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Abstract

Several theorems are presented which predict in a qualitative manner
the behavior of dynamic nonlinear networks. In particular, conditions
are given which assure that the voltage and current waveforms of a dy-

namic nonlinear network<,AJhave no finite escape-time solutions, or when

;Ajis autonomous, the waveforms are bounded, or eventually uniformly

bounded, or converge to a globally asymptotically stable equilibrium

point. An algorithmis presented which computes a maximum "transient

decay " time constant when waveforms converge exponentially to the

globally asymptotically stable equilibrium point. Several examples are
discussed. These results are extended in [15] to nonautonomous networks.
The theorems are significant in that they apply to a large class of
networks. Furthermore, their hypotheses are simple and easily verifiable.
The hypotheses are of two types: First, very general conditions on the
network state equations, and second, conditions on the individual element
characteristics and their interconnection. The'latter type of theorems
use graph-theoretic results of [14] and involve solely the examination
of the global nature of each network element and the verification of a

topological "loop-cutset" condition.
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I. Introduction

Much of the analysis of dynamic nonlinear networks has been in the
area of the formulation of networks equations [1]-[5], and in the area
of numerically solving these equations [6] - [7]. There are results con-
cerning the behavior of networks containing specific nonlinear elements
such as transistors or iron-core inductors [8]-[10] but there are rela-
tively few results which examine in a qualitative way the behavior of
general nonlinear dynamic networks [1], [4], [11], [12], [13]. This
paper is the second of three papers which develop methods for predicting
in a qualitative way the behavior of dynamic nonlinear networks. The
other two papers are titled "Graph-Theoretic Properties of Dynamic Non-
linear Networks" [14], and "A Qualitative Analysis of the Behavior of
Dynamic Nonlinear Networks: Steady-State Solutions of Nonautonomous Net-
works," [15]. 1In [14] graph-theoretic methods are used to determine prop-—
erties of network equations. We combine these results with the mathematical
analysis of the equations to determine the behavior of autonomous networks
in this paper, and to determine the behavior of nonautonomous networks in
[15]. In these papers, we answer the following types of questions: Let
gﬂsbe a dynémic nonlinear network. Under what condition may we conclude
all network voltage and current waveforms are bounded, or eventually

uniformly bounded?1 If LAlcontains a T-periodic source, when is there a

T-periodic solution of(JAL or a subharmonic solution? If(JA[coptains.

When v(t) and i(t) are the voltage and current waveforms of ¢ VAL we say
that they are eventually uniformly bounded if, and only if, there
exists k > 0 such that for each y(t) and i(t), there exists t, > 0

56)

such that < k for all t > t_.
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constant independent voltage and current sources, when doesxdk‘have a

unique, globally asymptotically stable equilibrium point? When;j“ has

time-varying sources, under what conditions dOGS(JU have a unique steady-

state solution (in the same sense as with linear networks)? 1In this case,

do the transients decay exponentially? To demonstrate the significance

of these questions, let us examine the Wien Bridge Oscillator [16] of

Fig. la. The operational amplifier together with its feedback resistor

RF and source resistor RS function as a resistive two-port containing a

controlled voltage source. The circuit model is shown in Fig. 1b. 1Its

state equation is easily derived to be

. 1
vCl CR 0 vC + VC - f(vC )
) . 3 1 71 2 2 1)
v —i\v, +2v, -~ f(v.)
C
2 CRINCG G Cy

A common approach by which the network is analyzed by engineers proceeds

as follows: Assume C1 = CZ’ and that the controlled voltage source function

£(+) is as shown in Fig. lc. Assume at t =0, V < f(vC 0) <V ; that
sa

—sat
2 t

is, f(+) is a "linear" function at t = 0. Then, (1) reduces to a linear

\/

C,\_ c

state equation <‘.,Cl> = MC c1> and the following conclusions are made:
2

2
(i) When O g_Av <3 (A.v is the slope of the linear portion of f(.)

in Fig. 1lc) the eigenvalues of matrix M have negative real parts, so

lim Vo (t) = 1lim v_, (t) = 0.
t>too 1 tteo C2

(ii) When AV = 3, the eigenvalues of M have zero real parts, and the

network oscillates.

(i1i) When AV > 3, the eigenvalues of M have positive real parts, and

th . .
ere are unstable oscillations which grow until saturation '"stabilizes"



them.

This analysis is unsatisfactory from a theoretical point of view
because it involves linear methods in a nonlinear network. In many
cases, using linear methods in nonlinear systems has led to wrong con-
clusions; e.g., Aizerman's Conjecture [17], though in this case (i),
(ii) and (iii) above correctly describe the circuit behavior when f(+)
is as shown in Fig. lc. We are interested in finding a more rigorous
method for determining the behavior of the network. Moreover, we want
to answer the following questions: If at t = 0, f(VCZ) > V;at; i.e.,.
we are not operating in the linear region, and 0 < Av < 3, then may we
still conclude lim Vo (t) = 1lim 5 (t) = 0 as in (i) above? When f(.)

tre 7] te 72 _
is not precisely linear for !sat<i f(v) < Vsat’ the above analysis is
no longer valid; under what conditions do we obtain oscillations? In
what manner does saturation "stabilize" the waveforms? We will return
to this example in the following sections of this paper.

In Section II, a very general class of dynamic nonlinear networks
1s defined along with a characterization of the various types of re-
sistive n-ports to be considered in the sequel. Various properties of
functions such as the passivity property, the increasing property, the
strictly increasing property, etc., are defined. The properties have
been discussed extensively in [14]. The graph-theoretic results of [14]
which are needed later are presented and discussed here.

In Section III,the mathematical results used in this paper are pre-
sented. In Theorem A, properties of a Cl—strictly increasing diffeo-
morphic state function (Defs. 1-4) are developed. The proof of Theorem

A is given in the Appendix. In Theorem B, three Lyapunov-type

theorems are given in which the qualitative behavior of solutions of



the general differential equationms (22) and (23) are analyzed. Specif-
ically, conditions are given such that (Theorem B-1) solutions of the
differential equations (22) and (23) are bounded or eventually uniformly
bounded; conditions are given such that (Theorem B-2) solutions of (22)
and (23) exist for all t as t -+« (there are no finite escape-time
solutions); conditions are given such that (Theorem B-3) the solutions
of (23) decay exponentially to a globally asymptotically stable equilib-
rium point.

In Sections IV, V and VI, theorems are given for analyzing the

qualitative behavior of nonlinear dynamic networks. The hypotheses of

those theorems are of two types; namely, conditions upon the network

state equations, and condition on the constitutive relations of the

network elements and their interconnection. The difference between
these two types of hypothéses is discussed in a general way in Section
III. These conditions are used in Theorems 1-8 to show (i) that the
voltage and current waveforms exist for all t > 0, or to show (ii) the
waveforms are bounded or eventually uniformly bounded, or (iii) the

waveforms converge (possibly exponentially) to a globally asymptotically

stable equilibrium point. The important aspect of our results is that
the hypotheses apply to a large class of networks and that they are
easily verifiable. 1In their final form, the hypotheses involve simply
investigating the passive or increasing nature of each network element,
and satisfying an easily verifiable topological "loop-cutset" condition
on the interconnection of the elements. As illustrated in the'examples
in Sections 1V, V and VI, the results may be applied to transistor net-
works, operational amplifier networks, etc. The general network

equations need not be solved or formed.



II. Characterization of State Equations

Consider the dynamic nonlinear network,gﬂfshown in Fig. 2. 1It

contains . (possibly coupled) one-port capacitors, and n, (possibly

L

n
coupled) one-port inductors.2 Let v e R ¢ and Vp gL, ?L €

Yo 10 I¢
Ea denote respectively the capacitor voltages, currents, charges,
and the inductor voltages, currents and fluxes. The constitutive

relations of a charge-controlled capacitor and a flux-controlled

inductor are given respectively by:

Ve = holqp)
(2)
L= (o)
n n : '
where QC: RC+>RC ana gL: E?nL‘* EanL. Define the np—vectors
(np=nc+nL) (the subscript "p" denotes a "port variable")
v = Ye .4 = iC . = YC) )
v ’ 1 > X H
P \v, P \i, Po\i
(3)
i q
vy =(%); = =C
Po\nL P\
then (2) becomes
x =h (z) (4)

~p ~P ~P

T
hp(-) = [hg(-), h{(-)] (where the superscript "T" denotes transpose).

2There is no loss of generality in our choice of this network model,
since any multi-port or multi-terminal capacitor (resp., inductor) can
always be modeled as a system of "coupled" one-port capacitors (resp.,
inductors). Observe also that an (n+l)-terminal element can always be
modeled as a ''grounded" n-port.



Remark: In [14], the capacitors and inductors are respectively

voltage-controlled and current-controlled; i.e., instead of (4), we

have gp = gp(gp). We use fp in [14], and we use hp here and in [15]
purely for ease of notation in each paper. In some of the theorems

in this paper and in [15], bp is bijective; hence gp = p;l exists, and
either PP or gp may be considered as the capacitor-inductor function.
See Example 5.

We view the capacitors and inductors ofc,&]as attached to an np—
port N which contains (nonlinear) one-port resistors, (nonlinear) multi-
port resistors,3 and independent voltage and current sources -- see
Fig. 2. The vectors Yp’ ép’ Ep’ zp € E{np of (3) are the port variables
of N as well as the capacitor and inductor variables.

Assume resistor Ra of N is an na-port resistor. 1Its voltage and

current are, respectively, v

n
Vp s ip €eR® 1a defining its constitutive
o o

relations (when it exists) we assume that for each port of the n,-port
resistor either the port voltage or the port current is an independent
resistor variable, and the remaining port variable is a dependent re-
n
a
sistor variable. Let XKJ y, € R * denote respectively the independent
Ry TRy
and dependent resistor vectors. The constitutive relation is therefore

R, T ER, (’fRa) )

Let mR—be the number of resistors of N, and let np be the number of

all internal resistor ports of N (mR=nR if, and only if, all resistors

3N also contains controlled voltage and current sources in the following

sense: We assume every controlled source of N is represented by
"coupling" within multi-port resistors. For example, although tran-
sistors, FET, and operational amplifiers are multi-~terminal elements
which are often modeled using controlled sources, they can also be
represented as multi-port resistors. Hence, a transistor can be char-
acterized by the constitutive relation (78) of Example 3.

-7~



are two-terminal elements). The composite resistor vectors are YR’ ;R €
R representing respectively all internal voltages and currents. Let

the my resistors be described by their constitutive relations

gRl('), §R2('),-..,gR (+), and let Xps Y € EZnR denote, respectively,

mR

the independent and dependent resistor vectors, then

r = &g (6)

is the composite resistor constitutive relation representing all inter-

T T T T T
nal resistors, where §R(o) = [§R (), gr (O gr (+)yeees gr )1,
o

a Lo o

Let ug € EZ S denote the voltages of the independent voltage

sources and the currents of the independent current- sources. The con-

stitutive relation of the "overall resistor" np—port N, when it exists,
is

Yp = 78, (Xp0g) )

n n
where gp(.,.): RP 5 e p, or if there are no independent sources

Ip = "8 &) (8)

where gp(-): Eznp *‘E?Fp. We will use both forms of gp in the sequel,
and in every case we will state explicitly (if necessary) which equation
is being used.
Remarks: 1. Eq. (8) can represent N containing constant sources.
This is shown in [14; Theorem 8].
2. Egs. (7) and (8) have a negative sign because the
port currents (in Fig. 2) are directed away from the ports on 'voltage-

driven" (i.e., capacitor) ports, and the port voltages are reversed on



@

the "current-driven" (i.e., inductor) ports. These reference directions
and polarities are chosen so that they are consistent with those assigned
to capacitors and inductors.

Using (4) with (7) and (8), we can write the state equation

describing;JM. Note that-%z gp(t) = gp(t) = Xp(t); we have

5 = -g (h , 9a
%p §p(~p (gp) ES) (%a)
and

2 = 8 (Pp (Ep)) (3b)

In this paper, we are interested mainiy in autonomous networks, and
therefore we use (9b) in most of the theorems of Sections IV, V and VI.
In [15] we examine (9a).

The following definitions which characterize various types of
resistive n-ports considered in this paper have been presented and
discussed in [14].

Def. 1: The function f: K™ > R" is

(1) passive with respect to x, € R™ 1f, and only if, for all x € Rn
T
(x-%5) "£(x) 2 0 (10)

(ii) strictly passive with respect to X e R® if, and only if,

0
(10) is true and the left side is positive for all x # Xg°

(1ii) eventually passive with respect to %5 e R® if, and only if,

there exists k, > O so that for all lxl > ko"

The norm ll-l we have used in this paper is the Euclidean norm, x| =

2
[(x]? +...+(xn)2]1/2. 0f course, the following results remain valid
for any choice of norm in R®.



(%) £(0) 2 0 (1)

(iv) eventually strictly passive with respect to X e R™ if, and

0
only if, (11) is satisfied where the left side is strictly greater than

zero.
n
Remarks: 1. If X = 0€ K P we say simply that f is passive,
strictly passive, eventually passive, or eventually strictly passive.

2, In (i) and (ii), the domain of f may be an arbitrary

connected set D C BT, %, € D.

Def. 2: [19] Let D SEEE“ be convex. The function f: R™ > R™ is

(i) increasing on D if, and only if, for all 3',5” €D
=) g6)-£GM] 2 0 (12)

(ii) strictly increasing om P if, and only if, the left side of (12)

is positive for all x' # x".

(iii) uniformly increasing on D if, and only if, there exists y > 0

such that for all x', x" €D
G- ea-16] 2 viet-xnt? (13)

(iv) strongly uniformly increasing on D if, and only if, there

exists ¥ > y > 0 such that for all x', x" € D,

he'-x"1? < <§'-§">T[§ (>5'>-£<1<")] < Vg1 (14)

Def. 3: [19] For any integer u > O, £: R™ > R™ is a cV-diffeo-
morphism on Rr™ (or is a C“—diffeomorphic function on Hen) if, and only
if, f is injective on E?“, and the functions f, g_l are C". Further-

more, £ is a C”—diffeomorphism mapping R™ onto K™ if, and only if, £

=10~

e



is a cY-diffeomorphism and § is surjective.

Def.4: [19] The Cl—function f: K™ > R™ is a state function if,

af(X) n
and only if, its Jacobian —g;l— is symmetric for all x e R".

In Sections IV-VI, each result concerning the behavior of vA‘takes
two forms: First, the behavior of the solutions of the network state
Eqs. (9) are analyzed using the mathematical methods of Section III, and
the preceeding definitions. The hypotheses of these theorems are in the
form of conditions on the function Ep describing the capacitors and in-
ductors, and on the function gp which describes the overall resistive
np—port. In each of the theorems, we make the following assumption:

The qualitative behavior of the voltage and current waveforms of each
element of pAfmay be uniquely determined from the behavior of solutioms

gp(t) of (9). 1In its second form, the conclusions are identical but the

hypotheses are in terms of the properties of the individual network

elements and the interconnection of these elements. The conditions

placed upon the elements are those placed on the resistor function gR ’
o

o = l,2,...,mR, and upon the capacitor-inductor function hp. We then

use the graph theoretic results of [14]. At this point, it is instruc-

tive to state the interconnection assumption of the theorems of [14].

Fundamental Topological Assumption: There is no loop and no cutset

formed exclusively by capacitors and/or inductors.

If this assumption is satisfied, we know for example that if each
gRais strictly increasing, then gp in (9b) is strictly increasing [14;

Theorem 9]. This conclusion and others are used throughout the sequel.

III. Mathematical Methods

1 .
A C'-function £: R™ > R™ is a state function if, and only if,

-11-



2
there is a C -functional F: Rn - Rl (called a potential function)

such that VF(x) = f£(x) for all x € K™ [18]. 1f f in addition is a
strictly-increasing diffeomorphism, the function F also has interesting
properties. The following theorem is proved in the Appendix.

Theorem A: Let f: Rn - R" be a Cl-strictly-increasing diffeo-

morphic state function mapping K" onto K™, Dpefine F: R" > Rl to

be the unique Cz-function such that
VFG) = £), ¥ x€R® FET(O) = 0 (15)

Then the following properties hold:

A-1 [20] F(-) is a strictly-convex fum:tion5

A2
P(x) > 0 ¥ x4 £ (0 (16)
A3
1 = (-]
lim o7 FG) =+ an
lxllse™ =
Al
. T, _
Lm por x £(@) =+ (18)
lglseo X
A-5 For each k > 0, the set
k& xeR™ F@ <K (19)

‘ 5, n
is compact and convex in R".

5A function F: Rr® - Rl is strictly convex if, and only if, for each
o € (0,1), for each pair x', x" e R™,
F((1-0)x"+ x") < (1-0)F(x') + F(x")

A set S C R® 15 convex if, and only if, for each ¢ € (0,1), for each
pair x', x" € 8, Xg LY (1-0)x' + ox" € s.

-12-
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A-6. If f is, in addition, strongly uniformly increasing, there

- n
exist constants y > y > O such that for each §', §" eR , (14) is true,

and
yix'-x"] < lE@")-£&™I < ylx'-x"] (20)
- — - 2
- < Fae) < Py - @1 1)

Remark: It is possible to extend A-6 in the following way: If
for some k > 0, (14) is true for all x', x" € K" satisfying Ix'l > k,
1x"| > k, then (20) is true for these x', x", and an equation of the
form (21) is also true. See Corollary A in the Appendix.

In order to develop results concerning the behavior of the solu-
tions of the network state Eqs. (9a) and (9b) we examine solutions of

the general differential equations;
x=-£(xt) (22)
where f: R™ x Eel'* R"™ is Cl, and

x = -£(x) (23)

~

where f£: R® > R" is Cl. We use Lyapunov's well-known theorem [21]
which gives conditions guaranteeing the existence of a globally, asymp-
totically stable equilibrium point of (22) or (23).6 We will use three
other results which are similar in nature; they are summarized in

Theorem B below:

6x € EZ is a globally, asymptotically stable equilibrium point of (22)

or (23) if, and only if, for any solution x(t), lim x(t)

to

-13-



Theorem B-1 [21-22]: Assume for some kO-Z 0 there is a Cl-function

CU: R > E?l such that for f in (22),

%l
%—9—9— f(x,t) >0 v!lgll > kg ¥té€ Rl (25)

Then every solution x(t) of (22) is bounded. Furthermore, if

AE;/XJQ £(x,t) > 0 wlxl > K, vee R (6

then the solutions of (22) are eventually uniformly bounded in the

sense that there is a positive kl > 0, k1 A sup CU(g), and a compact

set X CRY, Ixll <k

X4 (xe R™: QU < k) (27)
such that for every solution §(t) of (22), there is a time to € Eel so0
that

x(t) € X ¥t>t (28)

Furthermore, this theorem applies to the autonomous state Eq. (15b)
where we conclude in addition that (15b) has an equilibrium point
L€ X.

Remarks: 1. The bulk of this theorem is proved in both [21] and
[22]. The conclusion that the autonomous differential Eq. (15b) has
an equilibrium point is proved in a more general way by Pliss in [22].
See [15] for a discussion.

2. Except for the conclusion that the autonomous Eq.

14—

-



4

(15b) has an equilibrium point, the proof of this theorem is similar to
the proof of Lyapunov's Theorem [21]; it need only be outlined here.
First, note that without loss of generality, we may assume CU(§) >0
for all X € K™. e make this assumption upon noting that the con-
tinuity of’CU(.) and hypothesis (24) imply that for some k € Eel,
CO(}f) A CU(:E) + k>0 for all x € R™. Furthermore, Cf}(-) satisfies
hypotheses (24), (25) and (26).

Next, using (25) we see that %;CU(g(t))_g 0 for any solution x(t)

such that “g(t)" >k Since CU(g(t)) > 0, this means that‘CU(g(t)) is

0
bounded in Eal. From condition (24), we conclude x(t) is bounded in R™,
Similarly, using hypothesis (26), EL-/]}(g(t)) < 0 for any solution
x(t) such that Ix(e)! > ko. Now, using (24) we see that k1 le<ﬁ‘ﬁU(x)
exists, and that X in (16) is compact. Then, it is clear that 1igflkx(t))
< kl, and (28) follows from this. :
If there is no possible CU: R *’ﬂel such that (24) and (25) of

Theorem B-1 are satisfied, then (22) may have unbounded solutionms.

Furthermore, there may be finite escape-time solutions; that is, for

some initial condition g(t(p, t()E Ez% there exists t, > t, so that

1
for the corresponding solution §(t) of (22) having this initial con-

dition, lim Hg(t)u =+ o, In the following theorem and corollary,

t"tl

conditions are given under which there is no finite escape-~time solution.

Theorem B-2: Assume there is a continuous function : E8”+ Egéuch

that Y¥(u) > 0 for all u > 0, and7
du__ _ ..
J v -~ F (29)
7
Equation (29) is equivalent to 1lim ldu 4o 5, ¥ uy > 0
4. <o b(u)
1 u,

-15-



Assume for some ko > 0 there is a Cl—function CU: Een *’Eel such
that for £ in (22)

lim Q)(x) = | (30)

Isllsoo

*’CV‘ 2 £x,0) 2 - 9QUe) vid >k, veeRY G

Then for any initial time t € KR, for any initial condition g(to) € Ezn’

the corresponding solution x(t) exists for all t Z_to. That is, (22)
has no finite escape~time solution.

Proof: Because of (30), we see that for solution x(t) of (22),

there exists t; > ty such that lim [x(t)l = +° if, and only if,
t+t1 .
1im QY(x(t)) = + ». We will show that this is not possible.
tt -
1

As discussed in the sketch of the proof of Theorem B-1, we may
. R
assume without loss of generality that C\kx) > 0 for all x € . So,

assume for some solution x(t) of (22) lim'CU(x(t)) = +». Find time
t>t -
1

T, < t, such that §(r1) > k Then, for all t € [tl,tl),clkx(t))

1 1 0’
satisfies the differential inequality

V) < vV (32)

Since Clkg(t)) > 0 for each t € [rl,tl), we have

C\)Qc(t)) .
-~ <t - T {33)

As t * tl’ the left side of (33) tends to 4w because of (29). But the

right side of (33) remains bounded, and we have a contradiction. L

-16-
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Corollary 1: Assume there exists ko > 0, and a continuous function

Pe 52¥* Ee+ such that

X E(x,t) > - v(ixl?) (34)

~

for all Il > ko and for all t € Ezl. Then (22) has no finite escape~

time solution.
Proof: We apply Theorem B-2, with C\kg) 4 "5“2.

Remark: Theorem B-2 and Corollary 1 are extensions of a theorem

of Wintner [23]. The statement of Wintner's theorem is as‘follows: If

there exists some continuous function wlz EZ+ *’Ez+ satisfying

o]

du - 2 o
f ‘Pl(“) = + (35)

vteR! (36)

I£Ge, 01 < v, (xl) ¥ il >k,

where ko is a positive constant, then every solution x(t) of (22) exists
for all t € (~w,x).

The difference between our preceeding results and with Wintner's
theorem is that while our results guarantee that solution §(t) is de-
fined as t -+ +=, Wintner in addition guarantees that x(t) also exists
as t +» - o, From a physical point of view, this conclusion is not use-
ful and, in fact, is not satisfied by solutions of many nonlinear dynamic
networks of practical interest. For example, examine the network of

v, /v

Fig. 3a. The diode equation is given by 1R = Is(e R —1) where the

positive constant IS and v, represent respectively the saturation current

and the thermal voltage. The capacitor voltage vc(t) satisfies the

state equation

37

-17~-



One solution of this equation is vc(t) = 0. For any initial condition

vC(O) # 0, the solution is

£(t) v/ Ve (0)
v.(t) = v.(0) 1n < (38a)
¢ ¢ ef(t)—sgn(vc(O»
where8
£(6) L Sgn(vC(O)) (38b)
t) =——— t + 1In 38b
Cv,p l_e-vc(o)/VT

For any t > 0 and for any vC(O) # 0, £(t) in (38b) is positive. Hence,

vc(t) in '(38a) is well-defined, and lim vC(t) = (0. However, when

ot
VC(O) > 0, define time £y
Cv,., -
A T 1
t, = - 1n <0 (39)
1 IS VC(O)/vT

1-e

f(tl) = 0, and va(tl)| = 4o, That is, the solutions of this network

exhibit the finite escape-time phenomenon in negative time. Furthermore,
I vC/vT 1

since Vor T \& -1) > 0 for all Ve e R , equation (34) of Corollary 1
is satisfied while it may easily be seen that Wintner's condition (36) is
violated. Let us investigate further the difference between condition (34)
of Corollary 1 and condition (36) of Wintner's Theorem: The diode in

Fig. 3a is replaced by an arbitrary voltage-controlled resistor whose
constitutive relation is iR = gR(vR), where gR(-) is Cl. Now, it can

easily be shown that if for some kl > 0, k2 > 0 and B > 0, if either

8By definition sgn(vC(O)) = +1 (resp., -1) if vc(o) > 0 (resp., vC(O)
< 0).
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[a

1+8
gR(vR) > kl(vR) ¥ vy > k, (40a)
or
1+R
gp(vp) < kl(vR) ¥vp <k (40b)

then Wintner's condition (36) is violated. Indeed, if gR(vR) = (vR)n,
where n is any positive integer other than 1, Wintner's condition is
violated. Thus, a reasonable sufficient condition for (36) to be true

is that for some k, > 0 and k

1 2> 0

IgR(vR)l_i kllle y |vR| > k2 (41)

The poésible range of gR(-) satisfying (41) is illustrated by the shaded
portion in Fig. 3c. On the other hand, (34) of Corollary 1 can be shown

to be satisfied if for some k1 > 0 and k2 > 0,

2 ‘ ' A
vegp (vp) > -k, (vp) ¥ vl >k, (42)

The possible range of gR(') satisfying (42) is illustrated by the shaded
portion in Fig. 3c. This illustrates that the class of functions £(,°)

satisfying the hypotheses of Theorem B-2 or Corollary 1 is much larger

than the class of functions satisfying Wintner's .condition.
As a final remark on this subject, note that Wintner's Theorem may

be proved using Corollary 1l: Assume there exists a positive continuous

).

function *1 such that (35) and (36) are true. Define y(u) 4 u]'/ztpl(ull2
Here, y: EZ+'*'E{+ is continuous. From (36),
T
x £(x,t) > - Ixll « D£(x,0)l
2=l - v Uxl) = - vz (43a)
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and thus (34) is satisfied. To show (29), let @ 4 /u for u > 0,

du j‘ died f b
= 2 = 2 (43b)

€ Rl, all

and (29) follows from (35). Hence, for any initial time to

solutions of (22) exist for all t > t To show that all solutions

0
exist for t < to, we repeat the above analysis for the differential
equation % = - (—f(g,t)). This differential equation also has solutions
existing for all t z_to, where if x(t) is a solution of this equation,
then §(~t) is a solution of (22).

For our final mathematical result, we look again at the existence
of a globally asymptotically stable equilibrium point of (23). 1In the

following theorem, conditions are given which guarantee that solutions

converge exponentially to the equilibrium point.

*
Theorem B-3: Let x € R™ be the globally asymptotically stable
. *
equilibrium point of (23). Let D'C R™ pe open, x € D. Assume there
exists B > 0, Yz > Yl >0, 74 > Y3 > 0 and there exists a Cl-funct:ion

q}: D~ Rl such that for all x €D,

B B
ylexl < U@ < v,lzx (44)
8 Q&) % B ,
'Y3[|.§'-§ I < T f(x) 2 Y4ﬂ1~{-g_{ f (45)

Then for any solution x(t) of (23) such that §(t) €] for all t > O,

we have
Y, - 13__t
1/8 - =t Y,q1/8 By
[%l] e M1 0"l < Ix(t)-x"l 5[7‘3] e ZIx(0)-x"I (46)
2 - 1 -

Remarks: 1. The expressions ———]";;—C'U(x) and 1 ﬂi‘l £ (%)
— Ix-x 08 LA T
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* *
are well-defined for each x # x . Hence, when CU(§) > 0 for all x # x

C *
and-éigggl f(x) > 0 for all x # x (these are the conditions of

Lyapunov's Theorem [21]) then g, Yo Yoo Y30 and Y, in (44) and (45)

exist if D is bounded and if

: 3U(x)
lim S ; im L a

el COH 1 *
lx-x*IP0 lx—x 18 " lx-x*1-0 lx-x 1B %%

£(x) 4N

exist and are positive.
2. The proof of this theorem is étraight-forward and
need only be sketched. For any solution g(t) €D fo: all t > 0, the

corresponding CU(§(t)) satisfies

Y Y
- 2w < S V@) < - 32 V) (48)
LA ~ 2
because of (44) and (45); hence
Y4 Y3
- 'Y_ t - T— t
Axne <) < Yx@)e > - (48b)

and (46) follows from this.

IV. Networks with Bounded Solutions

We begin with two theorems which give conditions guaranteeing that
the state equation (9a) has no finite escape-time solution. In the
previous section, we analyzed the network of Fig. 3a where the diode
was replaced by an arbitrary voltage-controlled resistor whose constitu-
tive relation is iR = gR(vR). It was shown that when (42) is satisfied,
there is no finite escape-time solution. This conclusion is rigorously
extended in the following theorem (specifically, (50) is a generalization

of (42)).
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Theorem 1: Assume the dynamic nonlinear network<JA[is described

by the state function (9a). Assume the capacitor-inductor function

bp is a Cl—state function,9 and there exists constants kD > 0 and

Y>>y o> izl (P
Y>>y 0 such that for all gp > kD’ Ep > kD

|_n2 v_nT 1y " —t__nz
vz gl’s e [agz-h @] < izi-2 (49)

Under these conditions, if there exists an arbitrary matrix G € Ee p p,

an arbitrarz vector ? ER p,constantsk1 > 0 and k2 > 0 such that for

all g € EZ , and for all "gp".i k,, we have

T ~
> -
§p I:gp (z.(p ’ ..uS)+§ X +¥p] — k]_

P~Pp (30)

where gp(-,-) is the np-port function, then state equation (9a) has no

finite escape-time solution. That is, for any continuous gs(t), for any

initial time tO € Eel, each solution gp(t) of (9a) exists for all t > t

0.
Proof: We apply Corollary A and Theorem B-2. First (49) is the

same as (A-19), hence from (A-21) of Corollary A we conclude that there

n
exists a Cz—functiOn Hp: E% P Ezl such that

c n
VH (z)) = b (z) vz€R (51a)

and for some k > 0, and Yl >0

I, 12
Yl Ep"

I A

H ‘ >
NEW vzl >k (51b)

Using the inequality of (51b), we see that 1lim H (z ) = + =.
lz e P -P

9The condition that hp is a state function is equivalent to requiring

that the capacitors and inductors be reciprocal. This is a weak con-
dition and is satisfied by most capacitors and inductors of practical
{nterest. This assumption 1s made throughout this paper.
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Hence, in applying Theorem B-2, let ij(') = H(+), and equation (30)

is satisfied. We have to show only (31). Using (50),

oH (% ) T ) T
-—R—E—agp gp(bp(zp%es) = (*zp@p)) gp(tzp(ep),es = xg,(x,54g)
2 -
R A N T ¥ lx I >k, (52)

where HGPH is the induced norm of the matrix Gp and l.ll is the Euclidean
norm. Next, we make a series of modifications of (52). First, note
that the first term on the right of (52) dominates for large ﬂgpﬂ; i.e.,

for any k, > ng" there exists kg > 0 such that
Kk Ix 1% > Ix 02060 - 0% « 15.0 - k ¥ x| > ke (53)
47%p = "% "-p -P ~p 3 ~P 3

Then, since (A-20) of Corollary A holds, there exists k6 > 0 and k7 >0

such that
2 2 2
kglz 15 > Iy 1" = In (2] ¥zl >k, (54)
Combining the last four equations, there exists k8 > 0 such that
o, (z) 2 2
oz, gp(t}p(gp)’gs)Z e I 17 2 -l kglz
k,k
476 .
>-——H (2
277y p(Zp) ¥ llg,pll > kg (55)
' 8 X4
_ Define P(u) =-i§—- u; ¥ ﬂ?+'* EE+ is continuous, and equations (29)

1
and (31) are satisfied. L

The condition (49) on the inductor-capacitor function hp is that
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h_ is "eventually" uniformly increasing. This will be true if the

capacitors and inductors are "eventually" linear. The condition
(50) on the resistive np—port function gp is satisfied if gp is even-
tually passive, for then (50) follows with gp =Qand y = 0. When

kl = kz = 0 and ?p = 0, then (50) has the following interpretation:

1f g (*) is not "more active" than the matrix function 9& (i.e.,
pgp(x »Ug ) > ngxp) then there are no finite escape time solutions.

This is an intuitive condition since, if (9a) is linear,

2 =-GT z_ - G_u 56a
~p “p~p~p  ~S-S (362)

Then each solution [24]

-G I_(t-t,) f -G T (t-o)
z(t) = e PP o 2, (tg) - ﬁ e PP G ou (o)do (56b)
t

0

exists for all t >ty
These interpretations of Theorem 1 are illustrated in
Example 1: Examine the network of Fig. 4. Voltage sources El(t),

Ez(t) are continuous and bounded in time. We can write the state equa-

tion (9a) for this network, where

- (qc)2 3 5
e [(qc) - (qC) ] + a4
= - 57
b <§p) 5¢L1 2¢L2 (57a)
-26.  + 3¢
Ly Ly

and
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[vc-El(ti}sin[Yc—El(t)] - sgn(vc)ln(1+|vcl) + iLl

- AL
(iL1+1L2)
= | = 57b
g, (%5) ve te (57b)
-(iL i )2
1 72
e -3i - E,(t)
L, 2

Now, (49) is true because S for large q. . Let [EIJ and |E2| be
the largest magnitude of bounded El(t) and Ez(t), respectively. Then

(50) is satisfied, with k, = k, = 0, and

175
210 IE, |
= 3y = 58
g, 1005 3§ 1 (58)
001 1+ lEZI

Thus there are no finite escape-time solutions. Note that all the
resistors are active; in fact resistor R2 and R4 have v—-i curves lying
solely in the second and fourth quadrants of the v-i plane. However,
each resistor is "mot more active' than a -1 resistor in the sense that
VRiR-Z j-(vR)2 for each resistor.

In the next theorem, we relax the condition (49) on the function
Ep’ and in turn place a stronger condition than (50) on gp:

Theorem 2: Assume the dynamic nonlinear networkc,Afis described
by the state equation (9a). Assume the capacitor-inductor function
bp is a Cl—state function, and there exists a Cz-function Hp: Eapp‘* Ea}
such that VHP(gp) = yp(gp). Assume bp and Hp satisfy

lim b (Ep)" = 4o

lz "
) (59)
lim . -

m . H (gp) Foo

lz 0o P
“P
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Under these conditions, if there exist constants kl-z 0 and k243 0
n
such that for all ﬂgp" > kz, for all ug eR S
xg (x ,u) > -k (60)
~pp ~p ~5" = 1

Then (9a) has no finite escape-time solutions. That is, for any con-
tinuous gs(t) and for any initial time to € Ezl, each solution gp(t)
of (9a) exists for all t > to.

Remark: If Pp satisfies (49), then (59) follows from Corollary A.
In fact, in this case Theorem 2 is a corollary of Theorem l. Equation
(59) also follows 1if bp is a Cl—strictly increasing diffeomorphic state
function mapping Eanp onto R P —— see Theorem A.

Proof: As in Theorem 1, we apply Theorem B-2 and- let CU(zp) = H(zp).

Then, (30) follows from (59). To show (31),

355(3 ) T c E2nS
agp gp(q'lp(Zp'),uS) = z{pgp(z{p,gs) > —kl., ¥ "?51)" > k2, ¥ BS
(61)

Now, from the.first equation of (59), there exists k3 > 0 so that

[ngﬂ > k3]== [n§pu > k2]. Hence, define y(u) & kl for all u > 03

VB E2+'* Ee+ is continuous, and equations (29) and (31) are satisfied. X
In the remaining theorems of this paper, we assumeiuA]is autonomous.

That is,adAlhas only constant independent voltage and current sources,

and is described by the state equation (9b). For results concerning

nonautonomous networks, see [15]. SincegAfis time-invariant, we can

assume without loss of generality that the network is initlalized at

time t = 0.

Theorem 3: Assume the dynamic nonlinear networkcJK'is described by
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o)

the state equation (9b). Assume the capacitor-inductor function l}p is
n
a Cl-state function, and there exists a Cz—function Hp: KPP~ Rl
h that VH = h . Assume h_and H_satisf
such that VH, (z,) = By(z)) “p p y

lim (h (z )]l =+ »
Iz I-= 7P P

lim H (z) = + » (62)
Iz I P 7P

Under these conditionms:

1. If the Cl-function g is eventually passive, then every solution
gp(t) of (9b) is bounded.

2. 1If the Cl-function g is eventually strictly passive, then

every solution gp(t) of (9b) is eventually uniformly bounded, and LA[

has at least one equilibrium point. 1In particular, if for some

0

k, > 0, for all x Il > k.,
~p O

T
§p§p(§p) >0 (63)

then there exists a constant fco > 0 such that

[Ilgpll > fto] = [!ltxp(gp)ll > kO] (642)
and a constant kl € Rl where
A
kl = sup  H (z) (64b)
ilzpfl_<_k0 P -P

n
and a compact set Zp C K P, where

n
(5 RP: n ) <x) (65
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such that for gach solution gp(t) of (9b), there exists to.z 0 such

that

t) €z ' Lt >t 6
2, () S 2, ¥t (66)

Furthermore, LAjhas an equilibrium point gp € Zp.
Remark: The functions h and Hp satisfy (62) if either (i) there
exist k > 0, Y >y > 0 such that (14) is true, or if (ii) hg is a Cl—
strictly-increasing diffeomorphic state function mapping R P onto EZ P
(Theorem A) and, in this latter case, compact Z C.Ei P in (65) is also convex.
Proof: We apply Theorem B-1. Pickcqj(fp = H(fp)’ and (24) is
satisfied by hypothesis. Now, to show (25) and (26), first note that
from (62) we see that for any k, > O there exists ﬁo > 0 such that (64a)

0

is satisfied. Now

3H(z_) ]
%2y (5 2) - EAACR (67)

1f gp is eventually passive, there exists ko.z 0, and hence a ﬁo.z 0
such thét the right side of (67) is non-negative for all "xpﬂ > ko, for
all "zp" > ﬁo. Similarly, if gp'is eventually strictly passive, and

(63) is true, then the right side of (67) 1s positive for all "?p" > ﬁo. L

Remark: The difference between the conclusions that solutions of
(9b) are bounded, and that solutions of (9b) are eventually uniformly
bounded is non-trivial: Examine the two networks of Fig. 5. For the

network of Fig. Sa,

g = | € ~ (68a)

The function gp is passive, and all solutions are bounded. However, the
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magnitude of each solution can be arbitrarily large. When two resistors

are added as in Fig. 5b,

RZiL + Ve + E

8, = \ -1 +L1
2p i + Rl(vC+E)

(68b)

The function %p is eventually strictly passive, and all solutions are
eventually uniformly bounded. 1In fact, as we shall see in Theorem 6,
the network of Fig. 5b has a globally asymptotically stable equilibrium
point.

Example 2: Let us return to the Wien Bridge Oscillator of Fig. 1
and equation (1). It was stated in the Introduction that with f(-) as
shown in Fig. lc, that the '"saturation" characteristic of f(e) stabilizes
the voltage and current waveforms of the network. Let us examine the

precise condition under which this intuitively reasonable statement is

valid.
Claim: If
lim su fW)| < 2 (69)
ko ]vT>k v

then, all solutions are eventually uniformly bounded.

Remark: A sufficient condition for (69) is

lim £(v) =0 (70)

lvls= v

This is satisfied by the function f(+) in Fig. lc. A much more arbitrary

f(+) will also satisfy (70), such as
_ 2
f(v) = sin[v ln(1+]v|)] +e v (71)

Note that f£(.) can be completely arbitrary for finite v.
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Proof of Claim: We may write (1) in the form (9b), where

q == q
h ¢, \ . [cr %
F q L4
c, c,R Ic,
(72)
v ve +tv, - f(v.,)
Y _[¢ ¢ Cy
%p ) 2 £(v. )
~ v v +2v - v
c, ¢, "t c,

The function hp is strongly unifbrmly increasing. We have only to show

that gp is eventually strictly passive.
(v, YT v, N
Ve Cy 1 ) 2
(vcl,vcz)§p< 1)= e +'VC - + |1~ % (VC ) (73)

v
v 1 2 C 2
€y

2

Applying (70), there exists k > 0 such that the second term of (73) is

positive for va | > k. For [vc | <k, the second term is bounded, and
2 2 '

the first term becomes arbitrarily large, positive as IvC | + +o, Hence,
1

gp is eventually strictly passive. x

We next examine conditions placed upon the resistors of<¢A]such
that %p has the appropriate properties of Theorem 3. First, we note
that even if each resistor function gRa(.) ofiJAlis eventually (strictly)
passive, the'composite resistor function gR(-) may not be eventually
(strictly) passive. This fact is illustrated by the two resistor v - i

curves of Fig. 6; assume<JM is a 2-port made up of the two disconnected

resistors of Fig. 6. Resistor R, is eventually strictly passive, while
1 g
R, is strictly passive. Yet 8g = Ry ) is not eventually strictly
R
2

passive. To show this, fix vp = 3/2, then

1
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A

2 2

vage (V) = {—9/4+ (v ) ¥ vy | <1
~9/4 +—% Vv | >

<0 ¥v, €R (74)

The reason that gr is not eventually strictly passive is because while

R2 is strictly passive, | | < 1 for all vp - It is shown in [14]
2 2 2
that if 1im [ ] [g (x, )] =+ for each a = 1 325...,m_, then
Ix, Il ~Ra' TRy "Ry "R

indeed gr is eventually strictly passive. However, with a condition of
this form, it is no longer possible to prescribe an eventually paésive
8r that is not eventually strictly passive. Hence, in the following
theorem, we prove only that gp is eventually strictly passive as in
(ii) of Theorem 3.

Theorem 4: Assume the dynamic nonlinear network is described by
the state equation (9b). Assume the capacitor-in@uctor Pp is a Cl-
state function, and there exists a Cz-function Hp: EQ?F-+ Ezl such

that VH (z ) = h (z ). Assume hp and Hp satisfy

lim In (z )l =
ﬂzp"—)oo ~P ~P

(75)

lim H (z ) =+
|Izp|l-*°° P -P

Assume further there is no loop and no cutset formed exclusively by

capacitors and/or inductors. Then under - these conditions, we have:

1. If<¢AIcontains no independent sources, and each resistor

function gRu is eventually strictly passive, satisfying
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lim (xR )T gR (xR ) = (76)
"R

Then all voltage and current waveforms are eventually uniformly bounded,

and;vA[has at least one equilibrium point.

L)

2. If(,AJhas constant independent sources such that there is no
loop (resp., cutset) formed exclusively by capacitors and voltage sources
(resp., inductors and current sources), and if each resistor function

gr is eventually strictly passive, satéffziggf/

||}1(in}|_,m (KR ) 8R (XR ) = an
Ry xR
then all voltage and current waveforms afe eventually uniformly bounded,
andQJAfhas at least‘one equilibrium point. |

Remarks: 1. In Theorem A and in Corollary A we show that (75) is
true if either Pp is a Cl—strictly increasing diffeomorphic state func-
tion, or if an equation of the form (14) is true. Similarly, when -
has either of these properties, (76) and (77) are true.

2. By the conclusion that the voltage and current

waveforms are eventually uniformly bounded, we mean the following: as

2(annp+nS)

in Theorem B-1 or Theorem 3, if (v') eR denotes the voltage

and current of every element of UM, there exists a compact set X C
2(ann +n_)

R P
(t)

such that for each waveform (v( )) there exists t0 >0
t
so that (Y( )) € X for all t » t.. ~

i(t) 0

Proof: Applying Theorem 3, we have only to show in 1.and 2. above

9

that gp is eventually strictly passive. This is proved in Theorems 8

~

and 9 of [14]. x
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Example 3: Transistor Networks

A transistor may be modeled as a grounded two-port resistor using

the Ebers-Moll equation [7]. Let iE and vp be the current and voltage

respectively of the emitter-base junction, and let ic and Ve be the

current and voltage respectively of the collector-base junction. The

resistive two-port is described by its constitutive relation:
v /v

E'T
i v 1 -a I_..(e -1)
<1E> " B (vE ) [‘a 1R'] <IES(EVC/VT‘1)) o
C - C F Ccs

where the subscript "tr" denotes tramsistor. In (78), I

>

gs’ Tcs® °r’ V1o

and o are positive constants, and furthermore ak <1, ap < 1, and

F
aRICS = aFIES' Now, it can easily be shown that
Vg T v Vel Ve ve/ vy
(VC>§tr ve | (ropIggvg(e © "-1) + (rapdlegvple = 1)
volv,, v.lv
E'T C'T
ozRICs(vE VC)(e -e ) (79)

and from this we can conclude that Bir is strictly passive and satisfies
(76). However, (77) is not satisfied (to see this, in (79) set Ve = Ve
and let Ve T w). Hence, 2. of Theorem 4 is not directly applicable.

However, we may still obtain a useful result when the network contains

constant independent sources.

Proposition: Let\¢A‘be a network containing capaéitors, inductors,
transistors, other resistors, and constant independent sources. Assume
that the capacitors, inductors and resistors (other than transistors)
satisfy the conditions of Theorem 4, 2; specifically, let the capacitor-
inductor function Pp be a state function (and hence there exists a Cz-function

n 1
Hp: R P> R such that VHp(gp) = bp(gp» such that (75) is satisfied. Each
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resistor (other than transistors) is described by its constitutive

relation ng and let (77) be satisfied. AssumeMis characterized by the
state equation (9b). Under these conditions, if there is no loop and

no cutset formed exclusively by any combination of capacitors, inductors,
transistor emitter-base junctions, transistor collector-base junctions
and sources, then all voltage and current waveforms of<J&‘are eventually
uniformly bounded, and<¢AIhas at least one equilibrium point.

Remarks; 1. A useful corollary of this proposition is that if
all capacitors, inductors, and resistors (other than transistors) are
linear and have positive capacitance, inductance, and resistance, then
(75) and (77) follow; thus in this case if state equation (9b) exists
and the interconnection condition above is satisfied, then all voltage
and current waveforms of(,A‘are eventually uniformly bounded, and gJU
has an equilibrium point.

2. In [8] a similar conclusion is reached when:JAlhas
no external capacitors and inductors. Rather, capacitors exist in
as elements of the transistor model. In the above proposition and the
result in [8], the voltage and current sources may be time-varying so
long as they are continuous and bounded functions of time.

Proof: This proof is a reiteration of material ip [14]. Applying
Theorem 8 of [14], using the i-shift Theorem and v-shift Theorem,
respectively, each current source is placed in parallel with a resistor
(other than a transistor) and each voltage source is placed in series
with a resistor (other than a transistor). These resistors with sources
attached may be viewed as composite resistors where each constitutive

relation is §R s o = l,2,...mR,
~Sa

= 4
TR, T Br OR) T B R P S (80)
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n
o
where ba and c, are vectors in IR . It is easy to see that since (77)

is satisfied for each gRa, it is also satisfied by each gRa. We view
<¢A’now as a network containing capacitors, inductors, transistors
whose constitutive relations 8p satisfy (76), and resistors whose
constitutive relations éRa satisfy (76) and (77). The proposition
follows from Theorem 4, 1. ¥

As a final remark, note that the condition in Theorem 4 requiring
that the state equation (9b) exists and that Pp and §p be Cl—functions
is a non-trivial condition; examine the network of Fig. 7a. The
resistor is either a current-controlled resistor whose v-i curve is
shown in Fig. 7b, or a voltage-controlled resistor whose v-i curve is
shown in Fig. 7c. In the former case, gp does not exist, while in the
latter case gp exists but is not continuous at vp = 0. Both resistors

are strictly passive, and applying the methods of Theorem 4 or Theorem

6 below, we might conclude that all voltage and current waveforms are

eventually uniformly bounded. But, corresponding to vC(O) = 1 for both

networks,
VC(t) = y1-2t
1 t € [0,2) (81)
(0 = ot

are admissible voltage and current waveforms. Thus, the network has a

finite escape-time solution.

V. Networks Containing a Globally Asymptotically Stable Equilibrium

Point

Theorem 5: Assume the dynamic nonlinear networkcd&‘is described by

the differential equation (9b). AsSume the capacitor-inductor function
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n
‘Elp is a Cl—strictly-increasing diffeomorphic state function mapping RP
onto Ez P, Under these conditions,
1. If the Cl—function gp is strictly passive with respect to
* " * -1, %
§p e R , then gp = bp (§p) is the globally asymptotically stable
equilibrium point of (9b).
2. 1If the Cl-function g 1s a strictly-increasing homeomorphism
n n * n
mapping RP onto E{.Q then there exists a unique §p € K P such that
* * -1 *
g (x) =0, and z =h l(x ) is the globally asymptotically stable
~p ~p ~ ~p  ~p ~P
equilibrium point of (9b).

. . . . . * EEPP
Proof of 1: Since Ep is bijective, there is a unique %y € for

n
* * *
every gp € K P such that gp = bp(gp). The function

*
[ ] -— 2
{tp( ) X (82)

n
is a Cl-strictly increasing diffeomorphic state function mapping RP

n
onto K P 1t follows from Theorem A that there exists a Cz—function

n
*
H: R P~ Eel such that VH (z_ ) = h (z_) - x , and
P P -P “P P ~pP
%
H (z =0
P("P)
*
Hp(gp) >0, ¥ z, # z, (83)

lim H (g ) =+ =
lz_ll-w P 7P
~pP
We apply Lyapunov's Theorenm where‘CU(-) = Hp(*) is our Lyapunov function.
* - 3
To show that gp is the globally asymptotically stable equilibrium point,
*
we will show that for any solution Ep(t) £ gp,‘%; Hp(gp(t?) < 0 for

all t > 0. This is true if, and only if,

9H (z )

~ *
-—%P— gp(bp(gp)) >0 V2 #2z (84)
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To show this,

oH_(z ) T

2z ~p(h (z )) = [Pp(f )-fp] (h (z )) (~p—xp) gp(xp) (85)

and the right side of (85) is positive for all xp hp(z ) # xp since
*
gp is strictly passive with respect to xp.

n
Proof of 2: The function g is a homeomorphism mapping R P onto

~

n * n *
R p’ hence there exists a unique xp € R P sych that g (x ) = 0. Since

<P ~ ~

*
g 1s strictly increasing, for all fp # gp,

* *
(e =% )8, () = (xx ) [g (x,)-g ~p(xp)] (86)

*
and thus g_ is strictly passive with respect to xp. The conclusion

~

follows from 1. above. X

Example 4: Let us return to the Wien Bridge Oscillator of Fig. 1

~

and equation (1). It was stated in the Introduction that with f(.) as
shown in Fig. 1lc, when c, = C2 and AV < 3, an ad hoc "linear" analysis

yields the conclusion that lim \ (t) = 1lim \ (t) = 0. Let us now
teo 1 tho T2

examine the conditions under which this assertion is wvalid.

Claim: For any C, > 0 and C, > 0, if

1 2

£(0) =0

HO)

- <2, ¥v#0 (87)

v 0 .
then ( Cl) = ( )is the globally asymptotically stable equilibrium point
v 0
C
of (1). 2
Remark: The condition (87) does not mean that f(.) must be passive

or bounded as in Fig. lc. For example, if
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f(v) v(sin v) (88a)

or

£(v) = InQ+|v]) (88b)

then (87) is still satisfied.

Proof of Claim: The functions Ep and gp for this network are given
in (72). The function hp is a Cl-uniformly~increasing diffeomorphic
2 2
state function mapping R onto K*. So, to apply Theorem 5, we have
only to show that g is strictly passive. Applying condition (87) to
the right side of (73), we see that, indeed, gp is strictly passive. L
Using other analytic techniques we can also establish that the

network may have oscillations;

Claim: Assume C, = C, > 0. If

1 2
£(0) =0 (89a)
4£Q0) , 4 (89b)
dv
lim sup féXZ <2 (89¢c)

ks |v|>k
then there is a non-constant periodic solution of (1).

Remark: The function f satisfying (89) need not be passive or
bounded as in Fig. lc. Indeed, (89) places conditions on f only at v = 0
and v = + ». For all other v, f may be arbitrary. For example, (89)

remains valid with -

2
f(v) =e ¥ (-v3+4v) +3 sin v|1n (l+v2) (90)
2

1]

Proof of Claim: We apply the following special case of the Poincare-

Bendixon Theorem [23]; the differential equation (1) has a non-constant
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periodic solution if (i) there is exactly one equilibrium point and it
is unstable, and if (ii) all solutions are eventually uniformly bounded.
We have shown previously that when equation (89c) (this is also

equation (69)) is satisfied, then all solutions are eventually uniformly

v 0

bounded. Next, vcl =\o is an equilibrium point of (1). It is the
)

only equilibrium point since [V, =V =0] = [V -v_ =0] = [wv, =0] = [v,.

¢, G ¢ C €y ¢

Finally, we use the linear methods mentioned in the introduction to show

=0].

that the equilibrium point is unstable since d§v0) > 3. n

Theorem 6: Assume in the dynamic nonlinear network\JA[that the
capacitor-inductor functizn Pp is ancl-strictly-increasing diffeomorphic
state function mapping K P onto K P. Assume there is no loop and no
cutset formed exclusively by capacitors and/or inductors, except possibly
loops formed exclusively by capacitors and cutsets formed exclusively by
inductors. Under these conditiomns,

1. If(,Aicontains no independent sources, and each internal
resistor function gRu is strictly passive, then whencdklis described by
the state equation (9b), it has a globally asymptotically stable equilib-
rium point z* = h-l(o).

~p ~p '~

2. If(,Ajhas constant independent sources, and each internal resistor

function g is a Cl—strictly increasing diffeomorphism mapping jZFu onto

n
R a’ then (9b) describing(JAfexists, and<¢A‘has a globally asymptotically

stable equilibrium point §; € EEnP.

Proof: This comes directly from Theorem 5 and [14; Theorems 9 and
11]. =

Examgle 5: In the hypothesis of Theorem 6 we allow loops of

capacitors and cutsets of inductors. At first glance, this seems to

-39-



cause a problem since, for example, if there is a loop of capacitors,
then their voltages are linearly dependent, and no function g_ in (9b)

exists. However, Theorem 11 of [l4] may be applied to these loops and

cutsets. As an illustration of the methods involved, examine the net-

W

work of Fig. 8a.

Here, it is assumed that each resistor, capacitor and inductor is
uncoupled to any other element and has a constitutive relation which is
a Cl~strict1y increasing diffeomorphism mapping ﬂZl onto Eil. Thus,
the conditions of Theorem 6 are satisfied, and the network voltage and
current waveforms converge to a globally asymptotically stable equilib-
rium point. Observe that this conclusion is valid in spite of the
fact that the three inductors form a cutset. In the following, we
show how the results of [14] are applied so that the conclusion may be
reached. Specifically, the network is transformed into an equivalent
network having no such cutset of inductors.

By hypothesis, the inductors are flux-controlled as well as current-

controlled; hence they are described by

¢L
1
1L ¢L3

where gL = Q;l is a Cl-strictly-increasing diffeomorphic state function
mapping 523 onto E{B. Applying Theorem 11 of [14], we replace one of
the inductors, say L3, with a short circuit, and the other two inductors

are replaced by two inductors whose constitutive relation is
i ¢ 10-1] 1 19/
L L A L
il>=§ 6.1 =[01-1f[o 1]¢,1 (92)
Ly/ L -1 -1\ "Ly

40~
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W

where gL is a Cl—strictly increasing diffeomorphic state function map-
ping 522 onto Eiz. This transformed network has no cutset of inductors,
and every voltage and current waveform of the other network elements
is unaffected by the transformation. The inductor currents are also
identical. Thus, in predicting the behavior of LA[in Fig. 8a, we need
only study the behavior of the transformed network. This network is
shown in Fig. 8b, where the constitutive relations are specified. We
shall examine this network again in Section VI.

Let us return to the proof of Theorem 5. Recall that when §p is
strictly passive with respect to g* € Eanp, then for any solution
2,(t) # g; of (9b), we have %{»\)(gp(t)) <0 for all ¢t > 0, where V(z )
= Hp(gp) is the Ljapunov function. We note that the strict inequality
may be relaxed [21]; namely, if gzcllgp(t))_j 0 for all t > 0, and
£Q)z () =0 if, and only if z (t) =z, then z. is the globally

) P “P P
asymptotically stable equilibrium point of (9b). The difference between
these two conditions on-%EC\)gp(t)) is rather subtle in application.
To see this examine the networks of Fig. 9; in the network of Fig. 9a,

. RZiL +

°p _iL +

a0

(93)

]
w' < <

| ot

The function gp is strictly passive, the conditions of Theorem 5 are

v 0

satisfied, and (iC> = O)is the globally asymptotically stable
L

equilibrium point. Now, suppose we replace resistor R2 in Fig. 9a

with a short circuit, forming the network of Fig. 9b. Here,

v
g, - c (94)
i+

wlcﬁ
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v 0
and gp is passive, but not strictly passive. Yet, ( C) = < ) is

:LL 0

still the globally asymptotically stable equilibrium point of the net-

v
work. One way to see this is to use the Lyapunov function Q/< ic\) =
c 2 | L 2 ve () -
E-(vc) +'5 (iL) . Then, for any solution of the network,

1 (£)

d A fc®\ 2 2 -
HCV(iL(t) _-T{;(vc) (95a)

d e (t)
dat iL (t)

There are a large number of networks such as that of Fig. 9b for

and

(t) = 0] =>»[iL(t) = 0]

OJ”IVC(t) = 0] =[i,(t) = i

(95b)

which globally asymptotically stable equilibrium points may be shown
using the methods above. There are other networks, of course, where
this is not true. For example, examine the network of Fig. 9¢c. Here,
there is no globally asymptotically stable equilibrium point. This is

because, for any B € R,

VC (t B sin wt
(vclos) = |-g sin ot (96)
2

where w = 1//IC, is a solution. Observe that the capacitor-inductor
loop in Fig. 9b violates the hypothesis of Theorem 6. In Theorem 7
below, we use a different interconnection hypothesis which allows loops
and cutsets such as that in Fig. 9b, but which does not allow those

such as in Fig. 9c. The hypothesis is:

4

Inductor-Capacitor Loop-Cutset Hypothesis (L.C. Hypothesis)

Let the dynamic nonlinear network JU contain capacitors, inductors,

regsistors and constant sources. The capacitors and inductors are
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described by h in (4), where hp is a Cl—strict1y~increasing diffeo-

morphic state function mapping Ea P onto R p Furthermore,

(i) Each loop (resp., each cutset) formed by an independent source
exclusively with capacitors, inductors and other indepeﬁdent sources
contains at least one capacitor, at least one inductor, and at least
one current source (resp., voltage source).

(ii) Let S; be any set of capacitors and inductors such that any
capacitor or inductor in S; forms a loop and/or cutset exclusively with
other capacitors and inductors of S;. Let one of the following con-

) ;
ditions be satisfied:

(a) There is a capacitor Cj in S; which is in a loop formed
exclusively with elements of S;, but not in a cutset formed exclusively
with elements of S;. This capacitor is not coupledyato any other
capacitor of S}.

(b) There is an inductor Lj in £; which is in a cutset formed
exclusively with elements of S; but not in a loop formed exclusively
with elements of S;. This inductor is not coupled to any other induc-

tor of S;.

Remark: The L. C. Hypothesis is discussed in detail in [14]. It

is used in Theorem 12 of [14] which in turn is used to prove:
Theorem 7: Assume the dynamic nonlinear networkc¢A[satisfies the

L. C. Hypothesis. Assume there is no loop formed exclusively by

capacitors and no cutsets formed exclusively by the inductors. Under

these conditions,

dv dv

10 C C
That 1is, for any other capacitor q£ in Sg, Ea—i = 3 k = 0.
q
Ck Cj

-4 3



1. IfL)U contains no independent sources, if each internal
resistor function gRa is strictly passive, if gAJis described by state
equation (Qb), and 1if each voltage and current waveform of<,Alis a Cl-
function of time,ll then.,AJhas a globally asymptotically stable equi-
librium point z: = 1 0.

2. If\,A'has constant independent sourceg, if h is a C3—function
in EZ P and if each resistor function gR is a C3-strict1y increasing
diffeomorphism mapping EZ onto Iin“, then the state equation (9b)
describing pA‘exists, and‘vA[has a globally asymptotically stable equi-
librium point E; € EZnP. ]

Remark: We cannot allow loops of capacitors or cutsets of inductors
as in Theorem 6. This is because if there exists, say, a cutset of
inductors, and LAJis transformed as in Example 5 to eliminate the cut-
set, then the L. C. Hypothesis may no longer be satisfied.

Proof: First, the state equation (9b) describing LAIexists, and
all voltage and current waveforms of<JAJare Cl-functions of time. This
is true by hypothesis in 1. above. In 2., since bp and each 8r
are CB—functions, the conclusion follows from a corollary of theorems
in [2]. It suffices to prove 1l., since 2. follows in a similar way.

Let C\kf) 4 lef), where Hp is given in (84), and §: = g_l(Q). As
in Theorem 5, C\)(-) satisfies the appropriate conditions of Lyapunov's
Theorem. Then, for any solution gp(t) of (9b), using (85) (remember

*
X = 0),

-~

11The condition that each voltage and current waveform is a Cl—function
of time is used in Theorem 12 of [14] to show that, for example, for any
capacitor charge waveform qC(t) and capacitor current waveform ic(t), we

have 1,(t) = d = ().

bl

[
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[C]

0, = - [, ], ,,09) = - £ r0) -1
TV, ) = - [5G, 0] g(n,2,(0) = - 5 ©g,(x,®) == REIL®

97)

where the last equality comes from Tellegen's Theorem. Now, since each

resistor is strictly passive, then the right side of (97) is positive

at any time t > O unless vR(t) = iR(t) = 0. Now, from Theorem 12 of [14],

’ *
YR(t) = %R(t) 0 for all t 2 0; tpat is, if, and only if, fp(t) =z =

3
13;1(9) for all £ 2 0. =

As a final remark concerning the existence of a globally asymp-
totically stable equilibrium point of<JAL we note that in these results
we can extend the condition that the sources are constant to allow
the sources to be asymptotically constant. That is, when:,Ajis described
by state equation (9a) where lim u(t) = § € E&ns, and gp(',g) has the

oo

properties possessed by gp(') in the previous theorems, then the con-

clusion holds. This is proved in [15].

VI. Exponential Decay- of:Transients:to.the Glebally:Asymptotically
Stable Equilibrium Point

We return to Theorems 5 and 6 which give conditions such that(J”
has a globally asymptotically stable equilibrium point. In this section,
we show that under slightly stronger conditions the transients decay in
an exponential way to the equilibrium point. We use Theorem B-3 to show
this, but first we make the following observations: If bp is a Cl-
strictly increasing diffeomorphic state function mapping E?np onto Eznp,

n
then in any compact convex set D EEE? P hp is strongly uniformly

increasing. This is because (see [19] or [14]) the eigenvalues of
oh
—P

Y (zp) are always real and positive, and they attain a maximum and
~p -
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and minimum on any compact set. Furthermore, Theorem A-6 applies in
D C E_l, and there exists a Cz-function Hp: D >R such that (20) and
(21) are true in D. In a similar way, if g is a Cl-strictly increasing

diffeomorphism mapping R p onto EZ p’ then g_ is strongly uniformly

~

increasing on any compact convex set D0 Cc EZ P, Also, if 8p 1: a Cl-
3g_(x%)
strictly passive function with respect to xp € EE , and-—Jl—jL-is
~P

positive-definite, then in any compact connected set\Do‘E K p’ gp € DO’

*
g is "strongly uniformly passive" with respect to xp in Dy- That is,

~

*
an equation of the form (14) is true where x" = x_ and x; is arbitrary

in DO'

Theorem 8: Assume the dynamic nonlinear network LAjis described

by the state equation (9b). Assume the capacitor-inductor function hp
n
is a Cl-striotly increasing diffeomorphic state function mapping KP?

onto K P. Assume the C1 function g is strictly passive with respect

ag_(x*) '
*
to xp, and -—%%;JE— is positive-definite. Under these conditions, for
~P
each solution gp(t) of (9b), lim zp(t) = zp = h; (xp)‘ Furthermore, let

too

n
D g;EZ P be any convex, compact set such that zp(t) €D for all t > 0.
Then, there exists constants Yp2 Xy ” 0 and Yg Z-lg > 0 such that for

all gé, gs € D, we have the following basic inequalities:

[ 2 (P 1y L Ty " - t_n 2
Ylzgmzpl” < 2z [bb(gp)'hp'('gp)] = vlzyzl

Y ey T -] T Ih z)-x 12 98
Ty (zp)-xp 1" < [bp(gp) ’51’] [gp{tfp(fp)) < vglhy (zp)xp 98)

and, for each t > O,

46
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v, 2 -ty . | £ (a1 Y2 1 .
=2 - - 0)-
[Vh] e Iz, 0)-2 1l < 12, (e)-2 | S[lh e Iz (0)-2 1
(99a)

where

s tn s h (99b)

= == d =

“min T G . “max (Ih)zxg

Remarks: 1. If g is a Cl-strictly—increasing diffeomorphism map-

~

n n % n
ping EZ P onto R p, then, as in Theorem 5, there exists fp € R P such

*
* ag_(x)
such that g_ is strictly passive with respect to xp, and % is
) - ~p
positive-definite. Thus, Theorem 8 is an extension of both 1. and 2.

of Theorem 5.

2. We cannot extend Theorem 7 which uses the L. C. Hypothesis in a
similar way. This is because g_ is passive, not strictly passive in

~

Theorem 7, and so no equation of the form (98) is possible for g .
3. Equation (99) describes the transient decay of the capacitor
charge and inductor flux linkage. It is useful to have a similar ex-

pression for x(t) which is the capacitor voltage and inductor current.

Applying Theorem A-6 to (99), we have

3%']3/2 -t/

* * max *
0)- < t)- — 0)-
H§p( ) gpﬂ ﬂgp( ) §pﬂ < [. e H§p( )-%.1

(100)

where Tnax and Tin 2T given in (99b).

in
n
Proof: Equation (98) is valid in convex, compact D EZEZ P ag dis-

cussed above. We apply Theorem A~6 to the function Qp; equation (20)

HE

h(§)9

n
holds, and for some Cz—function Hp: RP- Eal such that VHp(gp) p%p
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CU(-) in Theorem B-3. Then (41) is true with

1 1- .
B =2, Y, T35 xh’ and Yé =‘5Yh. Hence, we only need to show (42). Using

(21) is true. Let Hp(.)

(98) and equation (20) of Theorem A-6, we obtain

[N

dH_(z) %7 * 2
_p°p - - >y Ih_(z )-x_|
% gp(ﬁp(fp)> [y ()51 gy (2 )) 2 3, )
>y (Y )zﬂz -z, " (101a)
— -8
and
oH (z )
P2’ . — =2, _ %2
o, gp(~p(§p)) ER RN EEEN (101b)

. 2 v
Thus, (42) is true with 8 = 2, Y3 =-Xg(1h) and Y4 = Yg(Yh)z. Hence,

from (43) we obtain (99). M
In the remainder of this section we discuss, present, and illustrate

an algorithm for finding the transient decay time constant Tmax used in

(99) and (100). Specifically, we will find ?£ Z-lh >0, and Ig > 0 of

(98). We will derive these constants without forming the state equation
% *
(9b), and without solving for the equilibrium point 5, = bp(gp).
Preliminary Remarks: 1. Comparing Theorems 8 and 6, we conclude

that (99) and (100) exist for networks satisfying either 1. or 2. of
agg (0)

Theorem 6. That is, if each gR is strictly passive and-—s;i——— is

o
positive-definite, or if each gR is a Cl—strlctly—lncreas1ng diffeo-

morphism mapping EZ onto E?. , then we may apply Theorem 8 to derive )

(99) and (100). The algorithm below is directed towards networks con-

7

taining the latter type of resistors. This is the more general case in
*
that the equilibrium point §p is arbitrary, and(JM can contain independent

sources. The algorithm is easily adapted to networks containing strictly
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passive resistors.

2. We will find ?%, lh’ and lg in (98), but we shall not derive 7é.
The reasons why'7 is not found will be given in Remark 2 immediately
preceeding the algorithm. This means that we can obtain only the right
half of the inequalities (99) and (100). These inequalities are useful
in that they prescribe a '"worse case time constant" Tpax for the net-
work.

3. The following fact is proved in [14] and [19]: Let D E;Ean be
convex, and f: R® > R" is Cl. Then f is uniformly increasing on D,

and in particular there exists a constant y > 0 such that (13) is true

in D if, and only if, the constant y also satisfies

. 1 [ 9£(x) of (x) T
0 < Y < inf|min. eigenvalue of 7 | —— + —— (102)

XGD 2 8x ax

~

There is a similar result for strongly uniformly increasing functions.
We also have the following extension of the definition of a uniformly
increasing function: Let D E;Een be convex and let the mapping x + y
be a scalar Cl—function from D into 121. We Say that y is a uniformly

increasing function of X, uniformly in the remaining independent

variables (which are xz,...,xn) if, and only if, there exists y > 0

such that for every x', x" € D, and corresponding y', y" € Eel, we have

(=2 ("3 2 v (=) (103a)

Furthermore, using the above result, this is true if, and only if, Y

also satisfies

0 < y < inf 2y
T XD axy (103b)
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The following assumptions are essentially those stated in 2. of
Theorem 6. They are made slightly stronger than in Theorem 6 so that

_ n
Ypo Yh and Y, are the same for every compact D E;Ez P in (98).

AN

Algorithm Assumptions: We assume that the dynamic nonlinear net-

work LAjsatisfies the hypothesis of 2. of Theorem 6. We assume that =
Theorem 11 of [14] has been apﬁlied if necessary so that LAjhas no

loops formed exclusively by capacitors, and no cutsets formed exclusively

by inductors. In addition, we assume the following conditions on the

elements characteristics:

1. The function hp is a strongly uniformly-increasing function in
n

R P,

2. Each capacitor forms a loop exclusively with resistor branches
of(vAland voltage sources. When resistor branch j is in such a loop,
its current iR is a uniformly-increasing function of its voltage Ve

k| |
uniformly in all other resistor variables.

3. Each inductor forms a cutset exclusively with resistor branches
of(,A‘and current sources. When resistor branch j is in such a cutset,

its voltage Ve is a uniformly-increasing function of its current iR

k| 3
uniformly in all other resistor variables.

Remark: In Algorithm Assumption 2, the only additional assumption

beyond that of Theorem 6 is that iR is a uniformly-increasing function

of Vg 3 indeed it follows from Theorems 2 and 8 of [14] and the hypothesis
3
of Theorem 6 that such a loop always exists for each capacitor and that

(o

i is a strictly-increasing function of Vo o A dual observation applies

Rj i

to Algorithm Assumption 3.
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It is assumed that the capacitor-inductor function gp is given

a priori. Thus (see 102)), we can define

— A i ah (z)
T = suﬁen max. eigenvalue ——g;—R—
z € P °p
B (104)
A i oh_(z )
Yy = inf n, min. eigenvalue ___g_;_p__
p- RPL ~P

For example, if each capacitor and inductor is linear, strictly passive,

and uncoupled, we have

v, - m{ g_ nax L]
1, .o ,n j=l, .o ,tL[‘ j-—] (105)
1
Y, = min -
_.h Iﬂl,oon .=l,.-,nL Lj

On the other hand, the np-port function g is not known a riori, and

~

we want to find lg simply by using the internal resistor functions gRu,

o = l,2,...,mR.

Analytical Methods Used to Derive Xg
For each capacitor (resp., inductor) let us form the loop (resp.,

cutset) as prescribed by Algorithm Assumption 2 (resp., 3). From KVL

n
(resp., KCL), when ug eR 8 denotes the constant voltage and current

sources, we obtain the equation (see [14; Theorem 2b])

x =P (7 + P.u (106)
*p =0 iR ~1~8
n x2nR n xns
where the matrices Po eRP and ?l ERP contain elements +1,

-1 and 0, and every row of P, has a non-zero element. We partition the

resistor branches into four mutually exclusive sets:
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Set RO; resistor branch j is in Set RO if, and only if, the columns

of P, corresponding to its voltage Vo and its current iR have zero

0 3 3

elements.

Set Rl; resistor branch j is in Set Rl if, and only if, the column

®

of EO corresponding to its voltage VR has a non-zero element while the
3

column corresponding to its current iR has all zero elements. =

k|
Set R2; resistor branch j is in Set R2 if, and only if, the column

of ?o corresponding to its voltage Ve has all zero elements while the

3

column corresponding to its current iR has a non-zero element.
]
Set R3; resistor branch j is in Set R3 if, and only 1f, the columns

of P corresponding to its voltage v, and current iR have non-zero

R

0 y 3

elements.

Remark: We may define these four sets in the following equivalent
way: Corresponding to the loops and cutsets represented by the linear
equation (106), resistor branch j is in Set RO if, and only if, it does
not form a loop exclusively with capacitors and voltage sources and does
not form a cutset exclusively with inductors and current sources. Re-
sistor branch j is in Set Rl (resp., R2) if it is in such a loop (resp.,
cutset) but not in such a cutset (resp., loop). Resistor branch j is in
Set R3 if, and only if, it forms a loop exclusively with capacitors and
voltage sources, and it also forms a cutset exclusively with inductors
and current sources.

n

Assume Set Rl contains ng, resistor branches. Let Yr1 eER Rl and *

eRan

gRl be the resistor branch voltages and currents respectively.

Define X1 € E?an and p1 € E{an by : -

by 3 | Ir1
4 . (107)
IR1 “R1
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For each branch j in Set Rl, if it is part of an na—port resistor, then

by assumption, Xp1 T YRy is one of the independent resistor port

J

variables of the n —port resistor. Denote the remaining na—l independent

n,-1
resistor port variables by xR € EZ . Define
ai
A R1,
Yoy = inf, g—l (108)

iovy ek R1.

. ] n,-1
z €R

Because of Algorithm Assumption 2, we know Y; > 0 for all j = 1,..

Assume Set R2 contains npo resistor branches. Let v EQ R2

“sfpg-

"R2
}RZ € Ee be the resistor branch voltages and currents respectively.

Eanz

by

i
(’5;{2) £ (”RZ> (109)
Ir2 YR2 , '

For each resistor branch j in Set R2, if it is part of an n -port

Define X eR R2 and sz

resistor, then by assumption, Xpy = iRZ is one of the independent
i 3
ny-1
resistor variables. Let ﬁR eR denote the remaining na—l independent
resistor port variables. Define
9
A VR2,
Y = —1 (110)
P}
R2, EJRl 1pa,

ei{na—l

Because of Algorithm Assumption 3, we know YR2 > 0 for all j =1,..,n
; e R'R3
Assume Set R3 contains nR3 resistor branches. Let YRB and

R
}R3 ek 3 be the resistor branch voltages and currents respectively.
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2n 2
Define X3 eR R3 and Yr3 eER "r3 by 12
4 (Tr3
IR3 ins

1f i3 (111)
IR3 7 2

e

YR3

For each resistor branch j in Set R3, if it is part of an n,-port
resistor, then by assumption,

(1) vR3 can be one of the n, independent resistor port variables.
] n,~1
Denote the remaining independent resistor port variables by §R(v) eER .

(i1) iR3 can be one of the n, independent resistor port variables.
3 n -1
Denote the remaining independent resistor port variables by iR(i) eR * .

Define aiR3 aVR3
inf —d , inf — 17
ov. 91
Rl R3 5 c Rl R3j
€
Yp3 é%min "st 1113j (112)
j n,-1 ny-1
X (<3 " €
| *R(v) R R € R a
Because of Algorithm Assumptions 2 and 3, we know YR3 > 0 for all
h|

2Because resistor branch j in R4 is in both a loop and cutset repre-
sented in matrix 20 in (106), it is necessary to view branch j as both

a voltage-controlled branch and as a current-controlled branch. Thus,
in (111) Vr3 and %RS are part of the independent variable Xp3 and also
part of the dependent variable YR3* The fraction-f appears so that

T _ T N
(§R3) (¥R3) = (YR3) (%RS). In the same way, both v and i must be

R3 R3,
h| j

treated as independent resistor variables in (1) and (ii) which immediately
follow equation (111).
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13

j=1,..,n Define‘xR >0

R3’

Yp 4 pin {min lej, min Ysz, nin XRaj} (113)

j=1’ * .nR]. j=1v L ’DRZ j=1’ . .nR3

Claim: For

A 1
Y =, (114)
R g1

the right inequality of (98) is satisfied.

: n
Proof of Claim: Let u ek S denote the voltage source voltages

S

n
and current source Currents,_énd let Wo eR S denote the voltage source
currents and current source voltages. It follows from applying Tellegen's

n
Theorem (see Theorem 9 of [14]) that for every gé, §; eR P we have

uT ' 1" 1_ M T o gn - T -
(x-x) [ép (’Ep)’gp(’fp)] (vpmvp) " Ugip) + (gg74g) (¥57¥g)

(-] T t_gn
(ve~vp) (dg-1ip) (115)

Now, since every %R is strictly increasing,
o

K] . .
When the resistors are two-terminal elements, the expressions for

Yle in (108), YkZ, in (110), and YRB. in (112) can be simplified con-

J
siderably since there is no longer an independent variable for gR.

Moreover, when the two-terminal resistors are linear and strictly pas-
sive, then (113) reduces to: *

. 1 .
IR = minfmin —RR—l—, min %Zj’ %min ('ﬁ;];— + RRSj)}
3=1,.eompy 3 3l,e0,mp, 3=1,..,mp, 3

where RRk is the resistance of the jth resistor in set Rk, k = 1,2,

J
and 3.
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| " T gt L . - -
(vpvp) Gp-ip) > (g le) (Gri¥r1) + CRo "Rz) (Ypo~Yr2)

+ (g™ xR3) (Jp3~Ygy) (116

where the equality sign in (116) is attained if, and only if, Set RO
is an empty set. Now, as discussed in Preliminary Remark 3, since the

constant y > 0 in (13) can be the same constant y > 0 in (103), it follows

from the definition of IR in (113) that

(epq~ le) Gr1¥r1) + (go” xnz) (JpoYpo) + (%p3” "R3) (Yr3~YR3)

?le ] §R]. " 2
> xpll %g2 ) - Zgo (117)
%r3 *r3

Finally, by deleting the all-zero columns of ?0 in (106) (these
correspond to the resistor branches in Set R0) and reordering the

nx( +2n_.)
P cR® fp1*Ro PR3

remaining columns, we obtain the reduced matrix

and the reduced equation

o = Bol 5 ) * Tats a1es)
3
and thus
(] "
*r1 1
FAE SRR ] | X Il (118b)
\¥p3 %R3

Furthermore, since the square of the induced norm uP HZ = (max.eigenvalue
of P P ) = (max. eigenvalue of P P ) = “P “ , we can combine (115), (116),

(117), and (118) to obtain the inequality
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T ' T /= S\
(x)-x0) [gp(nfl',)-gp (§p)]= (vprvp) U ip) 2 Ygi| %2 | -| ¥R2
*R3 ™R3

"2
2 "fé—fp" x (119)

Remarks: 1. The classification of resistor branches into Sets
RO, R1, R2, and R3 is not necessarily unique, and thus lg is not
necessarily unique. For example, a capacitor may form two distinct
loops exclusively with resistors and voltage sources as prescribed by

Algorithm Assumption 2. This means bOth.le and go may be different.

At this point, we do not have an algorithm to find the optimal partitioning
of the resistors.

2. We will now show why it is difficult to find 7? in
(98). WhileAwe may find'?k similar to 1& of (113), there is no easy

way to derive function fN(-) such that

R\ _
(5{) = f(xp) (120)

which is the inverse of (106). While such an equation may exist (see
Theorem 4 of [14]), we cannot derive it simply by using KVL and KCL.
Without such a function, we cannot write an equation similar to (118)
(with the reversed inequality sign) and?g cannot be found.

3. As our induced matrix norm, we have chosen “E&L 4

T, |1/2
[max. eigenvalue BO?O]

. This is the best (that is, the smallest)
expression for the induced norm when eIl 16 the Euclidean norm [24].
However, since all elements of 20 are +1, -1 and 0, it is computationally

easier to choose the equivalent but more conservative induced norm
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/2

A
ip I = [number of non~zero elements in 2011 .
4, In the following algorithm, the procedure described
above is used, although Sets Rl, R2 and R3 are not overtly formed.

Rather, we form Y.

X2 and P, sequentially.

Algorithm for Computing the Transient Decay Time Constant T ax

Step 0: Order the n. capacitors, n inductors (nc+nL=np) and m, re-
sistors. Order the np resistor branches. Form the capacitor-inductor

n n n, n,
function bp: R P->K P, Form the resistor functions gg * K" -R ’

a
o= 1,2,..,mR. Set j = 1.

Step 1: Set .
_ [ o (z)) ]
Y, = sup p |max. eigenvalue of
" z ERP| %
I 3h_(z )
= inf min. eigenvalue of —;
T z EE{np : a-~ZP
*p -

Comment: In the remaining steps, we sequentially examine each capacitor

and then each inductor, forming the matrix P, row by row, and sequentially

~0
solving for Y-
Step 2: If j = n. + 1, set j =1, go to Step 7. Otherwise, find "loop

Efj" consisting of capacitor Cj

scribed by Algorithm Assumption 2. Augment the (j-1) X ZnR matrix 30

» resistors and voltage sources as pre-

with a row of zeroes; namely row j. Set k = 1.
Step 3: If k = np + 1, set j = j + 1 and go to Step 2.
Otherwise, if resistor branch k is not in loop gfj, set k=k+ 1

and go to Step 3.

Otherwise, resistor branch k is in loop Efj.
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Step 4: 1If resistor branch k is similarly directed with capacitor Cj
in loop Efj, set the jkth element of ?o (this is the element in the jth
row and kth column of go) to +1.

Otherwise, set the jkth element of ?0 to -1.
Step 5: If the kth-column of EO has a non-zero entry in some row other
than row j, set k = k + 1 and go to Step 3.

Otherwise, find resistor Ra’ o = l,2,..,mR such that resistor Rb

contains resistor branch k. Invoking the Algorithm Assumption 2, v

R

is a possible independent port variable of the n,-port resistor R,.

n,-1
Let &, % be the remaining independent port variables. Set
ai

R

Y= v %;Eal v
®  ng-1
5

Step 6: If j =1, set k =k + 1, set
X‘R-l

and go to Step 3.

Otherwise, set k = k + 1, set
Yp = min(l,lk)
and go to Step 3

Comment: Except for Step 11, the following steps dealing with inductors

are dual of those dealing with capacitors.
Step 7: If j = n, + 1, go to Step 13

Otherwise, find "cutset (a" consisting of inductor L,, resistors,

3

and current sources as prescribed by Algorithm Assumption 3. Augment
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the (j—l+nc) X ZnR matrix P, with a row of zeroes; namely row (j+nc).

0
Set k = 1.
Step 8: If k = np + 1, set j =j+ 1 and go to Step 7.

Otherwise, if resistor branch k is not in cutset (%, set k =k +1
and go to Step 8.

Otherwise, resistor branch k is in cutset (3j°

Step 9: 1If resistor branch k is similarly directed with inductor Lj in

C., set the (nC+j, nR+k)th element of P, to +1.

3 0

Otherwise, set the (nC+j, ank)th element of FO to -1.
Step 10: If the (nR+k)th—column of ?0 has a non-zero entry in some row
other than row n. + j, set k =k + 1 and go to Step 8.

Otherwise, if the kth column of P also has a non-zero element,

0
go to Step 11.

Otherwise, the kth-column of P has all zero elements, and the

(nR+k)th column of P, has all zero elements except in row j. Find

0

resistor Ra’ o = 1,2,..,mR’such that resistor R, contains resistor branch

R

variable of the ny-port resistor R,. Let 3R €

k. Invoking Algorithm Assumption 3, 1 1is a possible independent port

R

be the remaining

independent port variables. Set

Y = inf v

- i ER R
lzzenfi“'l Ty

and go to Step 12.

Step 11: Find resigtor Ra, o = 1,2,..,mR such that resistor Ra contains

resistor branch k. Invoking both Algorithm Assumptions 2 and 3, both

v, and i can be possible independent port variables of the na-port

R Ry
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. ny-1 . ny~-1
resistor. Let R (v) e R and %p(1) eR be the respective re-

maining independent port variables in each case. Set

[ 2 vV,
1_=-% min |inf 1 aiRk R inf 1 3 Rk

v. €R VRk i €R iRk

an na-l »Rk eRnOL—l

"R(v)E TR(1)

Step 12: If j =1, n, =0, set k =k +1, set

Yy =Y

and go to Step 7.

Otherwise, set k = k + 1, set

Y,

R min(!R,x.)

and go to Step 7.

Step 13: Set

Y =',%'1R
T = _Y-h
max (1h>21g
Stop

Example 6: Linear Time-Invariant Networks

The preceding algorithm is obviously applicable to networks con-
taining linear time-invariant strictly passive elements. In the
following examples we compare the estimated time constant Thax derived

using our algorithm with the actual maximum time constants of linear
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networks. Let us consider first the network shown in Fig. 10a. The

network state equation is
(\'rc> [2 o] [<2 -1) vc) | < 0 )]
)= - 1 +{_1 (121a)
i 01 1 2 iL >

The exact solution is given by:

Ve () _.35e 1:22t | 35.73-28L
= v (0) -1.22¢ ~3.28¢t

iL(t) .485e + .485e
\ L971e71-22t _ .971e“3'28t>
+ iL(O) 1.35e—1’22t - .35e—3;28t
(121p)
o [--398(e7 72200y + L148(e73 280
-.553(e 1-22t_1y 4 053(e”3-28t ;)
Let us apply the algorithm. First, we obtain from (105)
W= B Tl (122)
Next, we find
i, )= 2ol R, | “loz )\ (123)
i i
Ry’ Ry
and compute
100
— A
A = [max. eigenvalue of ?TPO] = |max. eigenvalue of |01 1 = 2
011
(124)
and
Yo © min(19, 19, 28] = 1 (125)
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Hence, we obtain from Step 13

max

x, = 1/2 ;3 = = 4 (126)
Now, since

A 1/4

(H) = \1/2 (127)

is the globally asymptotically stable equilibrium point, it follows

from (100) that for every solution [VC(F), iL(t)]T’
vc(t) 1/4 . 78 VC(O) _ [ 1/4
i (t) T\1/2 /) i (0) 1/2

Comparing Tmax = 4 in (126) with the actual maximum time constant

e t/4 (128)

= 1/1.22 = .82 in (121b), we see that our estimate of Toax 1S Within
a factor of five of the actual time constant. This is an acceptable
error.
The network of Fig. 10b is more "stiff" than that of Fig. 10a.

The network state equation is given by
GC 2 -1
1 = - + (129)
v 0 -1 20 0
)

Here, the two time constant are
= ,256 H T, = ,025 (130)

Using our algorithm, we obtain

= 2 3 = . =
Ig 1 HE 1/2 (131)
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Ve 20/39'>
1
vo | ( 1/39 (132)
2
is the globally asymptotically stable equilibrium point, then
v, (t) 20/39 v, (0) 20/39 _
( 1 - ) < - e 2t (133)
Ve (t) 1/39 v, (0) 1/39
2 )

The time constant T = 1/2 is within a factor of 2 of the actual

maximum time constant in (130).
Example 7: The network of Fig 8b previously discussed in Example

g_satisfies our Algorithm Assumptions. We will compare the expression

(99) with the computer-simulated network waveforms. In particular, the
waveforms of this network are -simulated using the CSMP [25].

The function hp is shown in Fig. 8b. We can find gp,

3
\Ls vc+(vc) +l/3(vc+iLl+iL2+l) )
g (fp) = %p iLl = —vc-l+2/3(vc+iLl+1L2+1) 1L2(1+1L2) +1
iL -VC—1+2/3(VC+1L +iL +1)+2 > (134)
2 1 72 1+(iL )
2

The globally asymptotically stable equilibrium point (this may be found

by solving (134) or via computer analysis) is given by:

QL = 1.0205 4 iL = 2.098 (135)
1 1
-.906 -1.754
éLZ iLZ

Let us apply the algorithm; first,

(qc)2 ( (qc)2+3)
2

dv
Frae 2
% (SRR

(136a)
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Thus
dvC
2 <—— < 3,125 (136b)
_ qc._

The elgenvalues of

5/2 1/2
(137a)
1/2  s5/2 :
are
A =2,3
and
Y, = 3125 ; ¥ =2 (138)
Next,
(v ) r.
sz vR;
v 1 0 0 O .
C iR lR
i b R
3 0 0 0 1 3
T2 g G
4 4)
and
X’Q max. eigenvalue of [ﬁgﬁol = max[1,0,2 + /5, 2 - /5] =2+72 (140)
Finally
d1R2 dle dvR3 dvR4
Y, = min|inf — , inf — , inf — , inf —
—R dvR le le le
2 1 3 4
- min[1,2,1,2 - 353 = 2 --3%3 (141)

4
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Hence

,_373
1g = 5_ 2 205 ;3 0T = 3.8 (142)
2+v2 max
qC(t)
So for any solution ¢L € I
b, - (£)
2
¢y (£) 1.0205 || < 1.25 ||| ¢,€0) | - | 1.0205 e t/3:8 (143
b ) -.906 ot
q’1.2 : L, (0) -.906

The left and right sides of (143) were simulated using the CSMP and the
waveforms displayed on the CRT. The results are shown in Fig. 11. The

waveforms in Fig. lla have as an initial state

qC(O) 0

¢, @) ={ 1 (144)
1.

0, @\

which is close to the globally asymptotically stable equilibrium point
given in (139). The upper waveform in Fig. lla corresponds to the
estimated waveforms which is the right side of (143). The lower wave-
form is the exact waveform given by the left side of (143). Next, we

choose the initial state

qC(O) 1
o @)= |-1 (145)
1
¢. (0) 1
L

which 18 not close to the equilibrium point. The results are shown in

Fig. 11b, where the upper waveform corresponds to that estimated by the

-66-

N

L]

ra



right side of (143) and the lower waveform corresponds to the exact
waveform given by the left side of (143). The actual waveforms cor-
responding to the initial state (145) are shown in Fig. llc. The upper
waveform (on the vertical axis) is qc(t) - (-.1547), the middle wave-

form is ¢_ (t) - (-.906) and the lower waveform ¢L (t) - (1.0205). 1In

L 1
all cases we find that our estimates for transient decay are quite

realistic upper bounds.

VII. Conclusions:

A number of results concerning the qualitative behavior of non-
linear dynamic networks are presented. The hypotheses of these results
are of two types: First, very general and practical conditions on the
network state equation, and second, conditions upon the individual
element constitutive relations and their interconnection. In the latter

form, the hypotheses include (in general) the Fundamental Topological

" Assumption, namely there is no loop and no cutset formed exclusively

by capacitors and/or inductors, and the L.C. Hypothesis. These con-

ditions are simple, easy to verify, and therefore quite practical .

For example, in [13] Varaiya and Liu develop a result similar in nature
to 1. of Theorem 6 where 1£ is required that for any set of network
waveforms, [(YR(t)) = 0] m-[yp(t) = 0]. This is precisely the case

i

when either the Fundamental Topological Assumption or the L.C. Hypothesis

is satisfied. In the same way, it would not be possible to develop the

algorithm implementing Theorem 8 without an equation of the form (118a)

which is derived using the Fundamental Topological Assumption ([14;
Theorem 2]. 1In [15] we apply these methods to nonautonomous networks.

In particular we establish the existence of periodic network waveforms
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when sources are periodic, and we discuss the existence of a unique,
steady-state waveform. A result similar to Theorem 8 is developed

where network waveforms converge exponentially to the unique, steady-

state waveform, and, in this case, the algorithm presented here is
directly applicable.
The results developed in this paper may be applied in a useful way

to the study of the structural sensitivity of nonlinear dynamic networks.

That is, we can answer the following question: Let LN be a network.
Network dq is formed by altering slightly the comstitutive relations

of some of the elements of ﬂ Do the network waveforms of u(” behave
in the same way as the waveforms of u\]? Equivalently, let LN be a real
electrical dynamic nonlinear network and let LXI be its mathematical
model used in computer simulation: Will the bahavior of J’ be the

same as that predicted by the behavior of LXI‘? In many cases we may
apply the theorems presented here to answer these questions. For

example, assume J’ is a transistor network satisfying the hypotheses of

the Proposition of Example 3. We can form gﬂby altering slightly the
transistors, resistors, capacitor, inductors and sources of QN . But
so long as each transistor function Ber still satisfies (76), each
resistor function gRa still satisfies (77), and l}p still satisfies (75),
then the behavior of J‘ is the same as the behavior of JL namely, all
waveforms are eventually uniformly bounded and there exists an equilib-
rium point.
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APPENDIX

Proof of Theorem A

Proof of A-1 [20]

Cage 1: n=1
Let x' < x" € Wal. For any o € (0,1), define X A (1-0)x' + ox".

Since f 1is strictly increasing,

X
g

F(xo) - F(x') é:g f(r)dr < f(xc)(x0 - x")
x'

X" (A-l)

F(x") - F(xo) é:§ f(tr)dt > f(xc)(x" - xo)
x
]

Thus

F(xo) < F(x') + f(xo)(x" - x")o
(A-2)
F(x ) < F(x") - £(x) " - x')(1-0)

Multiplying the first equation of (A-2) by (1-¢), multiplying the second

equation by o, and adding, we obtain
(l—c)F(xo) + GF(xo) = F(xc) < (1-0)F(x") + oF(x") (A-3)

Case 2: n > 1 _
Let x' ¥ x" € R"™. pefine ¥ : F{l > mzl’ F(o) Q:F((l-c)x' + ox").

Now, ﬁ(O) = ﬁ(g'), ﬁ(l) = F(g"), so we have to show that
F(o) < (1-0) #(0) + oF(1) ¥ g € (0,1) (A-4)

To see this, note that

2“; ) of ((1~0)x"+ox"
d F (2’ = (gu_l{')'r[ ( = )} (l{"'?f') (A-5)
do ~

Since f is a Cl-strictly increasing diffeomorphism mapping R™ - Wzn, the

5>

79

(7]
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right side of (A-5) is positive [14; Theorem Al. Thus, Q%égl is a
strictly-increasing function on Wll. It follows from the preceeding

Case 1 that (A-4) is true. ]

Proof of A-2: For any x ¥ g_l(g), there exists a unique e € R™, el =1

and a unique r > 0 so that x = f-l(O) +re. That is, every x ¥ f_l(g)
may be uniquely represented by a vector emanating from f_l(g). For each
e € Fln, ﬂg" = 1, we will show that F(x) = F(f—l(g) +r g) is a strictly-

increasing function of r > 0. So, for ¢ fixed and r > 0, we have

@ (O +r g)

ar dr - ¢’ g(g’l(g) tr 9)

== [g‘l(g» -0 +r g]T [:f(g’l(g» tre)- §(£'1<9>)]

r

-1 [(g‘lug) tre)- £10) ]T [.f(i’l(?) tre)- f(§'1<9))] (a-6

Since f is strictly-increasing, the right side of (A-6) is positive and
hence F is a strictly-increasing function of r > 0. Since F(0) = F(f-l(O)

+ 0 g), it follows that F(x) > 0 for all x # gul(g). x

Proof of A-3: We first show that lim F(x) = + ». In particular, we will
xll+
show that for any N > O there exists M > 0 such that if ﬂ§-§_1(9)ﬂ =r >N,

then F(x) > N.
We have already shown in the proof of Theorem A-2 that F(r e+ f_l(g))
is a strictly increasing function of r. That is, in equation (A-6) we have

shown that %% > 0. Next,

Prlrer £10) pot(re+ o)
= e e

dr2 N ox N

(A-7)



and since f is a Cl-strictly increasing diffeomorphism mapping R" onto
Rn, the right side of (A-7) is positive for all r > 0, for all e € Rn,

ugﬂ = 1, Define

kf A inf = (A-8)
Cr=1l
gERn, lell=1
The constant kf is well-defined -since g—g— is continuous, and the set
2
{(r,g) : r=l, []gl]=1} is compact. Furthermore, because g% > 0 and —d-—g > 0,
dr
it is easily shown that k. > 0. Then, for any x € R™ such that
Ix - f—l(o)ll =1 > 1, we have
-1 P dF(p e + g-l(g))
F(x) = F(r e+ £ (9)) = P dp
dF(p e+ g‘l(g)) 1 dF(o e+ ‘5'-1(9))
- dp det dp dp
0 1
rar(o e + 5'1(9)) Tar(e + ()
> f o dp+{ M dp
0
-1
ar(o & + £7(0))
_>_ dp + kf(r"l) (A"‘g)
0

Now, the first term on the right side of (A-9) is positive. Hence, for

any N > 0 define M A 1 + %— . From (A-9) we conclude that if Hg{-f-l(g) > w,
f

then F(;}) > N.
By a simple extension of this conclusion, for amy b € [Rn, f(°) -b
is also a Cl-strictly increasing diffeomorphic state function mapping

R™ onto Rn, and V(F(}f) - g;Tp) = £(x) - b, thus

A3
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in F(x) - xb =+ ypeER" (A-10)

Hence, the proof of this theorem is completed upon proving the following
lemma (this lemma is stated but not proved in [19; pp. 110]):

Lemma A: Let H: K"~ Ell and let ll+l be an arbitrary norm in

EZ“. Then

[ lim H(x) -xb=+e , ¥ b € Rn] ' : (A-11)

-———> lim H&)/lxl = + = (A-12)
7 [ Ixloe

Proof: .We will use (A-11) to show that for every y > 0 there

exists B > 0 such that if "§" > B, then H(g)/"g" > y. That is,
[Ixl > 8] = [H(x) - vixl > 0] (A-13)

Partition R™ into 2" orthants. Orthant 1 is the set of X = (xl,..xn)T

€ R™ such that Xy > 0 for each j = 1,..,n. Orthant 2 is the set of

X € KE™ such that x, < 0, and xj.1 0 for 211 § = 2,3,..,n. More

1

4 n o e 0
specifically, for any integer k € [1,2], let aa _1°" a3 be the

modulo 2 expression for the integer k — 1. Then, we say that X is in

orthant k (denoted by Ok) if, and only if, for each j = 1,..,n,

x. >0 if a, =0
(A-14)
x, <0 if a. =1

Now, suppose for each k = 1,..,2n, for every y > 0 there exists Bk >0

such that

(sl > 6, x € 0] = [B@ - ylxl > 0] (a-15)
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then, for B = max 11Bk’ equation (A-13) follows from (A-15). Thus,
k=1,..,2 T - :

it suffices in this proof to show (A-15) for each orthant @k.

n
First, note that [l : x H-:E; |xj| is a norm in K™, so by the
J= n

equivalence of norms in R™ there exists a > 0 such that lxll < “:E:Ile
j=1

for all x € R™. Next, for each orthant O s define vector b = (bl"'bn

€ R™ in the following way: for any x € 0,, for each j = 1,..,n, define

b, = ya  if x, >0

j J (A-16)
b. = —Yo if <0

k| v %

Hence, by construction

§p:w§9ﬂ|zwy ¥x€0 (a-17)

We now apply the hypothesis (A-11), which we restate in the following

manner: for any b € R™ there exists B, > 0 such that
[l > g1 = [H(x) - x'b > 0] (a-18)

For the vector b defined in (A-16), using (A-17) and the constant Bb in

(A-18), we obtain

H(x) - vld >H@x) - x'b > 0 ¥ lgl > 8,

A
and for Bk = Bb’ we have shown (A-15). Thus, Lemma A and Theorem A-3
are proved. ™

Proof of A-4: First, note that for all x # 0,

R LT A-20
T ¥ (E®) = T ¥ (E@-£@) - 151 (4-20)

A5
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Thus, it suffices to show that

X E(x) = + o (A-21)

~ o~ e

m
f X """0

assuming £(0) = 0. Now, we have shown already that ng(rgi-g'l(g)) =

gxg'(rg) is a strictly increasing function of r > 0. This means that

ng (rg) is larger than% grg (pg)dp which is the average value of
(1]

eTf(pg) as p varies from O to r. Then, for any x # 0, we obtain the

following inequality:

T T
1T, . 1 T 1T _1 [ areee)
W g(z{) = llrgfl (1'9):%(1?9) =€ f(rg) > rj.g f(pg)dp rj‘ dp dp
0 0
=1 F(x) (A-22)
Tl FC2

Applying Theorem A-3, equation (A-21) follows from equation (A-22). =

Proof of A-5: The set K is non-empty since g'l(g) € K. It is

closed since F is continuous. It is bounded because of (17). It

remains to show that K is convex. For any ¢ € (0,1) and for each

x', x" € K, it follows from the strict convexity of F that

~

) V‘F“((l-c)g'w;;") < (1-0)F(x') + oF(x") < (1-0)k + ok = k

R (A-23)

Proof of A-6: Using the constants y > y > 0 of (14), for any X' * x",

ll§(§') - ..f.(?.‘")" = "x'il-x"ﬂm"l{"!-{"".uaf-(-}-") - _f(?}")"

1 "I "
> TypT &' (E6"-£G™) » Ty xlx' - 1

(A-24)
and the right inequality of (20) follows directly. To show the left

inequality, let us first observe that since the state function f is

A6



strongly uniformly increasing, the inverse function f.-l is also strongly
uniformly increasing, and it can be shown that

Y' - y""2 = (X'_Z") (f (y )-f (yll)) % "Z' - Zn"2 (A—ZS)

e

| <=

for each Z', ZH e R", Equation (A-25) comes from the fact that the

af (x ’
elgenvalues of the symmetric matrix ax ). are positive, real and lie

between Y and Y [14]. Hence, the eigenvalues of —“‘5-:;,—1- are positive,

~

real and lie between _—]: and%— .
Y —
Then, proceeding as in (A-15), we obtain:

Ix' - x"Il = 0g" (y ) - £ (y")llz%I -yl = %ug(:;') - £(x")[ (a-28)

which yields the second inequality of (20).

Next, we show (21) using the Mean Value Theorem [19]:

[x'-£ <o>1{( 1]+ (0))}
[x' —§’1<Q)1T{g(o[:5"—g‘l<g>]+§‘1<9)_) -(t g"lcg))} do

F(x') =

= O""‘-ﬂi—'

1 - - _ -1
og[ (x'-£ L)+ (0) £ (0)] { ( [x £ (g)] +£ (0))
- g(g-l(g))}do

2 %1"0(1*'-?'1(9)) + £710) - £ (@I%a0

[

yix' - £11? (A-27)

N

0
1

={1u x' - £ (01 0do =
0

This proves the right inequality of (21). The left inequality follows

in the same way. R
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Corollary A: Let g: R? » rR® be a Cl—state function., Assume
there exists constants k > 0, and'§_3_1 > 0 such that for all fx'{ > k,

Ix"l > k,

yix' - %1 < <§'-§")T[§<¥'>-§(§">] <V - 20 (a-28)
Then for all H§"H > k, "f'ﬂ > k, we have

ylx' - "< 1£(Gx") - §(§")ﬂ_§'70§' - x"l (A-29)

n 1
Furthermore, there exists a Cz-function F: K" > R~ and constants kl > 0,

Y{2Yy 0 such that

VF(x) = £(x) R ¥x€R"
(A-30)

2 - 2
y,Ixh? < PG <, Il , vixl > ik

Proof: This is proved essentially in the same manner as in the
proof of Theorem A-6. Indeed, (A-29) follows from (A-28) as (20)
follows from (14). 1In this case, f-l may not exist. However, f is
injective on the set {x: [lxl > k}, and the proof is the same.

Let F: R® » Ezl be any Cz—function such that v?(§) = f(§). Define

k & inf F(X), and let F(x) & Fx) - k. By construction, F(x) > O for

Ixi=k -
all Il = k. For any x such that ixl > k, let % = iki x. Then, applying
the Mean Value Theorem, we obtain i
1
PG » PG - F® = |Ix - 21T (£(0 (044 )1do
0
> l A 2 ~ ) A
25 xlx - &7 - Qx - &)< £@E) (a-31)

where the last inequality is derived as in (A-29). Define the constant

A8



ko 4 sup lIf (%) I, and noting that [x - icll = flzll - k, we obtain
Izl=k
1, .2 ' K2 '
F(x) > 5 ylixl™ - Ixl[yk + k.1 - [y 5 + kk_] (A-32)
=) =g L2 s 0 2 0
1

For any Y., 0 < y. < % Y, there exists k
-1 -1 2~ 0

inequality of (A-21) follows from (A-32). The right inequality follows

> 0 such that the left

in a similar way. H
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

FIGURE CAPTIONS

(2) The Wien-Bridge Oscillator (b) The Network Model

(c) The Idealized Function £(-).

The Dynamic Nonlinear Netwofk(JU.

A Network whose Voltage and Current Waveforms Exhibit Finite
Escape-Time Solutions in Negative Time.

A Network Containing Highly Active Elements yet Having no
Finite Escape-Time Solution.

(a) A Network with Bounded Waveforms (b) A Network with
Eventually Uniformly Bounded Waveforms.

(a) The v-i Curve of Resistor Rl; the Function gR1 is Eventually

strictly Passive (b) The v-1 Curve of Resistor Rz; the Function

g
R,

Is Not Eventually Strictly Passive.

is strictly Passive. The Composite Function 8g = (gR , ng)T
1

(a) A Network Containing Strictly Passive Elements when the
Resistor has the v-i Curve of (b) or (¢). Its state Equation
does not Exist and the Network Exhibits Finite Escape-Time
Phenomena.

(a) A Network Containing a Cutset of Inductors. Each Element

is Uncoupled and has a Cl-Strictly—Increasing Diffeomorphic

- Constitutive Relation (b) The Equivalent Network with the

Cutset of Inductors Removed, and the Constitutive Relations of
the Transformed Equivalent Network are Specified.
(a) and (b); Networks with a Globally Asymptotically Stable

Equilibrium Point (c) A Network which Oscillates.

Fig. 10. Two Linear Networks Used to Evaluate the Accuracy of the Algorithm.



Fig. 11. The Waveforms Defined by (143) for the Network of Fig. 8b.
(a) For Initial State (144), the Upper Wa\;eform is the Right
Sidg of' (143) and the Lower Waveform is the Left Side.
(b) The Waveforms Corresponding to Initial State (145) .
(c) The Waveforms ¢C(t) - (-.1547), ¢L2(t) - (~-.906), and

q;L (t) - 1.0205.
1
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