

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

NETWORKS, HIERARCHIES, AND RELATIONS IN

DATA BASE MANAGEMENT SYSTEMS

by

Michael Stonebraker and Gerald Held

Memorandum No. ERL-M504

3 March 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

NETWORKS, HIERARCHIES AND RELATIONS IN DATA BASE MANAGEMENT SYSTEMS

Michael Stonebraker and Gerald Held •
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory
University of California, Berkeley, California 94720

(415) 642-4871

This paper attempts to clearly separate two issues that are often confused in a data base management system con
text, namely: 1) the appropriate level of a data sublanguage, 2) the model of the data base employed by the
user. To this end the three models of data that currently prevail are described. One is the relational view
of data proposed by E. F. Codd whereby all data is seen as relations of assorted degrees. The second is the
network view advanced by CODASYL in which data is perceived to be the nodes of a graph. A third view is a
hierarchical one which is a special case of the network model in which data is restricted to being represented
A3 A C1TG6*

For each view two examples of data sublanguages are presented. One is a lower level procedural language, and
the other a high level non-procedural language having no control statements or statements to test for exceptions.
£^ren that "on-ProGfural languages for all three views of data are very similar and all hide the
details concerning what data structures and access paths are actually implemented

As a result, the main issue to be resolved is the appropriate level of a data sublanguage. CODASYL has advanced
a lower level procedural language while relational advocates suggest high level non-procedural ones.

This paper examines the CODASYL Data Manipulation Language (DML) and one relational language and indicates the
advantages that each enjoys. These advantages suggest that both language levels are likely to play an important
role in data base management systems of the future.

I. INTRODUCTION

What data model to use in a data base management
system is currently a hotly debated topic. In fact,
a formal debate was held.at a recent ACM-SIGFIDET
workshop on data description, access and control.
At that time Codd and Date [1,2] presented a case
that data should be viewed as a collection of re
lations of assorted deprees. This position was also
defended by Whitney [3]. Bachman [4], Sibley 15J_and
Lucking [6] discussed the advantages of considering
data as the nodes of a graph.

Referring to Table 1 we note the three main models
presently advocated. For each model we consider two
possible language levels and indicate where various
data base systems (and proposed data sublanguages)
belong. The tabulation is by no means exhaustive.

high
level

non

procedural

low

level

procedural

INGRES[7]
SEQUEL[8]
ALPHA[9]
SQUARE[10]

XRMfll]

ISAM[12]

SYSTEM 2000[13]
DATA LANGUAGE[14]
0TSS[15]
HQL[16]

IMS[17]

ADABAS[18]

CODASYL[19
20,21]
IDMS[22]

RELATIONAL HIERARCHICAL NETWORK

VIEWS OF DATA

TABLE 1

In Sections 2-4 of this paper we will examine each
.column of Table 1And indicate an example of a lan
guage in each box. In Section 5 we will make some
observations concerning the six languages discussed.
Among other thir.gs we will indicate that high level
non-procedural languages using all three views are
(nearly identical

As a result of this discussion, it can be concluded
that the major difference between the positions

advanced by the relational and network advocates is
one of the appropriate level of the data sublanguage.

Table 2 shows certain points of comparison between a
lower level procedural language (as typified by the
CODASYL Data Manipulation Language (DML)) and a high
level non-procedural language (as typified by the
relational language QUEL).

Sections 6-10 justify each entry of Table 2 individ
ually. Lastly, in Section 11 conclusions are drawn
and one possible scenario that might evolve in the
future is indicated.

ADVANTAGES OF NON-PROCEDURAL LANGUAGES

1) Less source language statements to do a task

2) Data independence

3) Sophistication of protection and integrity
ADVANTAGES OF PROCEDURAL LANGUAGES

1) Efficiency

ADVANTAGES OF NEITHER

1) Expressiveness of data structures

COMPARISON OF TWO PREVAILING LEVELS OF LANGUAGE
FOR DATA, BASE APPLICATIONS

TABLE 2

II. THE HIERARCHICAL APPROACH

We treat the example data base shown in Figure 1.
Indicated there are four record types with connections
that form a tree. Also identified are the data items
present in each record type. Each department in an
organization has one DEPT record. At the second
level of the hierarchy are records for all employees
who work in a given department. At the third level
are two record types, one containing information on
the children of each employee and the other indicating

Information on the office fn which the employee
works. In Fig. 1 the instance of DEPT corresponding
to department 17 is also shown. Also present are the
three instances of EMP for employees in department
17. Below these instances are Instances of CHILD and

DFFICE where appropriate. Note that all instances
shown (except for the instance of DEPT) have exactly
one parent record instance.

•C*? I CM*T#. MIOCCTI

tup I luK.wun)

bU MK.KCI *VT«#,$)MI

I»». »1 [t

Figure 1. A Hierarchical Structure.

More formally, the following definitions are appro
priate for hierarchical systems:

A RECORD TYPE is a user defined interpretation of a
string of bytes.

An INSTANCE of a record type is a byte string of the
appropriate length interpreted in.the appropriate

A HIERARCHY is a collection of record types which
(form a tree.

A HIERARCHICAL DATA BASE is a collection of instances

jof records such that each instance (except instances
of the record type at the root of the hierarchy) has
exactly one parent. Moreover, its parent is of the
Isame type as its parent record type in the hierarchy.

A. procedural language operating on a data base with
CHILD, OFFICE, EMP and DEPT record.types could look
something like the following:

{EXAMPLE 2.1 FIND THE NAMES OF ALL EMPLOYEES IN
DEPARTMENT 17

FIND DEPT RECORD WHERE DEPT// - 17

if failure; return "no such department"
FIND 1ST SON OF CURRENT RECORD

if failure; return "no employees in this
department"

LOOP save name

FIND NEXT BROTHER OF THE CURRENT RECORD

WHICH IS.OF THE SAME TYPE

if failure; return "done"
GO TO LOOP

Basically, the programmer."navigates" [23] the tree
finding instances of qualifying.records and saves
(somewhere) the desired information. This language
requires control statements (e.g. GO TO LOOP) and
tests for failure of instructions (e.g. the three IF
statements). It is a procedural language because the
.programmer creates an algorithm that only requires
(execution to solve his problem. Stated differently,
Ithe FIND statement returns EXACTLY ONE instance of a
(record each time it is called. Hence, the programmer
pust execute a proper sequence of FIND commands to
lobtain needed information.

A non-procedural language answering th«> sarqp JLnter-

action might look Ilka the following.

EXAMPLE 2.2

FIND.ALL NAME OF EMP

CONTAINED IN DEPT

WHERE DEPT// = 17

in this-case the FIND statement returns information

frost, all.records satisfying the indicated condition
at.once. Basically, instead of the programmer "navi
gating" the tree structure, the data base system must
transform.the above statement into a navigation algo
rithm (such as the one*given in EXAMPLE 2.1) which
can.then be executed.

III. THE NETWORK APPROACH

One. observes a problem with hierarchical systems when
dealing-with data having the structure of Figure 1
namely:.. office information must be repeated for each
employee that works in a given office. In Figure 1
(12,500) must be repeated three times. This wasteful
repetition.is forced on one by the requirement that
each instance of a record have exactly one parent.
The network approach indicated in Figure 2 avoids
this restriction.

Figure 2. A Network Structure.

Carefully.compare Figures 1 and 2 and note that
(12,500) is not duplicated in Figure 2 but only at
the expense of an instance of a record having more
than one parent.

More.formally, the following definitions .can apply to
.network systems:

A.RECORD.TYPE is a user defined interpretation of a
string of bytes.

An INSTANCE.of.a record type is a byte string of the
approriate length interpreted in the appropriate way.

A SET TYPE is an.association between one owner record
type and.one or more member record types.

An INSTANCE of a set type is a binary relation be
tween one instance of an owner record type and zero
or more instances of member record types such that an
instance of a member record type can be related to at
most one instance of the owner record type. • •

A NETWORK DATA BASE is a collection of record in
stances and set instances.

We now indicate an example of a procedural network
language.

EXAMPLE 3~1 FIND THE DEPARTMENT NUMBERS OF ALL
EMPLOYEES IN OFFICE # 12

FIHD OFFICE RECORD WHERE OFFICE* - 12

if failure; return "no such office"
LOOP PIND NEXT MEMBER OF OCCUPIED SET

if failure; return "done"
FIND OWNER OF CURRENT EMPLOYEE RECORD USING

WORKS SET

if failure; return "employee exists that
is not in a department"

save dept number
GO TO LOOP

[This code is not dissimilar to that in Example 2.1.
However, the "navigation" has become somewhat more
(complicated because the programmer can follow any of
the set instances that involve a record instance.

A higher level network language might execute the
Isame problem as follows:

EXAMPLE 3.2

FIND ALL DEPT* IN DEPT

WHERE SOME EMP RECORD VIA WORKS SET

HAS OWNER VIA OCCUPIED SET

WHERE OFFICE* = 12

Again the programmer has been spared the navigation
of the data base and the data base system must pro
vide the algorithms. ADABAS offers a very restricted
version of a language with this flavor.

IV. THE RELATIONAL APPROACH

In the relational view the only data structure al-
Lowed is a relation, and a data base is simply a
:ollection of such relations. Intuitively, a, rela-
:ion is nothing but a (perhaps giant) array not
inlike those found in FORTRAN or APL[24].

[There are, not surprisingly, several possible collec
tions of relations that express the same information
as in Figures 1 and 2. Figure 3 indicates one such
collection. Note that a certain amount of redundancy
is present in Figure 3; for example, NAME appears
three times. We will discuss this issue of redundan
cy again in Section 8.

8CPT (OEPT tf. 6U0CCT)

office (office*, sizei

IMP (NAME, SALARY)

CKB.D (CHILD NAME, ACE)

VOfflS <DEPT*, NAME)

OFFSPRING(NAME. CKILONAME)

OCCUPIED (NAME. OFFICE #1

1 CHILD
Sat 10

Patti 4

Dm 7

(offspring
FhJwr Sat

Flihtf Ptltr

Jo»»« 0o»t

(OCPT
17 2SM

| OFFICE
12 300

(EMP
Fltkct 10 k

JOMl 12 k

Adorn 14k

[WORKS
17 Fithtr

IT Jontt

17 Adjm,

[occupied
FliMr 12

Joats 12

Atfamt 12

Figure 3. A Relational Structure.

tore precisely, given sets D1,...,Dn a RELATION is a
ubset of the Cartesian product D,*...*Dn. In other
ords, R is a set of TUPLES (Ti) where

Ti ° (Ti^,...,!^) and Ti* is an element of D*. The
sets D^,..i,Dn are called DOMAINS. Usually relations
are restricted to being NORMALIZED i.e., the members
of Di,...,Dn cannot themselves be relations. Further
properties of relations are discussed in [25-29]. We
now do Examples 3.1 in two relational languages. In
a.procedural language it might resemble:

EXAMPLE 4.1

LOOP

FIND FIRST OCCUPIED TUPLE WHERE OFFICE// - 12

if failure; return "rib such office"
save name

FIND WORKS TUPLE WHERE NAME = saved name

if failure; return "employee exists
that is not in a department"

save dept number
FIND NEXT OCCUPIED TUPLE WHERE OFFICE* = 12

if failure; return "done"
GO TO LOOP

In a non-procedural language the query might be pro
grammed as follows:

EXAMPLE 4.2

FIND ALL DEPT* IN WORKS

WHERE NAME =

NAME IN OCCUPIED

WHERE OFFICE*

V. OBSERVATIONS

12

1) A. hierarchical.data base can be thought of as a
special.case of a network data base in which each
instance.of a record type (except instances of the
root record.type) is a member of exactly ONE instance
of a set type. This set type can be thought of as
PARENT OF RECORD or CONTAINED IN.

2) A relational data base can be thought of as a
special.case of a hierarchical data base in which
each.record instance is a member of ZERO sets.

3). All procedural languages look much the same as
they all have control statements, search statements
and.exception testing statements. They differ only
in-the.navigational possibilities for the programmer:

the programmer- navigates a structure where
records belong to no sets in a relational system,
to one set in a hierarchical system and to per
haps more than one set in a network system.

4) All non-procedural languages look much the same.
They.differ mainly in the way records (or tuples) car.
be.associated. In a relational system tuples are
associated by specifying a relationship which must
hold among domains (in the example above, equality on
NAME in two different relations). In a hierarchical
system,.record instances are associated by membership
•in the set CONTAINED IN. In a network system record
iinstances are associated by participation in a given
aet.

5) Note very clearly that a non-procedural hierarchi
cal programmer cannot tell the difference between:

a).an implementation such as Figure 1 and a data
base system that converts interactions such as
Example 2.2 into ones such as 2.1 which it
executes.

b) an.implementation in which an interaction is
translated.into a statement in a non-procedural
relational language. If CONTAINED IN is consid
ered.,a binary relation for each record type and
each record type is considered a relation, this
translation is straightforward. How these rela
tions are actually implemented need not be

visible to the non-procedural relational pro
grammer, let alone the non-procedural hierarchi
cal programmer.

A similar statement holds for the non-procedural net
work programmer. Therefore, the following conclusion,
can be safely drawn:

EL THREE TYPES OF NON-PROCEDURAL PROGRAMMERS CANr
FACT, BE DEALING WITH FRONT ENDS TO A RELATIONAL.
TA BASE SYSTEM.

16) It is entirely possible that a non-procedural,
[relational system may translate certain interactions
into a non-procedural network or hierarchical
language which may be implemented by algorithms such
as those required to translate Examples 2.2 and 3.2
into Examples 2.1 and 3.1. As a result the following
conclusion can be drawn:

A NON-PROCEDURAL RELATIONAL PROGRAMMER MAY, IN FACT,
|BE DEALING WITH A FRONT END TO A HIERARCHICAL OR.
NETWORK DATA BASE SYSTEM.

|7) As a result of the above observations we suggest
jthat any of the non-procedural programmers can
Usually be accomodated on any of the three types of
data bases. All are shielded from the details con
cerning how data is stored and what access paths are
present. Hence, it is not a crucial issue to re
solve which data model is preferable.

JSlnce the non-procedural network or hierarchical
rogrammer can see only a limited number of inter-
ecord associations (sets), he has less flexibility
;han the non-procedural relational programmer who is
ree to associate any domains in any relations. As
result it may be preferable to allow the flexibili

ty of a relational system. Non-procedural users who
feel more comfortable with languages such as In
Examples 2.2 and 3.2 can be accomodated in many
situations without difficulty by software on top of
a relational system.

.On the other hand, non-procedural network or hierar
chical- systems may have implementations that support
different internal data structures than relational
systems (for instance, sets). In certain situations,
puch structures may result in a performance advan
tage. The issue of performance is.further considered
lin Section 8.

8) We suggest, however, that a very important issue
Is whether data base applications should be pro
grammed in procedural languages (such as those of
Examples 2.1, 3.1 and 4.1) or in non-procedural
languages (such as those of Examples 2.2, 3.2 and
4.2).

Consequently, the next five sections examine indi
vidual entries in Table 2. For.each entry we con
trast the leading" candidate for a procedural lan
guage (the CODASYL DBTG proposal and its Data Manipu
lation Language (DML)) with one non-procedural rela
tional system (INGRES and its.data.sublanguage QUEL).

VI. DATA STRUCTURE EXPRESSIVENESS

QUEL presents the user with a collection of normal
ized relations as discussed in Section 4 while the
CODASYL DBTG Data Manipulation Language (DML) gives
him a network structure as in Section 3. The pur
pose of this section is to briefly show that the ex
pressiveness of the data structures is the same for
both systems.

It is clear.that a set of normalized relations is
also.a.set of DBTG record types and the tuples of a
relation are instances of a given record type. There
fore, any.valid relational structure can be trans
formed to a valid DBTG structure (assuming that each
system-allows individual data items of the same
generality).

The reverse transformation is also assured as noted
in [2\^ Basically, each set in DBTG is a binary rela-
tion..between the primary key of instances of the
owner record type and the primary key of instances of
the member record type. When a set has members of
more.than one type, a relation must be defined for
each type of member. (It might be noted that per
formance may improve if an alternate transformation
is followed; that of simply propagating the primary
key of the owner record type to each member record
type. This is the same technique used in [25] to
normalize unnormalized relations). If a set is de
fined, between record types that do not have primary
keys,.the procedure is somewhat more complicated and
involves a generalization of the above key propaga
tion technique.

A given record type in DBTG is a simple hierarchy;
consequently, the algorithm in [25] can be used to
normalize such a structure to a collection of rela
tions.. As a result any DBTG structure can be trans
formed to a group of relations.

VII. CODING EFFICIENCY

Erom._the .previous sections it is clear that non-pro
cedural, languages result in a significant savings of
source.code. This results partly from the absence of
control, and.exception testing statements and partly
fronuthe, increased scope of FIND statements. Other
examples which illustrate the same point are presented
in.[2]. Presumably, programmer productivity will in
crease substantially if a procedural system is re
placed, by a non-procedural one. We suspect produc
tivity would increase at least as much as (if not
much, more.than) the amount of code reduction.

We see non-procedural languages as part of a trend
over the past.twenty years toward higher and higher
level..languages. This is illustrated in Figure 4 for
general purpose programming languages and in Figure 5
for data sublanguages.

l»l

•u (M)

AUOUOOl)

AU30LMO0]

I
l
l

ii
>l
?l
si
Lj

I-
I
I

sottnum

ASSKSLY COOt

Ituctmrc code
I

ISAM

tOCICAL I/O

tucrntn coos

1»M 1M0

TEAS

Figure 4

BHATKH3

COBASTL

Figure._5

VIII. MACHINE EFFICIENCY

In this section we are restricted to making con
jectures concerning the relative performance of non
procedural and procedural systems since no perform
ance comparisons have been attempted. (Later this
year such a test between IDMS and INGRES may be pos
sible.)

Our conjecture (contention) is that.situations exist
for which a DBTG implementation will run faster than
an implementation of a non-procedural language such
as QUEL. In order to elaborate, some implementation
^details on both kinds of systems must be introduced.

Included as Figure 6 is a simplified version of some
of the required data definition statements for a
DBTG version of Figure 2. Note that DEPT and OFFICE
are accessed by address calculation on a key (res
pectively DEPT* and OFFICE*) and that EMP and CHILD
'are normally accessed by following respectively the
OCCUPIED and OFFSPRING sets.

£'implementation of sets is expected by pointer chains
r pointer arrays [34]. Placement of CALC records
is by a hashing algorithm on the given key [35,36]
while placement of VIA records is as close as pos
sible to their owner record in the indicated set.

(RECORD NAME IS DEPT
LOCATION MODE IS CALC USING DEPT*

DEPT*

BUDGET

record name is emp

Location mode is via occupied
NAME

SALARY

(RECORD NAME IS CHILD
[LOCATION MODE IS VIA OFFSPRING

CHILDNAME

AGE

Record name is office
{location mode is calc using office*

OFFICE*

SIZE

|SET NAME IS WORKS
OWNER IS DEPT

MEMBER IS EMP

(SET NAME IS OCCUPIED

OWNER IS OFFICE; ORDER IS SORTED BY DEFINED KEYS
MEMBER IS EMP; KEY IS ASCENDING SALARY

$ET NAME IS OFFSPRING
OWNER IS EMP

MEMBER IS CHILD

Figure 6. Some of the Required Data Definition
Statements.

tin Figure 7, we indicate one collection of relations
prhlch has the same Information as those in Figure 3,
but which should offer augmented performance.

DEPT(DEPT*, BUDGET)
CHILD(NAME, CHILDNAME, AGE)
OFFICE(OFFICE*, SIZE)
BMP1(DEPT*, OFFICE*, NAME, SALARY)

Figure 7. A Collection of Relations.

jA QUEL statement is decomposed into an algorithm not
[dissimilar to the one in Example 4.1 which can then
be executed. An individual relation in INGRES is

Stored.using-one of. five access, methods. These are
described.in detail in [37]. In addition, secondary
indices [38-40] to permit augmented performance can
be defined on individual relations. Two points
should.be carefully noted:

1) The basic implementation entity is a rela
tion* .Hence,.Figure 4 is implemented and not
Figure 3.

2) The non-procedural language is decomposed in
to a.language resembling Example 4.1 and not
Example.3.1. In particular, there are no sets.

With this prelude we now focus on three situations
where INGRES may suffer a performance degradation
compared to an implementation of the DBTG proposal.

1) A user may be able to state his interaction in
more than one way.

EXAMPLE 8.1 FIND SMITH'S SALARY KNOWING BOTH HIS

DEPT AND HIS OFFICE

DBTG-

Two.possible access paths can be used:
a) FIND OFFICE record

follow OCCUPIED set

b) FIND DEPT record
follow WORKS set

Approach.a) is faster than b) (because of the VIA
access) and a skilled DBTG programmer can utilize
this method. ""

INGRES-

There are three-ways.the retrieve can be specified
namely:

RANGE OF E IS EMP'

RETRIEVE E.SALARY.WHERE.E.OFFICE* - value

a)

h)

c)

RANGE OF E IS EMP»

RETRIEVE E.SALARY WHERE E.DEPT* value

RANGE OF E IS EMP»

RETRIEVE. E.SALARY WHERE.E.DEPT* « value AND

E.OFFICE* =• value

The.relational.programmer does, not normally know
which.statement-is faster (and in fact the fastest
ichoice may.vary as the data base, is reorganized).
Hence,,, he.may well,give an inferior,statement of his
'problem.

2} Nonprocedural.. Languages: are. inappropriate for
certain interactions.

EXAMPLE a.2

OFFICE 12

FTNT) THE SECOND. HIGHEST PAID MEMBER OF

DBTG-

EIMD_OEEICE_RECORD. WHERE OFFICE* - 12

EINH.1ASI.0F OCCUPIED SET

FIND. PRTOBLOF OCCUPIED SET

(get-and.record:salary and name)

INGRES-

A messy aggregate is required such as
RANGE OF E IS EMP'

RANGE OF E2 IS EMP'

RETRIEVE E2.SALARY, E2.NAME WHERE
COUNT(E.SALARY BY E2.SALARY

WHERE E.OFFICE* - 12

AND E.SALARY _> E2.SALARY)
- 2

It is very unlikely that an optimizing language
processor can be wise enough to process this aggre
gate without a performance degradation of orders of
[magnitude.

In this case, a clue to efficient processing could
|be provided by including the notion Nth LARGEST in
tQUEL. The above interaction then might look like;

RANGE OF E IS EMP'

RETRIEVE*E.SALARY, E.NAME
WHERE E.SALARY =

2nd LARGEST(E.SALARY WHERE E.OFFICE*

- 12)

Although a "patch" is possible in this situation,
there are likely to be instances where it is very
awkward to give such performance hints to the lan
guage processor. Also, the number of performance
oriented "special cases" may be large.

'3) The greater complexity of the DBTG data structures
may allow higher performance than available in
{INGRES.

(EXAMPLE 8.3 FIND THE NUMBER OF SQUARE FEET PER
(EMPLOYEE IN OFFICE 12

jDBTG - The set of issued commands resembles the
(following:

FIND OFFICE RECORD WHERE OFFICE - 12

save size

count =» 0

JLOOP FIND NEXT OF OCCUPIED SET
if current record is last member of OCCUPIED

then return size/count
count « count + 1

GO TO LOOP

fwo facts concerning this algorithm should be noted:

a) It is likely that no disk seeks are required
to loop through the OCCUPIED set because VIA
access attempts to cluster the required set
members. In fact, they may all be on the same
track (or page) in which case one physical I/O
operation may be enough to satisfy all FIND
NEXT commands.

b) If a pointer chain is used to implement
OCCUPIED, each EMP record contains a direct
storage pointer to the next EMP member of the
OCCUPIED set. No auxiliary reads are required
to obtain the next member of that set. This

statement is true whether EMP is organized
using CALC or VIA.

INGRES - The set of commands into which the QUEL
(statement is decomposed looks not unlike the
following:

FIND OFFICE TUPLE WHERE OFFICE =• 12

record size

count • 0

LOOP FIND NEXT EMP' TUPLE WHERE OFFICE - 12

if none return size/count
count » count + 1

GO TO LOOP

Two points should be noted about this code:

a) No VIA access is supported in INGRES. Hence,
the OFFICE tuple and EMP' tuples required are
NOT clustered on the same page. In INGRES at
least two disk reads are required.

b) The first FIND can proceed at the same speed

aa the first DBTG FIND, if OFFICE is hashed on
0EEICE*.in.INGRE9;- However, only if EMP1 uses
OFFICE as a key will the required EMP' tuples be
clustered and obtained rapidly. Otherwise, a
scan-of EMP1 to find required tuples is required
or. a secondary index on OFFICE* (if one exists)
must be utilized. Either way this is slower
than.the.direct pointers used in DBTG.

In.summary, INGRES does not support VIA access and
does not.implement sets. VIA access^could be sup
ported quite easily; however, efficient use of sets
would require QUEL to decompose into a language such
as-Example 3.1 and INGRES to support storage struc
tures such as those indicated in Figure 2.

Although.this is a possible implementation approach,
an.optimizing language processor has yet to be
demonstrated. A proposal along this lines is given
in [41] and some of the difficulties in this approach
are stated in [42]. We hope to see explorations into
this and other approaches to implementing non-proce
dural,systems so more definitive statements concern
ing,this, third situation can be made.

Three.examples have been presented where a DBTG
implementation may run faster than a relational
system. They are indicative of a small class of
Interactions for which DBTG is especially well suited.
Forthe remaining interactions INGRES, can probably be
made to run no slower than a DBTG Implementation.

In-applications, where most applications fit into the
"small-class" above, DBTG should enjoy a performance
advantage-. The exact magnitude, of this advantage is,
of.course^.application dependent, and we decline to
conjecture-a.specific value.

To.conclude.this section, we briefly mention the
subject of. the space required.to store a data base in
elther-of. -the. two -models. It was noted that a col

lection of relations with the same information as a

network data.structure usually had repeated domains.
Whether these repeated domains are actually stored
depends entirely on the implementation of the rela
tional,system. For example, if the system implements
a..network, storage, structure, presumably no space
penalty, is required compared, to. a DBTG implementation.
Since INGRES does not support such storage structures,
there, may well be repeated domains in that system.
However, provisions are made in the access methods to
optionally code tuples in order to reduce space
requirements [7,37]. A general survey of appropriate
compression schemes is given in [43]. Consequently,
.whether a relational system or a network system re
quires more space depends at least on the application
present, the implementation of the relational system
and.the.compression techniques applied to data in
either model.

IX. DATA INDEPENDENCE

We turn now to exploring data independence. Basical
ly, we mean by this term the ability of programs to
run correctly after changes have been made in the way
data is stored. A discussion of this subject is
presented in [44,45,46].

The DBTG proposal supports two forms of data
independence:

1. A User program uses a SUBSCHEMA to describe
the data base whereas the data base itself is

described by a SCHEMA. A record type in a sub
schema is (almost) restricted to be a proper
_auhaet.of..the -data items in some record type in.

the schema. Therefore, data items and new.
record types can be added to a network struc
ture and the appropriate subschemas can simply
ignore them. In this way the data base is al
lowed to grow over time without affecting pro
grams written for previous versions of it.

2. The implementor has some flexibility in the
way he implements sets and the address calcula
tion involved in locating records. Presumably
these can change without impacting applications
programs.

Changes that are NOT supported include:

1. most rearrangement of the logical hierarchy
of a record type.'

2. any changes to what data items are in what
record types and what sets are implemented be
tween what record types.

BASICALLY THE DATA BASE CAN GROW BUT NOT BE RESTRUC
TURED IN ANY WAY.

In relational systems the following two mechanisms
are supportable:

1. The ability to define views [47-50]. A
view is a relation which is not present in the
data base but can be defined from relations
which are. A subschema consists of "virtual*'"
record types which can be defined from real
record types in the schema. A view, however,
is not restricted to a proper subset of the
domains in a stored relation but can be much

• more general. HOWERER, THERE IS GREAT DIF
FICULTY SUPPORTING THE UPDATING OF VIEWS THAT
ARE MORE GENERAL THAN PROJECTIONS (OR PROJEC
TIONS AND RESTRICTIONS) OF EXISTING RELATIONS.
This problem is discussed in [49,50]. Conse
quently, support for growth of the number of
domains in a relation is easy; support for more
general views cannot be easily provided except
in RETRIEVE ONLY SITUATIONS.

2.. Complete flexibility exists in the way one
can implement relations. Since no access paths
are seen by the applications programmer, any
such changes in storage structures pan be sup
ported.

For these reasons we state that both models allow
the data base to grow (although the relational
approach allows greater flexibility in retrieve only
situations). The relational approach allows greater
flexibility in structuring the internal data. Hence,
we say the relational model supports MODERATELY HIGH
data independence while DBTG supports only MODERATE
data independence.

X. PROTECTION AND INTEGRITY

Specific protection and integrity schemes for rela
tional systems are presented in [49-52]; the DBTG
proposal for this subject is contained in [19,20].

In the relational approach, any user can be restricted
to a relation or set of relations that can be created
in the interaction language. The mechanism in INGRES
ia by a PROTECT command with the same syntax as a
RETRIEVE statement. For example, user Smith can be
restricted to accessing salaries of persons who work
in OFFICE* 12 since this relation can be expressed as:

RANGE OF E IS EMP'

PROTECT E.SALARY WHERE E.OFFICE* » 12

Jimilarly4 _any_ qualification ..in_the_interaction.

language, can be imposed as an integrity condition on
the data base. For example, "all employees who work
iri a department with a budget of at least $25M must
earn more than $10,000" can be an integrity con
straint since it can be expressed by the following
qualification:

RANGE OF E"IS EMP*
RANGE OF D IS DEPT

INTEGRITY ' WHERE D.BUDGET < $25M OR
D.DEPT ** E.DEPT AND E.SALARY > 10000

In DBTG the sophistication of the protection and
integrity schemes is much cruder and user dependent.
Basically, user written procedure calls in the access
paths to data are proposed which will allow or dis
allow access to a record. Except for range checks on
data items, data base procedures must also be written
to check for the integrity of incoming data. Al
though such "data base procedures" can be complex, it
is non-trivial to support the above examples which
the relational algorithms in [49,51] handle with ease.

XI. CONCLUSIONS

The preceding sections have attempted to justify the
entries of Table 2, usually in the context of the
DBTG proposal and INGRES. However, the discussion in
Sections 7-10 hinges primarily on the difference in
LEVEL between the DBTG proposal and INGRES and only
minorly on the differences in the model of data
employed. Therefore, we suggest that the relevant

information.to.glean from Table 2 is that a non
procedural- system can result in Increased programmer
efficiency, increased data independence and better
protection and integrity at the expense of machine
efficiency, compared to a procedural system. Is this
price.worth paying, for the features of such non
procedural systems?

We suspect the answer is "not always." Given that
hardware prices are continuing to decline (and will
continue to do so) and that software costs are not,
one suspects an increasing segment of the data base
community will be willing to pay this price as time
goes by. However, there will, no doubt, always be
users whose interaction rates are so high, whose
types of interactions are limited and whose data
structures change slowly enough that they will
rationally prefer a procedural system. Moreover,
there may even be users whose interaction rates are
still higher who will rationally prefer assembly
language as a data sublanguage. To such a user 10%
in efficiency may be the difference between 5 large
computer systems and 6.

As a result we see a gamut of rational solutions to
data base management problems including non-procedural
systems, procedural systems and no special system at
all. However, we suspect over the course of time the
number of users who choose a non-procedural system
will increase substantially..

ACKNOWLEDGEMENT

Research sponsored by the National Science Foundation
Grant GK-43024x,- U.S. Army Research Office — Durham
Contract DAHC04-74-G0087, the Naval Electronic Systems
Command Contract NOOO39-75-C-0034 , a Grant from the
Sloan Foundation and an RCA David Sarnoff Fellowship.

REFERENCES

[1] Codd, E. and Date, C, "Interactive Support for
Non-programmers: The Relational and Network
Approaches," Proc. 1974 ACM-SIGFIDET Workshop
on Data Description, Access and Control, Ann
Arbor, Mich., May 1974.

. [2J

[3]

[4]

[5]

[6]

[71

[8]

[9]

HO]-

[11]

[12]

[13]

[14]

[15]

Date, C. and Codd, E., "The Relational and.Net
work Approaches: Comparison of the Application
Programming Interfaces," Proc. 1974 ACM-
SIGFIDET Workshop on Data Description, Access
and Control, Ann Arbot, Mich., May 1974.

Whitney, V., "Relational Data Management Imple
mentation Techniques," Proc. 1974 ACM-SIGFIDET
Workshop on Data Description, Access and Con-
tol, Ann Arbor, Mich., May 1974.

Bachman, C., "The Data Set View vs The Rela
tional View," Proc. 1974 ACM-SIGFIDET Work
shop on Data Description, Access and Control,
Ann Arbor, Mich., May 1974.

Sibley, E., "On the Equivalence of Data Base
Systems," Proc. 1974 ACM-SIGFIDET Workshop on
Data Description, Access and Control, Ann
Arbor, Mich., May 1974.

Lucking, J., "Data Base Languages, in particu
lar DDL Development at CODASYL," Proc. 1974
ACM-SIGFIDET Workshop on Data Description,
Access and Control, Ann Arbor, Mich., May 1974.

Held, G., et al., "INGRES - A Relational Data
Base System," Proc. 1975 National Computer

.Conference, Anaheim, Ca., May 1975. (to appear)

Chamberlin, D. and Boyce, R., "SEQUEL: A
Structured English Query Language," Proc. 1974
ACM-SIGFIDET Workshop on Data Description,
Access.and Control, Ann Arbor, Mich., May 1974.

Codd, E., "A Data Base Sublanguage Founded on
the Relational Calculus," Proc. 1971 ACM-
SIGFIDET Workshop on Data Description, Access
and Control, San Diego, Ca., Nov. 1971.

• Boyce, R., et al., "Specifying Queries as
Relational Expressions: SQUARE," Proc. ACM
SIGPLAN-SIGIR Interface Meeting, Gaithersberg,
Md., Nov. 1973.

Lorie, R., "XRM - An Extended (n-ary) Rela
tional Memory,". IBM.Cambridge Scientific
Center Report 320-2096, Jan. 1974.

ISAM, "OS ISAM Logic," IBM, White Plains,
N.Y., GY28-6618.

SYSTEM 2000, "SYSTEM 2000 General Information
Manual," MRI Systems Corp., Austin, Texas,
1972.

Marill, T. and Stern, D., "The Data Computer:
A.Network Data Utility," Proc. 1975 National
Computer Conference, Anaheim, Ca., May 1975.
(to appear)

Heindel, L. and Roberto, J., "The Off-The-
Shelf-System - A Packaged Information Manage
ment System," Bell Systems Technical Journal
52, 10 (December 1973).

[16] Fehder, P., "HQL: A Set-Oriented Transaction
Language for Hierarchically-Structured Data
Bases," Proc. 1974 ACM National Conference,
San Diego, Ca., Nov. 1974.

[17] IMS/360 Applications Description Manual, IBM,
White Plains, N.Y., GH-20-0765.

[184...AnARAS ADSCRIPT UserSi Manual, Software AG,
Reston, Va., 1974.

[19J Committee on Data Systems Languages, "CODASYL
Data Base Task Group Report," ACM, New York.
1971.

[201> Committee-on Data Systems-Languages, "Data
Description Language," U.S. Dept. of Commerce,
National Bureau of Standards, Handbook *112,
January 1974.

[21J CODASYL-Data Base Language Task Group, "COBOL
Data.Base Facility Proposal,'.* Specifications
Board,. Dept. of Supply Services, Ottawa,
Ontario, Canada.

[22] IDMS Cobol Data Manipulation Language, B.F.
Goodrich, Cleveland, Ohio, July 1972.

[23]. Bachman, C., "The Programmer as Navigator,"
CACM,,16 11 (November 1973).

[241 Falkoff,.A. and Iverson,. K., "APL/360 Users
Manual,!' IBM, White Plains, N.Y. *

[25]. Codd,.E., "A Relational Model of Data for Large
Shared-Data Banks," CACM, 13 6 (June 1970).

[26].. Codd,-E., "Normalized Data Base Structure: A
Brief Tutorial," Proc. 1971 ACM-SIGFIDET Work
shop on Data Description, Access and Control,
San Diego, Ca., Nov. 1971.

[27] Codd. E., "Further Normalization of the Rela
tional-Data Base Model," Courant Computer
Science Symposium, New York, May 1971.

[281 Codd,-E.,. "Relational Completeness of Data Base
-Sublanguages," Courant Computer Science
Symposium, May 1971.

[291. Delobel,.C. and Casey, R., ''Decomposition of a
Data.Base and the Theory of Boolean Switching
Functions,!' IBM Journal of Research and Develop
ment^. September 1973.

[30J.. Naur,. P.,. '.'Report, on the Algorithmic Language
ALGOL.60,'.' CACM 3, 5(May 1960), 299-314.

[31] van Wijngaarden, A., et al., "Report on the
Algorithmic Language ALGOL 68," Numer. Math.,
Vol. 14 (1969), 79-218.

[32]. Wegbreit, B;, '.'The Treatment of Data Types in
ELI,'.' CACM 17, 5 (May 1974), 251-264.

[33]. Earley,.J.,."High.Level. Operations in Auto-
•matic Programming," University of California,
Computer.Science Department, Technical Report
No..22, October 1973.

[341. Taylor, R, "When are Pointer Arrays Better than
Chains," Proc. 1974 ACM National Conference,
San Diego, Ca., Nov. 1974.

[35] Morris, R., "Scatter Storage Techniques," CACM,
-it Cl968)r-

|36] .Lum, V., "General Performance Analysis of Key-
to-Address Transformation Methods Using an

Abstract File Concept," CACM, 16 (1973) 603-
612.

j[37) Held,.G. and. Stonebraker, M., "Storage Struc
tures and.Access Methods in the Relational Data
Base Management System, INGRES," Proc. ACM-

PACIFIC-75, San Francisco, Ca., April 1*975.

[38] Stonebraker, M., "The Choice of Partial
Inversions and Combined Indices," Journal of
Computer and Information Science, June 1974.

[39] King, W., "On the Selection of Indices for a
File," IBM Research Report RJ 1341, San Jose,
Ca., January 1974.

[40] Schkolnick, M., "Secondary Index Optimization,"
Proc. 1975 ACM-SIGMOD Workshop on Management of
Data, San Jose, Ca., May 1974 (to appear).

i[41] Tschritzis, D., "A Network Framework for Rela
tion Implementation," Computer Science Dept.,
University of Toronto.

[42] Kay, M., "An Assessment of the CODASYL DDL for
Use with a Relational Subschema," Proc. IFIP-
TC-2 Special Working Conference, Namur,

' Belgium, January 1975.

[43] Gottlieb, D., et al., "A Classification of
Compression Methods and Their -Usefulness in a
Large Data Processing Center," Proc. 1975
National Computer Conference, Anaheim, Ca.,
May 1975. (to appear)

[44] Date, C. and Hopewell, P., "File Definition
and Logical Data Independence," Proc. 1971
ACM-SIGFIDET Workshop on Data Description,
Access and Control, San Diego, Ca. Nov. 1971.

H45] Date, C. and Hopewell, P., "Storage Structure
and Physical Data Independence," Proc. 1971
ACM-SIGFIDET Workshop on Data Description,
Access and Control, San Diego, Ca., Nov. 1971.

146] Stonebraker, M., "A Functional View of Data
Independence," Proc. 1974 ACM-SIGFIDET Work
shop on Data Description, Access and Control,
Ann Arbor, Mich., May 1974.

[47] Chamberlin, D. and Boyce,.R., "Using a Struc
tured English Query Language as a Data
Definition Facility," IBM Research Report
RJ 1318, San Jose, Ca., Dec. 1973.

(48] Codd, E., "Recent Investigations in Relational
Data Base Systems," Information Processing
•74, North Holland, 1974.

|49] Stonebraker, M.,."Implementation of Integrity
Constraints and Views by Query Modification,"
Proc. 1975 ACM-SIGMOD Workshop on Management
of Data, San Jose, Ca., May 1975. (to appear)

l[50] Chamberlin, D., et al.,. "Views, Authorization
and Locking in a Relational-Data Base System,"
Proc. 1975 National.Computer Conference,
Anaheim, Ca., May 1975. (to appear)

9

[51]- Stonebraker, N. and Wong, E., "Access Control
in a Relational Data Base.Management System by
Query Modification," Proc. 1974 ACM National
Conference, San Diego, Ca., Nov. 1974.

[52] Summers, R., et al., "A Programming Language
Approach to Secure Data Base Access," IBM
Los Angeles Scientific Center, G320-2662,
May 1974.

	Copyright notice 1975
	ERL-504

