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Abstragt

This paper ¢ontinyes the development of a stochastic calculus for
two-parameter martingale. It is shown that such a calculus is complete
only if one introduces a mixed area integral in addition to the ordinary
integral and the two types of stochastic integrals which were introduced
earlier. In pafticular, the mixed integral is necessary for an elucidation
and representation of weak martingales which wérevintroduced by Cairoli
and Walsh, As a preliminary development of differentiatioh formulas
of the Ito type, representation of products of integrals of the various
types is derived.

Stopping times are introduced for two-parameter processes, and a
characterization of strong martingales in terms of stopping times is
given. Finally, some brief results on path-independent variation and on

two-parameter, Markov processes are presented.
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0. Introduction

Thig paper continues recent work toward the deVelopment of a
stochastic calculus in the plane (i.e. fér the case where the time
parameter is two dimensional) for continuous martingales in general
and for the two parameter Wiener process in par;icuiar.

The basic references for this work are the.fuﬁdamental paper by
Cairoli and Walsh [3] and a previous paper by the present authors
[4]. The reader is referred to [3] and [4] for fhfther references
in this field. o

In order to describe the contents of this ﬁaper/we give, first, an
incomplefe definition for two parameter martingéles,‘weak, 1- and 2-
martingales. Precise definitions and references will be given in the

next section. Let (2, ;Z, JD) be a probability space,Ef s 0 <s < Sq>

s,t
- C
0<tzx< to,sub o-fields of :; such that E;sl,t E;Sz’tz if 8, 2 s, and
t, 2t,. In what follows assume 0 < 8, 28, 5,so,z0.§.tl.§_t2 2ty

and X to be F _ measurable. Then X is a martingale 1if
s,t st s

t

9

E(X | F ) =X a 2-martingale if for all fixed s
SZ’tZ Sl,tl Sl’t’ . ‘

E(XSZ,t |:;Si’t) = xsl,t, . a 2-martingale if for gll fixed s

E(Xs,tz l?}s,tl) = Xs,tl (there is some difference between the definition
of 1- and 2- martingales used in this paper and [3] as will be pointed

out in the next section). XS ¢ is a weak martingale if
’

E{X_ _+X - X -x. | F. . 1r=0
8p2ty  Bpsty Tspety Tty Vst

In section 2 we show that.XB ¢ i1s a weak martingale if and only if it is
, ,

the sum of a martingale, a l-martingale and a 2-martingale (a discrete
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version of this result appears in [1]). A one (or two) martingale XS N
t]

is said to be proéer if for a fixed s (resp.t) it is.of bounded variation
tn t (resp.s). It is shown that weak martingales satisfying certain restrictions
can be decomposed uniquely into the sum of a proper ﬁartingale, a proper
one martingalevand a proper two martingale. In section 3 we introduce
a mixed area integral Jf¢(z,z')dMZdu(z') where u(z) ié é_(possibly ran-
dom) function of bounded variation and Mz is a martingale. It is
shown that such integrals are proper 1 or 2 martingalés; In some
special cases this integral reduces to the mixed integral introduced by
Cairoli and Walsh [3]. 1In section 4 it is shown that every proper 1
vor 2 martingale of the Wiener Process satisfying a sqitable differen-
tiability condition can be represented as a mixed areavintegral.

In section 5 we consider a stochastic (It3 type) calculus in terms of
area integrals including the mixed area integrals of section 3. A
partial mﬁltipligation table representing the produc£qu two
stochastic integrals as sum of stochastic integralé is constructed, a
complete stochastic calculus will be presented in aAléﬁer report. Stopping
times are introduced in section 6 and used to give a'cﬁatécterization of
strong martingales of the Wiener process. We also give a characterization
of path independent martingales in this section. The possibility of
constructing two parameter Markov processes is discuésed briefly in

section 7.
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1. Preliminaries and Notation

Letz=(s,t)0 < s < sy 0 2t < t,denote points on a rectangle
in the positive quadrant of the plane. zy < z, will denote s, <8,
and t, < t,.. R will denote the rectangle {z: 07 z <z} Let

(9,3 . P-,) be a probability space and {32,2 EYRZI_}_ be a family of
0
sub o-fields of _3'( such that [3]: -

r s C
F)) oz { z' implies ?z ]z'
\7&0 contains all the null sets of j - .
Fy)  for all z, :;é = N :7;' »8' > s, t! > t.

for each z, :}l‘ and 35 are conditionally independent given 7,, where

gi = i,to’ ji = \;s

0

Definition: A process {Mz, z € RZ } is a martingale if (1) MZ is

0
adapted (2) for each z, Mz is integrable, (3) for each z < z', E(szl Jz) =M.

Z
Let z = (s,t), z' = (s',t"), the condition s < s', t < t' will be
denoted by z <{ z'. If z {{ z', (z,z'] will denote the rectangle
(s,s'] x (t,t"] and if X, is a random process, X(‘z-,"z'] will denote
Xer,er * xé,t " Xgre T A e
Several other notions of martingales were it'xtr.;foduced in [3]. We
follow here f:hese definitions with the exceptioﬁ of the definitions of
1- and Z;martingales which differ from thoée given in [3], as will be

pointed out later. 1In the following definitions X = {Xz, z € R } is

. - 0
assumed, for each z € Rz » to be integrable and :}z adapted.
0 !
Definitions: - (a) X, is a weak martingale if E{X(z,.z']l’jz} = 0 for
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®) X isani-martingale, i = 1,2, if E{X(z,2'] lg:} =0

for every z << z', and x is a one parameter martingale for i = 1

s,0

and XO t is a. one.parameter martingale for i = 2.
b4 .
(c) Xzis a strong martingale if it vanishes at the axes

and E{X(z,z'-]l}iv }i} = 0 for every z 44 z'.

Remark: The definition of an i-martingale given hete éiffers from the
one given in [3] by the requirement that X be :;z adépted and that XS’O
or xO,t be a one parameter martingale while in [3] it was only required
that Xz be :;: adapted.

Some additional notational conventions

(a) The letters z,{,n will be used to denote pointlsuin.Rz whenever
. 4 gy
these letters appear with or without primes. It will always be assumed

that z . = (so,to), 0 < 8o <o, Q< t0 < » ig a fixed point in the plane.

0

(b) z) Az, will denote that 8 < 8, and £, < tl, and zlzk z,

will denote the point (Sl’tz)'

(c)' zy V 2, wiil denote the point (max(sl,sz),max(gl,tz)).

(d) The function h(z,z') is defined as

1 if z A2

h(z,z')

0 otherwise

(e) Unless otherwise specified, if the time parameéer in the integrand

is £ then the integration is over Rz or Rz X Rz’ i.é;5

J VM, = J vy,
-
z
”w(c,c')'dMCdM =J fw(z;,r,')nddM

C'
R xR
z z

;'
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and if the time parameter in the integrand is z then the integration

is over Rz or R - x Rz , namely,
o % 0

Iw(Z)dMZ = Jw(z)sz

Rz
-0



2. The Degomposition of Weak Martingales
Recall that throughout this paper a l-martingale Mi and a 2-martingale

Mi are as defined by Cairoli and Walsh [ 3] with the additional assump-

tions that M1 and M2 be :EK measurable and Ml and M2 be one
z z z s,0 0,t

parameter martingales.

Proposition 2-1 ‘XZ is a weak martingale on Rz if and only if it is
0
expressible as Xz = Mi + Mi where Mi is a l-martingale, Mi is a 2-

martingale.

Proof: Every 1l- or 2-martingale is by definition a weak martingale.

Let

1
Ms,t = E(xs(rt, :;é,t)f

Note tbat E(xﬁo’ti :;é,t) = E(XS ,tl Ezs,to) by assumption (F-4) on the

conditional independence property of the 0-fields. Therefore Mi ¢ is a
b

l-martingale.

1
Let Yz = Xz - Mz » then for h > 0, (s,t+h) < Zgs

E(Ys,tﬂ{' s,tl 330,1:) = B0 Y tI ?S,t)
- E{xs,t+h + xs,t E(Xs .t+h| :;é,t+h) E(xso,tl :52 t)I E;é t}
N E{Xs,t:-lv'h + Xs,t - xso,t+h - xso,t| zys,t}

since XS t-is a weak martingale. Therefore YZ = Mi is a 2-martingale.

L]
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Remarks: (a) Note that if XZ is right continuous, so are Mi and Mi. (b)

. .. _ ) |
If the o-fields :?b;m or :;;’0 are trivial and XO,O = (0, then M(Lt = Ms,O
= M% ¢ = 0. (c) The decomposition of proposition 1 is not unique. How-
ever, if X_ = M. + M’ and also X_ = N* + 82 then M' - N' and M® - N

z z z b z z z z z z

are both 1 and 2-martingales. Therefore, by the converse to proposition

1.1 of [1] (see the proof of proposition 1.1 of [3]) M; - Ni = Ni - Mi

is a martingale.

Definition A weak martingale Xz will be said to be regular on Rz if
0

for every fixed XS as a function of s is a one-parameter semimartingale

»€

(namely the sum of a martingale and a function of bounded variation) and

for every fixed s, Xs . as a function of t is a one-parameter semi-
b

martingale, for almost all w.

Definition A l-martingale Mi (2-martingale Mi) is said to be proper

1 (M2 t) is of bounded variation in the t

if, for almost all w M
st S,

direction for all fixed s € [O’SO] (in the s direction for all fixed

t).
Lo 1 . 1 .
Proposition 2-2 Let Mz be a l-martingale on RZ , if MS is of
0 0’
bounded variation as a function of t then M; ¢ is proper on Rz .
b

0
Proof: Let A(t) = Mso,ﬁ then

M = Eow| J D= row] F L)
2 b 0

< E{}|r(t

) = A(t)]

Fu)

i+l *ty it

and, taking the supremum over both sides, it follows that Mi N is of
’

bounded variation in the t direction for all s.
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Proposition 2-3 Let Mi be a regular and continuous 1 martingale then

1_ 0P
¥4 z

M + Mz where Mi’P is a proper l-martingale and Mz is a martin-

gale. 1If Mi = (0 then the decomposition is unique.

»0

Proof: Let Mi = A(t) + m(t) where A(t) is of bounded variation

0’
and continuous and m(t) is a one parameter martingale. Let

x, = EM0) | F )
v, = B ) [F )

Then Xz is a proper l-martingale, YZ is a martingale and Mi =X + Yz'

Theorem 2+4 Every regular and continuous weak martingale XZ can be
decomposed as

X = MbP 4 2P
Z Z Z

+M
z
1,P . ?')P .
where Mz is a proper l-martingale, M is a proper 2-martingale and
M is a martingale. Moreover, if X = X = 0,'thén the decomposition
z s,0 0,t
is unique.
Proof: The result follows directly from propositions 1 and 3.
' P
Let Mi’ be a proper and continuous martingale on Rz and

0

1,p :
? = A(t). Since A(t) is of bounded variation, we can write

MS
0t

+ ~ + -
At) = M0) + A (t) - A (t) where X (t) and A (t) are nondecreasing
+ _ .
nonnegative and A (0) = A (0) = 0. From now on we will assume that

A(0) = 0. Let
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]

uit = et I+, 0

=
1

=TI

1,P 1+ 1-

Then Mi+ and Mi-.are both proper l-martingales and MZ’ = Mz + MZ .

s + . . . + . .
Since A (t) is nonnegative and nondecreasing, Mi is nonnegative and

sup IMi+l = sup |M

0424z 0<s<s

0 0

. 1+
Since MS ¢ 1s a one parameter martingale, we have by the one parameter
s ‘
0

maximal inequality

>

E(supIMi+])q < (E%i)q sup E[Mi+t|q
z >0

| A

IpEate )t L a1

Therefore, by the Minkowsky inequality

1/q 1/q 1/q _
I P A M COILE I O PR
” |
1/q -
2 B e (g

| A

q-1

To summarize, we have
Theorem 2-4 If M;’P is a proper and continuous l-martingale, then
1,p
E(sup [>T < (?zl_g_‘i)qE(Var(Mi’P))q

£R 0
%



where Var(Mi’P) = At + A; is the variation of >(t), and similarly for
0 0 0 .

a proper and continuous 2-martingale

2
Esup M TP < CEwarei? T))?
2 q-1 Z
ZERZ 0
“0
where
+ -
MY = o) = ot ) - o (e
S,to
and

Var (Mzzzo)' = o) + p7(s).

Let Xz be a regular and continuous weak martingale such that XO = XS 0~ 0.
b ?
Let q > 1
1,p 2,P 1/
Ixt = (M3 4E(var M2 + E(var ¥°25) 9]
R %0 %0

Let;(q(qo) be the class of regular and continuous weak martingales such

that xO,c = XS o= 0 and Uxﬂq < w.

?

Theorem 2-5 :Xq(zo), q > 1 with this norm is a Banach space.
Proof: We have to show that Xq(zo) is complete.

Let XE be a Cauchy sequence. Then by taking a subsequence we can get

o

I X‘;‘-l - xz -n

< 2
q =

then by the maximal inequality and the Borel Cantelli lemma, X" con-

verges uniformly in z < Z, to a process XZ and if X: = M: + M;’P’n + Mi’P’n
then the components converge to a martingale, a proper l-martingale and

a proper 2-martingale respectively.
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3. Mixed Area Integrals

In [4] we introduced a stochastic integral over; R + % R+
”w(z,z')dw(z)dw(z') (see also [3]). It seems ft':‘hat for the full devel-
opment of a stochastic calculus in the plane still another integral is
necessary. This integral will be of the form Ijtb(z,z')dW(z')dz where
z Az'(z' A 2z) and will be a proper 1 martingale (2 martingale). A
related integral has been introduced by Cairoli a_'vnd. Walsh in [3] and
termed a mixed integral. The relation between fhe ‘mixed integral of
Cairoli and Walsh and the mixed area integral sb c.ievf»ined in this section
will be pbinted out later.

Let M, 2 € Rzo be a continuous random funct'i-ofn. of bounded yariation
adapted to jz’ and let p(A) be the signed measure induced on the Borel
sets A of Ré by IJZ. Let Iul (A) denote the variatiop of thé U measure,
nanmely, u(Aj 0= p+(A) - u (A) is the Jordan decombésit:ion of u and
el = u+(A) + 1 (A). We assume that the total ?ériation of n is
bounded by a constant by <=, ie., IuI(Rzo) < Uy a.s.

Let Mz be a continuous martingale and let A = (zl,zi], B = (zz,zé] '

be rectangles such that if z € B and z' € A, theﬁ zA z!

o

v

"‘3. 1"



Define, now, the process

X, = aM(AﬂRz)u(BFRZ) ' | (3.1)

where o is :¥z'vz . measurable. Then
172

a) Xz is a continuous proper l-martingale

. to '
b) The variation of X is a ° lM@)| - J[dtu(BnRs t)[_5 M) | » Ju](B)
. )
Let
¥(z,2z') = o if 2€ B, z' €A
= 0 otherwise
aﬁd define
1y = .
”w(;,c Yau, du, = X, - (3.2)

where Xz is as defined by .(3.1).

To simplify notation assume z_, = (1,1). Fix an integer n and

0

introduce a grid on Rz
0

24 = (271,27%)

where i,j are integers 0 < i,j < 2", Define the rectangle
By = (yyr2ign gl A
Define

ij

') (z;z') = ol (z)I, (2') 1if =z ;& z
13,k % By Ty 138 g

n

0 otherwise

—30 2_
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and o is bounded and :;; measurable. A function ¥(z,z') is said

13V

to be a simple function if it is a finite sum of'anctions of the form

wij k,L(z,z')-for some n. The extension of (3-2) to simple functions
b . .

is obvious, and the resulting Xz is a proper l-martingale.

Let ¢ be a s;@ple function and for-Aij = (zij’zi+1;j+1]’let
MO;5) = Zi4y 541 ¥ %45 T Zi415 T Pige |
Then
X = Z ] u(a, M@, ). (3.3)
z0 13,Kke ijke™ i3 ke _
If Mz is a strong martingale then we have
2 . E a2
EX =E v Pevsn u(, du(d, M (4, )
zo B ETRYRLUL ij,ke"1%j', ke ij i'j . ki

' ' ' 1 -
E I I I Y(z,2")¥(n,z )dunduzd[M]z.

RZ sz sz
% % %
= E [ ( fwz,z')duz)Zd[M]i. (3.4)
R R
zZ Z
0 0

1 ' ‘
where [M]i is the unique :}st predictable process such that
2 1 —1 L |
{?z - [M]z, s;}is a martingale in s for t fixed, and the passage from
(3.3) to (3.4) follows from Proposition 1.7 of [3].A

The variation of XS 6° 0<86c< to is upper bounded by
03

Var(Xs(‘)’e,Of_ei ty = § |u|(Aij) ¢ |§ !Pij;AkzM(Ak,z)l (3.5)

Setting |u[(Aij) = VTul. /Tul we have by the Schwarz inequality

—30 3-



E(Var (x 0<6<t 0) ) 2

0

. o 2
<E Z: lufca, ) - Z ul(a .)(2: V... M@, .)) } (3.6)
j { G I ij G I I ij . iij, .kl .

e’

And since Mz is a square integrable strong martingale, we have by 1.7 of

[3]

' 2
E(Var (xs e’°§e-<-t0))

0’

< ugk Z lula J)(Ewij M) | (3.7
. ke
= HgE J J vV (z,2 )dluI(Z)d[M]z. , (3.8)
' " R_ XR S

Consider now the special case where u(z) is a product measure
u(s, t) = u(l)(s)u(z)(t) For simplicity we will assume that u is a
positive measure, ( )(d ) will denote u(l)(Z (i+1)) (l)(2 i) and

similarly for u(z)(d.). In this case we can write instead of (3.5)

Var(X_ ,0 0<6xt ) <Zu @ @)] 20 4y n P @ue, )|
0 i, k& .

Setting u Vi @) 141 Z yields

/ .‘ 2 o
E(Var X)2 iE{Z u(z)(dj) Zu(z)(dj) Z } '
h| 3 '

ik
t ]
o s L
‘ 00

If y is not positive, then (3.9) holds with u(z)(t)_replaced by Iu( )|(t)-
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The requirement that Mz be a strong martingale was needed to pass
from (3.7) to (3.8); in the following particular case this is not

necessary.
Let y(z,2') = h(z,2')n(zvz') where h(z,z') = 1 whenever z A z' and

'zero otherwise. Then

byg o = T TGS+ TG<) - . (3.10)

where I( ) denotes the indicator function. Substifuting (3.10) in (3.3)

and summing over % we have

k>i

-‘___ g: u(Aij) E wkj(M(k+1,j)-M(k,j)) L | | (3.11)
Setting w=+/ A owe have

j k>i

S ]
0 0

2 1
f d|ul (s, c)f ne’tde[M]e’t}
R s

5 {iZ lulCagy) 2 vijm(kﬂ,j)-u(k,j))z}

where [M] is as in (3.4) chosen to be measurable in (s t). Integration

by parts with respect to s yields

too
EX <uE J
0o

o0

ML 4 0. (3.12)

Furthermore

Var(Xsoe, 0sf<t ) < § |ul @y 5] kgi My MCHL, §)-M(k, 3))
’ ) .
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Therefore by the same arguments as those leading from (3.11) to (3.12)

we have

d M) d',__'l'ul"(s,t)} (3.13)

s,t's

O t———n
=, o

E(Var X_ ;e’ o<e<t0) <m E{TO
50 | o

In addition to (3.10) assume, now, that p is a product measure

(1) (2)

namely u(s,t) = u(l)(s)u(z)(t). For simplicity assume that u and u

are positive'measﬁres, then

2“(2) ‘iwz ki ("k+1,j'"k,j.))

i k>1i

Let

-2 “in(g;; "k (Mk+1,j‘"k,j))

(2)
then Var(xso,e, O<o<ty) < ;uj |a_j|

Setting u =Ju {j Vu E )

E(var %)2 < u<2><tom<zu;2>a§>
3

Now, a., can also be written as

3
S i} ),
%7 zk:_("kj-mkﬂ,j AR

i>k

Therefore

| %o t:o Re
E(Var X) (to) [ I (u (1)(5))“ ¢ d [M]s £deH )(t) (3.14)
: 0 0

-3.6-



Let B_ be the class of all processes {¥(z,c"), 5,2' < zo} satisfying

1) ¢ is predictable as defined in section 2 of [3]
2) @(C,t') = 0 unless TAZ' -

3) E J J wz(c,c')dluld[M]i < @ or, if M, is a product measure,

R_XR
20 20

the right-hand side of (3.9) is finite,qu iet Mz be a square
integrable strong martingale. -
Since siﬁple functions are dense in Ba’ the mixed area integral
IfwdudM can be extended by continuity to all ¢ in Ba' In view of Theorem
3 of section 2 the integral will be a continuoué.proper 1 mértingale

satisfying (3.4) and (3.8). Similarly, let B, be the class of all

b
¥(&,t") = h(g,z")n(z ¢') satisfying
1) =(t) is FC predictable
FO 89 ) . )
2) E{Iﬁ [ “é,tds[M]stdt'ul(s’t) < w,or if u is a product measure,
0 0 : '
the right-hand side of (3.9)is finite,

and let Mé be a square integrable martingale then the mixed surface

integral can be extended to Bb' To summarize,

Theorem 3-1 '1) Let Mz be a continuous strong square integrable martin-

- gale and y € B, then

(a) va¢(C,C')du(§)nd, is a proper square_iﬁtegrable continuous
41—mﬁ:tingale

(b) the integral is linear in y

(c)vExgxis as given by (3.4) and E(Var Xé;e; QSQSC)Z satisfies the

pppér bound (3.8), and if u is a produ@f measure, (3.9) holds.



2) Let Mz be a continuous square integrable martingale'and n €B then

b

(a) and (b) hold with ¥(z,z') = h(g,z") "(gve'). Exi and E(Var Xs 6’ Qiqgt)z
’
satisfy the bounds (3.12) and (3.13) respectively. If u is a product

measure then (3.14) is satisfied.

Remarks (a)’The definition of the mixed area integral can be extended

in an obvious way to the case where instead of

e [[iatdlul @apal, <
we require~tﬁatjé.s.

”tllz(z,z\')'d‘lul (z)d[M]i'. < o : (3.15)

And the resulting integral may be termed a "local-maffingale." A similar
remark for the case where the bouﬁdedness of the expectations in (3.9),
(3.13) and (3;14) is replaced by a.s. boundedness and also to the
stochastic intggrals deM and ijdMCnd,. These ex;eﬁsions will be used
without further;reference in the following sections. The related stop-
ping times afe introduced in section 6.

(b) The stochastic integral of the second type [4] was
generalized in4t3] to.[Iw(z,z')szsz. where Mz is d{SCfong martingale.
By an argument similar to the one given here Ifw(c,g')ndnd. can be
defined for maftingales whicb are not strong providéd that Y (z,2')
depends on thé-corner zV z2' only, i.e., ¥(z,z') =vﬂ(;Vz')h(z,z').

(c) In [3] Cairoli and Walsh introduced the mixed integral

L 8

) 0 S
Io 1f(.s,t:) ?.sMs, L4t



We now show that the mixed area integral of this section includes the
mixed integral of [3] when L is Q;z predictable. Let pu(t) = st.
Approximate ¢ by simple functions. It follows that the area integral
{[ ndszz, can be expressed as

t, s

0 0
' b3
J j m(zvz )dZsz' J f sn(s,t)BSMStdt
R_ xR 0 0

t. s

040, 1
and conversely if E f [ T (s,t)dtds[M]S ¢ <

00

then

I I "(S’t)asMs,tdt = IJ o W(zvz')dszz.
0 0

and the integrand w(zvz')/s' is admissible by (3.14). Note that
w(zvz')/s' is also a corner function since we integrate over z Vv z'
and zV z' = (s',t).

(d) Let Xz = wa(c,c')dungc, then, in view of (3.4), Xz =0
for all z € R, does not imply that (Z,z') = 0 in R, xR . In

0 0 0
particular, for ¢ = (0,1), duC = dodt, if

2u(c—0")

it

sin ¥(z')h(L,T")

¥(z,z5")

then X = 0 for all z in R, - For any ¢(%,%') define
0

(0
p(z,z') = -l.-f v(o,t3%')do

o
0

and ¥(%, ") = ¥(z, ") - v(z ")

and similarly

- 1 T
p(o ') =< f v(z,0',t') dt’
o
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Then

“ Wiz ") dwcdz;' =0
” ¢(E, ") d;dWC' =0

We can also define $(T,Z'), ¥(Z,Z'), etc,since the bar and ~ operations
on the r and ¢' variables commute. WNote that 11:(-?;,2'-) = q(o',t) (a corner

function) and [I !1)1(7;, C')d)z(z, g') dedg' = 0.
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4. The Representation of Some Weak Martingales of the Wiener Process

Let X, sz be a proper l-martingale of the Wiener Process and
0

assume that almost all the sample functions of ) (t) = XS() tare
. ) : >

absolutely continuous with respect to some fixed (nonrandom) positive

finite measure, i.e.,

t o
Ae) = [ p(8)dv(6) . o _ (4.1)
5 :

Furthermore, we will assume that
toz‘ - _ S -
EJ p (6)dv(e) < = , . ' (4.2)
0 : N . . . .

It will be shown in this section that 1-martingéles.satisfying the above
“conditions can be represented as mixed area integrals. The Wiener -
process assumption is not used in the following proposition but will be

needed later.

Proposition 4-1 Let {fi} be a complete orthogoﬁalvéet with respect to

t .
the v measure on [O,tO] (i.e. [ fi(t')fj(t')dv(t') =-sij)’ Under the above
conditions on'Xz there exists a sequence of martingales Mi(z) such that
for z £ z,

Nt
A ' 2 . '
E(xzv Z; I fi(e)Mi(s,e)dve) 20 (4.3)
Proof

Xs,t™ E(J\t | j-s;t) -



Let
t
a, = r)p(t:)fi(t)dvt
0 .

Therefore @, are :?; measurable and

0
"N t
EQA, - ; a, j fi(e)dve)Z
0
N

t =
- E (J () - 2, aifi(e))dve)z
o 1

t N
0.
<K j E(p(6) "Z Uifi(e))zdve
0o - 1

which converges to zero by dominated convergence.

Let M, (z) = g(aﬂ}z). Then

EMi(z) < 'Eai ' (4.4)

|

Since E(A | 3810":) = A_ and E(At|js,t) =X .

ot
2
E {EZ(x -ia [f(e)dv)}’ }
{ t 1 1 1 el SO,t
0

Nt
<EQ, - }; ay I fi(e)dve)z

: 0

And if in the above inequality we condition with respect to :7; ¢

(instead of :7; t) we obtain (4.3).
78
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Theorem 4-2 Under the above conditions on Xz,'szCan be written as
X, = f f TCRADLILU R (4.5)
R xR
z 2z
where du(z) = ds dv(t).

Proof ‘Let‘Mi(z) be the martingales of Proposition 4-1. Then, by
the corollary to Theorem (6-1) of [4]

M, (2) = ‘I"’i“)d"c + H ¥ (5,0")dW au

and by (4.4)

EZM:(ZO) Ezf ¢i(c)dc +EZI f wi(c,c')dcm:'
1 1 ‘

Rz 1 Rz 'Rz=
0 0 “o

Let Ma i(z)

’

J¢(c)dwc,and approximate ¢ gnd f by simple functions.

It follows that

t
lfi(e)Ma’i(s,e)dV(e) = ”wa’i(z;,c')ducdwg,

where ¢ = (0,0), duc = dodv(6),

and

£,(8)
by, (68" = h(z,e") S ¢, ("),

Now, by the orthogonality of fi(e)

N+K

Eff Zf(6)¢(;))dudc'<KEZ['¢ (z")de!
R %

2 Rz :
0 ) zo
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N

where K; is independent of N and K. Therefore, by (4. 6) }E:f (e)¢ (z")

1
converges to a function ¢ (e,; ). Set

o (2,2') = Tro7(0,2")
then

(4.7)

N t
; [ £4 (M, ; (s, 0)dv(e) -"—“‘9[ f 4 & " du daw,
] .

Similarly, let

M, (@) = ” L (£28" U au,
. N { . ’
and approximate f and Y by simple functions. It follows that
T‘ : N
j;
= ' :
J’fi(e)Mb;i(s,e)dV(e) ”wb’i(c,r, )dl:cdwct

where pC is as before and i

. fi(e) ) \

¥y, 1Y) = (I vy &m)du \
B Reve! \ N

(cf. Theorem 2-6 of [1].) The convergenée of 17 :%: wb ito a function

¥ follows as‘in the previous case. Henye, by Proposition (4-1)

)

x, = || @+ G, |

|

which is the desi:ed result. ‘s



5. Ito-type. Formulas

In the one parameter case the differentiation.formula of Ito and
its extension to local martingales express functions of semimartingales
as semimarfingales. The stochastic integrals of [4], the extension
of [3] and the mixed area integral of section 3 make available analogous -
results for the two parameter case. In the siméleét case we have in
mind thg following; Let WZ be a Wiener procegg and supﬁose that £ is four

times continuously differentiable on R then

Proposifibﬁ 5-1

£ ) = £(0) + f £'(Wp)dw, + I If"(wcvg.)'dw;dw;,

1 ' ‘

H

= 10 o) = "
+3 [[f (NCVC')dCdc + 2 [ f.(WC)dZ; (5.1)
Remarks: (l) The integral before the last can be written as

1 Jo-fostf""(w )dsdt
“ oo st

Equation (5.1) is similar to Eq. (6.22) of [3], however the last term

in Eq. (6 22) is not an area integral.

Proof: Thé proof follows by a simple modificatidn of the proof of

(6.22) in [3] as follows. Instead of usingl(6,21) of [3] to
eliminate f"f in (6.20), use it to substitute for'f" and (5.1) follows
directly. 1In (5.1) f(wz) is expressed as.the suﬁ~of a martingale,
proper l'an& 2 martingales and a function of béunded variation.

The proof of (5.1) via the one parameter I£6'formu1a, the Green



formula of [3]‘and then again the one parameter Ito formula can be
applied to more‘general cases but does not seem to bé{sﬁfficient for
a general differéntiation formula. The detailed devéloiment of a
general formula will be given in a separate paper. O.n:ly.some

special cases of a multiplication table are given here.

Proposition 5-2 A partial multipiication table: Let -

109 (2)

f¢i(1;)dc s Iil) (z) = I ¢‘1(;)dwc

(2) | .

where I‘bi(z)dz < ® and ” w?(z,z')dzdz' < ® a,8,

Then

1]

[
@ PP e - | pPo e+ [ 1@ ¢,@a,

, ,
+ ‘J ¢1(c)¢2(c')h(c,c')dcdw

;.

[ .
+ Jf $,(2)9, (8N (g, 5" )aw dc’

r o
® 1P (z)Iél).(z) 0,08,z + [ 1D @9, @00,

[ (1)
+J T, (r.)cbl(r,)dwﬁ
+ JI ¢1(c)¢2(c')h(c,c')dwcdw

;'.'-

+ ” b, (2)6 ) (2")D(E,L")dW AW, '
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wl(n,c')dwn)¢1(c)ddeC,

\J '
/] ¥, (&, mdw, ) ¢, (21w dz

r(i
i

(1) (2) 2) D) ' '
(@ I;77(2)1,7(2) J'Il ()¢, (B)aw,. + IIIl (eve')y, (z,2 )dwcdw .

4

[ [ ,
* ‘J([ by (1,81 ), (©)aw av,
R
(4Y%4
[ f
| + J(I wl(c,n)dwn) ¢l(c )dwr’dwr’.
Rcvc'

+

f
| 4 ®8 e au

+

;l

+

f
JJ wl(c,c )¢1(c)dcdw

[
N ,g')dedg!
J wl(c 4 )wl(c ¢')drdg

@ 1P@1P @ - ff 12 (Ve ), (2,8 aw aw
+ ff I§2)(cvc I CRPLUR A
+ ff f wl(c,n)dw )(J ¢2(n,C')de)dWCdWC.
Rcvr' Reve!
+ JJ I ¢2(c,n)dw )([ wl(n,;')dwn)dwgdwc,
R. Rove
+ ff (¢,z") I wz(c,n)dwn )ddec,

cvc'
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ff f
1
+ ] v, (2,2 )(J d’l(C,n)de)ddec,
R
4V
+ ’f,w (¢ c')( r o (npg')dW )dw ac'
J) 1=’ J 2% n z
R
4V

( f
+ JI b, (2,2") ( ¥, (5,2 )dwn)dwcdc

R |
(474

Proof: The proofs of (a) and (b) follow along the same lines as the
proof of (5.1). We there:?ore omit the details. We will give the proof
of (e), the proofs of (c) and (d) follow along the same lines. Tuvrning
to the proof of (e), we assume for simplicity that npl = 4’2 = tp(zl,zz)

where *Jl(zl,zz) = 0 if z, A z, is not satisfied, the proof for ¥, # ¥,

2

is exactly the same.

Let 24 = (1,1), fix n (an integer) and introduce the grid
-n,. ~-n,
zij = (2 i,2 j]. Denote
A =
13 = W5 2500, 541

Assume first that V(z,z') is bounded on Rz and a simple function with
0
respect to the grid. Let

Yy Vv(z,.,2

ij,ke ij Ke)

] then [z] = z...

. e =
Define [z] as feollows: if =z (zij’zi+1,j+l ij

Under these assumptions

2
(2)y" z:
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where the summation is over all i,j,k,2,i',j',k',2', recall however
that if h(z,z') = 0 then y(z,z"') = 0.

Divide now the summation of (5.2) into the following partial

summations: ‘
. (1) (2)
A - 1,3 . .
1,'J
i',J' i'slj'
¢k', ' {k, 2 k',2'
¢+ k,2
—p >
3) (4)
\ .
f i,3 A 1i,j
q k’gl
i',3"
i',j' k,%
k,ﬂ,' >3 L {k",ﬁ‘
—> —>
(5)
N {i,j
i! ’j 1
k, 2
{k: ,R"
— >

case () (L,1V (k2P @A',5")V (k',L")

and case (1') where the unprimed letters become primed and the primed
become unprimed. |

case (2) (i,i)DV (K, NACL',i") V (k',2"))

and case (2') where the primed and unprimed letters are interchanged as

_505—



in the previous case.

case (3) k=k", 2 # 2 (i,5) # (i',i")

iy 1417, (k) # (Kk',2")
1',3", &,2) # (k',2")

and case (4') (k,2) = (k',2"), (i,3) # (i',i")

and case (3') j

case (4) (i,3)

case (5) (i,3) = (i',j") and (k,R) = (k',2')

case (1) Fixing i,j,k,? and summing over all i',j',k',%' such that
(153" V (k',%') is smaller than (i,j)V (k',2'), and then summing over

the unprimed indices, the partial sum for case (1) can be written as

fj I([zévzél)w(ZZ’Zé)szzdwz'z (5.3)

where the integration is over RZ b3 Rz s I2z] is as defined earlier and
0 0

1(z) = ” TCRPLUR

Keeping ¢ unchanged (namely, simple with respect to the original
partition) and introducing a refinement of the partition, (5.3) con-

verges to

[J I(z\/z')w(z,z')dwzdwz,

The same result holds for case (1') and thus we get the second and
third terms of part (e) of the proposition.

case (2) In this case we have the sum
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1jzk'z' kz<k' *15eate® Zwi'j'k'z'Ai'j'w Aig¥hcr g ¥
| 1< : ,A

- ”(J W(z,n)dwr)(J \l’(n,z')dwn) av_dv_, |

[zvz'] [zvz']
which for fixed ¥ and refining the partition converges to the fourth
term of (e), similarly case (2') leads to the fifth term in (e).

case (3) The expectation of this term is zero, we want to show that

its variance tends to zero as the partition is'tefined n + <, In case

(3) we comsider

Z“’ij ke Vi3 By DA (DAL (DA (W) (5.4)

where k = k', 2 # 2', (1,j) # (1',3") and assume &' < £ (the result for

L < 8! will follow by exactly the same arguments). Multiply (5.4) with

Zw}i,k 20173118815 D p (DA5 50 DA, ()

and take expectations

A . A
i, i3
‘i',j' k,/g; l(.,-&
4 * i"i' ]
k, 2! Sl kg
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' 1 2
Since E(A,,(W)] )
W V)

1
=

2 | 1 2 -2n
and  E(Z 0|F ) =4, =2
ij zijvj.zij ij

We can eliminate from the product terms with expectation zero. What

remain are terms which satisfy all the following conditions

k=k'=k=k'

i=1,20=2, 2" =2",3=31

(1',3")4<¢ (4, 1) (5.5)
d',31")«<(d,8)
A
i,3) = LD
° i"i' ‘
- ¢ (k,2) = (_15_9&)
AN L R
(k,2') = (k,2")
>
Therefore the expectation of the square of (5.4) is

(5.6)

2 .

where the summation is under the restrictions of the-iast two lines of

=272 teca, =4 2" then (3.6) can be

(5.5) and Aij ='Ak2 = Akz'

rewritten as .
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{szju(z (Zw, PRSI '(m)dz')-

ijke L'<e i'j!

. ( Z lpi' ,_j_’ ,k,Q.A_i' ’.j_' (W)) AijAkf-‘} (5.7)

i"i' J
The term in curly brackets has finite variance, therefore (5.7) and
consequently (5,4) tend to zero as n + =,

Case (4) follows as in cases 1, 2, 3 and 5 and yields the last two
entries in (e) and (4') yields the two entries before the two last

entries. We omit the details.
Case (5)

Z‘%sz“‘ L)? (Akg(m) Zw

ijke 1Jk2 ij kl

2 2 2 '
+ leijkz(Aij WA, () = 8,80 (5.8)
ijke ‘

_ ~=2n . '
where Aij = Akz =2 . The first term above is

JJ wz(z,z')dzdz'

which is the first term in (e). It remains to show that the second
term in (5.8) converges to zero. Let B denote the second term of (5.8)

then. SinceaB - y6 = (a-y) (B-8) + y(B-8) + 6(a-y), we have
2 2
B = D V() - 4 )Gk M -4y
2.2
DD HCHOERIBIN | (5.9)

+Z"’2(A§j W) = 408,
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Note that the expectation of each of the terms is zero.- We will show
that the variance of each of the terms approaches zero as n - . Con-
sider the first term above. Squaring and taking expectations, we see

that all terms vanish except

4, .2 2,2 2
E {2 Vg, D = 8,) (A5 - 8,0 }
ijke :
For x Gaussian with Ex = 0 and E'x2 = 02, we have Ex4 = 3(62)2.

Since ¥ is bounded, the sum above is upper bounded by

2
2,2 . o~bn .( )
K EzaijAugKl 2 §Aij
ijke
Therefore the first term in (5.9) tends to zero. The other two terms
tend to zero by the same argument.
We have therefore established (e) of Proposition (5-2) for wl and

wz simple functions. Keeping ¢1 simple, we can extend the result by continuity

to IJ w%(z,z')dzdz' < o a.s. and then to a general wl.
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6. A Characterization of Strong Martingales of the Wiener Process

It was shown by Cairoli and Walsh [3] that a martingale Mz of the
Wiener Process Wz is a strong martingale if and only if it is a type-
one integral,i.e.,Mz = J¢de§. A characterization in terms of stopping

times will be given here.

Definitions:

1. T(z,w) is a stopping time if
(a) T(é,m) is a measurable and adapted random process.
(b) for almost all w, T(z,w) as a function of z is nonincreasing

(z$ z' = Tz < Tz') and takes only the values zero or onme.

2. T(z,w) is a predictable stopping time if it is a stopping time
and a predictable process.

3. Let Yz be a martingale (or a function of bounded variation) and

let T be a predictable stopping time. Then zzAT (Y stopped at

T) is defined as

YzAT =[ T(¢,w)dY (Z,w)
R

V4

More generally, let Yz be any adapted process such that

T_dy
T z
R
z
is defined and adapted, then Yzﬁw is defined in the same way.

In order to point out the difference between stopping in the one

parameter and the two parameter cases, let T be defined as

T(z) = 0 if S'i'% and t > %
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= 1 otherwise

then if (s,t) is in the region where T = QO,M = _
’ CHOTS S I T T U
2’2 2 2°2

’

(M, -M. ) therefore in the stopped region MZ i

1 . 1, AT s Ml,l plus the sum
2> 2 22

N

of two one parameter martingales.

Proposition 6-1 Let Mz be a square integrable martingale, T a

Predictable stopping time and let

Xz =<f ¢dﬂn€

‘where a.s.
2
[d)zd [M;'Z <
Also if Mz is a strong martingale, let

Yz = [I l‘p(CrC')ndndl

where a.s.
2 '
ff V¥ (z,2")a (M) d [M]_, < w

Then

Xoat = [ Teo M,
R
4
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= ]
RZ

XR
4

The proof follows directly from the simple function approximation of

¢ and ¢ and is therefore omitted. A similar result holds for mixed

surface integrals.

In the next theorem we consider the Wiener process case; in this
case every stopping time is predictable. Let ':¥z be the o-fields
generated by the Wiener prncess WC’ L < z and let T be a stopping time

and let jjleT be the o-fields generated by W < z. Let Tx(z,w)

LAT? 9

0 < A<, be aone parameter collection of stopping times such that

for almost all w, TA (z,w) > T, (z,w) whenever )X, < A We will call

122y
2 M

such a collection an increasing collection of stopping times. Let MZ

be a martingale of the Wiener process and let zg be fixed. We will

denote

3% =:¥zd\T

A

Theorem 6~2 Let M_ be a square integrable martingale of the Wiener
——= z
process, then Mz, z < ZO is a strong martingale if and only if {XA’:}A} is

a martingale for all increasing families of stopping times.

Proof: If Mz is a strong martingale then MZ = f ¢deC [3] and

R
z

X, = f T)‘(C)dn;dw

R
z

0

c
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approximating T\ and ¢r by simple functions and proceeding as in the
one parameter case show that XX is a martingale in the A paramecter,

Conversely, let a < B and define

]

Let Tl(z,w) 1if z€a

0 otherwise

1if z€EAUB

Tz(z,w)

0 otherwise

Let Mz = ff w(c,c')dwcdwc.
then X, - X, = f I (TZ(CVc') - Tl(cvc'))¢(a;c')dwcdwc.

A A
2 1 R xR
z 2

0 0

Divide the above integral into five integrals. I, is the above

integral over ¢ V ;' € A hence this integral is zero. I, is the

above integral over £t € A, L' € B, (and z V ' € B), I3 is the above

integral over ¢' € A, ¢ € B, I, isover vV ¢' €B, ¢ €4, ' € a, I,
is over z' € B, £ € B. It is easy to see, by simple function approxima-~
tion that E(IiIE;Tl) = 0 for all i with the exception of i = 4. Consider
now E(I4|':;Tl). If X is to be a martingale, we must, therefore, have

a.s.
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* v 7 _
E {f . [ ¥(z,z )dWZI\Tldwz'ATll jT } =0
2€EA,z 'EA, zvz'EB 1

And, through simple function approximation we must have a.s.

ffE{;p(z,z )I‘le}dWZ/\Tlde'ATl =0

where the region of integration is the same as the previous integral.

Thus ”(E{lb[ ?Tl})zd(z/\Tl)d(zv,\Tl) =0,

P

and

EQW(E,e) | Fp) = 0aus.
: 1

For ¢ Vv ' fixed let a A V "), by the continuity of the ‘?A o-fields

p(g,z') = lim E{ﬂl(C,C')lja} =0
, orZAL! '

which completes the proof.

Remark: The "if" part of the previous theorem holds for the general case
where Mz is a strong martingale. That is: If Mz is a strong square
integrable martingale and TJ\ is a predictable and monotone class, then

XJ\ = MzO'\A is a one parameter martingale.
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7. Martingales with Path Independent Variation

A square integrable martingale is said to be of path independent

variation (or path independent) in RZ if for any z £ z,
0
nondecreasing paths with initial point 0 and final point z the

and any two

increasing functions on the two paths attain the same value at z [4].

Theorem 7-1 Mz is of path independent variation if and only if

2, . .
(Mz) is the sum of a martingale and a nondecreasing function.

Proof: In Section 3 of [4] it was shown that Mz is a two parameter
martingale if and only if it is a one parameter martingale on every
nondecreasing path. Now let Mz be of path independent variation and
let Az be the variation of MZ on any nondecreasing path from (0,0) to

z. Then (Mz)2 - Az is a one parameter martingale on.every nondecreasing
path and hence (MZ)2 - Az is a two parameter martingale. The converse

follows by the same argument.
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8. A Remark on Diffusion Processes in the Plane

In [2], Cairoli considered stochastic differential equations of

the form

(7.1)

X =X + f P(X,)dr + f QX )W,
R

z Rz
and, after defining Markov processes in the plane, showed that the
solution to (7.1) is a two parameter Markov process. In an analogous
way we can consider stochastic equations of the form

Xz = Xo + f p(XC)dC + f q(XC)dWC + Jf rl(X

cvc')dw de z'

+ ” T (X )V A+ ” Ty (X, 0 )dEdW, (7.2)

The problem arises whether there are solutions (7.2) which are
Markov. Proposition 5-1 of Section 5 gives immediately an affirmative
answer since if f(a), ©» < @ < » is a well behaved real valued invertible
function and if XZ is a solution to (7.1),thenY£ = f(Xz) is also
Markov. However Yt satisfies an equation of type (7.2) but not of
type (7.1). It seems reasonable to conjecture that under suitable

conditions the pair (WZ,XZ) is a (vector valued) two parameter Markov

process.
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