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ABSTRACT

A fuzzy restriction may be visualized as an elastic constraint on

the values that may be assigned to a variable. In terms of such re

strictions, the meaning of a proposition of the form "x is P," where x

is the name of an object and P is a fuzzy set, may be expressed as a

relational assignment equation of the form R(A(x)) = P, where A(x) is

an implied attribute of x, R is a fuzzy restriction on x, and P is the

unary fuzzy relation which is assigned to R. For example, "Stella is

young," where young is a fuzzy subset of the real line, translates into

R(Age(Stella)) = young.

The calculus of fuzzy restrictions is concerned, in the main, with

(a) translation of propositions of various types into relational assign

ment equations, and (b) the study of transformations of fuzzy restrictions

which are induced by linguistic modifiers, truth-functional modifiers,

compositions, projections and other operations. An important applica

tion of the calculus of fuzzy restrictions relates to what might be

called approximate reasoning, that is, a type of reasoning which is

neither very exact nor very inexact. The main ideas behind this

application are outlined and illustrated by examples.
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N00039-75-0034, the Army Research Office, Grant DAHC04-75-G-0056, and
the National Science Foundation, Grant GK-43024X.



1. Introduction

During the past decade, the theory of fuzzy sets has developed in

a variety of directions, finding applications in such diverse fields

as taxonomy, topology, linguistics, automata theory, logic, control

theory, game theory, information theory, psychology, pattern recognition,

medicine, law, decision analysis, system theory and information retrieval.

A common thread that funs through most of the applications of

the theory of fuzzy sets relates to the concept of a fuzzy restriction -

that is, a fuzzy relation which acts as an elastic constraint on the

values that may be assigned to a variable. Such restrictions appear

to play an important role in human congnition, especially in situations

involving concept formation, pattern recognition and decision-making

in fuzzy or uncertain environments.

As its name implies, the calculus of fuzzy restrictions is

essentially a body of concepts and techniques for dealing with fuzzy

restrictions in a systematic fashion. As such, it may be viewed as a

branch of the theory of fuzzy relations, in which it plays a role some

what analogous to that of the calculus of probabilities in probability

theory. However, a more specific aim of the calculus of fuzzy restric

tions is to furnish a conceptual basis for fuzzy logic and what might

be called approximate reasoning [1], that is, a type of reasoning which

is neither very exact nor very inexact. Such reasoning plays a basic

role in human decision-making because it provides a way of dealing with

problems which are too complex for precise solution. However, approx

imate reasoning is more than a method of last recourse for coping with

insurmountable complexities. It is also a way of simplifying the per

formance of tasks in which a high degree of precision is neither needed

-2-



nor required. Such tasks pervade much of what we do on both conscious

and subconscious levels.

What is a fuzzy restriction? To illustrate its meaning in an

informal fashion, consider the following propositions (in which

italicized words represent fuzzy concepts):

Tosi is young (1.1)

Ted has gray hair (1.2)

Sakti and Kapali are approximately equal in height. (1.3)

Starting with (1.1), let Age (Tosi) denote a numerically-valued

variable which ranges over the interval [0,100]. With this interval

regarded as our universe of discourse U, young may be interpreted as

the label of a fuzzy subset of U which is characterized by a com

patibility function, u , of the form shown in Fig. 1.1. Thus, the
young °

degree to which a numerical age, say u = 28, is compatible with the

concept of young is 0.7, while the compatibilies of 30 and 35 with

young are 0.5 and 0.2, respectively. (The age at which the compatibility

takes the value 0.5 is the crossover point of young.) Equivalently,

the function u may be viewed as the membership function of the
yQun8 c

fuzzy set young, with the value of u at u representing the grade

of membership of u in young.

Since young is a fuzzy set with no sharply defined boundaries, the

conventional interpretation of the proposition "Tosi is young," namely,

"Tosi is a member of the class of young men," is not meaningful if

A summary of the basic properties of fuzzy sets is presented in the
Appendix.
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membership in a set is interpreted in its usual mathematical sense. To

circumvent this difficulty, we shall view (1.1) as an assertion of a

restriction on the possible values of Tosi's age rather than as an

assertion concerning the membership of Tosi in a class of individuals.

Thus, on denoting the restriction on the age of Tosi by R(Age(Tosi)),

(1.1) may be expressed as an assignment equation

R(Age(Tosi)) = young (1#4)

in which the fuzzy (or, equivalently, the unary fuzzy relation young)

is assigned to the restriction on the vairable Age(Tosi). In this

instance, the restriction R(Age(Tosi)) is a fuzzy restriction by virtue

of the fuzziness of the set young.

Using the same point of view, (1.2) may be expressed as

R(Color(Hair(Ted))) = gray (1.5)

Thus, in this case, the fuzzy set gray is assigned as a value to the

fuzzy restriction on the variable Color(Hair(Ted)).

In the case of (1.1) and (1.2), the fuzzy restriction has the

form of a fuzzy set, or, equivalently, a unary fuzzy relation. In

the case of (1.3), we have two variables to consider, namely, Height

(Sakti) and Height(Kapali). Thus, in this instance, the assignment

equation takes the form

R(Height(Sakti)), Height(Kapali)) = approximately equal (1.6)

in which approximately equal is a binary fuzzy relation characterized
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by a compatibility matrix u . . n n(u,v) such as shown in
approximately equal

Table 1.2

V
u\ 5«6 5'8 5f10 6 6*2 6f4

5'6 1 0.8 0.6 0.2 0 0

5'8 0.8 1 0.9 0.7 0.3 0

5*10 0.6 0.9 1 0.9 0.7 0

6 0.2 0.7 0.9 1 0.9 0.8

6'2 0 0.3 0.7 0.9 1 0.9

6'4 o 0 0 0.8 0.9 1

Table 1.2. Compatibility matrix of the fuzzy relation approximately

equal

Thus, if Sakti1s height is 5'8 and Kapali1 s is 5'10, then the degree

to which they are approximately equal is 0.9.

The restrictions involved in (1.1), (1.2) and (1.3) are unrelated

in the sense that the restriction on the age of Tosi has no bearing on

the color of Ted's hair or the height of Sakti and Kapali. More

generally, however, the restrictions may be interrelated, as in the

following example:

u is small

u and v are approximately equal

(1.7)

(1.8)

In terms of the fuzzy restrictions on u and v, (1.7) and (1.8)

translate into the assignment equations

R(u) = small (1.9)
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R(u,v) = approximately equal (1.10)

where R(u) and R(u,v) denote the restrictions on u and (u,v), respec
tively.

As will be shown in Section 2, from the knowledge of a fuzzy

restriction on u and a fuzzy restriction on (u,v) we can deduce a

fuzzy restriction on v. Thus, in the case of (1.9) and (1.10), we can

assert that

R(v) = R(u) o R(u,v) (1.11)

= small o approximately equal

where o denotes the composition of fuzzy relations.

The rule by which (1.11) is inferred from (1.9) and (1.10) is

called the compositional rule of inference. As will be seen in the

sequel, this rule is a special case of a more general method for de

ducing a fuzzy restriction on a variable from the knowledge of fuzzy

restrictions on related variables.

In what follows, we shall outline some of the main ideas which

form the basis for the calculus of fuzzy restrictions and sketch its

application to approximate reasoning. For convenient reference, a

summary of those aspects of the theory of fuzzy sets which are relevant

to the calculus of fuzzy restrictions is presented in the Appendix.

2

If A is a unary fuzzy relation in U and B is a binary fuzzy relation in
U x V, the membership function of the composition of A and B is expressed
y yAoB^ = Vi/yA^ A Pg(u,v), where v denotes the supremum over

u e U. A more detailed discussion of the composition of fuzzy relations
may be found in [2] and [3].
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2. Calculus of Fuzzy Restrictions

The point of departure for our discussion of the calculus of fuzzy

restrictions is the paradigmatic proposition

A
P = x is P (2.1)

which is exemplified by

x is a positive integer .(2.2)

Soup is hot (2.3)

Elvira is blond (2.4)

If P is a label of a nonfuzzy set, e.g., P =» set of positive

integers, then "x is P," may be interpreted as "x belongs to P," or,

equivalently, as "x is a member of P." In (2.3) and (2.4), however, P

is a label of a fuzzy set, i.e., P = hot and P = blond. In such cases,

the interpretation of "x is P," will be assumed to be characterized

by what will be referred to as a relational assignment equation. More

specifically, we have

Definition 2.5 The meaning of the proposition

p = x is P (2.6)

where x is a name of an object (or a construct) and P is a label of a

fuzzy subset of a universe of discourse U, is expressed by the relational

assignment equation

The symbol = stands for "denotes" or "is defined to be."
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R(A(x)) = P (2.7)

where A is an implied attribute of x, i.e., an attribute which is

implied by x and P; and R denotes a fuzzy restriction on A(x) to which

the value P is assigned by (2.7). In other words, (2.7) implies that

the attribute A(x) takes values in U and that R(A(x)) is a fuzzy

restriction on the values that A(x) may take, with R(A(x)) equated to

P by the relational assignment equation.

As an illustration, consider the proposition "Soup is hot." In

this case, the implied attribute is Temperature and (2.3) becomes

R(Temperature (Soup)) = hot (2.8)

with hot being a subset of the interval [0,212] defined by, say, a

compatibility function of the form (see Appendix)

Mhot(u) = S(u;32,100,200) (2.9)

Thus, if the temperature of the soup is u - 100°, then the degree to

which it is compatible with the fuzzy restriction hot is 0.5, whereas

the compatibility of 200° with hot is unity. It is in this sense that

R(Temperature(Soup)) plays the role of a fuzzy restriction on the soup

temperature which is assigned the value hot, with the compatibility

function of hot serving to define the compatibilities of the numerical

values of soup temperature with the fuzzy restriction hot.

In the case of (2.4), the implied attribute is Color(Hair), and

the relational assignment equation takes the form
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R(Color(Hair(Elvira))) = blond (2.10)

There are two important points that are brought out by this

example. First, the implied attribute of x may have a nested structure,

i.e., may be of the general form

\(\_!(--- A2(Ax(x)) ...)); (2.11)

and second, the fuzzy set which is assigned to the fuzzy restriction

(i.e., blond) may not have a numerically-valued base variable, that is,

the variable which ranges over the universe of discourse U. In such cases,

we shall assume that P is defined by exemplification, that is, by

pointing to the specific instances of x and indicating the degree

(either numerical or linguistic) to which that instance is compatible

with P. For example, we may have ublond (June) = 0.2, y (Jurata) =

very high, etc. In this way, the fuzzy set blond is defined in an

approximate fashion as a fuzzy subset of a universe of discourse com

prised of a collection of individuals U = {x}, with the restriction

R(x) playing the role of a fuzzy restriction on the values of x rather

than on the values of an implied attribute A(x). (In the sequel, we

shall write R(x) and speak of the restriction on x rather than on A(x)

not only in those cases in which P is defined by exemplification, but

also when the implied attribute is not identified in an explicit fashion.)

So far, we have confined our attention to fuzzy restrictions which

are defined by a single proposition of the form "x is P." In a more

general setting, we may have n constituent propositions of the form
1
A more detailed discussion of this and related issues may be found in
[3], [4] and [5].
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xi is Pi » * ° l»--.,n (2.12)

in which P± is afuzzy subset of U±, i=l,...,n. In this case, the

propositions "x± is P^'i = l,...,n, collectively define a fuzzy

restriction on the n-ary object (x.,...,x ). The way in which this
in

restriction depends on the P± is discussed in the following.

The Rules of Implied Conjunction and Maximal Restriction

For simplicity we shall assume that n = 2, with the constituent

propositions having the form

x is P (2.13)

y ^ Q (2.14)

where P and Q are fuzzy subsets of U and V, respectively. For example,

Georgia is very warm (2.15)

George is highly intelligent (2.16)

or, if x = y,

Georgia is very warm (2.17)

Georgia is highly intelligent (2.18)

The rule of implied conjunction asserts that, in the absence of

additional information concerning the constituent propositions, (2.13)

and (2.14) taken together imply the composite proposition "x is P and

y is Q;" that is,

-10-



that

xisP,yisQ=•xisPandyisQ(2.19)

Underthesameassumption,theruleofmaximalrestrictionasserts

xisPandyisQ=•(x,y)isP*Q(2.20)

and,ifx=»y,

xisPandxisQ=>xisPHQ(2.21)

wherePxQandPnqdenote,respectively,thecartesianproductand

theintersectionofPandQ.

Theruleofmaximalrestrictionisaninstanceofamoregeneral

principlewhichisbasedonthefollowingpropertiesofn-aryfuzzy

restrictions.

LetRbyan-aryfuzzyrelationinU.x...xUwhichischaracterized
ln

byitsmembership(compatibility)functionpn(un,...,u).Let
R1n

q=(i^...,^)beasubsequenceoftheindexsequence(l,...,n)and

letq1denotethecomplementarysubsequence(j-,...,ja).(E.g.,if l*t

n=5andq=(2,4,5),thenq1=(1,3).).Then,theprojectionofRon

U(q)=Ux...xu±isafuzzyrelation,R,inU()whosemembership
functionisrelatedtothatofRbytheexpression

\i\9'"9\)=vu(,)yR(V"-'un)<2-22>
3

ThecartesianproductofPandQisafuzzysubsetofUxVwhosemem
bershipfunctionisexpressedbyWpxQ(u,v)=up(u)Au(v).Themember
shipfunctionofPnQisgivenbyupr^(u)=yp(u)AUq(u).Thesymbol
Astandsformin.(SeetheAppendixformoredetails.)
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where the right-hand member represents the supremum of u (u ,...,u )
R 1 n

over the u's which are in u, fx.
(q )

If R is interpreted as a fuzzy restriction on (u.,...,u ) in
1 n

Uxx...xUn, then its projection on U. x...xU ,R , constitutes a
1 \ q

marginal restriction which is induced by R in U. .. Conversely, given

afuzzy restriction Rq in U(q), there exist fuzzy restrictions in

UlX*,,XUn whose projection on U, is R . From (2.22), it follows

that the largest of these restrictions is the cylindrical extension

of R , denoted by R , whose membership function is given by

p^ (u ,...,u ) = u (u ,...,u ) (2.23)
q q 1 \

and whose base is Rq. (Rq is referred to as the cylindrical extension

of R because the value of y- at any point (u'..,^) is the same as
^ Rq 1 n

at the point (u^...,^) so long as u! = u ,...,u* = u .)
1 1 ^ \

Since R is the largest restriction in U.x...xu whose base is
^ in

R , it follows that

RCRq (2.24)

for all q, and hence that R satisfies the containment relation

R c r n r n ... n r (2 25^
\ q2 qr C2-25)

which holds for arbitrary index subsequences q ,...,q . Thus, if we

are given the marginal restrictions R ,...,R , then the restriction
ql qr

A fuzzy relation R in U is larger than S (in U) iff y (u) > u (u)
for all u in U. R S
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Wr r )Aaqn...nR (2.26)

is the maximal (i.e., least restrictive) restriction which is consistent

with the restrictions R ,...,R . It is this choice of R^^ given R ,...,R(1
ql qr 1 r

that constitutes a general selection principle of which the rule of

maximal restriction is a special case.

By applying the same approach to the disjunction of two propositions,

we are led to the rule

x is P or y is Q => (x,y) is P + Q (2.27)

or, equivalently,

x is P or y is Q => (x,y) is (P'xQ1)' (2.28)

where P* and Q1 are the complements of P and Q, respectively, and +

denotes the union.

As a simple illustration of (2.27), assume that

U = l + 2 + 3 + 4

and that

A somewhat analogous role in the case of probability distributions is
played by the maximum entropy principle of R. Jaynes and M. Tribus [6],
[7].

The membership function of P' is related to that of P by
Upi(u) = 1 - yp(u). The membership function of the union of P and Q is
expressed by u (u) = up(u)vV0(u), where V denotes max.

-13-



_ A A
P = small = 1/1 + 0.6/2 + 0.2/3

large = 0.2/2 + 0.6/3 + 1/4
. A

Q=very large =0.04/2 +0.36/3 +1/4 (2.3i)

(2.29)

(2.30)

Then

P' =0.4/2 + 0.8/3 + 1/4 (2#32)

Q? = 1/1 + 0.96/2 + 0.64/3

and

P+Q= (P'xq')» = i/((1>1) + a>2) + (1>3) + (M) (233)

+ (2,4) + (3.4) + (4,4))

+ 0.6/((2,l)+(2,2)+(2,3))

+ 0.3/((3,l)+(3,2))+0.36/((3,3)+(4,3))

+ 0.04/(4,2)

Conditional propositions

In the case of conjunctions and disjunctions, our intuition provides

a reasonably reliable guide for defining the form of the dependence of

R(x,y) on R(x) and R(y). This is less true, however, of conditional

propositions of the form

and

P = If x is P then y is Q else y is S (2.34)

A
q = If x is P then y is Q (2.35)

where P is a fuzzy subset of U, while Q and S are fuzzy subsets of V.
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With this qualification, two somewhat different definitions for

the restrictions induced by p and q suggest themselves. The first, to

which we shall refer as the maximin rule of conditional propositions,

is expressed by

If x is P then y is Q else y is S => (x,y) is P x Q + p' x S, (2.36)

which implies that the meaning of P is expressed by the relational

assignment equation

R(x,y) = P x Q + P» x S (2.37)

The conditional proposition (2.35) may be interpreted as a special

case of (2.34) corresponding to S = V. Under this assumption, we have

If x is P then y is Q => (x,y) is P x Q + p'x V (2.38)

As an illustration, consider the conditional proposition

p = If Maya is tall then Turkan is very tall (2.39)

Using (2.38), the fuzzy restriction induced by p is expressed by

the relational assignment equation

R(Height(Maya), Height(Turkan)) « tall x very tall x not tall x v

where V might be taken to be the interval [150,200] (in centimeters),

and tall and very tall are fuzzy subsets of V defined by their

respective compatibility functions (see Appendix)
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ytall = s<"0.170,180) (2.40)

and

yvery tall =S*(160,170,180) (2.41)

in which the argument u is suppressed for simplicity.

An alternative definition, to which we shall refer as the arithmetic

rule of conditional propositions, is expressed by

If x is P then y is Q else y is S =* (x,y) is ((Pxv 9 UxQ) + (P'xVGUxS))1

(2.42)

or, equivalently and more simply,

If x is P then y is Q else y is S =* (x,y) is (P'eQ) O (p&s) (2.43)

where $ and Qdenote the bounded-sum and bounded-difference operations,7

respectively; P and Q are the cylindrical extensions of P and Q; and +

is the union. This definition may be viewed as an adaptation to fuzzy

sets of Lukasiewicz's definition of material implication in L , ,
aleph-

logic, namely [8]

v(r+s) = min(l,l-v(r)+v(s)) (2.44)

where v(r) and v(s) denote the truth-values of r and s, respectively,

with 0 <_ v(r) _< 1, 0 < v(s) £ 1.

The membership functions of the bounded-sum and-difference of P and Q
are defined by UpeXu) = min(l,yp(u)+y (u)) and
Upg0(ii) o max(0,y (u)-y (u), u £ U, where + denotes the arithmetic sum.
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In particular, if S is equated to V, then (2.43) reduces to

If x is P then yisQ=> (x,y) is (P'$Q) (2.45)

Note that in (2.42), P xV and U x Q are the cylindrical extensions,

P and Q, of P and Q, respectively.

Of the two definitions stated above, the first is somewhat easier

to manipulate but the second seems to be in closer accord with our

intuition. Both yield the same result when P, Q and S are nonfuzzy

sets.

As an illustration, in the special case where x = y and P = Q,

(2.45) yields

If x is P then x is P ^ x is (P'eP) (2.46)

x is V

which implies, as should be expected, that the proposition in question

induces no restriction on x. The same holds true, more generally, when

P C Q.

Modification of Fuzzy Restrictions

Basically, there are three distinct ways in which a fuzzy restric

tion which is induced by a proposition of the form

p = x is P

may be modified.

First, by a combination with other restrictions, as in

r » x is P and x is Q (2.47)
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which transforms P into POq,

Second, by the application of a modifier m to P, as in

Hans is very kind (2.48)

Marlbel is highly temperamental (2.49)

Lydia is more or less happy (2.50)

in which the operators very, highly and more or less modify the fuzzy

restrictions represented by the fuzzy sets kind, temperamental and

happy, respectively.

And third, by the use of truth-values, as in

(Sema is young) is very true (2.51)

in which very true is a fuzzy restriction on the truth-value of the

proposition "Sema is young."

The effect of modifiers such as very, highly, extremely, more or

less, etc., is discussed in greater detail in [9], [10] and [11]. For

the purposes of the present discussion, it will suffice to observe that

the effect of very and more or less may be approximated very roughly

by the operations CON (standing for CONCENTRATION) and DIL (standing

for DILATION) which are defined respectively by

CON(A) -j(uA(u))2/u (2.52)
U

and

DIL(A) =y(uA(u))0-5/u (2.53)
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where A is a fuzzy set in U with membership function y , and

A= IUA(u)/u (2.54)

is the integral representation of A. (See the Appendix.) Thus, as an

approximation, we assume that

very A = CON(A) (2.55)

and

more or less A = DIL(A) (2.56)

For example, if

J 100

d+(fo)2)"1/u (2.57)
0

then

$100

(1+(30)2)"2/u (2-58)
0

and

J.00

J (l+(^)2)-°-5/umore or less young =| (1+%)*) u'D/u (2.59)
0

The process by which a fuzzy restriction is modified by a fuzzy

truth-value is significantly different from the point-transformations

expressed by (2.55) and (2.56). More specifically, the rule of truth-

functional modification, which defines the transformation in question,

may be stated in symbols as
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(xisQ) is r=>xisy-Jo T (2#6Q)

where Tis alinguistic truth-value (e.g., true, very true, false, not

very_true, more or less true, etc.); u"1 is arelation inverse to the

compatibility function of A, and y^ox is the composition of the non
fuzzy relation y"1 with the unary fuzzy relation t. (See footnote 2
in Section 1 for the definition of composition.)

As an illustration, the application of this rule to the proposition

(Sema is young) is very true (2.61)

yields

Sema ±S yyoung ° verv true (2.62)

Thus, if the compatibility functions of young and very true have the

form of the curves labeled y and y in Fie 2 1 i-h*n
young u Hvery true g* ,1» tnen

the compatibility function of yyQung overy true is represented by the

CUrVe uyoung2' The ordinates of Vyoung can readily be determined by
the graphical procedure illustrated in Fig. 2.1.

The important point brought out by the foregoing discussion is

that the association of a truth-value with a proposition does not

result in a proposition of a new type; rather, it merely modifies the

fuzzy restriction induced by that proposition in accordance with the

rule expressed by (2.60). The same applies, more generally, to nested

propositions of the form

( ... (((x is P1) is t±) is x2) ... is x) (2.63)
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in which t ,...,t are linguistic or numerical truth-values. It can

Q

be shown that the restriction on x which is induced by a proposition

of this form may be expressed as

x is P .
n+1

where

Pk+l=yploTk ' k=l,2,...,n (2.64)
k

8
A more detailed discussion of this and related issues may be found in
[4].
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3. Approximate Reasoning (AR)

The calculus of fuzzy restrictions provides a basis for a systematic

approach to approximate reasoning (or AR, for short) by interpreting

such reasoning as the process of approximate solution of a system of

relational assignment equations. In what follows, we shall present a

brief sketch of some of the main ideas behind this interpretation.

Specifically, let us assume that we have a collection of objects

x1,...,xn, a collection of universes of discourse U_,...,U , and a
1 n

collection {pr>, of propositions of the form

Pr = (xr 'Xr »""xr >ls Pr > r= l,...,N (3.1)
12 k

in which Pr is a fuzzy relation in U x... xU . E.g.,
rl rk

Pi = xi is small (3#2)

P2 ~ xl a x2 are aPProx:i-rcately equal (3.3)

in which ^ = U£ = (-«>,«»); small is a fuzzy subset of the real line

(-«,«>); and approximately equal is a fuzzy binary relation in (-x»,») x
(-«,«,).

As stated in Section 2, each pr in {p }may be translated into a

relational assignment equation of the form

R(A (x ),...,A_ (x )) = P , r = 1,...,N (3
1 rl rk rk r

.4)

In some cases, the proposition "(x v ^ iD r> "r v oxuxun ^ ,...,xr ) is P , may be expressed
more naturally in English as "x aJd ... xk are P "

rl rk
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where A is an implied attribute of x , i = l,...,k, (with k dependent
ri ri

on r). Thus, the collection of propositions {p } may be represented as
r

a system of relational assignment equations (3.4).

Let P be the cylindrical extension of P , that is,

P = P x U x ... xu (3.5)
r r s± sz

where the index sequence (s-,...,s ) is the complement of the index

sequence (r ,...r ) (i.e., if n = 5, for example, and (r ,r ,r ) = (2,4,5),

then (s^s.^) = (1,3)).

By the rule of the implied conjunction, the collection of propositions

{p } induces a relational assignment equation of the form

R(A1(x1),...,An(xn)) =Pin...npN (3.6)

which subsumes the system of assignment equations (3.4). It is this

equation that forms the basis for approximate inferences from the given

propositions p.,...,p .

Specifically, by an inference about (x ,...,x ) from {p }, we

r! rk r_
mean the fuzzy restriction resulting from the projection of P = P1i"l...r»P„

1 N

on U x ... xU . Such an inference will, in general, be approximate
rl rk

in nature because of (a) approximations in the computation of the

projection of P; and/or (b) linguistic approximation to the projection

of P by variables whose values are linguistic rather than numerical.
2

A linguistic variable is a variable whose values are words or sentences
in a natural or artificial language. For example, Age is a linguistic
variable if its values are assumed to be young, not young, very young,
more or less young, etc. A more detailed discussion of linguistic
variables may be found in [3], [4] and [11]. (See also Appendix.)
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As a simple illustration of (3.6), consider the propositions

x! " ^ (3.7)

x1 and x2 are P2 (3.8)

In this case, (3.6) becomes

R(A(x1),A(x2))=?inP2 (3.9)

and the projection of P- n P on U2 reduces to the composition of P1

and P2. In this way, we are led to the compositional rule of inference

which may be expressed in symbols as

x± is P1 (3.10)

x- and x« are P„

x2 is Pl0 P?_

or, more generally,

x1 and x2 are P- (3.11)

x„ and x~ are P„

x- and x~ are P_ o P.

in which the respective inferences are shown below the horizontal line.

As a more concrete example, consider the propositions
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x. is small

x^ and x2 are approximately equal

where

and

Ux = U2 = 1 + 2+ 3+ 4

small =1/1 + 0.6/2 + 0.2/3

(3.12)

(3.13)

(3.14)

(3.15)

approximately equal = l/((l,l)+(2,2)+(3,3)+(4,4)) (3.16)

+ 0.5/((l,2)+(2,l)+(2,3)+(3,2)

+(3,4)+(4,3))

In this case, the composition small o approximately equal may be

expressed as the max-min product of the relation matrices of small and

approximately equal. Thus

small o approximately equal = [1 0.6 0.2 0] o

= [1 0.6 0.5 0.2]

and hence the fuzzy restriction on x2 is given by

R(x2) = 1/1 + 0.6/2 + 0.5/3 + 0.2/4

1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.5

0 0 0.5 1_

(3.17)

(3.18)

Using the definition of more or less (see (2.56H arough linguistic
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approximation to (3.18) may be expressed as

LAd/1+0.6/2+0.5/3+0.2/4) = more or less small

where LA stands for the operation of linguistic approximation. In this

way, from (3.12) and (3.13) we can deduce the approximate conclusion

xo is more or less small (3.20)

which may be regarded as a approximate solution of the relational

assignment equations

R(xx) = small (3.21)

and

R(xl9x2) = approximately equal (3.22)

Proceeding in a similar fashion in various special cases, one can

readily derive one or more approximate conclusions from a given set of

propositions, with the understanding that the degree of approximation in

each case depends on the definition of the fuzzy restrictions which are

induced by the propositions in question. Among the relatively simple

examples of such approximate inferences are the following:

x is close to x« (2.23)

x2 *s close to xo

x_ is more or less close to x~
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Most Swedes are tall (3.24)

Nils is a Swede

It is very likely that Nils is tall

Most Swedes are tall

Most tall Swedes are blond (3.25)

Karl is a Swede

It is very likely that Karl is tall and it is

more or less (very likely) that Karl is blond

It should be noted that the last two examples involve a fuzzy

quantifier, most, and fuzzy linguistic probabilities very likely and

more or less (very likely). By defining most as a fuzzy subset of the

unit interval, and tall as a fuzzy subset of the interval [150,200], the

proposition p = Most Swedes are tall induces a fuzzy restriction on

the distribution of heights of Swedes, from which the conclusion "It is

very likely that Nils is tall," follows as a linguistic approximation.

The same applies to the last example, except that the probability very

llkely is dilated in the consequent proposition because of the double

occurrence of the quantifier most among the antecedent propositions.

The goodness of the linguistic approximation in these examples depends

essentially on the degree to which very likely approximates to most.

A more general rule of inference which follows at once from (2.45)

and (3.10) may be viewed as a generalization of the classical rule of

modus ponens. This rule, which will be referred to as the compositional

modus ponens, is expressed by
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x is P (3.26)

If x is Q then y is S

y is Po (Qf$S)

where e is the bounded-sum operation, Qf is the cylindrical extension

of the complement of Q, and ? is the cylindrical extension of S. Alter

natively, using the maximin rule for conditional propositions (see

(2.36)), we obtain

x is P (3.27)

If x is Q then y is S

y is Po (QxS+Q')

where + is the union and Q1 = Qf x V.

Note 3.28 If P » Q and P and S are nonfuzzy, both (3.26) and (3.27)

reduce to the classical modus ponens

x is P (3.29)

If x is P then y is S

y is S

However, if P « Q and P is fuzzy, we do not obtain (3.29) because of

the interference effect of the implied part of the conditional proposi

tion "If x is P then y is S," namely "If x is P1 then y is V." As a

simple illustration of this effect, let U=l+2+3+4 and assume
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that

and

P = 0.6/2 + 1/3 + 0.5/4

S = 1/2 + 0.6/3 + 0.2/4

In this case >

1 1 1 1 *

p1 e "s .

0.4 1 1 0.6

0 1 0.6 0.6

0.5 1 1 0.7

"l 1 1 1

0.4 0.6 0.6 0.6

P x S + P• =

0 1 0.6 0.2

0.5 0.5 0.5 0.5

and both (3.26) and (3.27) yield

y = 0.5/1 + 1/2 + 0.6/3 + 0.6/4

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

which differs from S at those points at which y (v) is below 0.5.

The compositional form of the modus ponens is of use in the

formulation of fuzzy algorithms and the execution of fuzzy instructions

[11]. The paper by S. K. Chang [12] and the recent theses by Fellinger

[13] and LeFaivre [14] present a number of interesting concepts relating

to such instructions and contain many illustrative examples.
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4. Concluding Remarks

In the foregoing discussion, we have attempted to convey some of

the main ideas behind the calculus of fuzzy restrictions and its applica
tion to approximate reasoning. Although our understanding of the

processes of approximate reasoning is quite fragmentary at this juncture,

It is very likely that, in time, approximate reasoning will become an

important area of study and research in artificial intelligence, psychology
and related fields.

-30-



Appendix

Fuzzy Sets - Notation, Terminolgy and Basic Properties

The symbols U, V, W,..., with or without subscripts, are generally

used to denote specific universes of discourse, which may be arbitrary

collections of objects, concepts or mathematical constructs. For example,

U may denote the set of all real numbers; the set of all residents in

a city; the set of all sentences in a book; the set of all colors that

can be perceived by the human eye, etc.

Conventionally, if A is a fuzzy subset of U whose elements are

u.,...,u, then A is expressed as

A - {U;L,...,un} (A1)

For our purposes, however, it is more convenient to express A as

A « u± + ... + un (A2)

or

n

A = IN
i=l

(A3)

with the understanding that, for all i,j,

ui + uj " uj + ui (A4)

and

Ui + ui = ui (A5)

-31-



As an extension of this notation, a finite fuzzy subset of U is

expressed as

F- ly^ + ... + ynun (A6)

or, equivalently, as

F= Ml/Ul + ... + yn/un (A7)

where the i^, i = l,...,n, represent the grades of membership of the u.

in F. Unless states to the contrary, the y. are assumed to lie in the

interval [0,1], with 0 and 1 denoting no membership and full membership,

respectively.

Consistent with the representation of a finite fuzzy set as a

linear form in the u^ an arbitrary fuzzy subset of U may be expressed

in the form of an integral

* = IUF(u)/u (A8)

U

in which yp: U ->• [0,1] is the membership or, equivalently, the com

patibility function of F; and the integral! denotes the union (defined

U
by (A28)) of fuzzy singletons y (u)/u over the universe of discourse U.

The points in U at which yp(u) > 0 constitute the support of F.

The points at which y„(u) =0.5 are the crossover points of F.

Example A9 Assume

U = a + b + c + d (A10)

= IuF(u)/u
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Then, we may have

A = a + b + d (All)

and

F = 0.3a + 0.9b + d (A12)

as nonfuzzy and fuzzy subsets of U, respectively.

If

U = 0 + 0.1 + 0.2 + ... + 1 (A13)

then a fuzzy subset of U would be expressed as, say,

F = 0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1 (A14)

If U = [0,1], then F might be expressed as

/F= I -^-t/u (A15)
'o **

which means that F is a fuzzy subset of the unit interval [0,1] whose

membership function is defined by

y (u) = r- (A16)
1+u

In many cases, it is convenient to express the membership function

of a fuzzy subset of the real line in terms of a standard function whose

parameters may be adjusted to fit a specified membership function in an
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approximate fashion. Two such functions, of the form shown in Fig. Al,

are defined below.

S(u;a,3,Y) =0 for u < a

9/u-a.2 .
2*yIZ' for a <. u _< 6

1"2^> for 3<u<Y- 2(^C)2
vY-cr

= 1 for u >_ y

*(u;3,y) -S(u;y-3,y- f^ for u<Y

=1-S(u;Y,a+ |,y+3) for u>y

(A17)

(A18)

In S(u; a ,g,Y), the parameter 3, 3=-1 , is the crossover point.

In tt(u;3,y)» 3 is the bandwidth, that is^the separation between the

crossover points of tt, while y is the point at which tt is unity.

In some cases, the assumption that yp is amapping from U to [0,1]

may be too restrictive, and it may be desirable to allow y to take
F

values in a lattice or, more particularly, in a Boolean algebra [15], 116],

[17]. For most purposes, however, it is sufficient to deal with the

first two of the following hierarchy of fuzzy sets.

Definition A19. A fuzzy subset, F, of U is of type 1 if its membership

function yp, is a mapping from U to [0,1]; and F is of type n, n = 2, 3,...,

if yp is a mapping from U to the set of fuzzy subsets of type n - 1. For

simplicity, it will always be understood that F is of type 1 if it is not

specified to be of a higher type.

Example A20. Suppose that U is the set of all nonnegative integers and F
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is a fuzzy subset of U labeled small integers. Then F is of type 1 if

the grade of membership of a generic element u in F is a number in the

interval [0,1], e.g.,

WlJatsBar.fr> •<1+<I>2>_1 u=O'1'2' <A21>

On the other hand, F is of type 2 if for each u in Uu,(u) is a fuzzy

subset of [0,1] of type 1, e.g., for u = 10,

•Wl integers(10) =^ <A22>

where low is a fuzzy subset of [0,1] whose membership function is defined

by, say,

Plow(v) = 1 - S(v;0,0.25,0.5), v e [0,1] (A23)

which implies that

= I(l-S(v;0,0.25,0.5))/vlow = I(l-S(v;0,0.25,0.5))/v (A24)

'o

If F is a fuzzy subset of U, then its a-level-set, F , is a nonfuzzy

subset of U defined by [18]

Fa = {ulVu) - a} (A25)

for 0 < a _< 1.

If U is a linear vector space, then F is convex iff for all A G [0,1]

and all u-,u« in U,

-35-



yF(Xul+(1"X)u2) ^min(Vui)»Vu2)) (A26)

In terms of the level-sets of F, F is convex iff the F are convex for
a

all ae (0,1]-1

The relation of containment for fuzzy subsets F and G of U is

defined by

FC go yp(u) < yG(u) , uG U (A27)

Thus, F is a fuzzy subset of G if (A27) holds for all u in U.

Operations on fuzzy sets

If F and G are fuzzy subsets of U, their union, F^G, intersection,

F H G, bounded-sum, F $ G, and bounded-difference, F 0 G, are fuzzy sub

sets of U defined by

FUG&fUp(u) VyG(u)/u (A28)

FnG-Jyp(u

F ® G = I
I]

•b

)A yG(u)/u (A29)

1A (yF(u)+yG(u))/u (A30)
U

F0 G= I0V (yF(u)-yG(u))/u (A31)
U

where v and A denote max and min, respectively. The complement of F is

defined by

Ff =J(l-yF(u))/u (A32)

This definition of convexity can readily be extended to fuzzy sets of
type 2 by applying the extension principle (see (A75)) to (A26).
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or, equivalently,

f1 = u e f (A33)

It can be readily shown that F and G satisfy the identities

(jnB)»-ruG- (434)

(FUG)1 -F'n G' (A35)

(FSG)1 = F'e G (A36)

(we)'.-F'»G (A37)

and that F satisfies the resolution identity [2]

(A38)

"0

where Fa is the a-level-set of F; aFa is a set whose membership function

is WaF = ayF *and I den°tes the union of the aF, with ae (0,1].

Although it is traditional to use the symbol U to denote the union

of nonfuzzy sets, in the case of fuzzy sets it is advantageous to use

the symbol + in place of U where no confusion with the arithmetic sum

can result. This convention is employed in the following example, which

is intended to illustrate (A28), (A29), (A30), (A31) and (A32).

Example A39. For U defined by (AlO) and F and G expressed by

F=I aF

F = 0.4a + 0.9b + d (M0)

G = 0.6a + 0.5b (M1)
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we have

F + G = 0.6a + 0.9b + d (A42)

F O G = 0.4a + 0.5b (A43)

F*G».a + b + d (A44)

F9G= 0.4b + d (A45)

F1 = 0.6a + 0.1b + c (A46)

The linguistic connectives and (conjunction) and or (disjunction)

are identified with n and +, respectively. Thus,

F and G b n G (A47)

and

ForGA=F + G (A48)

As defined by (A47) and (A48), and and or are implied to be non-

interactive in the sense that there is no "trade-off" between their

operands. When this is not the case, and and or are denoted by <and>

and <or>, respectively, and are defined in a way that reflects the nature

of the trade-off. For example, we may have

and G=Iyp(u) G(u)/u
•'TT

(A49)
"Fx"' Gx~"~

FU

F or G=f (yp(u)+yG(u)-yF(u)yG(u))/u (A50)

whose + denotes the arithmetic sum. In general, the interactive versions
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of and and or do not possess the simplifying properties of the connectives

defined by (A47) and (A48), e.g., associativity, distributivity, etc.

(See [4].)

If a is a real number, then Fa is defined by

Fa= [ (^00)% (A51)

For example, for the fuzzy set defined by (A40), we have

2
F = 0.16a + 0.81b + d (^2)

and

1/2F = 0.63a + 0.95b + d (^3)

These operations may be used to approximate, very roughly, to the effect

of the linguistic modifiers very and more or less. Thus,

very. F4 f2

and

more or lass F = F '2 ,ACCv
(A55)

If F1,...,Fn are fuzzy subsets of U.^...,^, then the cartesian
product of F±9...,Fn is afuzzy subset of V± x... xu defined by

1 n I " t? \**i//\ •••/*»*„ iu n/fu ii "4 (A56)x...xFn-J(y^(Ui)A_AyF (Un))/(v...fUn)
U x...xu
1 n
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As an illustration, for the fuzzy sets defined by (A40) and (A41), we
have

F xG= (0.4a+0.9b+d) x (0.6a+0.5b) (A57)

» 0.4/(a,a) + 0.4/(a,b) + 0.6/(b,a)

+ 0.5/(b,b) + 0.6/(d,a) + 0.5/(d,b)

which is a fuzzy subset of (a+b+c+d) x (a+b+c+d).

Fuzzy relations

An n-ary fuzzy relation Rla^.x... xu is afuzzy subset of

D1X",XV The projection of R on U x... xu ,where OU ,... ,1 )
1 k Ik

is a subsequence of (l,...,n), is a relation in U x... xU defined by
1 \

Proj R on V*'X\° |\ .••.»u1MR(V-"'un)/(ul'-"'V (A58)
U. x...xU

1 \

where (J1,...,jJt) is the sequence complementary to (i-,...,i ) (e.g., if
J* Jv

n = 6 then (1,3,6) is complementary to (2,4,5)), and v denotes
u. •»•••# >u.

the supremum over U. x ... x u .
Jl J£

If R is a fuzzy subset of U± ,...,U ,then its cylindrical extension
1 \

in U x ... xU is a fuzzy subset of U.x... xU defined by
j. n In-7

R= I yR(ui1'--'ulk>/<V—un:
U,x.. .xU
1 n

(A59)

In terms of their cylindrical extensions, the composition of two
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binary relations R and S (in U x U and U« x n , respectively) is

expressed by

R o S = Proj R 0 "S on U x n (A60)

where R and S are the cylindrical extensions of R and S in U- x U x U

Similarly, if R is a binary relation in U x n and S is a unary relation

in U , their composition is given by

Ro s= Proj R^Son^ (A61)

Example A62. Let R be defined by the right-hand member of (A57) and

S = 0.4a + b + 0.8d (A63)

Then

Proj Ron U^ a+b+c+d) =0.4a +0.6b + 0.6d (A64)

and

R o S = 0.4a + 0.5b + 0.5d (A65)

Linguistic variables

Informally, a linguistic variable, 9( , is a variable whose values

are words or sentences in a natural or artificial language. For example,

if age is interpreted as a linguistic variable, then its term-set, T(96,

that is, the set of its linguistic values, might be
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T(age) - young + old + very young + not young + (A66)

very old + very very young +

rather young + more or less young + ... .

where each of the terms in T(age) is a label of a fuzzy subset of a

universe of discourse, say U = [0,100].

A linguistic variable is associated with two rules: (a) a syntactic

rule, which defines the well-formed sentences in T(Q(); and (b) a

semantic rule, by which the meaning of the terms in T(9() may be

determined. If X is a term in T(90, then its meaning (in a denotational

sense) is a subset of U. A primary term in T(9C) is a term whose

meaning is a primary fuzzy set, that is, a term whose meaning must be

defined a priori, and which serves as a basis for the computation of the

meaning of the non-primary terms in T(QO. For example, the primary

terms in (A66) are young and old, whose meaning might be defined by

their respective compatibility functions y and y ,,. From these,
young old '

then, the meaning - or, equivalently, the compatibility functions - of

the non-primary terms in (A66) may be computed by the application of a

semantic rule. For example, employing (A54) and (A55), we have

( )2yvery young ~ ^young^ (A67)

1/2
ymore or less old " ^old^ (A68)

2

wnot very young ~* "* ^yyoung' (A69)

For illustration, plots of the compatibility functions of these terms

are shown in Fig. A2.
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The extension principle

Let f be a mapping from U to V. Thus,

v = f(u) (A70)

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F = y,u, +...+ y u (A71)
11 n n

or, more generally,

F=|mf(u)/u (A72)
^U

By the extension principle [3], the image of F under f is given by

f(F) = ynf(u-) +...+ y f(u ) (A73)
i 1 n n

or, more generally,

f(F) = I y„(u)/f(u) (A74)

U

fyF(u)/f(u]
•MT

Similarly, if f is a mapping from U x v to W, and F and G are

fuzzy subsets of U and V, respectively, then

f(F,G) =f(yp(u) AyG(v))/f(u,v) (A75)
•'w

Example A76 Assume that f is the operation of squaring. Then, for the

set defined by (A14), we have
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f(0.3/0.5+0.6/0.7+0.8/0.9+1/1) = 0.3/0.25 + 0.6/0.49 + 0.8/0.81 + 1/1

(A77)

Similarly, for the binary operation V (= max), we have

(0.9/0.1+0.2/0.5+1/1) V (0.3/0.2+0.8/0.6) = 0.3/0.2 + 0.2/0.5 + 0.8/1

+ 0.8/0.6 + 0.2/0.6 (A78)

It should be noted that the operation of squaring in (A77) is different

from that defined by (A51) and (A52).
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Figure Captions

Fig. 1.1 Compatibility function of young.

Fig. 2.1 Illustration of truth-functional modification.

Fig. Al Plots of S and tt functions.

Fig. A2 Compatibility functions of young and its modifications,
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