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Abstract

Several theorems are presented which predict in a qualitative manner

the behavior of dynamic nonlinear networks. In particular, conditions

are given which assure that the voltage and current waveforms of a dy

namic nonlinear network J\l have no finite escape-time solutions, or when

JU is autonomous, the waveforms are bounded, or eventually uniformly
bounded, or converge to a globally asymptotically stable equilibrium

££int. An algorithm is presented which computes a maximum "transient

decay " time constant when waveforms converge exponentially to the

globally asymptotically stable equilibrium point. Several examples are

discussed. These results are extended in [15] to nonautonomous networks.

The theorems are significant in that they apply to a large class of

networks. Furthermore, their hypotheses are simple and easily verifiable.

The hypotheses are of two types: First, very general conditions on the

network state equations, and second, conditions on the individual element

characteristics and their interconnection. The latter type of theorems

use graph-theoretic results of [14] and involve solely the examination

of the global nature of each network element and the verification of a

topological "loop-cutset" condition.

renntfh ?T^,NaVal Electronic Systems Command Contract N00039-75-
0-0034 and the National Science Foundation Grant GK-32236X1.

-1-



I. Introduction

Much of the analysis of dynamic nonlinear networks has been in the

area of the formulation of networks equations [l]-[5], and in the area

of numerically solving these equations [6]- [7]. There are results con

cerning the behavior of networks containing specific nonlinear elements

such as transistors or iron-core inductors [8]-[10] but there are rela

tively few results which examine in a qualitative way the behavior of

general nonlinear dynamic networks [1], [4], [11], [12], [13]. This

paper is the second of three papers which develop methods for predicting

in a qualitative way the behavior of dynamic nonlinear networks. The

other two papers are titled "Graph-Theoretic Properties of Dynamic Non

linear Networks" [14], and "A Qualitative Analysis of the Behavior of

Dynamic Nonlinear Networks: Steady-State Solutions of Nonautonomous Net

works," [15]. In [14] graph-theoretic methods are used to determine prop

erties of network equations. We combine these results with the mathematical

analysis of the equations to determine the behavior of autonomous networks

in this paper, and to determine the behavior of nonautonomous networks in

[15]. In these papers, we answer the following types of questions: Let

(jV! be a dynamic nonlinear network. Under what condition may we conclude

all network voltage and current waveforms are bounded, or eventually

uniformly bounded? If o\) contains a T-periodic source, when is there a

T-periodic solution of <j\\9 or a subharmonic solution? If ^ contains .

When v(t) and i(t) are the voltage and current waveforms of (JU we say
that they are eventually uniformly bounded if, and only if, there
exists k > 0 such that for each y(t) and i(t), there exists tn > 0

such that (w^) <kfo* all ^>. tQ-
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constant independent voltage and current sources, when does Jvl have a

unique, globally asymptotically stable equilibrium point? When -J] has
time-varying sources, under what conditions does o\l have aunique steady-

state solution (in the same sense as with linear networks)? In this case,

do the transients decay exponentially? To demonstrate the significance

of these questions, let us examine the Wien Bridge Oscillator [16] of
Fig. la. The operational amplifier together with its feedback resistor
rf and source resistor Rg function as aresistive two-port containing a
controlled voltage source. The circuit model is shown in Fig. lb. Its

state equation is easily derived to be

C R °

o 1C2Rj

'v + v - f(v. )
Ll C2 C2 | (1)

A common approach by which the network is analyzed by engineers proceeds

as follows: Assume C = C_, and that the controlled voltage source function

f(*) is as shown in Fig. lc. Assume at t = 0, V < f(v„ (0)) < V ; that—sat C2 " sat'
is, f(«) is a "linear" function at t = 0. Then, (1) reduces to a linear

/*c \ Ac \state equation I. 1J= Ml 1)and the following conclusions are made:

(i) When 0 £ A < 3 (A is the slope of the linear portion of f(.)

in Fig. lc) the eigenvalues of matrix M have negative real parts, so

lim v (t) = lim v (t) = 0.
t-)--H» 1 t-H<» 2

(ii) When A =3, the eigenvalues of M have zero real parts, and the

network oscillates.

(iii) When A> 3, the eigenvalues of M have positive real parts, and

there are unstable oscillations which grow until saturation "stabilizes"
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them.

This analysis is unsatisfactory from a theoretical point of view

because it involves linear methods in a nonlinear network. In many

cases, using linear methods in nonlinear systems has led to wrong con

clusions; e.g., Aizerman's Conjecture [17], though in this case (i),

(ii) and (iii) above correctly describe the circuit behavior when f(»)

is as shown in Fig. lc. We are interested in finding a more rigorous

method for determining the behavior of the network. Moreover, we want

to answer the following questions: If at t = 0, f(vp ) > V ; i.e.,
L«_ sat

we are not operating in the linear region, and 0 _< A < 3, then may we

still conclude lim v (t) = lim v (t) = 0 as in (i) above? When f(.)
t-*» 1 t-*° 2

is not precisely linear for V _< f(v) _< V ., the above analysis is
sat sat

no longer valid; under what conditions do we obtain oscillations? In

what manner does saturation "stabilize" the waveforms? We will return

to this example in the following sections of this paper.

In Section II, a very general class of dynamic nonlinear networks

is defined along with a characterization of the various types of re

sistive n-ports to be considered in the sequel. Various properties of

functions such as the passivity property, the increasing property, the

strictly increasing property, etc., are defined. The properties have

been discussed extensively in [14]. The graph-theoretic results of [14]

which are needed later are presented and discussed here.

In Section III, the mathematical results used in t*his paper are pre

sented. In Theorem A, properties of a C -strictly increasing diffeo-

morphic state function (Defs. 1-4) are developed. The proof of Theorem

A is given in the Appendix. In Theorem B, three Lyapunov-type

theorems are given in which the qualitative behavior of solutions of
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the general differential equations (22) and (23) are analyzed. Specif

ically, conditions are given such that (Theorem B-l) solutions of the

differential equations (22) and (23) are bounded or eventually uniformly

bounded; conditions are given such that (Theorem B-2) solutions of (22)

and (23) exist for all t as t + +«> (there are no finite escape-time

solutions); conditions are given such that (Theorem B-3) the solutions

of (23) decay exponentially to a globally asymptotically stable equilib

rium point.

In Sections IV, V and VI, theorems are given for analyzing the

qualitative behavior of nonlinear dynamic networks. The hypotheses of

those theorems are of two types; namely, conditions upon the network

state equations, and condition on the constitutive relations o,f the

network elements and their interconnection. The difference between

these two types of hypotheses is discussed in a general way in Section

III. These conditions are used in Theorems 1-8 to show (i) that the

voltage and current waveforms exist for all t _> 0, or to show (ii) the

waveforms are bounded or eventually uniformly bounded, or (iii) the

waveforms converge (possibly exponentially) to a globally asymptotically

stable equilibrium point. The important aspect of our results is that

the hypotheses apply to a large class of networks and that they are

easily verifiable. In their final form, the hypotheses involve simply

investigating the passive or increasing nature of each network element,

and satisfying an easily verifiable topological "loop-cutset" condition

on the interconnection of the elements. As illustrated in the examples

in Sections IV, V and VI, the results may be applied to transistor net

works, operational amplifier networks, etc. The general network

equations need not be solved or formed.
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II. Characterization of State Equations

Consider the dynamic nonlinear network c_AI shown in Fig. 2. It

contains n_ (possibly coupled) one-port capacitors, and n (possibly

2 rOnCcoupled) one-port inductors. Let v_, i_, q ^ Jr. and y , i , <J> ^
~{j *"Ci ~ C " Li ""Li *"JLi

Ss. denote respectively the capacitor voltages, currents, charges,

and the inductor voltages, currents and fluxes. The constitutive

relations of a charge-controlled capacitor and a flux-controlled

inductor are given respectively by:

v~c m5c<Sc)
(2)

*L = V*L>

where h.*. R -+ R and II : JR •'-•][?• . Define the n -vectors
~C ~L p

(n =n +n ) (the subscript "p" denotes a "port variable")
p C Li

*-£)• -ft). *-fc •
(3)

"ic\ /Sc
-P'U/5 5p"\*L,

then (2) becomes

x = h (z ) (4)
~p ~p -p

T

h (•) = [h^(«)» h?(.)] (where the superscript "T" denotes transpose).
~p ~C ~L

2
There is no loss of generality in our choice of this network model,
since any multi-port or multi-terminal capacitor (resp., inductor) can
always be modeled as a system of "coupled" one-port capacitors (resp.,
inductors). Observe also that an (n+1)-terminal element can always be
modeled as a "grounded" n-port.

-6-



Remark: In [14], the capacitors and inductors are respectively

voltage-controlled and current-controlled; i.e., instead of (4), we

have z = f (x ). We use f in [14], and we use h here and in [15]
~P ~P ~P "P ~P

purely for ease of notation in each paper. In some of the theorems

in this paper and in [15], h is biiective; hence f = h exists, and
~p J ' ~p ~p *

either h or f may be considered as the capacitor-inductor function.
-P ~P

See Example 5.

We view the capacitors and inductors of lAI as attached to an n -
P

port N which contains (nonlinear) one-port resistors, (nonlinear) multi-

3
port resistors, and independent voltage and current sources — see

n

Fig. 2. The vectors v , i , x , y £ iR p of (3) are the port variables
~p ~p ~p ~p

of N as well as the capacitor and inductor variables.

Assume resistor R of N is an n -port resistor. Its voltage and
n

current are, respectively, yR ,iR €K a. jn defining its constitutive
a a

relations (when it exists) we assume that for each port of the n -port

resistor either the port voltage or the port current is an independent

resistor variable, and the remaining port variable is a dependent re

sistor variable. Let jl ,y € K. denote respectively the independent

and dependent resistor vectors. The constitutive relation is therefore

yR = 8R (xR } (5)~Ra ~Ra ~Ra

Let rn^be the number of resistors of N, and let n be the number of

all internal resistor ports of N (m=nR if, and only if, all resistors

3
N also contains controlled voltage and current sources in the following
sense: We assume every controlled source of N is represented by
"coupling" within multi-port resistors. For example, although tran
sistors, FET, and operational amplifiers are multi-terminal elements
which are often modeled using controlled sources, they can also be
represented as multi-port resistors. Hence, a transistor can be char
acterized by the constitutive relation (78) of Example 3.
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are two-terminal elements). The composite resistor vectors are v , i £

p°* « ~R ~RJrc representing respectively all internal voltages and currents. Let

the n^ resistors be described by their constitutive relations

§R ^' §R (")»"-»6R (•), and let x^, y GR denote, respectively,
1 2 ~n^

the independent and dependent resistor vectors, then

*R = SR^ (6)

is the composite resistor constitutive relation representing all inter-
fjp fTi rii rii rn

nal resistors, where g_(.) = [g (•), gR (•),•••» gR (•),•••> gR (•)] .
ng -1 "2 'a -^

Let u G IK. denote the voltages of the independent voltage

sources and the currents of the independent current sources. The con

stitutive relation of the "overall resistor" n -port N, when it exists,
P

is

h ="&W (7)
n +n n

where g (.,.): fix p -*• Ifr- p, or if there are no independent sources

y = -g (x ) (8)
~P ~P ~P

n n

where g (»): K p -* R. p. We will use both forms of g in the sequel,

and in every case we will state explicitly (if necessary) which equation

is being used.

Remarks: 1. Eq. (8) can represent N containing constant sources.

This is shown in [14; Theorem 8].

2. Eqs. (7) and (8) have a negative sign because the

port currents (in Fig. 2) are directed away from the ports on "voltage-

driven" (i.e., capacitor) ports, and the port voltages are reversed on
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the "current-driven" (i.e., inductor) ports. These reference directions

and polarities are chosen so that they are consistent with those assigned

to capacitors and inductors.

Using (4) with (7) and (8), we can write the state equation

describing JU. Note that 4r z (O =* 00 =^^5 we have
° at ~p ~p ~P

K "-Sn(hn<Zn>'Uq) (9<0~P ~P\~P ~P ~S/

and

z =-g (h (z )) (9b)
~P ~P\~P -P/

In this paper, we are interested mainly in autonomous networks, and

therefore we use (9b) in most of the theorems of Sections IV, V and VI.

In [15] we examine (9a).

The following definitions which characterize various types of

resistive n-ports considered in this paper have been presented and

discussed in [14].

Def. 1: The function f: Jf?n •+ jRn is

(i) passive with respect to x £ JRn if, and only if, for all x £ JRn

(x-x0)Tf(x) >0 (10)

(ii) strictly passive with respect to x £ JR if, and only if,

(10) is true and the left side is positive for all x ^ xQ.

(iii) eventually passive with respect to x G IK if, and only if,

there exists k_ > 0 so that for all llxll > k«
0 ** 0

The norm tl •II we have used in this paper is the Euclidean norm, II x II =
2 2 1/2

[(x,) +...+(x ) ] .Of course, the following results remain valid
1 n

for any choice of norm in JR .
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(x-xQ) f(x) >. 0 (11)

(iv) eventually strictly passive with respect to x G J?n if, and

only if, (11) is satisfied where the left side is strictly greater than

zero.

n

Remarks: 1. If x = 0 G R p, we say simply that f is passive,

strictly passive, eventually passive, or eventually strictly passive.

2. In (i) and (ii), the domain of f may be an arbitrary

connected set D c£ , v G D.

Def. 2: [19] Let D C fin be convex. The function f: Rn -* Kn is

(*) increasing on D if, and only if, for all x*,x" G D

(x,-x")T["f(x,)-f(x")l >0 (12)

(ii) strictly increasing on D if, and only if, the left side of (12)

is positive for all xf ^ x".

(iii) uniformly increasing on D if, and only if, there exists y > 0

such that for all xf, x" G D

(x,-x")T["f(x,)-f(x")l 21 Yllx'-x'MI2 (13)

(iv) strongly uniformly increasing on D if, and only if, there

exists Y 1. X > 0 such that for all x1, x" G d,

yllx'-x"!!2 <(x'-x")1^^1)-^?")! lY»x'-x"II2 (14)

Def. 3: [19] For any integer u>0, f: JRn -> jRn is a Cy-diffeo-

morphism on Rn (or is a C^-diffeomorphic function on Rn) if, and only

if, f is injective on J?n, and the functions f, f" are Cy. Further

more, f is a C -diffeomorphism mapping Kn onto Jfi?n if, and only if, f
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is a Cy-diffeomorphism and f is surjective.

Def.4: [19] The C1-function f: Rn ~* Kn is a state function if,

and only if, its Jacobian —J"^- is symmetric for all x ^ K .

In Sections IV-VI, each result concerning the behavior of vjv) takes

two forms: First, the behavior of the solutions of the network state

Eqs. (9) are analyzed using the mathematical methods of Section III, and

the preceeding definitions. The hypotheses of these theorems are in the

form of conditions on the function h describing the capacitors and in

ductors, and on the function g which describes the overall resistive
«p

n -port. In each of the theorems, we make the following assumption:

The qualitative behavior of the voltage and current waveforms of each

element of U\\ may be uniquely determined from the behavior of solutions

z (t) of (9). In its second form, the conclusions are identical but the

hypotheses are in terms of the properties of the individual network

elements and the interconnection of these elements. The conditions

placed upon the elements are those placed on the resistor function g ,
a

a = l,2,...,m , and upon the capacitor-inductor function h . We then
K ~p

use the graph theoretic results of [14]. At this point, it is instruc

tive to state the interconnection assumption of the theorems of [14].

Fundamental Topological Assumption: There is no loop and no cutset

formed exclusively by capacitors and/or inductors.

If this assumption is satisfied, we know for example that if each

g is strictly increasing, then g in (9b) is strictly increasing [14;
~% *P

Theorem 9]. This conclusion and others are used throughout the sequel.

III. Mathematical Methods

1 -n n

A C -function f: K -* R is a state function if, and only if,
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there is a C -functional F: Rn -* R (called a potential function)

such that VF(x) » f(x) for all x G Rn [18]. If f in addition is a

strictly-increasing diffeomorphism, the function F also has interesting

properties. The following theorem is proved in the Appendix.

Theorem A: Let f: I?n -• Kn be a ^-strictly-increasing diffeo-

morphic state function mapping $? onto R . Define F: K -*• K to
2

be the unique C -function such that

-1VF(x) = f(x), V xG fl?n; Ftf""1^)) =0

Then the following properties hold:

A-l [20] F(-) is a strictly-convex function"

A-2

F(x) > 0

A-3

lxll-x» ~

A-4

1Jmirar2fTi(?) - +-

A-5 For each k > 0, the set

K = {xGRn: F(x)<.k}

is compact and convex in K .

V x^ f"1^)

(15)

(16)

(17)

(18)

(19)

5A function F: Rn "• R1 is strictly convex if, and only if, for each
a G (0,1), for each pair x', x" G JR ,

F((l-a)xt+ x") < (l-o)F(x') + F(x")

A set S C |Rn is convex if, and only if, for each a G (0,1), for each
pair x', x" 6 S, x A (l-o)^ + ax" G s.
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A-6. If f is, in addition, strongly uniformly increasing, there

exist constants y>x> 0such that for each x*, x" G R , (14) is true,

and

Iflx'-x"! < llf(x')-f(x")II iW-x'Ml (20)

^llx'-f""1^)!!2 <F(x') <̂ Ix'-f^O)!!2 (21)

Remark: It is possible to extend A-6 in the following way: If

for some k > 0, (14) is true for all xf, x" G J?n satisfying llxMI > k,

|jx"|| > k, then (20) is true for these x*, x", and an equation of the

form (21) is also true. See Corollary A in the Appendix.

In order to develop results concerning the behavior of the solu

tions of the network state Eqs. (9a) and (9b) we examine solutions of

the general differential equations;

x = -f(x,t) (22)

where f: Rn x R1 -* Rn is C1, and

x = -f(x) (23)

where f: R "* R is C . We use Lyapunov's well-known theorem [21]

which gives conditions guaranteeing the existence of a globally, asymp-

totically stable equilibrium point of (22) or (23). We will use three

other results which are similar in nature; they are summarized in

Theorem B below:

x G jR is a globally, asymptotically stable equilibrium point of (22)
or (23) if, and only if, for any solution x(t), lim x(t) = x* .

t-x»
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Theorem B-1 .[21-22]: Assume for some kn >0 there is a ^-function
0-

H/: Jf?n -*• R such that for f in (22),

lim C\j (x) = -h» (24)

•^-^ f(x,t) >0 Vllxll >kQ, VtGR1 (25)

Then every solution x(t) of (22) is bounded. Furthermore, if

*̂ W J(x,t) >0 Vllxll >kQ, VtGR1 (26)

then the solutions of (22) are eventually uniformly bounded in the

sense that there is a positive k- > 0, k ^ sup ^V(x), and a compact
,on Hxll<knset X C Rn, -- 0

x4{x eRn: q;(x) <ki> (27)

such that for every solution x(t) of (22), there is atime tn GR1 so
that

?(t) G x V t> ^ (28)

Furthermore, this theorem applies to the autonomous state Eq. (15b)

where we conclude in addition that (15b) has an equilibrium point

x*G X.

Remarks: 1. The bulk of this theorem is proved in both [21] and

[22]. The conclusion that the autonomous differential Eq. (15b) has

an equilibrium point is proved in a more general way by Pliss in [22].

See [15] for a discussion.

2. Except for the conclusion that the autonomous Eq.
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(15b) has an equilibrium point, the proof of this theorem is similar to

the proof of Lyapunov's Theorem [21]; it need only be outlined here.

First, note that without loss of generality, we may assume ^V(x) >0

for all x G Rn. We make this assumption upon noting that the con

tinuity of ^V(0 and hypothesis (24) imply that for some kG JR ,

^(x) =<^(x) +£>0for all xGRn. Furthermore, Qj(«) satisfies
hypotheses (24), (25) and (26).

Next, using (25) we see that -^\j(x(t)) £0for any solution x(t)

such that Hx(t)H >k . Since Qj(x(t)) > 0, this means that ^V(x(t)) is

bounded in R . From condition (24), we conclude x(t) is bounded in R .

Similarly, using hypothesis (26), -7-£\/(x(t)) < 0 for any solution

x(t) such that llx(t)U > k_. Now, using (24) we see that k- = sup ^V(x)
0 L llxll <k

exists, and that X in (16) is compact. Then, it is clear that lim^V(x(t))

_< k., and (28) follows from this.

If there is no possible Qj: Rn -* J?1 such that (24) and (25) of

Theorem B-1 are satisfied, then (22) may have unbounded solutions.

Furthermore, there may be finite escape-time solutions; that is, for

some initial condition x(tJ, tQG R, there exists t- >tQ so that

for the corresponding solution x(t) of (22) having this initial con

dition, lim ||x(t)H = + «». In the following theorem and corollary,
t->t

1

conditions are given under which there is no finite escape-time solution.

Theorem B-2: Assume there is a continuous function $: ax'-*• Rsuch

that H\i) > 0 for all u > 0, and

duJ = -{-co

W)~ <29>

Equation (29) is equivalent to

1 u«
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Assume for some kft >. 0 there is a C-function Q/: JR -*• R such

that for f in (22)

lim QJ(x) = + co (30)
llxU-H» ~

-^^ f(x,t) i-♦<CVW) Vllxll >kQ, VtGR1 (31)

Then for any initial time tQ G R, for any initial condition x(tQ) G R ,

the corresponding solution x(t) exists for all t j> tfi. That is, (22)

has no finite escape-time solution.

Proof: Because of (30), we see that for solution x(t) of (22),

there exists t. > tn such that lim llx(t)ll = +00 if, and only if,
t+t^1

lim^V(x(t)) = + oo. We will show that this is not possible.

As discussed in the sketch of the proof of Theorem B-1, we may

assume without loss of generality that QAx) > 0 for all xG Jft . So,

assume for some solution x(t) of (22) limC\^(x(t)) = +oo. Find time
t+t-

t <t such that x(x1) >k. Then, for all tG [x1,t1),^V(x(t))
satisfies the differential inequality

4-AAxoo) <^A/(x(t)) (32)
at - — ~ ,

Since ^V(x(t)) >0for each tG [t.,^), we have

^V(xOO)

Jq;(x(T »*W"
d^ <t-x X33)

As t -»• t-, the left side of (33) tends to -**> because of (29). But the

right side of (33) remains bounded, and we have a contradiction. B
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Corollary 1: Assume there exists k. > 0, and a continuous function

w,: fi,-*jR, such that

xTf(x,t) >- iKIJxil2) (34)

for all llxll >k and for all tG jR1. Then (22) has no finite escape-

time solution.

Proof: We apply Theorem B-2, with ^V(x) ^ llxll2.

Remark: Theorem B-2 and Corollary 1 are extensions of a theorem

of Wintner [23]. The statement of Wintner*s theorem is as follows: If

there exists some continuous function ijj-: R "*" R satisfying

/ iS + a, (35)

lf(x,t)ll <^(llxll) V llxll >kQ, VtGR1 (36)

where kQ is a positive constant, then every solution x(t) of (22) exists

for all t G (-co, oo).

The difference between our preceeding results and with Wintner's

theorem is that while our results guarantee that solution x(t) is de

fined as t -»• +oo, Wintner in addition guarantees that x(t) also exists

as t •> - °°. From a physical point of view, this conclusion is not use

ful and, in fact, is not satisfied by solutions of many nonlinear dynamic

networks of practical interest. For example, examine the network of

/vR/vT \
Fig. 3a. The diode equation is given by i = lie -1/ where the

positive constant I and v represent respectively the saturation current

and the thermal voltage. The capacitor voltage vr(t) satisfies the

state equation

In I v„(t)/vniS / VCCt)/vT \
(37)
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One solution of this equation is v (t) e 0. For any initial condition

vp(0) ^ 0, the solution is

vc(t) =vc(0) Ml-^ —— | (38a)
\e -sgn(vc(0))

where

I / sgn(v (0))
f(t) = ~- t + In( TTTw— 1 (38b)CvT I -vc(0)/vT

For any t >_ 0 and for any v (0) ^ 0, f(t) in (38b) is positive. Hence,

v (t) in (38a) is well-defined, and lim v (t) = 0. However, when
C t-H~> <-
vr(0) > 0, define time t-,

t. ---^ In( ^tt 1<0 (39)
S \l-e~Vc T

f(t ) = 0, and |v (tn)| = +». That is, the solutions of this network
JL U X

exhibit the finite escape-time phenomenon in negative time. Furthermore,

since v.~(e C T-l >0for all V(, GR1, equation (34) of Corollary 1
is satisfied while it may easily be seen that Wintnerfs condition (36) is

violated. Let us investigate further the difference between condition (34)

of Corollary 1 and condition (36) of Wintner!s Theorem: The diode in

Fig. 3a is replaced by an arbitrary voltage-controlled resistor whose

constitutive relation is i_. = g^OO, where gTJ(#) is C . Now, it can

easily be shown that if for some k > 0, k2 > 0 and 6 > 0, if either

f(t) \Vvc(0)

8By definition sgn(v (0)) = +1 (resp., -1) if vc(o) > 0 (resp., vQ(0)
< 0).
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.1+0gj^) >VV *vr >k2 (40a)

or

«R<V *kl(vR)1+B *VR <k2 (4°b)
n

then Wintner1 s condition (36) is violated. Indeed, if gR(vR) = (vR) ,

where n is any positive integer other than 1, Wintner fs condition is

violated. Thus, a reasonable sufficient condition for (36) to be true

is that for some k- > 0 and k« > 0,

|gR(vR)| <kjvj V |vR| >k2 (41)

The possible range of gD(») satisfying (41) is illustrated by the shaded
R

portion in Fig. 3c. On the other hand, (34) of Corollary 1 can be shown

to be satisfied if for some k- > 0 and k« > 0,

WVi-W2 *KI>k2 (42)

The possible range of g0(0 satisfying (42) is illustrated by the shaded

portion in Fig. 3c. This illustrates that the class of functions f(*,-)

satisfying the hypotheses of Theorem B-2 or Corollary 1 is much larger

than the class of functions satisfying Wintner*s condition.

As a final remark on this subject, note that Wintner1 s Theorem may

be proved using Corollary 1: Assume there exists a positive continuous

A 1/9 1/9

function ip- such that (35) and (36) are true. Define ^(u) = u ^(u )

Here, ^: R+~* ^~+ is continuous. From (36),

xTf(x,t) > - llxll . Ilf(x,t)ll

>- llxll • ^(Bxl) =• - iKIxl2) (43a)
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and thus (34) is satisfied. To show (29), let u = Ju for u > 0,

fdu _ 9 fdu*u . f du
J*™ Jh»2) Jh™ (43b)

and (29) follows from (35). Hence, for any initial time t G R1, an

solutions of (22) exist for all t j> t . To show that all solutions

exist for t < tQ, we repeat the above analysis for the differential

equation x = - (-f(x,t)). This differential equation also has solutions

existing for all t >_ tQ, where if x(t) is a solution of this equation,

then x(-t) is a solution of (22).

For our final mathematical result, we look again at the existence

of a globally asymptotically stable equilibrium point of (23). In the

following theorem, conditions are given which guarantee that solutions

converge exponentially to the equilibrium point.

Theorem B-3: Let x G Rn be the globally asymptotically stable

equilibrium point of (23). Let DC Rn be open, x G D. Assume there

exists B>0, y2 >. Y1 >0, y^ j> y >0and there exists aC1-function
Q): D•* R such that for all xG D,

* 3 * 3
Y-l'Ix-x II <C\)(x) < Y2[jx-x || (44)

Y3tlx-x*He <̂ S. f(?) <Y4llx-x*l|e (45)

Then for any solution x(t) of (23) such that x(t) G D, for all t ^ 0,

we have
Y 3

'4 - t

^1 e PY1 llx(0)-x II <flx(t)-x II <\^\ e 2llx(0)-x II (46)

Remarks: 1. The expressions l_q^x) and 1__^ a£V0O f(x)
~ - x—x
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are well-defined for each x ^ x . Hence, when H/(x) > 0 for all x f x

and 3"g •- f(x) >0for all xi x (these are the conditions of
Lyapunovfs Theorem [21]) then £, y±9 y2» Y3> and Y4 in (**) and (45>

exist if D is bounded and if

iim —^q;(x); ita —V« i%1?(?) <«>
llx-x*IH° llx-x 06 - Ox-;*I-0 llx-xb6 3x

exist and are positive.

2. The proof of this theorem is straight-forward and

need only be sketched. For any solution x(t) G D for all t _> 0, the

corresponding ^/(^(t)) satisfies

^q;(x(t) <^-q;(x(t)) <3
Tl. • ~ dt - Y2

CV(x(t) <f-Q;(x(t)) <--^Qj(x(t)) (48)

because of (44) and (45); hence

-24t -X
y • y

£\j(x(0))e X i%(t)iQi(x(0))e 2 (48b)

and (46) follows from this.

IV. Networks with Bounded Solutions

We begin with two theorems which give conditions guaranteeing that

the state equation (9a) has no finite escape-time solution. In the

previous section, we analyzed the network of Fig. 3a where the diode

was replaced by an arbitrary voltage-controlled resistor whose constitu

tive relation is i = gD(v ). It was shown that when (42) is satisfied,

there is no finite escape-time solution. This conclusion is rigorously

extended in the following theorem (specifically, (50) is a generalization

of (42)).
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Theorem 1: Assume the dynamic nonlinear network o\l is described

by the state function (9a). Assume the capacitor-inductor function

,1 _ . , .. 9h is a C -state function, and there exists constants k^ ^ 0

y >_y_ > 0 such that for all Hz1 II > k^, Hz"ll > k^

x»?;-;p»2£(5;-5;)T[hp(;;)-!;p(5^] iViiz'-z^ii2 (49)
n xn

Under these conditions, if there exists an arbitrary matrix G G R p py
n p

an arbitrary vector £ G jf^ p, constants k >0and k? >_ 0 such that for
n

all Up G JR. and for all "x H > k„, we have
~b ~p — 2.

?p[lp(?p^S)+?P?p-,?P] i"kl <50>
where g (•,•) is the n -port function, then state equation (9a) has no

finite escape-time solution. That is, for any continuous u (t), for any

initial time t-.GR, each solution z (t) of (9a) exists for all t_> tfl.

Proof: We apply Corollary A and Theorem B-2. First (49) is the

same as (A-19), hence from (A-21) of Corollary A we conclude that there

2 n 1
exists a C -function H : R p -*• R such that

P

VH (z ) = h (z ) V z G Rn (51a)

and for some k > 0, and Y1 > 0

VV21 W V"5 ">k (51b)
Using the inequality of (51b), we see that lim H (z ) = + °°.

Hz ll->~ p ~p
~P

and

9
The condition that h is a state function is equivalent to requiring
that the capacitors and inductors be reciprocal. This is a weak con
dition and is satisfied by most capacitors and inductors of practical
Interest. This assumption is made throughout this paper.
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Hence, in applying Theorem B-2, let ^V( •)= H(*), and equation (30)

is satisfied. We have to show only (31). Using (50),

\?- fP(y5pMs) • (v5p>)T«p(y5PMs)= ?pvw

> -Ox B2||G II - Hx II .«y0 - K . V IIx 11 >k (52)
— ~D ~P ~P **P J ~P z-p ~p ~P *p 3 ~P

where llG II is the induced norm of the matrix G and II •II is the Euclidean
~p ~P

norm. Next, we make a series of modifications of (52). First, note

that the first term on the right of (52) dominates for large II x II ; i.e.,

for any k, > IIG II there exists k«- > 0 such that
J 4 ~p ->

k4IIxpll2 >Hxpll2ilGp[j - IJXpH . ||yp[| - k3 V||xp[| >k5 (53)

Then, since (A-20) of Corollary Aholds, there exists k6 > 0 and k7 > 0

such that

kjz II2 > llx II2 = llh (z )II2 V ||znII >.k (54)
6 ~p — ~p ~p ~p ~P /

Combining the last four equations, there exists kg > 0 such that

3H«<ZJ \ 2 2
p ~p g /h (z ),u ) > -kjx II > -k.kjz II95 *P\~P~P ~S/~ 4"-pu - 4 6 ~p

>- -5-0- H (z ) V Hz II > k0 (55)
~ JCX P ~P -p 8

A / C •

Define ty(u) = u; ip: I? ~* R is continuous, and equations (29)

and (31) are satisfied. H

The condition (49) on the inductor-capacitor function h is that
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h is "eventually" uniformly increasing. This will be true if the

capacitors and inductors are "eventually" linear. The condition

(50) on the resistive n -port function g is satisfied if g is even-
p ^p °p

tually passive, for then (50) follows with G = 0 and y =* 0. When

k. = k„ = 0 and y =0, then (50) has the following interpretation:

If £„(*) is not "more active" than the matrix function G- (i.e.,
"P ~p

T T
xg(x,u„)>xGx) then there are no finite escape time solutions.
~p5pv,p»~S - ~p~p~p

This is an intuitive condition since, if (9a) is linear,

z = -G r z - G0u0 (56a)
~p ~p~p~p ~S~S

Then each solution [24]

-G r (t-tn) } -G r (t-a)
zp(t) =e~P~P Uzp(tQ) - Ae~P~P ?sus(a)da (56b)

fc0

exists for all t _> tft.

These interpretations of Theorem 1 are illustrated in

Example 1: Examine the network of Fig. 4. Voltage sources E-(t),

E9(t) are continuous and bounded in time. We can write the state equa

tion (9a) for this network, where

.2

and

h (z ) =
~P ~P

/e"(qc) [(q/ - (q/] +q(
5({>T - 2<j>_ (57a)

Ll L2

~2\ +3\
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[vC_El(t)]Sin vC-El(t)] "ssn(vc)ln(l+|vc|) +iA

?P(y = i -vc+ e

-(v\)! - i_ - E9(t)
L2 l

(57b)

Now, (49) is true because v *qc for large qc . Let |ei| and |E2| be

the largest magnitude of bounded E-(t) and E2(t), respectively. Then

(50) is satisfied, with l^ - k2 = 0, and

IE, I

G
~P

2 10

10 0

Loo 1.
*P

(58)

i + Ie2I,

Thus there are no finite escape-time solutions. Note that all the

resistors are active; in fact resistor R2 and R, have v-i curves lying

solely in the second and fourth quadrants of the v-i plane. However,

each resistor is "not more active" than a -1ft resistor in the sense that

2
v^i- > -(v„) for each resistor.
R R — R

In the next theorem, we relax the condition (49) on the function

h , and in turn place a stronger condition than (50) on g :

Theorem 2: Assume the dynamic nonlinear network lA) is described

by the state equation (9a). Assume the capacitor-inductor function
n 1

h is a C -state function, and there exists a C -function H : JR "* R.
~P P

such that VH (z ) = h (z ). Assume h and H satisfy
p ~p ~p ~p ~p p

lim llh (z ) II = +«>
Iz IH>oo~P ~p
~P

lim .H (z ) - +»
U !I-»M P -P

(59)
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Under these conditions, if there exist constants k > 0 and k„ _> 0
n

such that for all II x II > k_, for all un G R.
~p z ~b

x^g (x,u.) >-v (60)
~p~p ~p ~S — 1

Then (9a) has no finite escape-time solutions. That is, for any con

tinuous yq(t) and for any initial time tQ G R ,each solution z (t)

of (9a) exists for all t^ tQ.

Remark: If h satisfies (49), then (59) follows from Corollary A.

In fact, in this case Theorem 2 is a corollary of Theorem 1. Equation

(59) also follows if h is a C -strictly increasing diffeomorphic state
n ~P n

function mapping R p onto R p — see Theorem A.

Proof: As in Theorem 1, we apply Theorem B-2 and let ^V(z ) = H0O*

Then, (30) follows from (59). To show (31),

P ~P g((h (z ),uq\ =xg (x ,u_) > -k, ., V 1x0 >k9, Vu GR
3z ~p\"P P s/ -p5pv-p'~S - 1 ~p 2 S

(61)

Now, from the.first equation of (59), there exists k. > 0 so that

[||z [| > kj =• [|x II > k_]. Hence, define i|»(u) = ki for a11 u > °5
~p 3 «-p L 1

rj,: E -♦ R is continuous, and equations (29) and (31) are satisfied. *

In the remaining theorems of this paper, we assume Uv is autonomous.

That is, J[\ has only constant independent voltage and current sources,

and is described by the state equation (9b). For results concerning

nonautonomous networks, see [15]. SinceoMis time-invariant, we can

assume without loss of generality that the network is initialized at

time t = 0.

Theorem 3: Assume the dynamic nonlinear network cjvl is described by
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the state equation (9b). Assume the capacitor-inductor function h is

1 2 n 1a C -state function, and there exists a C -function H : R p "*" R
P

such that VH (z ) = h (z ). Assume h and H satisfy
p ~p ~p ~p ~P P

lim llh (z ) II = + oo
Hz lh*> ~p ~p
-P

lim H (z ) = + oo (62)
II z IH» P ~p
~P

Under these conditions:

1. If the C -function g is eventually passive, then every solution

z (t) of (9b) is bounded.

2. If the C -function g is eventually strictly passive, then

every solution z (t) of (9b) is eventually uniformly bounded, and t_A(

has at least one equilibrium point. In particular, if for some

kQ >_ 0, for all Ilx II > k ,
XT ^*

?p?p(V > ° (63)

then there exists a constant 1L > 0 such that

[llzpII >fcQ] => [Uhp(zp)|| >kQ] (64a)

and a constant k G R where

k = sup H(z ) (64b)
1 ilz «<kn p ~p

~p - 0

n

and a compact set Z C R pf where

ZpMzpGRnp: H(z)<V (65)
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such that for each solution z (t) of (9b), there exists tn >^ 0 such

that

z (t) G z V t > tn (66)
~p p — 0

Furthermore, cjv) has an equilibrium point z G Z .
~P P

Remark: The functions h and H satisfy (62) if either (i) there

exist k>0, Y2.JC>0 such that (W is true, or if (ii) h is a C -

strictly-increasing diffeomorphic state function mapping R p onto R p
n

(Theorem A) and, in this latter case, compact Z £-R P in (65) is also convex.

Proof: We apply Theorem B-1. Pick^V(z ) = H(z ), and (24) is

satisfied by hypothesis. Now, to show (25) and (26), first note that

from (62) we see that for any k .> 0 there exists kn j> 0 such that (64a)

is satisfied. Now

3H(z )
r-12- g/h (z)\ = xS*(x) (67)
3z ~P\~p ~p / ~P~P ~P

If g is eventually passive, there exists kn >^ 0, and hence a lL >^ 0

such that the right side of (67) is non-negative for all Hx II > kQ, for

all Hz II > k . Similarly, if g is eventually strictly passive, and

(63) is true, then the right side of (67) is positive for all Hz II > k .

Remark: The difference between the conclusions that solutions of

(9b) are bounded, and that solutions of (9b) are eventually uniformly

bounded is non-trivial: Examine the two networks of Fig. 5. For the

network of Fig. 5a,

-P
(68a)

The function g is passive, and all solutions are bounded. However, the
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magnitude of each solution can be arbitrarily large. When two resistors

are added as in Fig. 5b,

/Vl +vc +E\
*= \-h+^<w (68b)

The function g is eventually strictly passive, and all solutions are

eventually uniformly bounded. In fact, as we shall see in Theorem 6,

the network of Fig. 5b has a globally asymptotically stable equilibrium

point.

Example 2: Let us return to the Wien Bridge Oscillator of Fig. 1

and equation (1). It was stated in the Introduction that with f(«) as

shown in Fig. lc, that the "saturation" characteristic of f(«) stabilizes

the voltage and current waveforms of the network. Let us examine the

precise condition under which this intuitively reasonable statement is

valid.

Claim: If

lim sup If(v)
k-x» |v|>k| v

K 2 (69)

then, all solutions are eventually uniformly bounded.

Remark: A sufficient condition for (69) is

iim f(v) A|v|-*x>-7-^0 (70)

This is satisfied by the function f(«) in Fig. lc. A much more arbitrary

f(«) will also satisfy (70), such as

f(v) -sinTv ln(l+|v|)l +e"v (71)

Note that f(.) can be completely arbitrary for finite v.
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Proof of Claim; We may write (1) in the form (9b), where

/-1
h / l°l
Pl

?p

ciR S
C2R -c2.

vc + v - f (y y
Cl C2 C2

v +2v -f(vc)

(72)

The function h is strongly uniformly increasing. We have only to show

that g is eventually strictly passive.
,-,2

(vC 'vr )8n(Cl C2 ~p\v
1\ = V +v —

Cl C2

f(vr )•
C2

(73)

Applying (70), there exists k > 0 such that the second term of (73) is

positive for |vc |>k. For |vc |<fc, the second term is bounded, and

the first term becomes arbitrarily large, positive as |vr |-• +». Hence,
Cl

g is eventually strictly passive. *

We next examine conditions placed upon the resistors of u\l such

that gp has the appropriate properties of Theorem 3. First, we note

that even if each resistor function g (•) of lAI is eventually (strictly)
a

passive, the'composite resistor function gD(«) may not be eventually
~R ——

(strictly) passive. This fact is illustrated by the two resistor v-i

curves of Fig. 6; assume c_AJ is a 2-port made up of the two disconnected

resistors of Fig. 6. Resistor R is eventually strictly passive, while

WR9 is strictly passive. Yet g = [ 1 ) is not eventually strictly

passive. To show this, fix v_ =3/2, then
Rl
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yR?R(YR) =r9/4 +(vR2)2 vl\Ul
l-9/4+7L_ v|V i>i

(v_ ) *2
R2

<0 V v GR1 (74)
2

The reason that g^ is not eventually strictly passive is because while

R2 is strictly passive, |v i |< 1 for all vD . It is shown in [141
T R2 R2 " R2

that if lim [v ] [g (x )] = + oo for each a = 1,2,...,in , then

indeed gR is eventually strictly passive. However, with a condition of

this form, it is no longer possible to prescribe an eventually passive

gR that is not eventually strictly passive. Hence, in the following

theorem, we prove only that g is eventually strictly passive as in

(ii) of Theorem 3.

Theorem 4: Assume the dynamic nonlinear network is described by

the state equation (9b). Assume the capacitor-inductor h is a C1-
2 n ~P 1

state function, and there exists a C -function H : R p -• R1 such

that VH (z ) = h (z ). Assume h and H satisfy
P -P ~P ~P -P P

lim Hh (z )H = +
z r - ~ ~
*p
Z !•»« "P ~P

lim H (z ) = +
|z !-*» P ~P
~P

(75)

Assume further there is no loop and no cutset formed exclusively bv

capacitors and/or inductors. Then under these conditions, we have:

1. If (JVJ contains no independent sources, and each resistor

function g is eventually strictly passive, satisfying
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II v !I-h» ^a *\x a

Then all voltage and current waveforms are eventually uniformly bounded,

and Uxl has at least one equilibrium point.

2. IfcJvJ has constant independent sources such that there is no

loop (resp., cutset) formed exclusively by capacitors and voltage sources

(resp., inductors and current sources), and if each resistor function

g is eventually strictly passive, satisfying
a__-—

ifUl^VV<*L> -+- (7?)
-%

'*r " -«a =Ka "V

then all voltage and current waveforms are eventually uniformly bounded,

and c_AI has at least one equilibrium point.

Remarks: 1. In Theorem A and in Corollary A we show that (75) is

true if either h is a C -strictly increasing diffeomorphic state func

tion, or if an equation of the form (14) is true. Similarly, when g
~Rct

has either of these properties, (76) and (77) are true.

2. By the conclusion that the voltage and current

waveforms are eventually uniformly bounded, we mean the following: as

/ \ 2(nR+n "tag)in Theorem B-1 or Theorem 3, if [~JGJR. R p denotes the voltage

and current of every element of(Jvl> there exists a compact set XC
2(n_+n +n„) / /r\\

R P such that for each waveform I?,..*] there exists t^ > 0
/v(t)\ v^yso that Ii(t)j G x for all t> t„.

^ -o

Proof: Applying Theorem 3, we have only to show in Land 2. above

that g is eventually strictly passive. This is proved in Theorems 8
-•P

and 9 of [14]. *
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Example 3: Transistor Networks

A transistor may be modeled as a grounded two-port resistor using

the Ebers-Moll equation [7]. Let i£ and vE be the current and voltage

respectively of the emitter-base junction, and let iQ and vc be the

current and voltage respectively of the collector-base junction. The

resistive two-port is described by its constitutive relation:

i„ ) ?tr \v
"aR

-a,
C/ ~" VC/ u F

where the subscript "tr" denotes transistor. In (78), Igg, Ics» ctR, vT>

and a_, are positive constants, and furthermore aR < 1, ap < 1, and

a I a = <*-,!„„* Now, it can easily be shown that
R CS F ES

/v \T /v \ v_/v_ vr^vT

+Vcs(VcHe _e ) (79)

and from this we can conclude that g is strictly passive and satisfies

(76). However, (77) is not satisfied (to see this, in (79) set vE = vc

and let v •>-»). Hence, 2. of Theorem 4 is not directly applicable.
E

However, we may still obtain a useful result when the network contains

constant independent sources.

Proposition: Let ^Al be a network containing capacitors, inductors,

transistors, other resistors, and constant independent sources. Assume

that the capacitors, inductors and resistors (other than transistors)

satisfy the conditions of Theorem 4, 2; specifically, let the capacitor-

inductor function h be a state function (and hence there exists a C -function
n 1

H : R P -* JR such that VH (z ) = h (z )) such that (75) is satisfied. Each
p P ~P ~P ~P
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resistor (other than transistors) is described by its constitutive

relation gR and iet (77) be satisfied. AssumeoAlis characterized by the
a J

state equation (9b). Under these conditions, if there is no loop and

no cutset formed exclusively by any combination of capacitors, inductors,

transistor emitter-base junctions, transistor collector-base junctions

and sources, then all voltage and current waveforms of cjlf are eventually

uniformly bounded, and (_A1 has at least one equilibrium point.

Remarks: 1. A useful corollary of this proposition is that if

all capacitors, inductors, and resistors (other than transistors) are

linear and have positive capacitance, inductance, and resistance, then

(75) and (77) follow; thus in this case if state equation (9b) exists

and the interconnection condition above is satisfied, then all voltage

and current waveforms of u\| are eventually uniformly bounded, and v^AI

has an equilibrium point.

2. In [8] a similar conclusion is reached when lAi has

no external capacitors and inductors. Rather, capacitors exist in

as elements of the transistor model. In the above proposition and the

result in [8], the voltage and current sources may be time-varying so

long as they are continuous and bounded functions of time.

Proof: This proof is a reiteration of material in [14]. Applying

Theorem 8 of [14], using the i-shift Theorem and v-shift Theorem,

respectively, each current source is placed in parallel with a resistor

(other than a transistor) and each voltage source is placed in series

with a resistor (other than a transistor). These resistors with sources

attached may be viewed as composite resistors where each constitutive

relation is g , a = l,2,...m-,

yR = K (xR > " gR (xR +ba> + Sa (80)
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where b and c are vectors in Jbc_ . It is easy to see that since (77)

is satisfied for each g , it is also satisfied by each g . We view

c_AI now as a network containing capacitors, inductors, transistors

whose constitutive relations g satisfy (76), and resistors whose

constitutive relations g^ satisfy (76) and (77). The proposition

follows from Theorem 4, 1. H

As a final remark, note that the condition in Theorem 4 requiring

that the state equation (9b) exists and that h and g be C -functions
~p ~p

is a non-trivial condition; examine the network of Fig. 7a. The

resistor is either a current-controlled resistor whose v-i curve is

shown in Fig. 7b, or a voltage-controlled resistor whose v-i curve is

shown in Fig. 7c. In the former case, g does not exist, while in the

latter case g exists but is not continuous at v =0. Both resistors
P P

are strictly passive, and applying the methods of Theorem 4 or Theorem

6^ below, we might conclude that all voltage and current waveforms are

eventually uniformly bounded. But, corresponding to v (0) = 1 for both

networks,

vc(t) = /l^2t
t G [0,2) (81)

ic(t) = l^Tt

are admissible voltage and current waveforms* Thus, the network has a

finite escape-time solution.

V. Networks Containing a Globally Asymptotically Stable Equilibrium

Point

Theorem 5: Assume the dynamic nonlinear network uv is described by

the differential equation (9b). Assume the capacitor-inductor function
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1 n

h is a C -strictly-increasing diffeomorphic state function mapping JR p
n

onto JR p. Under these conditions,

1. If the C -function g is strictly passive with respect to

* t= 8? J> i_ * -1*xp fc -^ >then zp = hp (x ) is the globally asymptotically stable

equilibrium point of (9b).

2. If the C -function g is a strictly-increasing homeomorphism
n n ~p n

mapping JR. p onto JR. p then there exists a unique x G R P sucn that
~P

\ * -1 *
~p ~p ~ - and ~P = ~P ^~P^ iS the globally asymptotically stable

equilibrium point of (9b).

* rf->nProof of 1: Since h is bijective, there is a unique z G K p for
^P ~r»

* n * *
every x G Jr? p such that x = h (z ). The function~p ~p -p ~p

V#) " ~P <82>
1 n

is a C -strictly increasing diffeomorphic state function mapping R p
n

onto K P. It follows from Theorem A that there exists a C2-function
n -

Hp: R V̂ R such that VHp(z )=h(z )-x*, and

H (z*) = 0
P ~P

W >0 > V5P ^?p <83>

lim H (z ) = + °°
Hz I-*, p ~p
~p

We apply Lyapunov's Theorem where Qj(-) = H (•) is our Lyapunov function.
P

To show that z is the globally asymptotically stable equilibrium point,

we will show that for any solution z (t) £ z*, ~ H (z (t)| <0 for
~p ~p dt p\~p J

all t >_ 0. This is true if, and only if,

P P «p(w) >0 V?p *h (84)
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To show this,

P~P gjh (z A -[h (zn)-x*l g/h (z)\ =(x -xVg (x ) (85)
3z ~pv~p ~P / L-P ~P ~Pl eP\~P ~P / -P ~P ~P ~P

T

g(h (z )\ = \h (z )-x*l g (h (z )\ =
*P\~P ~P / L-P ~P ~PJ -P\~P -P /

*

and the right side of (85) is positive for all x = h (z ) f x since
~p ~pv~p7 ~p

*

g is strictly passive with respect to x .
~P ~P n

Proof of 2: The function g is a homeomorphism mapping K p onto
-p

n ^ n ^

E p, hence there exists a unique x G R p such that g (x ) =0. Since
~P 5pv.py

g is strictly increasing, for all x f x ,
~P ~P ~P

(vv?P(v= vv1!??^^!?^!> ° (86)
•k

and thus g is strictly passive with respect to x . The conclusion
~P -p

follows from 1. above. •

Example 4: Let us return to the Wien Bridge Oscillator of Fig. 1

and equation (1). It was stated in the Introduction that with f(.) as

shown in Fig. lc, when C1 = C and A < 3, an ad hoc "linear" analysis

yields the conclusion that lim v (t) = lim v (t) = 0. Let us now
t-*» 1 t-x» C2

examine the conditions under which this assertion is valid.

Claim: For any C. > 0 and C? > 0, if

f(0) = 0

f(v)
v

< 2 , V v * 0 (87)

/vc \ /°\then ( 11 =1 )is the globally asymptotically stable equilibrium point
\VC2/ W

of (1). 2

Remark: The condition (87) does not mean that f(. ) must be passive

or bounded as in Fig. lc. For example, if
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f(v) »vfsin v) (88a)
or

f(v) = ln(l+|v|) (88b)

then (87) is still satisfied.

Proof of Claim: The functions h and g for this network are given~p Sp

in (72). The function h is a C -uniformly-increasing diffeomorphic

state function mapping JR onto K . So, to apply Theorem 5, we have

only to show that g is strictly passive. Applying condition (87) to

the right side of (73), we see that, indeed, g is strictly passive. M

Using other analytic techniques we can also establish that the

network may have oscillations;

Claim: Assume C. = C« > 0. If

f(0) = 0 (89a)

^^&- >3 (89b)
dv

lim sup
k-*» |v|>k

f(v) < 2 (89c)

then there is a non-constant periodic solution of (1).

Remark; The function f satisfying (89) need not be passive or

bounded as in Fig. lc. Indeed, (89) places conditions on f only at v = 0

and v = + °°. For all other v, f may be arbitrary. For example, (89)

remains valid with

f(v) -e"V (-v3+4v) +|sin v[ln (l+v2)J (90)

Proof of Claim: We apply the following special case of the Poincare-

Bendixon Theorem [23]; the differential equation (1) has a non-constant
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periodic solution if (i) there is exactly one equilibrium point and it

is unstable, and if (ii) all solutions are eventually uniformly bounded.

We have shown previously that when equation (89c) (this is also

equation (69)) is satisfied, then all solutions are eventually uniformly

/vc\ /°\bounded. Next, ( 11=IQ ) is an equilibrium point of (1). It is the

only equilibrium point since [v. =*vr =0] =• [v -v =0] => [v._ =0] => [v =0].
Cl C2 Cl C2 C2 Cl

Finally, we use the linear methods mentioned in the introduction to show

that the equilibrium point is unstable since —tj— > 3. *

Theorem 6: Assume in the dynamic nonlinear network vJV) that the

capacitor-inductor function h is a C -strictly-increasing diffeomorphic
~Pn r n

state function mapping R P onto E p. Assume there is no loop and no

cutset formed exclusively by capacitors and/or inductors, except possibly

loops formed exclusively by capacitors and cutsets formed exclusively by

inductors. Under these conditions,

1. If cAI contains no independent sources, and each internal

resistor function g^ is strictly passive, then when c_A) is described by

the state equation (9b), it has a globally asymptotically stable equilib-

* -1
rium point z = h (0).

~P -P -

2. If o\) has constant independent sources, and each internal resistor

1 &**function g., is a C -strictly increasing diffeomorphism mapping XL onto
~R~

njR a, then (9b) describing cM exists, and lAI has a globally asymptotically
* n

stable equilibrium point z G Jtc

Proof: This comes directly from Theorem 5 and [14; Theorems 9 and

11]. a

Example 5: In the hypothesis of Theorem 6 we allow loops of

capacitors and cutsets of inductors. At first glance, this seems to
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cause a problem since, for example, if there is a loop of capacitors,

then their voltages are linearly dependent, and no function g in (9b)

exists. However, Theorem 11 of [14] may be applied to these loops and

cutsets. As an illustration of the methods involved, examine the net

work of Fig. 8a.

Here, it is assumed that each resistor, capacitor and inductor is

uncoupled to any other element and has a constitutive relation which is

a C -strictly increasing diffeomorphism mapping JR. onto JR . Thus,

the conditions of Theorem 6 are satisfied, and the network voltage and

current waveforms converge to a globally asymptotically stable equilib

rium point. Observe that this conclusion is valid in spite of the

fact that the three inductors form a cutset. In the following, we

show how the results of [14] are applied so that the conclusion may be

reached. Specifically, the network is transformed into an equivalent

network having no such cutset of inductors.

By hypothesis, the inductors are flux-controlled as well as current-

controlled; hence they are described by

(91)

where f = h7 is a C -strictly-increasing diffeomorphic state function

mapping K onto JR. . Applying Theorem 11 of [14], we replace one of

the inductors, say L~, with a short circuit, and the other two inductors

are replaced by two inductors whose constitutive relation is
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where f_ is a C -strictly increasing diffeomorphic state function map-
"*L

ping K. onto JR. . This transformed network has no cutset of inductors,

and every voltage and current waveform of the other network elements

is unaffected by the transformation. The inductor currents are also

identical. Thus, in predicting the behavior of Uv in Fig. 8a, we need

only study the behavior of the transformed network. This network is

shown in Fig. 8b, where the constitutive relations are specified. We

shall examine this network again in Section VI.

Let us return to the proof of Theorem 5. Recall that when g is

* n
strictly passive with respect to x G R P, then for any solution

z (t) i z* of (9b), we have 4lAAz (t)) <0 for all t>0, where ^V(z )
~p ~p dt ~p — ~p

s H (z ) is the Lyapunov function. We note that the strict inequality

may be relaxed [21]; namely, if ~\){z (t)) < 0 for all t > 0, and
at ~p — —

-rr^V(z (t)) =0 if, and only if z(t) =z , then z is the globally

asymptotically stable equilibrium point of (9b). The difference between

these two conditions on -r-f-yjiz (t)) is rather subtle in application.

To see this examine the networks of Fig. 9* in the network of Fig. 9a,

rp . „ . (93)fhh +
vc
v..

ri, +
C

V tti

The function g is strictly passive, the conditions of Theorem 5 are

Yvc\ /°\satisfied, and I J= I lis the globally asymptotically stable

equilibrium point. Now, suppose we replace resistor R« in Fig. 9a

with a short circuit, forming the network of Fig. 9b. Here,

(94)
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v \ /O
and gp is passive, but not strictly passive. Yet, (iC)=5(n) is
still the globally asymptotically stable equilibrium point of the net

work. One way to see this is to use the Lyapunov functional// C
C2L2 /v(t)\ \L
2 typ + 2* ^h? * Then* for any solution ( ±°,ts ) of the network,

and

vc(t)

L(t>at \ 0 =*[vc(t) = 0] =>[ic(t) e iR(t) = 0]=>[iL(t) = 0]

(95b)

There are a large number of networks such as that of Fig. 9b for

which globally asymptotically stable equilibrium points may be shown

using the methods above. There are other networks, of course, where

this is not true. For example, examine the network of Fig. 9c. Here,

there is no globally asymptotically stable equilibrium point. This is

because, for any 8 G JR.,

VCl(t>\ /8sin ut\
v^t)) =U sin cot ) (96)

where w = 1/^LC", is a solution. Observe that the capacitor-inductor

loop in Fig. 9b violates the hypothesis of Theorem 6. In Theorem 7

below, we use a different interconnection hypothesis which allows loops

and cutsets such as that in Fig. 9b, but which does not allow those

such as in Fig. 9c. The hypothesis is:

Inductor-Capacitor Loop-Cutset Hypothesis (L.C. Hypothesis)

Let the dynamic nonlinear network (_AI contain capacitors, inductors,

resistors and constant sources. The capacitors and inductors are
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described by h in (4), where h is a^-strictly-increasing diffeo-
~P ~p n n

morphic state function mapping R Ponto R P. Furthermore,

(i) Each loop (resp., each cutset) formed by an independent source

exclusively with capacitors, inductors and other independent sources

contains at least one capacitor, at least one inductor, and at least

one current source (resp., voltage source).

(ii) Let 2 be any set of capacitors and inductors such that any

capacitor or inductor in 2 forms a loop and/or cutset exclusively with

other capacitors and inductors of 2. Let one of the following con-

ditions be satisfied:

(a) There is acapacitor C in 2 which is in aloop formed

exclusively with elements of 2, but not in a cutset formed exclusively

with elements of 2. This capacitor is not coupled to any other

capacitor of ._».

(b) There is an inductor L in 2 which is in acutset formed

exclusively with elements of 2 but not in a loop formed exclusively

with elements of 2. This inductor is not coupled to any other induc

tor of c>.

Remark: The L. C. Hypothesis is discussed in detail in [14]. It

is used in Theorem 12 of [14] which in turn is used to prove:

Theorem 7: Assume the dynamic nonlinear network lAI satisfies the

L. C. Hypothesis. Assume there is no loop formed exclusively by

capacitors and no cutsets formed exclusively by the inductors. Under

these conditions,

dvp dvr<jn ' •—————————— v*. u,

That is, for any other capacitor (^ in S, —--1 =—-— =0.
Ck Cj
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1. If U\j contains no independent sources, if each internal

resistor function g_ is strictly passive, if cjv) is described by state

equation (9b), and if each voltage and current waveform of (J\\ is a C -

function of time, then Jx) has a globally asymptotically stable equi-

* -1
librium point z = h (0).

~P - -

2. If cJVI has constant independent sources, if h is a C -function
n 3

in 12 p and if each resistor function g^ is a C -strictly increasing
_,no h^o "a

diffeomorphism mapping JK onto JK, , then the state equation (9b)

describing Uv exists, and v_AI has a globally asymptotically stable equi-
* n

librium point z G JR. p.
~P

Remark: We cannot allow loops of capacitors or cutsets of inductors

as in Theorem 6. This is because if there exists, say, a cutset of

inductors, and oM is transformed as in Example 5 to eliminate the cut

set, then the L. C. Hypothesis may no longer be satisfied.

Proof: First, the state equation (9b) describing c_AI exists, and

all voltage and current waveforms of c^Al are C -functions of time. This

is true by hypothesis in 1. above. In 2., since h and each g

3 ~ a
are C -functions, the conclusion follows from a corollary of theorems

in [2], It suffices to prove 1., since 2. follows in a similar way.

Let ^V(-) = H (•), where H is given in (84), and z » h" (0). As

in Theorem 5, ^V(-) satisfies the appropriate conditions of Lyapunov's

Theorem. Then, for any solution z (t) of (9b), using (85) (remember

*
x - 0),

._ _» .i m • •• i • ,.

\he condition that each voltage and current waveform is a C -function
of time is used in Theorem 12 of [14] to show that, for example, for any
capacitor charge waveform qc(t) and capacitor current waveform ic(t), we

haveic(t) =^qc(t).
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x

d_
dtAAzp(t)) =- [y5p<t>] h(Vz^M) =" £Mh(%M) --£(t)iR(t)

(97)

where the last equality comes from Tellegen's Theorem. Now, since each

resistor is strictly passive, then the right side of (97) is positive

at any time t _ 0 unless v (t) = i_(t) = 0. Now, from Theorem 12 of [14],
*

v„(t) = iD(t) = 0 for all t - 0; that is, if, and only if, z (t) = z =»R ~R ——______—___—_—. ^p ^p

h_1(0) for all t- 0. *
~P - '

As a final remark concerning the existence of a globally asymp

totically stable equilibrium point of (_A), we note that in these results

we can extend the condition that the sources are constant to allow

the sources to be asymptotically constant. That is, when lAJ is described
n

by state equation (9a) where lim u(t) = u G JR, , and g (*,u) has the
t-x» "P

properties possessed by g (•) in the previous theorems, then the con-
t

elusion holds. This is proved in [15].

VI. Exponential Decay of Transients»to;the Globally.- Asymptotically

Stable Equilibrium Point

We return to Theorems 5 and j6 which give conditions such that cAl

has a globally asymptotically stable equilibrium point. In this section,

we show that under slightly stronger conditions the transients decay in

an exponential way to the equilibrium point. We use Theorem B-3 to show

this, but first we make the following observations: If h is a C -
~P n n

strictly increasing diffeomorphic state function mapping Jrv. p onto R ,
n

then in any compact convex set D_R p, h is strongly uniformly

increasing. This is because (see [19] or [14]) the eigenvalues of
9h

•r-^(z ) are always real and positive, and they attain a maximum and
?p ~P
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and minimum on any compact set. Furthermore, Theorem A-6 applies in

DC£, and there exists a C -function H : D -• R such that (20) and
- P

(21) are true in D. In a similar way, if g is a C -strictly increasing
n n ~p

diffeomorphism mapping JK p onto R p, then g is strongly uniformly

n? 1increasing on any compact convex set D. C ifc P. Also, if gp is a C -

strictly passive function with respect to x G K p, and ~p ~" is
~P ?p

positive-definite, then in any compact connected set^ Dn G jE p, x G n ,
*g is "strongly uniformly passive" with respect to x in Dq- That is,

*

an equation of the form (14) is true where x" = x and x' is arbitrary
-P ~P ~P

inDQ.

Theorem 8: Assume the dynamic nonlinear network c_A) is described

by the state equation (9b). Assume the capacitor-inductor function h

1 n~P
is a C -strictly increasing diffeomorphic state function mapping K-

n ..

onto JK p. Assume the C -function g is strictly passive with respect

to x , and —£—*— is positive-definite. Under these conditions, for
~P %

each solution z (t) of (9b), lim z (t) = z = h (x ).* Furthermore, let
-P ^ -P ~P ~P ~P

n

D_K p be any convex, compact set such that z (t) G D for all t >_ 0.

Then, there exists constants y, _> y. > 0 and y >^ y > 0 such that for

all z', z" G D, we have the following basic inequalities:

Xllz»-z"ll2 <(^-^)TK(z;)rh.(z")l iYJ.z'-;12,
-Hi ~p ~p — ~p ~p [~p ~p -p ~p J — 'n ~p ~p

yOh (z')-xV <|"h (z')-x fig (h (z')VI <Y ih (z')-x*ll2 (98)Xg .pv^p/ _p _ |^p^p' ~pj [5p\.pv~pVJ - Tg ~pv~p' ~p

and, for each t >^ 0,
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min||zp(0)-z*[l <l|zp(t)-z*ll <L
-YhJ

1/2 -t/x

A j

1/2 -t/T
max||zn(0)-z |

~P ~P

(99a)

where

A ^h
min ' <Yh)*Yg and

A Yh (99b)

max (ih)%

Remarks: 1. If g is a C -strictly-increasing diffeomorphism map-
n n ~P * n

ping £. ponto R P, then, as in Theorem 5, there exists x ^ R. Psuch

such that g^ is strictly passive with respect to x^, and 9xP-^-is
rp ~P

~P

positive-definite. Thus, Theorem 8 is an extension of both 1. and 2.

of Theorem 5.

2. We cannot extend Theorem 7 which uses the L. C. Hypothesis in a

similar way. This is because g is passive, not strictly passive in

Theorem 7, and so no equation of the form (98) is possible for g .

3. Equation (99) describes the transient decay of the capacitor

charge and inductor flux linkage. It is useful to have a similar ex

pression for x(t) which is the capacitor voltage and inductor current.

Applying Theorem A-6 to (99), we have

:ii
3/2 -t/x

minHx (0)-x*ll <l|x (t)-x*|| <
~p ~p - ~p ~p —

ry, H3/2 -t/x
h max,

bhJ e 'xP<°>-xp

(100)

where x and x are given in (99b).
max min °

Proof: Equation (98) is valid in convex, compact D C ftc p as dis

cussed above. We apply Theorem A-6 to the function h ; equation (20)

2 n (Ol Pholds, and for some C -function H : K P -* K such that Vh (z ) e h (z ),
p P *P P P

n
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(21) is true. Let H (•) = ^V(-) in Theorem B-3. Then (41) is true with
p

6=2, y =~ \> and Yo =\\' Hence> we onlv need to show ^2^* Usins
(98) and equation (20) of Theorem A-6, we obtain

and

9H (z )

^Vw)= 'v^-i'^lvvl-v^p^'-^
*.i2

9z
~r>

>Y(Yu)2llz -z*H2
gv-V ~p ~p

3H (z ) 9
? ~P gjh (z >) <Yn(Yh) Hz -z
3z ~p\~P ~P / P h ~p

*„2
P

(101a)

(101b)

Thus, (42) is true with 3= 2, Y„ =Y (Y.)2 and Y. =Y (Yu)2. Hence,
3 —g —h 4 g h

from (43) we obtain (99). *

In the remainder of this section we discuss, present, and illustrate

an algorithm for finding the transient decay time constant t used in

(99) and (100). Specifically, we will find Yh 1 ^ >0, and Y > 0 of

(98). We will derive these constants without forming the state equation

(9b), and without solving for the equilibrium point x = h (? )•

Preliminary Remarks: 1. Comparing Theorems 8 and 6, we conclude

that (99) and (100) exist for networks satisfying either 1. or 2. of
5gRJ0)

Theorem 6. That is, if each g is strictly passive and IS

••a
a

positive-definite, or if each g is a C -strictly-increasing diffeo-
n n a

morphism mapping R. onto JR. , then we may apply Theorem 8 to derive

(99) and (100). The algorithm below is directed towards networks con

taining the latter type of resistors. This is the more general case in

that the equilibrium point x is arbitrary, and Jv can contain independent

sources. The algorithm is easily adapted to networks containing strictly
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passive resistors.

2. We will find Y, , Y,» and Y in (98), but we shall not derive Y -
n n —g g

The reasons why Y is not found will be given in Remark 2 immediately
g

preceeding the algorithm. This means that we can obtain only the right

half of the inequalities (99) and (100). These inequalities are useful

in that they prescribe a "worse case time constant" t for the net

work.

3. The following fact is proved in [14] and [19]: Let D^£ be

convex, and f: K. _> R is C . Then f is uniformly increasing on D,

and in particular there exists a constant y > 0 such that (13) is true

in D if, and only if, the constant y also satisfies

0 < Y £ inf
x^D

1/3f(x) 3f(x)\T
min. eigenvalue of — i ~ H—r—~ (102)

There is a similar result for strongly uniformly increasing functions.

We also have the following extension of the definition of a uniformly

increasing function: Let D C Kn be convex and let the mapping x +> y

be a scalar C -function from D into JR. . We say that y is a uniformly

increasing function of x.. uniformly in the remaining independent

variables (which are x2,...,x ) if, and only if, there exists y > 0

such that for every x', x" G D, and corresponding yf, y" € R1t we have

(xj-x^My'-y") >Y(x{-xp2 (103a)

Furthermore, using the above result, this is true if, and only if, Y

also satisfies

0 < Y£ inf !Z_ nn_
x£D ax, (103b)
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The following assumptions are essentially those stated in 2. of

Theorem 6. They are made slightly stronger than in Theorem 6 so that
n

Y ,%. and x. are tne same f°r every compact D C Jc p in (98).

Algorithm Assumptions: We assume that the dynamic nonlinear net

work cjM satisfies the hypothesis of 2. of Theorem 6. We assume that

Theorem 11 of [14] has been applied if necessary so that <Jll has no

loops formed exclusively by capacitors, and no cutsets formed exclusively

by inductors. In addition, we assume the following conditions on the

elements characteristics:

1. The function h is a strongly uniformly-increasing function in
~P

R p.

2. Each capacitor forms a loop exclusively with resistor branches

of lAI and voltage sources. When resistor branch j is in such a loop,

its current in is a uniformly-increasing function of its voltage v
R. *M
J J

uniformly in all other resistor variables.

3. Each inductor forms a cutset exclusively with resistor branches

of lAI and current sources. When resistor branch j is in such a cutset,

its voltage vD is a uniformly-increasing function of its current iR
R. -i
J 3

uniformly in all other resistor variables.

Remark: In Algorithm Assumption 2, the only additional assumption

beyond that of Theorem 6 is that iR is auniformly-increasing function

of v ;indeed it follows from Theorems 2and 8 of [14] and the hypothesis
R.

of Theorem 6 that such a loop always exists for each capacitor and that

i is a strictly-increasing function of vR . Adual observation applies
Rj j
to Algorithm Assumption 3.
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It is assumed that the capacitor-inductor function h is given

a priori. Thus (see 102)), we can define

9h_(z )
Y, = sui

h z G

*h
inf n

-p

max. eigenvalue ~P ~P
dz
~P J

ah (z )
min. eigenvalue ~p ~p

% J

(104)

For example, if each capacitor and inductor is linear, strictly passive,

and uncoupled, we have

Y, = max max —, max

j=l,..,nG j j-l,..,!!^ j
(105)

Y^ = min min - , min

j=l,..nc j 3=1,..,^ j

On the other hand, the n -port function g is not known a priori, and

we want to find y simply by using the internal resistor functions g^ ,
h K

ot = 1,2, ••.,m_•

Analytical Methods Used to Derive Y
_ — =g

For each capacitor (resp., inductor) let us form the loop (resp.,

cutset) as prescribed by Algorithm Assumption 2 (resp., 3}. From KVL
n

(resp., KCL), when u £ JR denotes the constant voltage and current

sources, we obtain the equation (see [14; Theorem 2b])

?R
~p -ol^J ~1~S (106)

n *2il n xn

where the matrices P £ JR p and P- £ R p contain elements +1,

-1 and 0, and every row of PQ has a non-zero element. We partition the

resistor branches into four mutually exclusive sets:
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Set RO; resistor branch j is in Set RO if, and only if, the columns

of Pn corresponding to its voltage v and its current i have zero
~vJ K. R.

j 3
elements.

Set Rl; resistor branch j is in Set Rl if, and only if, the column

of Pn corresponding to its voltage v0 has a non-zero element while the-0 Rj
column corresponding to its current i_ has all zero elements.

R.
3

Set R2; resistor branch j is in Set R2 if, and only if, the column

of Pn corresponding to its voltage v has all zero elements while the-0 Rj
column corresponding to its current i has a non-zero element.

Set R3; resistor branch j is in Set R3 if, and only if, the columns

of Pn corresponding to its voltage v_ and current £_, have non-zero

"° i i
elements.

Remark: We may define these four sets in the following equivalent

way: Corresponding to the loops and cutsets represented by the linear

equation (106), resistor branch j is in Set RO if, and only if, it does

not form a loop exclusively with capacitors and voltage sources and does

not form a cutset exclusively with inductors and current sources. Re

sistor branch j is in Set Rl (resp., R2) if it is in such a loop (resp.,

cutset) but not in such a cutset (resp., loop). Resistor branch j is in

Set R3 if, and only if, it forms a loop exclusively with capacitors and

voltage sources, and it also forms a cutset exclusively with inductors

and current sources.

n

Assume Set Rl contains n_- resistor branches. Let y__ e R and
n^

i _ £ JR be the resistor branch voltages and currents respectively.
~RJL

Define x^- *= R and y _ ^ K by

Ma /M
J4 w)
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For each branch j in Set Rl, if it is part of an na-port resistor, then

by assumption, x.- = v^ is one of the independent resistor port
3 j

variables of the na-port resistor. Denote the remaining na-l independent

resistor port variables by x € s\ . Define

3iRl
Y01 - inf , -t—l (108)
Rl. =lf?l 3vD13 vR1£JK Rl.

*<=ibncri

Because of Algorithm Assumption 2, we know yr > 0 for all j = l,...,n
_n__

Rl

Assume Set R2 contains nR9 resistor branches. Let yR9 Jh_ R2
and

if? R2i €= &C -be the resistor branch voltages and currents respectively.
~*R2 . .

Define x^ £R and yR ^ JR by

/?R2 \A /iw \ (109)

For each resistor branch j in Set R2, if it is part of an na~port

resistor, then by assumption, x „ = i « is one of the independent
j 3

tnna"1
resistor variables. Let jL G K denote the remaining na-l independent

resistor port variables. Define

9vR2
YBO - inf , in-1 (110)
R2j i e£i 3iR2

R2^ j

5r
eknarl

Because of Algorithm Assumption 3, we know YR« > 0 for all j = l,..,nR2«
j n„~

• Assume Set R3 contains n^„ resistor branches. Let y _€= K. and
ronR3i G ic be the resistor branch voltages and currents respectively.

~ R 3

-53-



Define x^

?R3

2n

6E

A 'v~R3

*R3

~R3 2Wr3

^andy^K^^U

(111)

For each resistor branch j in Set R3, if it is part of an na-port

resistor, then by assumption,

^ VR3 can be one of the nct ^dependent resistor port variables.
j

Denote the remaining independent resistor port variables by x_

t11) ^3 can be one of the na independent resistor port variables.

n„-l

j
Denote the remaining independent resistor port variables by 2L

Define

inf

3iR3.
-J.

3v.
R3.

3

e JR11""1

3v
R3

3i
1

A 1 .

YR3. = 2 mLn VR3. €R
3

inf

na-l

R3.
J

(112)

^R(v)

Because of Algorithm Assumptions 2 and 3, we know YD<a > 0 for all
R3j

12
Because resistor branch j in R4 is in both a loop and cutset repre

sented in matrix PQ in (106), it is necessary to view branch j as both
a voltage-controlled branch and as a current-controlled branch. Thus,
in (111) yR3 and iR3 are part of the independent variable x^ and also
part of the dependent variable y „. ~^^^^..1R3 —w-.wM 2

^XR3^ ^?R3^ E ^Yr3^ ^R3^' In tne same way» both VR3 and lRo must be
j 3

treated as Independent resistor variables in (1) and (ii) which immediately
follow equation (111).

The fraction -r appears so that
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j = l,..,nR3. Define jir > 0

^ =min {min Yr1 »min yr2 » *in YR3<} (113>
j-l.-.n^ j=l,..,nR2 j=l,..nR3

Claim: For

-g -R ||pol|2

the right inequality of (98) is satisfied.
n

Proof of Claim: Let u ^ K denote the voltage source voltages

mnSand current source currents, and let wg ^JR denote the voltage source

currents and current source voltages. It follows from applying Tellegen*s
n

Theorem (see Theorem 9of [14]) that for every x^, x£ €R p, we have

^p^)T[lp^>-ip^)] =̂ R-YR)T(iR-iR) +(V^S)T(V^S>
=(YR-YR)T(iR-iR) <115>

Now, since every gR is strictly increasing,

When the resistors are two-terminal elements, the expressions for
Y„n in (108), Y_0 in (110), and Y in (112) can be simplified con-
Rl. R*.. K-3 •

3 3 3
siderably since there is no longer an independent variable for xR.

Moreover, when the two-terminal resistors are linear and strictly pas
sive, then (113) reduces to:

1 11Y^ =min(min j—f min R^ ,j min (— +R^ )}
j=l,..,n^ j j=l,..,nR2 j=l,..,nR3 j

where R_. is the resistance of the jth resistor in set Rk, k = 1,2,

3

and 3.
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...nT
<*»<&-&> i ^r^><?Rl-?Rl) + «&-*k> (?R2-?R2>

+ ^3-^3>(?R3-?R3> (116)

where the equality sign in (116) is attained if, and only if, Set RO

is an empty set. Now, as discussed in Preliminary Remark 3, since the

constant y > 0 in (13) can be the same constant Y > 0 in (103), it follows

from the definition of y in (113) that

<?R1-?R1)T<?R1-?R1) +<?R2-?R2)T(?R2-?R2> +^-^/^R^

-R

?Rl\ /5ul"

^3' \?R3-

(117)

Finally, by deleting the all-zero columns of PQ in (106) (these

correspond to the resistor branches in Set RO) and reordering the

v • k a * < i e J?V(nRl+nR2+2nR3)
remaining columns, we obtain the reduced matrix P_ <= -ttv

and the reduced equation

. /*l\
?p =?o(^R2)+?lUS

and thus

x'-x"i| < 0PJ
~p ~p' — "-0

(118a)

(118b)

Furthermore, since the square of the induced norm 1PQ|! = (max. eigenvalue

of P^PA) = (max. eigenvalue of P^PA) = HpJ ,we can combine (115), (116),
~0-0 ~U~U "U

(117), and (118) to obtain the inequality
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^^[•p^-Sp^]- ^R-^'^R^ ~^

- lip II2 ~p ~p
~o

Remarks: 1. The classification of resistor branches into Sets

RO, Rl, R2, and R3 is not necessarily unique, and thus Yg is not

necessarily unique. For example, a capacitor may form two distinct

loops exclusively with resistors and voltage sources as prescribed by

Algorithm Assumption 2. This means both y^, and PQ may be different.

At this point, we do not have an algorithm to find the optimal partitioning

of the resistors.

2. We will now show why it is difficult to find Y in

(98). While we may find YR similar to YR of (113), there is no easy

way to derive function f„(*) such that
~N

/~r\ =£(X ) (120)
vv N p

which is the inverse of (106). While such an equation may exist (see

Theorem 4 of [14]), we cannot derive it simply by using KVL and KCL.

Without such a function, we cannot write an equation similar to (118)

(with the reversed inequality sign) and y cannot be found.
g A

3. As our induced matrix norm, we have chosen II Pjl =

[max. eigenvalue PqP0]1/2. This is the best (that is, the smallest)
expression for the induced norm when B'B is the Euclidean norm [24].

However, since all elements of PQ are +1, -1 and 0, it is computationally

easier to choose the equivalent but more conservative induced norm
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HpJI =» [number of non-zero elements in ]>] .

4. In the following algorithm, the procedure described

above is used, although Sets Rl, R2 and R3 are not overtly formed.

Rather, we form JL and Pfl sequentially.

Algorithm for Computing the Transient Decay Time Constant t
max

Step 0: Order the n capacitors, il inductors (n +n=n ) and ul re

sistors. Order the n^ resistor branches. Form the capacitor-inductor
rt->n tr>n na na

function h : R p -* R p. Form the resistor functions g„ : K -> R ,
~p ^R *

a

a = 1,2,..,hl. Set j = 1.

Step 1; Set

Y, = sup «

h zGR P
~P

Yh = inf n

~P

ah (z )
max. eigenvalue of p p

dz

~P

ah (z )
min. eigenvalue of —r^—p—

dz

~P

Comment: In the remaining steps, we sequentially examine each capacitor

and then each inductor, forming the matrix P_ row by row, and sequentially

solving for j£_.

Step 2: If j = n + 1, set j = 1, go to Step 7. Otherwise, find "loop

Si. ." consisting of capacitor C , resistors and voltage sources as pre

scribed by Algorithm Assumption 2. Augment the (j-1) x 2n_ matrix Pn
R "0

with a row of zeroes; namely row j. Set k = 1.

Step 3: If k = il + 1, set j - j + 1 and go to Step 2.

Otherwise, if resistor branch k is not in loop §c., set k = k + 1

and go to Step 3.

Otherwise, resistor branch k is in loop St..
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Step 4: If resistor branch k is similarly directed with capacitor C,

in loop Sl., set the jkth element of P- (this is the element in the jth

row and kth column of P~) to +1.

Otherwise, set the jkth element of Pft to -1.

Step 5: If the kth-column of Pn has a non-zero entry in some row other

than row j, set k = k + 1 and go to Step 3.

Otherwise, find resistor R , a = l,2,..,m_ such that resistor R

contains resistor branch k. Invoking the Algorithm Assumption 2, v

is a possible independent port variable of the n -port resistor R...

Let x_ c JK. be the remaining independent port variables. Set

8\
Y = inf

v_ e£x 3\

Step 6: If j = 1, set k = k + 1, set

XR = X

and go to Step 3.

Otherwise, set k = k + 1, set

y^ = minQr,^)

and go to Step 3

Comment: Except for Step 11, the following steps dealing with inductors

are dual of those dealing with capacitors.

Step 7: If j = nL + 1, go to Step 13

Otherwise, find "cutset 0" consisting of inductor L ,resistors,

and current sources as prescribed by Algorithm Assumption 3. Augment
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the (j-l+n ) x 2n^ matrix P.. with a row of zeroes; namely row (j+n ).

Set k = 1.

Step 8: If k = n + 1, set j = j + 1 and go to Step 7.
R

Otherwise, if resistor branch k is not in cutset C-» set k = k + 1

and go to Step 8.

Otherwise, resistor branch k is in cutset (...

Step 9: If resistor branch k is similarly directed with inductor L. in

C , set the (n +j, n +k)th element of Pn to +1.
3 OR ~U

Otherwise, set the (nr+j, n^+k)th element of PQ to -1.

Step 10: If the (ru+k)th-column of P-. has a non-zero entry in some row

other than row n_ + j, set k = k + 1 and go to Step 8.

Otherwise, if the kth column of P~ also has a non-zero element,

go to Step 11.

Otherwise, the kth-column of Pn has all zero elements, and the

(n„+k)th column of Pn has all zero elements except in row j. Find
R ** U

resistor R , a = l,2,..,m_ such that resistor Rq contains resistor branch

k. Invoking Algorithm Assumption 3, i is a possible independent port

« (DncT1
variable of the na-port resistor Rqj. Let jjL £ K be the remaining

independent port variables. Set

Y = inf 3vn
" iGtf- _A

and go to Step 12.

Step 11: Find resistor Ra, a = 1,2,..,dl such that resistor Ra contains

resistor branch k. Invoking both Algorithm Assumptions 2 and 3, both

v„ and !„ can be possible independent port variables of the n -port
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%-!
resistor. Let ?r>(v) G *^ and *R(i)
maining independent port variables in each case. Set

x = - min

31
\

inf

v eR- -^
v fnna"l?R(v)eR a

1 avT
inf

na~l
6K be the respective re-

av.

\

i„ eR1 *\
„n„-l *
eR a

?R(t)

Step 12: If j = 1, n = 0, set k = k + 1, set

Yn = Y
-R

and go to Step 7.

Otherwise, set k = k + 1, set

YR - min(YR,Y )

and go to Step 7

Step 13: Set

X = max. eigenvalue £0?0

= I
H XXR

max

-h -g

Stop

Example 6: Linear Time-Invariant Networks

The preceding algorithm is obviously applicable to networks con

taining linear time-invariant strictly passive elements. In the

following examples we compare the estimated time constant t derived

using our algorithm with the actual maximum time constants of linear
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networks. Let us consider first the network shown in Fig. 10a.

network state equation is

The

£)-ca
'2 -1 o

l

2 /J

The exact solution is given by:

-1.22t -3.28t\(t)

>L(t)
- vc(0)

+ ^(0)

r-.35e + 1.35e

/Q. -1.22t , /Q. -3.28t
.485e + .485e

f on, -1.22t Q71 -3.28t
.971e - .971e

. oc -1.22t QC -3i28t
1.35e - .35e

'-.398(e 1,22t-l) + .148(e"3*28t-l)
r.553(e"1,22t-l) + .053(e"3,28t-l)

Let us apply the algorithm. First, we obtain from (105)

\ = 2; Xh = l

Next, we find

and compute

fl 001 /V
•LoiiJK

X = [max. eigenvalue of PnPn]

and

Yu - min[lft, ifl, in] m i

•62-

max. eigenvalue of

(121a)

(121b)

(122)

(123)

'1 0 0*

0 11

.011.

= 2

(124)

(125)



Hence, we obtain from Step 13

Y - 1/2 ; t-Lg lmax

Now, since

ft'
fl/4

1/2

= 4 (126)

(127)

is the globally asymptotically stable equilibrium point, it follows

from (100) that for every solution vc(t), t^Ct)I ,

vc(t)
MO

1/4

1/2
< ^

vc(0)
iL(0)

1/4

1/2
-t/4

(128)

Comparing x = 4 in (126) with the actual maximum time constant
r ° max

x = 1/1.22 = .82 in (121b), we see that our estimate of T is within
max

a factor of five of the actual time constant. This is an acceptable

error.

The network of Fig. 10b is more "stiff" than that of Fig. 10a.

The network state equation is given by

2 0'

0 2 rl 20j\v,

-1

Here, the two time constant are

t = .256 ; x2 o .025

Using our algorithm, we obtain

Yt. = Jh = 2
\Bl

Since

T . =1/2
max
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»-(
20/39

1/39

is the globally asymptotically stable equilibrium point, then

vr (t)
Ll

vr (t)
°2

20/39

1/39

\(0>
,v (0)
L2

20/39

1/39

-2t

(132)

(133)

The time constant x = 1/2 is within a factor of 2 of the actual
max —

maximum time constant in (130).

Example 7: The network of Fig 8b previously discussed in Example

5 satisfies our Algorithm Assumptions. We will compare the expression

(99) with the computer-simulated network waveforms. In particular, the

waveforms of this network are simulated using the CSMP [25] .

The function h is shown in Fig. 8b. We can find g ,

\\ / V(V3+1/3(VVV"1} 2 .. I.,x2 r, (1+i }^+1
^2 L2rvc-l+2/3(vc+iL1+i^2+l)+2

JL ^ l+(iT )
L2

(134)

The globally asymptotically stable equilibrium point (this may be found

by solving (134) or via computer analysis) is given by:

-.1547

1.0205

-.906 h.

Let us apply the algorithm; first,

dv, dc)2K>2+3)
dqc= K>2+i)2
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2.098

-1.754

(135)

(136a)
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Thus

dvc2 < -r-^ < 3.125-dqc-

The eigenvalues of

are

and

5/2 1/2

L 1/2 5/2

X = 2,3

Y, = 3.125 ; Yu = 2
n —n

Next,

R2
v.

"?0

and

R3
vJrJ

rl o o Oi

0 11-1

Lo o o 1

R2

LR.

R.

l\l

(136b)

(137a)

(138)

(139)

— A *TAX = max. eigenvalue of [PnP/J - max[l,0,2 + ^2, 2 - ^2] = 2 + ^2 (140)

Finally

2g--i» inf

dv

dv.
R,

dv
R,

dv.

, inf
di

, inf

R,
di

, inf

R,
di

V

=min[l,2,l,2 - -^] =2- -^ (141)

-65-



Hence

2-
3#

\ 1+Jl
.205

So for any solution

*L(t)
*rit)

-.154;

1.0205

-.906

max

< 1.25

3.8

MO)

♦l2(0).

(142)

e-t/3.8 (143)

The left and right sides of (143) were simulated using the CSMP and the

waveforms displayed on the CRT. The results are shown in Fig. 11. The

waveforms in Fig. 11a have as an initial state

(144)

which is close to the globally asymptotically stable equilibrium point

given in (139). The upper waveform in Fig. 11a corresponds to the

estimated waveforms which is the right side of (143). The lower wave

form is the exact waveform given by the left side of (143). Next, we

choose the initial state

(145)

which is not close to the equilibrium point. The results are shown in

Fig. lib, where the upper waveform corresponds to that estimated by the
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right side of (143) and the lower waveform corresponds to the exact

waveform given by the left side of (143). The actual waveforms cor

responding to the initial state (145) are shown in Fig. lie. The upper

waveform (on the vertical axis) is qp(t) - (-.1547), the middle wave

form is <|> (t) - (-.906) and the lower waveform <L (t) - (1.0205). In
L2 Ll

all cases we find that our estimates for transient decay are quite

realistic upper bounds.

VII. Conclusions:

A number of results concerning the qualitative behavior of non

linear dynamic networks are presented. The hypotheses of these results

are of two types: First, very general and practical conditions on the

network state equation, and second, conditions upon the individual

element constitutive relations and their interconnection. In the latter

form, the hypotheses include (in general) the Fundamental Topological

Assumption, namely there is no loop and no cutset formed exclusively

by capacitors and/or inductors, and the L.C. Hypothesis. These con

ditions are simple, easy to verify, and therefore quite practical .

For example, in [13] Varaiya and Liu develop a result similar in nature

to 1. of Theorem 6 where it is required that for any set of network

waveforms, m •• =• [y (t) = 0]. This is precisely the case

when either the Fundamental Topological Assumption or the L.C. Hypothesis

is satisfied. In the same way, it would not be possible to develop the

algorithm implementing Theorem 8 without an equation of the form (118a)

which is derived using the Fundamental Topological Assumption [14;

Theorem 2]. In [15] we apply these methods to nonautonomous networks.

In particular we establish the existence of periodic network waveforms
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when sources are periodic, and we discuss the existence of a unique,

steady-state waveform. A result similar to Theorem 8 is developed

where network waveforms converge exponentially to the unique, steady-

state waveform, and, in this case, the algorithm presented here is

directly applicable.

The results developed in this paper may be applied in a useful way

to the study of the structural sensitivity of nonlinear dynamic networks.

That is, we can answer the following question: Let (JvJ be a network.

Network lAI is formed by altering slightly the constitutive relations

of some of the elements of (Jvl. Do the network waveforms of (Jvl behave

in the same way as the waveforms of^AI? Equivalently, let (J\J be a real

electrical dynamic nonlinear network and let cAl be its mathematical

model used in computer simulation: Will the bahavior of cJV) be the

same as that predicted by the behavior of <Jvl? In many cases we may

apply the theorems presented here to answer these questions. For

example, assume <^N is a transistor network satisfying the hypotheses of
/V

the Proposition of Example 3. We can form <Jvi by altering slightly the

transistors, resistors, capacitor, inductors and sources of u\l . But

so long as each transistor function g. still satisfies (76), each

resistor function g_ still satisfies (77), and h still satisfies (75),

then the behavior of vjv is the same as the behavior of cjvl; namely, all

waveforms are eventually uniformly bounded and there exists an equilib

rium point.
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Proof of Theorem A

Proof of A-l [20]

Case 1: n = 1

APPENDIX

Let xf <x" S IR1. For any ae (0,1), define x^ A (l-a)xf + ax".

Since f is strictly increasing,

Thus

•xa
F(xa) -F(x') A \ f(x)dx <f(xa)(xa -xf)

V

.x"

F(x") - F(xa) A 1 f(x)dx > f(xa)(x" - xa)
xa

F(x ) < F(xf) + f(x )(x" - xf)a
a a

F(x ) < F(x") - f(x )(x" - x'Kl-a)
a a

(A-l)

(A-2)

Multiplying the first equation of (A-2) by (1-a), multiplying the second

equation by a, and adding, we obtain

(l-o)F(x ) + aF(x ) = F(xJ < (l-a)F(x') + aF(x") (A-3)
a o o

Case 2: n > 1

Let x' *x" SRn. Define F:R1 +R1, F(a) AF((l-a)x' +ax").
A A A

Now, F(0) = F(xf), F(l) = F(x"), so we have to show that

F(a) < (1-a) F(0) + aF(l) V a S (0,1) (A-4)

To see this, note that

it^

*%>-- (x"-xMT
daZ

3f /(l-a)x,+ax")
8x

(x"-x») (A-5) ^

Since f is a C -strictly increasing diffeomorphism mapping R -* IR , the

Al



right side of (A-5) is positive [14; Theorem A]. Thus, ~^~ is a
i

strictly-increasing function on IR . It follows from the preceeding

Case 1 that (A-4) is true. H

Proof of A-2: For any x * f" (0), there exists a unique e€ R , IM = 1

and a unique r > 0 so that x = f" (0) + r e. That is, every x * f (0)

may be uniquely represented by a vector emanating from f (0). For each

e€Rn, Hell =1, we will show that F(x) =F^f""1(0) +re) is astrictly-
increasing function of r > 0. So, for e fixed and r > 0, we have

dF

~dr

(x) dF(f"1(0) +re) . ,
— =—* L= e1 f(f i(0) + r e)
r dr - - V -/

=1\fX(0) -f"1(0) +re f(f_1(0) +re) -f(f^!?))

Cf"1(0) +re) f"1(0) j"f(f"1(0) +re\ -f(f^j?)) (A-6

Since f is strictly-increasing, the right side of (A-6) is positive and

hence Fis astrictly-Increasing function of r>0. Since F(0) =F^f (0)

+0e), it follows that F(x) >0for all x*f" (0). *

Proof of A-3: We first show that lim F(x) = + «>. In particular, we will

show that for any N > 0 there exists M > 0 such that if Hx-f (0)11: = r > M,

then F(x) > N.

We have already shown in the proof of Theorem A-2 that Ffr e+ f (0)j

is a strictly increasing function of r. That is, in equation (A-6) we have

dF
shown that -r~ > 0. Next,

dr

&2f(t e+ f"1(r e+f"1(0)) T3f(r e+f^w)
. 2 = ~ 8x
dr

A2
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1 fpin
and since f is a C -strictly increasing diffeomorphism mapping R onto

IRn, the right side of (A-7) is positive for all r > 0, for all e^ Rn,

Hell = 1. Define

dp(r e+f~1(0))

.eeRn, Bel-1

kf A inf - t^ (A-8)
r=l

dF
The constant k- is well-defined since -r— is continuous, and the set

r dr «
jtj H F

{(r,e) : r=l, Qefi=l} is compact. Furthermore, because -r— > 0 and —j > 0j
dr

it is easily shown that k- > 0. Then, for any x ^ IR such that

Hx - f" (0)11 = r > 1, we have

x } dF(p e + f1(0))(x) =F(r e+f\o)) - J —* Tp L

dF(p e + df^O)) f dF(p e + f"1(0))
^' dp "'«*) ^" dp "' *>

\ dF(p e + f"1(0)) r dF(e + f'1(°))>J vV ~/dp+] v dp ~y dp
^dF(p e+f1(0))

dp • v*-1) (A~9)

Now, the first term on the right side of (A-9) is positive. Hence, for

any N > 0 define M A 1+ t~ . From (A-9) we conclude that if Hx-f (0)11
kf

then F(x) > N.

By a simple extension of this conclusion, for any b^R, f(0 -b

is also a C -strictly increasing diffeomorphic state function mapping

Rn onto Rn, and v(f(x) -xTb) =f(x) -b, thus

A3
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lim F(x) - xTb =+°° Vb6£n (A-10)
l!xll-*»

Hence, the proof of this theorem is completed upon proving the following

^ lemma (this lemma is stated but not proved in [19; pp. 110]):

Lemma A: Let H: R ~+ R and let H»H be an arbitrary norm in

^ £n. Then

lim H(x) - xTb = + oo , v b^ £n
xII-*»

("1
[II x

AI lim H(x)/||xil = +»
"/|f'xll^»Liixi

(A-ll)

(A-12)

Proof: We will use (A-ll) to show that for every y > 0 there

exists 3 > 0 such that if HxH > 3, then H(x)/Hxll > y. That is,

[0x0 > 3] =* [H(x) - yllxil > 0] (A-13)

Partition R into 2 orthants. Orthant 1 is the set of x = (x.,..x )
-In

£ Jx such that x. _> 0 for each j = l,..,n. Orthant 2 is the set of

x^F such that x, < 0, and x. > 0 for all i = 2,3,..,n. More
1 J - J

specifically, for any integer kE [1,2 ], let a a -•••a2a- be the

modulo 2 expression for the integer k - 1. Then, we say that x is in

orthant k (denoted by 0, ) if, and only if, for each j = l,..,n,

x. > 0 if a. = 0
3 ~ 3

(A-14)

x. < 0 if a. = 1
3 3

^ Now, suppose for each k = 1,..,2 , for every y > 0 there exists 3, > 0

such that

[HxH > 3, ,xG 0, ]=> [H(x) - yllxil > 0] (A~15>

A4



then, for 3 = max 3, , equation (A-13) follows from (A-15). Thus,
k=l,..,2n k

it suffices in this proof to show (A-15) for each orthant 0fc.

First, note that ll«ll : x+* V"] |x |is anorm in R ,so by the

equivalence of norms in Rn there exists a > 0 such that HxH <. g) „|x |

Tfor all xS i£n. Next, for each orthant ©k» define vector b= (b-^.-b^

G Rn in the following way: for any x£ 0^, for each j= l,..,n, define

b. = Y<*
J

if x. > 0

b. = -ya
3

if x. < 0
3

Hence, by construction

n

(A-16)

xTb =.Y<*X)lx- I>Yllxll Vxe0 (A-17)
j=l' 3I

We now apply the hypothesis (A-ll), which we restate in the following

manner: for any b £ jRn there exists 3 > 0 such that

[llxll > 3J => [H(x) - xTb > 0] (A-18)
b ~ ~

For the vector b defined in (A-16), using (A-17) and the constant 3fe in

(A-18), we obtain

H(x) -yU >H(x) -xTb >0 V HxH >3b
xeev (A-19)

k

and for 3, = 3^, we have shown (A-15). Thus, Lemma A and Theorem A-3
k b

are proved. H ^
L

Proof of A-4: First, note that for all x ^ Q,

1 T/_, ,\ ^ IT/-,. £/nx\ 11£/„N1I (A-20)—xT(f (x)) >-ji- xT(f(x)-f (0)j - ||f(0)||

A5



Thus, it suffices to show that

lim xTf(x) = + oo (A-21)
Hto

assuming f(0) = 0. Now, we have shown already that e f(re+f (0)j =

eTf(re) is a strictly increasing function of r > 0. This means that
T 1 ]"t
e f(re) is larger than — Je f(pe)dp which is the average value of

'0

Te f(pe) as p varies from 0 to r. Then, for any x ^ 0, we obtain the

following inequality:

Jo Jo

- M F(?> (A'22)

Applying Theorem A-3, equation (A-21) follows from equation (A-22). "

Proof of A-5: The set K is non-empty since f (0) G K. It is

closed since F is continuous. It is bounded because of (17). It

remains to show that K is convex. For any a £ (0,1) and for each

x', x" •€ K, it follows from the strict convexity of F that

F((l-a)x,-hjx") <(l-a)F(x1) +aF(x") <(l-a)k +ak =k_ *(A-23)

Proof of A-6:' Using the constants y >j > 0 of (14), for any xf ^ x",

f(x') - f(x")ll =|lvt^„f|[lxt-xMll»Hf(x') -f(x")

'<x'-x")T(f(x^-f(x")) ^!,^n, x"?' -?"•

x'-x'

i /„»_j«\™/*/..t\_fi/ji\\ 1 ii„? „M||2
-'llx'-x"

(A-24)

and the right inequality of (20) follows directly. To show the left

inequality, let us first observe that since the state function f is

A6



strongly uniformly increasing, the inverse function f is also strongly

uniformly increasing, and it can be shown that

yily' -yMH2 =(y,-yM)T(f~1(y?)-f~1(y")) >=lly' -y'l2 (A-25)

for each yf, y" £ R . Equation (A-25) comes from the fact that the
3f(x) m

eigenvalues of the symmetric matrix X ~ are positive, real and lie \

between Y and Y [14]. Hence, the eigenvalues of —^—*— are positive,
?

real and lie between — and — .

Y -

Then, proceeding as in (A-15), we obtain:

Ox1 - x'MI o.|f"1(y«) - f-^y^O^zOy' - y"ll =~l|f(xf) - f(x")[| (A-28)
." Y ~ ~ y " -

which yields the second inequality of (20).

Next, we show (21) using the Mean Value Theorem [19]:

1

F(x') =J[x,-r1(0)]T|ffarxf-r1(0)]+r1(0)Uda

1

=J[x» -f 1(o)'iT(f(a[x»-r1(g)]+f"1(o)) -(f f\qjfldo

=|^[a(x»-f"X(0)) +f"1(0) -r1(0)JT[fiarx,-f1(0)l+f"1C0)\
-f(jf^O^jda

1

>|| Ylla(xf-f"1(0)) +f""1^) -f"1(0)H2da

11| x1 -f^CO) H2ada =-| yII xf -f_1(0) ||2 (A-27)
•X)

This proves the right inequality of (21). The left inequality follows

in the same way. n

A7
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Corollary A: Let f: Rn •* R be a C -state function. Assume

there exists constants k > 0, and y >i > 0 such that for all ||x' [| > k,

llx'MI > k,

Jx' -x"l|2 <(x1-x")T["f(xl)-f(x")l <Ylxf -x"Q2 (A-28)

Then for all llx'MI > k, llxf II > k, we have

Yllx1 - x"ll < llf(xt) - f(x")II < Yllx1 - x"ll (A-29)

Furthermore, there exists aC2-function F: &* -> R1 and constants ^ >0,

Y > y_i > 0 such that

VF(x) = f(x) , V xe En
(A-30)

X-jJIxll2 <F(x) <Y1Hxl|2 , Vllxll >k2

Proof: This is proved essentially in the same manner as in the

proof of Theorem A-6. Indeed, (A-29) follows from (A-28) as (20)

follows from (14). In this case, f" may not exist. However, f is

injective on the set {x: HxH > k}, and the proof is the same.

Let F: J?n •+ R1 be any C2-function such that vF(x) =f(x). Define

k = inf F(x), and let F(x) = F(x) - k. By construction, F(x) > 0 for
Hx||=k -

all Oxfl =k. For any xsuch that llxll > k, let x=|^jj- x. Then, applying

the Mean Value Theorem, we obtain

> 1.

F(x) >. F(x) -F(x) =|[x -x]T[f(a(x-x)+x)]da
^ "0

i \in? - n - ii? - *n • h?(?)ii <A~31>

where the last inequality is derived as in (A-29). Define the constant

A8



k_ = sup llf(x)H, and noting that IIx - xll = llxll - k, we obtain
0 llxlhk ~ "• ~ ~

2

F(x) >|Xilxll2 -llxll [Xk +kQ] -EX|•+kkQ] (A-32)

For any Xi» ° < Xi < "o .!» tnere exists k > 0 such that the left

inequality of (A-21) follows from (A-32). The right inequality follows ^

in a similar way. H

A9
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FIGURE CAPTIONS

Fig. 1. (a) The Wien-Bridge Oscillator (b) The Network Model

(c) The Idealized Function f(-)«

Fig. 2. The Dynamic Nonlinear Network lAI.

4 Fig. 3. A Network whose Voltage and Current Waveforms Exhibit Finite

Escape-Time Solutions in Negative Time.

Fig. 4. A Network Containing Highly Active Elements yet Having no

Finite Escape-Time Solution.

Fig. 5. (a) A Network with Bounded Waveforms (b) A Network with

Eventually Uniformly Bounded Waveforms.

Fig. 6.- (a) The v-i Curve of Resistor R.,; the Function g is Eventually

strictly Passive (b) The v-i Curve of Resistor R2; the Function
T

g is strictly Passive. The Composite Function gR - (gR , gR )

Is Not Eventually Strictly Passive.

Fig. 7. (a) A Network Containing Strictly Passive Elements when the

Resistor has the v-i Curve of (b) or (c). Its state Equation

does not Exist and the Network Exhibits Finite Escape-Time

Phenomena.

Fig. 8. (a) A Network Containing a Cutset of Inductors. Each Element

is Uncoupled and has a C -Strictly-Increasing Diffeomorphic

Constitutive Relation (b) The Equivalent Network with the

> Cutset of Inductors Removed, and the Constitutive Relations of

the Transformed Equivalent Network are Specified.

^ Fig. 9. (a) and (b); Networks with a Globally Asymptotically Stable

Equilibrium Point (c) A Network which Oscillates.

Fig. 10. Two Linear Networks Used to Evaluate the Accuracy of the Algorithm.



Fig. 11. The Waveforms Defined by (143) for the Network of Fig. 8b.

(a) For Initial State (144), the Upper Waveform is the Right

Side of (143) and the Lower Waveform is the Left Side.

(b) The Waveforms Corresponding to Initial State (145). v.

(c) The Waveforms <f>r(t) - (-.1547), <j>, (t) - (-.906), and
2 £.

4» (t) - 1.0205.
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