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1. Introduction and Summary

This paper is c@hcerned with applying the theory of martingéles of
jump processes to various problems arising in communication and control.
It parallels the approacﬁeé which have been reéehtly discoveredvin
dealing with similar p;oblems where the underlying stochastic prbcess is
Brownian motion. Indeed these approaches have recently been extended,
starting with the work of Snyder [14,16,30] and Brémaud [61,28], to the
case of the Poisson process and its transformations. The paper éan then
be regarded as a sweeping generalization to this recent work.

The paper can also be ;;;sidered as an iiiﬁ;tratioh of an abstract
view and a set of instructions which must be followed to obtain certain
concrete results in the areas of communication and control. It is hoped
that this 'tutorial' function will also be served.

Two results from the abstract theory of martingales form the basis
of this abstract view. The first consists of the differentiation rule
and the associated stochastic calculus for martingales and semi-martin-

.gales [1], and its apflication to the so-called 'exponentiation' for-
mula [2]. The second result consists of the earlier Doob-Meyer decompo-
sition theorem for supermartingales [3]. In order to follow the abstract
view, one also needs a third set of results, the so-called ‘martingale
representation' tﬁeorems for specific processes. These results form a
bridge between the abstract theory and the concrete applicationms. The
representation results used here have been obtained in [4], hence the
paper can also be viewed as a continuation of that work.

The paper is organized in the following manﬁér. ~Ip the‘nex;)éection

are presented many definitions, notations and results from [1, 2, 3, 4]



which will be used in the succeeding development. These preliminaries
are certainly longer than can be considered proper, and are justified
partly to serve the tutorial function, partly because there is no
consensus of usage in the literature, and lastly because some of the
published litefature contains errors and inaccuraté or misleading state-
ments which can Ee exposed only within a carefully and completely
developed conteﬁt.

Section 3 is concerned with showing the 'global' existence of jump
processes over a finite or infinite interval which satisfy certain local
descriptions. Existence of such processes is obtained by transforming
the laws of 'knowﬁ' processes by an absolutely continuous transformation.
We also present a wide class of point processes which can be so transformed
to yield solutions to prespecified local descriptions. Sufficient condi-
tions are derived which guarantee when this technique is applicable. The
question of uniﬁueness of the solutions is settled for a wide class of
local descriptibqs.

Section 4 deals with a specific problem in communication theory,
namely the calculation of the likelihood ratio of a process which may be
governed by one of two absolutely continuous probability laws. The
techniques for Sections 3 and 4 are the same. Section 5 is concerned with
estimating certain random variables or processes which are statistically
related to aﬁ opserved process. The emphasis here is on obtaining
'recursive’ filtéfs. As special cases one obtains a 'closed form' solution
for some of the.situations where the estimated process ié Markovian.
Applications to optimal control will be made in a future paper.

Throughout, there has been an attempt to link up‘the results with those

which have alreédy appeared in the literature in as precise a manner as
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limitations of space permit. Any omissions are due to oversight of the

authors.

2. Preliminaries and Formulations

This section describes most of the results from the literature which are
necessary to the sequel. §2.1 is definitional in nature. 52.2 - 8§2.7
are taken mainly from [1], §2.8 is taken from [2], the remainder is

from [4].

2.1 Processes. Throughout 2 is a fixed space, the sample épace. The
time interval of interest is R+ = [0,%) unless specified otherwise. For
each t let :’f’t be a o-field of subsets of Q. It will always be assumed
that the family ‘}t’ t € R, is increasing i.e., :S'S c :}; for s < t

and right-continuous i.e., } ¢ = N 3‘ s* Let :S' =V “th be the smallest
: s>t t

o-field containing all the ’3 p Let P be a probability measure on
(9,'}). Thus one has a family of probability sbaces (Q,gt, P). It will
always be assumed that probability spaces are complete. 4

Let (Z,'}) be a measurable space. Let x: Q X R+ + 2 be.a function
such that {wlxt_(w)e B}E f'jt for all B € }, t € R+. Then _(xt,.g‘t,‘ P)
is a (stochastic) process. Thus every process has attached to it a
family (52,3"‘:, P), t € R+, of prol;ability spaces. The same function x
defines a different process if either the family 'J—t ‘or the measure P
is changed. When the context makes it clear we write (xt,:je t) or (xt, P)
or x. instead of (xt,'g;:, P). If (xt,:T(t,P) is a process, then so is
(xt,':;:, P) whereg': is the sub-o-field of ?f't generated by X5 8 S t

and P 18 the restriction i:o'é'x = V3}t: Two processes (xt,‘&{;,l’) and
t

(yt,sﬂt,l’) are sald to be equivalent or versions of one another if

-l



x, =y, a.s. P for each ¢, the set {xt # yt} may vary with t. They

are said to be modifications if there is a set N with P(N) = 0 such

that for w € N, xt(w) = yt(w) for all t. Given (8, 3,1’), a random
variable, or r.v., with values in (Z,}) is a g’—measur.able map from
Q into Z. Unless explicitly stated otherwise all r.v.s and processes

take values in (R U {~}, B) where B is the Borel field.

2.2 Stopping Times. Consider a family (Q,tj(t,P). A non-negétive. r.v.

T is a stopping time, s.t., of the family, if
(T<e}€F, foralle.

The s.t. T is said to be predictable if there exists an increasing

sequence of s.t.s §; < Sy < ... such that

PIT=0o0or S, <T forallkand 1im S, = T} =1

k k-)ook

The s.t. T is said to be totally incaccessible if '1' > 0 a.s. and if for

every increasing sequence of s.t.s Sl 285y, 2 ..

P{Sk < T for all k and 1lim S =T < =} = 0,
k<o

2.3 Martingales and Increasing Processes. A process (int,gt,P) is
said to be a (uniformly integrable) martingale if the collection
{mtlte R+} of r.v.s is uniformly integrable, and if E(mtl',}’s) = m_

a.s. for 8 < t. The collection of all such martingales, for which oy = 0, is

denotedul(,l = Jﬂl(yt,l’). (mt,yt,P) is said to be a local martingale

. & there is an increasing sequence of s.t.s Sk, with sk > © a.s. such that
. . . 1
(mu\sk I 5,>0}° 'Q—t,P) €M_ for each k.
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‘ 1
The collection is denoted Mloc (%,P)- (mt’gt’P) is a square
integrable martingale if m, G./bl,l and if sup Emi < o, The collection
) t
is denoted J{’z(yt,P) and the class of locally square integrable

martingales ‘/L{'ioc (:}’t,P) is defined analogously. It is obvious that
Cc .
loc loc
1
c -

Each m, /L(’loc has a version whose sample paths are right-continuous
and have left-hand limits. Clearly such a version is unique, i.e.,
unique modulo modification. It will always be assumed that local
martingales have sample paths with this continuity property.

A process (at, :-ft,P) is said to be increasing if a_ = 0 a.s. and

0
if its sample paths are non-decreasing. The collection is denoted

+ + + . + +
'A_O (:}r-t,P). A’O = A‘O - ‘/4/0 = {at-atlat €J4'/0, a' € A’O}'

t
At = {at € A.'g|sup E a, < o}, A, = Jt" - /t". Members of A,"'(A)- are
t

said to be integrable (or have integrable variation). a, E‘A,g is said

to be locally integrable if there is an increasing sequence of s.t.s

Sk »> ® 3,8, such that

s €A+ for all k.
k

A. = At _ +

loc loc loc’

Semi-martingales. A process (s, ’jts P) is a semi-martingale,

respectively local sémi-martimale, if it can be expressed as s, = 8 +
m +a where m_ E/L[,]'( t’P) and a, € %(gt,P), respectively
1 v
m, e—/tloc (a/t,l’) and a, € A_O(gt,P). The families are respectively

denotedJ(yt,P) and loc(%’P) .
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2.4 Predictable Processes. The family of all processes (yt, '3t,P)
which have left-continuous sample paths generates a o-field ’P = 70 (3‘t)
Cc :f@ '6 with respect to which the functions (w,t)" yt(w) are
measurable. '40 is called the predictable o-field, aﬁd every process
(yt,yt-,P)- which is p-measurable is called a predictable process. Note
that 1f i, C ?t, then P(F,) € ﬁ(ét).

For (atagtsp) GJ40’

[{-]

. . P ’
LP(at) = {ytl(yt,’jt,P) is predictable and E s Iytl Idatl < o},
0

P

Lloc (at) = {ytlthere is a sequence of s.t.s Sk <+ « guch that

P
Ye I{tﬁsk} €L (at)} for each k .
The integrals above are St:l.elt_jes integrals.

1
. ' R
2.5 Quadratic Variation Two martingales mt, n, in /iloc are orthogonal

1
€ :
if their product, m. n, 1oc"

1 .
= i ,
m, J‘.{loc is continuous if its

sample paths are continuous; it is said to be discontinuous if it is

1
loc

‘orthogonal to every continuous martingale. Every o, € /-{ has a

unique decomposition,

c d
mt mt + mt_

such that m‘: is continuous and m: is discontinuous. Clearly if

1 , 2
o, G'/{ loc is continuous then it is in/%loc. To every path m., 0, in
J‘ioc is associated a unique predictable process, denoted (m,n)t or

+
((mt,nt),yt,P) such that (m,n)t 574'10(:, and
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' : 1
(gtnt - (m,n)t) € .H,loc(:;t,P).

(m,n)t is called the predictable quadratic covariatiom of mt,n . For

2 R
m e')%loc’ (m)t = (m’m)t is the predictable quadratic variation of m.

Note that generally {m,n) depends crucially upon the family (31:’1))'

. c
=m +'md, n =nc+nd,

1
1f m,, nt in Mloc have the decompositions m, e t t t t

then the process

(m,n], = [m,n ] = (a® ,nc> + sz:':; Am bn_,

where Am_ =m_-m__, fn, =n, -n_, is called the quadratic covariation

of m., n, and [mt] = [mt, mt] is the quadratic variation of m, .

It turns out that

1

mn, - [m,n]t Toc

tt

so that if, furthermore, m_, n_ are in\/({z then
t t loc

[m,n]t - (m,n) Gﬂl

loc’

2.6 Stochastic vIntegration j{,loc(yt,P) and ¢ € L ((m) )

1 2
then ¢, € Lloc((m,n)t) for all n, 'H’loc

process, denoted (¢om) ¢ eﬂioc(‘?{t’m which satisfies

(}/t,P) and there is a unique

t .
(¢.°m,n)t =S ¢g d<m,n>s for all n, GMJZ. . ' (2.1)

oc
0
The integral on the right is a Stieltjes integral. If m, ¢J%i oc then

one cannot define a stochastic integral in this way. Two other

possibilities are open.



c d 1 d 1.
1f m = m + m, E/“{ioc(':ft,P) if m, € loc(:jpt’P) and 1if

1

2 c
N
<pt: € I'loc((m >t) I‘loc

(m:), then the process

t
(9om), = (on%), +§ b dnt EMT (P (2.2)
0 . :

where (¢ °mc) t is defined as in (2.1) whereas the second integral is
a Stileltjes integral.

1 _ ' 2
Finally if m G/‘/Lloc and if (¢, f,»P) is a locally bounded

predictable process, then there exists a unique process @om) te j{’ioc

which satisfies

t
[cbom,n]t = s ¢g d[m,n]_ for all nejﬁioc' (2.3)
0

The integral on the right is not in general a Stieltjes integral
unless [m,n] ¢ 6/4:1&. The precise interpretation of ’this integral is

not given here since it is seldom used below. For details see [1].

The process (¢om) t is called the stochastic integral of ¢ with respect
to m. Note that if (¢om) makes sense according to more than one of the
three possibilities (2.1), (2.2) or (2.3) then the resulting stochastic

integrals coincide.

2.7 Differentiation formula. Let S, = 8 + m +a, efdloc(s.{t’P)'

The decomposition is not unique. If s, = 8o + m:: + at': is another

Ihie 1s a non trivial restriction on od. It holds for the discontinuous
xgartingales to be introduced in §2.9 beiow.

¢, 1is locally bounded if there is an increasing sequence of s.t.s S, + «
such that the process ¢ Msk I{Sk>0} is bounded for all k. Note that if ¢t

is a right-continuous process, having left-hand limits, then the process

b, = ¢,_ is locally bounded. —o-



. c
decomposition then the continuous parts m '

c? B 2 of the local martingale

are modifications. This unique continuous local martingale is denoted sg.

Let 8, = (si, .oy 82) be a process with values in R" such that

st € Qj;oc(z;t,P) i=1, ..,.,n. Let F: R" > R be a twice continuously

differentiable function. Then the following differentiation formula

holds.

t t

n n 2
F(st)aF(SO‘)‘ +§ tn (s‘l'-) dsi + %S iz 3;?__11— (ST')d( siC’SjC)T

SE 371 %y

0 0

: n
9F i i
+ Y [F(s )-F(s_)- Y, +— (s_) (s - s )].
=<t T T i=1 axi T T T
As a special case one obtains the very useful 'product' rule. Suppose
1 = =
m, and n, are in Mloc' Then (since my = ng 0), and recalling the

definition of [m,n]t

2.8 The Exponentiation Formula: Let s, € 4&1 ( t,P) with 8y = 0.

oC

Then there is a unique process y, e-Qfloc( J¢sEF) which satisfies the

equation

for a pre-specified Yos and Ve is given explicitly by
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. 1., oCy o, -As
¥ = Y, exp(s, = 5 (s", 8 )t) Tgt(li-AsT)e T

where the second term converges a.s.. Y, is called the exponential of S,
and is sometimes denoted Y. = E;(st). Evidently Eaist) >0 a.s. if

¥, 2 0 a.s., and if 1 + 4s > 0 a.s. If, in addition, m > 0 and m, ~ m;

o
ﬁaﬂéioc(eit’P) then (E;(mt),2§;,P) is a supermartingale i.e.
E(G @) |F) < Em) s<t, | R
and so in particular
E(Em,)) < E@), t > 0.

Finally if m € ,/é} is bounded then E;(mt) is a martingale.

2.9 The fundamental jump process Let (%, »P) be a family of spaces
ump t

and let (xt,Ef;,P) be a process with values in (Z,Z}) such that all the
sample paths of x are piecewise constant and have only a finite number
of discontinuities in every finite interval, and such that the sample
paths are right-gontinuous i.e., for all w, t there is € > 0 such that
xt(w) = xt+e(w) for 0 < e < €0 Let Tn’ n=0,1... denote ﬁhe jump times

of the process, defined inductively by T, = 0 and

0
Tn+1(w) = inf{tlt > Tﬁ(w), xt(w) # xTn(w)} »,n>0

o if the set above is empty

(xt,£¥t,P) is a fundamental jump process, or a fundamental

process, f.p., with values in (Z,C}J, if in addition,
(1) (Z,Z}) is a Blackwell space, and then it turns out that the

jump times are s.t.s, and
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(i1) The s.t.s Tn are totally inaccessible.

Evidently ifu(xt,fji,P) is a f.p., so is (xt,2§§,P) whére'E;: is

the sub-o-field oflzyt generated by X, 8 2 t. For each B € 23 let

s<t

P(B,t) = Z I{"‘s,f"s} I{xSGB}

be the number of jumps of x which occur prior to t and which end in the

set B.

Associated with P(B,t) are two unique increasing continuous processes

o + X + X
P(B,t) G.%Qloc(:§£,P) and P (B,t) G-/*loc(z§£,P) such that
~ 2
QB0 = B3,e) - B, M (F,m
oc t

and GF(B,1) = 2(3,0) - P,0) €2 (T
Furthermore,

(Q(Bl’t)a Q(stt):) = i;(Bl N BZ’t)s
and €Q"(B;,t), Q*(By,t)) = F(8) N By, 1)
Finally, the functions P, 5, ix’ Q, Qx considered as random set functions

on f}-are countably additive.

Note: The condition that the Tn are totally inaccessible ié equivalent

to the assertion that the i(B,t) are continuous. See [41 for alternative conditions.
A real-valued function £( z ,t) ='f(z,ubt) is said to be predictable,

and one writes f € f%zft), if it is measurable with respect to

G}CDFE¥C)&3 and if for each fixed z, £(z,*,*) is predictable in the
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sense of §2.4 above. The family ’p (3’:) is defined similarly. If
f € R }f;), respectively "p(:;:), we call f a 'jt-predictable,
respectivelysz—predictable,process. The following classes of

predictable functions are used in the martingale representation results.

2@ = g€ P(IDHIdsp? = & ;g § £2(2,t) Pdz,ae) < o

Ry

@) = £ e P (IO = & g § |£(z,0) |Bldz,at) < =}

ZR+

ey = (5 G’P(}’é)lﬂfﬂl = E g g |£(z,t)|P(dz,dt) < w}
z R

1@ = it Nt
It turns out that "f"l = "f”;, hence Ll(f’x) = Ll(P) = Ll(Qx)-

i.ioc(f’x) = {f € ’p(:-f-}:)lthere exists a sequence of s.t.s S, * = such that

f(z,t) I{t<S } € Lz(i'x) for each Kk}
—k
The classes Lioc (P) etc. are defined in a similar manner. Evidently,
1 X, _ .1 R e
Lioc @) = Ly (B Lioc D)

Let £f(z,w,t) be a function which is measurable with respect to

3-@3’3 ®f3 such that f(z,-,t) is 'é:-measurable for fixed z and such

-13-



. ;.x N
that E S g ]f(z,t)] P(dz,dt) < ». Then there exists a 'GC:-predictable
R, :

function f such that E g g lf - fl'?x(dz,dt) = 0. This result follows
Z R+

easily from [22, VT23]. . The result will be used in §4, §5 in the

following context: Let f € 40(':-&) and let f(z,t) = E(f(z,t)'t‘ﬁ{); it

can then be assumed without loss of generality that % 1s"[7" ’é—predictable.

’ a9
2.10 Representation of/('(,z (:'P:). For each f € L (Qx) there exists a
unique process (f_on) N € /"6’ (‘3:) such that for all g€ L2 (Qx), a and g
in R

@£ + Bg) oQ = a (£0Q¥) + B (g0Q™),

t .
{ £0Q%, gon)t = s s f(z,8) g(z,8) P*(dz,ds)
Z 0

Conversely if m e/{f(}”t‘) then there exists f € LZ(Qx) such that

m = (fon)t.

c 2 x 2 X
Similarly, m < 1ocG( t) if and only if there exists £ € Lloc(Q )

such that
- X
m = (foQ )t’

1
2.11 Representation of/‘éioc(’;x). 1f £ 1M (P%) then (£0Q™) e M FH

t
N 7% ‘where

. t t
(fon)t =j-j£ £(z,8) Q’idz,ds) =§j f(z,8) P(dz,ds) -gs f(z,s) §x(dz,ds),
Z0 , 0 -

Zz0
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the integrals on the right being Stieltjes integrals. Conversely if

m, e/tl(—g::) n A’then there is f € Ll (i" x) such that
: X
m, (£foQ™) e

1
loc

eyl X ~x
€ €
Finally, m_ /‘Lloc (:}t) if and only if there is f € L~ (P")

such that

t
m, = (fon)t = j If(z,s)[l’(dz,ds)- l;x(dz,da)].
Z 0

Bemark 2.1 1. Ifm E/"Lio c(}t) has continuous sample paths then m_ = 0.

2. If more than one representation above applies then the

representations coincide.

2.12 Local description of a fundamental process. Let (xt,'}"t,l’) be a

fundamental process with values in (Z,%), and consider the increasing
processes P(B,t) and PX(B,t). Let A(t) = B(z,t), A*(t) = P*(z,t). The
countable additivity of thege functions with respect to B € 3, implies

that there exist predictable processes n(B,t) and nx(B,t:) such that for

all B e@’.

P(B,t) = Jx n(B,s) A(ds)
0

i
fx(B,t:)‘ = s nx(B,s) Ax(ds) .
o

Evidently it can be assumed that n(Z,s) = n (Z,8) = 1. The system
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{n(B,t), A(t)} or {n(dz,t), A(dt)} is analogous to a Lévy system for
a Hunt process [5]. The system {n(dz,t), A(dt)}willbe called an

extrinsic local description of x, whereas {nx(dz,t), Ax(dt)} is called

the intrinsic local description of x, because of the following

interpretation: the probability that x has a jump in [t,t+dt] given

x % n(B,t), (respectively
'jt, (respectivelyé’ t) is A(dt) + o(dt) (respectively A" (dt) +o(dt)), while/
nx(B,t)) is the probability that xteB given '}'t(jt) and given that a

jump occurs at t. For future reference we note the following trivial

but important fact.

Fact: Let {n(B,t),‘ A(t) )} and {nx(B,t), Ax(t)} be extrinsic and intrinsic
local descriptions. Then for all B € 3, and t € R,
t t -
E{s n(B,s) ‘A(ds) rj'i}‘s nx(,B,s) Ax(ds) a.s. (2.4)

0 0

2.12 Fundamental Example. The results in the succeeding sections will

be specialized to the following example which covers magy practical
cases such as Poisson, counting, birth and death, and queueing processes.
i.et (xt,’jt,l’)'be a fundamental process with values in (2,3—).
Suppose that from each 2z € Z the process can make at ﬁost n transitions
where n is a fixed finite number. Thus the transitions can be
represented by a 'state-transition‘ diagram of Figure 1, where the
transitions are labeled TyseessOpe Define the counting processes

py(t), 1<1i<n,

pi(t) = number of transitions of type i made by the process x, prior

to t.

-16-



Fig. 1. State~transition Diagram for Fundamental Example
Then there exist increasing processes ;i(t) and 1;1(1:) such that
~ 2
ag(e) = py(e) - p (&) €EMT (FB)

e = py () - pre) €2

Furthermore,

m, G._/"(,z(j:,P), respectively/"{,lz.oc(y':,l’), if and only if there

2 ,~x 2 ~x
exist f 1 €L (pi), regpectively I‘loc(p i)’ such that

n
m, = _Zl (£,047) 5 (2.5)
1=

and m, E/"{,l(j:,l’) N /4 » respectively Mioc(‘j'x,»P), i1f and only if there
exist £, € L1(~x) respectivel L1 (~x) such that
i pi ’ pec >4 loc Pi ’
n

mt = j;l (fioq;f)t’ ‘ (2’6)

where the integral is a Stieltjes integral.
We call (1;1, cee ,;n) » respectively (1;:, .o .5§), the extrinsic,

respectively intrinsic, local descriptionms.
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Remark 2.2 If (xt,:3i,P) is a counting process3then Fig. 1 simplifies
to Figure 2 and there is only one transition. Hence in this case

n =1 in (2.5) and (2.6).

(O——(D——>(O)—>—C ()
o . ¢ \Jol\ngu

Fig. 2. State-transition diagram for counting processes.

For this special case Brémaud [5] has obtained the representation for

2

1oc(:;§)’ whereas Davis [7] has extended it to the class'jtioc(:fz).

However both these results were obtained only for the case where the
law of (xt, t,P) is mutually absolutely continuous with respect to the

law for a standard Poisson process (see §3).

3. Solutiomns to Specified Local Descriptions by Change of Law

In §3.1 we presenta very useful technique for transforming omne
fundamental process (xt,T};,P) with a 1.4. (n,A) to anothér process
with a different'p:éspecified 1.d. The questions of uniqueness of the
solutionis discuséed in §3.2. 83.3 consists of some sufficient
conditions which guarantee that.the technique is applicable. Finally
§3.4 presents a class of processes which can be transformed
into other processes with this technique.

Let (xt;2§:,P) be a fundamental process with values in (Z,S}) and .

with intrinsic local description (1.d.) (nx(dz,t), A*(dt)) so that

3A counting process is an integer-valued proéess which starts at 0 and
has unit jumps.
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t
I;X(B,'t) = I! n*(dz,s) 1*ds), t € R,
B O

Since we will be only dealing with the 'intrinsic' o-field F¥ in

this section, the superscript x will be omitted here. HencetEFt =ﬁ]3:,

”~

? b Px etc,

3.1 The Transformation Technique

Let P1 be another probability measure on (Q,:;) and suppose that
Pl << P,

i.e., Pl is absolutely continuous with respect to P. It is evident
that the same function xtOw) defines another fundamental process
(xt’:j;’Pl) with a possibly different 1.d. (nl(B,t), Al(t)) say. We are

going to determine the relationship between the two descriptionms.

- dP
Let L G‘Efl be the Radon-Nikodym derivative. The r.v. L > 0 and
E(L)4 = 1., - Let Lt = E(th;;). Then (Lt’?;t’P) is a uniformly integrable
martingale, lim L, = L a.s. and in Ll by ([3], remark after VI. T6).
o

Proposition 3.1 i) If L > 0 a.s. P then for almost all w,Lt_Qm) > 0 and

L @) > 0 for all t.

i1) Let
T(w) = inf {tlLt_(w) =0 or L (w) = 0} ' (3.1)
Then for almost all w, Lt(w) =0 for t > T).

Proof i) Clearly L > 0 a.s. implies L, > 0 a.s. and then the second
pért of the'aséertiﬁn follows from (ii), and the latter foilows from
[3,VI. T15]. R

4

E, El’ denotes expectation with vrespect to P, Pl.
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Remarks 3.1 (i) If L > 0 a.s. P, then In fact P << P, i.e. the two
measures are mutually absolutely continuous.

(i1) It is easy to give examples such that Lt > 0 for all t but
P(1~0) > O.

For € > 0 let

T (w) = inf{tlLt_(w) < €} : (3.2)

Proposition3.2 T, 1s a s.t. for all € and

1lim Te(w) = T(w) a.s. P

e>0
Proof The fact that Te is a s.t. follows from the fact that the
process Lt— is left-continuous and from (3, IV. T52]. Now T_ is
clearly non—-decreasing with €. Let

T, (@) = lim T_(®)
0 e+3 €

Suppose T(w) = « and per contra To(w) < o, Then there exists a
sequence t; increasing to t; < « such that Lti_(m) + 0. By left-
continuity Lto_(w) = 0 and so T(w) j.co. Next suppose T(w) < =,

By Proposition 3.1, for almost all such w.To(w) < T(w). 1If To(w) < T(w)
then a repetition of the previous argument will end in a contradiction.

Once again To(w) = T(w). H

For € > 0 let
e —
Lt(w) = LtATe(w>’ t € R,.

Then LS - Ly €M1() and LE > ¢ for all t. By §2.11 there is a

predictablefunctionfe(z,t) € Lioc(P) such that
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t. t
Li =1+ f S £%(z,8) Q(dz,ds) = -" s £5(z,8) [P(dz,d8) - P(dz,ds)]. (3.3)°

0 Z 0

N

™ |

Since < =, therefore the process

L
€
Lt-

€
1 ~
5,0 = Hatle 1 @),
L

8-
and hence

A 4
me(t) = Ij ¢€(z,s) Q(dz,ds) E/‘{,l(“jt,p) . ' ‘ (3.4)
Z 0

which upon substitution into (3.3) gives
t
€ _ € €
Lt-l+s Ls- dms
0
By the Exponentiation formula of §2.8
Ame

) I (1+Am§)e- s (3.5)
s<t

€ _ €, _ e 1, €e,c _g,c
L, = &(mt) = exp(mt -3 (m*%,m )t

By the Remark in §2.11, m®>® = 0, hence (3.5) simplifies to
=Am

€ € € ]
Lt = exp(mt) I (1+Ams)e
s<t

(3.6)

Rewriting (3.4) as

5Here it is being assumed that L0 £ 1 which is indeed the case if ifb is

L

trivial. Otherwise, in the sequel, replace the martingale Lt by EE'
0
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t t ‘
no(t) = 5 s 4% (z,8) P(dz,ds) - js 6%(z,8) P(dz,ds) - 3.7)
Z 0 . zZ 0

and acknowledging that the second integral has continuous sample paths

(since ; is continuous) it follows that for almost all w

bml (0) = mg (W) - mg_(0) = 5 $°(2,8) () [P(dz,8) (w) - P(dz,5-) ()]1(3.8)
Z

Also since P(B,s)(w) - P(B,s~)(w) equals 1 or O depending upon whether
or not xs_(w) # xs(m) and xs(w) € B, therefore the term (1+Am§) in (3.6)

can be written as

(1+Am§) (w) = J (1+ ¢z, 8) () [P(dz,8) (w) - P(dz,s-) (w)] (3.9)
Z

From (3.8), (3.9) it follows respectively that

2: Ami(w) = 2: ¢e(xs(w),s),
<t <t

x__#x

8~ 8

T (+mc @) = T (1R (x,),s))
s<t s<t
xijs
which upon substitution, together with (3.7), into (3.6), yields after

some cancellation the first interesting result

t .
1= 1 [1+°@x_,8)] exp(-jjj 4% (z,8)P(dz,ds)) (3.10)
t K<t S
— Z 0
xs-¢xs
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Finally let €, > 0, k=1,2,... be a sequence decreasing to 0, let

S0 =0, S, = Te ,k=1,2,..., and let

k k

© g
k
$(z,8) = 2, ¢ “(z,8) I :
k=1 (8 <828

' €
¢ is predictable since ¢ k is predictable and 1 is
{s <8 <8}
. k-1 -k
]
left-continuous. Since by definition Lz = LiAT for €' < € we have
K €

proved the foilowing result.

| dp
- li~rx
<< P, and let L = E(zp-|F ). Let

Theorem 3,1 Let Pl

T= inﬁ{tl%t_ =0or L =0}

Then there exists:a predictable function ¢(z,8) and an increasing

sequence Sk of s.t.s convergiﬁg'to T such that
b, (2,8) = ¢(z,8) I €Ll @)
k9 : {s 5-Sk} loc

and

t
L = I [+ (x,,8)] expl- ss ¢, (258) P (dz,ds)] (3.11)
k s<t 270

x,_#x,
The product on the right converges a.s. whereas the integral is a

Stieltjes integral.

dp _
Remarks 3.2 (1) If L = Efl >0 a.s. then T = @ a.g. so that the result

above implies that ¢ € Lioc(i). However 1f this is not the case then it
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is not true that in general ¢ € Lioc' Some additional properties of ¢
are given in Theorem 3.2 below. Nevertheless, very loosely speaking,.

one can interpret (3.11) as

t
Lt = 1 [l+¢(xs,s)] exp[-.§‘§ ¢(z,8) P(dz,ds)], for t < T (3.12)
=t ’ z70
xs_#xs ~

Indeed some such loose interpretation is the only way in which the
results of [6, 23] can be construed as correct.

(ii) The characterization (3.11) has been derived earlier [23;, 24] for
the case where (xt,f§t,P) is a Brownian motion. The techniques for the
proof are identical except that in deriving (3.4) one gbserves that
every martingale on a Brownian motion samplé space is a stochastic
integral of the Brownian motion (see [5]), and that all martingales
are continuous so that (3.5) simplifies to | |

€ _ e _1l,€,c ¢€,c
Lt = exp(mt 2Gm ,M )t)

(iii) For the fundamental example the representation (3.11) becomes,

using §2.12,
t
L = I { I [1+¢;(8)] exp[-g ¢;(S)1~>’i‘(ds)]}

k i=1 s<t 0
(g _,x )€ 0y

for some predictable ¢i(3), l<i<n, such that ¢;'€ Lioc(ﬁi). Here the

notation (xs_,xs) € o; means that x makes a transition of type i at
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time s.

1f (xt,:}:,P) is a Poisson process then in the above n=1 and as is
well-known f)’;(ds) = ds. For this case the result was first obtained

by Brémaud [6] with the loose interpretation of (3.12), and for the case
L > 0 a,s., by Van Schuppen, [24], and by Davis [7]4 who proves in additiomn

that then ¢ € Brémaud [6] also obtains this representation for

1
I'loc'
the case where the example is a Markov chain.

We proceed to obtain the relations between the local descriptions.

The next result seems well-known.
Lemma 3.1 m_€ 1 (3-" P,) if and only if m L G}-{_l ( P)
—_— % loc t’*1 y tt ‘ loc t’

Proof Let Sk + ® be a sequence of s.t.s such that for each k

1
m,. L. I e M) (3.13)
thsk tAsk {sk > 0} |
First of all
E = E L|m

lm_ . I I I I
1 tAS, {sk > 0} tAS, {sk > 0}

EL__ |m I | by (3.13)
7 TEAs, TEAS {Sk > 0}

Next for s < t

E( L

Beas, “eas, Igs; > o}lt;é)
E(m,. I 1% - k 'k 'k
1eas, “{s, > o} s E(L,, o )

o bt T
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From (3.13) and the fact that L, € /{3’ (P) the right-hand side simplifies

to

m L I,
_SASk SASk {sk >0} . .
LS"Sk SAS, {sk > 0}

which proves the "if" part of the assertion.

Conversely suppose that

' 1
"tas, Is, > 0 e M (B (3.14)
It will be shown that for s < t

m 1 |'§ ) =
EAS, EAS, {sk >0} Vs k

'So let A€ }s' Then

E(1I,L m I ) =E. (I, m I 1)
A"EAS, t:/\Sk {Sk> o} ‘1 A t:/\Sk {Sk > 0}

E) @y "sns, I{sk > op) by (3.14)

= E( I, m

L I )
sASk A sI\Sk {sk> 0}

which proves (3.15). "

Theorem 3.2 Let (xt, t’P) be a fundamental process with values in

(Z,%) and with (intrinsic) 1.d. (n(dz,t), A(dt)). Let Pl << P and let

dPl
Lt = E(-E-P—-ltae;:) have the representa.tion (3.11). Then (xt’i,Pl) has
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1.d. (nl(dz,t), Al(dt)) where

A (e) = A(dt) and n, (dz,t) = (1+(z,t)) n(dz,t) (3.16)

Furthermore, it can be assumed that
(1+9) 20 and (1) € L (P) with respect to probability (3.17)
measure Pl

Proof By §2.9 there exist continuous increasing processes .l"l(B,t)

€ )4' Ioc(Pl) such that

Q (B,t) = P(B,t) - P (B, t) E/{,loc (3.18)
Hence to show (3.16) it is equivalent to prove that
t
P, (B,t) = gs (1+0 (z,8)) P(dz,ds) | (3.19)
870
Let Si’ ¢i be as in Theorem 3.1, and let
ol (B,6) = Q;(B,t5,) = P(B,tASy) - By (B,tASy), (3.20)
. ‘
o = P(B,thsi) - j‘g (1+¢i(z,s)) f’(dz,ds) (3.21)

B O

It will be shown first that m_ € /q':]l.oc(Pl)’ By Lemma 3.1 it is enough

to show that

1
P € j{loc (®).

Since ¢, € L (P) therefore m,_ is inJJ (P), also L, 5/"{,1(1’) Jloc(P)'



Hence one can apply the differential formula of §2.7 to obtain

t t
Ltmt = j. m__ dLs + s Ls_ dms + 2: [A(msLs)-ms_ALs—Ls_Ams]
s<t
0 0 -
From (3.21)
t | t:"s.i tAS
s L _dm_ = s . Lg_P(B,ds) -
0 0 B O

and since A(msLs) = (ms_+Ams)(Ls_+ALs) - ms_Ls_

therefore the last term in (3.22)equals

£aS

i
j j L _¢(z,s) P(dz,ds)

B O

2, AL Am_ =
s<t

from (3.11) and (3.21).

gives

=

(3.22)

1 |
5 j L,_(1+) P(dz,ds),

ms_ALS + LS;Ams + ALsAms,

Substituting these relations back into (3.22)

t tASi tASi
Ltmt = J mS"dLS + J j LS_(lW)P(dZ,dS) - J J Ls_(l"'(b)i;(dz,ds)
0 B’0 B0
t tASi
= J ms_dLs + I J LS_(1+¢)Q(dz,ds)
0 B0

1 1
which is clearly inJLLloc(P). Hence m, Eliﬁloc(Pl). Since

Qi(B,t) e/({l (P), subtracting (3.21) from (3.20) implies that
1 loc
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tAaS

. i . o
B (B,tAS,) -s s (149 (z,8)) P(dz,ds) € [{ioc(pl)
B 0

But this process has continuous sample paths, hence it must vanish i.e.,

for almost all w (Pl measure)

tAS

i
il(B,tASi)== s (1+4(z,8)) ﬁ(dz,ds) for all t.
B O

which proves (3.19) and thereby (3.16). The assertion contained in
(3.17) follows from the fact that P1 has increasing sample paths and

+
is in ,(‘loc (Pl) . . "

Remark 3.3 (i) It has been shown that ¢ € Lioc(f)'in*the probability

space (Q,Ef,P ) and not in (9{:¥,P).

(ii) The transformation of 1.d. for the case where (xt,P) and
(xt’Pl) are both Hunt processes has been obtained in [5] For this
case the local description is called a Lévy system.

(iii) For the case of the fundamental example with 1.4d. (Bl,...,ﬁn)
under P, the 1.d. under P is ((1+¢1)§1,...,(1+¢“)§n) where the ¢i
are as in Remark 3.2 (111). |

Theorems 3.1, 3.2 allow us to obtain in certain cases processes
which have certain specified 1.d. from known processes with other
descfiptiens. Put differently, we have a 'synthesis' pfocedure for
obtaining '310531' solutions for a class of 1.d.s. This is summarized

in the following theofem, whose proof is now immediate.
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Theorem‘3.3 (Existence of solutions to local desqritpions). Let
(xt,:yi,P) be a fundamental process with values in (Z,ﬁ}) and with

intrinsic 1.d. (n(dz,t), A(dt)). Let ¢(z,s) be a predictable function

such that
1 3

¢(z,8) € Lloc(P)‘ | (3.23)
and

S LdP =1 (3.24)

A . , , _
where

. ¢ |
L. = I [1+6(x 58)] expl -jj ¢(z,8) P(dz,ds)]. (3.25)
s<t 2°0
XgTXg

Then (xt’:§t’P1) is a fundamental process with 1l.d. (nl(dz,ﬁ), A(at))

whepe
nl(dz,t) = (14+9(z,t)) n(dz,t)
and where the probability measure‘Pl is given by

dP, = L_dP

1

Remark-334 (1) This résult is extremely useful in practice since given
an arbitrary l.d. there is no way to determine whether or not there
exists a process wigh such a description. On the other hénd from the
viewpoint éf dynamical processes a l.d. is much more natural and useful.

(i1) Por the case of Brownian motion the result corresponding to the
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above wasifi;s;-pbqained by Girsanov [9], and thettgchnique‘was soon
adopted in stochastic control proﬁlems [10, 11, 12, 13].

(iii) Brémaud [6] was the first to use this result, for the
specialﬂéééé'whéré (xt,zji,P) ié a Poisson pfécesé; tb obtain existence
of several "éelf-ekciting" counting processes (xg,:;;,Pl). hSn&der
[14] and Rubin [15] introduce several jump processes through their 1.d.
However they do not discuss whether or not there indeed exist
processes with these descriptions. The result above can be used to
solve this problem.

(iv) The condition (3.24) is a non~trivial restriction. For the
Brownian motion case some sufficient conditions on the local description
have been derived which guarantee (3.24). See [10, 11]}. For our case
similar conditions are given below in §3.3.

(v) Theorem 3.3 does not address itself to the question of

uniqueness of the solution. This question is discussed next.

3.2 Uniqueness of Solutions with Specified 1.d.

To discuss uniqueness of laws of solutions it is convenient to
assume that Q is the space of sample functions and that the process x,

e The probability

on @ is merely the 'evaluation' process i.e., xt(uu)-;= w
on Q is then the law of the process. We will be dealing with two

such processes, x, and Ve with the same set of sample functions but

t
with different laws. Hence we must have two different probability
spaces (9",}”’:,1”‘) and (Qy,'j{,Py) where (Qx,‘é'}é) at:ldl'(ﬂy,y'z’) are
copies of the same family (Q,jji). In particular, ﬁhen, X and y are
identical functions on Q x [0,1].

Since we are unable to obtain any interesting results for the
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infinite time interval, therefore in Theorem 3.4 and Corollary 3.1,
t € [0,1].

Definition 3.1 An (intrinsic) 1.d (n,A) is said to have unique solutions

if all fundamental processes (xt,i,P) with 1.d. (n,A) have the same

law.

Theorem 3.4 Let LI A 0 < t <1 be fundamental processes with
values in (Z,(}), and on the (sample function) spaces (9",32‘,9"),
(ny,’§Z,P") respectively. Let (n,A) be the 1l.d. of x and ((1+¢)n, A7)
the 1.d. of y for some predictable function ¢.

Suppose that (n,A) has unique solutions, and suppose that for each
€ > 0 there exist Z_ € %and k. < « such that

@ P*@) Z1-c¢

where B, = {wlxt(w) € Z for 0 <t < 1},

(11) j‘lwﬁz“’mss) | ® 4z, ds) + P (dz,d8)) <k, for w € B,

where these are Stieltjes integrals.
‘Then
Izl(w)' P’ (dw) = 1 and dP* = 2 a7
Q
where

_ I 2
= 5((‘1'0(2?)':), and ¥ 1+

Proof The process (mc,gz,Py),
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ot t '
m, = jy ¥(z,8) Q (dz,ds) = gs ¥(z,8) [PV(dz,ds) - PY(dz,ds)]
' z2°0 Z 0 -

is, by (i) and (ii), well-defined as a Stieltjes integral. Hence
Y oY ' : y -
m, € 74off&t,P ) so that it is in GJ;OC(P ). Thegefore by §2.9 there

is a unique process (2t, t,Py) where
e = é(mt)-f

Let € > 0 be a decreasing sequence converging to 0. Define the
predictable functions
¥ (z,0,8) =[ ¥(z,0,8) if z € Z,
n
0 otherwise

Because of (ii), the process (m:, Z,Py) where
t
m, = 55 v*(z,8) Q¥ (dz,ds)
20

is a bounded martingale. Hence by §2.9 the process (lﬁ,?f{,?y) is a

martingale, where

22 = 'é'(mrt')

Furthermore from the definition of w“

2.:(0)) =2 (w) for all t and w € B_ (3.26)
< n

By Theorem 3.3 the fundamental process (yf, Z,Pn) where
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n . .
QP_Y - z‘l' . (3.27)
dp | »

has a 1.d. ((1+¢vn) (1+¢)n, A), and by the definition of wn. and ¢

' @+ (1+) (z,0,t) =1 for all t, w € B, and z € z,
n n

Since (n,A) has unique solutions, it follows that

I P (dw)

j P*(dw)
B B

n n

>1l-¢ by (1)
From (3.26), (3.27) this implies

IBE 2, (w) Pdw) >1-¢

n

and since ¢ > 0 is arbitrary the assertion follows. B

Note: We must have PX(B,t)(w) = PY(B,t)(w) and B (dz,t)(w) = [L+p(z,t)] X

n(dz,t) A(t).

Corollary 3.1 (uniqueness) Let (xt, '}t,P) be a fundamental process

with values in (Z,@() and with 1.d. (n,A) which has unique solutionms.

Let ¢ be a predictable function such that’

$(z,0) € L] B, EL&((400") ] = 1

Suppose that ¢ satisfies (i) and (ii) of Theorem 3.4. Then the l.d.

((14+4¢)n, A)) has unique solutions
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Proof By Theorem 3.3 and the hypothesis there is.ajsolgtion (yt?:;Z’Pl)
with 1.d. ((L+$)n,A) where dP; = zi((¢oqx)l)dp,

Suﬁpose (yt, Z,PZ) is another solution with 1.d. ((1+¢)n,A). By

Theorem 3.4

dP = &, 4P

1 9By = %2 dP,

and since dPy = L,dP it follows that %; > 0 a.s. Py» i=1,2. Evidently

then Py = Pl- H

‘Remark 3.5 (i) Theorem 3.4 is inspired by [9,Lemma 7] and the
development the:e suggests how the result can be generalized.

(11) Condition (i) and (ii) of Theorem 3.4 are usually easy to
verify in practicé. Consider a special case of the fundamental
example where (xt,?fz,Px) is a Poisson process with rate 1. Then
Z is the space of integers and Y. is then a counting process with local
'intensity' rate 1 + ¢(w,t). Suppose ¢$(w,t) is expressed explicitly as a
function of the past of x i.e., ¢(w,t) = f(x[o’t](w),t). Then the
conditions (i) and (ii) are satisfied if,for instance, there 13 an

increasing function fO such that

1

|£Cx0,e129) |+ Trrc < £o(0) when |x|< N.
For a similar condition in the Brownian motion case see [11]
(iii) Corollary 3.1 extends in an obvious way to the timé interval

R+. However Theorem 3.4 does not.

=35~



3.3 Sufficient Conditions

Let (xt,fgi,P) be a fundamental process with values in (Z,%})
and with intrinsic description (n(dz,t), A(dt)). Let ¢(z,t) E’Lioc(f)

and define the process Lt’ t € [0,1] by

t

L= T [W+e(xg,8)] expl- 55 ¢(z,s) P(dz,ds)] (3.28)
szt Z°0
xs—#xs"
then Lt also satisfies
st = Lt-dmt’ ' ' (3.29)
where,
m, = (¢oQ) : (3.30)

We assume that ; + ¢(z,t) z 0, then Lt >0, Lt is a supermartingale and
<
The three results below state conditions on ¢ which guarantee

E(Ll) =1

The following assumption is made throughout this subsection.

Assumption 3.1 There exists an increasing function u: R_ -+ R, such

that
B(z,t) < u(t) a.s. | (3.31)

(Note that this implies §(B,t) < u(t) for all B € ?}).
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Proposition 3.2 Suppose that for some K< «

o] <x | S (3.32)
Then E(Ll) = 1.
Proof = From (3.28), (3.31) and (3.32)
.'Lt 5 (Kﬂ.) e#p Ku(i}
Hence
L, ¢(z,)]? < KPx+1)? exp 2K u(e),
so that'

1 1 -
E Jj |1, _¢(z,t)|% Bldz,de) < zs K2 (k+1)% exp 2Ku(t) n(dt) < =,
2”0 0

which implies that
2 -
L _ ¢(z,t) €EL7(P)

t—-

By §2.10, Lt is a square-integrable martingale, and in particular

E(L,) = E(Ly) =1 "

Proposition 3.3 Suppose that for some K < «

I Jl (1+¢(z,t)) [2n(1+¢(z,t))]2 f(dz,dt) < K a.s. (3.33)
z°0 '

Then E(L,) = 1



Proof Define the function ¢n so that

6(z,0,t) if % <1+ é(z,0,t) <n
¢ (z,w,t) =

0 otherwise

and let L: be obtained from (3.28) by replacing ¢ with ¢ . By
Proposition 3.2 E(Ltll) = 1 and it is clear that Lri converges to Ll in
probability. Hen.c,e by [3, II. T21] E(Ll) = 1 if and only if the set

of r.v.s {L'iln=1,2,...} is uniformly integrable. Define the probability

measures 1’n by

dPn n
E,—(m) = Ll(w).

By Theorem 3.3 (xt,?)t;,l’n), t € [0,1], is a fundamental process with

1.d. ((1+¢")n,A) and so the corresponding martingales are given by
Qn(B’t) = P(B’t) - ﬁn(B9t) = P(B,t)"‘ g f (1+¢n(2,8)) f’(dz,ds)
. B O

Because ¢ is bounded and because of (3.31), Qn € /{,2 (P ).. For later

reference define g € }{,2 (P ) by

£ = (4n(1+4") oQ ),

and note that

t
(g™ = s s [tn(1+6™) 1% Q+™) P(dz,ds) (3.34)
Z. 0 '
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We are ready to show that {Lg} is a uniformly integrable family.

Fix M < o, F;I.rstly,

" L‘l‘(w) P(dw) = Pn{L‘i > M}

{L'l‘ > M}

Next, {L] > M}

]
= {exp 5 r Ln(1+d. )[P(dz ds) -~ (1+¢ ) P(dz ds)] -"“'IXPB’J—1 [(1+¢ ) X
0

Z

1
2n(1+d )P(dz,ds):‘xexp 'gl( ¢“P(dz,ds)] M} from (3.28)

(1) - 6™ i’(dz,ds)] > M}

C {jr 2n(1+6™) [P(dz,ds) - (1+") P(dz,ds)] >~% 2n M} -

1 - ‘
V] {J J [(+™) tn(1+6™) = ¢™] P(dz,ds) > % %n M}
z/o 4

= U
Fl F2 say.

So
m
Pn{Ll > M} < Pn(Fl) + P (F,)

From (3 33) it is :hnmediate that P (F ) =0 for all sufficiently large M.

On the other hand F = {E; > -%— 2n M} so by the Chebychev inequality,
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< 5 K by (3.34), (3.33)
(M)

It follows that for all m,P_ {L] >M} +0as M>=mie. (L7} is

uniformly integrable » n
Por the next proposition express i(dz,ds) = n(dz,s) i(z,ds) (see §2.11)

Proposition 3.4 Suppose that there exist o > 1 and K, K' finite such

that

j (1+4(z,£))*n(dz,t) < K + K'[P(Z,t) + P(Z,t)] a.s. (3.35)
Z

and suppose that for all 0 < M < =

E exp[M P(Z2,1)] < = ' (3.36)
1 .
Then for 1 < ¥y 5.02,
sup E LZ < o (3.37)
t€[0,1]

in particular E Ll =1,

Proof If (3.37) is satisfied then by [8,II.T22] the family is
{Lt; 0<t<l1} is uniformly integrable and so by [8,VI.T6] L, is a uniformly

integrable martingale, hence E(Ll) =1,



o=

For o” > y > 1 define

t t 2
: Y
£,.(Y) = exply jj tn(1+$) Q(dz,ds) + jj [y 2n(l+p) + % - S’:-*%)—-]
270 z 0 :
' P(dz,ds)],
t Y2
g, (v) = exp[ fj [-v¢ - % + 9—*—"’—?——] P(dz,ds)
. 2% - - o

First of all

. . ot e i
£,0n 8. (1) exﬁlej n(1+$)Q(dz,ds)~- 5; Y(¢-2n(1+$)) P(dz,ds)]
z 0 z 0

=,L’t’ by (3.28)

Next it can be checked by substitution in (3.28) ﬁhat [ft(Y)]T'is
: 2
obtained from (3.28) by replacing (1+$) with (1+¢)Y . Hence if

2
Y2 < 2 so that‘(lﬂ))Y € Ll

loc(P), then we must have

B[f, (11" <1 for all t

Now by Holder's inequality

1

E LY < (E[f (v)]")'Y (Elg, (V)]
t — t £’

y_ Y-l
Y-l) Y

so that
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‘_Y.l_I:_l.
EL < (Blg, ()T Y

Next,
X t Y2
g, (N1 < exp ” - 5 + 2 Bz, a0
A z 0 since 1+ > 0 implies -Y$ < Y
2 t
< exp[JL%1 u(t) +s {K + X' (P(2,8) + P(Z,8))} P(Z,ds)]
0 from (3.31), (3.35)
Y1 K’
2 explC5—= + K + 35— u(e) + K' P(2Z,t)) u(t)] from (3.31)
< exp B exp K' u(l) P(Z,1) for some constant B
Hence

E L) < (exp B) E[exp K' u(1) P(2,1)]
and the result follows from (3.36). H

Remark 3.6 (i) Suppose (xt,tji,P) is as in the fundamental example with
corresponding increasing processes ;l(t), consy ;n(t). Then Assumption
3.1 translates into the following: there exists an increasing function
A: R+ -+ R+ such that

n
2 B (£) < A(t) a.s.
i=1
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Similarly (3.35), (3.36) become: ' there exist o > 1 and K, K' such that

n n
I Q+o,(eN® <R+ K J (o () +p, (1)) . (3.38)
i=1 i=1" :
. -+(11) . Now suppose that (xt,<¥t,P) .1s a standard Poisson process. Then

(3.38) becomes
L+6t)% < K + K' (x(t) +t) .

Suppose that ¢(t) = c(x(t-))a for some o < 1. According to Feller [27, p.452]

a counting process x kwith rate f1L+4¢(r)] has infinitely many jumps in a

t
finite interval, so that it cannot be a fundamental process. Thus Proposition 3.4
is false if o < 1. We have been unable to resolve the case of "linear"

growth, 1i.e., o = 1.

Remark 3.7.- Propositions 3.2, 3.3, 3.4 are inspired by corresponding results

in [6], [24], [28] respectively.

3.4 A Class of ?oisson-measure Processes

‘In order to apply the transformation technique preéeﬂted earlier one
must begin with a fundamental process (with a known 1.d,)‘whose existence is
guaranteed. In this section we present a large claésvof such processes for
which the increasing processes P(B,t) are deterministic.

Let (Z,}) be any Blackwell space and leﬁ M Be'any positive measure
on the space (ZXx R, 3@3) where B 1is the Borel field on R+. Suppose .
that for all t < =, u(Zx[0,t]) < =,

Let Q' ‘be the space of all (non-negative) integer-valued measures N
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on (Z XR,, 3.@3). For each T e R, let ,4.]'_. be the family of all subsets

of Q' of the form
{N e Q'| N(C) € K}

where C e 3.@ B[0,T] and K C I+, the set of non-negative integers. Evidently
4’,}. is a o-algebra on Q'. Let

‘4'=v3_' .
T T

Now, for each T define the set function P; on (9',4.1'3) by

k
' C) -u(C)
RAN() e K) = ] Y.
| keK

Note that u(C) < » sgince C CZx[0,T]. By [31] P'l'? defines a probability
measure on (Q',\4',i.). Furthermore if Cl, 02 are in 2x [0,T] and

Cl n C2 = @, then the two random variables defined by

N+ N(cl) s, N N(Cz) , NegQ
are independent. Finally the random variable N # N(C) has a Poisson distri-
bution. For A € g, consider the counting process P'(A,t), t € R+ defined
on the family (Q"\q.é/\'r’?‘i‘)’ by
P'(A,t) (N) = N(Ax [0,tAT]) .
Evidently E(P'(A,t)) = u(Ax[0,tAT]), and if A N A, = 9 then P'(Al,t)

and P'(Az,t) are independent processes.

Next by Moyal [32], there exists a jump process X.» t€ R_,_, with values
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in ‘(Z,a), | defj.neci on a f”amily (Q,A-:,PT) such thaf’ i) (52,4’:,?,1.) isj
isomorphic to '(9',3‘:;/\.1‘,1’,{,) and ii) the counting processes Px(A,t) |
corresponding to x, are "igsomorphic" to the ‘processgs P'(A,t) constructed

above. Furthermore
P*(a,t) = n(Ax[0,tAT]) .

To finish the construction we merely note that if S < T then the

probability measure P_ on (Q,A-:) coincides with the restriction of

S

PT (defined on 3’,;) to ‘4,8(' By the Kolmogorov consistency theorem

therefore, there exists a probability measure P on (9,92) such that
B*@,t) = p@axfo,tl) , Ae éz, teRr . (3.39)

However the process x, may not be a fundamental process. To guarantee
this we must be sure that the jump times are totally inaccessible. As men-
tioneéi in §2.9 this is equivalent to the requirement that B* (A,t) have
continuous sample paths, and hence, from (3.39), to the requirement that
u(Ax[0,t]) be continuous in t for each fixed A. We summarize the main

conclusions as follows.

Theorem 3.5 Let (Z,a_) be a Blackwell space and let u be any non-negative
measure on (ZX R+, 3,@3) such that

(i) u(@x[0,t]) <o for all te Ry»

(i1) p(Ax [0,t]) is continuous in t for all A € 3
Then there exists a fundamental process X, ona family (9,4-:,1’) with

values in (Z,g_) such that

B*@,t) = u@ax[o,t]) , Ae a, teR .

- 45 -



Remark 3.8 (1) The X, Pprocess has independent increments in the sense

that the P(A,t) have independent increments. If x, were vector-valued

this would indeed imply that x_ has independent increments in the usual

t
sense.,

(11) The most useful version of this result would be when p is a
product measure u(dz,ds) = n(dz) A(ds) where n is a finite measure on

(Zﬁ}) and A(t) is_a continuous increasing function on R+, in which

case (n, A) would be a Lévy systenm.
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4, Detectibn
The prototypical detection problem in communication theory is the
following. We observe a sample xt(m), 0 f_t < » of a stochastic process.

The process is known to be'governed by one of two laws P or P Based upon

1.
the observed sample one has to decide which of the two hypotheses, P or
Pl’ is true. The term "detection arises from a particular instance of 4

this hypothesis testing model, namely, when the process x has the repre-

sentation

dxt = white noise » -under P
(4.1)

dxt = white noise + 8, » under P1

where s = is called the "signal". Thus deciding which hypothesis is true
is, for the eéxample, equivalent to 'detecting'" whether the signal is present
(hypothesis Pl) or absent (hypothesis P).

Very recently this problem has been considered for the case where
x, is a counting process under P1 and a Polsson processnunder P [6,7,15,
16,17]. The case where xt is a Markov chain under P has also been dis-
cussed [6]. We generalize these results by considering problems where x,
is a fundamental process. .

A well-established procedure for judging which hypothesis is true
consists in first calculating the "likelihood" ratio ‘dP (x(w)) and then
in accepting P1 if ;;l-> o and rejecting P1 otherwise.' The selection
of the "threshold" o is discussed in [18]. The procedure is often called
the "threshold detector". | | |

Evidently for this procedure to be meaningful one must assume Pl << P.

Also to obtain results of practical value one must specify precisely how the
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"signal" affects the observation, as for instance in (4.1) where it is
assumed to be additive. We proceed to the mathematical model.

Let (9,<}t), t € R

4 be a family of spaces and P, P

1 two probabilities

on (Q,é?). The observed process is a family of measurable functions
xt: «, éﬁt) > (Z%}) .such that (xt,d4t,P) and (xt,igt,Pl) are both
fundamental processes. The processes P, P, Q and §x’ Qx are the extrinsic

and intrinsic (i.e., relative to E}t) processes corresponding to (xt,P).

~'

Similarly P etc. correspond to (xt’Pl)' The extrinsic and intrinsic

~ X
1 P By
1.d.'s are (n,A) (nx Ax) for (x ,P) and (n,,A.)) (nx ) for (x ,P.).

Lt L] H -] t’ 1’ 1 ] l, 1 t’ 1
We now give the model corresponding to the "signal plus noise" model

of (4.1).

Assumption 4.1 There'exist'E;i-predictable processes u(B,w,t), B € 6}; and
Q}t- predictable processes g(z,w,s) and gl(z,w,s) such that Elg(z,s)l < @

and Ellgfz,s)l <® for all z, s, and

P(B,t) = n(B,t)A(t) = J Jhg(z,w,s)u(dz,w,ds)
, B0

t
51(B,t) = n, (B,t)A, () = JBJOSI(Z,N,S)u(dz,w,dS)

where the integrals are Stieltjes integrals,

Interpretation: In communication theory terms we can say that the "jump rates"

P(B,t) are "modulated" by the signal through the functions g, 8-

Définition 4.1 Let E(g(z;t)|:§¥) =.§(z,t) and El(gi(z,t)|3*:) ='§1(z,t).

t
Proposition 4.1 Px(B,t) = J J\g(z,s)u(dz,ds) a.s.
B’0
) t,
‘?x(B,t) = J J g (z,s)u(dz,ds) a.s.
1 Blo 1
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Proof It is enough to prove the first assertion since the proof for the

gecond is identical. Fix B € 3. We know that

. .
Q(B,t) = P(B,t) - I J g(z,s)u(dz,ds) e déoc(4t’P) 4.2)
, B0 : .

Q*(B,t) = P(B,t) - P*(B,1) e . EB) . (.3

Let 'Tn,"‘n = 0,1,... be the jump times of X, The Tn ‘are stopping
times for the family G}t) as well as.for 642). Furthermore

EIP(B,tATn)I < n. Hence E|Q(B,tATn)| < ®, and we can define a process

(G(B,t)#’é,P)' such that
Q(B,taT ) = EQ(B,tT ) | )

and it is trivial that a(B,tATn) € uH}C?t,P). Now P(B,t) and u(z,t)

x L
are ¢4t-measurable, hence

tAT :
Q(B,tAT_ ) = P(B,tAT ) - I j M E(g(z,8) | FIudz,ds) .
v n n B0 t

Subtracting this from (4.3) implies that

tAT

n .
j E(g(z,8) | $Iuldz,de) ¢ A @D .

f’x(B,tATn) - J
B0

On the ‘other hand it can be directly verified that
tAT
. n . x " . . % ‘
Jf [E(g(z,8) | &) -&(z,8)]u(dz,ds) € WEn .
B0

Therefore
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tAT
n
ix(B,tl\Th) -IJ : §(z,s)u(dz,ds) e dtl(é-:,l’) .
B‘0

But this is a continuous process. Hence it must vanish, i.e.,

. t,
Px(B,t) = I J g(z,s)u(dz,ds) . R
B0

Remark 4.1 The processes (Q(B,t),ét,P) are called the innovations
processes of the process (xt,ét,P), in analogy with the Brownian motion

case [21). These processes will be used in the next section.

. dpy
Theorem 4.1 Suppose that P, << P. Let L = E( :4-") be the likeli-

hood ratio and let

T = inf{t| L=0orL = o} .

Then there is a sequence of 4-: g.t.'s Sk 4T a.g. P such that
gl(zis) (
a1 e px
g(z,s) {s< Sk} lOC )
and
A
Bl TG ) . b
L = n [ ]exp[JJ ( -1)g(z,s)u(dz,ds)] . (4.
EAS.  s<ctas, 8(%g0S) z/0 (z HoDN
xs_f X

Proof By Theorem 3.1 there exists s.t.'s Sk 4T and an &:—predictable

function ¢ such that L is given by (3.11), and by Thebrem 3.2 the

tAS
k ,
intrinsic 1l.d. of (xt’Pl) is ((1+¢)nx,Ax) where (nx,Ax) is the intrinsic

1.4, of (xt,P); so from Proposition 4.1 we can conclude that
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(146 (z,8) )0 (dz,8)A% (ds) = (1+0(z,8))g(z,6)U(dz,ds)

= §, (z,8)u(dz,ds) = n} (dz,8)A] (ds)
Therefore
§1(2,s)
1+¢(z,8) = gx(z,s)

which upon substitution into (3.11) yields (4.4). : ' "

Corollary 4.1 Suppose in the above that X, is as in the fundamental

example of §2.12. Suppose there exists a é}t—predictabie process u(t), and

.3;-predictab1e processes Ai(t), Ai(t), 1<1i<n, such that

€1 « £ |
AT(s)u(ds) , Py 4(t) = J AL(s)udds) , 1<i<n .

p,(t) = J
i 0 0

Then the formula (4.4) changes to

n Xi(s) P HO)
L = I { it [“i Jxexp[- ¢ 1
k d=l  s<tAs,  A7(s) 0 (s

(xs_,xs)e o

-1 (s)u(ds) 1} . 4.5)
i
Proof Follows from Theorem 4.1 and Remark 3.2(iii). -]

Remark 4.2 (i) Very special cases of (4.5) have appeared in the recent
literature. Suppose in Corollary 4.1 that (xt,ﬁi,P) is a Poisson process
with rate A_. Then in (4.5 n=1, f(s) =i, u(ds) =ds and (4.5)

becomes

b\ (S tAS

k
exp[~ J (A, (s)-A _)ds] . (4.6)
tASk < tAS X xP 1l o

X #£Xx
8= ]
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This version together with the comment in footnote 5 yields the result in
[16, p.95]. Actually in [16] some strong unnecessary assumptions are
also imposed. (4.6) has also been derived in [6] and [7]. Formula (4.5)

for the case n =1 and u(ds) = ds appears in [15], although the deri-

vation is not satisfactory, and various additional assumptions, some of
them unverifiable, werevmade there.

(i1) In [6] we can also find (4.5) for the special case where (xt,jt,P)
is a Markov chain, in which case the ii can be intérpreted 1n‘terms of
various transition probabilities as suggésted in §2.11, §2.12.

"We apply formulas(4.5) and (4.6) to calculate the mutualvinformation

between two fundamental processes. Let xt and xé be two such processes
on (9’41:’1,) with values in (Z,?) and (Z',;') respectively. Let
p(dz,ds) and u'(dz',d.s)- be 4’:— and J’é'-predictable processes and
g(z,s), g'(Z,8) be two é‘t-predictable processes with finite expectation

such that

n(dz,s)A(ds) = g(z,s)u(dz,ds)

n'(dz,s)A'(ds) = g'(z',s)u'(dz',ds) .

-
Let Px’ Px' denote the restrictions of P to 4x and }x respectively.
X ' =
Assume that ‘4t =4t®4§ , the product o-algebra and let Pxx' PXQPX,
]
denote the product measure on 4 = $x®3x . It is trivial that P << Pxx"
Assume further that Pxx' << P. The mutual information between x, x' is

the quantity
I(x,x') = E(n %——) .
xx'

Let -
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g(z,t) = Eg(z,t)|47) ,
8zt = Eg' (=", 0) [ 4F)
By Remark 3.2(i),

1 PUDEE SR
-g-eLloc(P), Are L BN

Assume further that
1y . 2 ye 1B
zn(g)e L (®) , 2n(§,)e L™(R")

Then by Theorem 4.1,

g(x_,s)
E—={ n [zsr(-f-;-s—)-]exp[-IZJ:(g(:’: -1)8(z,8)u(dz,ds)]}
X 8

- 8'(x',8) Vot o :
SR [rq;{-zj;;]&p[-fz‘ﬁ(ﬁ—'ul-l)ﬁ'(z,S)u'(dz'.ds)]}

x' #x' g'(z',s)
s= '8
so that
g(x ,8) et .
dp g z,8 ~ ~
fn dPxx' = x Yy R'n('gfx—s_"s—)-) - Jzio(g(z’s) 'l)g(zas)l-l(dz’ds)
s-' s _—
' g'(x',s) ] 't .
+ Z n (x5 “8"‘—"') - r('ﬁ'rgi.‘"s—)'-l)g'(dz',ds)u'(dz',ds) .
x'#x g (xs»s) sz 0 8 (2's)
s" s
Since zn(-g) € -L1 (1;) therefore
- 8(x,,8) oo 2.8)
. é‘x&n(g(—x;’—s-)- - Uo}ln(g 7o) 8(2,8)u(dz;ds)
8- s

= szozn(%%:%) (P(dz,ds) - P(dz,ds)] € d{_l(ﬂ—t,P)
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so that

g(x ’S) 2.5
El ] zn(A(x S )1 = J J S (30, s))g(Z.S)u(dz,ds)
xs_# xs 740
Similarly
g' (x},8) ‘ (2" o
E[x;-z# xSILn(M(x S))] = E JZ I !Ln(g (Z )8 (Z ,S)]J (dz ’ds). .

Taking expectations in (4.7) and substituting these relations gives the

following result.

. Theorem 4.2  Suppose P#x' << P and 2n(g/g) € Ll(ﬁ), gn(gf/é') € Ll(ﬁ), Then

" o s g(
I(x,x') = E[[ J (o 22 + gé-'-ﬁ-)— - 1)g(z,8)u(dz,ds)

+ J J (in B5Z28) 4 B1(2h8) _ gy01(p 0y (2" ,ds)]  (4.8)
2'70

g'(z4s) g'(s)

Remark 4.3. This result for the case where x, x' are both counting processes

has appeared in [6].

- 54 -



" where B

5. Filtering

A popular model for estimation and filtering problems in conﬁmication

and control is where the observed process, x depends upon the "signal"

t’

or "state" process, Ve according to

dyt = g(yt)dt + dBl(t)
dxt = f(}st’yt)dt + de(t)

1° B2 are Brownian motions. The problem is to determine E(ytlg-t).
Note that in the above Ve is a semi-martingale.
We begin this section by examining this situation when (xt,Jt,P) is

a fundamental process with values in (2,3). We need a preliminary fact.

Lemma 5.1 Let (mt,fl-t,P) € J{_ZGt,P). Then there exists an J-t-predictable

process h(z,t) such that

E J rlh(z,tnz?(dz,dc) < w (5.1)
20 |

and
t ~
<mt,Q(B,t)> = J J h(z,s)P(dz,ds) for all B e 3_ . (5.2)
B’0

Proof. The set, say L, of all processes (h°Q)t vllhe?e h is any pre-
dictable process satisfying (5.1) is easily shown to be é stable subspace
of szGt,P) (see [19] for a definition of a stable subspace). Therefore
? m? = nt+£t, with
R't e L and. <r,lt,;8't':> E‘O. for all 'Q't': € L. Let R.t = (hot-Q)t and the

by [19], there exists a unique decomposition of m

assertion follows. R
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Agsumption 5.1 There exist 4’é-predictab1e processes u(B,t), B € 3, and

an At-predictable process g(z,t) such that

t
P(B,t) = J j g(z,s)u(dz,ds) . (5.3)
B‘0

g - X
Notation: In the following for any process (ft:’ ji:,P), ft = E(ft'}t)
Theorem 5.1 Let (xt ,.4—t,P) be a fundamental process satisfying Assumption

5.1. Let (yt,ji,P) esj(j-t) ‘have the representation

Ye = Y, + a, + o, | , (5.4)

with a € A(), m e d(ZGt)- Then ;’t: satisfies the filtering equation.

~ ' P t | -‘
yt o= yo + nt + szok(Z,S)Qx(dZ,dS)

t
where n_ € A(é’:), Q*(B,t) = P(B,t) - J I g(z,8)u(dz,ds), and
: B0

where the 4:-predict_:able process k satisfies

e— T
(g -¥,. +h(z,8)]8(z,8)
g(z,8)

k(z,8) =

and h, g are as in (5.2), (5.3) respectively.

+ -
Proof Let v, = E(m Ijx). Cleatly M, e J{,z(j-::). Now write a, = a,-a

where a:, a €A (4— It is easy to verify that the ﬂ-’:r-measurable

+ X -
processes 0 = E(atlé-t), a

£ = E(aZl J}:) are submartingales. By the Doob-

+ - 1, ,x
Meyer decomposition theorem [3], there exist martingales Et, Et in A (d't')
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and 4:-pred1ctable increasing processes n':, n; in A-l;G:t:") such that

+ o+ o+ - - -
@ = &N s a, =€ *tn. -
Hence
~ A + - A
+o -0+
Ve SV TOe TG T

=§,+ (M -nD) + (Bf-EL+u)

=yo+nt+5t, say

(5.5)

vhere n_ e A(J-’:_), Et € /‘{,1(4—}:). By §2.11 there exists a éi-predictable

1 Ll
process k(z,s) € Lloc(Px) such that

N ,
Et = J J k(z,8)Q" (dz,ds) .
zlo

It remains to evaluate k. By the differentiation formula of §2.7

t

ytP (B,t) = ]0

t .
yg P (B,ds) + IOP(B’S-)dYS + [m,,Q(B,t)] .

(5.6)

Since P(B,t)- P(B,t) and [mt,Q(B,t)]-<mt,Q(B,t)> are in /‘tioc(g—t)’

therefore, from the above, for some Y, _, Y. € 1 &)
t t oc Tt

t t

y P@B,t) = J y, B(B,ds) + J P(B,s-)dy_ + <m_,Q(B,t)> + v,

0 0

t t
= J J (y,_th(z,8))g(z,s)u(dz,ds) + j P(B,s-)da_ + v{
B0 0

using (5.2), (5.3) and (5.4).

Now apply thg_ differential rule to §t1’ (B,t) to obtain
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t, t N
ys_P(B.ds)+J P(B,s-)dy_ + {Et,Qx(B,t)] .

’ S‘rtP(B,t) - Jo .

Recalling that P(B,t)-—ﬁx(B,t) and [gt,Qx(B,t)]-<gt,Qx(B,t)> are in
1

/(locefi)’ the relation above implies that for some Gt, Gé € /tioccgi)’

t

y  3*(B,ds) +J P(B,s-)dy + <E_,Q°(B,t)> + §
s- 0 s t t

~ t
ytP(B’t) = JO

t t
= J J (¥ +k(z,8))g(z,s)u(dz,ds) + J P(B,s-)dn_+ &' ,
Blo & 0 s ¢t
' (5.8)

using Proposition 4.1, (5.5), (5.6).

Next we make the following observations, which can be verified directly

from the martingale definition.

t t
(j J (y__+h(z,8))g(z,s)u(dz,ds)) - I [ [(y__+h(z,s))g(z,s)]u(dz,ds)
B0 ° Blo ° |

1 4x
e /{loc(ét)

P

t
1 X
(JOP(B»S")das‘) - IOP(B’S-)dns € J(locgt)

/\ A .
Using these facts and the fact that (ytP(B,t)) = ytP(B,t) we conclude

from (5.7), (5.8) that

t ~ A A
JBIO{(ysjk(zfs))g(z,s) - [(ys_+h(z,8))g(z,8)]}u(dz.dS) e M:lloc(é’é)

and since this process is continuous, it must vanish identically, so that

we may assume
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[(r,_+h(z,8))8(z,8)]

k(z,s)‘ﬂ g(z’s),

" Y-

(G, 9, +h(z,8))8(z,8)]
- £(z,8)

Corollary 5.1 Suppose in the above that X, is as in the fundamental

example of §2.12 and that there exists an é?t—predictable process u(t) and

Jh—predictable ?rocessea Ai such that

't
. t i
B, () = Jox (s)u(ds)
and ;et <mt,qi(t)> f_[ohi(s)ﬁi(ds) for soqe ,4E-predict§ble processes hi‘
Then
9 rf : (s)q} (ds)
§.=9_ +n_+ f k,(s)q  (ds
with
//\1\
[y, -§,._+ h (HA(B)]
ki(t) = =t .i i », l1l<i<n
()
and

X _ £y
qy (&) = p,(t) - OA (s)ds .

Remark 5.1 (i) Suppose in (5.4) that a_ 1is given as

t
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t

for some predictable process Bt‘ in L1(§t). Since Qt - J ﬁsds is in

‘0
‘/%}(éi) it follows that in the representation for ?t’ we have the further

specification

ta
nt = JoBsds .

S (ii) Corollary.S.l has appeared in the literature fqr the case where
(xt,j%,P) is a counting process, i.e., n = 1. Even here some additional
conditions have been imposed on the y, Process (such as e.g. Ye is Markov
[6,16]) or on the X, process (such as e.g. (xt,4z,P) is gbtained from a
Poisson process by an absolutely continuous change of measure [6,20]).

(1ii) Theorem 5.1 has been inspired largely by the procedures of [21],
where the underlying process is Brownian motion. See also [24] for the
Brownian motion case. -

(iv) While Theorem 5.1 has some value in terms of clarifying the issues
involved in obtaining the filtering equatioﬁs it is of littie practical
importance since these equations do not lead to a realization by a dymamical
system. This is so beéause the filtering eguations

contain the terms Nes k_ and §t which are not computable in terms of

t

?t and X, In other words, the filtering equation is not recursive. This
difficulty persists even when one imposes additional conditions such as Ye
is Markov. In the remainder of this section we seek to determine conditions

under which the filter is recursive.

We impose' conditions on the dependence between the "gignal' or "state"

process y, and the "observation" process x, which are considerably

t
stronéer than those of Assumption 5.1. For the remainder of this section

the following assumption holds.
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Assumption 5.2 (Q,&t), teRr, is a family of spaces and P, Pl are two

probability measures on (2,%). x, and y_ are measurable functions on
(Q,éi) with values in (Zﬁ}) and (Y,Y) respectively. The following
properties are satisfied.

(1) Z 1is a Borel subset of RP, 3_ is the Borel field. (The most
important practical cases are Z = Rn and Z 1is the space of all =z € Rp
with integer components.) Y is a locally compact Hausdorff space, Y is
the Borel field. .4‘t = Q?évj-z.

(ii) Under the measure P

(a) (xt,ﬂi,P) is a fundamental process with independent increments,

i.e., x-x_  is independent of jé (under P), for s < t,

(b) (yf,gi,P) is a Markov process whose sample paths are right-
continuous and have left-limits, and the jump times of y are totally

inaccessible,

(¢) the processes x, and y, are independent, i.e., éﬁx and

t
47 are independent.

1

(111) P loc

1 << P, there exists an gi-predictable process £ e L7 (B)

with a representation

f(z,0,t) = ¢(z,yt_(w) sw,t) s

where ¢(*,y,*,*) is-.?ikpredictable for fixed y € Y, and there also
exist ,;:-predictable processes u(B,t) for B e g ‘such that

E(J£(z,t)]) + E;(J£(z,t)|) <= for all z, t and

t

dP1
[1+ ¢(xs,ys'_,8)]eXPI-J f b(z,y,_»8)u(dz,d8)] .
Z’0

L, =BG 3 = .

X
8

t
X

'qUAiﬂ

8

Note that we must have 1+¢ > 0.
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Let Q, P and. Qx, ?x be the processes associated with (xt,4t,r) and
(xt,ﬂ»’:,P). Similarly let Ql’ 51, Q’{, ?{ be the processes corresponding
with (xt,}t,Pl) and (xt,ﬂ'::,Pl) respectively. From Assumption 4.2 and

Proposition 4.1 it is immediate that

B(B,t) = BX(B,t) = u(B,t)
t
Pl(B9t) = J J (1+£(z,8))u(dz,ds)
B0
PU(B,t) = I J 1+ £(z,s))u(dz,ds)
1 B0

where (z,t) = E (£(z,t) | 4.

For any t let 4,_= v 4, 9:_= v, - VJ-Z;.
s<t s<t ° s<t

Proposition 5.1 For t € R, 4t- ‘4'1:’ “41:- gt, ét_ 4'-:

Proof The jump times of x and y are totally inaccessible, hence by

{4, Prop. 3.1 and 22, III.D38] }x = 4% and 4y =J-y. The last assertion
B . t- t t- t

= 4% y = 4 n
follows because ‘41:— 3, V3, and 5’t ﬁ'tVEI{.

Proposition 5.2 Lt- = Lt a.s. P.

Proof Follows from [22, VT10] using a stopping time argument. R

Proposition 5.3 Ve = Yy a:S. - P.

Proof . Prob{yt# yt_} = Prob{t is a jump time}. However, since the jump

times are totally inaccessible, this probability must be zero. B
For a real-valued function g on Y we are interested in determining
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a (recursive) expression for the process. El(g(yt)l 5":) Now

E@gy )L, | $D)
E, )| D) = i (5.9)
EC,| 30

It turns out that the numerator of the expression in the right is much
better behaved than the ratio, and, furthermore, the denominator does not

depend on g. Hence we will seek to determine instead an expression for

E(g(yt)LtI 3—’:).

Definition 5.1 Let G be:the family of all bounded, measurable, real-valued

functions g on Y. For geG and t eR let

o _ Y b4 .
(@) = By L | 3D . | (5.10)

Proposition 5.4 E(Ltl 43;) =1 a.s.

Proof Immediate from the assuniptibnsvtha't 4%, 47 are independent under

P and u(B,t) is j—x

t-measurable . n

Now fix g € G. Since L, satisfies

t
L, =1+ JOLS_d(ton)s .

substitution into (5.10) gives
X t X,
T () = E@W| 4 + El 0s(yt)las__d(¢WQ)$| 3
t
= Egly) | FD + I-ZJOE[s(yt)Ls_cb(z.ys_,s)| F1e(dz,ds) . (5.11)
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since 4° and 4’ are independent under P,

E(s(y, )| Fp) = By - (5.12)

Also

Elg(y )L, ¢(z,y,_,8)| F{]

= Elg(y )L (2,55.8) | 4] by Propositions 5.2, 5.3

= E[E{g(y )L b (z,y,,8) | FLvIL}| 4]

= E[L_0(z,y,,8)E(e(y,) | L VD | 4})

= E[Ls¢(z,y8,s)E(g(yt)|,4Z)|‘jt]' by independence of 4%, 3’
= E[L8¢(z.ys,s)E(g(yt)| ) \4’;] since y_ 1is Markov

= E[Ls¢(z;ys,s)H;’s(g)|4:] | (5.13)

since x has independent increments and where
H (@ = EGG)|yy) -
Substitution of (5.12) and (5.13) into (5.11) gives

t ,
T ($(z,0,0)H, _(8))Q(dz,d) .

m_(g) = Eg(y ) + J J
t t 2o

Note that the integrand in the above expression is a predictable process,
for each fixed t, as explained at the end of §2.9.

We summarize the above.

Theorem 5.2 Under Assumption (5.2) the process ﬂt(g) satisfies
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m.(g) = Eg(y,) + IZJOﬂs@(z,',B)Ht"s(g))Q(dz,dS) (5.14)
whefet
H @ = E@U)| v » (5.15)
and '
Q(B,t) = P(B,t) - B(B,t) . (5.16)

Remark 5.2 (i) Because of Proposition 5.4

Eg(y,) = E;g(y,) and . H () = E (e(y)]| y,)

(11) From (5.10), w (1) = E(L, l}"), where 1 denotes the function

on Y which is identicaily equal to unity. Hence from (S 9),

. (8)
E (B(Yt)l~4‘ ) = m

t
Eg(y, )+ JZJO‘"S (¢ (z,* ,S)Ht’s(g))Q(dg.ds?

t
1+J J ﬂs(¢(z,‘ »,8))Q(dz,ds)
z'0

from (5.14).

(iii) Suppose t’gf’P) is as in the fundamental example. Th§n (5.14)

simplifies to

n (t ‘ '
m.(8) = Egly,) + izl'Jows(‘pi(.’S)Ht,s(g))[pi(ds)-si(ds)] . (5.17)

(iv) We now derive a more familiar-looking version of (5.14). For any

set AeVY

- 65 -



X
7 (1) = E(IALtIJt) .

If P(yt € A) = Pl(yt € A) = 0 then ﬂt(IA) = 0 a.s. Hence there exists

a measurable function Ut: Y - R such that

Trt(A) = IAUt(y)Pt (dy) (5.18) '

where 'Pc is the marginal distribution of Ve under P and P Evidently

10
if h e G then

T ) = JYh(y)Ut(y)Pt(dy) :

Next let P(A,tl ¥y, 8), A€VY, s <t, be the trangition kernél of the

Markov process y 8o ﬁhat

(H, (&) () = J g(y')P(dy’',t| y,s)
’ Y

and let P(A,sl y,t), A€Y, t>s, be the backward kernel so that for

heG

E(ﬁ(ys)l y,) = JYh(y')P(dy',SI Yeot)

Substituting these relations into (5.14) leads to
ng<y')vt(y‘>P,_.<dy'> - ] 8B, (dy")
Y
t
+ I j [I {¢(2,y,8) I 8(y')P(dy',tly.s)}Us(y)Ps(dy)]
Z Y Y

0
* Q(dz,ds)
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- [ somr @ + [ son1f [ 1] srion,merel ol
Y Y Z’°0 ‘Y :
* P @y .
Since g e G is arbitrary, the process Ut(y) evolves according to

t
Ut(y) =1+ [ JOII ¢(z,y',8)Us(y')P(dy',8| y,t)1Q(dz,ds) . (5.19)
- z’0 ‘'Y ,

Remark 5.3 ‘(i)':For‘the case of the fundamental eiamﬁle (see (5.175) the

equation.abovo éimpiifies to
. o o (t . . A . , .
U.(y) =1+ ) 'J {J ¢1(Y'»8)U9(Y')P(dy'.S|Y»t)}[Pi(dS)~5i(dS)]- (5.20)
| - oa=rtoly s A N

This'eohation has been derived in [28j for the special case where L(xc,S&,P)
is a counting process, so that n ='1, and with the additional condition
that p(ds) = ds.

(1i) Equations (5.14) and (5.15) are Egg yet recufsive since the
functions ¢(z,y.t), ¢i(y,t) are allowed to depend on the entire past
X » 1 < s <t. We will see later how under additional conditions these

equations become truly recursive.

(1ii) Notice that unlike the representation for ‘?t ‘obtained in
Theorem 5.1, those for T in (5.14) and U, in (5.19) are not semimar-
tingales because the integrands depend upon t. This dependency can be
eliminated by some additional assumptions as follows.

For the remainder of this section the following holds in addition to

Assumption 5.2.
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of (5.15) have the following properties:

Assumption 5.3 The operators Ht s
’

(1) 1lim Ht,s = I, the identity operator on G , (5.21)
stt

(11) there exist operators Ai, t>0 on G such that

A (g) . (5.22)

1
lim =(H e, sl

-H_ )(g) =H
£40 €' tt+e,s t,s

We do not elaborate'on the precise‘thgoretical status of the operators At
(i.e., the precise definitions of their domain, range, etc.), since it would
take us too far afield and since this topic is well-covered in the semigroup
theory of Markov processes (see e.g. [29]). We merely noﬁe,that (i) is a
continuity assumption,'(ii) is a differentiability assumption. The operators
At are often referred to as the infinitesimal generator, especially when

y 1is a Hunt process. If y is a k-dimensional d;ffusion, for example,

then At is just a (partial) differential operator of the form

1 lf N lf (¥, )=
- g y,t + m,(y,t .
2 1,3=1 ij 5yiayj =1 i ayi

We now develop the simplifications induced by (5.21), (5.22) in (5.14).
First of all, recalling that Po(dy) is the probability distribution of

Yo and that y 1is Markov, we get

Fe(y,) =']Y(ut,o(g>)<y)ro @y) = EE, 0@ Gp) -

This, together with (5.22), implies that

E(@(yoyg) -80,)) = ,[Y(Ht+e,o' H, o) (8) (), @y)

m

e JY(Ht,OAt(g))(Y)Po(dy) - cEL(A, () (5] -



Substituting this into (5.14), and using (5.21) and (5.22), leads us to

. N ,
("t+e'":)(g) o eE(At(g)) + ej . (¢8)Q(dz,dt) + SJZJONS(¢Ht’sAt(g))Q(dz,ds)

Z

= EIzwt(¢g)Q(dz,dt) +em (A (8)) .

Hence

t t

":(3) ='ﬂ0(s) + I ﬂs(Ass)ds + J Jzﬂs(¢(2.',s)g)Q(d2,ds) . (5.23)

0 0

Theorem 5.3 Under the additional conditions of Assumption 5.3, the repre-

sentations (5.14) and (5.17) simplify to (5.23), (5.24) respectively.

t t
™ (8) my(8) + I T (A g)ds + Z Joﬂs(¢i('.s)8)[Pi(dS)tﬁi(dS)] (5.24)
0°® i=1 ’

As an example illustrating (5.24) suppose that under P X, and Y,
are independent standard Poisson processes. Then Z =Y = I+, the set of
non-negative integers. Also n =1 in (5.24), p(t) = X, and p(t) = t.

For g: I+ -+ R,
H @@ = EGG)| v =¥

Z s(y+k)(t S) S(ems)

k=0
so that,
2, o= ] () 0 g Gy - 0]
k=0
and hence
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(At;) (y) = (Ag)(y) = g(y+1) -g(y) . (5.25)

Consider the '"indicator" functions Gk: I+ + R where

1 if y=k
ék(y) =
0 otherwise

By the linearity of L

-

T (g) = kzos(k)ﬂt(ak) ,

so that it is enough to determine the processes ﬂt(ﬁk), k=0,1,2,... .

Substitution of Gk for g into (5.24) gives, using (5.25),

t t
T (8,) = My (8) + Jo[ﬂs(ék_l)-ns(ék)]ds + Io'rrs(rp(-,s)ék) (dx _~ds)

t t
[ (8, _1)-m_(8,)1ds + J 6 (k,8)T_(8,) (dx_-ds)

= ﬂb(Gk) + J .

0
since ¢(y,s)6k(y) = ¢(k,s)6k(y). Now

1 if k=0
m (5,) = ES (y,) =
0"k k™0 0 if k>0

and 6__1 = 0, so that the expression above simplifies to

m (&) =1- foirs(ao)ds + IO¢<o,s>ns(a°><dxs-ds> ;
t t

t
m (8, _;)ds - Jons(ak)as+J0¢(k,s)ns(sk) (x_~ds) , k21,

ﬂc(ék) = Io

and these can be rewritten respectively as
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t
etﬂt<6°) =1+ IO¢(0,s)esns(60)(dxs-ds) .

t t

etﬂt(ék)'= J esﬂ;(Gk_l)ds + Jo¢(k,s)esﬂs(6k)(dxs-ds) » k2>1.

0

These linear integral equations can now be solved inductively to yield the

explicit formulas

- t
wt(Go) =et I [1+ ¢(0,s)]exp[~J ¢(0,s)ds] , (5.27)
' s<t 0
xg-? %,
T, (5,) = I?e'(';;s)n 6, M T [1+¢(k T)]exp[-Jt¢(k T)dt])}ds
t "k 0 T8 k=1 s<t<t » < 2 17C ’

X, % k21 . (5.28)

Remark 5.4 Thé result just obtained illustrates the power 6f the formu-
lation of Theorem 5.3vover the more usual formulations which involve obtain-
ing a relation for the conditional dehsity (e.g. [16]). We believe that
equations (5.14), (5.20), and (5.23), (5.24) are much more useful since

they are linear in the "unknown" linear operators T whereas the evolu-
tion equations for the conditional density are nonlinear. Of course the

latter can be easily derived from the former.
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