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Abstract

The paper is a contribution to the theory of martingales of processes

whose sample paths are piecewise constant and have finitely many discon-

tinuties in a finite time interval. The assumption is made that the jump

times of the underlying process are totally inaccessible and necessary

and sufficient conditions are given for this to be true. It turns

out that all martingales are then discontinuous, and can be represented

as stochastic integrals of certain basic martingales. This representation

theorem is used in a companion paper to study various practical

problems in communication and control. The results in the two papers

constitute a sweeping generalization of recent work on Poisson processes.
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I. Introduction and Summary

The theory of martingales has proved to be successful as a frame

work for formulating and analyzing many issues in stochastic control,

and in detection and filtering problems [2,4,5,10,11,12,32,33,34].

Three sets of results in the abstract or general theory of martingales

seem to be the most useful ones in these applications. The first set

consists of theoptional sampling theorem and the classical martingale

inequalities [17]. The second set consists of the locus of results

culminating in the decomposition theorem for supermartingales [24].

The third set includes the calculus of stochastic integrals [16,22] and

the differentiation formula and its application to the so-called

"exponentiation formula" [15].

In applications one is concerned with martingales which are

functionals of a basic underlying process such as a Wiener or Poisson

porcess, and in order to use the abstract theory one needs to know how

to represent these martingales usefully and explicitly in terms of

the underlying process. Thus the "martingale representation theorems"

serve as a bridge linking the abstract theory and the concrete applications.

Their role is quite analogous to that of matrix representations of

linear operators which serve as the instrument with which one can apply

the abstract theory of linear algebra.

The most familiar of all the basic processes which can arise in

practice is the Wiener process. It is known that every martingale of a

Wiener process can be represented as a stochastic integral of the Wiener

process [6,22]. This fundamental representation theorem, together with

the exponentiation formula, has been used to derive solutions of
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stochastic differential equations [2,19,20], to obtain recursive equations

for filters [5,21,30,31] and the likelihood ratios for some detection

problems [10,18], to mention just a few applications. These very

results combined with the decomposition theorem for supermartingales

form the foundation of an approach to one family of stochastic optimal

control problems [12]. It turns out that every martingale of a Wiener

process has continuous sample paths. This is fortunate because it

implies that the martingale is locally square integrable, and hence

most of the questions about martingales can be posed within the

Hilbert space structure of the space of square integrable random

variables.

However, for many processes, e.g. Poisson process, one can have

martingales which are not locally square integrable. As Meyer and his

2
co-workers have pointed out [16,26] the L structure is no longer

appropriate and one needs to be more careful in defining stochastic

integrals and in obtaining the differentiation formula. Indeed the

current theory of stochastic integration with respect to such martingales

is still not completely satisfactory.

This paper is a contribution to the abstract theory and to its

applications for the relatively simple case where the sample functions

of the underlying process are step functions which have only a finite

number of jumps in every finite time interval. In some ways this is the

polar opposite of the Wiener process case since all the martingales are

discontinuous, that is, all the continuous martingales have constant

sample paths. The most important special cases covered by this paper

include the Poisson process, Markov chains and extensions of these, such

as processes arising in queueing theory. To some extent the results for
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some of these special cases are also covered in [4,5,10,11,29,30,31]

The next section gives a precise definition of the underlying process

and exhibits some of the important properties of the generated o-fields.

Conditions are derived which guarantee that the jump times of the process

are totally inaccessible stopping times. These preliminary results are

used in Section 3 to show first that there are no non-constant continuous

martingales and then to obtain an integral representation of all

martingales. A particular example, which includes most of the special

cases mentioned above, is presented in Section 4. Applications of the

results are given in the companion paper [3].

II. The Basic Process and Its Stopping Times

Let (Z,C£) be a Blackwell space, that is a measurable space such that

^ is a separable a-field and every measurable function f: Z-»• R maps

Z onto an analytic subset of R (see [24, p. 61 ]). Let ft be a family

of functions on R, = [0,°°) with values in Z, such that each w £ ft is a

step function with only a finite number of jumps in every finite

interval, and such that for all w e ft, t e R,, u)(t) = w(t+e) for all e

less than some sufficiently small z > 0. If Z is also a

topological space, then each function w is right-continuous and has

left-hand limits. Let xt be the evaluation process on ftjLe* xt(w) = a)(t),

te R+. Let TJr be the o-field on ft generated by sets of the form

{x GB>, Be^X, s< t. Let9f=V cf.
t£R+

Because the positive rationals are dense in R+, it is clear that

^ can also be written as V a(x ) where a(x ) is the a-field generated
n n

1If A is a family of subsets then VAa denotes the smallest a-field
containing all the Aa»
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by the function xr and rn is rational. Hence the separability of *§
implies the separability of 9\ Moreover, as will be shown, every
real-valued ^--measurable function on ft will map ft onto an analytic

subset, hence (ft,^) is a Blackwell space. The assertion follows from

considering approximations for any measurable f: ft -*> R of the form

fn = gn " h11 • i, where i: (ft,rjp) + (Z ,Qj^ ) is the natural isomorphism

(IKl is the set of natural numbers), and h :(Z ,̂ X ) -*" (R £% »

C^Q is the Borel field on R) consists of measurable components

h_, ru, ... and h (z-,z2,...) = (h-(z1), h2(z2),...), and finally g is

a measurable mapping from (R fti ) into (R,^-B). Since the Cartesian
N INI

product of analytic sets is analytic (see [1]), the image of Z in R

under h is an analytic set which is in turn mapped into an analytic

subset of R by g . Since analytic sets form a class closed under

countable unions and intersections, this limiting procedure shows that

every measurable function f: ft + R maps ft onto an analytic set. Since

(ftj'rF) is a Blackwell space it follows from [24 , II-T16] that (ft,^)

is isomorphic to (A,<^fi(A)) where A is an analytic subset of R. Hence the

results of [28 ] can be applied without assuming a topological structure

on Z itself.

A Z-valued or R U {«}-valued function f on ft is a random variable

(r.v.) if f (B) G9J- whenever B6^ or whenever Bis aBorel subset

of R U. {«>}. Unless otherwise stated a r.v. is R U {«>}-valued. A

non-negative r.v. T is said to be a stopping time (s.t.) if for every

tGR+, {t _< t} etJt. If Tis as.t. then ^ consists of those sets

A€tJfor which An{T <t} E9" for each tGR+, whereas ^ is the
a-field generated by rfQ and sets of the form AO{t <T} where AG^F ,
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and finally xfT+ = H ^ ^
n>0 T + -

n

Define inductively the functions T :

T0 E°» Tn+l(a)) °^^tlt >Tn(o>) and xju)) t xT (w) (<*>)},
n

where the infimum over an empty set is taken to be +». The next few

results characterize the a-field yP and demonstrate that the T are
t n

indeed s.t.s. The key results, Corollary 2.2 and Proposition 2.3,

which are the only ones used subsequently, can in fact be proven

from first principles assuming only the separability of G£, but it is

much more intuitive and easier to rely on the results of [7] and [28].

Let H: ft -* [O,00] be any function. Then H defines three equivalence

relations on ft as follows:

a) ?w' ^HW =H(a)1) and xt(w) =x^o)1) for t<H(u>).

H+
a) ~ w* **=* H(w) = H(a)1) and there is e > 0 such that x (ai) = x (w') for

t < H(w) + e

to ~~a>! ^UM =H(wf) and xt(u>) =x^w1) for t <H(w).

A set AC ft is said to be saturated for H, respectively H+, H_, if
H H H

a) £ A, and u> - w1, respectively w ~+ w', w — w', implies to1 £ A. Let

5>ii> £>u ^u denote the family of subsets of ft which are saturated for

H, H+, H_ respectively.

Proposition 2.1 x£ =Qt Hr£ where fi = fiH for H=t.

Proof Follows from [28, proposition 1]. a
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Corollary 2.1 Anon-negative r.v. T is a s.t. if and only if {T <_ t} EQt

for all t e r+.

Corollary 2.2 T is a s.t. for all n.

Proof T is obviously anon-negative r.v. and {TR <_ t} € ^ by

definition.

Proposition 2.2 Let T be a s.t. then

Proof This follows from [28 , Propositions 1, 2]. n

For a s.t. T/rJ (x. _) denotes the a-field generated by the Z-valued
00 tAi

r.v.s. X „, tG r (If S, T are r.v.s. then SaT ={min S,T},)
t AT "»

Proposition 2.3 Let Tbe a s.t. then Y?L =^m^t-KT^'

Proof Since ^(x^-p) and ^t " fiT n^ are sub-a-fields of^f they are
separable. Hence the spaces (ft,9Jro(xtAT>) and (ft ,.J*T) are Blackwell

spaces by [1, Corollary 3]. They also have the same atoms, namely,

i~Mx „, G B } where r is a rational and B an atom of Z. The result
n r A T n n n

n

then follows from [1, Corollary 1] and Proposition 2.2. n

Corollary 2.3 rJT = a(x,j, ,Ti; 0_< i<n).
n i

Proof Follows from Proposition 2.3 since

n in

= a(xT , T±; 0 <. i _< n) a
i
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Corollary 2.4 Cft « a(xT , T^t, 0 <i <~)
i

Corollary 2.5 Let T be a s.t. then 7L =7}T
+

Proof Since the sample functions are piecewise constant and w(t) = w(t+)

it follows that J>T = oT and then the result follows from Proposition
+

2.2. n

Proposition 2.4 9JT s°(xT ,T±+1, 0<i< n-1)
n- i

Proof Similar to the proof of Proposition 2.3, with both a-fields

having the atoms {xT € A., T .^ R± ; 0 <_ i _< n-1} where A. is an

atom of Z and B, is an atom of R.

Proposition 2.5 Let n > 1, and 6 > 0. Let T = (T . + 6) A T , and
• — n-± n

let AG 9^r. Then there exists A G 9]^ such that AH {T < T^} =
0 n"1= Au fl {T < T }.

fc nJ

Proof By Proposition 2.3 77^ =^(x T) and it is easy to see that the

latter coincides with the a-field generated by the r.v.s. (x^, A ,
i l

T.aT; i = 0,1,2,...}. Hence there exists a function g, measurable in

its arguments such that

IA(w) = g(xT AT(u>), TQAT(u)), ..., xT T(w), T^aTO*), xt aTW,
0 n-1 n

TnAT(u)), ...)

- g(xT (w), T (a)), ..., xT (w), T ^(u), xTAT(o>), T/|T(m), ...)
0 n-1 n

Define the measurable function g by
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g°(x0,t0,...,xn_1,yn_1) =g(x0,t0,...,xn_rtn_1>xn_1,tn_1 + 6, xn_r

t i +6, ....)•
n-1

Now If T <_ T < Tn, then xT AT(W) = xT (<*>) and
n+k n-1

T ..AT(w) = T . (w) + 6 for all k > 0. Therefore,
n+k n-1 —

n

o

IA(w) I{T KT }(w)= 8(xT (io), T0(oj), ..., xT (to), Tn-1(u))) I{T < T }(u>)

So that the set A = {u)|g(x_ (w), ..., T ..(a))) = 1} satisfies the
T0 n_1

assertion n

Lemma 2.1 Let n >1, and let S be a s.t. then there exists a r.v.f ,

measurable with respect to tJL such that S L . , B f I. ,.
n-1 n n

Proof; SI(S<T) = SI,S<I + S I <T }> and
n n—1 n—1 — n

SI{S<T }' I{S<T }are 9JT -measurable so that by replacing S
n-1 n-1 n-1

by S v T . if necessary, one can assume that S > T -. Let
n-1 ' — n-1

T = {S < T }. Then r = U r where
n mm

r = JJ {S <T . + k2"m} n {T _ + k2"m <T }
m k — n-1 n-1 n

Fix 6a 2 . By Proposition 2.5 there exist sets A, G 9JT such that
n-1

{S < T + k6} O {T . + k6 < T } = A, H {t . + k6 < T }, k > 1.
~~ n-± n-l n k n-1 n —

Define sets B, by

B1 = A^ and Bfc = {u> G Ajw^ A± for i <k} for k >1,

and then define the function f : ft -+• [0,00] by
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fm(o>) =Tn_1 + k<5 if a) G Bk and fm(u>) =T^w) if u> £ JJ br.

Certainly f is ^JL -measurable. Also
mi,

n-1

f M - 6 < S(a)) < f (a)) < T (a)) for a) G r . (2.1)
m — m n m

To see this note first that if u € A. u (T ,+6<T} then clearly
1 n-1 n J

Tn-1^ = fm(W) ~6 - S(W) < fm(w) < Tn^# Next» as induct1011

hypothesis, suppose that the inequalities in (2.1) hold for

w e u A. H {t n + k« < T }, and let
k«l ^ nrl

N

we %fl ° {Tn-l + (N+1) 6 <V' w^ U \ ° {Tn_l + k 6<TnK (2,2)
k=l

Let k <_ N + 1 be the smallest integer such that u) G b. . Suppose

k <_ N. Then, since Bk c A^ and since from (2.2) T > T ,+ k6,

it follows that w e A. n {T .. + k6 < T } which contradicts the
k n-1 n

second condition of (2.2). Hence u> G b - and so T ,(w) + N6 ^S(w)

<, T _1(w) + (N+l)6 = fm(u>) < Tn(u). Therefore (2.1) holds by

induction. Finally, define the jfT -measurable function f by
n-1

f(w) = lim inf f (w). The obvious inclusion T C r _ implies
m m mTj.

that if (0 e r then f ., (w) - 2~(m+k) < S(u>) < f ,, (w) for all
m m+k — — m+k

k _> 0. Hence f(co) = S((o) and the assertion is proved. n

To proceed further it is convenient to introduce a probability

measure on (ft,TjF) . Throughout this paper let P denote a fixed

2It may be of interest to note that Lemmas 2.2, 2.3 and 2.4 below
can be proven without imposing a probability measure P by using the
algebraic definition of a predictable s.t. of [28]. Then a
predictable s.t. in the sense used here is simply a non-negative
r.v. which is a.s. P equal to a predictable s.t. in the sense of [28].

-10-



probability measure on (ft,Tf). Recall the following important classi

fication of stopping times [25].

Let T be a s.t. T is said to be totally inaccessible if T > 0 a.s.

and if for every increasing sequence of s.t.s. S. _< S2 £ ....,

P{Sk(u>) < T(o)) for all k and lim S.fa) = T(w) < «»} = 0;
k-*°

whereas T is said to be predictable if there exists an increasing

sequence of s.t.s S.. <^ S« <^ .... such that

P{T « 0, or S, < T for all k and lim S, = T} = 1.
k-*»

The next three lemmas relate this classification to the properties

of the jump times T of the process x.

Lemma 2.2 Let T be a totally inaccessible s.t. Then

T1IT . _
n=l

r<-} ~ l2-f Tn X(T -T }] *{T <«,} a,s'

Proof The equality above holds if and only if P{T , < T < T } = 0

for each n _> 1. Let n be fixed. By Lemma 2.1 there exists a

rf- -measurable function f such that f(w) = T(oj) for u>G{T n<T<T},
-'T , n-1 nn-1 1
Let S, =T v(f -—). Then Sk >T_- and S, is ^T -measurable

n-1

so that it is a s.t. Also S, is increasing and clearly

{T - < T < T } C {s. < T for all k and lim S, = T < «}.
n—1 n k , k

k-*»

Since T is totally inaccessible, the set on the right has probability

measure zero. The assertion is proved. n
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Lemma 2.3 Let T be a s.t. such that for all n j> 1, P{T = TR < «} = 0.

Then T is predictable.

Proof Let h be a function measurable in its arguments and taking values

in the set {0,1} such that the process IT has the representation

Im < ^ = h(t,Xm Aj.» ^•f^^» ••••» X™ , T At, ....).
— 0 n

By modifying h if necessary it can be assumed that

h(t,£) = max h(s,£).
sft

Because of this property the r.v. T defined by

Te(co) = inf{t|h(t+e, x? At, TQAt, )= 1}

in a s.t., and it is immediate that for e > 0

T (u>) < T(w) for 0) G {o < T < «>}.

Furthermore T < T , if e' < e. Define then s.t.s Sfc by Sfc = T^k.
k

It will now be shown that

lim S, (to) = T(a>) for u G U {t - < T < T }.
k*» * n-1

Let w€{T . < T < T }. Then
n-1 n

0 for T -(a)) < t < T(w)JO for Tn_1(a))
(t,^ Al_(u>), TnAt(w), ..., x„ (w), T At(w) ...) =1

V* ° TnAt n ll for t > T(w)

so that

(0 for T . (w) <t +£ <T(u>) or T -(u>)<t<T(u>)
t_/^,l /\m /\ \J n-l> k n-1h(t +tt, x A1.(w), TnAt(w), ) =<

k V U ll for t > T((o)
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Hence T., (o>) =T(u>) -^for ~ <T(w) -T ,(w). It follows that Sk(w)
k

converges to T(w) and the assertion follows. a

Lemma 2.4 T is totally inaccessible if and only if for every

^ -measurable function f, P{Tn =f<«} =0.
n-1

Proof Suppose P{T = f <»} > 0. Let Sk = T _^ v(f - k). Then Sfc is

an increasing sequence of s.t.s and

{T = f < «>} C {s < T for all k and lim S. = T < «.}
n fc k+» *

so that T cannot be totally inaccessible thereby proving necessity,
n

To prove sufficiency suppose that T is not totally inaccessible so that

there is an increasing sequence of s.t.s S, such that

P{r} = P{S, < T for all k and lim S. = T < «>} > 0. (2.3)
k n k-*» k n

By Lemma 2.1 there exist functions ffc, measurable with respect to

'.'fT ,such that Sk(u>) =ffc(w) for w^ {Sfc <Tn}. Let f=lim inf fk»
n-1

Then from (2.3) it follows that f(u>) = T (u) for 0) G r so that

P{f=T <»}>o and sufficiency is proved. n

From the lemma above the following intuitive sufficient condition

follows immediately.

Theorem 2.1 Let F(t |xA,tA,...,x ,,t J be the conditional probability
n1 0' 0 n-1 n-1

distribution of T given xT ,TQ, ..., x,^ ,T ,. Suppose that F is
0 n-1

continuous in t for all values of (x_,t,.,... ,x -,t -). Then T is
n 0' 0* n-1 n-1 n

3
totally inaccessible.

If Z is a Borel subset of ""kp and ^contains all Borel subsets of Z then the
conditional probability F exists by^23,p.361].
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As an application of Theorem 2.1 note that if xfc is a Poisson

process, then F(tnlx0»t0'''' ,xn-l,1:n-l^ = ^ ~ exP " ^iT'n-l^
I is continuous. Hence the jump times of a Poisson process
t > t n
n — n-1

are totally inaccessible.

III. The Martingale Representation Theorem

It will be necessary from now on to complete the o-fields Vj and Tj~

with respect to the measure P. An additional condition is also imposed.

Assumptions (i) The o-fields ^ ,xf are augmented so as to be complete

with respect to P. (ii) The stopping times Tn are totally inaccessible

for n _> 1.

Note that after completion of the space (ft,rx) it ceases to be a

Blackwell space. But, of course, the results of Section II continue to

hold if the relevant equalities are interpreted as being true almost

surely P.

The family ^ is said to be free of times of discontinuity if

for every increasing sequence of s.t.s Sk, yrllm s =v Jjj •
K. K K

Proposition 3.1 The family ty is free of times of discontinuity.

Proof By Lemma 2.2 and Assumption (ii) a s.t. T is totally inaccessible

if and only if its graph4 [T] is contained in the union U [Tj of the

graphs of T ,whereas by Lemma 2.3 T is predictable if [T] H U [TQ] = *.

The assertion follows from [14,III-T51,p. 62]. n

It will be useful to recall some definitions at this time. This will

4[T] = {(u),T(u>))|u> € ft} C a x [0,»].
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be followed by some remarks and a reproduction of some known results

which will be used in the discussion to follow.

A process y. is said to be adapted (to the family Vjt) if yt is

9J -measurable for all t. Two processes y and y' are said to be
*- t t

indistinguishable, and are written y = y*, if for almost all to

y (w) =y£M for all tG R+.

Let ir be a martingale with respect to (ft,T^ ,P). It is said to

be uniformly integrable (u.i.), and one writes m e^/( , if {™|t e R,}

is a u.i. set of r.v.s. It is said to be square integrable (s.i.),

9 9

and one writes m ^\j\ ,if sup{Em |t ^ R+} <°°.

Let m be a process. It is said to be a locally integrable martingale

[locally square integrable martingale], and one writes

1 9

mt ^L/Ui [mfc ^_>Ui ]» if there is an increasing sequence of s.t.s

S. with S. > °" a.s. such that for each k in „ l,_ ^ _-. G L\ [m
k k tAS, IS, > 0) Jv\ «• tAs,

k k k

An adapted process a is said to be an increasing process if a» = 0

and if its sample paths are non-decreasing and right continuous. It is

t+said to be integrable, and one writes afc ej4 if sup{Ea |t ^ R,} < °°.

lAioc is defined in amanner analogous to the previous definition. Finally

let -A =A* - A+ ={.,-•• |.t 6Jt, .' e,X) and,^loc =,Xoc -A+loc-
It will be assumed throughout that all the local martingales have

sample paths which are right-continuous and have left-hand limits. It

is known that since the a-fields 9T are complete and since by Corollary

2.5 ^jL. - (JL for all t£ R, therefore one can always choose a

modification of a local martingale so that its sample paths have the

above mentioned property [see 24, VI-T4]. Two modifications with
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this property are indistinguishable.

It can be immediately verified that^W cjU and sov_^/L c_>Mi ,

and if m G^\/I has continuous sample paths then m G_,|/( . However

if the sample paths of m €j\j\ are not continuous then m. may not

belong to^AI- . Thus in dealing with discontinuous martingales one

may be unable to use the Hilbert space structure of square integrable

r.v.s.

The next result follows from Proposition 3.1 and [22, Theorem 1.1].

2 5Theorem 3.1 Let m and m' be in^L . Then there exists a unique ,

continuous process <m,mf > G ,J( such that n^m' -<m,mf > ^^M-i

Definition 3.1 LetBGCJT. Let

P(B't)=Ei<xs_'WI<*seB>
s<t

be the number of jumps of x which occur prior to t and which end in

the set B.

Proposition 3.2 There is a unique continuous process P(B,t) ^ijx* such
-" 9

that the process Q(B,t) = P(B,t) - P(B,t) is in^/L .

Proof Let P (B,t) = P(B,tATn). Then P (B,t) <_ n so that it is square

integrable. Furthermore the jumps of P (B,t) occur at the s.t.s

T , 1 <_ i <_ n, and these s.t.s are totally inaccessible by assumption.

It follows from [24, VIII-T31, p. 210] that there is a unique, continuous,

integrable, increasing process P (B,t) such that

Throughout "unique" means unique up to modification.
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«. 9

0 (B,t) = P (B,t) - P (B,t) G^H . From this last relation and the

uniqueness of P one can conclude that pn+i(B»tATn^ ~ pn(B>t),

Q ,-(B,tAT ) e 0 (B,t). Hence the processes P,Q defined by

P(B,tATn) E Pn(B,t), Q(B,tATn) E(^(B.t)

satisfy the assertion n

9 1Two processes m ,m' in^L are said to be orthogonal if mtm£ GvjUloc

or equivalently if <m,mf ) e 0.

Lemma 3.1 Let B± G^, i=1, 2. Then Q(B1,t) Q(B2,t) -P^HB^t) e^Uloc

i.e., <Q(B1,.), Q(B2,.)>t =P^OB^t). In particular Q(B1,t) and

Q(B2,t) are orthogonal if B, fl B2 a f

Proof Q(B1,tATn) = Q(B1HB2,tATn) + Q(\~^2,tATn) and Q(B2,tATn) =

Q(BinB2,tATn) +Q(B2-B1,tATn) where B-B* ={z|z G b, z£ B'}. The

s.i. martingales Q(BJ^B ,tAT ), Q(B.,-B ,t*-T ) and Q(B2-B ,tA.T ) have

no discontinuities in common so that they are pairwise orthogonal by

[24, VIII-T31, p. 210]. The assertion follows then if one can show that

for any Be^

Q2(B,t Tn) -P(B,t Tn) GJA1. ' (3.1)

Let Q(t) = Q(B,tATn), P(t) = P(B,t*T ) and P(t) = P(B,tAT ). Let e > 0

and s < t be arbitrary. Let Sft _< S, £ S? £ ... be a sequence of s.t.s

such that S. E s, lim S = t a.s. and such that 0 _< P(S.) - PCSr.^) 1 e

a.s. Such a sequence exists since P is continuous. Then
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£ (Q(sk) -QCs^))2 -JT (P(sk) -P(sk-1) -P(sk) +hs^))
k=l k=l

£ (p(sk> - p(sk-i»2 - 2S (P(v - p(sk-i))(p(v - p(sk-i»+
k=l k=l

Z (p(sk} -p(sk-i»2-
k=l

The first term in the last expression is equal to P(t) - P(s) so that

jE{^ (Q(Sk) -Q(Sk„1))2 -(P(t) -P(s))|gg}
k=l

< 2c E(P(t) - P(s)| cf }+ eE(P(t) - P(s) Irfj.
s s

Since e > 0 is arbitrary it follows that

EZ (Q(Sk} " Q(Sk-l))2 ' P(t) " P<s))l3s} " ° (3#2)
k=l

2,^, _2
2t ^j\)\~ so that E{(Q(Sk) - QCSk_x;j

Also

Now Qt ejjf so that E{(Q(Sk) - QCS^))2 !<%} =E{Q2(Sk) - Q^S^) | f^}.

Pt - Pt ej/l1 so that E{P(t) - P(s)|9?s} aE{P(t) - 5(8)1^}.
Substituting these relations in (3.2) one obtains

E{]C ^V " ^^k-i^ " (p(t) " p(s))I(5s} "^Q2^ - ^(s)
k=l

- (P(t) - P(s))|^F} = 0.
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which is the same as (3.1). n

For fixed t Q(B,t), P(B,t) and P(B,t) can be regarded as set

functions on ^. In order to define stochastic integrals and Lebesgue-

Stieltjes integrals with respect to these set functions it is necessary

to show that they are countably additive.

Lemma 3.2 Let B, ,k^ 1, be a decreasing sequence in ^ such that

H Bk = (J). Then for almost all u> G a, Q(Bfc,t) -> 0, P(Bk,t) •* 0,
k

P(B.,t) -»• 0 for all te R. as k -»• <°. Furthermore for all t€ r+
2

n _> 0. E Q (B^^ ,tATn) + 0 as k + ».

and

Proof Fix tG R The non-negative r.v.s P(Bk,t) and P(Bk,t) decrease

as k increases so that they converge to some r.v.s P(t) and P(t)

respectively. Hence Q(Bk,t) = P(Bk,t) - P(Bk,t) converges to Q(t) =

P(t) - P(t). From the definition of P(Bk,t) it is clear that P(t) = 0
2

a.s. and from Lemma 3.1 it follows that Q„ € H, . Thus Q(t) = -P(t)
t v-/ .i.oc

9 ~ "*

Gj\yl . But P(t) is an increasing process and P(0) = 0 so that this

is possible only if Q(t) = -P(t) = 0 a.s. Thus P(t) = P(t) = Q(t) a o

for a) not belonging to a null set N £ TT. The monotonicity of the

sample functions of P, P implies that P(s) = P(s) = 0, hence Q(s) = 0 for

a) £ N and s <_ t. To prove the remaining assertion it is enough to note

that by Lemma 3.1 and by what has just been shown

2E Q (Bk,tATn) = E P(Bk,tATn) •* 0 as k •> °°. n

The following definition relates to the different classes of

integrands for which a satisfactory theory of integration is available.

Let t^a denote the set of all processes h(t) = h(u>,t) of the form
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where h. is a bounded r.v. measurable with respect to \f and 0 £ tg <

... < t. ,, < «». Let (J\ denote the set of all functions
— k+1 •0

f(z,t) a f(z,o),t) of the form

f(z,0),t) =/^ $±(Z) h^W.t)
i=0

where <J>. is a bounded function measurable with respect to *~q and h^ e^.

Definition 3.2 A function f(z,t) = f(z,u>,t) is said to be

predictable if there exists a sequence fk in ^Pq such that

lim fk(z,o),t) =f(z,o),t) for all (z,w,t) G^ xft xR+.
krx»

Let LT* denote the set of all predictable functions and let>f be the

sub-a-field of £} ® tJ® "33 generated by (V.
If f(z,t) = f(z,w,t) is measurable with respect to Q% <^@Ld and

if for all fixed (z^) f(z,w,t) is left-continuous in t then f € ( .

Definition 3.3 L2(P) ={£ e^p|(If U~>2= Ej j f2(z,t) P(dz,dt) <-}.
Z R

.1.^ -e^iM-B Ej j |f(2,L^P) ={f eCp|||fll~ =Ej j |f(z,t)|P(dz,dt) <«,}. Similarly
Z R

L1(P) ={f eCpiOfO =E\ 1|f(z,t)|P(dz,dt) <oo}. L2Qc (P) is the set
1 -?+R+

of all f Gr for which there exists a sequence of s.t.s Sfe f«a.s.

such that f I <s e L2(P) for all k. L^qc (P) and L*qc(P) are defined
— k

in an analogous manner. The integrals in this definition are to be

interpreted as Lebesgue-Stieltjes integrals. Finally let L (Q) = L (P)

nlV), lJoc(Q) =L^oc (p) ° Lioc(p)* If f(z't>eL"L(Q) then the ±Cite&cal
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I I f(z,t) P(dz,dt) ~ \\ f(z,t) P(dz,dt) is denoted I I f(z,t)
Z K+ Z R+ Z K+

Q(dz,dt).

2 ~
Lemma 3.3 To each f e L (P) there corresponds a unique process

(foQ) GjW , called the stochastic integral of f with respect to Q

with the following properties:

(i) if f(z,io,t) =IB(z) IA((o) I(t j(t) €L2(P) where Bê and
A € rj then

0

flA(w) [Q(B,tAt1) -Q(B,tAtQ)] for t>tQ
(foQ)t =

0̂ for t < tQ.
v. 2 -

(ii) if f, g are in L (P) and a, 8 are in R, then

(af + 3g) o Q e a(foQ) + 3(goQ).

Furthermore the stochastic integral satisfies the following relations

Mi<foQ, goQ>t = J J f(z,s) g(z,s) I(0>t](s) P(dz,ds), (3.3)
Z R+

and in particular

E(foQ)* - («f«2).2 (3.4)

Proof The proof follows quite closely that of [22, Proposition 5.1].

k

Let fj == S ai 1 -?(z) I aM I/> ,. ,,i(t)i j B 1, 2, be simple functions
i=0 B^ A^ ^,^+ij

2 ~in L (P) with B3± G^ ,A^G ^ and 0=tQ <t± < ... <tfcfl <«».
i

Then from (i), (ii) and Lemma 3.1 it can be verified directly that
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(f1oQ)t(f2oQ)t -Ijf^z.s) f2(z,s) I(0>t](s) P(dz,ds) ejk1
Z R+

so that (3.3) and (3.4) hold for all simple functions in L2(P). Since
2 -

such simple functions are dense in L (P) (3.4) implies that there is

2 ~
a unique extension of the map f -* (foQ) to all of L (P). Evidently

(3.3) and (3.4) will hold for the extension. n

Lemma 3.4 Let n^ ^J\\ have continuous sample paths. Then m. = iiu.

Proof By replacing the martingale m by m - mn it can be assumed that

m = 0. It will be shown that m = 0. Suppose mT =0 for some
n-1

n>lso that in fact mtAT = E{mT ¥c$tA*£ }=0for all t, and
n-1 n-1 n-1

consider the continuous martingale y = m . By Corollary 2.2 there
n

exists a function h, measurable in its arguments, such that

u s h(t,xT , TnAt, ..., xT ,T At). The process y' = h(t,xT ,t lQAt U TnAt n t TQAt

...,x_, ,T .At,x,p .. ,t) is then measurable with respect to
1 ..At n-1 1 ,At
n-1 n-1

rjk, . Since x_, = x„ ^ and t = T at for t < T it follows that
T 7t At T ,at n n
n-1 n n-1

yt = y' for t < T and so by continuity of y , y = y' for

t < T . For a G R define S by
— n + a J

Sa((o) = sup{s < a| yg(w) >_ 0}.

Then since y1 a p = o for s < T n it follows that S > T .. and since
s s — n-1 a — n-1

S is measurable with respect to yb, therefore S is a s.t. for every
n-1

a. Now let

T (u>) = sup{s < <xaT (w)| v'(u>) >. 0}.
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It will be shown that T is a s.t. Fix t: If o < t then

{T <t} = n£'rT since T < a. Suppose then that a > t. Now
a — t ct —

{T < t} = ({T < t} O {T < t}) U ({T < t} n {t > t}). (3.5)
a- a ~ n — a- n

Since T < T therefore {T <t}C{T<t}so that the first set on
a — n n —• a —

the right in (3.5) is equal to {Tn <t} which is in ^ since Tn is a

s.t. It will be shown now that

{Ta < t} n {T > t} - {sa < t} H {Tn >t} (3.6)

Since S > T the set on the right is at least as large as the one on
a — ct

the left. Suppose u) G {S < t} H {T > t}. Then y* (u>) < 0 for s e[t,a]

and t < T (w) so that 1 (w) < t which proves (3.6).

Thus {T |a G r } is a family of s.t.s. and furthermore the sample

paths T (to) are non-decreasing functions of a. By the Optional

Sampling Theorem [17, Theorem 11.8, p. 376] the process

n (w) a u_ ( n(w), aG r iS a martingale. But nQ = 0 and na > 0

so that one must have n = 0. In turn this can happen only if y. ± 0
o t —

which together with yQ = 0 implies y =0. The lemma is proved. n

1

Theorem 3.2 Let m„ G M, have continuous sample paths. Then
t ^vMoc

mt = m0.

Proof The s.t.s. Sk(ai) = inf{t| |mt(w)|> k} converge to « and

ntNS. I{S. >0} G^2 so that by Lemma 3'4 mtAS. - m0-
K. K K

Thus there are no non-trivial continuous martingales. On the other

hand if m is a martingale then its discontinuities occur at the jump

times T of the process x. as shown below,
n t
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Lemma 3.5 Let S be a predictable s.t. and let m ^J{J[ . Then

Am a m_ - m„ = o a.s.
S ^ »^"~

Proof By [24,VIII-T29, p. 209] the process AmgIt > Qis a martingale.

By [25, Prop. 7, p. 159] EUMglrJg.} =0a.s. But by Proposition 3.1

and [14, III-T51, p. 62] £fs_ =95^ so that AMg =0a.s. n

The next result gives the first martingale representation theorem.

It should be compared with [22, Thm. 4.2 and Prop. 5.2].

9 0 "Theorem 3.3 Let mt ^j\j\ . Then mt -mQ ^ {foQ| f^ L (P)}.

Proof It can be assumed without losing generality that m^ = 0. The
9 2space^i =(m e^U |mQ = 0} is aHilbert space under the norm

ilmil2 =Em^ by [16, Thm. 1], and by Lemma 3.3 the set

J^ ={foQ|f e L (P)} is a closed linear subspace oij\\^. Furthermore

J^ls closed under stopping i.e., if (foQ)t ^^A) and T is a s.t. then

(foQ) GJl;. This is clear because (foQ)tAT = (fToQ)t where

f (t) = f I, Ti. Thus by [27, Thm. 2 and the remark following

Definition 4] the theorem is proved if it can be shown that mfc = 0
2 ~

when it is orthogonal to foQ for every f G L (P). By [16, Thm. 4]

m can be decomposed uniquely as

c -u dm = m + m

where ra£ ejWQ is continuous and mt ^jWQ is orthogonal to every

continuous martingale. By Theorem 3.2 «t = 0. By Lemmas 2.2 and

3.5 the discontinuities of mt occur during the stopping times T^,n _> 1.

Therefore, by [16, Thm. 4] again, m = mt can be further decomposed as
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mt =2 (Mn Xt>T "an(t)> =S "nt Say'
n=l ~ n n=l

where M = Amm = mm - nu, , a (t) ^.<J\ has continuous sample paths,
n T i l - n

n n n

and y ^JilL* Furthermore the martingale yt is orthogonal to every

martingale which has no discontinuities at T .

prove that m, = 0 it suffices to show that M = 0 for each n.
r t n

To

Fix n and suppose that P(M $ 0) > 0. Since M is measurable with
n n

respect to ^.r. therefore by Corollary 2.2 there must exist sets
n

ASyJt ,B^^, and C^I^O,00) such that
n-1

E{Mn(u) IA(») I{xt gB}^^ec)} *0. (3.6)
n

Consider the function f(z,w,t) defined by

f<*,-,t> - iB(0 iA(«) ic(t) i{ < }
n-1 — n

The function g(z,oj,t) = XB(Z) 1^M X{x < t < T }
n-1 — n

paths for fixed ( z ,tu) and for each fixed z , t the set

«A<*> X<T , <t <T}" 1} " An<Vl <«> n <' i V £ ^t Sface
n-1 — nJ

AG ^X, . Therefore g(z,t) is adapted, so that g G ^-P and hence
n-1

f=g Ip(t) is also predictable. Also \f\< 1 andf(z ,t) = 0 for t > T

so that f£ L2(P) H ^(P) O L(P). Therefore by Lemma 3.6 below it

follows that

nt =(foQ)t =jj f(z,s) I(0jt](s) P(dz,ds) -JJf(z,s) I(0,t]<s) P(dz,ds)
2, R+ Z K+

has left-continuous

=XA(tt) X{xT GB} X{T € C} Z{t >T } " a(t)
A n — n

n

-25-
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where a(t) Is a continuous process. Thus the discontinuities of

(foQ) occur at T . Since m is orthogonal to n therefore

0=<m,n>t=£<yk,n>t+<Vn>t
kfr

Also <y, ,n> =0 for k^ n, hence <y ,n> =0 so that V •" e^441.
k t n t n

By the Corollary in [16, p. 106] and the Definition in [16, p. 87]

it follows that Ay • An • i is a martingale so that
n n — n

*l\M IA(o.) i{ m} i{T e c} =o
T c B *n
n

which contradicts (3.6). The theorem has been proved. n

Lemma 3.3 provides an obvious extension of the definition of the

2stochastic integral (foQ)fc to f^ L. (P) and so Theorem 3.3 extends

in the following manner.

Corollary 3.1 {mt -mjmt ^M^ ={(foQ)Jf GL2qc(P)}.

To obtain the representation for martingales ^J^^oc two preliminary

results are needed.

Lemma 3.6 i) Let fG^P. Then fG L1(P) if and only if fG L (P). In

fact II fHx =llfll^. In particular L1(P) =L1^) =L1(Q).
ii) Let fG L2(P). Then fG L^P) and
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:oQ)t -JJ(foQ).. =|Jf(z,s) I(0>t](s) Q(dz,ds) (3.7)6
Z R+

iii) If f€ lX(P) then

mt -JJf(z,s) I(0>t](s) Q(dz,ds) eJJ1 H^.
Z R+

Proof By an argument which is almost identical to the proof of

[16,Prop. 3] it can be shown that (3.7) holds for

f€ L2(P) n ^(P) H LX(P).

2 ~ 1 "
Since L (P) c L (P) the second assertion will then follow from the first

one. Now let $ consist of all bounded functions f(z,t) e rsuch that

f(z,t) = 0 for t >. Tn for some n < ». Then certainly

$C L2(P)OL1(P)n ^(P). So (|f|oQ)t GJj(2 for f£$and in particular
by (3.7)

0=E(|f|oQ)M= l£lx- llfll~.

1 1 ~
Then the identity map, restricted to *, from L (P) to L (P) preserves

norms. Since 4» is dense in L (P) and L (P) the first assertion

follows. To prove the last assertion let f, , k > 1 be a sequence in

L (P) such that Hf - ffc0 converges to zero. Then m. = (f.oQ) Gj\\

and by (3.7) E|mkt -m |< 2Uf - ffcII converges to zero uniformly in t

It may be worth repeating, to clarify the content of (3.7), that the
integral on the right in (3.7) is a Lebesgue-Stieltjes integral whereas
that on the left is the stochastic integral as defined in Lemma 3.3.
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so that m ^J[\ . n

Proposition 3.3 Let M be a ^J- -measurable r.v. for some n _> 1.

Suppose e|m| < ». Then there is a unique f(z,t) e L (P) such that

t>T=JJ f(z's) I(0,t](s) P<dz»ds)- <3-8>M I
t _> T

Z R

Furthermore f(z,s) = 0 for s < T _ and s > T , and
— n— 1 n

E|M I{ <„}| = lflr (3.9)
n

Proof Since M L v _ =ML„ ^ i If_ ^ m \ ._ . j ..u ..
t>T {T <»} {t > T } it can be assumed that

— n n — n

lr

M = M I, < ,. By Corollary 2.2 there exist r.v.s M of the form
n

&M =J}±I{x e*4}\W *{T6r>
T *= *± "i n ~iJ
n

where a± Gr, b± ^Qj", A.^Y^ and C± G(^B[0,«»), such that
, n-1

E|M - Mk| + 0. If fk is defined by

fk(z,U),t) =Y}± h±M \M IC±(t) ^T^ <t <Tr}
i

then it is clear that (3.8) and (3.9) hold for r and f . The assertion

now follows by taking limits. n

Lemma 3.7 Let m ^W n>Jk. Then there exists f G L (P) such that
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mt - mQ =J J f(z,s) i(0jt](s)Q(dz,ds) (3.10)
Z R+

00

and E1 IdrnJ =2^1^ (3.11)
^o

Proof m has the representation

n=l n-1

where M„ a Am_ , a (t) e J\ is continuous, and y . e^/U- Since m. ^ A
n i n nt t -^

n

'TO 00

j K1 'l^J'oo > E

'0 n=l

so that by Proposition 3.3 there exist functions f (z,t) ^ L (P)

wlilch vanish outside of IT . ' t < T } such that e|m I - 8f 0 and
n-1 - n ' n1 n 1

'„ Vl -.)) fn(z's> I(0>t](s) P(dZ,ds)
— n ~, *+

M
ci t^T^

Z R

By Lemma 3.6

nn(t) =an(t) - Jj fn(z,s) I(0ft](a) ^(dz.ds)^1
ZR+

But n (t) is continuous so that n (t) = 0 by Theorem 3.2. Therefore
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(3.10) holds for f(z,t) =}^ fR(z,t) and (3.11) follows from Lemma
n=l

3.6 and the fact that f, (z,t) f (z,t) ^ 0 for k ^ n
k n

Theorem 3.4 \^Mioc if and only if there exists f GL (P) such that

)1f(z's) ^o.t:mt - mQ Hj J^ f(z,s) I(0>t](s) Q(dz,ds) (3.12)
Z RM

Proof The sufficiency follows readily from Lemma 3.6 (iii). To prove

the necessity one starts by noting that by [16, Lemma 3 and Proposition

4] there exists an increasing sequence of s.t.s Sfc converging to «> such

that for each k m q - m has a decomposition
k

k

where y e^L and r\ e_/l/L n^A» By Lemmas 3.6 (ii) and 3.7 there

k 1 ~
exists f G L (P) such that

IimtAS, ~mo = JJ fk<2's> I(0,~](S) QW*.ds).
k Z R+

k k+1It is clear that f (z,t) = f (z,t) for t < Sfc. Thus (3.12) holds for

fG L1 (P) defined by f(z,t) = fk(z,t) for t <S.. n
loc ~~ K

The results above give a characterization of the classes -M ,J[,\ ,

.AA n J\ and J\j[ . it seems much more difficult to obtain a useful
loc

characterization of the class J[\ .
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The (local) martingales with respect to (fi.^.P) have been

represented as sums or integrals of the 'basic1 martingales Q(B,t).

The latter are associated in a one-to-one manner with the counting

processes P(B,t) which count those jumps of the underlying process

x which end in the set B. Thus jumps are distinguished by their final

values. Now it is also possible to distinguish jumps by their values.

The corresponding counting processes will be of the form p(A, t) which

counts those jumps of the x process which have values in the set A.

The martingales q(A,t) associated with the p(A,t) also forma 'basis'

for the set of all martingales on (n,9jt,P) as will be shown below.

The alternative representation obtained with this basis can sometimes

be more useful since the description of the x process is, in practice,

often given in terms of a statistical characterization of the jumps of

v

For simplicity of notation it will be assumed in the remainder of

this section that the x process starts at time 0 in a fixed state i.e.,

x (o,) = x^a/) for all w, <u' in ft . Next it is assumed that there is

given a set Z of transformations a: Z •> Z with the following properties:

i) Z contains the jumps of the x. process i.e.,if x (w) f6 x (w)

for some s G R u> G fi then there is a unique a G z such that

a(xg_(u))) =xg(u)),

ii) Z contains a distinguished element (Jq corresponding to the

identity transformation i.e., tfQ(z) = z for all z G z.

To each sample function oj G Q of the x process is associated a

function y((d): R, -*• Z defined as follows:

7
It should be noted however that the results below continue to hold in

the absence of this simplification.
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Yt(w) = Oq if t a o or if xt(u>) = x (w)

= a if xt(w) 4 xt_(u>)

where a G z is the unique element for which a(x (w)) = xt(a>).

Remark i) Given a sample path x (u>), 0 _< s <_ t, there corresponds in a

one-to-one manner a sample path Ya (<*>), 0 < s < t.
S •"" "

ii) The functions y(o>) are not right continuous.

However if Yt(w) = oQ then Yt_(w) = oQ. This observation will be used

later in an example.

The following 'regularity* assumption appears to be necessary. In

practice it is readily verifiable.

Assumption. There is a a-field 5 on Z such that ^T. coincides with

the a-field generated by subsets of the form {w|y (w) G a} where s < t
s

and A G H.

With the assumptions above it is clear that the processes x and

Yt are equivalent alternative descriptions of the same process. In

particular they generate the same a-fields, so that the two processes

have the same martingales. The representation theorems derived earlier

for the xt process can be applied to the Yt process but there is a minor

point to be cleared up. Recall that it was assumed that the x

process was right-continuous whereas y is not. However the assumption

of right-continuity was used only to establish the right-continuity

of the family 9Jt* This continues to hold of course since y,. and x

generate the same a-fields Vjt• Hence one can apply the representation

theorems.
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Definition 3.4 Let AGE. Let

P(A,t) -£ i{ , ,i{ eA} =2 1{*a. *V I{Yg ea}
S

s<t s<t

be the number of jumps of the x process with 'values' in A and which

occur prior to t.

By Proposition 3.2 there is a unique continuous process p(A,t) G^,
~ 9such that the process q(A,t) =p(A,t) - p(A,t) is in^loc. In analogy

with Definitions 3.2 and 3.3 one can define the subsets of

Q} :L2(p), L? (p), L1^), L (p) etc. Lemma 3.3 describes the
Z loc

2 -
stochastic integrals (foq) for f G L (p). An application of Theorem

3.3, Corollary 3.1, Lemma 3.7 and Theorem 3.4 yields the following

representation theorem.

Theorem 3.5 i) m ^ j\j\ (\j\ )if and only if mt -mQ =(foq)t for

some feL2(p) (L2qc (p)).
ii) mt e^U1 n,J( (^oc) if and only if mt -mQ =j j f(a,s) I(0,t](s)
q(da,ds) for some f G L (p) (L. (p)).

loc

IV An example

This section consists of a simple example showing how Theorem 3.5

can be applied. The example will be further elaborated in [3],

Let Z be countable and let ^Xconsist of all subsets of Z. Let x be a

process with values in Z and satisfying the assumptions listed at the

beginning of SectionIII. Suppose that from each state z the process x

loc

•j; is the set of predictable functions of (o,a)»t) G z x p, x R, defined
in analogy with Definition 3.2.
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can jump to one of n states. In terms of a state-transition diagram

(see Figure 1) there are n transitions or links emanating from each

state or node. Label these transitions by the symbols a., ..., a .

Let Z = {Oq,...,o }. Thus each o G z corresponds to a transformation

in Z, Oq is the identity transformation. Let E be the set of all subsets

of Z. The x process defines the process of transitions, y . Evidently

Z, E satisfy the assumptions made above.

Figure 1: State-transition diagram for example.

Let p±(t) = p({ai},t), p±(t) = pi([a±},t) and q±(t) - q±{{o±}9t)9

0 < i < n. From a remark made in the last section I, , , •

~ ~ {xs- * xs}
I, _ , = 0. Hence P0(t) = 0 and so qQ(t) = 0. Theorem 3.5

simplifies to the following. Here the predictable integrands are

functions of (w,t) only.

i2 > ii2Theorem 4.1 i) m €j\\ {\L ) if and only if m - mQ =£ ^±0<^±\
for some f GL2(p±)<I^oc(P±)). 1 <±<n.

ii) mt eM1 nJ( (/Ujoc) if and only if mfc - mQ

n f 1 - 1
= L \ Ms> <l,<ds) for some fi GL (P,)(L, (P.)), 1 <i^n.

i=l J(0,t] ± 1 X x loc i
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Example Let x be a process taking values in a countable state space

and of the type described immediately above. From each state the

process can make n transitions0-^ ..., a as sketched in Figure 1.

Let P±(t), P±(t), q±(t) be as in Theorem 3.6.

Let A(t), P,(t), ..., Pn(t) be non-negative predictable processes

such that

n

P±(t) = 1

i-1 (4.1)

*: AT.
k

±(tATk) -\ P±(s)A(s) ds €ylf, k=i, 2, ..., n

Then the processes X(t), Pi(t) have the following interpretation:

since from (4.1) and (4.2)

tAT.
k(n C

Spi(tATk> - J x<s> ds) eM1
i-1 0 /

n

(4.2)

(4.3)

and since £ p (t) is just the total number of jumps of the process
i«l

occuring prior to t, therefore the probability that the process x

makes a transition in the time interval [t,t + h], conditioned on

the past 7ft of the process, is equal to X(t)h + o(h). Similarly

P^t) is the probability that the process makes a transition represented

by ai, conditioned on -^ and conditioned on the fact that a transition

does occur at t.

Now since the process represented by the indefinite integral in
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(4.2) has continuous sample paths it follows quite readily (see e.g.

[25, p. 153]) that the jump times of the process are totally

inaccessible. Hence from Theorem 4.1 it can be concluded that every

m G ^L has a representation

n t ft
mt-mo=V[ f±(s) dp±(s) -I f±(s) Pi(s) X(s) ds] (4.4)

i«l •'O 0

for some predictable processes £^ G L, (p^A) i.e., for which

1 f±(s) P±(s)X(s) ds < « a.s. for all t G R,.

This result indicates how one can immediately write down the

representation results if the process x is described in terms of the

'rate' processes X and the 'transition' probabilities p^ It should be

kept in mind, however, that it has not been proven that given processes

X(t) and p.(t) there exists a process xfc for which (4.2) holds. This

question of existence will be pursued in [3]. The next remark relates

to the representation (4.4), which asserts that the n local martingales in

(4.2) indeed from a "basis" for the space of all local martingales

U1 . The question is whether n is the minimum number of martingales
'loc

in every basis of J({. . For the case where xfc is a Gaussian process

the minimum number of martingales has been called the "multiplicity"

of the process by Cramer [8 ,9]. It turns out that this notion of

multiplicity extends in a very natural way to arbitrary processes [13].

From the results of [13] the following sufficient condition can be
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obtained: Suppose that the processes P.(s)A(s) satisfy

p±(s) X(s) > 0 <=* p (s) X(s) > 0 all i,j.

Then n is the minimum number of martingales in a representation of

^Aoc*
Finally, specialize the example still further and assume that xfc

is a counting process i.e., x =0, x takes integer values and has

unit positive jumps. Then x is a direct extension of a Poisson process.

The state-transition diagram then simplifies to that of Figure 2 and

since n = 1 in (4.1), (4.2) and (4.4) therefore p,(t) = 1 and can be

omitted. Also p,(t) H x, (t) and so the representation (4.4) simplifies

to (4.5). Every m G U can be written as

m - mQ =1 f(s) dxg - I f(s) X(s) ds (4.5)
•*o ^o

where f is a predictable function such that

i f(s) X(s) ds < » a.s. for all tG R .

o j—S—fiV-5—(2

Figure 2. Transition diagram for counting process.
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This representation result has been obtained by very different techniques

from several authors [4, 5, 11, 12]. However even here the cited

references prove (4.5) for the special case where the probability

law of the x process is mutually absolutely continuous with respect

to the probability law of a standard Poisson process. Hence even for

this special case (4.5) is a strict generalization of the available

results.
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Appendix: The increasing processes P(A,t) and the Levy system.

This section attempts to give an intuitive interpretation of the

increasing processes P(B,t) and shows the connection with the Levy

system for Hunt processes.

Begin with the observation that for all B^ gf the measure P(B,t)

is absolutely continuous with respect to the measure P(Z,t) i.e.,

there exists a predictable function (w,t) -»• n(B,to,t) such that

P(B,t) = I n(B,o),s) P(Z,ds) (A-l)

0

To see this it is enough to demonstrate that for all predictable

2
functions <j>(uj»s) = $ (w»s) (i.e., all indicator functions)

oo

( *0E I <f>(u),s) P(Z,ds) = 0 (A-2)

0

implies

00

I <Ko>,s) P(B,<E I (J)(w,s) P(B,ds) = 0 (A-3)

0

Suppose (A-2) holds, then

t t t

<j <Ks) dQ(Z,s), i 4>(s) dQ(Z,s)> =I <|)2(s) P(Z,ds) =0,
Jo •'o •'o
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and so

=<\ <Ks) dQ(B,s), I <|>(s) dQ(Z,s)>

(

s:

<j>2(s) P(B n Z,ds) by Lemma 3.1

4>2(s) P(B,ds)

which proves (A-3).

In exactly the same way as Lemma 3.2 was proved it can be shown

that the n(B,u),s) considered as a set function in @ is countably

additive in the sense that if B., B2, ... is a disjoint sequence of

sets in ~Q then

P(UBi, t) =^T \ n(Bi,s) P(Z,ds)

Hence if one sets P(Z,t) =A(t) eJ(ioc» then the system {n(B,t,w), A(t)}

is analogous to a Levy system for Hunt processes (see [22]), and has a

similar interpretation : the probability of xt having a jump in

[t,t + dt) is dA(t) + o(dt), while n(A,t,u>) is the chance that

x e A given 9Tt and given that a jump occurs at t.
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