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ABSTRACT

A fuzzy restriction may be visualized as an elastic constraint on
the values that ﬁay be assigned to a variable. In terms of such re-
strictions, the meaning of a proposition of the form "x is P," where x
is the name of an object and P is a fuzzy set, may be expressed as a
relational assignment equation of the form R(A(x)) = P, where A(x) is
an implied attribute of X, R is a fuzzy restriction on x, and P is the
unary fuzzy relation which is assigned to R. For example, "Stella is

" where young is a fuzzy subset of the real line, translates into

young,
R(Age(Stella)) = young.

The calculus of fuzzy restrictions is concerned, in the main, with
(a) tranmslation of propositions of various types into relational assign-
ment equations, and (b) the study of transformations of fuzzy restrictions
which ;rezinduced by linguistic modifiers, truth-functional modifiers,
compositions, projections and other operations. An important applica-

tion of the calculus of fuzzy restrictions relates to what might be

called approximate reasoning, that is, a type of reasoning which is

neither very exact nor very inexact. The main ideas behind this

application are outlined and illustrated by examples.
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1. Introduction

During the past decade, the theory of fuzzy sets has developed in
a variety of directions, finding applications in such diverse fields
as taxonomy, topology,'linguistics, automata theory, logic, control
theory, game theory, information theory, psychology, pattern recognition,
medicine, law, decision analysis, system theory and information retrieval.
A common thread that funs through most of the applications of

the theory of fuzzy sets relates to the concept of a fuzzy restriction -

that is, a fuzzy relation which acts as an elastic constraint on the
values that may be assigned to a variable. Such restrictions appear

to play an important role in human congnition, especially in situations
1nvolvingAconcept formation, pattern recognition and decision-making
in fuzzy or uncertain environments.

As its name implies, the calculus of fuzzy restrictions is

essentially a body of concepts and techniques for dealing with fuzzy
restrictions in a systeﬁatic fashion. As such, it may be viewed as a
branch of the theory of fuzzy relations, in which it plays a role some-
what Analogous to that of the calculus of probabilities in probability
theory. However, a more specific aim of the calculus of fuzzy restric-
tions is to furnish a conceptual basis for fuzzy logic and what might

be called approximate reasoning [1], that is, a type of reasoning which

is neither very exact nor very inexact. Such reasoning plays a basic
role in human decision-making because it provides a way of dealing with
problems which are too complex for precise solution. However, approx-
imate reasoning 'is more than a method of last recourse for coping with
insurmountable complexities. It is also a way of simplifying the per-

formance of tasks in which a high degree of precision is neither needed



nor required. Such tasks pervade much of what we do on both conscious
and subconscious levels.

What is a fuzzy restriction? To illustrate its meaning in an
informal fashion, consider the following propositions (in which

italicized words represent fuzzy concepts):

Tosi is young (1.1)
Ted has gray hair 1.2)

Sakti and Kapali are approximately equal in height. 1.3)

Starting with (1.1), let Age (Tosi) denote a numerically-valued
variable which ranges over the interval [0,100]. With this interval
regarded as our universe of discourse U, young may be interpreted as

the label of a fuzzy subset1 of U which is characterized by a com-

patibility function, oung’ of the form shown in Fig. 1.1. Thus, the
degree to which a numerical age, say u = 28, is compatible with the
concept of young is 0.7, while the compatibilies of 30 and 35 with

young are 0.5 and 0.2, respectively. (The age at which the compatibility

takes the value 0.5 is the crossover point of young.) Equivalently,

the function u o

un may be viewed as the membership function of the

fuzzy set young, with the value of u oun at u representing the grade

of membership of u in young.
Since young is a fuzzy set with no sharply defined boundaries, the

conventional interpretation of the proposition "Tosi is young," namely,

"Tosi is a member of the class of young men," is not meaningful if

lA sumnary of the basic properties of fuzzy sets is presented in the
Appendix.



membership in a set is interpreted in its usual mathematical sense. To
circumvent this dlfflculty, we shall view (1.1) as an assertion of a
restriction on the possible values of Tosi's age rather than as an
assertion concerning the membership of Tosi in a class of individuals.
Thus, on denoting the restriction on the age of Tosi by R(Age(Tosi)),

(1.1) may be expressed as an assignment equation
R(Age(Tosi)) = young - (1.4)

in which the fuzzy (or, equivalently, the unary fuzzy relation young)
is assigned to the restriction on the vairable Age(Tosi). 1In this

instance, the restriction R(Age(Tosi)) is a fuzzy restriction by virtue

of the fuzziness of the set young.

Using the same point of view, (1.2) may be expressed as
R(Color(Hair(Ted))) = gray (1.5)

Thus, in this case, the fuzzy set gray is assigned as a value to the
fuzzy restriction on the variable Color(Hair(Ted)).

In the case of (1.1) and (1;2), the fuzzy restrictipn has the
form of a fuzzy sef, or, equivalently, a unary fuzzy relation. 1In
the case of (1.3), we have two variables to consider, namely, Height
(Sakti) and Height(Kapali). Thus, in this instance, the assignment

equation takes the form

R(Height(Sakti)), Height(Kapali)) = approximately equal (1.6)

in which approximately equal is a binary fuzzy relation characterized




by a compatibility matrix uappro imately equal(u,v) such as shown in

Table 1.2

u 5'6 5'8 5'10 6 6'2 6'4

5'6 1 0.8 0.6 0.2 0 0
5'8 0.8 1 0.9 0.7 0.3 0

5'10 0.6 0.9 1 0.9 0.7 0

6 002 0.7 009 l 009 008
6'2 0 0.3 0.7 0.9 1 0.9
6'4 0 0 0 0.8 0.9 1

Table 1.2. Compatibility matrix of the fuzzy relation approximately

equal

Thus, 1f Sakti's ﬁeight is 5'8 énd Kapali's is 5'10, then the degree
to which they are approximately equal is 0.9.

The restrictions involved in (1.1), (1.2) and (1.3) are unrelated
in the sense that the restriction on the age of Tosi has no bearing on
the color of Ted's hair or the height of Sakti and Kapali. More
generally, however, the restrictions may be interrelated, as in the

following example:

u is small (1.7)
u and v are approximately equal (1.8)

In terms of the fuzzy restrictions on u and v, (1.7) and (1.8)

translate into the assignment equations

R(u) = small (1.9)



R(u,v) = approximately equal (1.10)

where R(u) and R(u,v) denote the restrictions on u and (u,v), respec-
tively.

As will be shown in Section 2, from the knowledge of a fuzzy
restriction on u and a fuzzy restriction on (u,v) we can deduce a
fuzzy restriction on v. Thus, in the case of (1.9) and (1.10), we can

assert that

R(v) = R(u) o R(u,v) (1.11)

= small o approximately equal

where o denotes the composition2 of fuzzy relations.
The rule by which (1.11) is inferred from (1.9) and (1.10) is

called the compositional rule of inference. As will be seen in the

sequel, this rule is a special case of a more general method for de-
ducing a fuzzy restriction on a variable ffom the knowledge of fuzzy
restrictions on related variables.

In what follows, we shall outline some of the main ideas which
form the basis for the calculus of fuzzy restrictions and sketch its
applicatioq to approximate reasoning. For convenient reference, a
summary of those aspects of the theory of fuzzy sets which are relevant

to the calculus of fuzzy restrictions is presented in the Appendix.

21f A is a unary fuzzy relation in U and B is a binary fuzzy relation in

U x V, the membership function of the composition of A and B is expressed
by quB(v) = VL(MA(U)'“ gB(u,v), where Va denotes the supremum over

u € U. A more detailed discussion of the composition of fuzzy relations
may be found in [2] and [3].
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2. Calculus of Fuzzy Restrictions

The point of departure for our discussion of the calculus of fuzzy

restrictions is the paradigmatic proposition1
A
p=xis P (2.1)

which is exemplified by

x is a positive integer . (2.2)
Soup is hot (2.3)
Elvira is blond (2.4)

If P is a label of a nonfuzzy set, e.g., P 4 set of positive
integers, then "x is P," may be interpreted as "x belongs to P," or,
equivalently, as "x is a member of P." In (2.3) and (2.4), however, P
is a label of a fuzzy set, i.e., P A hot and P a blond. In such cases,
the interpretation of "x is P," will be assumed to be characterized

by what will be referred to as a relational assignment equation. More

specifically, we have

Definition 2.5 The meaning of the proposition

P A x is P (2.6)

where x is a name of an object (or a construct) and P is a label of a

fuzzy subset of a universe of discourse U, is expressed by the relational

assignment equation

1The symbol 4 stands for "denotes" or "is defined to be.'
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R(A(x)) = P : (2.7)

where A is an implied attribute of x, i.e., an attribute which is
implied by x and P; and R denotes a fuzzy restriction on A(x) to which
the value P is assigned by (2.7). In other words, (2.7) implies that
the attribute A(x) takes values in U and that R(A(x)) is a fuzzy
restriction on the values that A(x) may take, with R(A(x)) equated to
P by the relational assignment equation.

As an illustration, consider the proposition "Soup is hot.”" 1In

this case, the implied attribute is Temperature and (2.3) becomes
R(Temperature (Soup)) = hot : (2.8)

with hot being a subset of the interval [0,212] defined by, say, a
- compatibility function of the form (see Appendix)
(u) = S(u;32,100,200) (2.9)

uhot

Thus, if the temperature of the soup is u = 100°, then the degree to
which it is compatible with the fuzzy restriction hot is 0.5, whereas
the compatibility of 200° with hot is unity. It is in this sense that
R(Temperature(Soup)) plays the role of a fuzzy restriction on the soup
temperature which is assigned the value hot, with the compatibility
function of hot serving to define the compatibilities of the numerical
values of soup temperature with the fuzzy restriction hot.

In the case of (2.4), the implied attribute is Color (Hair), and

the relational assignment equation takes the form



R(Color(Hair(Elvira))) = blond (2.10)

There are two important points that are brought out by this
example. First, the implied attribute of x may have a nested structure,

i.e., may be of the general form

Ak(Ak—1(°" A2(Al(x)) cee))s (2.11)

and second, the fuzzy set which is assigned to the fuzzy restriction

(i.e., blond) may not have a numerically-valued base variable, that is,

the variable which ranges over the universe of discourse U. In such cases,

we shall assume that P is defined by exemplification, that is, by

pointing to the specific instances of x and indicating the degree
(either numerical or linguistic) to which that instance is compatible

with P. For example, we may have ¥plond (June) = 0.2 (Jurata) =

> "blond
very high, etc. In this way, the fuzzy set blond is defined in an

| approximate fashion as a fuzzy subset of a universe of discourse com—

prised of a collection of individuals U = {x}, with the restriction

R(x) playing the role of a fuzzy restriction on the values of x rather

than on the values of an implied attribute A(x).2 (In the sequel, we

shall writé R(x) and speak of the restriction on x rather than on A(x)

not only in those cases in which P is defined by exemplification, but

also when the implied attribute is not identified_in an explicit fashion.)

So far, we have confined our attention to fuzzy restrictions which

are defined by a single proposition of the form "x is P." In a more

general setting, we may have n constituent propositions of the form

lA more detailed discussion of this and related issues may be found in
[31, [4] and [5].



X, is Pi s i=1,...,n _ : (2.12)

in which Pi is a fuzzy subset of Ui’ i=1,...,n. In this case, the
propositions "xi is Pif'i = 1,...,n, collectively define a fuzzy
restriction on the n-ary object (xl,...,xn). The way in which this

restriction depends on the Pi is discussed in the following.

The Rules of Implied Conjunction and Maximal Restriction

For simplicity we shall assume that n = 2, with the constituent

propositions having the form

X is P - (2.13)

y is Q | : ' (2.14)

where P and Q are fuzzy subsets of U and V, respectively. For example,

Georgia is very warm - (2.15)
George is highly intelligent ' (2.16)

or, if x =y,

Georgia is very warm (2.17)
Georgia is highly intelligent ' (2.18)

The rule of implied conjunction asserts that, in the absence of

additional information concerning the constituent propositions, (2.13)
and (2.14) taken together imply the composite proposition "x is P and

y is Q;" that is,

-10-
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where the right-hand member represents the supremum of pR(ul,...,un)

over the u's which are in u(q,).
If R is interpreted as a fuzzy restriction on (ul,...,un) in
le...XUn, then its projection on Uilx...ink, Rq’ constitutes a.

marginal restriction which is induced by Rin U Conversely, given

(q)°

a fuzzy restriction Rq in U(q)’ there exist fuzzy restrictions in
UIX...XUn whose projection on U(q) is Rq. From (2.22), it follows

that the largest4 of these restrictions is the cylindrical extension

of Rq, denoted by §§, whose membership function is given by

b (Uiseeesu ) = po (U, ,e..,u, ) (2.23)
Rq 1 n R,q il ik

and whose base is Rq. (ﬁa is referred to as the cylindrical extension

of R because the value of u— at any point (u!,...,u') is the same as
q 1 n

R
q
at the point (u,,...,u ) so long as u' = u seessu', =u, .)
1 n il 11 ik ik

Since iﬁ is the largest restriction in le...XUn whose base is

Rq, it follows that

R CR, | (2.24)

for all q, and hence that R satisfies the containment relation
RCR N R N .,,NR (2.25)

which holds for arbitrary index subsequences ql,...,qr. Thus, if we

are given the marginal restrictions Rq ,...,Rq » then the restriction
1 r

4A fuzzy relation R in U is larger than S (in U) iff uR(u)_z us(u)
for all u in U.

-12-
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(R ,...,R_ )R N,,.NR (2.26)
RMAX q1 qr q1 qr

is the maximal (i.e., least restrictive) restriction which is consistent

with the restrictions R ,...,R . It is this choice of given R_,..:»R
4 4 Ryax 9’ """

that constitutes a genefal selection principle of which the rule of

r

maximal restriction is a special case.’
By applying the same approach to the disjunction of two propositionms,

we are led to the rule

x is Por y is Q = (x,y) is P+Q (2.27)
or, equivalently,

x is P of y is Q = (x,y) is (P'xQ')’ (2.28)

where P' and Q' are the complements of P and Q, respectively, and +

denotes the union.

As a simple illustration of (2.27), assume that
U=1+2+3+4

and that

SA somewhat analogous role in the case of probability distributions is
played by the maximum entropy principle of R. Jaynes and M. Tribus [6],

[71.

6The membership function of P' is related to that of P by
"P'(u) =1 - pP(u). The membership function of the union of P and Q is

expressed by uP+Q(u) = uP(u)qu(u),where'V denotes max.

-]13-



P2 ema11 4 1/1 + 0.6/2 + 0.2/3 (2.29)
large 2 0.2/2 + 0.6/3 + 1/4 (2.30)
Q £ very large = 0.04/2 + 0.36/3 + 1/4 (2.31)
Then
P' = 0.4/2 +0.8/3 + 1/4 | : (2.32)
Q' =1/1 + 0.96/2 + 0.64/3
and
P+ Q= (P'xQ")' = 1/(1,1) + (1,2) + (1,3) + (1,4) (2.33)

+ (2,4) + (3.4) + (4,4))
+ 0.6/((2,1)+(2,2)+(2,3))
+ 0.3/((3,1)+(3,2))+0.36/((3,3)+(4,3))

+ 0.04/(4,2)

Conditional propositions

In the case of conjunctions and disjunctions, our intuition provides
a reasonably reliable guide for defining the form of the dependence of
R(x,y) on R(x) and R(y). This is less true, however, of conditional

propositions of the form

4 If x 18 P then y is Q else y is § (2.34)

o
n

and

2 If x 1s P then y is Q (2.35)

V-
[t

where P is a fuzzy subset of U, while Q and S are fuzzy subsets of V.

14~



With this qualification, two somewhat different definitions for -
the restrictions induced by p and q suggest themselves. The first, to

which we shall refer as the maximin rule of conditional propositiomns,

is expressed by
If x is P then y is Q else y is S = (x,y) is P x Q + P' x S, (2.36)

which implies that the meaning of P is expressed by the relational

assignment equation
R(x,y) =P x Q+ P'x § - (2.37)

The conditional proposition (2.35) may be interpreted as a special

case of (2.34) corresponding to S = V. Under this assumption, we have
If x is P then y is Q @ (x,y) is P x Q + P'x V (2.38)
As an illustration, consider the conditional'proposition
A

p = If Maya is tall then Turkan is very tall (2.39)

Using (2.38), the fuzzy restriction induced by p is expressed by

the relational assignment equation

R(Height (Maya), Height(Turkan)) = tall X very tall x not tall x V

where V might be taken to be the interval [150,200] (in centimeters),

and tall and very tall are fuzzy subsets of V defined by their

respective compatibility functions (see Appendix)

-15-



utall = 5(160,170,180) ' (2.40)
and
a2
uver tall = $7(160,170,180) (2.41)

in which the argument u is suppressed for simplicity.

An alternative definition, to which we shall refer és the arithmetic

rule of conditional propositions, is expressed by

If x 1s P then y is Q else y is S = (x,y) is (PxV®e UxQ) + (P'xveuxs)'

, (2.42)
or, equivalently and more simply,

If x is'P then y is Q else y is'S = (x,y) is (f”da) N (P8S) (2.43)

where @ and 6 denote the bounded-sum and bounded-difference operations,7

respectively;'f and'6 are the cylindrical extensions of P and Q; and +
is the union. This definition may be viewed as an adaptation to fuzzy
sets of Lukasiewicz's definition of material implication in Laleph

1
logic, namely [8]

v(r+s) A min(1l,1-v(x)+v(s)) (2.44)

where v(r) and v(s) denote the truth-values of r and s, respectively,

with 0 < v(r) <1, 0 < v(s) < 1.

7The membership functions of the bounded-sum and-difference of P and Q
are defined by ups&u) = min(l,uP(u)+uQ(u)) and

uPQQ(u) = max(O,uP(u)-uQ(u), u € U, where + denotes the arithmetic sum.

~-16-



In particular, if S is equated to V, then (2.43) reduces to
If x is P then y is Q = (x,y) is (P'9Q) (2.45)

Note that in (2.42), PxV and U x Q are the cylindrical extensions,
P andia, of P and Q, respectively.

Of the two definitions stated above, the first is somewhat easier
to manipulate but the second seems to be in closer accord with our
intuition. Both yield the same result when P, Q and S are nonfuzzy
sets.

As an illustration, in the special case where x = y and P = Q,

(2.45) yields

If x is P then x is P = x is (P'@P) (2.46)

x is V

which implies, as should be expected, that the proposition in question
induces no restriction on x. The same holds true, more generally, when

P CQq.

Modification of Fuzzy Restrictions

Baslcally, there are three distinct ways in which a fuzzy restric-

tion which is induced by a proposition of the form
P 4 x is P

may be modified.

First, by a combination with other restrictions, as in

r8 x is P and x is Q : (2.47)

-17-



which transforms P into P N Q.

Second, by the application of a modifier m to P, as in

Hans is very kind _ (2.48)
Maribel is highly temperamental (2.49)
Lydia is more or less happy (2.50)

in which the operators very, highly and more or less modify the fuzzy

restrictions represented by the fuzzy sets kind, temperamental and

happy, respectively.

And third, by the use of truth-values, as in

(Sema is young) is very true (2.51)

in which very true is a fuzzy restriction on the truth-value of the
proposition "Sema is young."

The effect of modifiers such as very, highly, extremely, more or

less, etc., is discussed in greater detail in [9], [10] and [11]. For
the purposes of the present discussion, it will suffice to observe that

the effect of very and more or less may be approximated very roughly

by the operations CON (standing for CONCENTRATION) and DIL (standing

for DILATION) which are defined respectively by

coN(a) = f (u, @) ?/u (2.52)
U .
and -
DIL(A) = f (uy ()03 /4 (2.53)
' U

-18-



where A is a fuzzy set in U with membership function o and

A=qu(u)/u (2.54)
U

is the integral representation of A. (See the Appendix.) Thus, as an

approximation, we assume that

very A = CON(A) , (2.55)
and
more or less A = DIL(A) (2.56)

For example, if

100
oun =s -+ )2) La (2.57)
0
then
100
very youn =S (1+(“0)2) 2/ (2.58)
0
and
00
2,-0.5
more or less young = jl. (l+(30) ) Ju (2.59)
0

The process by which a fuzzy restriction is modified by a fuzzy
truth-value is significantly different from the point-transformations

expressed by (2.55) and (2.56). More specifically, the rule of truth-

functional modification, which defines the transformation in question,

may be stated in symbols as

-19-



(x is Q) is t = x is u-é °oT (2.60)

where t is a linguistic truth-value (e.g., true, very true, false, not

very true, more or less true, etc.); pal is a relation inverse to the

compatibility function of A, and uQ 0T is the composition of the non-

fuzzy relation u_l

Q
in Section 1 for the definition of composition.)

with the unary fuzzy relation t. (See footnote 2

As an illustration, the application of this rule to the proposition

(Sema is young) is very true (2.61)
yields
-1
Sema is u o 0 very true (2.62)

Thus, if the compatibility functions of Young and very true have the
form of the curves labeled HZQHEgl and Hoer true in Figf 2.1, then
the compatibility function of HZQEBE o0 very true is represented by the
curve 2222252. The ordinates of HZQEEEQ can readily be determined by
the graphical procedure illustrated in Fig. 2.1.

The important point brought out by the foregoing discussion is
that the association of a truth-value with a proposition does not
result in a proposition of a new type; rather, it merely modifies the
fuzzy restriction induced by that proposition in accordance with the

rule expressed by (2.60). The same applies, more generally, to nested

propositions of the form

(oo (((x 1is Pl) is Tl) is Tz) .e. 1is Tn) (2.63)



in which Tl,...,Tn are linguistic or numerical truth-values. It can

be shown8 that the restriction on x which is induced by a proposition

of this form may be expressed as

X is Pn+1

where

QA more detailed discussion of this and.rel

[41.

-21-
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3. Approximate Reasoning (AR)

The calculus of fuzzy restrictions provides a basis for a systematic

approach to approximate reasoning (or AR, for short) by interpréting
such reasoning as the process of approximate solution of a system of
relational assignment equations. In what follows, we shall present a
brief sketch of some of the main ideas behind this intgrpretation.
Specifically, let us assume that we have a collection of objects
xl,...,xn, a collection of universes of discourse Ul""’Un’ and a

collection {pr}, of propositions of the form

A
P. = (X_ s3X_ ,...,x_ ) is P s r=1,...,N (3.1)
r o, Ty, T
, 1
in which P is a fuzzy relation in U x...xU . E.g.,
T Ty T,
P 4 x, 1s small (3.2)
1 1 —_—
P, 4 Xy and x, are approximately equal (3.3)
A

in which Ul = U2 = (~w,»); small is a fuzzy subset of the real line

(~~,»); and approximately equal is a fuzzy binary relation in (~w,o) x

(—=,®).
As stated in Section 2, each P, in {r} may be translated into a

relational assignment equation of the form

R(Ar (xr ),...,Ar )) = Pr R r=1,...,N (3.4)

(x
1 n k T

k

In some cases, the proposition "(xr seeesX ) is Pr," may be expressed

more naturally in English as "x a%d .+« X_ are P "
r . r

-22-



where Ar is an implied attribute of xr » 1 =1,...,k, (with k dependent
i i

on r). Thus, the collection of propositions-{pr} may be represented as

a system of relational assignment equations (3.4).

Let‘§¥ be the cylindrical extension of Pr’ that is,
P =P xU_ X ...xU (3.5)
r r s

where the index sequence (sl,...,sz) is the complement of the index
sequence (rl,...rk) (i.e., if n = 5, forrexample, and (rl,rz,r3) = (2,4,5),
then (sl,sz) = (1,3)).

By the rule of the implied conjunction, the collection of propositions
{pr} induces a relational assignment equation of the form

R(A; (%))50 0004 (%)) = Fl N,..NP

N (3.6)

which subsumes the system of assignment equations (3.4). It is this
equation that forms the basis for approximate inferences from the given
propositions pl,...,pN.

Specifically, by an inference about (xr seeesX ) from {pr}, we

o 1 k _ -
mean the fuzzy restriction resulting from the projection of P = Plf\...fﬁPN
on Ur X «..xU . Such an inference will, in general, be approximate

T
1 k
in nature because of (a) approximations in the computation of the

projection of P; and/or (b) linguistic approximation to the projection

of P by variables whose values are linguistic rather than numerical.2

2A linguistic variable is a variable whose values are words or sentences
in a natural or artificial language. For example, Age is a linguistic
variable if its values are assumed to be young, not young, very young,
more or less young, etc. A more detailed discussion of linguistic
variables may be found in [3], [4] and [11]. (See also Appendix.)
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As a simplevillustration of (3.6), consider the propositions

X is Pl : : (3.7)

Xy and x, are P2 ' (3.8)

In this case, (3.6) becomes

R(A(xl),A(xZ)) =%, N3, _ (3.9)

and the projection of P NP, on U2 reduces to the composition of Pl

1 2

and P2. In this way, we are led to the compositional rule of inference

which may be expressed in symbols as

Xy is P1 _ (3.10)

xl and x2 are P2

x2 is Plo P2

or, more generally,

Xy and x, are P1 : (3.11)

x2 and x3 are P2

xl and x3 are Plo P2

in which the respective inferences are shown below the horizontal line.

As a more concrete example, consider the propositions

-24-



%, is small (3.12)

X, and X, are approximately equal (3.13)
where
A
U1 = U2 =1+2+3+4 (3.14)
small é 1/1 + 0.6/2 + 0.2/3 (3.15)
and
approximately equal Q 1/((1,1)+(2,2)+(3,3)+(4,4)) (3.16)

+ 0.5/((1,2)+(2,1)+(2,3)+(3,2)

+(3,4)+(4,3))

In this case, the composition small o approximately equal may be
expressed as the max-min prbduct of the relation matrices of small and

approximately equal. Thus

]

ﬂ
small o approximately equal = [1 0.6 0.2 0]o [ 1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.5

. -
=[1 0.6 0.5 0.2] (3.17)
and hence the fuzzy restriction on X, is given by
R(x2) = 1/1 + 0.6/2 + 0.5/3 + 0.2/4 (3.18)

Using the definition of more or less (see (2.56)) a rough linguistic
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approximation to (3.18) may be expressed as

LA(1/140.6/240.5/3+0.2/4) = more or less small

where LA stands for the operation of linguistic approximation. In this

way, from (3.12) and (3.13) we can deduce the approximate conclusion

X, is more or less small : (3.20)

which may be regarded as a approximate solution of the relational

assignment equations

R(x,) = small (3.21)
and
R(xl,xz) = approximately equal (3.22)

Proceeding in a similar fashion in various special cases, one can
readily derive one or more approximate conclusions from a given set of
propositions, with the understanding that the degree of approximation in
each case depends on the definition of the fuzzy restrictions which are
induced by the propositions in question. Aﬁong the relatively simple

examples of such approximate inferences are the following:

x. 1is close to x (2.23)

x2 is close to x3

%X, is more or less close to x3
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Most Swedes are tall (3.24)

Nils is a Swede

It is very likely that Nils is tall

Most Swedes are tall
Most tall Swedes are blond (3.25)

Karl is a Swede

It is very likely that Karl is tall and it is_

more or less (very likely) that Karl is blond

It should be noted that the last two examples involve a fuzzy

quantifier, most, and fuzzy linguistic probabilities very likely and

more or less (very likely). By defining most as a fuzzy subset of the
unit interval, and tall as a fuzzy subset of the interval [150,200], the
proposition »p é'gggg Swedes are tall induces a fuzzy restriction on
the distribution of heights of Swedes, from which the conclusion "It is
very likely that Nils is tall," follows as a linguistic approximation.
The same applies to the last example, except that the probability very
likely is dilated in the consequent proposition because of the double
occurrence of the quantifier most among the antecedent propositions.
The goodness of the linguistic approximation in these examples depends
essentially on the degree to which very likely approximates to most.

A more gemeral rule of inference which follows at once from (2.45)
and (3.10) may be viewed as a generalization of the classical rule of

modus ponens. This rule, which will be referred to as the compositional

modus ponens, is expressed by
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x is P (3.26)
If x is Q then y is S

y is Po (a'ﬁg)

where ® is the bounded-sum operation,.a' is the cylindrical extension.
of the complement of Q, and S is the cylindrical extension of S. Alter-

natively, using the maximin rule for conditional propositions (see

(2.36)), we obtain

x is P (3.27)
If x is Q then y is S

y is Po (QxS+Q')

where + is the union and Q' A Q'x V.

Note 3.28 1If P = Q and P and S are nonfuzzy, both (3.26) and (3.27)

reduce to the classical modus ponens

x is P (3.29)
If x is P then y is S

y is S

However, if P = Q and P is fuzzy, we do not obtain (3.29) because of

the interference effect of the implied part of the conditipnal proposi-

tion "If x is P then y is S," namely "If x is P' then y is V." As a

simple illustration of this effect, let U= 1+ 2 + 3 + 4 and assume
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that

-]
]

0.6/2 + 1/3 + 0.5/4

and

72}
1]

1/2 + 0.6/3 + 0.2/4

In this case,

1 1 1
L 0.4 1 1
P'®S =
0 1 0.6
0.5 1 1
.
1 1 1
_ |o.4 0.6 0.6
PyxS+P'=
0 1 0.6
0.5 0.5 0.5

and both (3.26) and (3.27) yield

y = 0.5/1 +1/2 + 0.6/3 + 0.6/4

0.6
0.6

0.7

0.6

0.2

O.SJ

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

which differs from S at those points at which.us(v) is below 0.5.

The compositional form of the modus ponens is of use in the

formulation of fuzzy algorithms and the execution of fuzzy instructions
[11]. The paper by S. K. Chang [12] and the recent theses by Fellinger
[13] and LeFaivre [14] present a number of interesting concepts relating

to such instructions and contain many illustrative examples.
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4. Concluding Remarks

In the foregoing discussion, we have attempted to convey some of
the main ideas behind the calculus of fuzzy restrictions and its applica-
tion to approximate reasoning. Although our understanding of the
processes of approximate reasoning is quite fragmentary at this juncture,
it is very likely that, in time, approximate reasoning will become an
important area of study and research in artificial intelligence, psychology

and related fields.
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Appendix

Fuzzy Sets - Notation, Terminolgy and Basic Properties

The symb@ls U, V, Wy..., with or without subscripts, are generally
used to denote specific universes of discourse, which may be arbitrary
collections of objects, concepts or mathematical constructs. For example,
U may denote the set of all real numbers; the set of all residents in
a city; the set of all sentences in a book; the set of all colors that
can be perceived by the human eye, etc.

Conventionally, if A is a fuzzy subset of U whose elements are

ul,...,un, then A is expressed as
A= {ug,..,u ) (A1)

For our purposes, however, it is more convenient to express A as

A= uy + ... + u (A2)
or
n
A= E ug (A3)
i=1

+u, =u. +
u uJ uJ u (A%)
-and
Py Ty (45)
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As an extension of this notation, a finite fuzzy subset of U is

expressed as

F=pu +...+ MU (A6)

or, equivalently, as
F = ullul + eee + |_1n/un (A7)

where the Hys i=1,...,n, represent the grades of membership of the ug

in F. Unless states to the contrary, the w; are assumed to lie in the
interval [0,1], with O and 1 denoting no membership and full membership,
respectively.

Consistent with the representation of a finite fuzzy set as a
linear form in the u;, an arbitrary fuzzy subset of U may be expressed

in the form of an integral

F= qu(u)/u (A8)
' U

in which upt U -+ [0,1] is the membership or, equivalently, the com-

patibility function of F; and the integralj. denotes the union (defined
: U
by (A28)) of fuzzy singletons pF(u)/u over the universe of discourse U.
The points in U at which pF(u) > 0 constitute the support of F.

The points at which uF(u) = 0.5 are the crossover points of F.

Example A9 Assume

U=a+b+c+ d ' (A10)
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Then, we may have

A=a+b+d (A11)

|

and
F=0.32 + 0.9 + d (A12)

as nonfuzzy and fuzzy subsets of U, respectively.

If

U=0+0.1+0.2+...+1 (A13)
then a fuzzy subset of U would be expressed as, say, .

F = 0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1 (A14)

If U = [0,1], then F might be expressed as

F =f 1 5/ (A15)
0 1+u

which means that F is a fuzzy subset of the unit interval [0,1] whose

membership function is defined by

ng (u) = ﬁ (A16)

In many cases, it is convenient to express the membership function
of a fuzzy subset of the real line in terms of a standard function whose

parameters may be adjusted to fit a specified membership function in an
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approximate fashion. Two such functions, of the form shown in Fig. Al,

are defined below.

S(u;a,B8,Y) = 0 for u < (A17)
= 2(-‘—1:9-)2 | for a <u <@g
Y-a - =
=1-2E02 for gy <y
Y- - =
=1 for u > y
m(u;B,Y) = S(U;Y‘B,Y"g,y) for u < y (A18)

=1 - S(usy,at+ §3Y+B) for u > y

In S(u; ¢,B,Y), the parameter B, B ='E§1 ’ is the crossover point.
In w(u;B,Y), B is the bandwidth, that is, the separation between the
crossover points of w, while y is the point at which 7 is unity. ‘

In some cases, the assumption that Mg is a mapping from U to [0,1]

may be too restrictive, and it may be desirable to allow Hp to take

values in a lattice'or, more particularly, in a Boolean algebra [15], [16],

[17]. For most purposes, however, it is sufficient to deal with the

first two of the following hierarchy of fuzzy sets.

Definition A19. A fuzzy subset, F, of U is of type 1 if its membership

function ups is a mapping from U to [0,1]; and F is of typen, n= 2,3,...,

if Hp is a mapping from U to the set of fuzzy subsets of type n - 1. For
simplicity, it will always be understood that F is of type 1 if it is not

specified to be of a higher type.

Example A20. Suppose that U is the set of all nonnegative integers and F
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is a fuzzy subset of U labeled small integers. Then F is of typel if

the grade of membership of a generic element u in F is a number in the

interval [0,1], e.g.,

= 1+@&3HL -
Hsmall integers(u) - (1+(5) ) u=0,1,2, (A21)

On the other hand, F is of type 2 if for each u in Uy, (u) is a fuzzy
Y

subset of [0,1] of type 1, e.g., for u = 10,

" (10) = low | (A22)

small integers

where low is a fuzzy subset of [0,1] whose membership function is defined

by, say,

ulgg(v) =1 - S(v;0,0.25,0.5), v € [0,1] (A23)

which implies that

low = | (1-5(v;0,0.25,0.5))/v (A24)
0

If F is a fuzzy subset of U, then its o-level-set, Fa’ is a nonfuzzy

subset of U defined by [18]

o]
|

= {ufug(u) > a} (A25)

for 0 < a < 1.

If U is a linear vector space, then F is convex iff for all A € [0,1]

and all in U,

b R
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HF(lu1+(1-A)u2) 2 min(ug(u,),u, (“2')) (A26)

In terms of the level-sets of F, F is convex iff the Fa are convex for
all o € (0,1].l
The relation of containment for fuzzy subsets F and G of U is

defined by
FCGge® uF(u) < uG(u) , u€u (A27)

Thus, F is a fuzzy subset of G if (A27) holds for all u in U.

Operations on fuzzy sets

If F and G are fuzzy subsets of U, their union, F U G, intersection,

F 1 G, bounded-sum, F ® G, and bounded-difference, F © G, are fuzzy sub-

sets of U defined by

rugé qu(u) v u(u)/u _ (A28)
U .
FNG=]u(w)A Ho(u)/u (A29)
J
U
"Fec=J1AN (uF(u)+uG(u))/u : (A30)
JU .
r
FeG= oV (uF(u)-uG(u))/u ' (A31)

U
where v and A denote max and min, respectively. The complement of F is

defined by

F' = J’(l-uF(u))/u (A32)
U

lThis definition of convexity can readily be extended to fuzzy sets of

type 2 by applying the.extension principle (see (A75)) to (A26).
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or, equivalently,
F'=U®F (A33)

It can be readily shown that F and G satisfy the identities

(FG)' = F'U ¢’ (A34)
(FUG)' = F'A gr (A35)
(F&G)' = F'e G (A36)
(F8G)' = F'9 G (A37)

and that F satisfies the resolution identity [2]
F=] aF (A38)

where Fa is the a-leve%—set of F; aFa is a set whose membership function

is

Hop = ®Mp » and J. denotes the union of the aF, with o € (0,1].

[¢3 a 0

Although it is traditional to use the symbol U to denote the union
of nonfuzzy sets, in the case of fuzzy sets it is advantageous to use
the symbol + in place of U where no confusion with the arithmetic sum
can result. This convention is employed in the following example, which

is intended to illustrate (A28), (A29), (A30), (A31) and (A32).

Example A39. For U defined by (A10) and F and G expressed by

*x
|

= 0.4a2 + 0.9b + d (A40)

®
i

= 0.6a + 0.5b ‘ ’ (A41)
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we have

F+G=0.6a+ 0.9 +d
FNG=0.4a + 0.5b
FéeG=a+b+d
FOeG=0.4b+d

F' = 0.6a + 0.1b + ¢

(A42)
(A43)
(A44)
(A45)
(446)

The linguistic connectives and (conjunction) and or (disjunction)

are identified with N and +, respectively. Thus,

FandG&FNng
and

ForG&F +6

(A47)

(A48)

As defined by (A47) and (A48), and and or are implied to be non-

interactive in the sense that there is no "trade-off' between their

operands. When this is not the case, and and or are denoted by <and>

and <or>, respectively, and are defined in a way that reflects the nature

of the trade-off. For example, we may have

F and G = J‘uF(u) cW/u
U

F or G=I (uF(u)-i-uG(U)-uF(U)uG(u))/u
U

(A49)

(A50)

whose + denotes the arithmetic sum. In general, the interactive versions
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of and and or do not possess the simplifying properties of the connectives
défined by (A47) and (A48), e.g., associativity, distributivity, etc.
(See [4].)

If o is a real number, then F® is defined by

F® '—éj (uF(n))a/u (A51)
. _

For example, for the fuzzy set defined by (A40), we have

F2 = 0.16a + 0.81b + d (A52)

and

1/2

F™'" = 0.63a + 0.95b + d . (A53)

These operations may be used to approximate, very roughly, to the effect

of the linguistic modifiers very and more or less. Thus,
A
very F = F (A54)

and

F1/2

more or less F 4 (A55)

If Fl,...,Fn are fuzzy subsets of Ul,...,Un, then the cartesian

product of Fl,...,Fn is a fuzzy subset of le.n. xUn defined by

Fox...xE_ =f (uFl(ul)/\.../\anmn))/(ul,...,un) (A56)

le .o .xUn
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As an illustration, for the fuzzy sets defined by (A40) and (A41), we'

have

F xG

(0.4a+0.9b+d) x (0.6a+0.5b) (A57)
= 0.4/(a,a) + 0.4/(a,b) + 0.6/ (b,a)

+ 0.5/(b,b) + 0.6/(d,a) + 0.5/(d,b)

which is a fuzzy subset of (atbt+etd) x (atbtetd).

Fuzzy relations

An n-ary fuzzy relation R in Ul.x... th is a fuzzy subset of

U1 X, xUn. The projection of R on Ui Xeoo XUi » Where (il,...,ik)

1 k
is a subsequence of (1,...,n), is a relation in Ui-x'...xUi defined by
1 k
Proj Ron U u, = v ( / (A58
roj on ilx cee X i - u. ,...,u."R ul,...,un) (ul,...,un) )
k J
1 )
U, X.ouxU
il : ik

where (jl""’jz) is the sequence complementary to (11,...,ik) (e.g., if

n = 6 then (1,3,6) is complementary to (2,4,5)), and Ya denotes

A XL
i g
the supremum over U, x...xU, .
I1 Iy

If R is a fuzzy subset of U

,...’
4

in le ...)(Un is a fuzzy subset of le...xUn defined by

Uik, then its cylindrical extension

R = uR(uil,...,uik)/(ul,...,un) _ . (A59)

le...xUn

In terms of their cylindrical extensions, the composition of two
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binary relationsR and S (in U1 x U2 and U2 x U3, respectively) is

expressed by

ROS=ProjEﬂ§onle U3 ‘ (A60)

_ whereli and S are the cylindrical extensions of R and S in U1 X U2 x U3.

Similarly, if R is a binary relation in U1 X U2 and S is a unary relation
in U2, their composition is given by

RO S="Proj RNS on i (A61)

Example A62. Let R be defined by the right-hand member of (A57) and

S = 0.4a + b + 0.8d (A63)
Then

Proj R on Ul(é atb+ct+d) = 0.4a + 0.6b + 0.6d (A64)
and

Ro S =0.4a + 0.5b + 0.5d | (A65)

Linguistic variables

Informally, a linguistic variable, §)< » 1s a variable whose values
are words or sentences in a natural or artificial language. For example,
if age is interpreted as a linguistic variable, then its term-set, TC;X),

that is, the set of its linguistic values, might be
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T(age) = young + old + very young + not young + (A66)

very old + very very young +

rather young + more or less young + ... .

where each of the terms in T(age) is a label of a fuzzy subset of a
universe of discourse, say U = [0,100].

A linguistic variable is associated with two rules: (a) a syntactic
rule, which defines the well-formed sentences in T(QX:); and (b) a

semantic rule, by which the meaning of the terms in'T(g)() may be

determined. If X is a term in T(QX), then its meaning (in a denotational

sense ) is a subset of U. A primary term in T(QXI) is a term whose

meaning is a primary fuzzy set, that is, a term whose meaning must bé

defined a priori, and which serves as a basis for the computation of the
meaning of the non-primary terms in T(CX). For example, the primary

terms in (A66) are young and old, whose meaning might be défined by

their respective compatibility functions p ou

n and Ho1d® From these,

then, the meaning - or, equivalently, the compatibility functions - of
the non-primary terms in (A66) may be computed by the appiication of a

semantic rule. For example, employing (A54) and (ASS), we have

= 2
"vegz young \ oun ) (A67)
= 1/2 .
Mmore or less cld (Hglg) ) (A68)
| 1- (u 2 (469)

"not very young - oun

For illustration, plots of the compatibility functions of these terms

are shown in Fig. A2.
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The extension principle

Let f be a mapping from U to V. Thus,
v = f(u) (A70)

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F = Hiuy +...+ WU (A71)

or,more generally,

F = f Hp (u)/u (A72)
U

By the extension principle [3], the image of F under f is given by
£f(F) = ulf(ul) +ooot pnf(un) (A73)
or, more generally,

f(F) = IUF(u)/f(u) _ (A74)
U

Similarly, if f is a mapping from U x V to W, and F and G are

fuzzy subsets of U and V, respectively, then

£(F,0) = f (g @) A ug(n))/£(w,v) (a75)
W

Example A76 Assume that f is the operation of squaring. Then, for the

set defined by (Al4), we have
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£(0.3/0.5+0.6/0.7+0.8/0.9+1/1) = 0,3/0.25 + 0.6/0.49 + 0.8/0.81 + 1/1

(A77)
Similariy, for the binary operation V(é max), we have

(0.9/0.1+0.2/0.541/1) v (0.3/0.24+0.8/0.6) = 0.3/0.2 + 0.2/0.5 + 0.8/1

+ 0.8/0.6 + 0.2/0.6 (A78)

It should be noted that the operation of squaring in (A77) is different

from that defined by (A51) and (A52).
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Fig. 1.1
Fig. 2.1
Fig. Al

Fig. A2

Figure Captions

Compatibility function of young.
Iilustration of truth-functional modification.
Plots of S and 7 functions.

Compatibility functions of young and its modifications.
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