], then

(ut,Ft,t €T) € Ml’ and we show that M = s(xt) & zy a.s. Since
z € Mloc’ let {tn} 4+ 1 a.s. be such that ztATn € Ml' If

t > s then E[z |F.] =z . and by Fatou's lemma

tAT
n ] SA

E[zt |FS] 2z orz is a super martingale. This gives

M = E[e(xl)IFt]_g z, and E(zt)qg E(zs). Since E[e(xl)]

= E[é(xo)] = 1 this gives E[e(xt)] =1 for all t € T. Now
ElpJ = Ele(x))] = 1 = E[e(x)]. So E[u_ - e(x.)] = 0 and

ut - s(xt)‘g 0 imply ut = e(xt) a.s.

Theorem: T = [0,1]

If 1. (xt;Ft,t €T € x. = 0, Axt > =~1 a.s. for all t € T,

Mloc’ 0

(xc,xc)l < ® a.,s.,
2. ((x,x)t,Ft,t € T) € LIV exists, the dual predictable
projection of [x,x], and satisfies d(x,x)t =y, dt, where

(Wt,Ft,t €ET)EL . (t) satisfies |¢t|<:K(t) a.s. for

llo
all t € T, for some positive valued function K: T + R

then E[e(xl)] = ],
A

Proof. Let z, = €(xt). By definition of = = e(x) € Mloc’

there exists an increasing sequence of stopping times {Tn},

i = . . e
lim s 1 a.s., such that Ze T M Now

n n

1°
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tAT
n
E[z 1=1+ E[S z dx_] = 1, hence by Fatou's lemma

E(zt) <1 for all t € T. Define the stopping times

T, = inf{l, t € Tl[z,z]t > n}, hence lim T, = 1 a.s. We use the
n

differentiation rule:

t t
22 =1 + S 2 z2 dx + S 22 d[x,x]
t 0 s- s 0 S s

Let yz = zi I(t<tn), then y:.ﬁ n. Now

t t

’ n
2 yz_ dx_ + S Yo dlx,x],

n
y 31+S
t 0

0

A

(o t
E(y?) <1+ E[S yz_ dix,x] ] =1+ E[s0 y:_ &l x,x) _]

0
since the local martingale term vanishes, and by definition of

(x,x). Using condition 2:

t
yz_ ¥, ds] iS K(s) E[y:,,] ds

t t
E[S y: d(x,x>s] = ES
0

0o 0

t
Now E[yz] <1+ S K(s) E(y:_) ds implies that by the Bellman
0
1
K(s) ds) j_exp(g K(s) ds).
0

t
Gronwall lemma E(y:) < exp( S
0

1
Since 1im T, = 1 a.s. E(zi ) < exp(s K(s) ds) for all t < 1.
0

n
2 (2 1
Alsu E(21\ =1+ E[g z~ d[x,x] ] <1+ g E(z_ ) K(s) ds < =,
s— 5" — s-
0 0
Let {Tn} be such that ztATn € M. Thus

n n
E(Zt) = E(ztATn) = E(zo) =1, for all t €T.
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3.2.6.

3.2.7.

2
Since sup E(ztAT ) < @ by the above, by [Meyer, 1966, II T22],
n n

the {z"} are uniformly integrable. By [Meyer, 1966, II T21]
and because z:‘z 0 a.s. we get

lim E(z:) = E(z.) = 1 for all t € T, hence E[e(xl)] = 1.

n->o

Corollary:

If w is standard Brownian motion, ¢ € LB and if '¢t|2~5 K a.s.

for all t € T where K is a positive constant, then E[e( S ¢S dws)] = 1.

0
\ A ] 2 .

The proof is obvious by dxt = ¢t dt, d\x,x)t = ¢t dt and using
3.2.5. This result was proven earlier by [Girsanov, 1960].
Similarly we have
Corollary:
If n is a standard Poisson process (wt,Fnt,t € T) € LB, and if
|wt|2_§ K a.s. for all t € T, where K is a positive constant, then

1
E[E(S Vg (dn-ds))] = 1.

0
Remarks:
1. The proof of 3.2.5. is essentially an extension of the proof
by Girsanov [1960] for lemma 1. The main point is to show that
e(x) € M2

which give the result.

, which establishes the uniform integrability of e(x),

?. An example: Let (wt,te[o,l]) be standard Brownian motion,

t. Hence

il

emt ,«
then w Mloc’ w,w)t

N

E[e(wt)] = E[exp(wt - =1t)] =1 for all t € [0,1].
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3.3. Absolute continuity and translation of martingales.

In this section we digcuss some results on absolute continuity
of measures and its relation to martingales. We start by
characterizing a transformation of measure by a local martingale.
Next we present our main result, the translation of a local
martingale by a predictable process into a new local martingale
under a transformation of measure. Some historical comments
will be providedvlater. The result we give here is widely used
in problems of absolute continuity, especially showing existence
of solutions to stochastic differential equations and in
detection problems.

Absolute continuity.

3.3.1. Definition. Given the measurable space (2,F) and two probability
measures P and P0 defined on it. The measure P is said to be
absolutely continuous with respect to PO’ if for all A € F such
that PO(A) = 0 we have that P(A) = 0. We denote this by P << PO‘
P and P, are said to be mutually absolutely continuous, or

0
equivalent, if P << P0 and P0 << P , which we denote by P ~ PO'

If P << P_ then the Radon-Nikodym theorem says that there exists

0

a measurable integrable function such that P(A) = s p(w) Po(dw).
A

A major point of interest is the characterization of the Radon-

Nikodym deirivative y, which we also denote by

u =—-%. I1f P~P, then p > 0 a.s. In the folliowing we dcnote

0
expectation with respect to the measures PO’ P by EO('), E(*)

respectively. Using the martingale approach and the results
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a7,

3.3.2.

concerning the exponential formula we have the following

characterization of ar
dp..
0
Theorem:
1. Given a probability space (Q,F,Po). Let (xt’Ft’t €ET) € Mloc’

be such that Xy = 0, (xc,xc)l < ® a.s., Axt > -1 a.s. for all

t €T, and Eo[e(xl)] = 1, then (e(xt),Ft,t €ET) € Ml The formula

%%— = s(xl) introduces a new probability measure P on (Q,F)
0

and P is equivalent to PO'
2. Given a measurable space (f,F) and two probability measures

P and P0 defined on it, and assume that P and P0 are equivalent.

Then %%— >0 a.s. Let (Ft’t € T) be any family of sub-g—-fields
0

. A
with the usual conditions. Let we = EO[%%—lFt]. Then there
0

o (S S - = Ah D e
exists a process (xt’Ft’t T) Mloc’ X o, X, 1 a.s.

for all t € T, <xc,xc < ® 3.s8., such that M, = E(xt) a.s. for

)1
all t € 1.

Remark: The abov; theorem shows that a local martingale x,
satisfying certain conditions introduces a new probability measure.
Conversely the estimate of the Radon-Nikodym derivative of

two measures given some fﬁmily of o-fields is characterized

by a local martingale X.

Proof. 1. Given (xt’Ft’t €rT) € M, .» we have that e(x) € M.

and €(xl) > 0 by the conditions assumed. The condition EO{E(xl)] =1

guarantees that in fact €(x) € Ml as was shown in 3.2.4. The

set function P(A) = S €(x1) w) Po(dw) now defines a probability.
A
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3.

3

3.3.

3.4.

dP
2. Note that ar. > 0 a.s. by assumption. Let

0

A dP
= = & . 2
“t EO dP IF ] ’ then (u ’ t,t T) Ml, and l.ll >0 a.s. lmplles

that u., B _ > 0 a.s. for all £t € T. By 3.2.3. there exists

(%t,Ft,t € 7)€ M, . such that u = E(%t) and x has the given
properties.

Remark: The main reason for using absolute continuity of measures
is in calculating expectations or in doing derivations based

on it. Suppose that z is an integrable random variable, let

P -~ PO then E[z] = Eo[ze(xl)]. The last integral might in

some cases be easier to integrate than the first. This point
was made cearlier by Cameron and Martin [1944] and by Benes
[{1971], and is the main argument for the results of this
section.

Translation of‘martingales.

We now are going to look at how a transformation of probability
measure influences martingales. Before reaching our main

result we have to do some preliminary work.

Definition. The notation (xt,Ft,t ET)yEHN

loc (PO) denotes that

x is a local martingale under the measure PO'

Lemma. If P, PO are equivalent probability measures on (2,F) and

_dP
if Eﬁg = E(xl) where (Xt’Ft’t ETE Mloc(P

then (mt,Ft,t ET) € Ml(P) iy i (mt E(xt),Ft,t = T)€5M1 (PO)

Similarly m € M (P) iff m e(x) € Mo (PO)-
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3.3.5.

Proof. We do the proof .in one .direction, assume.that (mt e(xt),
Ft,t €ET)EM (Po). Since P and Po are equivalent
%—g— = e(xl) > 0 a.s.

0 .
Note that E|mt| = Egle(x,) Imtll = EO[Img; s(xl)ll < » for all t € T.
Now for any s, t € T, by [Loéve, 1963, p. 344]
EO[mt e(xl)lFs]
EO[E(xl)IFs:I

E[mtIFs] =

Let s < t then

Elm,|F,] = Eglmee(x,) |F 1/e(x) = m,

hence (iﬁt,Ft,t €T) E Ml(P)

The converse direction is similar and the extension to local
mart:ingaies follows from a stopping time argument.

Remark:v We discuss a condition assumed in tﬁg following theorem.
1f x, y € ﬁioc then [x,y] € BV. In 2.3.31. we have defined
{x,y} € BV to be the dual predictable projection of [x,y], whose
existence follows if [x,y] € LIV.

Theoren.

If 1. (Q,F,PO) is a probability space.

2. We do a transformation of measure i—g— = e(xl) » characterized
by the local martingale (xt’Ft’t € T? € Mloc(Po), real-
valued, X = 0,(xc,xc)1 < » a,s8., and Axt > -1 a.s. for all
t €T and satisfying Eo[e(xl)] =1,

3. (F,tE€T EM (P in R,

4. there exists a process, denoted ({ y,x)t,Ft,t € T) € BV,

predictable, such that (Ey,x]t,- ( y,x)t,Ft,t ET) E Mloc(Po)
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L

then P is a pro];ability measure on (Q2.F), and the process m

I it é _ - c
defined by mt = yt (y,x>t satisfies (mt,Ft,te T) Mloc(P)’
i.e. m is a local martingale under the measure P. If in addition

(y,x) is sample continuous, then [m,m] = [y,y].

Proorf.m’By condition 2, and theorem 3.34;.2,’4 P is a probability

¢

measure on (Q,F). To prove that m € Mloc(P) by lemma 3.3.4. it

suffices to show that me(x) € (P,). We apply the differentiation
. oc* 0 '

rule to me(x):
t
mte(xt) = So m__ de(xs) +S

t

. e(x)_dm  + [m, e(x)],

t t . t
= So n__ e(x;)_ dx  + SO e(x.)_ dy_ - SO elx, ) dy,x)g

t
+ S e(xs)_ d[m,x]8
70

Note that under Py m =y, - (y,x)t is a semi-martingale, where

Sy c c
YEM . (y,x) € B\:', som =y, and bm = Ay, -A ( y,x)t

(mc,xc)t + Z AmsAxs = [y,x]t - z A(y,x)SAxS
s<t s<t

Now [m,x]t

i}

t
[y,x]t - S A<y,x)s dx_ =
0

t
ly>x], -s (y,x) - (y,x) ) dx_.
0

t

me(x. ) = So m__ e(x;) dx  + S

t
o e(xs)_ dys‘ +

t

e(xs)_ ((y,x)S - (y,x)s_) dx

0

rt
+s e(x)_ d(ly,x] - (y,x))) -‘s
0
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Since this is a sum of stochastic integrals of predictable processes
with respect to local martingales, m €(x) € Mlbc(PO) hence
m € M, (P). If in addition (y,x) is sample continuous, then
by 2.3.38 [m,m] = [y,y].
Remarks:
1. Condition 4 in the theorem is satisfied in the following
cases:

1. If x,y eMZloc then (y,x) exists, see 2.3.25.

2. If X,y GM;OC then (y,x) exists and [y,x] - (y,x) = 0 a.s.

3. If [yd,X9]>= 0 a.s. then (yc,xc ) will do, since

[y,x] - (y5,x%)= 0 a.s.

4. In general the existence of the process (y,x) must be shown,
‘this is most easily done by first calculating [y,x] and
"then guessing the form of the process (y,x) .

2. The foregoing result does not hold if it is changed to the
form m, 4 Ve - [y,x]t.

Example: let X, =¥ =n. -t where (nt,th,t €T is a

t
standard Poisson pfocess. Then after a transformation of
probability m =Yy, - [y,x]té (nt—t) - n, = -t which is not
a local martingale.

3. The theorem as given here seems the most general result
possible, and it includes many earlier versions as special
cases. It seems by the remark above that the predictability
of (y,x) is required. Another way of looking at the foregoing

result is considering it as a transformation of a martingale

y, into a semi-martingale y = m + (y,x), where the associated
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:‘ 4-
|3
5.
1.
)
2.
3,@‘
3.

process of bounded variation is predictable.

Some historic comments. The concept of translation was first
introduced by Cameron and Martin [1944] iﬂ the context of
Wiener integrals. The translation was that of the Wiener
process y into the process y - (y,x ) Using the definition’

of a>stochastic Ito integral for a Brownian motion process,
Girsanov [1960] gave a similar approach for Brownian motion
processes (Corollary 3.4.3), which he called the transformation
of a stochastic process. This result is ﬁidely used in
problems of absolute continuity, for the Brownian motion
process. The extension of Girsanov's result, first to
Poisson processes [Brémaud, 1972] and then to the martingale
case [Van Schuppen, Wong, to appear], was doﬁe in cooperation
with Wong.

We give some general examples.

Let x S Mloc(Po) be given, and characterize the transformation

of measure. We consider different forms for y.

=xEM

y Zloc(P

0), t;hen my x, - (x,x)t € M‘.I.oc(P)

t
t

If e 7 SO ¢S dxs € Mloc(PO)’ x € M210c(P0) then

. t t
o = ¢dx-S¢d(x,x)=S¢dm
2t )g s s ) '8 o ° Is

t

If x = SO Yy dzg where (z,F ,t €T) € My,  (By)

\ t

0
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t t
4, If x, = SO v dzg, ¥, = SO ¢, dz_, where (z,F¢,t €7T) GEMZloc(PO)

t t t
Then n,, =’S0 ¢s dz_ - So ¢S ¢S d<z,z)s = SO ¢s(dzs-¢s d(z,z)s)

t
SO b dmyg
6. Now we have stated the translation theorem one could consider
a conyerse problem. Given two measures PO’ and P under omne
'y is martingale, under the other y is a semi-martingale,
under which conditions are P and P0 equivalent and what is
the characterization of the Radon-Nikodym derivative. This
problem cannot be solved whithout additional assumptions, we
will discuss this problem in the next section.
Using the translation theorem we can give a more general condition
on a local martingale x such that E[e(xl)] = 1. The following
proof is inspired by a similar proof for the Brownian motion case
by Clgrk.
3.3.6. Theorem: T = [0,1]
If 1. (x,F,t €T € M > %5 = 0,

1

2. <x’x)1.i K a.s. for some positive constant K,

then E[e(xl)] = 1.

Proof. From 3.2.5. E[e(xt)]_5 1 for all t € T. Note that

A - _1 c  _ . C
z, e(xt) exp(xt > (x,x)t) € Mloc = M2loc’
an increasing sequence of stopping times, lim T, = 1l a.s., such

n

Let (Tn) be

that for all n z: = 2yt € M2' Since sup E(zn)2 < oy for fixed n,
n teT t

we conclude by uniform integrability that for all n E[z:] =1

for all t € T.
L



3w

Next we establish the uniform integrability of (zl{,n=1,2,...).

First sup E(zrll) <1l. Fix n, then E(ztll-) = 1, so we can define
: : dPn n n
the probability measure 75~ = z; on A(Q,F). Let X, = xtmn.

n 1, n_n
Now S(zn>c) z; dP(w) = Pn(zrizc) = Pn(xl - E(X »X )1 > log c)
l_.

_ n_¢.n_n n._n
=P (x (x,x )1+%(x,x )1_>_1°8 c) <
P,n(xrll - (xn,xn)l 2% log c) + P((xn,xn) > log ¢)

By the translation theorems yr: 4 x: - (x5 )t’

(yl:,Ft,t €17 € M‘]:.oc(Pn)' Also (yn, By = (x®,x" ) since € Mioc(P).

Now ig'lj): l’:tn(y:)2 < :é'll)‘ En(( yn,yn)t) < K, so yn € M;(Pn).

We now use the martingale inequality by Doob:
1

, n._n n 1
Pn(xr]l. -{x ,x )13_-2- log c) = Pn(y]_zf log c) <

n;2 n._n
n 1 4 EnlylI 4 En((y ¥ )1) 4 K
P (suply;| 25 log c) s ————=< 5 <73
tET log“c log“c log“c

Note that if log ¢ > Kor ¢ > eK then

I}

P_( xn,xn)l >logc) =0 f@r all n. Now

4K cHo

Ia

sup S z;.l dP (w)
n

2 0 independently of n.
n log ¢ ‘
(zl_>_<:)
This establishes the uniform integrability of (ztll,n=1,2,...).
Now by [Meyer, 1966, II T21]

1im E(z‘l‘) = 1 = E(z;) = E[e(x)].

n*®
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3.4. Applications of the translation theorem.

In this section we discuss an important special case of the
translation theorem, this result will be used in the next
section for showing existence of solution to a certain stochastic
differential equation. Its two corollaries, one for the
Brownian motion process, which is known as Girsanov's theorem,
and one.fbr counting processes, first given by Brémaud, are
stated. Next we discuss an abstract version of the detection
probiem.

3.4.1. Theorem:
If 1. (SLF,PO) is a probability space, T = [0,1],

2. (v,F,t €T) €My (B0) in R, and (F,,t €T) is quasi
left continuous, L

3. (#:Fe ot €T) €18 in K, S by AvEvS ) oy < = ause,
0

(Y >Fg,t €T) €LB in 'Rn, and ‘g av, +1 >0 a.s. for all
t eT.
a(6 1 e, (" T, 4a
4. Define z, = SO ¢s dv_ + So Vg dvs, then (z,,F ,t €T) € Mloc(PO)
5. Let ¢ and y be such that Eo[e(zl)] =1,

dp

6. We introduce a new measure P on (Q,F) by dPO = g(Zl),

then 1. P is a probability on (Q,F),

A t c c t d d
2. mt=vt-(v,2)t=vt-god(v W )g ¢S’S0 KV 5V ) Vo
(m ,F ,t € T} €M .B) [mm] = [v,v], m= n® + md,
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t
cA ¢t c cy _.c_ c.c
3. mt=vt-(v,‘z )t—vt Sod(v,v Yo b
(m_,F,,t € T) € i (®), (n®,m®) = (v¢,v©).
t
d_.d_,.d d _ d_ d_d
4. m =V, (v ,z )t v, sod(v sV )s‘ps’

(m:,Ft,t €mE M:OC(P), l,n?) = w400

Proof. We apply 3.3.5. and check its conditions:
t t '
[v,2] =S a(vé,v® ¢ +S d[vd,vd] Vo,
t s's s 's’
0 0
where ¢ € R and ¢ v®,v®) takes values in RV,

t
Now ¢ v,z>t = S

t
d(v,v®) ¢ + S a (vd,vhH p_ since it is
0 s"s s 's

0
the dual predictable projection of [v,z]. Assertion 1 and 2 now
follow from 3.3.5. Because (Ft’t € T) is quasi left continuous
by assumption, {v,z) is sample continuous, and hence by

2.3.38 [m,m] = [v,v]. If n° is defined as in 3. then by
applying 3.3.5 again we see that o € M;oc(l’). Now

mcl 4 m - 'mc € M‘loc(P)° Let k € M;oc(l’) be arbitrary. Consider

the semi-martingale xnd under PO’ where (vd,zd) is sample

continuous, and let us apply 2.3.38.

d d d T
(m ’k]t = [v ’k]t =§: (Avs) (k)™ = 0 a.s., hence

3T €n

d d
loc and thus m € Mloc(P).

Remarks:
There are several points to note in the previous theorem.

1. First we wanted to make explicit the decomposition of the
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martingales into their continuous and discontinuous part, and
the characterization of the translation. Note that m® is
characterized by v¢ and 2z° and a similar characterization
holds for md. Another point we want to mention is the
special form of the martingale z as a stochastic integral
with respect to v. Note that is is necessary that v € M2loc'
We discuss the condition ¢E Avt +1>0a.s. for all t €T.
If v has only jumps of a fixed height a € R, then we can
easily find a‘condition on y. If the jumps are bounded we
can find a condition too, but if v has arbitrary positive
jumps, then it is better to take Y > 0 a.s. for all t € T.
Remark that it is necessary to distinguish between the
positive and negative jumps of v.

The above theorem leaves an important question open: when

is md € Mgloc(P) and if so, what is the process (m@,md)

in terms of processes defined previously, This question can
easily be answered if v has only jumps of a fixed height.
The proof is straightforward,one considers the translation |
of the local martingale [v,v] - (v,v). In general, when v
has_arbitrgry jumps we cannot solve this question. However
this problem can be approached better if we'analyse
discontinuous martingales using the Levy measure [Watanabe,
1964], but this theo;y has some difficult and non-rigorous

points, so that we have decided to omit this.
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3.4.2.

3.4.3.

We give two main applications, first the Brownian motion case.
Corollary: [Girsanov, 1960]
If 1. (Q,F,Po) is a probability space.

2. (wt,Ft,t € T) is a sample continuous Brownian motion, in Rp,
1
n 2
3. (‘bt’Ft’t €T) €p21oc(w) in R, g l¢8| ds < = a.s. P

’
0 0

1
[=)

and satisfies EO[e(Sl ¢T dw )] =
o 8 S

dp 1 T
4., we introduce a new measure —5— = e(| ¢_ dw )
. dP0 o 8

then P is.a probability measure,
t

m, & W, - SO b ds

(mt;Ft,t ET) € M;oc’ (m,m)t = (w,w)t = t,
hence m is a sample continuous Brownian motidn under P. (by 2.4.7.)
Comment: This result was first published by Girsanov [1960],
whose proof is rather zomplicated. Several other proofs exist
in the literature [Benes, 1971; Kailath, Zakai, 1971]. In condition
3 we have imposed the condition that ¢ € L21oc(w)’ while in
3.4.1. ¢ € LB. The result of 3.4.1 with ¢ € L21°c(w) also holds,
the proof is similar. The same remark applies to the process
A in 3.4.3. We now discuss the case for the Poisson process.
Corollary:
If 1. (Q,F,Po) is a probability space,

2. (nt,Ft;t € T) is a real-valued standard Poisson process,

(nt—t’ Ft’t € T) € M].OC(PO)’
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L] e ’
3. (At,Ft,t €T) eLlloc(t)’)‘t >0 a.s. for all t €T, and
Satisfies Eo[e(sl (A-1) (dn -ds))] =1
. o © 8
4. we introduce a new measure

1
dp
- e(so (A1) (dng-ds))

then P is a probability measure.

t : t
A -t) - - = -
m = .(nt t) S (xs 1) ds n, g As ds
0 0
(S
(mt’Ft’t € T) M2loc(P) with
t
[m,m]t = N, (m,m)t =§0 AS ds

Proof. The proof follows from theorem 3.4,1l., and since

t
SO(AS—I) ds is sample continuous [m,m]t = [nt-t,nt-t] =n.
t

By definition of m we conclude that {(m,m) = s
‘ 0

As ds since it is
predictable and well defined by assumption. Brémaud [1972]

has given a first version of this result.

The detection problem

We will néw look in more detail to the detection problem, of
which a version was formulated at the end of section 3.3. 1In
this section we will formulate an abstract version of this

problem, and then discuss the likelihood ratio method for solving

it. Next we will try to solve the problem in terms of martingale

theory.
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3.4.4.

The detection problem.
Given a measurable space (2,F) and two probability measures

P, P,, defined on it.

0’
Under PO: -(yt?Ft’t €ET) € Mloc
Under P: Ve = ae + m, where (at,Ft,t € T) € BV and predictable

and (mt,Ft,t €T) € Mloc
Thg measures are assoclated with two hypotheses HO’ Hl concerning
the process y. The process y is being observed. The problem
now is, given the observed process y, to decide which hypothesis
to accept.
The likelihood ratio method.
Recent interest in solving the detection problem centers on the
likelihood ratio method, using the martingale approach. 1In a
particular problem it can be shown that the measures P and Po
are mutually aboslutely confinuous, hence %%3 exists. Using our
previous results concerning the translation theorem, we will show

how to estimate %%— given the observations. Having done this,
0

the likelihood ratio method then prescribes a statistical test
dP0

on the estimate of 33; » to decide which hypothesis to accept.

We first discuss the problem of absolute continuity of the

measures P and Po.

In the case the detection problem is formulated for the Brownian

motion process this problem has been investigated in several

articles. They all vary in the conditions assumed and in the

method of the proofs. The most detailed are [Kadota, Shepp, 1970;
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3.4.5.

Kailath, Zakai, 1971].

For the general problem that we have formulated here, we have
not found any useful conditions to guarantee absolute continuity
or equivalence of P and PO. One method would be to use the
translation result’ of the previous section, but this leads to
strong conditions even in the Brownian motion case.
Calculating likelihood ratios.

We now assume that the measures are absolutely continuous and
discuss’the problem of calculating the likelihood ratio. We
first give a lemma that combines the general martingale theory
arguments in the derivatiom.

Lemma: T = [0,1].A

Given the detection problem 3.4.4., where

Mloc
2. under Py, =a +m, (a,F,t €T) € LIV and predictable,

1. wunder P0 y €

(g, Fpot €ET) €M (P),
3. We assume that P and P0 are equivalent,

A dp
then M = Eo[—dPOIFy
is characterized by a local martingale (zt’Fyt’t €T € Mloc(PO)’

t] the likelihood ratio given the observations,

satisfying Aﬁt >-1a.s. for allt €T, 20 = 0, (Ec,ic)l < ® @.S.,

t
M, = e(zt) =1+ So Mo dzs

Proof. By condition 3 and P and P0 are equivalent, so %%— > 0 a.s.
0

A dP
Let M, = EO[EFB1F§t]’ then wp > 0 a.s., and (pt,Eyt,t ET) € MI(PO)'

By 3.3.2. there exists a process (zt’F}t’t E€ET) € Mloc(PO)
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3.4’6.

having the above described properties and such that
t

M, = e(zt) =1 + So Mo dzs [ ]

Note that in general we cannot assert more than that z € Mloc
With this lemma we can derive the solution to the detection
problems for the Brownian motion case and the counting process
case. The reason why we cannot solve the general detection
problem as formulated in 3.4.4. is that a general martingale
representation theorem does not yet exist.

Theorem: [Duncan, 1970; Kailath, 1970 ¢.] T = [0,1].

Given the detection problem:

1. under P0 y € M; is standard Brownian motion in R*

. . pt
2. under P Ve = S hs ds + m, where (ht’t € T) is an adapted

0

1

measurable process, E[S |hs|2 ds] <, and (mt’Ft’t €ET € M

0 2

is standard Brownian motion in Rp.
3. Assume that P and PO are equivalent,

then the likelihood ratio given the observations y can be calculated

by t e
My = 1+ So Mg hS dys where,
h, = E[h |F ],
t t .
_ AT 1,2 .2
= exp(SO hs dys - SO 2 lhsl ds).

Proof. We apply 3.4.5., for which the conditions are satisfied.

; (S (S :
Then by 2.6.3. (zt,Fyt,t T) Mloc(PO) has the representation
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3.4.7.

(@ Fyest €

z = ¢t dyt, where (¢t’Fyt’t €T) € L21°c(y)(P0). We apply
A - £
the translation theorem 3.3.5.: m, = yf - (y,z?t = yt - SO ¢s ds,

1
2
€ o
T) Mloc(P). Since E[Solhsl ds] < », we can

define E[ht|F§t] a.e. on T and put it zero otherwise. We get

a process (E(ht|F§£),F t € T). Then it is easy to prove

yt’
(see also 4.4.3.) that

" t
m, 2 Ve - So E(hleys) ds, (m, Fyeot €r) €My (B). Now

" t
m, - m = So [E(h |E, ) - 4,1 ds €M7 O BY, hence by 2.3.16.

it vanishes. Define ht = ¢t’ then ht = E(htlf;t) a.s. a.e. on T.
The result follows.

Theorem: |Brémaud, 1972; Davis, to appear]. T = [0,1].

Given the detection problem:

1. wunder P0 Ve =1 - ¢, where n is a standard Poisson process,

t t
2. under P Ye =R, -t = So (As-l) ds + m or n, = SO As ds + mt

where (Ay,t € T) is an adapted measurable process, At >0 a.s.

for all t € T, E[Sl As ds] < =
- 0
3. assume that P and Po are equivalent.

then U = E [ [F >

the likelihood ratio given the observation y,can be calculated by
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t ~
W, = 1+ So Mg ()\8-1) (dns—ds)

where (kt,F t € T) is a predictable modification of E(AJFnt),

nt’
t . t
n (As) dnS - S

and u, = exp(S (is-l) ds)

0 0

Proof. We apply 3.4.5. for which the conditions are satisfied.
By the martingale representation theorem 2.6.8. (;t’th’t €T)€E Mloc
has the representation d;t = ¢t(dnt-dt), where
e € -
(wt’th’t T) Llloc (nt t). We apply the translation theorem

t
A -t) -
3.3.5. so L, = (nt t) So Vg ds, (mlt’Fnt’t €T) G'Mloc(P)'

1

Since A > 0 a.s. and E[g As ds] we can define E(AtIFﬁt)'

0
Note that.E(At|Fnt) > 0 a.s. Define

t

m 4 (n -t) - S [E(A IF ) - 1] ds then it is easy to prove
t t 0 8' ns

(see 4.4.4) that'(mt,th,t €T E Mloc(P). Now

t

-“ = - - e c N 3
m, - m So (EO |Eg) -1 -¥,) ds €M N BV hence it
vanishes by 2.3.16. Define At = wt + 1 then (Xt,Fnt,t €T) is

an adapted predictable process and At = E(Attht) a.s., a.e. on

T. Also At >0 a.s. for all t € T. The result follows.

Remarks:

1. Note that we do not calculate - but e = E[gg—lF ] which
ar, 1= Blap 1

is the estimate of %%— given the observed process y in T.
0
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The calculation of the likelihood ratio is done recursively
while the process y is being observed.

Note that ﬁt or it in 3.4.6 respectively 3.4.7. are

estimates of quantities that are not directly observed.

They must therefore be estimated given the observationms.

This indicates that before we can célculate Mo we must first
solve an.estimation problem and this requires further
assumptions on the processes h and A. This pointvis the
fundamental connection between filtering theory and detection
theory.

The results mentioned before are important by itself, but
also because they can be used in applications where one needs
an. expression for the likelihood ratio, as for example in
certain methods in filtering theory.

The result 3.4.6. for the Brownian motion case is well known
and several different proofs exist. Duncan [1970] was the
first to approach this problem in terms of martingale theory.
Several articles by Kailath give the solution and alternative
proofs [Kailath 1970 a; 1970 b; 1970 c; Kailath, Zakai,

1971; Kailath 1971 b].

Recently several articles have been published discussing

the problem for the Poisson process case. Snyder [1972 a.]
discusses the problem. Brémaud [1972] gave a result similar
to 3.4.7. but the proof contained an error. The proof could
only be given correctly when the martingale representation

theorem on a Poisson process o-field was found and proven,
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as was done in [Davis, to appear]. This article also

derives the solution to the detection problem but in a less
direct way.

Skorokhod [1957] discusses the problem of absolute continuity
and charaéterization of the likelihood ratio, for the case

of independent increment and Markov processes. We could
rederive these results and obtain othér new results, by
following the martingale approach as outlined in this
section, if only we had martingale representation theorems

covering these cases.
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4.2.

Stochastic system equations

Introduction.

The purpose of this chapter is to define a stochastic system,

using concepts from martingale theory. In section 4.2. we

discuss stochastic differential equations, where we use several
results from the previous chapter. In section 4.3. we discuss
stochaétic system equations that have been used in the past, and

we will define our semi-martingale model. In section 4.4. we
discuss the concept of the innovation process, and a generalization
of it, both topics are needed in the next chapter-on estimation
theory.

Stochastic differential equations.

In system theory one usually considers dynamical systems for
which the state equation is described by a differential equation

of the form:

&) = (e, x(1)).

When one started investigating dynamical systems disturbed by

noise processes, one considered the equation

C9xCE) o f(e,x(t)) + v(t)

dt
where v is usually taken to be white Gaussian noise. This is
sometimes known as the Langevin equation, after Langevin who
considered this equation in connection with investigations of
the phenomenon of Brownian motion. See Nelson [1967] and
Wonham [1970]. It soon became glear that a more rigorous

approach should be taken, using stochastic differential equations
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4.2.1.

as introduced by Ito [1951 a]. He proved the existence and
uniqueness of the solution to a stochastic differential equation
of the form:

dxt = f(t,xt) dt + g(t,xt) dvt'

where f and.g satisfy certain conditions. The disturbance
process v is a process with stationary independent increments,
for which the well known Levy representation is used. Wonham
[19701, in notes writtem earlier, introduces the work by Ito

for Béownian motion procésses to workers in system and control
theofy. A more extensive recent reference for this is Wong
[1971 a]. There is a recent interest in extending the concept
of stochastic differential equationms, and‘the natural class of
processes to consider is martingales. In this section we will
deal with this problem in detail.

To be specific we consider the following stochastic differential
equation, first published by Kazamaki [1972]:

dx, = f(xt) d (m,m)t + g(x,) dmg, X,
where (m.,F,,t €ET) € M210c' If one lets m = w a standard
Brownian motion, then the above equation reduces to the familiar
form. The main question is of course the existence and uniqueness
of the solution to the above stochastic differential equation.
Theorem: [Kazamaki, 1972].

Given the stochastic differential equation

dxt' = f(xt) d (m,m)t + g(xt) dmt, Xy »

where.(mt,Ft,t €T € M210c’ (Ft’t € T) is quasi-left continuous,

and all processes are scalar. f,g € C'(R) and f and g satisfy
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a uniform Lipshitz condition i.e. |[£(x) - £(y)| <K |x-y|,

A ¥x, y € R. Then the stochastic differential equation has an

unique solution x.

The proof is the classical method of Picard iteration, as used by

Ito [1951 a] and Wong [1971 a].

Remarks:

1.

The above result can be extended to the multi-dimensional case,
and f and g can be allowed to be time varying. No new concepts
are needed.

Note that when the stolution exists, then x is a semi-
martingale.

The above theorem covers several special cases which were
known before.

If m

w, a standard Brownian motion, we get the usual form.

Ifm-= n, - t, where n is a standard Poisson process, then
we get dxt = f(xt) dt + g(xt) (dnt - dt).

Both these cases are covered by thg form considered by Ito

[1951 a], where m = v, v a process with stationary independent

increments.

In the Brownian motion case, where one is concerned with

stochastic control theory, it was felt that the uniform

Lipschitz condition on f and g in 4.2.1. was an important

restriction. In the control problem formulation f depends

on the control u, so that only a limited class of control

laws can be considered. Because of this problem Benes

[1971], has introduced an alternative way of defining a
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4.2'2.

solution to the stochastic differential equation for the Brownian
motion case.
The translation method for proving existence.
We will first state a theorem with two corollary's, afterwards
we will comment onthese results and interpret them.
Theorem:
If 1. '(Q;F,Po) is a probability space,
2. (rt,Ft,t €T € MZloc(PO) in R® with the decomposition
r=r"+ rd, and where (Ft’t € T) is quasi left continuous,

3. (¢.F,t €T) €18, (¥,F,t €T) € LB satisfying

1
T T
S ¢g d (rc,rc)s ¢, < =a.s., y Ar, +1 >0 a.s. for all

0
tE€T,
-t t
4. Let z_ = S or ar® + S b ard
0 8 S 0 2] S

5. Let ¢ and y be such that Eo[e(zl)] =1,
then there exists a measure P, equivalent to PO’ such that
(rt,Ft,t € T) is a solution to,
_ c_c d d
dr, = d (m ,m )t ¢, + «r,r )t ¥, + dm,
where (mt,Ft,t €ET) € Mloc(P)’ m=mn + md, (n%,m%) = (%)
and [md,md] = [rd,rd].

Alternatively written

c_ c c c c c
drt d (m ,m )t ¢t + dmt, m € Mloc’
d d d d d d

= d c .
drt (r,r )t wt + dmt, m Mloc

Proof. By 3. both terms of z are well defined, we then apply
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4‘2. 30

402.4.

3.4.1. to get the result. Before making some comments let us
state the two most important corollary's.
Corollary: [Benes, 1971].
if 1. (Q,F,PO) is a probability space,
2. (rt,Ft,t € T) is a standard Brownian motion in Rn,

1

3. (£,F,t€T) €18, | |£|°ds <= a.s. and
. t t 0 8
1
Eo[e(go £, dr)l =1,

then there exists a probability measure P equivalent to PO,
such that r is a solution to

drt = ft dt + dm.

where (m,F,,t ET) € Mioc(P), (m,m)t = I.t hence m is a
standard Brownian motion.

Corollary:

If 1. (Q,F,Po) is a probability space,

2. (n_,F_,t €ET) is a standard Poisson process in Rp,

t’e?
3. (At,Ft,t € T) € LB, At >0 a.s. for all t € T, such that

1
EO[Q(S; (As—l) (dns-ds))] =1,

then there exists a probability measure P equivalent to PO’ such
that (nt,Fé,t € T) is a counting process satisfying
dn, = A, dt + dm_, where (mi,Fi,t €T E MZloc(P)’

t

(m,m)t = SO A(As) ds.

. 1.2 n
Notation A(ks) = dlag(lé,xs,..-ks). [ ]
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The corollary's follow from 4.2.2. or from 3.4.2. and

3‘4.3.

Remarks:

l.

In 4.2.3. notice that the essential point we have proven, is

that the process m, defined by dmt g dr, - ft dt is a local

t.
martingale under the constructed measure P. Suppose that f is
a function of r., or of the past of r. Then we can interpret
this result as a solution to the stochastic differential
equation

dr£ = ft(r) dt + dmt

where m is a standard Brownian motion. What we have proven
this way is the existence of a solution to this stochastic
differential equation, under the conditions given. This
method of showing existence of solutions was first given by
Benes [1971]. In connection with the solution to the
stochastic differential equation we need to pose the question
of the uniqueness of the solution. This problem can be
considered as part of a measurability problem, which we
discuss in section 4.4. However, this problem has not yet
been solved satisfactorily.

We now consider the general case of 4.2.2., which shows the
existence of the martingale m under P. This implies, if

¢ and P depend on r, the existence of a solution to the
stochastic differential equatioﬁ

dr, = d (mc,mc)t ¢ +d (rd,rd)t b dm, .

Note that ¢ and V can depend on r in any way, satisfying the
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A _ . d dy
dr, = d (r,r )t Y

conditions of the theorem. The method we have used is
construéfing a new measure P under which a given process
satisfies the above equation. Again we have to ask the question
about the uniquehess of the constructed solution but this
question has not been resolved in general.
Consider the result of 4.2.2. as the solution to the equation

d d

A + dmt

with md € Mclloc‘ but m":l & M(z1 . However (rd,rd) is defined

loc
under P0 but has no interpretation under P. In special

cases (rd,rd) is absolutely continuous with respect to

(md,md), or an explicit form for it can be found in which

cases we can simplify the equation. In general no satis-

factory explanation has been found to interpret (rd,rd)

under P. The result of 4.2.2. is thus in an important way
different from 4.2.1.

We discuss some of the conditions that are assumed in 4.2.2.

Note that the éonditions of 4.2.2. d§ not require that ¢ and

¥ satisfy an uniform Lipschitz condition, as is necessary in 4.2.1.
However 4.2.2. has the condition Eo[e(zl)] = 1, which is an
implicit condition on ¢ and y. We have sufficient conditions

for this to hold 3.2.5., and 3.3.6. but those seem father

strong. No other sufficient condition for this is known

at this moment. In the case of 4.2.3. it is known [Benes,

1971], that if ft depends on r, only, a Lipschitz condition on

f guarantees that Eo[e(zl)] = 1.



4' 3'

5. Corollary 4.2.4. as given here seems new. It deals with a
counting process n, satisfying the stochastic differential
equation

d
dnt = At(n) dt + dmt, with m EM21OC
In 2.4.23. we have defined XA to be the rate process of the
family (Ft’t € T) associated with n. Note that At can depend
on the complete past of the counting prbcess. The result is

that we have a stochastic differential equation with as

sclution a counting process that influences its own rate.

Stochastic Systems

In this section we consider the problem of modelling continuous-
time processes by stochastic systems. We first review some of

the models that are used in stochastic problems. We then define

a semi-martingale model and show that it covers most known problem
formulations.

Stochastic processes.

Up to recently, most engineers used the white Gaussian noise
'process' in stochastic problems. This approach however is non-
rigorous, and was mainly used because it leads to simple analytical
calculations. It was Wonham [1970] who introduced the Brownian
motion process for stochastic problems in estimation and control.
Brownian motion is a well defined stochastic process, and it
relates to éhite Gaussian noise, because this process can be
considered as a generalized 'derivative' of Brownian motion.

The reason one takes Brownian motion as a noise process is because

it is completely determined by the properties: 1. it has
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independent increments,, 2. it is sample continuous. Both
assumptions seem reasonable justified from a physical point of
view, the independent increment assumption because a noise process
is generated at microscopic levels.

Stochastic system models.

We discuss several stochastic system models for observation
processes, which are used in filtering and estimation problems.
In the filtering problem phrased by Wiener [1949], the observed
process y is assumed to be the sum of a signal process h and

a noise process v: Ve ==_ht + v, . The processes h and v are
assumed to be stationary and of secon& order. The model is
further specified by giving the covariance matrices or their
Fourrier transforms, of the processes h and v and their depen-
dence relation. In the article by Kalman, Bucy [1961] on linear
filtering, it is assumed that the above noise process v is a
white Gaussian noise process, and further the signal process h
is modelled as the output of a linear system disturbed by another
white Gaussian noise process:

x(t) = A(t) x(t) +w,, hy = c(t) x(t),

Observe that the form of the above linear model for the signal
process is an essential assumption.

This way of modelling, which allows non stationary processes,
was inspired by concepts from linear system theory as developed
by Kalman and others during the 1950's. This model makes more
explicit the dynamical structure of the signal process. The

above model can be recast in terms of Brownian motion processes,
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using stochastic differential equations, we get

dxt

A(t) X, dt + dwlt

¢ .C(t) X dt + dw2t

dy

where T w2 are Brownian motion processes [Wonham, 1970]. This
stochastic systeﬁ model can be further extended to account for
control operations and nonlinear systems.
The counting process observation equation.
Because later on we consider certain applications of counting
processes we will define a stochastic system equation for such
processes. Snyder {1972 a] considered the same problem but used
the concept of doubly stochastic Poisson processes. Since that
method has certain drawbacks, we will follow here the martingale
approach first applied by Brémaud [1972]. Recall from section
2.4, that if n is a counting process, then A is it's associated
t

rate process if (n - S As ds, Ft,’t €ET)EM
0

loc? which we can

rewrite as dnt = At dt + dmt, n, = 0. Note the analogy with the
output équation for the stochastic system with Br?wnian motion
disturbances. We can complete the stochastic system model by
specifying the dynamical equation for the rate process A, say
dAt = f(t,xt) dat + dmit' We call this stochastic system model
the counting process observation system.

The stochastic system model.

We now introduce a stochastic system, using concepts from our

earlier investigations concerning martingales. Our goal is a

stochastic system that covers both the equation with Brownian
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4.3.1.

motion disturbances,vand the counting process equation as
special cases.

Definition: The stochastic system.

We assume given the following equations forming the stochastic
system:

1. the observation equation,

k

dy, = d{mym)?  h +dm =0, yER,-

2t* 70
2. the state equation,
= € g
dx, d (ml,ml)t ft +odmy . Xgs X R
3. where (Ft,t € T) is some increasing family satisfying the

usual conditions, and quasi left continuous,

k
€T) E n ET) E ~

(mlt’Ft’t T) MZloc in R, (m2t’Ft’t T) M2loc’ in R,

4. (f_,F_,t € T) is adapted, predictable, and
t°’t

sT Ifsl ld (mz,m2)8|< ® a.S.,

(ht’Ft’t € T) is adapted, predictable, and

S |hS| |d (mz,m2)8|< ® a.s., and ft Amlt +1>0a.s.,

T

ht AmZt + 1 >0 a.s. for all t € T, |
f, h can depend on x in any way, such that dxt is a stochastic
diiferential equation and y a semi-martingale.

Remarks:

1. We consider the problem of the existence of a solution to the

stochastic differential equation, dxt = d<m1’m1)t ft + dmlt’ Xge
If £ 1is a function of x , f: T x R" » R, satisfying a Lipschitz

condition in x, then by 4.2.1. the stochastic differential equation
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4.3.2.

c
has an unique solution. If my € Mloc then we can show existence

of solution for arbitrary(ft,t € T), depending on the past of

x by 4.2.2. The general case of showing existence of solution
has not been solved yet;
We cail the equation for x the state equation, and x the
state process, although it does not satisfy the usual
definition of a state in deterministic system theory. We
assume that the process h depends on x in ;ome way. Since
y is observed it will be called the observed process, it
provides information about the state process x.
Note that x and y are semi-martingales. We can write the
above equation in different forms. One is to write it in
one eéuation, if

m.
r, = (:z), m, = (miz), ¢y = (iz), <m1,m2)A= 0 a.s.,
dr, = d (m,m)t ¢, +dm, r,.
A different way of considering the above equation, in

analogy with 4.2.2., is

_ c _c d d

dx, = d (ml, ml)t £, +4d (ml, ml)t £, +dn,
_ c _C d _d

dyf =d (mz, mz)t h1t +d (mz, m2)t th + dmZt‘

However there is no general existence proof for the

stochastic differential equation for x.

By specializing the definition, we get the equation with Brownian

motion disturbances, and the counting process equation.

Definition: the equation with Brownian motion disturbances.

We define the equation with Brownian motion, by taking in 4.3.1.
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4.3.3.

404.

m € mS

2loc® (m,m>t =1 t, hence m is standard Brownian

motion. We write the stochastic system as:
d =

Ty = ftodt + dm, 7.

Definition: The counting process equation.

We define the counting process equation, by taking in 4.3.1.

| n '
(mt’Ft’t €ErT) € M21oc in R, d <m,m)t = A(Xt) dt, where

(At,Ft,t € T) is a predictable process in R, A )

"= diag(ki,.. A?), A, > 0a.s. for all t € T and

1
S As ds < ® a.s. Furthermore ¢t = 1 and r is a counting
0 ,

process denoted by n. We write the stochastic system as
dnt = At dt + dmt, n, = 0. |

Note thkat m is the martingale associated with the counting
process n with rate process A, as defined in 2.4.23.
Representation of the stochastic system, the innovation
process.

In this section we consider the concept of projection of
the semi—ﬁartingale model on an increasipg family of o-fields,
and ;he related concept of an innovation process. Both of
these topics are needed in the next chapter on estimation
theory. We first give an example of what an innovation
proéesg is, and then discuss it for the more general

case of our stochastic system model.

An example.

Let T = [1,2,..N] be discrete. Let y = (yt,t € T) be a

discrete time observed process satisfying E[yt| < o for all
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t €ET. Let Fyn = O(yt,Vt <n). We define the process:

~ A A A A
m 2y, - E), m -m_, Sy - Ely|F Y L R

Suppose now we observe the process y, say we received the
observations up to (t-1), so all our information is

contained in FYt 1 Our estimate of the new observation

y, given F in the least squares sense is E[y IF

Now we observe Ve The new information we have received

by observing A is Y, - E[y l This is why

yt- 1] e~ Te-1
this random variable is called the innovation, or new
information, and the process ﬁ is called the innovation
process. The name innovation process was introduced by
Masani and Wiener [1950, p. 136] in the above context.

Note that the innovation process is defined in terms of the
observed process oﬁly, and that m is actually a martingale

-

with respect to F}t' We can rewrite the above process m as

mo-my = O 7 V) T Ely - Ve let-ll'
We now consider the continuous-time case heuristically. 1In
analogy with the above equation one can define the innovation
process by

m - E
an, £ ay, lay |E 11,
which again can be interpreted as the new information
gained by observing dyt. One sees intuitively that

n €

(m%.g;t,t T) is a martingale.
A short review

As mentioned earlier the innovation process was introduced

by Masani and Wiener [1958]1. In a series of articles Kailath

-T1-



4.4. 1.

(1968], Kailath, Frost [1968], Frost, Kailath [1971] used the
innovation process to analyse and derive results concerning
filtering. The use of the innovatioﬁ process has been much
advocated by Kailath, for example in detection problems

[1970 a]. There is a more recent article [Kailath, 1971 al -

ﬁhére the innovation process is considered in terms of

‘martingale theory, an approach also followed by others.

Meyer [1973] discusses and slightly extends the innovation
process result.' |
The 1nnovation process for the equation with Brownian motion
disturbances is well known to be a Brownian motion process,
hence a martingale. We now consider the innovation process in
a-martingale context and derive several results.
Theoiem:
If 1. given the semi-martingales

xt=x0+a1t+mlt

yt=azt+m

2. Elxol < o,

2t

3. (mlt’Ft’t €T, (m2t,Ft;t € T) are martingales,

oo = 0s My = 0.

b (ay F,,t €T) €TV, (a,,F,,t € T € I,
then it = §0 + alt + ﬁlt
Ve T a2: + 62t
where (alt’Fyt;t €ET) is alt = E(altIFyt), similarly

(aZt’Fyt’t €T is a,, = E(aZtIFyt)’

~ ~ A

(xt’Fyt’t €T) is X, = E(xtiFyt),

(ﬁlt?Fyt’t € T) and (mZt?Fyt’t § T) are martingales.
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4.4.2.

Proof. € IV implies that sup E[a, | < =, hence we can
t€t

! !
a. = a €

define a . E<alt|Fyt)’ and the process (alt’Fyt’t 7).

Similarly we define ;2. Since m, is a martingale by

the conditions 2, 3 and 4

Elxtl < Elxol + E|alt| + E]mlt[ <o for all t € T.

x = X €
We let x E(xtIFyt) and get the process (xt,Fyt,t T).

(a4

-~ ~

Let m, =X - Xy - oag, then it is adapted

1>

(mlt’Fyt’t

e ~ -h = ~ - ~ - ~ A
t €T, and E[mlt mlleys] E[xt x, - a;, + a;

€ T). By the above El;‘ltl < = for all

siFys]
= E[E[m, - m|F]|F, ) = 0 s0 (:ilt,Fyt,t €T) is a
martingale. The proof for 612 is similar.

In subsequent chapters we need a special version of this

result which cannot be deduced from it directly. We state

it in 4.4.2.

Theorem: T = [0,1].

If 1. given the semi-martingales

o]
1l

t
t xO+Sofs dS+m1t

<
]

t
¢ s hs ds + m,,
0
2. (mlt’Ft’t € T) is a martingale
(mZC’Ft’t €1 € Mloc
3. (ft’Ft’t € T) is an adapted measurable process,
" sup E|f [ < o,
ter °©

(ht,Ft,t € T) is an adapted measurable process,

sup Elh < o,
tET [Pl
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t
yt=g hgy ds + my,

where (ft’Fyt’t €T) is ft = E(ftlet), similarly

(ht,Fyt,t €T) is h, = E(h:|Fyt).

(xt’F

ot € T) is a modification of E(xtIFyt)’

~ which is right continuous, having left hand limits,

(;1t’Fyt’t € T) is a martingale,

(e Py t EDEM (&2,&2) = (m;,m;) a.s.,

~d ~d d d
[m2,m2] = [mz,mz] a.s.

Since sup Elft| < », we can define %t = E[ft[F

€T yel*

1. 1 1
E[S0 f8 ds] < E[S0 E[Ifslhys] ds] =.E[S0|fs|d81

<1- sgg,ElftI < @, Similarly we can define
t

(ht’F ,t €T) and E[S |h lds] < », By the conditions
yt o 8

2, 3, A,Elxtl <o for all t € T, so we can define
E(xﬁlet)' Since F g is the trivial o-field

= é : -
E(xOIFyo) E(xp). Let my, = E(x,|F ) - E(xp)

, t '
- S fa ds, then E[m3t| < o for all t € T. Now

0

Elmy, - m3s|gys] = E[E(xt|gyt) - E(xs|gys)

: |
- SS ECE |E, ) aq|E, ] = E(Elm, - m |F1|F, ] = 0.

“Th-



So (m3t’Fyt’t € T) is a martingale, and has thus a
right continuous medification (mlt’Fyt’t €1,

having left hand limits. Define %t = E(x,)

t
+ S f ds +m,_, thus x is a modification of
0o 8 1t

E(xtIFyt) and has the properties given above.
Similarly we can show that

t
A - A .
= - € =
‘ m2t yt S hS ds, (mZt’F e T) M1 by a

stopping time argument. By 2.3.38.,

[mz,mzl = [y,y] = [;2,;2] which characterizes ;2.

Note the difference tetween the two previous theorems. In
4.4.2. we have given a more explicit form to the processes of
bounded variation. This allows us to obtain a more explicit
result. Applying just 4.4.1. to the semi-martingales x and y of

4.4.2., does not give a valuable result, since we would get
t : .

E[S fs ds]Fyt], which is not of bounded variation in general.
0

However the form of 4.4.2. gives us a process of bounded

variation.

We state two corollary's to 4.4.2.
4.4.3. Corollary: T = [0,1]

If 1. dyt = ht dt + dmt



(mt,Ft,t €T GM(Z: in R*, (m,m >t = I.t, so m {s standard
Brownian motion,
(ht’Ft’t € T) is an adapted measurable process,

: A
sup E|h_| < =, let h_= E(h |F_))
cer t t t' Tyt

then dy,_ = ﬁt dt + dﬁt

(;£’Fyt’t €T E Mg, (ﬁ,ﬁ)t = I;t, hence m is standard

Brownian motion. We call m the innovation process.

4.4.4. Corollary: T = [O0,1],

If 1.

given the scalar counting process observation equation:
= A
dnt t dt + dmt
(mt,Ft,t €T) € Mg, d(m,m)t = A dt,
(At,Ft,t € T) is an adapted measurable process, Ae > 0 a.s.

;A
for all t € T, :2§ E(At) < », let Ay S E(Atant)

thgn dnt = At dt + dmt

A d A ~
S =
(mt,th,t T) € M), d (m,m)t Ay dt, we call m the

innovation process.

Proof. By 4.4.2. [ﬁ\,ﬁl]t = [n,n]t = n, hence (&,ﬁ) has the given

form.

Remarks:

1. Consider 4.4.1. and the semi-martingale y. What we have

achieved is the following Yo = a9t + m,, = ta + ﬁzt. Both

are representations of the semi-martingale y, but with respect

to different families of o-~fields, the first (Ft,t.e T), the

second (Fyt’t € T). We will refer to this property as the

representation of a semi-martingale with respect to a family

of o-fields. Now consider the semi-martingales x and x of

T



4.4.5.

4.4.1. and their repre;entation. This representation is a
straigntforward extension of the different representations
for y, the only difference being the conditional expectation
of x with respect to (Fyt,t €T).

2. If the semi-martingale y is an observed process, then we will

-

call'm2 the innovation process associated with it. Comparing
4.4;2. ﬁiph our earlier discussion on the innévation process
we note that dﬁt = dy_ - h_dt =dy, - b, dt - E[E(dm,|F,) Fop) =
= dyt - E[dytIFyt] which has the intuitive interpretation given
earlier.

3. In 4.4¢1. and 4.4.2. we have considered special cases of the
semi-martingale system model as defined in 4.3.1. At this
moment it is not quite clear how 4.4.2. should be generalizéd.
The corollaries 4.4.3. and 4.4.4. have been given for later
reference.

Equality of o-fields.

A related problem of considerable interest is the following, we

state an abstraét version of it.

Definition.

Given a semi-martingale y and its representation with respect to

(F

et EDyy, = a, + m,, where (ét,Fyt,c € T) € LIV and predictable,

m e e ~ = - ~ C ‘
(mt,Fyt,t ‘T) Mloc' Let Fmt o(ms,v8 <t), thgn Fmt Fyt'for
all t € T. The problem is under what conditions do we have that

= P~ € T.
F&t Eﬁt’ for all t €T
Remarks:

1. The version of this problem which has been considered, is

=T~



that of 4.4.3. The equality of 0-fields was proven under
general conditions for the case of linear filters for

linear systems [Kailath, 1968a; Kailath, 1972]. A more
general proof under the condition that h and m are independent
and h is uniformly bounded is due to Clark. Several attempts
to prove the above equality are known but no rigorous proof
has been published yet. This is a point of active research.
The equality of the 0-fields has the interpretation that all
the information contained in the observed process, is also
contained in the innovation process.

If under certain conditions a result as defined in 4.4.5.
exists then it has two main applications, the first one being
estimation theory. AIf Fyt = Fﬁt and if we consider the output
equation with the Brownian motion disturbances, then by 4.4.3.

m is standard Brownian motion. By 2.6.3. any (mt,F €T =

yt’t

= (mt’Fﬁt’t € T) thus has the representation dmt = ¢t d&t.
Using this point Kailath [1968] and Frost, Kailath [1971]
derived results‘for‘the fiitering problem. However since
the.equality of the 0-fields can only be proven under strict
cqnditions, this approach is not useful. We will see in
section 5.3. that it is not necessary to prove the equality
of o-fields to obtain the above representation result. A
secqnd'application of the possible equality of 0-fields would
be the uniqueness of solution to stochastic differential
equations, using the method given in the second part of

section 4.2.
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5.2.

Estimation theory.

Introduction.

In this chapter we start our investigation of estimation theory.
The purpose is to solve the estimation problem using martingale
theory. In section 5.2. we give a review of earlier work on
estimation, primarily filtering theory for the equation with
Brownian motion disturbances and for counting process observations.
In section 5.3. we derive two crucially important martingale
representation theorems. In section 5.4. we pose the filtering,
prediction and smoothing problem, discuss the least squares
estimation method, and outline the solution to the filtering
problem. In section 5.5. we derive general results concerning

prediction and smdothing.
A short review of estimation theory.

The estimation problem.

We start by defining tﬁe problems that are usually considered

under the heading of estimation problems. Let (Q,F,P) be a

probability space, and T be the time interval of interest. It is

called either discrete-time or continuous-time depending on the

character of T. All estimation problems deal with an observed

process, denoted by y, defined on (,F,P) and.T. There are three

main estimation problems:

1. The detection problem: where one wants to choose between two
hypotheses concerning the distribution of the process y. This

problem was considered in section 3.4. and some references were
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given there. We will not comment on this problem further
here.

2, The filtering, smoothing and prediction problem: here another
process x, also defined on (2,F,P) and T, is present. The
filtering problem is to estimate the process x at time t €T,
given the observations y up to time t, and this for all t € T.
The smoothing and prediction problems are related, see the
definitions, 5.5.1, 5.5.3.

3. The identification problem: here the distribution of the
process y, or alternatively the dynamical equation for y and
related processes, depend on an unknown parameter. The
identification problem is to identify this parameter. We

will not discuss this problem in this report.

The time interval.

There are several important distinctions between the discrete or
continuous-time case. In the discrete~time case with finite
observations the problem is relatively simple. After some
calculations one can then generate the estimate recursively. This
approach however does not work in the continuous-time case.
Another point is that in the continuous-time case it is difficult
to store the past of the observed process, without special
devices. This point leads to the concept of recursive estimation,
where we store only the current estimate, and this estimate and
the observed process, generate the new estimate on a continuous-
time basis. We will now restrict our discussion to continuous-

time processes and concentrate mainly on the filtering problem.
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General solution methods..

The estimation problem as given before, should be further specified
as to how to choose the estimate from the many possible ones.
Depending on the performance criterion for the estimate, the
solution method will vary.

The least-squafes method.

Estimation theory started with Gauss, who developed the least
squares method in 1795. The method was used for estimation
problems that appear in astronomy, (for comments see Sorenson
[1970]). The least-squares estimation errof method, as we will
see later, leads to the optimal estimate E(xtlet), i.e. the
conditional expectation of X, given Fyt' Using this an estimator
has to be derived which accounts for the dynamical evolution of the
x process. This can be done in a relatively straightforward
manner, using ideas of martingale theory as developed in this
report. An alternative way of deriving an estimator for ; is
finding an expression in terms of the unnormalized or normalized
conditional density for X, given Fyt’ Then however an equation

should be derived for the dynamical evolution of this density.

An alternative method for solving estimation problems is by
first deriving the conditional density of X, given FYt’ which then

is maximized with respect to X, . This is called the maximum

likelihood method, which we will not consider here.
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Filtering t;heory for the Brownian motion model.

The following methods all deal with the estimation problem for
versions of systems with Brownian motion disturbances. We restrict
the attention to the main methods and papers. Although Kolmogorov
[1941] first published a discussion on the estimation problem

for discrete-time processes, it was Wiener [1949] who first

worked on the continuous-time problem. The problem formulation
was: given an observed process, which is the sum of a signal and

a noise process, both, stationary; the covariance matrix of both
processes and their correlation is given. The least-squares
estimation error method was discussed and applied to this problem.
The optimal linear filter specified by its impulse response is
being sought. A minimization approach then leads to the so-called

Wiener-Hopf equation, which is in terms of the covariance matrices

only. The proplem now is entirely non-probabilistic, and the Wiener-
Hopf equation is solved by a frequency factorization method, which

was discovered earlier by Wiener. The design procedure was rather

cumbersome and was difficult to apply to multifdimensioﬁai
observaﬁions. In 1961 Kalman and Bucy published their paper
with a new approach to linear filtering and prediction. Their
problém statement is more general; they assume the observation
and state proéess to be modelled by a linear, possibly, time-
varying system representatioﬂ; the noise process is assumed to
be white, but not necessarily stationary; the system model is a

multivariable system, allowing multi-output observations; and
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crucially the filter is restricted to be linear. The method they
use is applying the'orthogonal projection theorem. From this
they derive the Wiener-Hopf equation, thch then gives both the
form orf the optimal filter equation and the non linear Riccati
equation for the error covariance. For a discussion on the
history and a perspective of the Kalman-Buéy filter see Sorenson
[1970]. A large number of investigators have considered the
linear filtering problem, and special versions of it, and have

derived the same results by different methods.

The innovation process in estimation theory.

As described earlier the innovation process was defined by Masani
and Wiener [1958], but its importance in estimation was first
stressed in a series of articles by Kaiiath [1968] and others.
The main point is.that if the system and the filter are restricted
to be linear then the observation and the innovation process
generate the same o-field. It is this property that allows one
to derive the linear filter equations much easier, avoiding the
Wiener-Hopf equation. Kailath [1968], Kailath, Frost [1968]

show how this method can be applied to the liﬁear filtering and
smoothing problem. In Frost, Kailath [1971], the innovation

process approach is used for nonlinear filtering problems.
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A stochastic differential equation for the optimal estimate.
In the following articles the same stochastic system model is
discussed. The observation equation has the usual Brownian

motion model, but x is assumed to be a Markov process. There are

no constraints on the form of the filter. The first to consider this

problem was Stratonovich, in the context of conditional Markov
processes. His result however must be interpreted in a special
stochastic calculus, different from the martingale or Ito calculus.
Kushner [1967a] first derived a stochastic differential equation
for the optimal estimate. The conditions stated are rather
strict, but they are necessary to derive a dynamical dquation for
the conditional density of X, given F&t' From this density the
stochastic differential equation for the optimal estimate follows.
Bucy [1965] in a short note gives a similar approach but with a
different prodf. Next follow the articles by Kalliaﬁpur and
Striebel [1968, 1969]. They rederive Kushner's result but under
more relaxed conditions, and using martingale theory arguments.
Fujisaki, Kallianpur, Kunita [1972] finally clarified the proof
and extendaed the result. Their method is thevmartingale approach
which we are follqwing in this thesis. The basic points in the
derivation are the martingale representation theorem on the
o-field of the observations,‘given in section 5.3., and the
analysis using the innovation process as given in sectiomn 4.4.
Using this method under quite general conditions the stochastic

differential equation for the optimal estimate can be derived.



The unnormalized conditional density method.

Zakai [1969] gives an altgrnative method to the approach by

Kushner. See also the similar approach in the book by Wong

[1971, Ch. 6]. Instead of the conditional density, the unnormalized
conditional density of X, given Fyt is considered. Using results
concerning the likelihood ratio as developed in Chapter 3, one

can derive an equation for the optimal estimate in terms of a
conditional likelihood ratio. This last quantity in turn

satisfies a dynamical equation. However the application of these
formula's'seems to be complicated and few examples of filters are

known. It gives however additional insight in the problem.

Approximations to nonlinear filters.

Kushner [1967b] first considered applications of nonlinear
filters. It was his analysis that no finite dimensional filters
exist, that one gets a sequence of conditional moments of thé
optimal estimate. Then some approximation procedures were given.
Several other approximation procedures have been published,
usually they involve an expansion of the nonlinear functions
around the éptimal estimate, and retaining only first or first and

second order terms. Such filters are mentioned in Sage, Melsa

[1971].

Estimation probléms for counting processes.

Given one cbserves a counting process. As defined in section 2.4.
under certain conditions, we can associate with it a rate process.
The problem is given the observed process, to detect or to estimate

the rate process, or some other unobserved process, that is of
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interest. Specialized problems of the above are of course the
detection problem and the filtering, prediction and smoothing
problem. The above problem is an abstract version of problems
encountered in nuclear medicine, communication theory and
operations research. See Snyder [1972a] and Brémaud [1972] for
detailed problem areas. The first to consider the filtering and
detection problems in detail was Snyder [1972a]. Instead of using
the martingale approach as we do here, counting processes are
modelled as doubly stochastic Poisson processes. The method given
by Snyder is to derive the evolution of the ccnditional density

of the unknéwn random process with respect to the o-field of

the observations. This is the analogue of Kushner's method for
the Brownian motion model. Using this equation a general dynamic
equation can be derived for the optimal estimate. Then the usual
first order approximation procedure is used to derive finite
dimensional filters. 1In a subsequent article, Snyder [1972b],
discusses the.smoothing problem, the same apprcach is used.
Brémaud [1972] in his thesis, deals also with counting processes
or point processes, but uses the martingale approach. The existence
of a point process with a stochastic rate is shown. A formula
for the likelihood ratio is given, however the proof contains an
error. The general fofm of the result however is correct. Next
the filtering problem is considered, the unnormalized conditional
density is derived. This approach is analogous. to the method by

Zakai [1969] for the Brownian motion model.
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5.3.1.

Martingale representation theorems.

In section 2.6. we have seen that certain martingales on the
o-field generated by a Brownian motion or a Poisson process,

have a representation as a stochastic integral with respect

to the underlying process. In this section we will derive a
representation theorem for certain martingales on the o-field

of the observation process y. Since y is not a martingale, the
represéntation theorem for martingales as stochastic integrals will
be with respect to the martingale associated with y, the innovation
process &i

Theorem: T = [0,1].

k

If 1. dy =ﬁtd;+dﬁt,y€R

t
2. (ﬁt,Fyt,t €T € M;, <ﬁ,a)t = I.t, so m is Brownian motion,

3. (ﬁt,Fyt,t € T) is an adapted measurable process, j.lhslz ds
T

< ™ a.s.

ET)E n
4., let (mt,Eyt,t T) Mloc in R

then m has the representation

t
- : €
mt So Es dms a.s. for all t T,
€er) € " nx
for an unique process (Et,Eyt,t T) LZloc(m) in R

k
Then also m is sample continuous.
Proof. We give the proof only for the scalar case, without loss

of generality.

li>

Step 1. Define z

t
A~ - c
¢ S hs dms, then (zt’E§t’t €ET)EM

0 2loc”’

Define the stopping times T = inf{l,t € TI(E,E)t_i n}
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n A

and let them be also such that m m_, . € M, for all n.

t t
n

1
Since (z,z)l = S Ihsl2 ds < ® a.s. by condition 3.,
0
limT_ =1 Define 2" 2 m o =m
m T a.s. Define z_ R AT T AT
n n n n

=]
ne

Step 2. Since (;n,gn)l <n, by 3.3.6. Eo[e(g;)] =1,

n "~
So.ggL.= E(zi) introduces a new probability on (%,F).

We now apply the translation theorem 3.3.5.:

AT
~n ~n Any _ ~n ~ -
m (m,z )t =m + h ds =y, =y, . and
0 n
n c n An l\n
€ €
(yt’FytAfrn’t T) M 1oc (P). sSince {m ,z ) is sample
n_n n_n “n “n
continuous, <y.,y )t =[ly,yl = [m,m 1, = tat .
Now (Y:’FytAT ot € T) is standard Brownian motion under Pn.
n
Step 3. Note that because z € Mg, [m,2"] = (m"C,2") = (mn,;n).

We now again apply the translation theorem: let

‘n A n n *n ~n n
a - € €
q, mt A {m,z )t,(qt,Fyt,t T) M1 (P). We now

apoly the representation theorem 2.6.3. Since under P® on
[O.In],yn is standard Brownian motion, d&: = o: dy:, on
n - n
S S s .
[O,Tn] where (at,Fyt,t T) L21oc(m) vnder P

We calculate

An t n ., n o n .-n stAT | n ,-n °n
= . =

9. SO og dyS go O dms + o O dm ,z >s

Because on € L210c (yn), there exists a sequence of stopping

)

. m 2
times {s_} such that for all m E_[ s |on| ds] < « hence
m n" ), s
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S

S' |0:| ds < ® a.s. P" and by equivalence also a.s. P.
0

tAT
n

o® dm ,F

g dmg yt,t € T) is a local

Now under P measure (s
0

martingale. From above we rewrite
tAT tAq
n " n n n -°n " n ,n en
m - 0 dm =(m,z) + o. &m,z
t 0 s s t 0 8 8

e Mt
Mloc(P) MBV and hence zero by 2.3.16

.
So mt S

0

EAT
n

o dﬁ for all n.
s s

Step 4. Define o, = 02 on the set {(t,w) € TxQ| t < Tn(w)}
then since lim Tt =1 a.s.
. L D
. t n
m_= S o dm_a.s. for all t € T,
s s
0
This implies that m € M° =M% , so there exists a
loc 20c
sequence of stopping times {sn}, lim s = 1 a.s., such
n

that for all n m: EM Now

2.
]
n

E[(mn,mn)l] = E[s |°S|2 ds] < ». hence
0

o € LZloc(&) under P.
5.3.2. Theorem: T = [0,1].
If 1. dyt = dnt - dt = (lt-l) dt + dmt,

2. where (nt,t € T) is a counting process in Rk,

PN

3. (A_,F

o Faet € T) an adapted measurable process, right

continuous, having left hand limits, and it’ Xt- >0 a.s.
for all t €T,
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A~ d
(]
4. (mt’Fnt’t ™€ M2loc’

n

5. given any (mt;Fnt,t €T € in R,

Mloc

then m has the representation,

t ~
= €
L SO Zs dms a.s. for all t €T,
€Ty E m
for an unique predictable process (Zt,Fnt,t T) Llloc(mZ)
in RVK,
Proof.” We give the proof only for the scalar real valued case.

Step 1. 3Since A has the properties given above, we can define

~ A A ~ A
= (- € €
dz, = (-1+1/A_) du, (z,F ,t €T En

Define the stopping times T, = inf{l,t € Tllt > n,

l/lt > n}, and such that mtATn € M;. By the properties of
A limt =1a.s. Note that d[z,z], = (-1 + 1/A )% an,

’ n N ~ ~ A ~

so using 1 we conclude that d(z,z>t = (=1 + l/kt_)2 At- dt =

~

= (At_ -2 + l/%t_) dt
n A7 ‘n_ -~ n _ ~n _ -
Define At = AtAT 22, SZ e @m Tm o, W = g
n n n n
n _ m n
Ve = ytAtn' Now |At_ -2 + 1[At_| < 2n + 2, so by 3.2.5.

E[e(Q;)] = 1.

n -
Step 2. Let %%— = €(z;), then P® is a new probability measure on

(9,F). We have d[n',2"], = (-1 + 1/} ) dn_, which has
the dual predictable projection d(ﬂn,gn)t = (-1 + llit)

At_ dt = -(it_-l) dt. We now -apply the translation

theorem 3.3.5., tAT

n
e - (gt 27 = n N - = = y? =
m, (m,2z )t m_ + So (%t_ 1) dt ytATn y, =

- . n n .
(nt t) tATn' (yt,th,t ET) € Mloc(P ) and n is a
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Step 3.

Step 4.

counting process. Now by 2.4.20. n is a standard Poisson

T
process on [O,Tn], under the measure P .

Note that (m:,Fnt,t.G T) € Mi?§5-60~B§WET§iZ:

po! ~n,.~1 n n n .
C * L] . *
mt[e(zt)] £ Ml(P ) Mloc(P ) By 2.6.8. under P this
' tATn n n
martingale has the representation ¢S dys for
‘ 0

n n n
(¢t, Fnt’t €ET)E Llloc(y ) under P

We now apply the differentiation rule under P? to

tAT
) n
m = e(zn)(s o dy?). Let p" 4 e(zY), and note that
o t 0 s s t t

this is a semi—maftingale under Pn, which can be proven by
3.3.5.

We calculate:

.M _ M em o on +n AR
dug = w _dz, =y -1+ l/xt_) dm, ,
n t n n n n. b ¢
f . = -
dip > So b dys]t Moo 9, (-1 + l/At_) dnt,
CATn—
. o n .o, 0 . n ~ n n -
dm _ = (So bg d¥g) we_ (1 +1/A ) dm + oy ¢ dm
n n ’n n n ‘n
tul ¢ A -Dde+u ¢, (14 1/x.) dn,
EAT -
= n n,:n n *n n n ~
[(ut_¢>t/>\t__) +u_ -1+ lllt_) (So ¢g Ay )] dmg
L= on d&
S S

which also holds under P.

tAT
n L N
Now m,_ = 0 dm
t s s
0
. n
Define ¢, = 0,_on [O,Tn) then (ot,Fnt,t € T) is adapted,
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predictable. Since lim T, 1 a.s.,
n

t
= dum ‘ -
m SO o dms a.s. for all t € T. Since m, m, Mloc’

and the integral is defined, it follows that
o€ Llloc(a2)'

Remarks:

1. Theorem 5.3.1. for the case where m is square integrable,
was first proven by [Fujisaki, Kallianpur,vKunita, 1972].

Davis [1971] has given a slight extension of their result to
local martingales. The last part of the proof of 5.3.1.
differs from [Fujisaki et al., 1972], where we used techniques
developed in Chapter 3 of this thesis.

2. The main points in the proof are the following: we do a
transformation of measure, such that under the new measure the
observed process y becomes a martingale, actually a Brownian

.motion. The transformation martingale z is chosen such that
this is the case. Next the given martingale m is also
translated into a local martingale on (Fyt’t € T). Then the
martingale representation theorem on the o-field generated by
a Brownian motion is used. The result then follows by returning
to P measure.

3. Theorem 5.3.2. as given here is new, the method of the proof is
similar to that of 5.3.1., only some minor details are different.
Any martingale representation theorem can by che above oatlined
procedure be converted in a martingale representation theorem

on the v~field generated by the associated semi-martingale.
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5.4.

5.4.1.

4. The two previous theorems are of great importance in any
problem where we deal with martingales on the o-field

generated by the observed process. The two main applications

are estimation theory and stochastic control (see Davis [1971]).

5. Under the condition that the o-fields generated by the
observation and innovation processes are equal, we can
derive 5.3.1. in a different way. Consider the assumptions
of 5.3.1. then &,the innovation process,is a Brownian motion.
Now if Fyt = Fﬁt then by the representation theorem 2.6.3.

(S (S i = - .
(mt’Fyt’t TY €EM oc has the representation dmt ¢t dmt

1
The real problem however is that the equality of the o-fields
FYt = Fﬂt has only been proven in some special cases, see

the discussion at the end of section 4.4.

Estimation theory for continuous-time stochastic processes.
In this section we willvreview some of the basic aspects of
estimation theory. We give the least squares estimation method
for obtdining the optimal estimate. Then we discuss the general
filtering problem and give a solution in the form of a dynamical
equation. We start our discussion by defining the problem.
Definition: The estimation problem.
Given 1. T CR, the time interval of interest, usually T = [0,1],
or [0,x),
2. (xt,t € T) a stochastic process of interest that is not
observed,
3. (yt,t € T) a stochastic process that is observed, and

that provides information concerning the process x,
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4. let Fy 4 a(ygs¥s < t), (Fyt’t € T).
The filtering problem: to obtain for all t € T an estimate of X,
given the observations y on [0,t], or equivalently Fyt'

The prediction problem: to obtain for t, s € T, with s < t, the

predicted estimate of X, given Fys’
The smoothing problem: to obtain for t, s € T, with t < s, the

smoothed estimate of x_ given F_ .
t ys

Remarks:
1. We have not yet specified the dynamical equations for x and y
nor the way y depends on x. This will be done later.

2. There are obviously many ways of obtaining estimates of X,
given Eyt’ We will now specify a cost function that associates
a cost with each estimate. We will take the least squares
error criterion, because it requires the least number of
assumptions and does not require specification of a priori
statistics or distributions. As pointed out by Wiener [1949,
section 0.7.] this criterion has a physical interpretation,
since the square of the estimation error is proportional to
power.

5.4.2. Definition: The least squares error estimation problem.

Given 1. (y ,t € T) the observed stochastic process,

t’F§t

2. (xt,t € T) the unknown stochastic process, with
Elxtl2 < o for all t € T.

3. let t, s € T be given but fixed.

Problem: to find a random variable z(t[s) such that

1. z(t]s) is measurable with respect to Fq
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5.4.3.

2
2. E |z(t|s)| < ®
3. z(tls) minimizes the cost Elxt - z(t|s)|2 =

- E([xt - z(tIS)]T [xt - Z(tls)])

Definition: 1. such z(tls) is called the least squares error

estimate of X, given by Fys'
2. ex(tls)~é X, - z(t|s) denotes the estimation

error.

Lemma :

Given the above problem, then

1.

the minimal least squares error estimate of X, given Fys
LA A

is x(t|s) = E[xtIFys] a.s.

if zs is any random variable measurable with respect to Fys’

and E|zs[2 < » then

Blay e (c|s)|F ] = 0 = B[z} e"(t|s)]

Proof: Since Elxt]2 < oo, E[xtles] is well defined.

Assertion two follows by the property of conditional
expectations

T x _ T _ -
Elzg e (tls)IFys] = z_ E[x, E[xtlgys]|Fys] 0

Now take X, - z(tls) =x, - ﬁ(tls) + i(tls) - z(t]s)

t
hence we get
2 . 2 . 2
E|xt - z(t]s)| =‘E|xt - x(t|s)|” + E |x(t|s) - z(t]s)]
+ 2E[(R(t|s) - z(t]s)T (x, - X(t|s))] >

Elxt - i(tls)l2

where we used assertion 2. Since this holds for all z(tls)

with equality only for ﬁ(t|s), the result follows.
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Remarks :

1. The above proof is essentially the projection theorem in
Hilbert space. This is related to the fact that conditional
expectation is projection of a random variable on a o-field
Hence the above proof uses only properties of conditional
expectation.

2. We remark that here we have taken the projection on Fys‘

In Kalman and Bucy [1961], the orthogonal projection was
also considered, but then on the space of all linear
functionals of the past of the observed process.

3. The above two equations are the essential points for deriving
the optimal filter. The optimality of the filter is determined
by using these results.

4. We note that the least squares error estimate ;(tls) has
thg property that it is unbiased:

s[e*(t|s)] = Elx, - x(t|s)1 = 0.

S. We now limit our attention to the case where s = t, the

filtering problem. The prediction and smoo?hing problem are

consicdered in section 5.5.

Filtering theory.
Remarks:
1. We candefine as before it 4 E(xtlet) for all t € T and hence

obtain a stochastic process (ﬁt,F et € T). Note that if

y
YO = 0, then Fyo contains only null sets, so we get

~

Xg = E(xoleo) = E(x).

2. We now have to specify the model or the dynamical equations
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5.4.4.

for the processes x and y. This has to be done to get some
structure in the problem. We will assume that x and y are
semi-martingales of a form as assumed in the previous chapter.
Definition: The filtering problems
Given: 1. (Ft’t € T) some family of sub-g-fields,
2. (xt,t €T, X, = Xg+a;, +tm, satisfying E|xt| < @,

,tE€ET)E IV, (m_ ,F ,tET)E Mloc’

for all t €T, (a 1o e

1e°Fe
3. (yt’Fyt’t € T) the observed process,

t
v, = so d<m2’m2>s hs +my s (ht,Ft,c € T) is an adapted

measurable process, (m tET) EM

22 Fes 210’
The problem is to derive a generalized stochastic differential
equation for the optimal estimate ﬁ, given the observed process.

This equation will then be called the filter.

Remarks: 1. N&te that the processes x and y are specified in the
form of semi-martingale equations, where a; and h are unspecified.
No distributions for x and y are given. Note also that the
equations for x and y are non-anticipative, by the adaptivity
of al,h, my, m,. The relation between x and y is implicitly
specified by the adaptedness to (Ft,t €T,

2. In the above definitiqn we do not specify the structure of
the filter or of the equation that x must satisfy. This is
dore in the case of linear filtering by Wiener [1949], and
by Kalman, Bucy [1961].

3. If we derive a generalized stochastic differential equation for

i, then by adaptivity it is necessarily non—-anticipative, in
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the sense that it does not need the future observations.
However we cannot say whether the equation depends only on
the current estimate, or on the complete past of the estimate.
5.4.5. Assertion:
Given 1. the filtering problem of 5.4.4., where the observations
contain Brownian motion noise (m2t’Ft’t €T);
dy

e = ht dt + dm2t

2. the innovation process as defined in 4.4.3.,

A

A A _
dm2t = dyt ht dt
then the optimal least square error estimate satisfies
dxt = dalt + Zt dmZt’ Xy = E(xo)

where (Zt,FYt,t € T) is a predictable process, and
T E[altlet]'
5.4.6. Assertion: -
Given 1. the following problem of 5.4.4., with counting process
observations
dnt = At dt + dm2t
2. the innovation process as defined in 4.4.4.

-

dm

e = dny - A, dt

then the optimal least é;&giéé error estimate satisfies
A = A z -~ - =
dxt dalt + c dmZt’ X, E(xo),
where (zt’F§t’t € T) is a predictable process, and
a, = E[altlet]°
The precise results are deferred to the sections 6.2. and 6.4.

Here we only point out the main points. Similar to 4.4.1l. we

et that x satisfies X = x. + a n n .
g at x satisfies X, = X + aj, + oy, where (mlt’Fyt’t €ET) € Mloc
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Now using the martingale representation theorem 5.3.1. or 5.3.2.,
we get d&lt = Zt dﬁZt’ where &2 is the innovation process, and
this gives the result. These assertions give the basic result,
note the importance of the martingale representation theorem.
One problem that still rests 1s, what is the process L. 1In the
next chapter we will see that with a further specification of
the process a, we can find an explicit expression for I. Note
also that by the martingale approach we can give a similar
derivation to the counting process observation problem, and for

the equation with Brownian motion disturbances.

5.5. General prediction and smoothing problems.
In this section we will discuss in a general format the prediction
and smoothing estimation problems.
5.5.1. Definition: The prediction problen.
Given the stochastic system model, satisfying the assumptions of
theorem 4.4.1.,
+ m

1t 1t

and (y_,t € T) the observed process.

xt = X + a
The prediction problem consists of finding a generalized’stochastic
differential equation for ;(tls), the least squares error estimate
of X, given Fys where s < t. The following prediction problems

can be distinguished: ﬁ(t[s)

1. if t is fixed, we call it fixed point prediction,

2. 1if s is fixed, we call it fixed interval prediction,

3. ift-s=06 >0 is fixed, we call it fixed increment prediction.
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5.5.2.

5.5.3.

Theoremn:
Given the predictioh problem of 5.5.1., and let by theorem 4.4.1
T R TR T

then the'predicted variable satisfies, s < t

t +m

x(tls) = x(s|s) + E[altles] - a5,

where x(s|s) = is is the filtered estimate.

Proof. By conditional expectation x(t|s) = E[xtIFys] = E[xtles]'
Furthermore: x(tls) - x(s|s) = E[xt - xleys] = E[a1t - a +

+m - m = a -A.
Mt mlsIFys] E[alt:‘Eys] 8s

Definition: the smoothing problem.
Given ghe unknown process (xt,t € T) satisfying E|xt| < o for all
t €T, and the observation process y satisfying
t

Ve T SO d<m2’m2)s by t o
with the usual assumptions.
The smoothing problem consists of finding a géneralize& stochastic
differential equa;ion for the estimate ﬁ(tls), of X, given
FyS where t < s. The following smoothing problems can be
distinguished x(t|s)
1. if t is fixed we call it fixed point smoothing,
2. if s is fixed, we call it fixed interval smoothing,
3. if s - t-= 8 > 0 is fixed, we call it fixed lag smoothing.
Remark: The distinction between these special problems was given

in [Kailath, Frost, 1968].
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5.5.4.

Theorem:
Given 1. the smoothing problem of definitiom 5.5.3.,

2. let m, be the innovation process,

3. we restrict us to the observation equation with
Brownian motion disturbances or to counting process
observations

then the smoothed estimate satisfies

A . 8
x(tls) = x(t|t) + S E(t,I)'dmZT , t <8
t

for a predictable process (Z(t,T), Fyr’Te [t,11,t € T)

Proof. Let t be fixed, and define

a8 2ct]s) - x(¢t|t) then (m

s s € [t,1]) €M

1
because t < T < s E[mS - mTlFYT] = E[x(tls) —.§(t|T)|FYT] = 0.

S’Fy's’

Now for the Brownian motion or counting process case we have the
martingale representation theorem of section 5.3:, which gives
the result.

Remark: The foregoing basic results will allow us to derive the
detailed prediction and smoothing equations in the next chapter,

for more detailed stochastic system models.
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. -

6.1.

6.2.1.

6.2.2.

Stochastic differential equations for the optimal estimate.
Introduction.

In this chapter we derive in detail the stochastic differential
equations which the optimal estimates satisfy. In Section 6.2, we
derive the stochastic differential equation for the filtering problem
for observations with Brownian motion noise. 1In Section 6.3. we
discuss the question when the derived filters will be finite
dimensional. In Section 6.4. we derive the stochastic differential
equatious for the filtering problem for counting process observations.
In Section 6.5. we derive the stochastic differential equatioms for
some special estimation problems, such as prediction, smoothing and
systems with delays. In Section 6.6. we discuss in general the
martingale approach to estimation problems, primarily to filtering.
Filtering from observations with Brownian motion noise.

In this section Qe derive the general filtering equations for the
case whe;e the observations are disturbed by Brownian motion.
Definition: the observation equationm.

In this section we assume that:

1. T="10,1],

2. the observation equation is given by

dyt = htdt + dm2t, Yo = 0
3. where (m2t’Ft’t €T E M; is standard Brownian motion,

4. (ht,Ft,t € T) is an adapted measurable process, sup E]h |2 < o,
o eer  °

The conditions of 6.2.1. are necessary to derive the following lemma, which

recalls some points proven earlier.

Lemma: Under the conditions of 6.2.1.

1. We can define ht = E(htlet)’ (ht’Fyt’t € T) adapted, measurable,
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6.2.3.

2. let eh 4 ht-h » then sup Ele | ®,

t
3. E[I Ihslzds] < ®, E[j |h | ds] < o,
T
A A h c
= - = €
4. dm2t dyt htdt e dt + dmZt’ On yt,t T) MZ’ is the

innovation process as defined in 4.4.3., it is Brownian motion,
5. the conditions for 5.3.1 are satisfied, so if (mt’Fyt’
then dm_ = I_dm, , for an unique process I € L210c(ﬁ2)'
Proof: 1 and 2 follow from 6.2.1.4. By the same condition

3[5 |n,| 2as] =S B|h_|%ds < 1. sup E[n|? < =. Since
T : T tE€T

]

.12 12 2 2
E[h| =E.lE(hleys)I < EEl|n |*|F__1) = E|n | we have

~ 2 ~ 2 2
E[slhlds]=5 E|h|dsij £ln_|2ds
T S T S T 8

and because T = [0,1], ﬁz € M;.

conditions for 5.3.1 are satisfied.

A

Because'E[j ]ﬁslzds] < o, the
T

The stochastic differential equation for the optimal estimate.
Theorem:

Given the observation equation with the assumptions of 6.2.1. Given
the sem;—martingale dxt = ftdt + dmlt’ Xgs

O € c | ¢ ) ‘
1. wheve (mlt,Ft,t T) Ml’ hence (ml,m2 exists, assume that

(m® ) = €ET) €
d m .m, ¢12tdt’ where (¢12t,F ,LLET) EL (t),
2. (f,F.t € T) is an adapted measurable process, sup Elf | < =,
tET
3. sup EIx | s
t<€T
then dx = f dt + (Z (x,h) + E[¢12t|F D dm 2¢° xo = E(xo),

"

dm2t = dyt - htdt, the innovation process,
1. where (ﬁt,Fyt,t € T) is a right continuous modification of
E[xtIFyt]’ having left hand limits,
2. f = E[f IF
3. Z (x,h) = E[e (e ) IFyt]’ will be called the conditional

covariance of x and h.
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Proof. By condition 2 we can define the process (%t’Fyt’t €T,

t
We now apply 4.4.2 and get dﬁt = ftdt + dm

£ = E[ft|Fyt]. Note that E[j;|f8|ds] = j; E|f |ds < 1. iég Elft|< w,

1t? where(gt,Fyt,t €T)

is a modification of E[xtIFyt] having the above described properties

and (m ,t €ET) €EM, . By 6.2.2.5 we can apply 5.3.1 to get

1t’Fyt loc
A € n,).
the representation dm,, = I dm, , when (Xt,Fyt,t €T) LZloc(mQ)
£ A .

The problem now is to determine an expression for I. Let e, ft - ft

then we calculate:

X8 gy - dp = ef -t ah
det dxt dxt etdt + dmlt. Zt dm2t
~ _ h
dm2t = etdt + dm2t _
X & _ o - A = c - - -
d[e Byl d[x,mZ]t d[x,mZ]t d(ml,mz)t tht (¢12t Et)dt
by condition 1. We use the differentiation rule,
X, ~ T X, T t X, ,~ T t X, T t X ~
et(mZt) = es(mzs) +-Ss er(dmzt) -+-Ss deT(mZT) _+-fsd[e ,mZ]T
t t t
_ x,~ T x, h\T x T £, \T
= es(mzs) + Sset(eT) dt + Ss eT(dmZT) + ss eT(mZT) dt

t

-t T
+ S dmlr(mZT) - ss

t
~ ~ T
zrdmZT(mZT) +.§ (¢121 ZT)dT
s 8
By condition 3 and 6.2.2.4, e® and ﬁz are square integrable so by
5.4.3 we have, if s j_t,E[ef(QZt)Tles] = 0. Now eliminating the

Fyt and Ft local martingales and using that

£ £ E £ T
Elss ryerey ] = nif Bl )T IF, JexlE, ) - o,

E[e*@, ) |F, ] = 0 = E[ @ E@T 4+ g, -5 )de|F, ]
£\ 2t ys Y T ®r 912 "I. d ys

Because of the integrability of the first two terms by the conditions
x, h\T .

1, 3 and 6.2.1.4 we get I_= E[e (e ) IFyt] + E[¢12t|Fyt].

Remarks

1. The semi-martingale x represents any unobserved process, which can
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be modelled this way. The processes £ and m, are unspecified.

1

Note that f can be any adapted process, which can depend on the

past of x, and not necessarily just on the current state X, .
This formulation is an extension of earlier stochastic system
equations.

2. The conditions in 6.2.3 on x,f, and m, are of course related
by the expression for x. The way the conditions are stated, is
the form in which they are needed in the proof. In a subsequent
proof we will use this result again. Of course equivalent or
stricter conditions could be stated, however it was left that
these conditions were most easily to apply.

3. The result stated is similar to that of [Fujisaki, Kallianpur,
Kunita, 1972], except that we have considered a more general
case. The proof is new, and was partially inspired by a simple
example given by Wong [1972], also Wong [1973]. For a further
discussion on the method used see Section 6.6.

4. Note that the derived result has a similar interpretation as the
Kalman-Bucy filter. If the conditional covariance matrix Zt(x,h)
is large, then the optimal estimate X relies more on the innovation
process. If this covariance is small, then the innovation process

plays a lesser role, and the optimal estimate relies more on the

estimate of (ft’t €T).

The stochastic differential equation for the conditional covariance.
We now define the stochastic system, for which we will derive a
stochastic differential equation for the optimal estimate and the

conditicnal covariance.
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6.2.4.

6.2.5.

Definition: the stochastic system equations.

Given the observation eéuation as defined in 6.2.1 with the
conditions assumed there. Given an unobserved process x, a
semi-martingale, and suppose that the process h, as defined in
6.2.1, is also a semi-martingale:

dx

t

dht

n

£.dt +dm) , X,

rtdt + dm3t, ho,

where we impose the follbwing conditions:

1. (m,,F,t €T) EM,, (m ot ET) EM,, (ml,m ) =0, (m3,m2) =0,

32 F 2
dmyymgdy = 05t Emgumy) = 055,.dE, (0)3,F,t €T) € 1,(0),
(635,5F,»t €T) €L, (t),

2. (ft’Ft’t €mn), (rt’Ft’t € T) are adapted measurable processes,

3. sup Elxtl4 < ®, sup E|ht|4 < m;
tET

t€T
2 2
4. sup E]ftl < ®, sup Elrtl <,
tET tET
5. sup E|¢ I < ®©, gup E|¢ | < @,
€T 'T13t t€T 33t
Remark: consider the conditional covariance

x, h T
Et(x,h) = E[et(et)«

By, = E[xt(ht)Tlet] - x, ()", One usually
derived a stochastic differential equation for the estimate of
xt(ht)T. Here we take a’different approach and obtain directly a
stochastic differential equation for Et(x,h).

Theorem: the general filtering equations.

Given the stochastic system as defined in 6.2.4. The optimal filter

has the form:

dmZt = dyt - ﬁtdt, the innovation process,
dxt = i dt + Zt(x,h)dmZt, Xq = E(xo),
dht = rtdt + Zt(h,h)dmZt, hO = E(ho),
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91, (x,h) =2 (x,x) + 2 (£,h) - £ (£,h) I, (B,h) + E[¢)3, | Fypldt +
+ £, (h,h,h)dm, , Zo(x,h) = Eleh(ep) '],

dz, (h,h) = [Zt(h,r) + I, (x,h) - £, (h,h) Zt(h,h) + E[¢33t|FYt]]dt +

: N _ ¢.h, BT
+ £, (h,h,h)dh,, , £(h,h) = E[eg(er) 1.

Remark: Still unknown, Et’ ; and several terms in the equations

t
for zt(x,h}, zt(h,h).

. 4 _2 _2 . .
Notation: Lt(x,r) E[(xt xt)(rt rt)IFyt] and similar expressions
for the other conditional covariance matrices.

I, Gch,hydm,, & (5 (x,hlh)dd,, ..., Zt(x,hk,h)dﬁ in the scalar

zt) b
_ x, h 2
case ot(x,h,h) = E[et(et) IFyt].

Proof: Because of notational problems we give the proof for the

scalar case only. From 6.2.2.4. dm,, = e:dt + dm The conditions

2t 2t°
1, 3, 4 of 6.2.4 imply that we can apply 6.2.3 to the semi-martingales

X and h,
dxt = ftdt + ot(x,h)dmZt,
dﬁt = r dt + o (h,h)dm, ,

The problem now is to derive a stochastic differential equation for

ot(x,h). We calculate, lgt

e: A X, - it’ ei = ft - Et’ ez =T, - f;, then
de: = eidt + dm1t - ut(x,h)dQZt,
-v[ei - ot(x,h)e:]d: + dm1t - ot(x,h)dmZt,
dle*,eM], = dlmy,mg], + o (x,h) o, (h,h)dE,
d(e:e:) = adt + dmht’
a, £ efel - o (m,mel) + (ef - o GemeMe + 4 + o ) o (h,0)
dm4t A e:dmlt + e:dm3t - [ot(x,h)e: + e:ot(h,h)]dm2t

+ d([ml,m3]t - (ml,m3>t),

(mAt’Ft’t ET) €M . Note that (e:eZ) is a real valued semi-martingale,

loc
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of the form assumed in 6.2.3, which result we riow want to apply.

We check the conditions. We have to check that sup E|at| < », This
tEer ‘

follows from the conditions 3, 4 and 5 of 6.2.4, for example:

x h x h2 2 x| 4 hy 4,3
Ele, e, ot(h,h)l < Ele; et| Elot(h,h)l 5_E|et| (E|et| ) <

I/

K E|xt|‘ (Elht|4) 3 ¢ », where K is a positive constant.
Similarly by condition 3 of 6.2.4 we have

x h2 4 4 '
Ele, e |” <K Elx.|" Eln|" <=
Now by the equation for (e: et), E|mZt| < =, hence m, is a martingale

c _ h x

and d[ml’,mzlt = d(m.l',mz)t = [ot(x,h)et + e ot(h,h)]dt. We now
can applv 6.2.3 to (e: e:) and using that
d(mzamz).-.
—_—EE_——: IFyt] = 0, and the notation introduced before, we get
dot(x,h) = [ot(x,r) - ot(x,h)ct(h,h) + ot(f,h) - ot(x,h)ot(h,h) +

E[

+ E[614,[F 1 + 0, G, h)o (b,h)]dt + ot(x,h,h)dEZt, which
gives the result. The equation for ct(h,h) follows from this.
Note that
o, (x,h,B) = E[(e] e: - ot(x,h))(ht-ﬁt)let] - E[e:(ez)leyt].
Remark: |
Theorem 6.2.5 is the main result of this section. It gives the
stochastié differential equation for the optimal estimates i,ﬂ and
for the conditional covariance Et(x,h). The filtering problem is
not solved with these equations, as indicated by the unknown variables
mentioned. In the next section we discuss in more detail the
implementation of this filter, which in general will be infinite

dimensional.

Applications.

At this point we want to point out a modelling guideline and give a
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6.2.6.

special case of the above formula's. We assumed the unknown process
X to be a semi-martingale, some special forms of which are:

= = = E G .
X, Xg» xt X + a, xt xo + mt, where a BV, m Mloc Now

X X

t 0
so this is not usefull. Similarly X, = X, + a, leads to dﬁt = d;t.

for all t € T, leads to dxt = (0, hence dit = 0, ;0 = E(xo),

Note that in both cases there is no 'feedback' correction using the
innovation process. This follows because the equation for x does
not include any martingale term, which represents the disturbance.
So as a modelling guideline processes to be estimated should be

modelled by an equation which includes a martingale term. In the

case where we suspect X to be approximately constant it can be

modelled as x, = X +m

¢ , where m € Mlo . We state the result.

t c

Corollary:
Given the system of 6.2.4, with scalar quantities
dyt = htdt + dmZt’ Yo = 0,

h, =h, +m

t 0 3t’
h0 an unknown random variable, E(ho), E(ho)2 given,
€ e = =
(my,»F,,t T) € M,, d(m3,m3)t ¢4,dt, (m3,m2> 0. Then the

optimal filter for h is:

~

dm2t

dht

]

dyf - ﬁtdt, the innovation process,

b

o, (h,h)dm = E(h

2t> Mo 0>
= 2 -
do (h,h) = [E(¢5,]F,) = oy (h,h)]dt + o, (h,h,h)dm,,,
_ 2
oo(h,h) = (hO-E(hO)) .
This follows from 6.2.5.
The stochastic system modél with Brownian motion disturbances.

We now specialize the discussion to what is generally regarded as

the nonlinear system, with Brownian motion disturbances.
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6'2.7.

6.2.8.

Corollary:

Given the stochastic system

dxt = f(t,xt)dt + G(t,xt)dmlr, X9

dyt = h(t,xt)dt + dm2t, Yo = 0,

that satisfies the assumptions in 6.2.1 and 6.2.4

n

Furthermore'(mlt,Ft,t € T) is a standard Brownian motion in R 1,

independent of m,.

n nx nx n nx nxxnl
f:TxR¥+R*, h:T*xR*+RY,6: TxR*>R are jointly
measurable functions, f(t,x), h(t,x) are assumed to be twice continuously
differentiable in x and once in t. Furthermore f and G are such that
the above stochastic differential equation has an unique solution.

Then the optimal filter is
dxt = ftdt + Zt(x,h)dm2t Xy = E(xo),
- Ah ~ -~
dht = tdt + Zt(h,h)dmzt, h0 = E(h(O,xo)),-
and the equations of the conditional covariances as in 6.4.5.
~ A a
£ = E[f(t,xt)|Fyt], h, = E[h(t,xt)IFyt].
Proof. The theorem follows from 6.4.5, since by the assumptions,
f(t,xt) and h(t,xt) are semi-martingales, for which we can derive
a detailed semi-martingale expression by the differentiation
rule.

Corollary: Thé Kalman-Bucy filter.

Given the stochastic system, satisfying the assumptions of 6.2.7,

dxt = A(t)xtdt + B(t)dmlt, X
dyt = C(t)xtdt + dmZt’ Yo = 0,
where Ft = o(mls,mZS,xo,Vs <t), m,,m, are standard Brownian motiomns,

(ml,mz) = 0, E|xo|2 <, x, is a Gaussian random variable.
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The optimal filter is
dm2t = Qyt - C(t)xtdt,
ca T ~ a
= \ =
dx, = Alt)x dt + I (x,x)C(t)dm, , X, E(x4),
ar, (x,%) = (5, (6X)A) + AL (x,%) + B(£)BT(£) - I (x,1)C" (£)C(D)E, (x,x)]dt,
_ x, x\T
Zo(x,x) = E[eo(eo) 1.
The proof follows from 6.2.5 with the following observationms. Since
X, is Gaussian, and o, is Brownian motion, x is Gaussian and by
linearity so is y. Actually e = x - x and y are jqintly Gaussian,
and since they are uncorrelated, they are independent. Now
. X2, h - x\3 - x3 _
at(x,x,n) E[(et) (et)let] C E[(et) IFyt] c E(et) 0.
The general formulation of the first part of this section allows us
to obtain the equations for another class of problems. We discuss
here the scalar case only.

6.2.9. Definition: Given the system equations.

dnt

dyt

Atdt + dmlt’ n,

ntdt + dmZt’ Yo © o,

= 0,

1}

satisfying the assumptions of 6.2.4, where (n t € T) is a counting

t’Ft’
process, (At,Ft,t € T) its rate process, where Kt >0 a.s. for all

lt’Ft’t €rT) € MZ’ d(ml,ml?t = Atdt. The problem

is to ohtain an estimate of the counting process n, given the

tE€ET, A € Ll(t), (m

observations y.

6.2.10. Corollary:
Given the filtering problem of 6.2.9 the optimal filter is:
dﬁZt = dyt - ﬁtdt, the innovation process,

dn_ = ktdt + ot(n,n)dmZt, n, = o,

t 0

~ 2 ~
do _(n,n} = [20 (n,}) + A - 0 (n,n)]dt + o _(n,n,n)dn,,,
oo(n,n) = Q.
Still unknown it,ot(n,k), ot(n,n,n).
This result follows from 6.2.5. Note that the estimate n of the
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6.3.

counting process does not necessarily assume integer values. The
above theorem is a general result, more specific formula's can be

obtained by assuming certain models for the rate process A.

Nonlinear filters.

In this section we discuss in more detail the nonlinear filters
derived in the previous séction. Little research has been done on
this subject, but without these points this thesis would have been
incomplete. What follows is a nonrigorous discussion of the problems -

and an outline of possible solutions to implement the derived filters.

Problem statement.
Given the stochastic system as defined in 6.2.1 and 6.2.4, where all

variables are real valued:

dyt = htdt + dm2t, Yo = o,

dxt = ftdt + dmlt’ Xg»

dht = rtdt + dm3t’ ho,

where (f ,t € 1), (r.,t € T) are still unspecified.

The stochastic differential equations for the optimal estimates are
dﬁZt = dyt - ﬁtdt,

ax_ = £ dt + o (x,h)dm, , x5 = E(x,),

dh_ = r dt + o (h,h)dm, , hy = E(hy),

st1ll unknown £ , r., o _(x,h), o (h,h).

The problem is this: given further specification of the stochastic
system, how many variables and which ones do we have to estimate to
determine (it,t € T), in other words what is the order of the filter

L)
for x.

Consider which variables need to be estimated, first we need x and h.



The equations for these quantities contain ft’ ; , ot(x,h), ot(h,h)

t
as unknowns. To further specify the above stochastic system, we

assume that f and r are also semi-martingales of the form assumed

for x. By this assumption we get two more unknown processes, and

two unknown conditional covariances. Depending on further speci-
fication of the system we continue this way indefinitely. Even if

Et’ ;t are known, then the stochastic differential equations for
ot(x,h),ot(h,h) (see 6.2.5) still contain the unknown variables
ot(x,h,h), ot(h,h,h). For these wé can again derive stochastic
differential equations, which however contain fourth order conditional
moments and so etc. |

The conclusion from this argument is that in general the filter is
infinite dimenéional. This fact is well known from the literature,

for the case of nonlinear stochastic systems with Brownian motion
disturbanées, see for example Kushner [1967b]}. The question now is

for which stochastic systems do we get finite dimensional filters.

From our preceding discussion we see that to get finite dimensional
filters two conditions need to be satisfied:

1. the processes f and r need to be known,

2. the sequence of conditional higher moments must stop after a finite

number.

We discuss both these conditions in more detail.

Filtering equations and Hermite polynomials.
Rather than talking in general terms we will give an example that

demonstrates some essential ideas. It satisfies one condition for

obtaining finite dimensional filters.
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Example:
Given the stochaﬁtic system model of 6.2.7 of the form:

dxt

-xtdt + dmlt’ Xq»

dy h(xt)dt + dm2t’ Yo = 0,

t

, are independent Brownian motions, and h : R» R is a

twice continuously differentiable function. By the differentiation

where ml, m

rule 2.5.23 we get that
= T ' l " ]

dh(xt) t xth (xt)] + 2 h (xt)]dt +h (xt)dmlt.
To prevent the filter from growing in order, we now restrict the
class of functions, h, and demand that the equatién for h is linear
i.e.
[-x hl(x ) - é-h"(x )] = ¢ h(x_) for some constant ¢

t t 2 t t '
However this equation is a differential equation:
h"(x) - 2xh'(x) - 2ch(x) = 0.
For ¢ = -n, n = 0,1,2,.... it has assolution the Hermite polynomials

2 4t _
h_(x) 1" & = (™).

dx
The first few polynomials are: ho(x) =1, hl(x) = 2x, hz(x) = 4x2 - 2,

hy () = 8x> - 12x, h, (x) = 16x* - 48x% + 12.
We now give the filtering equations for our example.

_ 3 _ . 2 _
Let h(xt) h3(xt) = 8xt 12xt, and let h2(xt) = 4xt 2,

hy, = E[hz(xt)let], hy, = E[h3(xt)|Fyt]. Then

& dy, - h

dm t 3t

2t dt

dx, = -x.dt + 0, (x,hpdm, , X,

dh, = -Zthdt +a

2t (hyshg)dm,, , hygs

t

3t

We can also state the stochastic differential equations for ot(x,hs),

ot(hz;h3), ot(h3,h3), which after some simplifications only

-11h-



contain the unknown ot(x,h3,h3), ot(hz,h3,h3),'ot(h3,h3,h3).

It turns out to be neceaséry also to estimate the lower order
polynomial h2(xt)'

Let us review what has been done and draw some conclusions. By
taking a special stochastic system, where we take in the observation
equation a Hermite polynomial, we can derive the filtering equationms,
in which as only unknowns the higher conditional moments are left.
We will discuss this problem in the sequel.

The way we obtain the Hermite polynomials, is by enforcing linearity
in the stochastic differential equation for h. That we get the
_Hermite polynomials is not so surprising, since they are closely
related to the Gaussian distribution, see the way they are defined.
More research could be done on the use of Hermite polynomials in
this context. Several extensions of the above ideas have been con-
sidered but no usefull results have been obtained. Hermite polynomials
have been used before in statistics and estimation. One application
is the approximation of arbitrary functions by a finite number of
Hermite polynomials. This method is well known in mathematical
statistics, it is called the Gram~Charlier series representation.
For this see Cramer [1946], which has references to earlier work,
and Deutsch [1969 gection 8.4.3]. A recent reference on the use of

Hermite polynomials in estimation is Srinivasan [1970].

Conditional covariances.

The next problem in obtaining finite dimensional filters is the
sequence of conditional moments. Not much research has been done on
this problem. The problem is to find conditions such that the

sequence of conditional moments stop, by having one of them vanish.
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In the scalar case this leads to the problem, whén is
E[(e2)3|Fyt] = 0, or E[ei(e:)2|Fyt] = 0.
For the case of a linear system, with Brownian motion disturbances
we have that e: = c ez. Then et and y, are jointly Gaussian,
uncorrelated, hence independent, so
B(eD’|F,, ] = EL(eD’] = 0.
Actually to obtain this result, only the symmetry of the conditional
distribution of (e:) given Fyt is needed. No further points have
been found concerning this problem, specifically for the example
derived earlier we have not been able to show that the third order
conditional moment vanishes.
The foregoing gives a short summary of the little work we have done
on nonlinear filters. We have concentrated attention on the problem,
when is the optimal filter finite dimensional. We have not considered
approximations to the optimal filter, since this approach is well
known and established in the literature. For references see
Schwartz, Stear [1968], which compares several nonlinear filters and
gives further references.
6.4. Filtering for counting processes.

In this section we derive the general filtering equations for the
casevwhere the observation process is a counting process.

6.4.1. Definition. The observation equation.
In this section we assume that T = [0,1],
1. the observation equation is given by

dnt = ktdt + dm = 0,

2t "o
2. the rate process A is given by

dr_ = rtdt + dm

t 1t’ A0’
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6‘4. 2.

3. where n is a counting process in Rk

4 (@, ,F,t€T)E MS, &mym,), = AQEE = dtag(Al,..A)dt,

5. (A ,F ,t €T) is a supermartingale, A, > 0 a.s., sup E(A) <=
t’ t 1 ter t

6. (m t € T) a right continuous martingale, having left hand

lt’Ft’
limits,
7. (r_,F_,t €T) an adapted measurable process, sup Elr [ < o,
t’ t tEr t
We recall some points derived earlier.
Lemma. Under the conditions of 6.4.1:
A =1 o
T € r =
2. where (rt’Fnt’t T) is an adapted measurable process, r, E(rtant)’
3. (alt’Fnt’t € T) is a right continuous martingale, having left
hand limits,

4, (At,Fnt,t € T) a right continuous modification of E(Atant), having

left hand limits, a supermartingale,

(=]

5. Xt > 0, Xt- >0a.s. forallt €T,

6. let e a - xt, then sup Ele | < «,

7. E[s A ds] < =, E[j.x ds] < @,
8. dn - A dt = e dt + dm2 is the innovation process as

defined in 4.4.4, (m oot €ET) € M d(mz,m = AQA )dt,

2t’ 2 t

9. the conditions for the martingale representation theorem 5.3.2
are satisfied.

Proof. 1, 2, 3, 4 follow from 4.4.2. Similarly 8 follows from

"

4.,4.4, and 6, 7 and 9 are obvious. By definition of A = E(Alanl)

A, > 0 a.s., Since E[A|F ] = E[E[At|Fs]|Fns] < A ») is a super-

martingale, so by [Meyer,1966,VI,T15] it follows that

A

At > 0, it- > 0 a.s. for all t € T.
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6.4'3.

Remark: The supermartingale condition is necessary to prove that

A

t-

> 0 a.s. for all t € T. This last point is absolutely necessary

A

in the subsequent forﬁula's, since we will use X:i. We suspect

that we can drop the supermartingale condition on A, and replace

it by the condition A is a semimartingale of the form given in

6.4.1.2 satisfving At > 0, Xt_ >0 a.s. for all t € T. However we

1

have as vet no proof that this implies that i: > 0 a.s.

The stochastic differential equation for the optimal estimate.

Theorem:

Given the observation equation 6.4.1 and the conditions assumed there.

Given the semi-martingale:

dxt = ftdt + dmt, xo,
Where (mt’Ft’t € T) is a martingale, and there exists ¢ m,mz) .
satisfying d{m,m)? = ¢ dt, (4.,F ,t € T) € L, (v),
(ft,Ft.t € T) is an adapted measurable process, sgg E]ftl < ®,
t
sup Elxtl2 < o,
ter

in addition to 6.4.1 sup Elkt|2 < »,
ter

then d&Zt = dnt - itdt, the innovation process,

1.

4.

dx

A P, -~
= fde+ (z, (x,2) + E[¢t|Fnt]) A Ddmy, 5 Xq = E(xy),

where (it,Fyt,t € T) is a right continuous modification of E(xtlet)’
having left hand limits,

fe = E[ftIFnt]’

Zt(§,k) = E[(xt-xt)(kt-xt)ant] a.s., called the conditional
covariance of x and A,

/\(izl) 8 4iagonal ((ii)‘l,....(i‘:)‘l)

Proof. By condition 2 we can define the adapted process (ft,Fyt,t €T),

£

= E[f,|F

yt]‘ Now E[j;Jfélds] < 1. igg Elftl < o,
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By 4.4.2 we have that dﬁt = %tdt + dﬁt, where x has the properties
stated above, and (mt,Fyt,t €T E M oe By 6.4.2.5 we can apply
5.3.2 to get the representation dﬁt = ztdQZt’ where £ is8 an unique
predictable process. The problem now is to determine an expression

A

f
for L. Let e 4 £ - ft’ then we calculate

t t
x A ~ _ £ -
det = dxt dxt = etdt + dmt - thmZt,
~ A
dm2t = etdt + dm2t

X ~ -~ ~AA A A
dfe ,m2]t = d[x,mz]t - d[x,m2]t = d[m,mz]t - th[mz,mzlt

(¢, - I, AQ dt + d([m,mg]t- (m,m,? ) - Z.d(lmy,m,)], - (m,,m,?.)

t
x,~ T _ x,~ T X, 0 T X ..~ LT x -~
et(mZt) = es(mzs) + S deT(mZT_) + se_[_(dmz,r) +-s dle ,mle
X, - T, t x, AT X T sct £, ~ T
= es(mzs) + sser(eT) dt +-Sse1_(dm2T) + gseT(mzt) dt

T S .
+ Ssdmt(mZT-) - SSZTdm2 (mZT-) +'ss[¢T-ET A(AT_)]dT

t
+ Ss(dm41+dm

51)
By condition 3 and 6.4.2.8, e* and 52 are square integrable, so by
5.4.3 we have, if s < t E[e:(ﬁZt)Tans] = 0. Now eliminating the
F and F_-martingales and using that
nt t
Eg~ T E g~ T
E[SseT(sz) dt|F_] = E[gsE[eT(sz) IFnT]dTIFns] = 0,
we get
t
X,~ T -0 x, AT _ 2
(Y Gp) " IFy) = 0 = 0+ B (D" + 0y - L AGDe(T,,]
By the conditions 3 and 4 the first term on the right hand side is

integrable, by condition 1 the second, hence we get

3 AT
g AGLD = Elef(e) |F ]+ E[4,|F ]

>

Z (x,2) + ¢,

which we define predictable.

Since it- > 0 a.s. for all t € T, we can define A(i;f) a diag((it_)-l),
= & s=1

so zt = tzt(x9x) + ¢’t] A()\t_)o
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The stochastic differential equation for the conditional covariance.

6.4.4. Theorem.
Given the observation equation 6.4.1 and the conditions assumed
there.
In additZon assume that

1. € My, and d(ml,m ) = ¢Cdt’ (¢t,Ft,t ET)E Ll(t),

m 1t

[ml,mz} =0 a.s.,
2. sup Elkt|4 < ',

A A r_ a1, AT r_ A=y Ao AT
3. let Q2 eplef-Z, AN AGTIE] + [e-2 0,0 AG e 1) + 0,

22
FI AR T (L)

A A T AT a=1., A \T
4. dmg = et-(dmlt) + dmlt(et-) - [Et(K,K)A(Xt_)(et_) +

A 2=-1
F (ep INATHE 0,0 1dmy, + d(lmy,my ], = Cmyymy ) +

a=1 a-1
+ I GODAG DA (I, ,my] - <m2,m2>tym(x e )E L)

Z]t
dt, where

then d(m3,m2)t = ¢32t

_ 2=2 :=1 AT A, -1
¢32t = Zt(A,A)A(At Xt)Zt(l,l) - Zt{l,A)A(At At)(et) - eeN(kt Xt)Zt(l,A),
S. Assume that sup EIQ | < o, and E[S $nn ds] < =,
tET t 0 32s

then di_(A,1) = [Z (A,r) + I (r,A) - zt(x,A)A&izl)zt(l,k)+E[¢t|Fnt]]dt
-1 =1y .2
+ [ (L0010 - AN AR GLNIAR Ddm,,

Notation: Et(k,k) = E[et(ei)T|Fnt] is a right continuous modification

having left hand limits. Xt(r,k) = E[ez(ez)T|Fnt] is a predictable
modification, Zt(A,A,A)dmZt = (Zt(A,A ,A)dmZt,....Zt(A,A ,A)dmZt).
Proof. Ve give the proof for the scalar case only.

The conditions above imply that we can apply 6.4.3 to the semi-
martingale A,

~

e 1
dkt = rtdt + ct(x,x)xt_ dmZt’
r

where o, (A1) = E[(ei)2|Fnt]. Let ef 8 r -1

¢ ¢ £? then
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A_ T ) _ a=1.~
det = etdt + dm1t ot(l,k)At_dmZt

Now d[ex,eA]t

d(et)z

_..r s=1, A
= [et-ct(k,l)k t(et)]dt + dm1t

2 2=2
d[ml,mllt + ot(k,k)kt_d[mz,mz]t

-1
- 0, (M)A du,, .

)]

- 2 )
= d([m,m,], - <q1,m1>t) +¢.dt + 0 A A dt

2 t=2
+ ot(k,l)kt_d([mz,mz]t - (m2’m2)t)
A A A A
Zet_de + dl[e ,e ]t

[2e

t
r =1 A 2 $~2
(et—at(k,l)kt et) + ¢t + ot(A,A)At At]dt

et >t >

A s=1
+[2e _dm, -Zet_ot(l,l)kt_dmZt + d([ml,mllt - (ml,ml)t)
2 2=2
+ ct(A,A))\t_d([mz,mz]t - (mZ’mZ)t)]

b
= q,dt + dm, as defined above.

Note that [m2,m2]t - (mz,mz)t =my., and

[(my,m] - (ml,ml), m,] = 0 a.s. Using that [m ,m,] = 0 a.s.

2 =2 A a1
d[m3,m2]t = [ot(A,X)At_ - Zet_ot()\,)\))\t_]d[mz,mz]t

) 0.2 £=2 A -1 -
such that d.(m3,m2)t = [ot(X,X)At Zetct(k,k)lt_]ktdt ¢32tdt

which gives ¢32t as above.

Note that by condition 2. sup Ele I4 < 2 sup E|X |4 < =,
t - tET t

tET

Now the conditions of 6.4.3 are satisfied for the semi-martingale

A2
d(et) = qtdt + dm3t. We get that

- 2 2-1 2 ~=1
do (\,0) = [20 (r,}) = 20 (LA + E@|F, ) + o LA TTde

2 -1 2 N T
* To (LA, + ol (LMAL = 20 (WMD) O Ddmy,

where ot(k,x,k) = E[(et)BIFnt] the predictable modification,

which gives the result.

Remarks:

1.

Theorem 6.4.3 is the first result, it gives the stochastic
differential equation for the optimal estimate. The semi-
martiagale x represents any unobserved process, and by this

formulation we obtain a quite general result. The conditions
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in 6.4.3 on the variables x, f and m are of course related by
the equation for x. The way the conditions are stated, is how
they are needed in tﬂe proof.

2. Theorem 6.4.5 is the second main result of this section, it gives
the stochastic differential equation that the conditional
covariance Xt(h,h) satisfies. To be able to use 6.4.3 in the
procf, it is necessary to impose quite complicated conditions.
Condition 5 of 6.4.5 could be replaced by proper conditions on
the processes A and r, but this has not been done to keep the
proof simple.

3. The derivation of 6.4.3 is similar to the proof of 6.2.3 for
the filtering problem with observations with Brownian motion
noise. A result similar to that of 6.4.3 was given by Snyder
[1972a], but a different mefhod was used, and a more restricted
problem was considered. Little research has been done on the
implementation of the filter derived in this section. We have
not found any finite dimensional filters. Snyder [1972a] outlines
a method to obtain approximations to the optimal filter and gives

several examples.

Applications

We now limif our attention to real valued scalar processes, and
concentrate on filtering for the rate process cnly. We first make
an important observation. In 6.4.1 we assumed that the super-
martingale A is such that Al > 0 a.s. which implies that At > 0,
A__ >0 a.s. for all t € T. Since A is a super-martingale it is

also a semi-martingale. By 3.2.3 there now exists a semi-martingale

(xt,Ft,t € T), such that Xt = AO e(xt), or dAt = At- dxt and x has
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certain properties. This implies that every rate process can be
modelled by an exponential formula of another semi-martingale x.
We rephrase the previous result using this point.

6.4.5. Corollary:
Given the stochastic system, sa;isfying the éssumptions of 6.4.4,

when all variables are real valued:

dnt = Atdt + dmZt’ n, = 0,

dxt = ftdt + dmlt’ Xg = o,

dhp = A dx, = A de+ R dmyes Ao
where A = e(x) is an exponential formula.

= | em €
Assume that (m;.,F, ,t €T1) EM,), d(ml,ml)t ¢,dt, (9,5F,>t T) Ll(t),
(ml,mz) = 0.
The optimal filter for the rate process is:

dm,, = dnt - Atdt, the innovation process,

2t
& = E{f A |F_ lde + ot_(x,x)i;fdQZt, Ao = EQ)s
do_(4,0) = [26,(\EA) = R T02(A,0) + E[A§¢t|Fnt]]dt +
+ [0, 00,0 - Ak 00 IR any,,
5o = ELO )%
Still unknown E[£ A |F 1,06, (Af,}) = E[(ftxt-E[ftxt|Fnt])(xt-it)|Fnt],
ct(A,A,A) and E[Ai¢t|Fnt].
We have done little research on the question whether there exists
finite dimensional filters, for this type of problem. However one
special case is given.
6.4.6. Corollary: T = [0,1].
Given the stochastic system, satisfying the assumptions of 6.4.4,
dnt = Atdt-+ dmZt’ n, = o,

dkt

a(t)ktdt + Atdmlt’ AO’
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6.5.

6.5.1.

where (mlt’Ft’t € T) is standard Brownian motion,
and a : T + R is a measurable deterministic function, a(t) < 0 for

allt€1
t

- 1
then At = AO exp(m1t -3 t) exp( Soa(s)ds).
The optimal filter is:

dm,, = dnt - xtdt, the innqvation process,

2t
~ _ A "_l P "~ _

&, = a(®hde + o, (A Tem, , R = EC ),

do, (,1) = [(2a(t)+1) 0, (A,)) + 32 _ i:lo:(k,l)]dt +

t
-1 2

PN A-l PN
+ [ct(l,k,l) - lt_ot_(k,k)]lt_dm

2t’

0,(>1) = ELOGA) 1.

Still unknown ot(x,x,x).

The proof of 6.4.6 follows from 6.4.5, and using that

ct(x,x) = E[Ai|Fnt] - ii. From an example following 3.2.6, we see
that on T = [0,11, E[e(mlt)] = E[exp(m1t - %-t)] = 1, hence,
E[At/AO] = exp(soa(s)ds) which gives the interpretation for A.

if a(t) = a < 0, the rate process is a decaying exponential.

The above result has a cértain analogy with the Kalman-Bucy filter.
Some special estimation problems.

In this section we discuss some special estimation problems. We
start with the case where the observation equation is disturbed by
Brownian metion.

Theorem:

Given the prediction problem as defined in 5.5.1 for the following
stochastic system. Given the observation equation with Brownian
motion disturbances as defined and with the assumpfions of 6.2.1.

Consider the semi-martingale x:

dx, = ftdt + dm

t 1t’ %o’
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1. where (£ _,F_,t € T) is an adapted measurable process, sup Elf I < o
t’ t €T t

2. ( ,t € T) is a right continuous martingale, having left

™o Fe
hand limits,
3. Elxol < o,

then the optimal prediction estimator is given by:

dx(t|s) E[£, |F,ldt, x(s|s) = x , where s < t or

x(t|s)

xs + SSE[fT|FyS]dT
The proof is an easy application of 5.5.2, using 4.4.2 and that
t t '
E[SSE(fT|FYT)dT|Fys] - SSE(leFys)dr.
6.5.2. Theorem:
Given the smoothing problem as defined in 5.5.3 for the following
processes. Given the observation equation with Brownian motion
disturbences as defined and with the assumptions of 6.2.1. Given
any (x,_,t € T) measurable process, sup E|x |2 < »,
t +er t
Then the smoothing estimator is
t ~
x(ala) + S' Z(s,a,x,h)dmzs, a<t, a,t €T, where

a
E(xalet),

x(a|t)

>

x(a|t)
£ (t,a,x,h) = E[(xa-x(alt))(ht-ht)let]
Proof. From 5.5.4 we have that if a < t,
t
x(alt) = x(ala) + Sazsdmzs.
The problem is to determine g Let
’ t
A » S A ~ X ~
r, =x, - x(alt) = x, - X, ¥ x(ala) - x(a|t) = e_ - S E dm,.
Note that by 5.4.3 if a < s < t

E[rt(yt)TIF = E[E[r (yt)TIFyt]lF ] = o.

JE ys
Ve = vy, + h ds + m2 - m2a so applying the differentiation rule
a t t
T _ T
r. ) r (yg )T+ Ssdr G, )T+ SsrT(dYT) + Ssd[r,y]T

and d[r,y]t = - Etdt S0
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T, - T . (F T
E[rt(yt) ‘Fys] =0=0+ E[- S 2Tdm2T(yT) + S rT(hT) dt
t T t s s
+ Ssrt(dmzt) - sézdeles]
now the locel-martingale terms drop out, and we get

S:E[rt(hr) IF Jdt = 0 or
I, = Elr (h) |F ] = E[x -x(alt))(h c)T‘ch]
A £(t,a,x,h)
6.5.3. Theorem:
Given the smoothing problem as defined in 5.5.3.
If in addition to 6.5.2 we assume that

- 1l. dh_=1x dt + dm3

t
2. (rt,Ft,t T) is an adapted measurable process, :;p Elr | ©,
€ € ( ) =
3. (m3t, et T) M, ‘mg,m, 0 a.s.,

4. (h Fest € T) is an adapted measurable process, sup E|h |
tET
5. (x_,t €T) is any measurable process, Sup E[x |4 < =,
t T t
then the optimal smoothing estimator is

x(alt) = x(ala) + s Z(s,a,x h)dm

dz (t,a,x,h) [Z(t,a,x,r) - L(t,a,x, h)Z (h,h)]ldt + H dm2

L (a,a,x,h) =I_(x,h) = E[ea(ea) IFya],

where

- ~ (T
z (t aasx9h) E[ _(xa"'x(al t)) (ht-ht) IFyt] ’

Z(t,a,x,r) E[(xa-i(a|t))(rt-§t)T|Fyt]

and

H dm, = (H

k,~ n : .
£dmo, H dm2t) , where (Ht) an matrix valued stochastic

t 2t"‘
processes, still unknown..
Proof. We give the proof for the scalar case only.

Note that

: t t
ex(alt) = X, f x(alt) = ez - Sa o(s,a,x,h)dﬁ28 = e: - S <Ks,a,x,h)@£ds+dmzs)



[}

n_ h.(tr t t .
é ea + S esds + S dm38 - S os(h,'n)dm28
a a a

h t r h t t
e, + Sa[es - cs(h,h)eslds + Sa§m3s - gaés(h,h)dmzs

_ ¢ |

[ex(alt),eh]t = g o(s,a,x,h)o _(h,h)ds
a

We apply the product rule again:

t t t
ex(alt)ez = e:ez + Saex(a]s)dez + Saezdex(als) +Sad[ex(a|s),eh]s

|

n

t
e:e: + Sa[ex(als)e: - ex(als)os(h,h)eg - o(s,a,x,h)(eg)2

t t
+ c(s,a,x,h)os(h,h)]ds + Saex(als)dm3S - saex(als)os(h,h)dm28
t . ,
- Saeso(s,a,x,h)dm28

qtdt + dml;t;'
We now want to apply 6.2.3 to this semi-martingale. The conditions
2,4 and 5 imply that sup E|qt| < ®, Also

x, . h2 T 4 4
sup E|e" (a|t)e | " < k sup E|xt| .. sup E|htl < o,
teT tET tET
Furthermore (m&t’Ft’t €rT)E Mloc and a process (ma,mz) eixsts, since
d(m4,m2)t
We can now apply 6.2.3 and using the definitions given earlier

= [-e*(a|t)a, (h,h) - eho(t,a,x,h)]dt.
t t A

do(t,a,x,h) = [a(t,a,x,r) - c(t,a,x,h)ot(h,h)]dt + H dm, .

Note that o(a,a,x,h) = E[(xa—ﬁ(ala))e2|Fya] = o;(x,h).

Theorem 5.5.3 works for any pair a,t € T, so it covers all the three
smootﬁing problems as defined in 5.5.3. Kailath, Frost [1968], discuss
the smoothing problem for linear stochastic systems with Brownian
motion. Because of the linearity of the system, they are able to derive
a more detailed recursive solution. Such a solution does not seem to

exist in the nonlinear case.

Systems with delays.
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6. 5.4‘

Theforegoingtﬁeory, with the general results derived earlier,
allows us to derive the filtering equations for systems with delays.
The general nonlinear case with Brownian motion disturbances follows
easily using 6.2.4, and the previous resul;s of this section. Here
we only give an example, of a linear system.

Theorem:

Given the stochastic system model, which contains a delay, scalar

equations:
dxt = a x(t-h)dt + dmlt’ x(s): - h < s < 0 given.
dyt = xtdt - dm2t

satisfying the assumptions of 6.2.1, where a,h € R are constants,

h > 0, and m, is standard Brownian motion.

1
The optimal estimator is

dm2t = dyt.- xtdt

dxt = a x(t-h|t)dt + ot(x;x)dmZC, Xy = E(xo)

]

§(t—h|t) ﬁ(t-h]t-h) + S o(s,s-h-,x,x)dﬁZs
t-h

[2a0(t,t-h,x,x) - ad(t,t-h,x,x)ot(x,x) + 1]dt

dot(x,x)

. X .
+-ot(x,x,x)dm2t, oo(x,x) = E[(xo-xo) ]
do(t,t-h,x,x) = [ao(t,t-h,x,x) - o(t,t=h,x,x)0, (x,x)]dt + ktdﬁah
o(t-h,t-h,x,x) = ot_h(x,x)‘

Still unknown: ot(x,x,x),kt.

The proof follows easily from 6.2.5 and 6.5.3.

The above result was derived earlier by Kwakernaak [1967].

It is difficult to say something about the third order conditional

moment.

Prediction and smoothing for counting process observations.
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6.5.5.

6.5.6.

6.5.7.

Theorem:

Given the prediction problem as defined in 5.5.1 for the following
stochastic system. Given the equations with counting process
observations, as defined and with the assumptions of 6.4.1.,

dnt = Atdt + dmZt’ n, = 0

1t> 0
Then the op;imal prediction estimator of the rate process A is given

dkt = rtth+ dm A

by

di(t]s) = E[rtllznsldt, A(t]s) = E(Atans), s <tor

A(t|s) = Xs + SS E(rTans)dt.

The proof is immediate from 5.5.2, similar to the proof of 6.5.1
Example:

Consider the prediction problem 6.5.5 for the real valued semi-
martingale A given by

d)\t = a(t).\tdt + Atdmlt, Ao,

where a : T + R, is measurable.

Then th2 optimal prediction estimator is

~ t ~
A(t]s) = A(s|s) + S a(t) A(tls)dt , s <t or

. _Js
A(t]s) = ¢(t,s)r(s]s)

[1}

where ¢(t,s) is the transition function associated with a(t).
Theorem:

Given the smoothing problem as defined in 5.5.3. Consider the
equations with counting process observations, as defined and with
the assumptions of 6.4.1,

dn_ = ltdt + dm =0

t 2t* o

and (At,Ft,t € T) an adapted measurable process real valued,

2
sup E|A _|“-< = .
t€T t



Then the optimal smoothing estimator for the rate process A is:
t

~ ~ n_l ~

A(alt) = A(ala) + S o(s,a,A,A)As_dm
a .

where A(alt) = E(Xaant), a<t,

2s’

o (t,a,A,1) = E[(Aa—i(alt)?(kt—it)IFnt] a.s.

Proof. From 5.5.4 we have that if a < t then

Aalt) = A(ala) + stk dm2

The problem is to find (k. ,F ..t € T). This follows easily from
the by now well established procédure.

. t
~ A ~ S A -~ _
Aa-k(alt) = e, + Xa - A(alt) =e, - S k dm28 =

t t
e Ao S k eAds - S k dm
a s 8 s
a a

eA(alt)

[/

28’
By 5.4.3 E[ek(a|t)ﬁ2t|Fnt] = 0, 8O

t t
PRI o A1y A Aoy
E[e (alt)mZtIFnS] =0=0+ E[Sae (aIt)erT + Sa e"(a|t )dm2T

t \ t, t . t
- S 91 kTerT - S m, _ desz - S kTXTdT - S k dmZT Fns]'
a a a a

Now the martingale terms drop out, and we get

t oA A N
I¢ - =
saE[e {a|1)e katanS]dT

ktit- = E[ex(alt)eiant] = g(t,a,A,A) a predictable modification.
This gives the result. 4 ‘
Just as in 6.5.3 under suitable assumptions one can derive a stochastic
differential equation for o(t,a,A,A).
Comments on the martingale approach té filtering problems.
In this section we want to discuss the martingale approach to the
filtering problem, which we have given in this chapter. We compare

our method with previous methods.

The stochastic system model.

The filtering problem that was considered in recent years, was for a
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nonlinear dynamical system, that was disturbed by a Brownian motion
process. Ir this thesis we have considered a more general model,

with semi-martingale equations, as defined in Section 4.3:

dxt = ftdt + dmlt

dyt = htdt + dmZt'
This is a generalization in two directions: first we allow m, ,m,

to be cert#in martingales, and secondly the processes f and h need only
be adapted, Most of the recgent liberature deals with the case whefe

x or h are Markov processes, and where thus ft depends only on X .

The generalization allows us to solve at the same time, problems where
we have systems with delays, or similar type of problems. Snyder
[1972a] discusses the filtering problem for what he calls the doubly
stochastic Poisson process. He also noted the similarity in the
filtering equations for problems with Brownian motion noise and for
counting process filtering. This similarity was also noted by

Brémaud [1972]. We now of course know that the similarity arises
because both are derived from éimilar seﬁi—martingale equations.

This similarity allows us to solve both problems with analogeous

methods. We will discuss the Brownian motion znd the counting process

filtering problem together.

The derivation of the filtering equations.

We emphasize the main points in the derivation of the filter equationms.
The first one is the definition of the innovation process, and the
associated projection of semi-martingale equations on the o-field of

the observations. We have

Y
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where ﬁl' 52 € Mloc' The innovation process was emphasized by
Kailath {1968] for the Brownian motion model. The important point
however is, that it is a martingale. The projection of the semi-
martingale x is seen‘to be an extension of the innovation process
property. The seéond important point, which‘is the crucial one,

is the martingale representation theorem on the og-field of the
observations, i.e. if (ﬁlt,Fyt,t €ET) € Mloc’ then alt = S:¢sdm28,
for some pfocess ¢. This representation theorem has been proven
for the case of Brownian motion and for counting processes. 1In
Frost, Kailath [1971] a similar result was obtained, but through
the equality of Fyt = FﬁZt’ which has only been proven under rather
strict conditioﬁs. Although this equality may hold in more general
casés,‘the:e is no real proof. Here we have followed the approach
by Fujisaki, Kallianpur, Kunita [1972], who prove the martingale
representation theorem by a translatioq argument. Using the above
two points the calculation of the optimal filter equation is a
straightforward operatioﬁ. One only uses the stochastic calculus,
and the optimality of the estimate, i.e. the orthogonality of the
estimation error and the observations. A similar eduation can be
derived for the conditional covariance.

The derivation of the filter equation for the Brownian motion case

is the one given by Fujisaki et al. [1972], except for a generalization

of the mpdel and for slightly different proofs. Here we have given
a stochastic differential equation for the conditional covariance.

The approéch given also uses ideas from Woﬁg [1972]. The extension
of this approach to the filtering problem for counting processes is
relatively obvioué. One only needs to use the respective martingale

properties.
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Extension of the filtering problem to other processes.

We are interested in extending the results of this chapter to more.
general stochastic system equations. It turns out that the only
limiting point is the absence of a martingale representation

theorem. It is thus of prime importance to prove for a large class
of underlying martingale processes the martingale representation
theorem. This was done in a somewhat limited case by Kunita-Watanabe
[1967], but their result needs careful interpretation. Once such

a martingale representation theorem has been proven, we can consider
stochastic system models disturbed by such processés, as defined in
Section 4.3. The innovation process property and the martingale
representation on the o-field of the observations, then easily follow
from the approach given here. The equation for the optimal estimate

then results.
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2

Discussion and conclusions.

The goal for this thesis was to analyse and solve estimation
problems using the theory of martingales and stochastic integrals.
Here we discuss the results obtained and state some of the problems
that are still open. The main tools in the martingale approach
are the stochastic integral, the differentiation formula, the
martingale representation theorem, and martingale theory proper.
The main concept used from estimation theory is the least squares

error ~riterion, which leads to the optimal estimate of conditional

- expectation. All our results are derived from this basic

principle using stochastic claculus.

Discussion'qf results.

It should be kept in mind that all practical results depend on
the martingale re?resentatién theorem, which has only been proven
if the underlying process is Brownian motion or a Poisson process.
In Chapter 3, the main result is section 3.3., where we
characterize a change of measure by a local martingale, and where
we obtain the translation of local martingales under a change of
measure. The converse of the translation theorem is the abstract
version of the detection probleﬁ, which we can solve only for the
two cases for which we have a martingale representétion theorem.
In Chapter 4 the main result is the generalized definition of a
stochastic system and of stochastic differéntial equations. A
complementary result is the projection of semi-martingale processes
on a faﬁily of o-fields, which includes the concept of innovation

process. In Chapter 5 the main result is the general formulation
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of and the elementary solution to the least squares error

filtering, prediction and smoothing problem. Of equal importance
are the two martingale representation theorems on the o-field

of the observations. In Chapter 6 the main result is the derivation
of the stochastic differential equations for the optimal filter,
prediction and smoothing estimates and for the conditional

covariances.

The novel points in the thesis.

The results we have obtained in this thesis aré_a generalization
in the direction of martingale theory. Instead of comsidering
separately, systems with Brownian motion disturbances, as was

done usually before, or the counting observations problem,
martingale theory gives a unified approéch to both of these problems,
and to possible new problems which can be formulated in this
framework. The analysis of absolute continuity with martingale
theory has opened a new way of thinking, and ied to a more

general formulation of the detection problem. The stochastic
system =onsisting of the two semi-martingales x and y, is also

an extension of previous system equations. It covers systems
with Brownian motion disturbances, including systems with delays,
as well as counting processes with a fate process. Regarding the
filtering, prediction and smoothing problem, martingale theory

has many advantages. ' The derivations, apart from difficult
details, are straightforward and clearly show the basic principles
involved. It avoids assumptions on the existence of conditional

densities as was necessary in the work by Kushner and others.
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Open questions and future research.

There are essentially three problem areas for future research.

1. Martingales énd stochastic integrals.

The first problem area is the development of the stochastic
integrsl and the associated martingale theory. The theory as
known now is still far f;om complete, there are still open
questions concerning the class of integrand processes and dis-
continuous martingales. The main problem however is the extension
of the martingale representation theorem, to a larger class of
underlying processes.

2. Absolute continuity.

The second problem area is that of absolute continuity and related
topics. In section 3.4. we formulated an abstract version of the
detection problem, which can be solved for any case where we

have a martingale representation theorem. Apart from this therg
are several applications of the likelihood fatio and other
properties of absolute continuity, where the results of chapter

3 are of interest.

3. Filtering problems.

It is believed that more filtering problems, some not yet
fdrmulated, might be put in the framework of martingale thoery,
specifically in the semi-martingale equations presented in chapter 4.
It is further believed that for the defined stochastic system,

the stochastic differential equation for the optimal estihate can
be obtained. However the limiting factor is the martingale

representation theorem. Such a generalization was attempted by
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the author but did not seem useful. The results derived in
Chapter 6 have several limitations. The first is that we only
considered the time interval T = [0,1], which is eduivalent to

any finite time interval. The extension of this result to

T = [0,=) is unsolved. Related to this, as experience with linear
systems shows, is the concept of observability, which has not

been defined for stochastic systems. The major point is that the
derived filters are in general infinite dimensional. The question

now is. which systems give finite dimensional filters. This

question and related topics on the implementation of these filters

remain unsolved. Whether martingale theory can provide any help
in obtaining finite dimensional filters and provide further insight

in estimacion problems is open to research.
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