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ABSTRACT

The Lanczos algorithm is presented as a way of generating bases for
a sequence of Krylov subspaces. Explicit expressions are given for the
departure of the bases from orthogonality. These relations enable one
to comprehend the behavior of the algorithm in practice with a minimum
of conventional error analysis.

In particular this approach sheds light on the central, and difficult
problem of ascertaining the right moment to stop the algorithm.

Reorthogonalization and hlock versions are also examined.
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1. Introduction

Lanczos presented an algorithm for reducing a symmetric matrix to
tridiagonal form in 1950, [5]. In the light of exact arithmetic it
promised to be very effective. In practice it can compete neither in
speed nor in accuracy with rival techniques which use a sequence of
explicit orthogonal similarity transformations.

For a while interest in the method died.

When the attention of numerical analysts was turned to the problem
of finding a few eigenvectors of matrices of huge order the algorithm was
resurrected. However, the process was now seen in a new light, as a
way of finding invariant subspaces, and for this purpose it can be very
effective —- provided that it is implemented properly.

To be effective the computation must be stoﬁped at the right moment.
To determine this moment the algorithm must be understood in some detail.
This poses a problem. Can an analysis of such a numerical process be
both rigorous and readable?

The most thorough study of Lanczos' method that we know of was made
by Paige in his doctoral thesis [7], and we see our analysis as a further
development of his work [8,8.5]. Our approach is outlined in Section 3.

Reorthogonalization and block versions of the algorithm are also
examined.

It would seem only proper to begin with a clear description of the
algorithm itself. This we shall not do. In fact we postpone discussion
of the details of the process as long as we can. Why? The quantities
computed by the algorithm satisfy certain relationships. The forms of

these relations are often independent of the specific details of the



implementation. Moreover some properties of the algorithm can be, and
are best understood at this level. WNot to be ignored is the fact that
the exposition is greatly simplified. Lemma 2 in Section 6 is an example
of this approach.

Any readers who are interested in Computer Science may speculate on
the influence of structured programming and top-down parsing on our

thinking.

2. Notational Conventions

The exposition in the remaining sections is made smoother by bringing

the standard definitions together at the start.

= denotes a definition.

Equation or Relation (m) refers to the one in the current section.

Equation (n.m) refers to Equation (m) in Section n.

Capital letters for matrices: A, B, Z, A, ... .

Symmetric letters (about a vertical axis) for symmetric or Hermitian
matrices: A, H, M, ... .

Lower case roman letters for (column) vectors: ¢, £, q, ... .

Lower case greek letters for scalars: o, B, ---

S*, x* denote the conjugate transpose of S, x respectively.

8n denotes Euclidean n-space (either real or complex) .

S is orthonormal if S#*S = 1.

vl = Axv .

Ai[M] = i-th eigenvalue of M, (increasing algebraically).

A_i[M] = i-th eigenvalue of M, (decreasing algebraically).

11 = max Isvi/lvi = /A_ (5% | .

v#0
A -0 denotes A - oI, where I is the identity matrix.
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IIS[Ig = trace(S*S) = .Zli[S*S] over all i.

All vectors have dimension n wunless the contrary is stated.

2

K,(8) = (8, As, A"S, ..., AJ-lS), a Krylov matrix.

3

Span (B) = the subspace generated by B's columns.

Kj (S) = span Kj (S), a Krylov subspace of 8n generated by S.

“ B <::)

By 9% By

e ]

1]

W
N

;Bi>0,1>0,8050.

P*AP is called the projection of A onto the range of P; P*P = 1.

3. The Accuracy of Dwindling Eigenvectors

The goal is to compute a few eigenvectors, belonging to either end
of the spectrum, of a real symmetric or complex Hermitian matrix A of huge
order, perhaps 10,000. In other words, an invariant subspace of low dimension
Vv, say v < 100, is wanted. The Lanczos method begins with an initial
subspace which we shall take to be one-dimensional for simplicity. The
more general case is considered in the final sections. This starting
vector 1 is supposed not to be orthogonal to the invariant subspace Sv
which is wanted.

Let us now say what the algorithm does without saying how it does it.
After j steps we learn that, with exact arithmetic;, A 1is orthogonally
similar to a ma_trix

T4

(1) A= s .=‘Sj >0, Tj defined above.

n-]j




where Tj’ Bj have been computed but Wn_. has not. 1In fact Tj is
the projectioﬂﬁbf A onto the Krylov subspace K(ql). By computing the
appropriate Vv eigenvalues and eigenvectors of Tj one could obtain the
best approximation to S,, from Kj(ql). This is the Rayleigh-Ritz
approximation.

There is a precise theory, the Kaniel—Paige+ theory [4,7], which
says exactly how bad the approximation can be. Even the worst case turns
out to be very satisfactory provided only that 9 is not too nearly
orthogonal to S, . By their nature these bounds cannot be known in
advance.

It is an essential feature of the Lanczos method that the Ritz
approximation not be computed at each step. In its early versions the
process was continued until j = n at which point the one and only
Rayleigh-Ritz "approximation" (with no errors in this case) was made.
More appropriate for the task in hand is to stop immediately Bj = 0,

It is also possible to stop if Bj is very small, like round off in

lAl , because of the following result.

THEOREM 1 (Kahan). Let H be jx j and S be orthonormal and
n x j . Then there is a one-one correspondence between H's eigenvalues
Ai[H], i=1, ..., j , and a subset of A's spectrum, Ai.[A] , such
that for i =1, ..., j

|2, (0] - A, (a1 < las - sull .

The proof is based on the Weyl/Wielandt monotonicity theorem and

T Kaniel began the study in [4]. However Paige, in [7], gives a much
better exposition of the results and corrects the errors in [4]. A
minor error is corrected in [0].

“"Our definition is given in Section 2.
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can be found in [3]. In our case H = Tj and

2) lAS - ST.[| = B, .
k| h|

[To prove (2), let Q = (S,s,P) be the unitary matrix such that A = Q*AQ;

then examine AQ = QK]. We will not discuss the relationship of 1i' to
i but remark that if the choice of 9 is not too unfortunate then the
set {i', i=1,...,3} will include the wanted eigenvalues. )

This application of the Theorem 1 gives aAsufficient condition for
stopping, but one that is rarely encountered. Experience shows that
some of T,'s eigenvalues furnish excellent approximations to eigenvalues

h|
of A despite the absence of any small B's.

In order to make a more illuminating application of Theorem 1 we

‘must know more about the Lanczos Algorithm. After j steps in exact

arithmetic it yields not only T, but a matrix Q (ql,...,qj) whose

k| 3
columns span the subspace Kj(ql) and which satisfies

*
=1
(3 Q9

and

Peoe B M M

3 *
T YTyt 9afy

-5 -




where e; = (0,...,0,1) has j elements. If B is

= 0 the .
k| an

+1
not uniquely determined, yet the product

(4) B, = r, = (AQ

=r, -Q.T.)e,
134175 3 3 QJ J) 3
is always fixed by the preceding quantities.

A key point here is that the residual AQ -QjTj has all its sub-

3
stance concentrated in its final column.

Not all of the eigenvalues and eigenvectors of Tj are of interest,
only Vv of them in fact. Now the normalized eigenvectors of any symme-
tric tridiagonal matrix enjoy rather special properties, see [7]; in

particular there must be some whose last elements are tiny. The greater

the order the tinier is this last element. The example in which this

property is least pronounced is, we believe, a Tj with oy = 0, Bi =B
c . (k)_/Z . kim
for all i. One eigenvector v is given by v = EII s1n(j+l),

k=1,...,j, and

v g stnGIp - 06™A)

It turns out that it is the eigenvalues belonging to these eigenvectors
of Tj which are close to A's spectrum. For the moment we drop the

index j.

re*, where Q*Q =1, T is tridia-

COROLLARY. Let (i) AQ-QT

gonal, and e* = (0,...,0,1),

[}

(ii) TP-PM = 0, where P*P =1 and [e*P| < n << 1.

Then

|A; M1 - A,[A]] < nilxll = nlaQ-QTl

-6 -




Proof. A(QP) - (QP)M = AQP - QTP , by (ii),

(AQ-QT)P

re*p .
Now apply Theorem 1 with S = QP, H = M. a

This result explains why a small Bj is not essential in order
that some eigenvalues of Tj be very close to A's spectrum. There is
no inference from what has been said so far that the dwindling eigen-
vectors of Tj correspond to the wanted eigenvectors of A. This is
where the Kaniel-Paige theory comes in.

What will remain of these error bounds after an attack of roundoff

errors?

4. When Should the Lanczos Process be Stopped?

In practice the situation is very different from the one described
in the previous paragraph because rounding errors intervene. The approxi-
mate basis Qj generated to span Kj(ql) will not be orthonormal.

Consequently Tj is not A's projection and
AQ, - Q.T. = r.e* + roundoff
J 11 113

Although the Kaniel-Paige theory cannot be applied directly to Tj

yet T, is still tridiagonal and this coerces the elements of some of

k|
its eigenvectors just as before.
Fortunately the bounds derived from Theorem 1 can be extended to

the practical situation.



THEOREM 2de (Kahan). Let H be jxj, S be nxj and of full
rank j; then there is a one-one correspondence between Ai[H] and

kf[A], i=1,...,j such that

'Ai[H] - AglAl | < /2llAs - sH| | (S*S)"llzu

-1/2

Note that 1/{(S*S) I = /“l[S*S] is S's smallest singular value.

Now we apply Theorem 2 with S = QP, H =M as in Corollary 1.

The new bound is
lAi[M]"Xf[A]I,ﬁ /f(Bji—roundoff)nju(P*Q*Qp)'l/zu

With the best of current techniques P will be very close to orthonormal.

In the sense of quadratic forms
0<PP* <1

and hence, by the Cauchy inequalities,

-1/2 -1/2“

1e*e*ee) ™71 < 1Q*Q)

We conclude that the Lanczos process may be terminated as soon as

UeﬁP ﬂBj becomes negligible, provided that the columns of Qj are

3
decidedly linearly independent. Without this proviso we can infer nothing

from Theorem 2 about IAi[M]-Af[A][; try S = zw*, H = S*AS, Az = za,
lzll = lwl = 1, where o is not one of the wanted eigenvalues.

When the Lanczos process is continued until j > n, without the
appearance of a small Bj; independence is inevitably lost and it becomes
necessary to identify which subset of Tj's spectrum is relevant to Sv'

At present we can see no point in breaking the linear independence barrier.
+

This is Theorem 10 in [3]. The factor Y2 1is believed to be superfluous.
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Our problem is reduced to monitoring loss of orthogonality among Q's

columns.

5. Loss of Orthogonality and Independence

In order to study the Lanczos process we have replaced the original

desired relation

w Ch 1. -1,

specifying Qn’ by the intermediate relations

2 *Q, =
2) Qo = 1,
= * =
I T T b TR Tl

which specify Q, for j = 1,2,...,n.

h|
0f course in deriving (2) and (3) from (1) it is inevitable that

qj+l is orthogonal to all the previous q's. This assumes that a matrix

Qn satisfying (1) always exists and, although not strictly necessary, it
is more consistent to prove that, given A, then a matrix Qj can be
found satisfying (2) and (3). We shall not do this formally because

the Lanczos algorithm itself shows how to determine aj, Bj’ and qj+1

to satisfy (3) when Tj-l’ Bj—l’ and Qj are in hand. The key question

is whether this will be orthogonal to all the previous 9y i.e.

9441

to Qj' With an eye to later applications we answer this question.

Recall that qj is a multiple of rj.

+1

LEMMA 1. Let Qj’ Tj’ and rj satisfy (2) and (3) with aj arbi-
* ~ . _ % *x_ o _
trary. Then Qj_lrj = 0, If, in addition, aj quqj then erj 0.




Proof. Q*r

33 - QT e

Q4 (AQ; - QTydey
((AQj)*Qj-Tj)ej , using A* = A,and (2),

using (3),

]

[(QjTj-l-rje:’i)*Qj--Tj]ej ,» using (3) again,

e.r¥Q.e, using T*% =T,
JJQJJ’ & %3 i’

ej(egQgrj) s because this factor is a scalar,

]

ej[quqj-aj] , using the first line of the proof. O

Note that the algorithm does not explicitly force Qj+1 to satisfy
(2), the property is inferred from the chain of reasoning given above.

Should one link break ... turn to Lemma 2 in Section 6.

The basic Lanczos Algorithm does force r?qj to be like roundoff

so that there is local orthogonality whilever B, is not small.

3

- 95 -



At this point we make a standard but important change of notation.
We forget the quantities that would be produced in exact arithmetic and

let our symbols Qj’ T., rj, etc. stand for the quantities stored in the

3

computer under these names. Because of roundoff error the orthogonality

relation (2) will not hold. In its place we write
"1- * .“ < K.-
() ase;l <

Later we shall determine some specific expressions for Kj' Note that

Kj_g Kj+l, and that

2
(5) g 0 = llgxq.l = 01 - (2 _q*x)l <1 +«,,
QJ QJQJ ( _'QJQJ) - J
and, in the sense of quadratic forms,

(6) 1- 1k, <QHQ; <14k,

whence, if Kj <1,

(H V1 - K 5_%%1(Q§Qj) = smallest singular value of Qj'

Kahan's Theorem 2 (in Section 4) shows that loss of orthogonality
is not catastrophic provided that Qj retains full rank.
This result supplies a natural stopping criterion for the Lanczos

method; namely, stop as soon as Kj+1 > 7/8, in which case Kj < 7/8 and,

by Theorem 2

A M1 - AL [A1] < V2, lllle*P II/V1k, < 4B N,
A, 04,1 -2 (A1] < VZ0r D0e3® 0/VIky < 4B5ng
where nj is a bound on the last row of the matrix of those eigenvectors

- 10 -



of Tj which we chose to compute.

Our problem is thus reduced to computing a suitable bound Kj.
Consider

1- -Q*
(8)

- *x =
1 Qj+le+1 .
-q%,.Q 1 - lgq. 12
J+175 9541

By partitioning the quadratic form it can be seen that

5%

EJ. Ky

where Ej will be determined later and will satisfy
10 lQ*q. I < £..
(10)  lotq,, I < &,
Note that, by definition,
11 - qxq 0 = |1 - lq,1%] < «
i1 1 =1
but, in fact,
- g 12] <
an |1 -l 1% <k

for all i, because this bound is independent of i. In fact, if K

bounds the error in the length of any vector v which has been normalized

to 1 in working precision arithmetic then

12) |1 - W% = |1 - Il

s i+ Il <@+ 1+

(11
A

If it is possible to compute a bound Ej as defined in (10) then the

definition
K. g.
J 3 1 2 2}
= = - + 4
Il Il 5 {Kj + g+ /(Kj Ky) Ej

(13) Kj+1

-11-



2 - *
yields a computable bound for [I1 Qj+1 Qj+1

An alternative bound for. 1 - Q? Qj’ called the scoreboard, is

presented in Section 14. We now focus attention on Qg qj+1.

6. An Expression for Qg Ty

Orthogonality among the computed 9, is lost because the

fundamental relation
"AQ. = Q.T, + r eX"
'QJ QJ J J 1]
no longer holds. Instead
= - - * =
(1) AQi QT, - F, + (ri si)ei s, i=1, (.., 3
for some

f 0).

(2) F, = (fl, f2’ cees

i i-1’

The quantities Fi and S5 represent the cumulative effect of round-off
error. It is natural to split off the error in the last column and put
it with the already present 'truncation error' r,. We choose to call it
4 rather than fi for reasons (given in (8.5)) that have no importance
at this stage. We postpcne a detailed examination of Fi as long as

possible.

LEMMA 2. 1If (1) holds then

* = - 0% - - %* - *
Qj r [(1 Qj Qj)Tj 1 e el )Tj(l Qj Qj)]ej

3

- F* q, + (q¥* Aq, - a.)e. + Q¥ s,.
] qJ qJ qJ J 1] QJ J

~12-~



Proof. Imitate the argument of Lemma 1 in Section 4.

I

* - % -
Qj (1‘__i Sj) Qj (A.Qj QjTj‘+ Fj)ej, using (1),

(Qg AQj - Q? QjTj)ej’ since Fjej =0,

* - Q* i * =
[(AQj) Qj Qj QjTj]ej’ u51§g A A,

* - * - * -
[T0F Q) = FY Qg + e;(ry - s%Q; - @} QT ]y,

using (1) again,

- - 0% - 0% - F*
[ Tj(l Qj Qj) + (1 Qj Qj)Tj Fj Qj]ej

+ e.(r, - s.)*Q.e,, adding and subtracting T..
J( 3 J) QJ T g g T,

The fourth term on the right can be evaluated using the second line above,

% 0% (r -
e? Qj (r, sj)

* Aq. - e®*Q* Q.T
3 3 qJ q Q* Q

1.e,

k| u I R s B
*Aq. - 0. +e* (1 -Q¥Q.)T.e .
15 294 h| j QJ QJ i’j

After transposing, substituting, and rearranging terms the lemma's

assertion is obtained. (]

By contemplating this expression we can assess the contribution of
various errors to the departure from orthogonality of the {qi}. Recall

that in exact arithmetic qj+1 = rj/Bj. In practice, therefore
3 . =1, /B. + g,
) a34p 7 ¥5/8 * 8

where gj accounts for the errors in the division by Bj. In (8.10) a

bound is given on “gj" which shows that it is always insignificant. So

* = 0% + O*

and the first term on the right dominates the second.

Now we see that “Q? q.,,ll, which is really "Q? rj"/Bj, need not be

j+l

small like roundoff in 1; it may, for all we know, have inherited the

-13-



amplified consequences of past rounding errors to an extent which makes

lo* £ 02 0g.0 Iz 1 ana lg*
QF =57 = YT Ty R

j comparable to 1.
Paige [6] points out that this defect must be seen in perspective.
Abrupt loss of orthogonality happens only when Bj is tiny. Since
Bj = "rj“ this loss signals that span (Qj) is nearly invariant, which
is just what we want.
Here is the dilemma: stop too soon and Tj's eigenvalues will be
unnecessarily poor apprcximations to A's, stop too late and the columns
of Qj will be dependent and Theorem 2 will not give a useable bound

on the accuracy of the eigenvalue approximations. To resolve the

dilemma we must have realistic estimates for “Q§qj+1"'

7. Computable Bounds on Qg Q441

In this section we obtain computable bounds on llq* rj“ and

A

. The expansion for Q; rj in Lemma 2 fell into two parts

v 3
“Qj 441

% r, =c¢, +d,, where
QJ j h| i’

= [ - Q¥ QJ.)Tj - (1- e e¥ )Tj(l - Q§ Q) Teys

d, S-Fx.q, + (qg¥ Aq. - a.)e, + Q% s._.
h| | qJ (qJ qJ "3 QJ h|

(1)

Note that cj does not depend on the specific implementation of the
algorithm. It turns out that cj dominates dj as j dincreases and

so we spurn the crude bound
2 le .l < 2¢ T 1
J - 3 3

which ignores the role of ej in (1).

-14-



. lo*
LEMMA 3. Let Q¥ a4y,

ﬂcjﬂ 5."(Tj_l - ch.)lIe;j_1 + B

I < gi, i < j. Then

j-1

(Ej_l B, )+ Ialei.

Proof. Partition Tj and 1 - Q§ Qj to find

-Q*
Q3_19;

A%
(1 - Q5 Q)Tye,

1 - gl
qJ

a,
J
2

-0%*
Y2 -1
2
S RSN TN g
-a®
3 %-1

- % - 2
Tj_lQ,_l q  + ej_lBj_l(l qun )

J

- *
T3 - Q5 Qey

2
a. (1 - 1q. ") - B, .q* .
J( 9y ) 83_1q3-1 q;

The factor (1 - ejeg) simply annihilates the bottom element. Moreover,

by (5.11)
2
-1
|1 qiu | < Ky
and
* = * < .
Iqj qj_ll Iqj_l qjl L S
On collecting terms the asserted bound is obtained. O

A more convenient, but weaker, bound is

3) le I < T,
(3) ‘5 = i1

ﬂgj_l + (lajl + 2Bj_l)(€

< /§“Tj“E(£j-l + Kl)

and, less crudely,

-15-

+ Kl), B, = EO = 0,

j-1 0

by the Cauchy-Schwarz inequality,



Iy l"‘f "Tj I, using symmetry,

- -] «

(4) = max {max B, _; + lai| + Bi)’ Bj—2 + laj—l|}°

i<j-1

The quantity will be our basic unit of roundoff. It is constrained

K1
by (5.12) and can be given the specific value

A(4) Ky = (n+ 6)e

where ¢ is the relative precision of the basic arithmetic operationms.

We must have

(5) ne+ 20 < Ky

where ¢ 1is a bound on the relative error in the square root subroutine.

Consider now dj’ the second term in (1). In order to bound “dj“
it is necessary to specify the Lanczos algorithm (at last!) and perform
an error analysis to see how the roundoff vectors s, and fi arise in
(6.1). Unfortunately the reward for this labor is a term which becomes
unimportant as soon as orthogonality between the q; evaporates. In order
to avoid a digression at this point we quote the results from Lemma 5

(Section 8). For all i,

Hfiﬂ < KIHA“E/(l + Kl)

(6) “Si" < KIUAHE/(I + k)

1
]q*, Aql - Q I < 2!(1“A“E .

These bounds are very crude and the factor "A"E is unpleasant.
Frequently, but not always, “A"E = wlal with w << /n. The factor “A"E

comes from the only place in which A appears explicitly, namely in

-16-



computing u, which is intended to be Aqi' The error in this operation

is discussed in Section 8.

LEMMA 4. With the bounds given in (6),

lal < (5=1 .
(7 dj <{/i-1+3+ Kj} KIHAUE

Proof. [¥* q I < IF 0l _lq I < /5 -1 maxlf IVI +«
i — JE7 — i

< /i -1k lal_,
1< 1 17E

lo* s 0 < g, Mls I < Viw, k lal_ < (1+ k) lal
O 850 2 TGy 2T 7 e

lg Il < lyx q 0l + log*x s Il + |g* Aq., - a.]- O
| qJ QJ ] Iqj qj !

J

Let ug be the sum of the bounds in Lemmas 3 and 4,

8 w, =g,

. . T,
h| j-1 "j-1<

lo* I <
Then Qj qj+1 €j,

I+ (Iajl 2B PE R+ [/i-1+ 3 + Kj]KlﬂA"E.

where EO = 0 and, by (6.4),

(9 Ej

= w./B. + V1 + K, E.
J 1] J

For actual use it would be preferable to have a bound u3 constructed

entirely from computed quantities. All that is needed is a bound on the

relative error in uj.
is used in evaluating

possible to represent

u, = x, -y., and use
] ] J

programming is needed

let
(10)

For i < j, "uj“

Such a bound comes easily if extended precision
qu. Even in standard working precision it is
uj as the difference of two nonnegative vectors,
mg;[lx:i +y 5 I/ ||uj I as the bound. Machine language

to keep down the cost of this device. In any case,

]
k|
s!] < .
f JU DﬂuJ“

£}

s u, — A R
h| 95

can be bounded, using (8.3.iii), as follows

-17-



2 2 " 2
1% = 18, _ja; ;+oyq,+B.a,,,017 + Is{+B.q.07 ,
(11) <82 + o+ gD+ + 208, o e, + ]
SR T TRy 1 1105185 7 BiBy 185 + 3B, 1€ 41 »

2
< oi(l + 2gi-+2K ), using 2v68 < Y2 + § , where

1
-1
2 _ 2 2 2 52 2 2
Oy =Bty t By 10§ = 1Tl - o]
i=1
gi = max gk.

k<i

When i=j, 8. is unknown and we use the crude bound "ujﬂ < 30j.

Without proof we present the new computable bound for "dj"'

. , —
LEMMA 4'. Ildjll < (p A+ 5)(1 + 2gj_l+2.<l),/1 + kg IITJ.IIE

+ . + 1+ ..
603( o Kl)/ Ky

Let us recapitulate. Since the bound on "fi" is independent of i
and is like roundoff in UAUE we may say that the Qj given by the
basic Lanczos aigorithm does indeed satisfy AQj = QjTj + rje; to
within working accuracy. However the second relation 1 = Q; Qj may
breakdown completely. Nevertheless it is useful to continue building up
Qj while it retains fqll rank. There is no guarantee that span (Qj)
will be almost invariant when rank (Qj) < j but there is also no
guarantee that further steps will yield any improvement in eigenvalue
approximations. On the other band convergence of span (Qj) to an
invariant subspace is inevitably accompanied by orthogonality loss between
the qi.

Please note that the details of the algorithm were needed only to

give a specific value to the error bound Ej, not for understanding the
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general behavior of the process.

8. The Basic Lanczos Algorithm

The algorithm gradually builds up matrices Qj and Tj which are

intended to satisfy

Al T, + r.e¥x |
(1) Y i3 33

1 - @,

I
[

I
o

One of the attractions of the process is its simplicity. Imnitially
T0 = BO = 0. The j-th step begins with Tj-l’ Bj-l’ and Qj in hand.

In exact arithmetic the following quantities are then computed.

(i) u, = qu,

j
(ii a. = q*u, which ensures *r, =0
) oy = ajuy, a3ty = 0
(2) (iii) r, = u, - 0,q, - B, . 4
h| j JqJ J-qu-l
(iv) B. = llrj 0,

(v) if Bj >0 then ¢ = rj/Bj, otherwise stop.

jt+l

Note that Qj__2 is not needed and q will automatically be orthogonal

j+1
to Qj—l'
For completeness we mention that a comparable analysis could be made

of the very similar algorithm obtained by replacing (i) by

e\t -
and (iii) by

(iii)' r, =u, - 0.q..
J ] 1]
The reader who is not interested in an error analysis of the algorithm

may safely skip the rest of this section.
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In finite precision arithmetic none of the steps will be executed

exactly.

The goal is to find a small Bj % urj" and when cancellation

occurs in forming rj the computed vector will have a high relative

error unless extra precision is used in this step. In any case the

computed quantities satisfy relations involving certain round-o6ff terms:

(3)

(i) uj = qu + sj', (sj' will be discussed below),

ii) o, = q*u, - &,

(ii) 5= 945Y i

iii) r, =u, - 0,q, - B, ., +s."
(i1i) k| h| 3% j-193-1 i’

iv) B, =lr /@@ +n,

(iv) i j ( J),

= <
(v) qj+l rj/Bj + gj, provided that Kj+1 < 7/8,

otherwise stop.

Before discussing bounds on the round-off terms we see how fi arises

from (3);

Aq

(4)

where

(5) f

The

i =

+ 0,9, + rj - sj , 1=7j.

I
2]
+
w
09
-
/]

.2, . =s,"+s.".
i i°i i i i

term which dominates the errors is sj' and its assessment

poses a special problem . In applications of the Lanczos algorithm to

large sparse matrices the user is expected to supply a procedure or

subroutine which computes uj for a given qj. This is the only way in

which A

enters the process and the subroutine is presumed to be

specially adapted to take advantage of A's structure. Without an

assumption about the accuracy of the compuation of uj there is little

-20-



point in using the subroutine. Here are three possible assumptions.

(o) sj' = 0, no error,
(6) @®) ls. 'l < gllu I,
J J
) Hsj'" < meﬂA"EquH < Kl"A“E

where m is comparable to the number of nonzero elements in any row of A.
These assumptions correspond approximately to infinite, double, and

single precision arithmetic respectively. To be definite we shall presume
that standard working precision is used with no accumulation of inner

products.

LEMMA 5. With Ky = (n + 6)¢e, n2€ < 6, and (6Y) governing the

evaluation of qu, then, for i =1, ..., j

ﬂsiﬂ < Hfiﬂ < Kl"A"E/(l + Kl),

* - < lall_.
la *Aqy - o] < 2¢;lalp

Proof. We assume that the reader has some familiarity with
Wilkinson's treatment of round-off error; [9, Chapter 3]. However no
explicit backward analysis will be relevant here. A useful bound concerns

the error in forming an inner product between two n-vectors
(7) Ifl(x*y) - x*yl < ne“x"“y“ < Kluxﬂ"y".

where fl1 denotes the result of the specified calculation executed in
standard floating point arithmetic with relative error € in the basic
operations. ‘

Consider the error terms in (3), (3i) being covered by hypothesis.

2
Recall, from (5.8), that “qi“ <1+
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| 2
8) |6.] < nelq Mu,l < nelq 01°0a0 < « BAl_.
@ | JI 47 % E 1 E

" 4t is necessary to note that lo.q, + B il < “u .

To assess S,
h| '3 -195-1

For each element

fl[u - f1(a q + B.

i
j j- -193- 1)]

L]
!

u§(1 +€) - [ujq§(1 +e) + 8, (1+e)]d+e),

1q -1

whence

(9 sl < sellull < 4et+ ne) Il a1
From (6.4) and (3iii)

(10) “gj" < e“rj“/Bj <e(d+ nj) < e/l + Ky
and

11 QA -e@+ nj) < llqj+1[| <@+ le)(l + €).
whereas

V1 - Ky < “qj+1" < V1 + 1

by definition of Kl. Hence Kl = 2(nj + g) and nj need not appear
explicitly.

A bound for Sj comes from (5), (6 ), and (9),
' " lall_liq_ 1.
(12) Usjﬂ 5-"Sj I+ "Sj I < meﬂAﬂE“qjﬂ + 4e(l + me)lA|E|qj

Now f£f.=s. + B.g. and B, < Al lg | < eVl + k.. Hence both
i h| 383 j= Ve 8 1

sj and fj are generously bounded by KlﬂA"E/(l + Kl), where the

divisor 1 + Ky is inserted for convenience in applications. Finally
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*Aq - = |- ' T+ k.1
(13) lqj qu ajl | qj*sj + Gjl < V1 + KlmeﬂAﬂE

+ KI“AHE < leHAﬂE. a

9. Reorthogonalization

As we have seen in the previous sections it is possible that the basic
algorithm will be halted before any error bound becomes negligible. One
alternative is to start the Lanczos algorithm aggin with the best approximate
vector that can be derived from the final Tj' Another remedy, suggested
by Lanczos himself, is not tc compute Qg by normalizing rj but,

J
first, to purge rj of any remaining components in the earlier 9

obtaining

= - * = - *
Py = T iilqiqirj a Qij)rJ.

and then to normalize pj.

The extra cost of this cure is substantial. Not only does the
multiplication count per step go from 5n to (2j + 5)n (and at least
half of the immer products should be accumulated in higher precision) but,
of more consequence, all the q; are needed at each step. When treating
large order matrices it may not be possible to hold all these vectors in
fast storage and a nasty data handling problem has to be faced.

Ir this section we consider whether the new algorithm will satisfy
the tridiagonal relation (AQj-QjTj = rjeﬁ) and the orthogonal
relation (1 = Q;Qj) to working accuracy. It had been supposed that
the latter would always hold and that the algorithm could be run on to
j = n quite safely. 1In [6] Paige pointed out that although this is

frequently the case it cannot be guaranteed when standard arithmetic

facilities are used. Again there must be a stopping criterion. The big
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difference from the basic algorithm is that with a suitable test the

algorithm will only stop when a subspace, span (Qj), has been found

which is invariant to working accuracy.

Let us specify the modified algorithm. The j-th step delivers

quantities satisfying the following relations

(i) uj Aq. +8.',

|
ii . *u, - §,,
(ii) OtJ unJ j
(iii) r, =u

.= oa.q. - B. + s,
j 393 BJ-lqj—l i’

(1 . .
(iv) p, =r, -QQ%r, + t,
Py =%y T YTy Tty
(v) Bj z ﬂpj", and if the termination test is not passed,

vi . = .t g..
(vi) a4, pj/BJ 8
Putting all these relations together gives

= _ v _ " % - _ < 3
Aqy = By 19y 3+ oqy F Biagy —sgt - s+ QT - &y - Bigg, 1<,

Adj = By_194-1 *ogly F Ty syt - 8yT

Thus, exactly as in the basic algorithm, with s; = s.' +s,",
(2) AQ, =Q.T. - F, + (r, - s_)e*
Q= YTy - Fy ¢ h J) 3’

but now, for i < j,

~
w
~
rh
[

= - *
Q@ + by,

+ B

=2
"

Bi ¥ 8y ¥ P8y
and two of the terms in fi are new. It looks as though the error term
Fj may be bigger than before. Indeed it may.

Lemma 2 (Section 6) depends solely on (2) and so
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~
o)
~
f=)
S
'-‘
]

-F*q. + k., where
3% i’

=~
It

01— ok ol _ e
[ Qij)Tj 1 eje*)Tj(l Qng) + (Gj qg.‘sj)]ej + Qgs

A i’

Recall from (7.3) and (7.10) that in the basic algorithm kj dominated

ngj. This is no longer always true and the analysis of Qgrj is

quite complicated. Fortunately Qj’frj is no longer the crucial part

of ngj+1 in the new algorithm. From (1, vi) and (1, iv)

*q. ., = Q*p./B. + Q%q,
Q¥ag,, = ¥py/B, + Qqys

(5) Q§[(l - Qng)rj + tj]/B_j + ngj-

- — *
1 Qij) Qg‘rj/Bj + Q§tj/8j + Qggj-

The new terms are in boxes.

The middle term in (5) shows why reorthogonalization does not
unconditionally guarantee the orthogonality of the 9 to working precision.
The vector tj is the absolute error incurred in reorthogonalizing rj.
Bounds are given in the appendix for the various ways of computing pj.

They all have a component which is the roundoff in rj; say "tj“ §_Tj "rjﬂ.

Now Bj "pj“ S'Hrj" and there is no a priori upper bound on “rj“/Bj.
So orthogonality will leak away whenever ﬂpj“ is appreciably less

than “rjﬂ, an event which is much rarer than cancellation in the

calculation of rj.

10. Termination Criteria

The way out of this difficulty is to stop the algorithm appropriately.
Criteria arise naturally from the illuminating formula (9.5). Before

presenting a detailed discussion we point out a difficulty. Appropriate
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criteria turn out to depend quite strongly on the way the reorthogonali-
zation step is carried out. There is, however, no canonical way of
computing pj from rj. In the appendix we present three possible
implementations of this step and their associated error bounds.

The simplest rule is to stop when convenient storage space is
exhausted. The process may then be iterated as described in Section 3.
There is not much that can be said about each pass separately and we will
not pursue this aspect any further.

The ideas determining the specific stopping rules are quite simple.
From (9.5) and the bounds on “ti“ it is apparent that ﬁhe critical terms
in bounding “Qt qi+l“ are KiﬂQ§riH/Bi and ﬂriU/Bi. Our criteria

must keep them small. However there is a tradeoff. The tighter the

bounds on these terms the weaker will be the bounds on the final residual

lag. - I < 0F 0 + 0, - s.0.
AQj QjTj _<_Fj + T -8y

In order to specify appropriate stopping rules it is helpful to

know how the bound Ei on “Qgri" affects the growth of the bound

1 - o*
Kipp O 1 - @y Yy I.
LEMMA 6. If §E, < £ then Kk, , <k; + EV2i,
if giigﬁ then K 4 <k + &L ,
if Ei < &L then Kipl g_nl + Eivi+l.
Proof. Recall from (5.10) that
K, £
- i i _1 2 2
Kipp = 1 . =3k +xy + ‘/("1 k)T + 4E T
i 1

-26-



It is more convenient to work with Ei = Ki - K . Our object is to

majorize the solution to the nonlinear difference equation

ZEi+1 w Ei + /Ei + 4&: with initial condition El = 0.

Case 1: Ei.ﬁ £. Then Ei L EV2(i - 1) vyields

2, < EVZE - D + /2(i - D + 4} < 26021 [1 - 1/325%] < 2&/71.
The other two cases are similar. O

As an illustration of the way to choose a stopping rule we consider

the most favorable, and most expensive, computation of P;- The associated
bound is given in (12.8).

From (9.5) and (6.4)

A

g I e, I Ile. + 8,lq.1)/8,,
W 1af ag,l < eyl oge; 178, + Toyldle;h +6,1a, /8,

A

Y e N/8..
(Kj + e/l + Kj)qurj ll/ej + V1 + Kj (e + €) rj /Bj

Now select a parameter &, 0 < § < 1, which is to serve as a
tolerance on the relative diminution in Bj(% ﬂpjﬂ) below ”rj".
Suitable values for 6 will be discussed in the next section. Stop
the Lanczos algorithm if

(2a) Bj <1+ K “rjﬂ/(l + 8), or

(2b) B, < (k, + e/l +« )ﬂqgr B/Kl(l + §)

3 3 J 3

For all i before termination (1) yields

(3) “Qi qi+1“ < (1 + 6)(K1 + 2¢) = &,

and, by Lemma 6
- P® < S SV .
DEIEE SRR
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The cost of these rules is the computation of Uri“ and "ci“.
Note that c; = Q;ri will be formed in the course of the reorthogonali-

zation. Neither inner product &ir and cgcg need be accumulated in

i
double precision. So this is a small extra expense compared to the j accumu-
lated inner products of length n needed for g and the n accumulated

inner products of length j+l1 needed for p; =T, - Qici. In these

i
circumstances it is only reasonable to compute Bi 3 “piﬂ with
accumulation in double precision. This brings down Kl from ne to

2. Thus

(5) &=4e(1 +9) , (Ki + 25)/|<l(1 +68) <21 + V2(1 - 1))

In words, orthogonality leaks away very slowly. There is no need
to take seriously the Kj appearing in (2a,2b).

It is worth noting that Paige realized the necessity for a stopping
criterion and formulated one like (2b), namely Bj < j“ Qg.‘rj l. our
criterion permits the algorithm to go for more steps.

Since the computation of Py from r, dominates the cost of
each step it.is unreasonable not to accumulate all inner products to

double precision if the smallest bound on "ti" is to be used. Using

(7.11) we find

© ls 0 < ls "1+ Is "l < 2¢laq,l,

< 2€¢6 + a + B /{ + 2 + 2€, up to termination.

This bound will be used in (11.2).
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11. Bounds on the Final Residual

The algorithm stops at Step j with

AQ, - Q.T, = -F, + (r, — s.)e¥*
QJ QJ | | ¢ h| J) J
and either (10.2a) or (10.2b) satisfied. Is "Fj“ like round-off in
lal? 1s “rj“ comparable to "Fj“? We hope that the answer is yes.
Everything depends on the reorthogonalization and we are analyzing

the case when all inner products are accumulated in double precision.

First we bound nrj“ in terms of "Q?rj|L

LEMMA 7. If the algorithm halts because Bj <Vl + Kj“rj“/(l + 6),

(10.2a), and Kj < §, then

ﬂrjﬂ < (1+ 6)/1T.§n o rjll/[a- (x./D-2e(1 + 5)]%6-1ﬂQ35rj“.

j

1f the algorithm halts because Bj < (Kj +e/1 + Kj)“Q§ rj“/(l + G)Kls
(10.2b), then
llrjll < [(Kj + /z_e)/ncl(l +68) + /1 + Kj]"Q;,‘ rj"(l + 62,
< 3/5llo% ¢ 1.
3vYj Qj rj

Proof. By (9.1,iv) and (12.8)

le l = lp, + Q.xr. - t.l
5 Py QJQ‘

| h|

A

Bj(l +€e)+/1+ Kqu:iic IS (L +¢€) + ellrjﬂ.

Substitute the appropriate terminal bound, rearrange terms and the asserted

inequalities are obtained. For the final inequality in the lemma use (10.5). O

/2/3.

Remark. The two bounds will be approximately equal when & = K1/|<j

This suggests that a variable tolerance Gj = KllKj should be used in

practice.
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Lemma 7 does not show that Urj“ is comparable to HFj". Recall

from (9.3) that, for i < j,

1) fi

h

- %
Q;Qfr; + hy,

1 ti + Bigi + s; = ti + si .

Using (12.8) and (10.6)

(2) “fi“ < (V1 + K, + e)“Q?ri“ + (2 + 8)eB,

+ 2e/1 + 25 + € /Bi_l + 02+ Bi , for i < j.

i
In order to bound “Q?ri“ bounds are needed on ﬂqﬁrk“, k < i, and

an inductive argument is called for.

LEMMA 8. Accumulation of all inner products in (9.1) in double precision
yields
loxx I < lal < j

(ii) "Fj“E <25/ - 1e(1+ 6)HAHE.

Proof. From (9.4) *r | -T*%q. + k..
QJ 3 i% ]
In examining the basic Lanczos algorithm it was appropriate to
bound "ngj" by “Fj“"qj“ because each “fi“ was bounded by a constant.
A more careful analysis of the modified algorithm will show that the

bound on "thﬁj" remains the same as in the basic process despite the

fact that qu | has increased by a factor V3.

j-1
Using (1) above we write F, = 2 f,eg and
5-1 L B
(3) F#%q, = e f*q,
3% iél 1713

r¥ * t* + kq .
+ Le §Q,Q59; * Le; 19 ) ©;539
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Thus, using | Q% 9 I'< "Qgi‘-lqj I'<e

@ Trral < ehlopr, i+ @+ o (AIE 12 + Als 1),

It will turn out that the last two terms in (4) dominate the first.

Observe that

(5) | Q% rlﬂ = *r. < (L+ ¢ Ilrlll < (1 + g)lal

"

so that (i) holds for i = 1. Now make the inductive hypothesis that (i)

holds for all i < j. Then

/3-1 —_
(6) y Q* rkﬂz < 25€||A[|E /2(i - 1) + lower order terms

i=1

<13( - l)e“A"E + el
Also
£ < 4e(1 + 8), by (10.5).

Thus the first term on the right in (4) is 0(62). Using (2)

j-1
- 2 2 2 2 2
izlﬂti“ < 2 {Z"Qi*rk" + (2 + §) EBi},

) AIE N < 22+ el + 0,
< /2(2 + §)elal .

Finally, using (8.68) and (10.6) to allow for accumulation of inner

products

/-1
®vy lls,ill2 < 2e/1 + 2E + g[lTj“E < 2/ +2g + ¢ Al
i=1 -

Putting (6), (7), (8) into (4) shows that

9) lrFxq. ll < 7ellall_.
9 JqJ < B
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A bound on “kj“ in (9.4) is needed. Recall that

k. c. + (g¥Aq, - a.)e. + Q*s,
h| 3 (qJ 93 3773 QjJ’

(10)

“cj" V3glt 0, from (7.3).

iE

IA

With accumulation of inner products
| ayaq, - o] < e+ e)lagl < e+ e)2lal,
(11)
Ilsj I < Zellqu < 2e(1 + e)lall.
Using (10.5) in the form & < 8¢ we find that
e I < Al
(12) kI < 18elal,

loxr.lIl < lall_.
QJ i < 25¢lAl

By the principle of induction (i) is established.
Using this bound in (1) yields
le I < 1+, 25elal

hr 1 i - flall
P lp < 25/f - T e + ®laly, provided «; < 6. ]

Comparing Lemmas 7 and 8 we see that the bounds on llrjﬂ and
“fj-—lu are approximately the same. Moreover [le ﬂE < 25/ € UA"E

which is certainly like round-off in ﬂAﬂE. Thus the fundamental relations
"AQ. = A.T." " o= * Al
QJ ity 0 Q3 QJ

are satisfied to working precision upon termination of the algorithm.

Similar analyses can be made for the two other ways of reorthogonalizing.
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12. Error Bounds for Re-orthogonalization

Given is an n x j matrix Q = (ql,..., qj), whose columns are
not necessarily orthonormal, and a vector r which is not arbitrary
but is constructed so that [Q*rll << irll. Consider the computation of

-

i=1

) p

= - *
Yy (1 - QQ*)r,
where

(2) ¢

Q*e = (s vens T

The standard notations f£fl(x*y) and f12(x*y) will be used to
denote the computation of x*y in standard working precision and with
accumulation of inner products, respectively. The standard bounds are

|£1(x*y) = x*y| < n e Ixllyl,

(3 |£1,Gxky) - xby| < e |xhy| + ne2lxllyl,

|£1(x + y) - x - y| < e(lxl + Uy).

The terms which are 0(82) may be ignored by making a small relative
increment in the value of €.

There are three ways to implement (1):

) p = £1(r - @y, P = f100%0),
@ an P =0 - @), P -y,
(iii) p(3) = flz(r - Qc(z)).

The fact is that much of the value of reorthogonalization is discarded
when (i) is used, but some current computers exact such a heavy penalty
for accumulation of inmer products that it is useful to consider computa-
tions which are confined to working precision. Working precision may

already be long precision on some computers. Using (3) we find
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M - f10g4r) = c -y, 1Dy < nelql_lrl,

f
P = g1 () = ¢ - yP, P < elel,
pD < f1r - £1(0eP)] = £10r - Qe + oy + sy,
(5)J 1s M1 < jelqlte P,
=p-h+lgyP + D, Inl < 2zl since lqel < e,
p? = p [n']+ oy® +[§, 'l < 2elzl, 180 < selentePu,

~ p(3) =p -|n"|+ Qy(z) + s(z) In"l < elrf, ﬂs(z)ﬂ < eﬂQc(z)ﬂ.

’

The dominant terms are in boxes.

We assume that rank (Q) = j and, more precisely, that

(6) 0<1-k<Q*tQ <1+ k.

Then

(1) ol < /T ¥k < /2, loll; < A 1+ k.
Using (7) and (5) the final bounds are
( "p(l) -pll < (/3@ + k) + 2]elel + Vi V1 + k elQ*rl + 0(52),

@ ¢ 1P - pl < 2elel + (G + V5 AT elowel + 0(eD),

L 1p® - pll < ellxl + /T ¥ ¢ ellgrel + 0(e%).

It is quite legitimate to use [Q*rl < /1 + « lrl  in order to give the

bounds in terms of [rll alone, but this is an unnecessary and crude waste

of information.
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The Kk's in (8) could be omitted because their contribution is 0(€2).

13. The Block Lanczos Method

The basic algorithm can be gemeralized in a natural way [1,2] to

produce a block tridiagonal matrix

rAl B
By A, B
(1) '1"3. = B, . . -
. . BY 1 |
By A

This method is particularly appropriate if several, say p, eigenvectors
of A are wanted. The process begins not with a single vector g, but
with p orthonormal vectors. We think of them as columns of an n x p
starting matrix Ql' In theory, the Lanczos method will then build up

a big matrix
(2) Qj = (Ql, Q2’ AR | Qj)
satisfying
3) AQ. = Q.T. + R,E¥*
) QJ QJ h| 3]

where
E§ = (0, 0, ..., O, Ip.), Py = rank (Qj).

J

The j-th step involves the following computations
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What is new here is that Qj+l and Bj are not uniquely defined
by (iii) and must be determined by the use of some appropriate convention.
We have in mind some stable form of the Gram-Schmidt process which will
produce an upper triangular Bj with positive diagonal when R, has
full rank. And when Rj's rank is not full there is still a unique

echelon form for Bj’ for example

6] + X b 4 X
B, = o o o) + b4 .
J

o o o) o +

Because of rounding errors the relations in (4) will not hold
exactly and the columns of 6j will not be orthonormal.

We do not know precisely when the algorithm should be halted but,
by Theorem 2 (Section 3), there is no point in continuing after linear
independence among the columns of Qj is lost. So the focus of our
attention is on a computable bound for 1 - ag 5j'

In this connecﬁion the following facts are useful. Let M be any

Y

block matrix with Mij as its (i,j) submatrix.

' ] =
LEMMA 9. Suppose that “Mij“'s Vs all i, j's and W (Wij)

then, in the sense of quadratic forms,

1-W<1-M<1+W
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1
it can be verified that Ul = IFl and

Proof. Let x* = (x* , ..., x: y, y* = (= 0, ..., “xn). Then

;E*ﬁ;i < y*Wy,

It follows that

W< (M <+w. O

COROLLARY 1. If Iwl < 1 then

0 < a1 - Wl <A (2 - H].

~

COROLLARY 2. If ﬁj =1 - Q?

O
(SA

and 1 - Wj is positive definite

then

/Xi[l - Wj]_g smallest singular value of 6j'

The proofs are omitted.

These results reduce the problem to one of majorizing "QiQm" by some
Wom Moreover there is no need to compute Xl[l - Wj]. A novel

termination criterion is the following.

Attempt to compute the Choleski factorization of 1 - Wj. If
successful keep the factor Lj and continue the algorithm. If the

computation breaks down, due to O or negative pivots, then stop.

Here

]
w¥ W, 2% 8,
J ]
The cost of this test is quite small. First solve Lj_lzj = -wj

for Qj’ then compute

§. = V1 - w,, - 2L
| J

33 h|
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If linear independence between the blocks Qi is lost too rapidly
the simple version of the block Lanczos process ceases to be useful.
On the other hand reorthogonalization is a heavy insurance against such
a misfortune, so heavy in fact that the Lanczos algorithm loses many of
its attractions.

There is room for some technique in between these extremes and
Jane Cullum has made a valuable addition to the lore of the Lanczos
process in [1l]. When the block method is being used iteratively the
vectoré in a new starting matrix Q, split into two groups, those that
have "settled doﬁn” and have already been accepted as eigenvectors and,

in the other group, the remainder. It is important, almost essential,

to reorthogonalize each Rj’ j > 1, in (4 ii) to all accepted

eigenvectors.

This feature complicates the process enough that we have not
incorporated it into our analysis, though Cullum's reorthogonalization
could be treated as a deflation technique auxiliary to the block

Lanczos process.
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14. The Scoreboard

A computable bound on QEQm is derived in this section.
As usual we now let the previous symbols denote quantities actually
stored in the computer. Because of round-off error the following

quantities are not zero,

Q. = ,.‘ A s A.’
J QJ QJ J
1 S! =R -~ (AQ. - Q.A, - Q, ,.B%
1 jER -0y - oh -0 By ),
G. = . B. - R .
3 QJ+1 J 3
S. =S.'"+6G,
J J J

Let us assume that bounds are available in the form

2 gl <w,, Isl <g
i — 3 i

01 -

i3’
In fact we can expect these bounds to be independent of j but this
is not necessary. For example the corresponding bounds of Section 8

could be multiplied by rank (Qj) and used here.

Suppose, further, that we have bounds
I o% | = L 1 i i
(3) ool < =k 45 1, k<3, ik,

We are going to derive computable values for i < j. In this way,

Ki,j+1 °

we can gradually build up a 'scoreboard' W = Kin% which is

5+1° Vi
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(3j+1) x (j+1) and satisfies

(4) 1-2Q

341 o1 = Vs

In order to obtain computable bounds we have to compute something.

In this case, at Step j, we need
) Al <q., 8§ = VA (B.B* > s 0l = *
i =733 M PP By 2 B3 Amax(BJ’Bj) ’
and

(6) ﬂQil;c sjll < o5

We digress to make a few comments on the bounds in (5) and (6). Only
modest accuracy (25%?) is needed. If A is positive definite them trace

(Aj) will do for aj, otherwise [a_l There are several ways of

jE
. * * itly.
approximating Xmin and Amax of Bij without forming Bij explicitly
Certainly qu“E can be used for Bj.
The tricky question concerns & . Any scheme which assigns a rank

to R, adequately for practical purposes turns out to involve an estimate

6j of B.'s smallest singular value. This is so because the construction

of and Bj can be regarded as an attempt to reduce qu+lBj - Rj“

U1
to negligibility without making 5j unnecessarily small, doing so in
steps each of which increases the ranks of Qj+1 and Bj by 1 while
diminishing both "Qj+1Bj - Rj“ and Gj. The pivoting process is Gram-
Schmidt orthogonalization can be regarded as a way of avoiding, in each
step, a small reduction in “Qj+1Bj - Rj“ at the cost of a serious
reduction in §.. A consequence of that pivoting process is a constraint

3

upon the elements of Bj which allows estimates like Karasalo's [4.5] to
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be used with confidence provided the rank of Bj is small (<10, say).
Since the intricacies of adequate estimates for Sj and rank (Rj) could
distract us far from the discussion of the scoreboard, we shall say no

more about them here.

From (2) 0., <Vl + k,, 0, but that is rather crude.
ij ii j

Note that

j -~
lo#s 12 = 135,02 < (@ + I, o? < 26°
12113 Q850 = ¢ 317 <29

because the process stops before lw Il > 1.
J

Ideally, then, we would have Xoij_g 20;.

Now we present the formulas for the (j + 1)-th column of W.

The bounds in Lemma 10 are not for insight but for numbers!
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LEMMA 10. Using the notation developed above

K.,. k,.a. +w,. +k. .
j’itl i3 A J,J-lB

. . +0,..)/8,
j-1 JJ)/ i’

K. X B. .k .o, LK, + K.. + K, . + 0, .
1,541 = Bygyoa 5 T 4ayir g ¥ By (g Y KLy 5o Y05 50

+ 0.k, .+ 0, .1/6,
3 3-1,3 J-l,J]/ i’

For i > 1,

[B. a, . +a,)

K. . . . LK. . . + JK., . .+
j=-i,j+1 j-i-1"j-i-1,j ( j-1i 3755-1, 3 B

§-1<4+1-1, 3

+ B 1/6..

Y + 0, . + O. .
j-1j-i,j-1 j.j-1i j-i,377 3

Proof. The derivation is in the spirit of Lemma 2. We shall invoke

+

the generalized inverse Bj but with no intention of computing it.

Using (1)

+
.,, = (AQ. - Q.A, - Q. ,B*¥ _ + S.)B,.
QJ+l ( QJ QJ h| QJ-l j-1 i3

So, using (1,1),

+
*Q.,, = (A, +Q, - Q¥Q.A, - Q*Q, .B* + Q%S,)B..
QJQJ+1 (J j QJQJ J QJQJ‘l j-1 QJ J) j

Using "B;".g 651 and (2), (5), (6) the first formula appears.

Next

+

while, from (1),

A = Q, ,B* + Q. A, + Q.B, - S, ..
Qo1 = {oBiy QgAY By T 55

On substituting for A.Qj_1 above and using (2), (5), (6) the second

formula arises. The third is similar. 0

This technique can also be used with the basic algorithm and in that case

the cost of the bounds in (5) disappears. Recall that the goal behind this
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more elaborate Sound is to keep the Lanczos algorithm going as long as

this is warranted and hence to cut down on the number of passes required

of the whole iterative Lanczos algorithm. Note also that the generalization
of the bounds in Section 7 to block form requires “Tj“E as well as dj'
It is not clear that the scoreboard will be preferable to the simpler

bounds presented earlier. Some complicated tradeoffs are involved.
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