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IHGRES is a relational data base management system, under development at Berkeley, which implements a high level
non-procedural query language (QUEL). We describe our choice of storage structures which are used to implement
relations. Also described is an access method interface which provides a single relational view of all storage
structures.

I. INTRODUCTION

INGRES (INteractive Graphics and REtrieval System)
is a relational data base management system which is
(being implemented on a PDP-11/40 based hardware con
figuration at Berkeley. INGRES runs as a user job
on top of the UNIX operating system [RITC73] devel
oped at Bell Telephone Laboratories, and the imple
mentation of INGRES is programmed in "C"[RITC74], a
high level language in which UNIX itself is written.

In order to implement a high level, non-procedural
query language it was convenient to define a low
level, procedural language for data access. Such a
language has been implemented and provides a re
lational view of data to higher level software while
supporting a variety of actual storage structures for
efficient data access. We will describe this access
method interface language and discuss the five
storage structures which it currently supports. The
discussion will center on the considerations made in
choosing the set of storage structures.

In order to motivate the discussion we first give
some examples of interactions allowed in the query
language, QUEL, and then indicate the mechanism used
to decompose interactions into access method calls.

II. QUEL

QUEL (QUEry Language) has points in common with Data
Language/ALPHA [C0DD71], SQUARE [BOYC73] and SEQUEL
[CHAM74] in that it is a complete [CODD72] query
language which frees the programmer from concern for
how data structures are implemented and what algo- •'
rithms are operating on stored data. As such it .
facilitates a considerable degree of data independ
ence [STON74b]. Since basic entities in QUEL are
relations, we define them and indicate the sample
relation which is used in the examples in this paper.

Given sets D-,...,D (not necessarily distinct) a

RELATION R(D.,...,D ) is a subset of the Cartesian

product D.x x D.
N*

In other words, R is a collec-

tion of N-tuples X = (X.,, ,X__) where X. is an

element of D. for i in {!,...,N>. The sets D.,. .D,N
are called DOMAINS of R and R has DEGREE N. The -
only restriction put on relations inQUEL is that they
be normalized. Hence, every domain must be SIMPLE,
i.e. it cannot have members which are themselves
relations.

Clearly, R can be thought of as a table with elements
of R appearing as rows and with columns labeled by
domain names as Illustrated by the following example.

NAME DEPT SALARY MANAGER AGE

Smith toy 10000 Jones 25
EMPLOYEE Jones toy 15000 Johnson 32

Adams candy 12000 Baker 36
Johnson toy 14000 Harding 29
Baker admin 20000 Harding 47
Harding admin 40000 none 58

The above indicates an EMPLOYEE relation with domains
NAME, DEPT, SALARY, MANAGER and AGE. Each employee
has a manager (except for Harding, who is presumably
the company president), a salary, an age and is in a,
department.

Each column in a tabular representation for R can be
thought of as a function mapping R into D^ These
functions will be called ATTRIBUTES. An attribute
will not be separately designated but will be
identified by the domain defining it.

•A QUEL interaction includes at least one RANGE state
ment of the form:

RANGE OF variable-list IS relation-name

The symbols declared in the range statement are
^variables which will be used as arguments for tuples.
(These are called TUPLE VARIABLES. The purpose of
this statement is to specify the relation over which
each variable ranges.

Moreover, an interaction includes one or more state
ments of the form:

Command Result-name (Target-list)
WHERE Qualification

Here, Command is either RETRIEVE, APPEND, REPLACE, or
DELETE. For RETRIEVE and APPEND, Result-name is the
name of the relation which qualifying tuples will be
retrieved into or appended to. For REPLACE and
DELETE, Result-name is the name of a tuple variable
which, through the qualification, identifies tuples
to be modified or deleted. The Target-list is a list
of the form

Result-domain •=» Function,...

Here, the Result-domain's are domain names in the
result relation which are to be assigned the value of
the corresponding function.

The following suggest valid QUEL interactions. A
complete description of the language is presented in
[HELD75a].

Example 2.1 Find the birth date of employee Jones

RANGE OF E IS EMPLOYEE
RETRIEVE INTO W(BDATE - 1975 - E.AGE)
WHERE E. NAME » 'JONES'



Here, E is a tuple variable which ranges over the
EMPLOYEE relation and all tuples in that relation
are found which satisfy the qualification E.NAME -
'JONES.' The result of the query is a new relation,
W, which has a single attribute, BDATE, that has
been calculated for each qualifying tuple. If the
result relation is omitted, qualifying tuples are
printed on the user's terminal. Also, in the Target-
list, the 'Result-domain »' may be omitted if Func
tion is of the form Variable.Attribute (i.e. NAME •=•

E.NAME may be written as E.NAME - see example 2.6).

Example 2.2 Insert the tuple (Jackson,candy,13000,
Baker,30) into EMPLOYEE.

APPEND TO EMPLOYEE(NAME - 'Jackson', DEPT - 'candy',
SALARY = 13000, MGR - 'Baker1, AGE = 30)

Here, the result relation EMPLOYEE is modified by
adding the indicated tuple to the relation.

[Example 2.3 Delete the information about employee
(Jackson.

RANGE OF E IS EMPLOYEE

DELETE E WHERE E.NAME = 'Jackson'

(Hare, the tuples corresponding to all employees
poamed Jackson are deleted from EMPLOYEE.

lExample 2.4 Give a 10 percent raise to Jones

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY BY 1.1 * E.SALARY)
WHERE E.NAME - 'Jones'

Here, E.SALARY is to be replaced by 1.1*E.SALARY for
those tuples in EMPLOYEE where E.NAME = 'Jones.'
(Note that the keywords IS and BY may be used inter-
tcnangeably with 'a' in any QUEL statement.)

Also, QUEL contains aggregation operators Including
COUNT, SUM, MAX, MIN, AVG and the set operator SET.
Two examples of the use of aggregation follow.

Example 2.5 Replace the salary of all. toy department
employees by the average toy department salary.

RANGE OF E IS EMPLOYEE

REPLA'CE E(SALARY BY AVG(E.SALARY WHERE E.DEPT -
'toy')) WHERE E.DEPT « 'toy'

Here, AVG is to be taken of the salary attribute for
those tuples satisfying the qualification E.DEPT »
'toy.' Note that AVG(E.SALARY WHERE E.DEPT - 'toy')
Is scalar valued and consequently will be called an
AGGREGATE. More general aggregations are possible
as suggested by the following example

Example 2.6 Find those departments whose average
salary exceeds the company-wide average salary, both
averages to be taken only for those employees whose
salary exceeds $10000.

RANGE OF E IS EMPLOYEE

RETRIEVE INTO HIGHPAY(E.DEPT)
WHERE AVG(E.SALARY BY E.DEPT WHERE E.SALARY > 10000)

> AVG(E.SALARY WHERE E.SALARY> 10000)

»re, AVG(E.SALARY BY E.DEPT WHERE E.SALARY>10000) is
AGGREGATE FUNCTION and takes a value for each

Lue of E.DEPT. This value is the aggregate
WG(E.SALARY WHERE E.SALARY>10000 AND E.DEPT - value).
xe qualification expression for the statement is

then true for departments for which this aggregate
tfunction exceeds the aggregate AVG(E.SALARY WHERE
lE.SALARY^OOOO).

III. DECOMPOSITION

(The basic mechanism of processing statements in QUEL
bev follows. All^update statements are processed into

one or more RETRIEVE statements followed by a sequence
of.calls to the access methods to insert, delete or

modify tuples. A RETRIEVE statement with more than
one tuple variable is decomposed into a sequence of
RETRIEVE statements each with a single tuple variable
as described in [HELD75a]. The mechanism used is
one of "tuple substitution." Here, we describe the
algorithm for aggregate free interactions.

Consider a query involving one or more tuple variables
X - (X- Xjj) with a range R1 x... xR^. Denote the
qualification by Q(X) and suppose Q(X) is expanded
into conjunctive normal form so that it consists
*&f clauses connected by AND with each clause con
taining atomic formulas connected by OR. An atomic
iformula can contain only the boolean operator NOT.

jAlgorithm

1. stop if query has only a single variable

2. For each variable, say X with Range R , col

lect all attributes which depend on X. and all clauses

in the qualification which depend only on X.. Say

D,,...,D. are the attributes and the clauses put to-
1 tc

gether yield Q1(X1).

Issue the query:

RANGE OF Xx IS Rx

RETRIEVE INTO .R^ O^-^,•••.^'V
WHERE Q1(X1)

3. Replace the range R.. in the original query by

Ir.'. The purpose of 2. and 3. is to limit each tuple
variable to as small a relation as possible before
continuing to step 4.

4. Take the variable with the fewest tuples in its
range and substitute in turn the values of its tuples.
This reduced the number of variables by one. After
ieach substitution repeat 1.-3.

Step 4 is called tuple substitution and represents
the most time-consuming step for multivariable
queries. The choice of which variable to substitute
for is critical. Our criterion {the one with the
fewest tuple variables) is by fto means optimal in
general.

In this manner a multivariable query is reduced to a
sequence of one-variable queries and calls to the
access methods to obtain tuples for substitution. A
one variable query is interpreted by a "one-variable
query processor" (OVQP). This processes accesses
ituples from the indicated relation one at a time,
''checks if the qualification is true for that tuple
<and if so assembles the target-list attributes and
inserts them into the result relation. Besides inter

preting the qualification and target-list, this
'processor must:

1. ascertain if any secondary indices [STON74c] can
profitably be used to speed access.

2. attempt to restrict the number of tuples ac
cessed to less than all tuples in the relation.

To accomplish 1 and 2, it requires the help of the
access method routine FIND. This command and the

rest of the access method interface are described in

the next section.

IV. ACCESS METHOD INTERFACE

To find all the tuples in a relation which satisfy



the Indicated qualification, the OVQP must either
access and test all tuples in the relation, or else
must determine that only a subset of the relation
need be tested with knowledge that the remainder of
jthe relation cannot satisfy the qualification. One
way the OVQP might make such a determination is in
dicated in the following example. If the EMPLOYEE
relation is sorted on Increasing values of the SALARY

domain, then in processing the query:

RANGE OF E IS EMPLOYEE

RETRIEVE E.NAME

WHERE E.SALARY <10000 AND E.MGR 'Jones*'

the OVQP can stop testing tuples as soon as a tuple
Is encountered which has the SALARY domain greater
than 10000. Depending on the particular storage
structure which is in use for a given relation and
the domains specified in the qualification, the OVQP
may or may not be able to limit the number of tuples
examined. Instead of having the OVQP and higher
level software be concerned with this problem, a
relational access method interface language (AMI)
has been implemented. This language frees higher
level software from details of actual storage struc
tures and thus allows restructuring of relations for
core efficient operation as interaction conditions
change. It has points in common with Gamma Zero
[BJ0R73] and XRM [L0RI74]. Relation access and up
date through AMI is accomplished in the following
aanner.

1. A scan a relation is begun by using the FIND
statement to supply any information in the .
qualification which might be of help in
limiting the range of the scan. FIND examines
the information provided, and in conjunction
with a knowledge of the storage structure used
to implement the relation, determines starting

1and ending points for the scan.

2. Beginning from the starting point tuples are
accessed, one at a time, using the GET state

ment until the ending point is reached where
GET returns an end of scan condition. The pro
grammer may not assume that the tuples will be
returned in any particular order.

3. Each tuple has a unique identifier called the
tuple id (TID) which is returned with the tuple.
This tuple id may be used to refer back to the
tuple for re-access or updating (usually done
after the qualification has been tested for the
tuple).

4. INSERT, DELETE, and REPLACE statements are
supported for all storage structures and respec
tively, add one new tuple to a relation, re
move one tuple, or change the value of an
existing tuple. When using REPLACE or DELETE
the user must supply a TID to indicate which
tuple is to be affected.

5. Apart from scan retrieval, GET* also supports
direct retrieval of tuples given a TID. This
function is used in supporting secondary
indices. Briefly, a secondary index is useful
for limiting the number of tuples accessed in
cases where a value for the primary domain (i.e.
the domain used for ordering, for example
SALARY above) is not present in the qualifica
tion. A secondary index is a relation which
has one or more domains from the original re
lation along with a pointer domain which is an
Identifier of a tuple in the indexed relation.
For instance, if SALARY is the ordering domain
in EMPLOYEE, it might be useful to have a
secondary index on NAME. To build the secon
dary jnrfpy fl"H that- -in nttcApA i<t a qnpry nf

of the form:

RANGE OF EIS EMPLOYEE

RETRIEVE INTO NAMEINDEX(E.NAME,PTR=E.TID)

This relation may then be stored in a structure
which has NAME as the primary (ordering) domain.
When a query on the EMPLOYEE relation specifies
a value for NAME, the OVQP may access tuples in
the NAMEINDEX relation and use the domain PTR as

a TID to be supplied to GET which will return
the corresponding tuple in the EMPLOYEE relation.
Although two relations must be used to access

, tuples, a costly scan of the whole EMPLOYEE re
lation may be avoidable.

For AMI to support a new storage structure, the
following must be done.

1. A correspondence must be defined between a TID
and a physical position in the structure.

2. There must be a linear ordering defined on TID's
so that successive calls to GET will return all

tuples in the relation.

3. FIND, GET, REPLACE, DELETE and INSERT functions
must be implemented for the new structure.

V. CHOICE OF STORAGE STRUCTURES

:We will now consider the types of storage structures
(currently supported in INGRES. First we divide all
(storage structures into two classes, keyed structures
:and non-keyed structures. A keyed structure is one in
(which a domain (or combination of domains) of a tuple
is used to determine where in secondary storage the
tuple should be stored.' In such structures,.when a.
value of the .key domain is specified, the tuple(s):
having the specified value can be located directly
without a full scan of the relation. In a non-keyed

•structure, however, a full scan of the relation is
always required.

Non-keyed structures are supported in INGRES in
the form of unsorted tables. These structures

.are used as the initial form of all relations re
sulting from user queries. They are also useful in
moving data to and from standard UNIX files. Non-
keyed structures may have secondary indices to provide
faster access; however, relations which are used fre
quently are normally converted to some form of keyed
,,8tructure in order to provide more efficient access
Hon the most frequently used key (domain).

To begin the discussion of keyed structures, we de-
fine several terms which will be used in the remainder

of the paper.

K .key space -a set of possible values for the key
domain. The key domain (or primary key) is the
domain of the relation which is used in deter

mining the storage location for tuples in the
relation. Several domains may be combined to
form a single key. However for the discussion we
will assume only one domain is used. The key
space will be taken to be the interval (a,b) of
the real line since other data encodings may be
transformed to this set.

F key distribution - a usually unknown probability
distribution function which describes how the

keys are distributed over the range (a,b).

•U the number of tuples in the relation.

{£.,...,Kj.} the N keys, -K. G K, present in the re

lation. This Is a sample from F. To simplify



notation, we will assume the sample has been
ordered so that K < K. . for all i.

fi. address space - a set of integers {1,2,...,R},
each member of the set representing a secondary
storage location (page) capable of storing one
or more tuples. These R pages are referred to
as the "primary pages." When a primary page
becomes full, one or more "overflow pages" are
linked to it.

k the number of primary pages.

C tuple capacity of a page - the number of tuples
that can be accomodated on a single page of
secondary storage (page size divided by tuple
size).

C' key capacity of a page - the number of keye-tha*
can be accomodated on a single page of secondary
storage (page size divided by key domain size).

£ key to address function - a mapping from key
values to addresses H: K -*• A.

P parameter set - a set of parameters which are
used in the key to address transformation, H.

0CF occupancy factor - a measure of secondary storage
space usage. It is defined as the total second
ary storage space iused (primary plus overflow
pages) divided by minimum possible space (the
nft-n-fT^imi space is N/C).

|\CF access factor - average number of data page
accesses to reach a tuple. This includes the
primary data page access and all overflow page
accesses, but does not include any accesses re
quired by the key to address transformation.

Th* differences between types of keyed structures lie
in the definitions o f the key to address function, H.
|?wo desirable conditions for this function to meet
are:

pondltion 1.

The function should not introduce additional

secondary accesses in order to compute an address.

Condition 2.

The function should map the given sample of the
key space uniformly across the address space.

Condition 1 implies that the function should have as
tew parameters as possible. Condition 2 requires
Aat pages in1secondary storage are used in a uniform
1Banner so that overflow areas are not heavily used-
)verflow areas are necessary when more than C tuples
ire mapped to a single address. To access tuples
m an overflow page, first the primary page (the one
letenained by H) must be accessed and then the over
flow page(s) is accessed. The added accesses neces-
jjary to retrieve tuples on overflow pages increases
ACF.

VI. RANDOMIZING FUNCTIONS

A class of functions which usually meet both of these
conditions is known as randomizing or hash functions.
iere, H is chosen so as to spread the keys randomly
icross the address space. These functions have the
idvantage that they meet both conditions 1 and 2 for
a large class of key distributions, F. An excellent
compilation of various randomizing functions is given
Ln (LUM71a]. Randomizing functions provide an ex
cellent response to the needs of queries involving
jquality on the key domain. For a given key value,
the function H will return the address which contains

ill tuples possessing that key value. For example,

Jif the EMPLOYEE relation were randomized with SALARY
as the key domain, then the query
RETRIEVE (Target-list) WHERE E.SALARY - 10000

Would only require an average of ACF accesses to find
all qualifying tuples. For these reasons, we have
implemented a randomizing structure (using a folding
and division scheme).

QUEL, however, provides the ability for queries in
volving ranges on domain values. For example,
RETRIEVE (Target-list) WHERE E.SALARY > 10000

Since randomizing functions usually have the property
that there is no correspondence between the order o£
the keys and the order of the addresses to which they
are assigned, these functions are of little value in
selecting tuples from a range of key values. For
•this reason, a third condition often must be imposed
-on the key to address function.

Condition 3 .

The function should be an order preserving func
tion (i.e. if ^ < K2 the HO^) < H(K2)).

This condition is important whenever it is expected
,that queries will involve qualifications which
.specify a range on the primary key. In such cases
.It is ^pm-fani- t-n limit the numher of tuples scanned
,to those in the specified range.

We know of no storage structure that satisfies all
three conditions independent of the data stored. We
'thjw discuss order preserving computed functions
:(which usually satisfy conditions 1 and 3 but not 2).
Then we discuss directory structures (which usually
.obey conditions 2 and 3 but not 1). Lastly we dis-
icuss generalized directories (which offer a continuum
of possibilities between the previous two types).

VII. ORDER PRESERVING COMPUTED FUNCTIONS

jThis class of functions requires only minimal para
meters as in the case of randomizing functions, yet
|also preserves order in the address space. An ex
ample from this class of functions is to take the j
leftmost bits of the key as the address [RIVE74]. The
value of j is chosen in order to give an address

apace of 2^ values. Another simple, order preserving
function is one which divides the key range (a,b)
into equal size buckets and assign one of the R
address values to each bucket. Here H is defined as

H(k) 5»r(.£k*-a)/(b-a))*R-l where Txl denotes least
integer greater than x.

The advantage of eaxcM functions is that they satisfy
condition 1 and thus do not introduce any significant
overhead in computation of addresses. The problem
with all functions of this type is that the distribu
tion in address space is directly dependent on the
distribution in key space. So unless there is
uniformity in the sample key values, there will be
bunching in address space which implies many over
flows and/or much wasted primary space. Therefore,
we conclude that order preserving computed functions
should be used only when it can be determined that
"reasonable" uniformity exists in the key space.

VIII. DIRECTORY STRUCTURES
i

A normal directory structure is a function which is
constructed such that each page contains the same
number of triples and there are initially no overflow
pages used. 'One such function is

P= {LJ L± - KCA1. i-l,N/C>
with

H(k) » i for L± < k < L±n



Here, the parameters of the function are the low key
lvalues on each page of secondary storage. This
jfunction satisfies condition 2; however it has N/C
.parameters which means that for nontrivlal values of
N, the parameters must be stored in secondary memory
(violating condition 1). For large values of N, the
parameters themselves will need to be located.via a
key to address function, thus creating the common
Multilevel directory structure (i.e. ISAM [IBM66i).
{Each level of the directory adds an additional aecesa
to the cost of computing a tuple address. The
average access time for a tuple is then the diree—-
tory access time plus the single data page access
(here ACF is 1)

Logc,N/C + 1

bespite the cost of directory accesses, this struc
ture is currently widely used when ordering is
required. One reason for this choice is that for
directories the worst case access time is logarithmic

l(to a large base) in N, whereas order preserving com
puted functions may be linear in N.

IX. GENERALIZED DIRECTORIES

We now combine the two previous ideas into a struc
ture which meets conditions 2 and 3 and has fewer

parameters than normal directories'. The parameters
bf a "generalized directory," H, are an ordered set
of pairs:

P- {(L1,AjL)|Li e K, A± G A, L± <L1+r

1 - 1,M} -•--.to-"*

pie key to address mapping, H, is:

H(k) -A± +r(Ai+1-A1)(k-Li)/(Li+1-Lin :-

for L. £ k < Li+1

this type of function divides the key space into M-
intervals which may be of varying sizes and assign
to the irh interval A.... - A. page6 of secondary

storage. Within an interval an order preserving,
computed function is used to divide the key range
equally into the pages assigned to that region.'
Functions of this nature have been investigated by
[FEHR75],

A "data independent directory" is one in which the
choice of H is made without any knowledge of the
distribution of keys within the interval (a,b). An
Pple of such a directory is the order preserving,

uted function described above where ..._-

M -2

(4,^) - (a,l)

(W - (b,R)

Ai* Ai+r

\ "data dependent directory" is one in which the
sample {K ,...,K^} from the unknown distribution, F,
>f keys and is used during construction of H. One
sxample of a data dependent directory is the normal
lirectory discussed above where the L. are chosen to
>e the low keys on each secondary storage page, i.e.

P- {(L1,A±)|Li - Kcn ,A± - A^ + 1, i- 1, N/C}

Y& define a best generalized directory to one which
satisfies the following optimization problem.

given a sample {K.,...,IC.} of keys

choose H (as defined above)

with minimum average access time
Logc,M + ACF

subject to the constraint that the total storage
space—is less than some factor, f., greater than

the-minimum possible storage requirement (N/C pages)
i.e. OCF < f "

The solution to this problem will provide a directory
which:has the best average access -time for the given
limitation on total storage space. This optimization
attempts to minimize the size, M, of the directory
while keeping the overflows to a minimum and remain-
jing within the storage constraints.

Usually the performance of the two limiting cases of
generalized directories, order preserving computed
functions and pure directories, will not be optimal.
In the case of data independent directories, the

.directory may not be a close approximation of the
actual distribution, F, or the initial sample

{BL,.. .,!£_}. Therefore, H may map more than C tuples
to many addresses requiring.the use of excessive over-
irlowpages. On the other hand, normal directories
provide an even distribution of keys over address
space; however, they require a large number of
entries in the directory. Thus average access time
in the normal directory may be larger than necessary
because of the need to make several accesses to com

pute the address.

An optimal.solution to the above problem would require
a prohibitive amount of computation due to the number
of degrees of freedom. We therefore redefine the
{problem as that of finding a minimum directory size
;(minimam.M) for fixed limits on the access factor
(ACF) and the occupancy factor (OCF). In this way
the-Indusion of C' as a parameter is avoided. Even
a best solution to this problem would require many
passes over the data file (sample keys), so we now
outline an algorithm which provides a solution to the
second problem with a single pass over the data.
Hopefully, this is' a good approximation to the first
optimization problem.

In the following description, «re will refer to the
"step width" of the directory function. By this we
mean:.the size of the interval in key space which is
sapped to a single value (pag^e) in address space for
a given interval of the function (i.e. for the inter
val from L. to L. . the step width is (L ..-L )/

(A1+1-A±).

The algorithm scans the data keys once from lowest
key-value to highest. At the beginning of the scan,
•several guesses are made at the step width of the
function. As data keys are read, the performance of
each of the guesses is measured by computing the
access factor and the occupancy factor which would
result if that guess were used. When a point is
xeached in reading data keys where none of the guesses
continues to meet the fixed limits, f_ and f , on •

occupancy and access factors,

OCF < f. a and ACF < f.

then-the point just before the last guess fails is
taken as the next entry in the directory. This guess
is taken as the step width between the previous entry
and the new one. A new set of guesses is then made
and the algorithm repeats as above until the last
data key is read.

Some comments on the guesses.:



1.

2.

3.

As a result of the large difference between-
1/0 speeds and computation speeds there is
enough CPU time available during .a, .scan of the
relation to allow a sizable number of guesses

(NGUESS) To be made and tested.

If the first key to be scanned in the new
Interval is K., then one of the guesses is

chosen to be K
i+C

- K. (i.e. a step width for

which the first page is exactly filled). In
the worst case, this guess will be chosen and
will meet the constraints for one page of data
keys, resulting in a normal directory structure.

By choosing the guesses to be (K .-K.)/2J
i4C*2J *

for j •» 1, NGUESS we choose points logarith
mically distant from the current point and
thus get approximations to the slope of the
function of both a local and global nature.

EChe following point should also be carefully noted.
As extra space is made available to the ttL— —
gorithm (by increasing the limit on OCF),.the-
algorithm produces a smaller and smaller direc
tory. This is the opposite of what happens- in
a normal directory which increases in size-as
extra space is provided. —--

Borne Experimental Results

.Fig. 1 are indicated the results of testing the
lorithm.on two data files - one is a set of 10,-000-•
Eormly distributed 8 digit numbers between O and-

)99999; the other data set is a list of 10,000..
of property owners in Alameda County, California,

distribution of names, as would be expected, is
fpilte non-uniform. It is seen that when near uni
formity exists in the data space,' the algorithm is

Le to generate a mapping function which uses only
percent of the normal directory size if an increase

>f 30 percent in storage space is tolerable. With
Lform data such dramatic differences do not

However, in this experiment, with a 30 per-
increase in space, a large enough savings is

le in directory size to save a level in the
lirectory (from 3 to 2) and thus decrease average

is time substantially.

O00*i » - 10,000
C- 10

Max M = 1000

{Normal Directory)

Names (ACF<1.1)

OCF

^igune.1

We are implementing this general directory structure
In INGRES and will monitor its performance on a vide
variety of data. Such a structure will take advan
tage of whatever uniformity exists in data sets and
'rf.ll never give worse performance than a normal
lirectory.

X. STATIC vs. DYNAMIC DIRECTORIES

In the. above discussion we have only been concerned .
.with the.process of building key to address functions
and:using:them.for data retrieval. We now consider
the-problem of choosing a structure which will be
useful in an environment which includes updates to
the-relation (REPLACE, DELETE, and APPEND). We
consider two different approaches to the problem of
•wwrftrf-a-tnitig /Hrprfrtry nfnirfureii in this environment.

Static Directory Structures

Here, a.directory is built as described above and is
not'altered.during updates. Insertions are handled
by.chaining.tuples into overflow areas after space
±n-primary pages is full. When overflow areas be
come full, a reorganization is required which re
builds the directory. An example of this structure
is [IBM66].

Dynamic Bixectory Structure

In this scheme a directory is built as above. How
ever, inserts are handled by splitting a data page
when it overflows into two pages and enlarging the
directory to point to both pages. If this enlarge
ment causes the directory page to split, the process
-Iterates to the next level up and can continue all
the way back to the root in the worst case. In this
way the tree is kept balanced, eliminating the need
for periodic reorganizations. An example of this
structure is B-trees [BAYE70J; Here, the number of
pages that each directory page can point to varies
between k,•+ X and.,?k+l for a given k. This k is
determineoDy .the page size and key size of the file.

There n*6 variations of both types of directories.
For example, B*-trees are discussed in [KNUT73] and
offer obvious advantages over B-trees. The original
proposal'Suggested that whole tuples be put in
directory pages. In fact, placing only keys in the
directory increases k and thereby makes the tree
have fewer levels. Hence data pages can be accessed
-wxth-fewer retrievals from secondary storage. VSAM
[XEEH74] is another variant of dynamic directories.

We'feel dynamic directory structure
following serious flaws

. a) problems with concurrency

suffer from the

.Suppose two processes are simultaneously accessing
a-dynamic directory; one inserting a tuple and one
performing a scan over a portion of the tree. Sup
pose further that the scanning process is part way
through a page when the updating process causes
that page to be split by the insertion. This re
arrangement will leave the scanning process pointing
•to the wrong (or a nonexistent tuple) unless the
updating process alters the scan pointer of all
other processes in a nontrivial way.

Other problems also arise when two processes con
currently update the same B*-tree. Suppose that
tbe two processes are adding a tuple to two adjacent
pages in the tree and suppose both pages are full.
Bach process must lock the page it is updating
since it will be altered. Then it must examine

the two adjacent pages to see if tuples can be
spilled over to them and a split avoided. However,
the adjacent page is locked and each process is
-requesting access to the page the other has locked.
Clearly, this deadlock situation must be recognized
and broken.

k) -problems with.secondary Indices



Suppose a dynamic directory is constructed on one-
key and a secondary index is desired on another
key or combination of keys. It is reasonable for
the index to be a second dynamic directory with a
pointer to a tuple in the first tree as a data
item. In this case every time the primary direc—-
tory is rearranged by splitting (and thereby
causing tuples to be moved), the pointers lit-.the-
secondary index must also be updated for all tuples
which have been moved. To avoid this latter up
date, the data items in the index directory must
be keys in the first tree and not pointers. If so;
reference to a tuple in the primary directory by
utilizing the index requires a search of both
dynamic directories. Hence, retrieval is slower
than if pointers could be used.

c) problems with fan out

Because pages are split on the fly in a dynamic
directory, explicit pointers to data pages must
be present in the higher levels of a dynamic
directory. These pointers consume space and limit
the value of k that can be attained.

These problem are all avoided in static directory
structures. A static directory structure can have
the property that tuples are never moved; thus
pointers can be safely used in secondary indices.
Moreover, the directory is static; therefore, an
updating process need only ever lock the-page it is
modifying and no others. Also, since tuples are
not moved, there is no danger of a scanning process
pointing to a non-existent tuple. Lastly, pointers
in the directory can be easily suppressed thus in
creasing the fanout possible (often by as much as a
factor of two). Of course, the primary disadvantage
of a static directory structure is the necessity of
periodic reorganization when the overflow area be
comes highly utilized.

for the above reasons we are implementing a static
irectory structure and are monitoring activity in

phe file and automatically reorganizing it (by
jrewriting the directory and moving all tuples back
linto the primary area) when necessary.

XI. COMPRESSED STORAGE STRUCTURES

In addition to these structures, we have implemented
one of the many possible page compression schemes
for both randomized and generalized directory
structures. In these two structures, data is stored
in a more highly coded form which requires less
secondary storage space at a cost of somewhat higher
computational time for decoding and encoding during
retrieval and update.

1 XII. SUMMARY

We have described a part of the implementation con
siderations in the relational data base system,
INGRES. A description was given of the access
tsethod interface language and the storage structure*
supported. These structures are:

1. Non-keyed structures
2. Randomized keyed structures
3. Generalized directories

4. Compressed randomized keyed structures
5. Compressed generalized directories

iThe structures are used for data relations and for
secondary indices on data relations where desired.
'Among the storage structures is a more general
directory structure which should provide better
performance than normal directory structures.

'Currently, the access methods have been implemented
for all of the storage structures discussed and a
monitoring.system is being designed to automatically
choose the most desirable structure depending on
Interaction conditions. A future report will discuss
'the strategy used in this monitor.
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