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ABSTRACT. Necessary and sufficient conditions are given for the
non-cooperative equilibrium policies of N players when they are
simultaneously controlling the evolution of a stochastic system
described by an Ito equation. In the case of perfect information,
these conditions are generalizations of the well-~known Hamilton-
Jacobi equations. Conditions are also indicated for the case
vhen the players have only partial information. Sufficient
conditions are derived which guarantee that an equilibrium is
also Pareto-efficient.

1. INTRODUCTION AND SUMMARY t

We apply the results obtained in [1] to study the equilibrium
policies of N players when they are simultaneously controlling
the evolution of a system described by the stochastic functional
differential equation ’ ‘

dz, = £(t,z,u0,%e.,u0) + dB, , t € [0,1] (1.1)
Here {z_} is the "state" process and {B.} is a vector of inde-
pendent Brownian movements. The "drift" f depends at any time t
on the past {zs;s_g t} of the state and also on the controls ul
of the ith player, i=1,...,N. ul takes values in a fixed

metric space U, and depends on the past {yg, s < t} of the
observations made by 1. The cost incurred by 1 is
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1 ..
Hw) = E[j- hi(F;z,ut)dt] ' ' (1.2)
0 | _

where {u } = {ui,...,un}.

A set of policies {u*} = {ut ,...,u } is a (non-cooperative)

equilibrium if for ail i

* * 1
Ji(u ) j.Ji(iu ,ui) for all ui » (1.3)
%

Thus u* is an equilibrium iff u 1 is a policy which mi&imizes
(1.2) when for all j # i player j adopts the policy ul This
‘trivial fact allows us to use the results of [1] to obtain the
vﬁuilibrium conditions. u* is efficient if for all v = {vl,...,

Ji(v) j.Ji(u ) for all i

. .
implies Ji(v) = Ji(u ) for all i. Evidently, if there exist
numbers ¥y > 0,...,uN > 0 such that :
i, * i
You, I (') < E:u J (v) for all v, . (1.4)
T i — i .

then u is efficient.__But (1 4) means that u* is an optimal
contral for the cost Z:u J and so we can once again apply the
results of [1] to obtain"efficiency conditions.

These conditions are straightforward extensions of the well-known
Hamilton-Jacobi equations when the game is of complete information
i.e., when yi £ z_ for all i. When the information is incomplete
the conditions ar€é much more complex.

" The paper is organized as follows. The next section introduces
some background material dealing with the interpretation of the
Ito equation (1.1), after which the relevant results of [1] are
displayed. Sections 3 and 4 treat respectively the case of
complete and incomplete information. Section 5 discusses some
difficulties connected with the notion of efficiency in the case
of incomplete information.

IWE adopt the notation (iu,vi) = (ul,...,ui-l,vi,ui+l,...,uN)



2. RESULTS FROM OPTIMAL CONTROL THEORY

2.1 Specification of the dynamics

Let Ck be the set of all continuous functions from [0,1] into Rk.
Let Ek be the evaluation functional on C¥X, and, for t € [0,1],
let JK be the o-field of subsets of CK geﬁerated by {&K, s < tl.
k istthe o-field ofksubsets of [0,1] x C™ such that a function
g on [0,1] x C is A* measurable iff g(t,*) is G?E measurable
for all t and g(*,x) is Lebesgue measurable for each x € C*; thus

measurable functions are non-anticipative.

The state progess {z_} is n-dimensional. The ith player's obser~
vation process {yl} Ys a n,-dimensional subvictor of {z_}. The
components of the drift f Corresponding to y" are denotéd by the
vector fi, The sample paths of {z_} are_continuous, hence they
lie in CP whereas those of {yl} 11& in c™1. We can now define
the admissible control policies.

U, is a separable metric space and its Borel field is %/,. A
policy for player i is a measurhble function ul: ([0,1] % ni
%ﬁ?i) > (Ui’ V,). The set of such policies is denoted ],. Let
c= U x.v.x {L , similarly for U,"V. The following conditions
are imposed on f: ' .
(1) £: [0,1] x Cn>x U + R" 1s measurable with respect to
An XV"I \
(11) there exists K such that |f(t,z,u)| < K(1 + Ixl) for all
(t;z5u). n . ,
Here |'| is the norm in R and I+l is the sup norm in c". The
functions h™ in (1.2) are assumed to satisfy the condition corres-
ponding to (1) above and in addition the hi are assumed non-
negative and uniformly bounded.

2.2 Solutions of (1.1)

Let P be Wiener measure on (Cn,Z}n). Let z be the evaluation
functional on CR so that {zt,:}n,%} is a standard, n-dimensional,
Brownian movement. For u € Qi.&efine the corresponding drift

{o%, TP} by
. ¢:(z) = f(tszoul(tQ}’l)s---;uN(t9YN))

i

Recall that yi is a subvector of z. For future reference let N

be the sub o-field of ‘I generated by {yi, s < t}. Also for
each u define the non-negative random variable pY by

1 1 2
p" = exp[jo ¢ dz, - %-SO o] el



Theorem 2.1 [2,3,4] Under the above-stated assumptions on_f
pu(z) P(dz) = 1. Hence PY is a probablllty measure on (C ,‘3’-1
n

where

PU(F) = f p%(z) P(dz) , F € F"
. F ' .

Furthermore, the process {w: ,’3: ,P'} defined by

t
u u
wt =z, -Io ¢s ds

is a Brownian movement.
This result justifies the following definition. The solution of
(1.1) corresponding to a policy u € WU is the process {z C—}n PY}.

Thus the impact on the system of ‘a policy u is summarizea by the
probability distribution PU.

2.3 Optimality conditions
Suppose N = l. We can then drop the index i. For u € U, define
the process t.’ yt
" 1
Wy = infimum E'[\ h(s,z,v/)ds |f%].
: U t :

u is value decreasing if {W:} is a supermartingale i.e., if

GI‘%t a.s. for all t, § > 0.

u is optimal if J(u ) < J(u) for all u € ‘U. It is known that
an optimal policy is value decreasing [1, p. 242].

Theorem 2.2 [1] u* 1s optimal iff there exists a constant J*
and for each value decreasing u there exist processes {AVY},
{vv¥}, taking values in R and R® respectively (where m istthe
dimension of the observation process y), adapted to yt’ and
satisfying the following conditions

(1) X, = 0, where

u * t o u t o u
x =J + AV ds +§ Vv dy
t 0o 8 o S '8



%
(11) Av; + W fy(t z,u,) + h(t,z,u) 20 = AV + WY £ (t,z,
u ) + h(t zZ,u ) for all t,z, ut.
Then x- *a W and J* = J(u ) is the minimum cost. (Here £7 is the
subvechr of £ corresponding to y. fy(t z,u, ) = EY[£(t,z,u )|1{t],
_and h is defined similarly).

.Theorem 2,3 [1] Suppose Y 2z, ut is optimal iff there exists
J* and processes {AV_l, {VV 1, taking values in R and R"

respectively, adapted to ﬂft “, and satisfying the following
conditions:
(1) =x, = 0, where
1 ¢t t
xth +'s AV ds+g VV dz
0 0

(11) AV + VV f(t Z, u) + h(t,z,u) > 0 = AV + VV f(t,z,u )
+ h(t z,u, ) for all t,z,u.

Then X, = W£ and J is the minimum cest.

3. EQUILIBRIUM CONDITIONS: COMPLETE INFORMATION
3.1 Equilibrium conditions
The next result is then an immediate consequence of Theorem 2.2.

Theorem 3.1 (Equilibrium condition) {u } = {ut ,...,u } is an
equilibrium iff for each i there exist Ji* and process {AVi},
{vvi} adapted to Efz satisfying the following conditions:

(1) x = 0, where

st t
* .

xp = 7t +S AV: ds +S WL dz_ (3.1)

0 0 |

%* * *
(11) Av§ R R TR Rt IS T CTER P SR
. *
W > 0= vt + Wl £(e,z,up) + h'(t,z,up), (3.2)
for all t,z,u". ’

' * *_
Then Ji = Ji(u ). Furthermore

¢

; 1 -
i u* i 1* i N* :
X, = 13£éfum E th h (s,z,u8 secerl yeeesl ) dslﬁjz] (3.3)

As a special case of this result we can deduce the conditions for



i

a saddle goini policy in a 2+player1*ze§g—sum game. ~So suppose
t t

N=2 and hé=-h~. A policy u* = u »u is a saddle point if
J1

t

2%y > 3¢

1 2%

* *
(u ,u” ) > Jl(u1 su u1

,uz) for all ul, u2. (3.4)
: * 1% 2%
Theorem 3.2 (Saddle point condition) {ut} = {ut ,utl} is a saddle
_point iff there exists J1* and processes {AV%}, {vvt} adapted to
Q}g satisfying the following conditions:

@ =

1 = 0 where |

1_ ax (" ¢

xf=J +f AV ds +I whdz - (3.5)
t 0 8 0 8 8 . ,

1

* ) %*
(1) AV + whece,z,ul, 02y + nlce,zut, 02y > 0 = AV 4 ot
t t t t t t
1% 2
»u’)

*
f(t,z,u:) + hl(t,z,ut) = 0 3.Avt + VV% f.(t,z,ut
+ hl(t,z,u%*,uz) for all t,z,ul,u2 (3.6)

*
" Then Jl* = Jl(u ) is the value of the game and |

1 1
* * * *
xl = inf E" [S hl(x,z,ul,u2 )ds|2;n] = sup E" gf hl(s,z,u1 ,
u u

2 ~n '
ug)ds|F ] | ER)

is the value function.

We give this result a form similar to that which has already
appeared in the literature [5-8]. Define the Hamiltonian
functional H: [0,1] X C% x U x R® + R by H(t,z,ul,uz,p)

= pf(t,z,ul,u?) + hl(t,z,ul,u?).

Then (3.6) is the Isaacs condition,

* *
H(t,z,u1 ,u2 ,VV. ) = Max Min H(t,z,ul,uz,VV ) = Min Magx H(t,z,
t’t t 2 t 1
. u¢ u ut u .
1 2
u,u ,VVt) .

Next, suppose that (1.1) is a diffusion equation i.e., the ;
dependence at time t of f on z is through z: '

1 2

dz_ = f(t,zt,ut,ut

t
% *
and suppose further that u_ has the same pioperty i.e., ui (t,2)
~ = ul*(t,z ). Then the solition {z_, 2,Pu } is a diffusion, and
hence from (3.7) it follows that tﬁe value function at time t

) dt + dBt’



depends onli on z_, i.e., there is a function V on [0,1] X R"
such that X = v(€,2z.). Secondly, if this function is sufficiently
smooth then by Ito's differential rule we can identify the

2
1 v 1 2%y
processes {Avt},and {VVt} as AVi =3 (t,zt) +3 EE% Fr e (t,zt),
]

i
' VVl = %%-(t,zt). Combining these two observations yields the
weil—known Hamilton-Jacobi partial differential equation for the
value function,

2
N (t,2) +3 Z 3V(t,z) ng Min H(t,z,ul,uz,ﬂ (t,z)) = 0.
ot 2 1,4 aziazj u ol 9z

for (t,z) € [0,1] x R"; and (3.5) yields the boundary condition
v(,z) = 0.

3.2 Efficiency conditions

We return to the N-player game of complete information. The next
result is immediate from our earlier remarks. ‘

Theorem 3.3 (Sufficiency conditions) {u:} = {ut*,...,ug*} is an

efficient equilibrium if for each i theré exist u, > 0, Ji* and

. processes {AVt}, {VV%} adapted to g, and satisfying conditions
(3.1), (3.2) and

i i * i *
21:"1{'“’1; + W E(t,2,u.) +h (t,2z,u)} = 0

= Muég ?‘fi““’i + Wtf(t,z,u) + hi(tfz,u)} (3.8)

Condition (3.8) appears to be a very stringent condition. It
turns out, however, that if a certain convexity condition is
satisfied, then this condition is also necessary for efficiency.
We say that the convexity assumption holds if for all t, z the
(NMn) - dimensional set

N
'{(hl(_t,z,u),...,h (t,z,u), f(t,z,u))lue u}
is convex. Now replace the'original game by the following one.

The dynamics of this game are given by a (NHn)~-dimensional Ito
equation . '



dqi = hl(t,z,ut) dt + dBtl:

‘N N ‘N
dqt = h (t,z,ut) dt + dBt (3.9)
dzt = f(t,’z,ut) dt + dBt

where (B,B) is an (Mn)-dimensional Brownian movement. The cost
incurred by the ith player is

Hw =& qi (3.10)

It is evident that the two games are equivalent. What we have
achieved by this transformation is to remove from (3.9) the
explicit dependence on the policy {ut}. Next, as in Section 2.2,
for u € Y define

1

1
pY = exp[zg hi(t,z,ut(z)) .dq: +§ f(t,z,ut(z)) dzt

0
1 2 1 :
1 Z s I i 1 g 2
-= h| dt - = |£,_|° at]
2 T Jo t 2 0 t
and let the set of all such random variables be
R e W

Then

Ji(u) = s qi p%(q,2) P(dq,dz) = 91 (p") say

cN-l-n
where P(dq,dz) is Wiener measure on (CN‘H‘,-A’ N-l-n).N Note that the
map 3 : &+ RN defined by () = (9'1(9),...,9' (p)) is linear.
The next result is proved in [3] and [4]. ’

Lemma 3.1 If the conxﬁxity assumption holds then I€ 'is a convex

subset of Ll(Cn"'N,'}”I ,P)

Theorem 3.4 (Efficiency conditions) Supﬁgse the convexity
assumption holds. Then {u*} = {ul*,...,ul”} 1s an efficient equi-
librium iff for each i there exist u, > 0, Ji* and processes
{AV{'}, {sz'} adapted to Gn and satisfying conditions (3.1),

t’
(3.2), (3.8).



proof The sufficiency follows from Theorem 3. 3. To prove the
necessity let ut be an efficient equilibrium and suppose Ji*,
VV satisfy (3.1), (3.2),and (3.3). By lemma 3.1 the set

= {(Jl(u),...,J (u)), u € WU} 1s a convex subset of RN, B
efficiency T is disjoint from the convex set {(J1*+x1,...,J +xN),
x, <0 all i and {x, # 0}. By the separation theorem for convex
seéts there exist My > 0 such that

. .
Zu Ji < Eu Ji(n) for all u € ,u-,
i i - i

i : #
*
i.e.,iu is an optimal control for the cost functional
z:uiJ (u). Hence (3.8) must hold by Theorem 2.2. n
i

It turns out in fact that this result is true without the convexity
assumtpion. The proof is much more involved unfortunately. The
result implies that an efficient equilibrium is more stable than
may appear at first sight. Recall the following definition. A
policy {u*} 1s in the core if for every subset of players

s € {1,..5,N} the following property holds: . for all policies

{vs} whenever

S S

el )1fmb‘;1€&

then

g S S'% i1, 6 * p
= (=
J‘(vt,ut )= dtw) , 1€s.

.F
Here (vs,ust Y is the policy {“t} where ui = : , 1€ 8 and
u: = ug for.1i ¢ S. Theorem 3.4 immediately yields the following

remarkable corollary.

Corollary 3.1 Suppose the convexity assumption holds. Then the
set of efficient equilibrium policies coincides with the core.

4. EQUILIBRIUM CONDITIONS: INCOMPLETE INFORMATION -

We return to the game of incomplete information. The following
result is immediate from Theorem'2.2. .
- * * *
Theorem 4.1 {u } = {u1 (yl),...,uf (yN)} is an equilibrium .
*
policy iff for each i there exists a constant Ji and for every
value decreasing {u by there exist processes {AVi“ 1,

{VV1 } taking values in R, R 1 respectively and adapted to?frt,



such that the following conditions hold:

iu1
1) x5 = 0 where

i t 1 t i
P I+ vt ds +-f' wit dyi
t o © o 8 8

i i, % " —
(i1) 'AViu +w fi(t,z,iu ,ui) + hi(t,z,iu su.) >0
t t t 2% Tt

i *1 iu*1~i * ai * i
- Avtu i (t,z,u.) + h'(t,z,u), for all t,z,{ut}

* *
Furthermore Ji = Ji(u ) and

1* 2F 1 | * .

x:u = infimum EY [S hi(s,z,?us,ui) dsl%?t] (4.1)
Jdeuwt t |

This result is not of great interest. However some interesting

observations can be deduced. We give one instance. Suppose
the game is constant-sum i.e., suppose

1 .
S Ehi(s,z,u) = Kt’ a non-random function. (In particular
Jt 1 :

this includes 2-person O-sum games). But this does not imply
that

Y =k : (4.2)

This negative conclusion raises the questidn whether suchAa game
should be called a constant-sum game. As is clear from (4.1),
there is one special case where 54.2) holdsNand that is the

"equal" information case, y% =Yg = eee =Yg

5. NOTION OF EFFICIENCY IN CASE OF INCOMPLETE INFORMATION

The definition of an equilibrium policy is an attempt to embody
the concept of individual rationality, whereas efficiency is a
precise criterion for group rationality. Thus an efficient
equilibrium is stable against group action in the sense that the
players will not derive any additional individual benefits from
"cooperating" as a group. Now, in the situation of incomplete

.

-10-



information where the .information available to different players
is substantially différent and where "cooperation" means sharing
of information as well as coordination of policies, it seems
quite unlikely that a (non-cooperative) equilibrium will be
efficient. This may appear puzzling since on a priori grounds
one would expect equilibrium policies in the ' 'real world" to be
efficient. It is evident that one way this apparent paradox can .
be resolved is if we can expand our framework to include costs

of cooperation, especially of sharing of information.

Fd
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