Copyright © 1975, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

GETTING STARTED IN INGRES - A TUTORIAL

by

M. Stonebraker

Memorandum No. ERL-M518

23 April 1975

. GETTING STARTED IN INGRES « A TUTORIAL

by

Michael Stonebraker

Memorandum No. ERL~M518

23 April 1975

ELECTRONICS RESEARCH LABORATORY

‘ ~ College of Engineering
. .University of California, Berkeley
o 94720 '

Research sponsored by the National Science Foundation Grant GK~43024x,
U.S. Army Research Office ~~ Durham Contract DAHCO4~74-~G0087, the Naval

Electroni¢ Systems Command Contract N00039-75~C~0034, and a Grant from the
Sloan Foundation,

GETTING STARTED IN INGRES
' R
TUTORIAL

by
MICHAREL STONEBRAKER

This document contains an introduction to the data base manage-
nent system, INGRES, and in particular stresses its user tanguage
RUEL . It is meant to be read while interacting with the INGRES
systen at o terminal.

One’s first encounter with INGRES is to type the UNIX shell com-
nand ' ‘

ingres data-base-nanme

which has the effect of turning you over to INGRES for subsequent
interactions. The actual sequence is:

Zingres demo

Here, we have entered INGRES and specified that we are interested
in the date base "demo” which will have in it the relations of
interest to this document. After a momentary pause the following
vwill be returned to your terminal.

INGRES vers 2.3 login
Sat Mar 15 14:16:04 1975
Set operators, Aggregate functions and X.ALL are not yet inplenented.

go

The first three lines constitute the current “dayfile” which
gives relevant infornation on the status of INGRES. The stete-~
nent "go® indicates INGRES is waiting for your input.

How type

help
Ny

“help® is an INGRES command which can deluge you with information

GETTING STARTED -1- 3-20-795

about the
the INGR
“Ng*" is a
without

response

systen. In this case, you will receive the page fronm
ES reference nanual which describes the help connand.
statenment to INGRES to execute the “help® connand
waiting for odditional .input from the terninal. The
from INGRES ig!

query formulation complete

HELP(X) . 4722773 HELP(X)

HANE

help - get information about how to use INGRES

SYHOPSIS

HELP [*iten-in-question®]

DESCRIPTION

EXAN

SEE
DIARG

BUGS

HELP may be used to obtain informnation about any section of
this nanual, the content of the current dato base, or o
specific relation in the data base, depending on the iten-

in-question. Onission of that argunent is functionally
equivalent to HELP “help® . The other legal forans ore os
follow:

HELP "section® - Produces a copy of the specified section of
the [NGRES Programmer’s Manual, and prints it on the
standard output device.

HELP "* - Gives information about all relations that exist
in the current database. :

HELP “"relnane® - Gives information about the specified rela-
tion, but in greater detail than vould HELP *°

PLE

HELP

HELP ®“quel®
HELP **
HELP “enp"

ALSO
NOSTICS

Unknoun name - The itemn-in-question could not be recognized.

Alphabetics appearing within the iten-in-question wust be

GETTING STARTED -2- 3-20-79

4

lower-case to be recognized.

continue

The final line contains the wvord ‘“continue®. This indicates
IMGRES is ready to listen to you again. :

At this point it is important for you to realize that INGRES
maintains a workspace in which you fornulate your interactions.
This vorkspace is desirable so that you can correct gspelling
errors and other nistakes which you may from tine to tine make
without heving to type in your entire interection agein.

it the present time your vorkspace contains
help

If you type in "\g®" once more, INGRES will sinple execute your
vorkspace which will give you a second printout of vhat you have
just seen above.

In order to clear out our workspace wve use the coamand “\r®as
follows:

\e
g0

Qur workspace now is emnpty. It is still possible to type in “\g*
as follous. However, it has no effect.

\g
query fornulation conmplete
continue

e will novw try to exercise the “retrieve” comnand and will do so
on the data that nouw follows. To print the contents of eny rela-
tion (or table if you are more comforteble with thet terminolo-

9y)., simply type:
print relation~-namne
If we type help“® we can obtoin a list of relations in‘the data

base demo. One relation from this list is called ‘"parts®. Ve
can print this relation as follows:

GETTING STARTED -3- 3-20-75

print parts
"‘g

query formulation complete

perts relation

Ipnumn fpname tcolor lveightiqoh {
R bl D e {
| licentral processor lpink I 101 11
l 2imenory igray i 201 321
| 3idisk drive Iblack i 6851 21
{ 4ltape drive Iblack i 4501 41
| Sltapes lgray l 11 2501
I 6lline printer tyellow | §781 3t
l 7il-p paper fuhite l 151 951
{ Blterminals Iblue | 191 151
| 13lpaper tape reader Iblack 1 107t o1
{ t4ipaper tape punch Iblack I 1471 01
{ 9iterninal paper luhite t 21 3501
{ 10lbyte-soap tcltear | 01 1431
i illicard recder lgray | 32721 ol
| 12lcard punch lgray l 4271 ot
continue

Notice that the “parts” relation has information about the con-
ponents in a hypothetical computer installation. Each row of
this table (or tuple in this relation) contains information on o
given part including its part nunber., its part name, its color,
its weight, and the quantity that are on hand.

Using a "retrieve” conmand we will be able to obtain portions of
this teable which are of interest to us. (There is alnost no lin-
it on how large the tables can be; these examples are done on
smnall ones so that this tutorial does not become too large. In
fact, the actuel linit on the size of ¢ table s approximately
30,000,000 bytes for those who are interested.)

To obtain information, we mnust first tell INGRES what tabtle it is
that ve wish to interogate. One way to do this might be the con-
mand

I WANT TO TALK ARBOUT parts
Although this is natural to the beginner, INGRES nakes you do
something slightly more conplicated. This added complexity is

necessary so that one does not get into trouble with nore compli-
cated interactions.

GETTING STARTED -4- 3-20-75

The statement required in INGRES is
renge of variaeble-name is relation-nane

The variable-name is indicated to be a surrogate for the relation
name specified. Ye can declare p to be this surrogate for
*parts® as followus: :

e
go
range of p is parts

Hotice that we first cleared our workspace so that the wvhole
parts relation would not be printed agein.

Now, we can add a “retrieve® command which can be the following

retrieve p.pnane

The interpretation is that we wish to obtain the pnane coluan of
the relation specified by the variable “p°.

in order to ensure that we have typed our interaction correctly
ve may use the special command *\p". This will sinply print the
contents of our workspace as follows: - ‘

Np
range of p is parts
retrieve p.pnane

Since it appears to be a correct query we can execute it by the
“SNg“ conmand as follows!

g

query formulation complete

PERIOD = <.’ : line 3, syntax error
continue

Unfortunately, we have made a syntax error. What is nore unfor-
tunate is that INGRES is not always overly helpful in showing us
whaet it is. :

The problem with this interection is an arbitrary convention in
INGRES that whatever you vish to retrieve nust be enclosed in “(
» . WMe will correct our mistake by retyping the query as
follows:

GETTING STARTED -5~ : .3-20-75

\e
go
range of p is parts
retrieve (p.pnane)
AL

query formulation complete

ipname

lcentral processor
Inenory

idisk derive

{tape drive

ltapes

Iline printer

I1-p paper
{terninals

fpaper tape reader
Ipaper tape punch
ttermninal paper
ibyte-soap

fcard reader

{card punch
continue

Everything has now worked out all right and we have obtained the
colunn of the parts table which contains the nanes of the parts.

Ye can retrieve more than one colunn at once by sinply indicating

a sequence of colunn names separated by a comma.
obtain part names and colors as follows.

\e

go

range of p is parts
retrieve (p.pnane,
Ny

p.color)

query formnulation complete

Ipnane

lcentral processor
Imenory

tdisk drive

ftape drive

Itapes

lline printer

Il-p paper
(terninals

GETTING STARTED

lcolor

lgray
Iblack
tblack
tgray
lyellow
luhite
{blue

- o—

Hence we could

3-20-73

Ipaper tape reader iblack

f
ipaper tape punch iblack {
|terminal paper luhite i
lbyte-soeap iclear 1
tcard recder lgray i
fcard punch igray {
continue

Hotice in the printout each columnn conteins the nane of the
colunn so we do not get confused. Sometines ve require mnore ComR-
plex results than sinply the names of colunans. Suppose, for
exanple, we require the conputation *1000-qoh". In other words,
we vish to know for each part how many less than 1000 we possess.
This can be stated as follows!

e

go

range of p is parts

retrieve (p.pnane, conputatuon 1000-p.qoh)

Ng

query fornulation complete
fpname iconputl!
R ikttt Rl i l
lcentral processor | 9991
Inenory { 9681
tdisk drive I 9981
Itape drive { 996t
{tapes | 7501
Iline printer l 9971
Il-p peper | 9051
fterninals t 2851
tpaper tape reader } 1000l
ipaper tape punch | 10001
fterninal paper | 6501
Ibyte-soap | 8371
lcard reader | 10004
tcard punch | 1000!

continue

Hote that the heading on our printout is the first six characters
of the name “computation® which we have given to the <computed
quantity “1000-p.qoh". '

In order for INGRES to accept computed quantities you must aluays

give them a naeme. This is sinply done by picking a name and put-
ting it to the left of an equals sign in the retrieval.

GETTING STARTED -7- 3-20-735

Hote also that the presence or absence of blanks makes no differ-
ence in betuveen the “()7,

It is inportant that you spell correctly any colunn nanes vhich
you use in aen interaction, since INGRES has no spelling correcter
at the present tiwne.

Note lastly that you need not put interactions on three lines as
ve have been doing. The following works equally well.

\r

go

range of p is parts retrieve (p.pnane, conputation = 1000-p.qoh) \g
query fornulation conplete

Ipnane lcomputt
It et R i {
lcentral processor 1 9991
Imnenory i 9681
idisk drive i %981
ltape drive | 9961
Itapes (7501
{line printer { 9971
I1-p paper 1 9051
lterninals t 9851
ipaper tape reader I 10001
tpaper tape punch i 10001
fterminal paper | 6501
ibyte-soap | 8571
icard reader I 1000t
tcard punch I 10001

continue

It is usually wise to space your interactions seo they are as
readable as possible.

So far we have produced interactions which give us coluans of the
“parts® relation. We now indicate hovw to obtain only portions of
colunns. The basic mechanisr is o *vhere" clause which can be
added onto the end of the interactions we have been doing. If we
vanted the previous query only performned for those parts wvhose
color is pink we would do the following!

\e

g0

range of p is parts

retrieve (p.pname, conputation=1000-p.qoh) where p.color = “pink®
\Ng :

query fornulation conplete

GETTING STARTED -8~ : 3-20-79

fpnene fcomnputl

icentral processor | 9991
continue

The “where® <clause linits the number of rows which are exanined
to only those which setisfy the qualification given i.e. to those
which satisfy “p.color=“pink"®. Only the central procesor has
this property so it is the only entry in the output.

We are now to the point where we are typing enough information so
that errors in typing are likely. [t is very annoying to have to
reset the workspace and try again every time an error .is encoun-
tered. Two mechenisms are supported in INGRES to help with this
problen.

1) INGRES accepts the symbol % to mean "backspace”. Consequent-
ly., one can sinply backspace and retype errors which occur. One
can backspace as sany times as one wishes; INGRES will continue
to back up until it reaches the beginning of the current line.
Subsequent backspaces will have no effect. . If a line has "~ becone
so garbled that the user wishes to simnply erase it and start typ-
ing again one cen use the synbol @ vhich mneans “erase the wvhole
line®

2) Hore comnpliceted cbrrections are often necessary than can be
done easily using mechanism 1). These are supported by calling

on the features of the UNIX program called the editor. A tu-
torial on the editor is available in the UNIX programmer’s manu-
al. Here, we will sinply discuss two features of this progran.

Since it is a very powerful program, the serious INGRES progran-
ner would be wise to study that tutorial in more detail than the
few exerpts we present here.

Suppose we type in an incorrect query as follows:

\r

go

renhe of p is perts
retrieve p.pnane

where p.pcolor = "pink="

This query has many errors and we mnight do better to start over,
but for the exercise we will use the editor which we obtain by
typing \e as follows:

\e
>red

GETTING STARTED -9- 3-20-75

The statement ">d>ed” says now we are in the hands of the UNIX
editor and our workspace has been sent to it.

e can sequence through our progran by typing a line number fol-
lowed by a cerriage return i.e.

1
ranhe of p is perts

2

retrieve p.pnane

3

where p.pcolor = ®"pink=*®
i

ranhe of p is perts

-
<

retrigve p.pnane
3 .

whare p.pcolor = “pink=*®

Ye have now looked at each line twice and are ready to fix each
one.

e do this with a substitute comnnand. This has the forn:
s/this character string/that character string/

The editor goes through the current line of our command and finds
the first instance of “this character string® and replaces it
with “that cheracter string®. In this vay we can find offending
portions of our interaeaction and fix thena. '

First we do it for line 1.

1

ranhe of p is perts
s/ranhe/range/
s/pertsiparts/

i

range of p is parts

After two substitutions, everything is fine.

Hotice that you only need to specify enough of "this cheracter
string® so that the editor can correctly make the substitution.

Also, if you sinply put a "p" after the last "/" , the current
line will be automatically printed.

GETTING STARTED -i10- 3-20-75

Hotice lastly, that & and @ work the same way in the editor as in
INGRES. ‘

Ye now proceed to tix the rest of our statement vithout further
comnents.

2

retrieve p.pnane
s/pl(p/

s/me/me)’/p
retrieve (p.pnane)

3

where p.pcolor = "pink="
sl/pe/lc/

slk=7/k/lp

where p.color = “pink"®

We have now fixed all lines and use the comnand “"«" to send the
corrected statement back to INGRES as follous!

U

e now issue a "q" connana to quit the editor and return to
INGRES as follows: -

9 ,
{{nonitor

The echo "<((monitor" is to remind you that you have returned to
INGRES.

It is wusuallly wise to meke sure I[NGRES got your corrected in-
teraction back from the editor correctly by typing “\p" i.e.

Sp

renge of p is parts

retrieve (p.pnane)

vhere p.color = "pink"*

f °\g" will now execute the corrected command.

l"‘ g

query formulation complete
ipnane I

lcentral processor i

GETTING STARTED -11- 3-20-75

continue

Ve now indicate the boolean opperators which mnay be used. For
exanple, the interaction that follows is accepted by INGRES.

\r
go
renge of p is parts
retrieve (p.pnanme)

where p.color ="pink* or p.color = “"gray"
g
query formulation conmplete
ipnane |
R D D Lt |
tcentral procesgssor 1
imemory I
ftapes {
lcard reader |
{

tcard punch
continue

The operators "not", “"and® and “or* are supported in INGRES .
Users may sinply use the operators remembering only to put a
space on either side of then. It is sometines essential ¢o
renenber that the precedence of boolean operators is “not® then
*and” then "or". Users who wish to alter this precedence (or who
do not remember it)> may use parentheses to precisely specify
their meaning. The following interaction gives an exanple of
nultipte boolean operators.

\r

go

range of p is parts

retrieve (p.pnane)

where (p.color="pink® or p.color = “gray”") and p.pnua < 10
Ng

query fornulation complete

I pnane i

fcentral processor H
Imemory {
{tapes l
continue

Three points should be carefully noted about the above
interaction: :

GETTING STARTED -12- 3-20-73

1) Character strings must be enclosed in double quote marks while
nunbers may be typed with no special deliniters.

2) Note the arithmetic operator *<(* in the above interaction.
valid relational operators include!

(equals to?

(less than?

(greater than)

(less than or equal to)
(greater than or equal to)
(not equal to?

— -~ A NN

3) There is no linit to the conplexity of the expressions which
cen be constructed using relational and boolean expressions.

e now do one last exanmnple codcerning arithrnetic operators in
QUEL. This exanple finds the total veight (weight times qoh) for
each part with a part number less then 10.

\e

go

range of p is perts

retrieve (p.pname, tot= p.weightep.qoh)
vhere p.pnun < 10

\g

query fornulation complete
lpnane itot {
[~--emmmm e e e m s c I
fcentral processor i 101
imenory I 6401
idisk drive I 13701
itape drive I 1800t
[tapes i 2501
{line printer | 17341
ll-p paper t 142851
fterninals I 2851
lterninal paper ! 7001

continue

It should be noted that arithmetic operators can be used in the
qualification portion of en interaction as vell as in the portion

indicating the desired information. Valid arithnetic operators
include: ‘

.+ (addition)
- (subtraction)

GETTING STARTED -13- ' 3-20-79

* (nultiplicetion)

/ (floating point division)
x** (exponentiation)

nod (integer division)

It should also be noted that any user can save any result of an
interaction by simply specifying the nane of a relation into
which the ansver should be placed. The following suggests an
equivalent way of obteining the previous result. First o rela-
tion is created with the ansver then the print command is used to
display the result.

\r

go

range of p is parts
retrieve into local(p.pnane, tot=p.vweightsp.qoh)
where p.pnum < 10

g

query formnulation conplete
continue

\r

g0

print tocal

“g

query fornulation conplete

local relation

Ipnane ltot |
R e L e s |
icentral processor | 10!
Inemory t 6401
Idisk drive i 1370¢
{tape drive | 18001
{tapes 1 2501
iline printer I 17341
tl-p paper I 14291
fterminals { 2851
lterminal paper | 7001

continue

Hotice that local remains as a relation in the data base and nay
be used in any future interactions by sinply declaring a range
variable for it.

He fturn now to interactions which involve more than one relation
at o time. It is in these interactions that QUEL is especially
useful because of its ability to connect infornation in different
relations.

GETTING STARTED ~14- 3-20-75

First we print a second relation that will be ugsed in the sequel.

\rp

go
print supplylg

query formulation conplete

supply reletion

isnum fIpnum Ijnum Ishipdateiquan |
R ettt e E LR Db Rl et {
| 4751 11 1001173-12-311 1t
i 4751 21 1002174-0S-31t 321
i 81 11 1003174-12-311 11
i 8l 11 1004175-01-15!1 11
i 4751 31 1001173-12-311 21
i 4751 { 1002174-05-311 11
| Bl 21 1003174-12-291 1281
{ 81 21 1004175-01-151 2561
l i221 71 1003175-02~011 1441
{ 1221 71 1004175-02-011 481
{ 1221 91 1004175-02-011 1441
{ 4401 6l 1001174-10-10! 21
I 1311 81 1004174-11-221 41
l 2411 41 1001173-12-311 11
{ 621 31 1002174-06-181 31
{ 4751 21 1001173-12-311 321
1 4751 11 1002174-07-011 11
{ 81 61 1003174-12-251 21
! 81 61 1004175-02-011 41
| Sl 41 1003174-11-151 31
{ 51 41 1004175-01-221 61
i 201 §t 1001175-01-101 201
{ 201 §Y 1002175-01-101 751
{ 411 St 1003175-01-02i 501
i 91 Si 1004175-02-051 4001
{ 2411 11 10051?35-06-0114 11
i 2411 21 1005175-06-011 321
{ 2411 - 3F 1005175-06-011 11
I 671 S1 1005175-07-311 201
| 671 4t 1005175-07-011 11
{ 9991 1t 1006176-01-011! 11
i 8991 21 1006176-01-011 321
{ 9991 3! 1006176-01-011 11
i 999 | 41 1006176-01-011 il
[999 | SI 1006176-01-01t 201
{ 9991 61 1006176-01-011 11
{ 999 | 71 1006176-01-011 101
f 9991 81 1006176-01-011 1l

GETTING STARTED

-19-

3-20-7?95

9991 91 1006176-01-011 1001

!

| 9991 10} 1006176-01-011 1441
I 999} 111 1006176~-01-011 il
| 9991 121 1006176-01-011 11
{ 9991 13t 1006176-01-011 11
| 999 | 141 1006176-01-011 i1
| 2411 g8t 100St179-07-011 il
{ 2411 91 1005175-07-011 1441
{ 1311 8l 1001175-03-191 21
{ 1311 8l 1002175-03-1§51 11
{ 1311 9] 1001175-04-311 2001
l 1311 91 1002175-03-311 1001
t 81 111 1004175-01-011 21
{ 81 121 1004175-04-311 31!
i B8l 111 1007176-02-011 31
{ 3] 121 1007176-02-011 21
{ 81 g8l 1004174-12-201 51
{ 81 91 1004174-12-311 J001
{ g8l i1 1007176-02-011 11
{ 81 21 1007176-02~011 10241
continue

This relation gives information on conditions under which the
hypothetical computer installation can buy nore parts. It indi-
cates the supplier nunber from whonmn each part is available, the
quantity in which it can be ordered: the date such an order could
be shipped and the job nunber to which such an order could be
charged. Notice that the column pnum appears in both the parts
relation and this relation. Using this infornation we can “con-
nect” the two relations. For exanple, we night want to know the
supplier nunbers of suppliers vho sell central processors.

One way to proceed is to interrogate the parts relation to find
the part number of central processors as follous:

\r

g0
range of p is parts
retrieve (p.pnumr) where p.pname = "central processor®

Ng

The ansver returned is:
query formulation conplete
Ipnunm |

{ 11

continue

GETTING STARTED -16- 3-20-735

Hence: part number 1 is the central processor. Then we could
interrogate the supply relation seeking the suppliers of part
number 1 as followus:

\r

go

range of s is supply

retrieve (s.snun?} vhere s.pnun =1
hg

query fornulation complete

Isnum |

{
{
{
{
{ 241!
{
{
continue

Hotice that suppliers 8,241, 475 and 999 supply central proces-
sors.

Hotice also that suppliers 8 and 475 are repeated more than once.
Beceuse of the internal way that INGRES is organized, nuch faster
response time can be supported if the "answer” is printed on the
terminal with duplicate values sonetimes present. In this cage,
the user nust look at the response and note the duplications. On
the other hand, should the user wish the systen to detect and
delete the duplicates, the user need only retrieve his answver
into a temporary relation and ¢then print that relation. The
instructions ere the following:

“e

go

range of s is supply

retrieve into cpu(s.snun) where s.pnumn = §
print cpu

Ny

cpu relation

GETTING STARTED - -17- ' 3-20-75

{ 2411
{ 999}
continue

In eny case, it is rather inconvenient to have to issue two re-
trieve commands to get the information we require.

Yhat is even more inconvenient is the necessity of obtaining the
first output, namely the number 1, and then manually substituting
this into the second query. It would have been extremely incon-
venient if the central processor had had several part nunbers;: we
vould haeve had to substitute them all.

The following indicates one way around this inconvenience.

\p

go

range of p is parts

retrieve into cpu(p.pnun) vhere p.pnane = "central processor®
renge of c is cpu

renge of s is supply

retrieve (s.snumn) vheére s.pnunm =C.pRUN

't‘g

Here, we have executed the first half of the query as before
obteining in cpu the ansver “1%. Then the second half of the
query is executed with a variable declared over the cpu reletion.
In the second retrieve statement the c.pnumn sinply has the value
“1" and the statement should work correctly.

Unfortunately, ve get the following response:

In the CREATE of “cpu * a duplicate relation nane
“cpu * caused execution to halt.

INGRES takes the attitude that it should warn you wvhen you are
ecbout to destroy information in a relation by putting new infor-
mation in it. Hence, it will not 1tlet you execute the above
stotenent until you either:

1) destroy cpu (which was created earlier) indicating you do not
need the old information any more or

2) change the nomne of the cpu relation in the interaction so it
does not conflict with a relation that exists.

e take the latter course and change cpu to cpunumn by entering

GETTING STARTED -18- 3-20-735

the editor and using the substitute comnmand. WUhen we return to
INGRES ve should have the following:

range of p is parts

retrieve into cpunun(p.pnun’) vhere p.pnane = “central processor"
range of ¢ is cpunun ‘

range of s is supply

retrieve (s.snun? vhere s.pnumr =c.pnun

\g

A more precise way to think about queries with more than one
varieble is the follovwing. Ve will indicate a conceptual way
that [NGRES MWIGHT process such a query in a step by step foshipn.

Ve deal with the second half of the above query nanmely

range of s is supply
reange of ¢ is newcpu
retrieve (s.snum) where s.pnun=c.pnun

The first step of processing this query might be:

\e

jo -

raeange of s is supply

range of € is cpunun

retrieve into partensuer(sSnumnss.snuh, SPNUNZS. PNUR, CPDNURSC.PNUN)
print partanswer

AL

The relation partanswer contains one rov for each and every pos-

sible pair of rows in supply and newcpu. The printout 1is the
following. Exanine it carefully so you understand what is hap-
pening. '

query fornulation conplete
partanswer relation

Isnun Ispnum lcpnun |

GETTING STARTED -19- - 3-20-7%

{ 8t 21 11
{ 81 21 11
{ 1221 71 11
{ 1221 71 it
{ 1221 91 11
| 4401 61 11
! 1311 8l it
! 2411 41 1
| 621 31 11
{ 4751 21 11
{ 4751 11 11
{ 8l 61 1i
l -2 I Y 11
t Sl 41 11
{ Sl 41 11
| 201 Sl 11
1 201 51 11
{ 411 3t il
{ 21 St 11
t 2411 11 i1
{ 2411 21 11
{ 2411 31 i
l 671 i i
i 671t 41 11
{ 9991 11 11
1 2991 21 1l
{ 2991 31 |
! 9991 41 11
(9991 51 11
{ 2991 61 11
i 2991 71 i1
{ 9991 8l 11
! 299 | 91 11
| 9991 101 ti
{ 2991 111 11
| 9991 121 11
{ 9991 131 11
{ 9991 141 [
l 2411 8t 11
{ 2411 91 11
{ 1311 81 11
{ 13114 8t |
| 1311 21 i
{ 1311 921 11
| 81 111 11
| 81 121 11
{ 8l 111 11
{ 8l 121 11
{ 8l 8l 11

GETTING STARTED ~-20- 3-20-73

{ 81! 921 11
A 81 11 11
{ 81 21 14
continue

The second portion of the processing of this query novw involves
the partansver relation. Notice that the original qualification
statement

S.SNUR=C.PNUN

which involved tvwo different relations (cpunum and supply) can be
steted using only the partensver relation as follows:

\r

go

range of a is partanswer

retrieve (a.snumn) vhere a.spnumn=a.cpnun

't‘g

The response to this interaction is the correct ansver as follows:!

() = o o o - - -
n
&
-

ontinue

NHotice what has been printed is each rov of the partansver rela-
tion that has identical entries in its second and third coluans.

Vhenever you are in doubt concerning the meaning of e query with
nore than one variable in it, always think of the two step pro-
cess described above and you will not go wrong. With this in
nind, convince yourself that the correct answer to our interac-
tion ecbove can also be found using the following code.

e

go

range of s is supply

renge of p is parts

retrieve (s.snun) wvhere s.pnun=p.pnun and p.pnane=“central processor”

AL

GETTING STARTED -21- 3-20-75

So far in this documnent we have considered hovw to retrieve por-
tions of a relation (or relations) that are of interest. The
exanples have indicated the pover of QUEL for retrieval purposes.
The only feature which has not yet been considered is aggrega-
Eion.

e now illustrate the use of this construct in two examples. The
foliowing command finds the nunber of part nanes from the parts
relation which are black.

\r

go

renge of p is parts

retrieve (total= count(p.pnane where p.color = ®"black")}
\‘g

query formulation conmplete

ftotal |

{ 41
continue

The next command finds the sum of quantities of part nuamber 6
eble to be supplied before October 1, 1976.

\e

go

range of 5 is supply

retrieve (s = sum(s.quan where s.pnun=6 and s.shipdete(*76-10-1%))
‘-‘ g

query formnulation complete

ls t

{ 91
continue

The following points should be noted about aggregates:

a) eggregates have the form
agg-op(target-list where qualification).

agg-op can be
win
max
count
SUun
avg (sun/count)

- GETTING STARTED -22- 3-20-75

The target 1list is the quantity for wvhich the aggregate is
desired using those tuples which satisfy the qualification.

b) There is no linit on the number of variables which can appear
in an aggregate.

£) Aggregates can be nested, i.e. the target list and qualifica-
tion may themnselves contain aggregates.

d)> The “QUEL® section of the reference manual indicates certain
illegal aggregations. For examnple, avg is only allowed for quan-
tities which are nuneric. An atteapt to find the average of a
quantity that is alphanumeric (for exanple pname) vill result in
tn error.

e) An aggregate can appear anywhere in a QUEL interaction.

Ye now turn to the other features of QUEL.

First, a user may put conments anywhere in his QUEL statemnents in
order to mnake them nmore readable. This feature is especially
useful when interactions are saved and reexecuted et a later
time.

INGRES considers any text string bounded by */%“ on the front and
“*/* on the rear to be a comment. It simply deletes the comnent
during processing as illustrated below.

\e

go

range of s is supply

/% This is a conment to indicate the format acccepted by QUEL for
connentss/

retrieve (s.snumn) where s.pnun = 1

Sg

fAinother commnand which proves useful is the exit comnand which is
“\Ng', i.e.

\r
go
\‘q

This command will type a friendly greeting on your terminal and

return you to the care of UNIX for any further processing you may
vish to do. The current greeting is the following:

GETTING STARTED -23- 3-20-79

query formnulation conplete
INGRES vers 2.3 logout

Tue Mar 18 13:39:01 1975
goodbye - come again

The only other way to “bail out® of INGRES is to hit the “del"
key. This should only be used in emergency (for exanple to abort
o printout which is much too long). It has the effect of return-
ing you directly to UNIX.

The other conmand which you should know ecbout at this tine is the
destroy comnmand. It has the following syntax!

e

go

destroy cpu

hg

It "vwipes away" the cpu relation entirely. It should be wused
vhen you are finished with the information in a relation or when
you went to reuse the nome of a relation for nev information.

The only response from INGRES which you receive is!

query fornaulation conplete
continue

e will nov discuss the three dpdote connands that are aveilable
in QUEL: respectively delete, reploce and append.

The delete conmand is especially sinple and has the following
format: .

delete vurioble4nune vhere qualification
The following illustrotes the effect of a delete statement.

\e

go
range of s is supply
delete s where s.snumn = 8§

Ng
All that INGRES will echo is:

query formulation conplete
continue

GETTING STARTED -24- 3-20-75

The effect of a delete statement is that all rows of supply are
found which satisfy the qualification "s.snum =8" and instead of
being returned to the user’s terminal are instead deleted.

To convince yourself that this is indeed the case try printing
the supply relation.

The qualification of a delete statement may be as complicated as
it can be for retrieve stotements. Therefore, it is a sinple
natter to delete from the supply relation the rows corresponding
to those suppliers who supply the part called “centrael proces-
sor” . Try to forrmrulate this delete statement and convince your-
self that it worked correctly.

Unfortunately, there is currently no facility in INGRES for the
rows vhich are getting deteted to be echoed on the user’'s terni-
nal.

Also, you may only delete rovs from ONE relation at a time wusing
the delete comnmand. Therefore; only one variable can appear
betveen the delete command and the "where® statement. There are
several reasons for enforcing this restriction which are beyond
the scope of this manual.

Hote finally that o delete stotement which has no “"vwhere" state-
nent is alloved. [t has the effect of deleting all the rows in a
relation. What remaing is a perfectly legal relation which has
nothing in it.

e turn now to the effect of replace commands. They have the
following general format:

replace variable-namne(columnn-nane = result,...,colunn-namne = result)

vhere qualification

Before formelly explaining this cormand we do sone exdnples.
First, we will change supplier number 475 to 493 in the supply
relation as follows:

\r

go

range of s is supply

replace s(snumn=495) vhere s.snum = 475
hg

Again all that is echoed is:

query fornulation complete

GETTING STARTED -25- 3-20-79

continue

You mrust again print the supply relation if you do not beleive
that INGRES did what you wanted. We will now change the supplier
number to 400 of all suppliers who supply the part "central pro-
cessor” as followus:

\e

go

range of s is supply

range of p is parts

replace s(snun=400) where s.pnun=p.pnun ond
p.pnanre="central processor"”

Ng

Again the only echo is an indication of completion of the con-
nand. :

More formally, one can think about replace statements in the fol-
lowing way. '

1) All the rows in the relation specified by the variable direct-
ly after the "replace® are found which satisfy the qualification.
(In this last example it will be those rows which have s.pnuan=1).

2) For all such rows, the information inside the parentheses is
exanined and vhatever is on the left of each equals sign is re-
placed by whatever is on the right of it.

The following points should be noted concerning replace
statenents: '

a) INGRES echos only o "continue® or any error messages which ray
be present in the comnmand.

b The quelification nog involve any nunber of variaebles and may
be as complex as desired.

c) The quaentity on the right of any equals sign may be any compu-
tation possible in a retrieve stoatement.

d) The equals sign may be reploced by any of the words, "is®,
“bg“ .

e) there is no requirement that any of the rows be changed by a
replace statement; if no rows qualify, then none are changed.

f> It may happen that you try to replace a date item in a rela-
tion by more than one value. This represents a situation of “non

GETTING STARTED -26- 3-20-75

functionality®. The issue of non functionality will not be pur-
sued further in this manual.

Ye now turn to the issue of getting new information into INGRES.
There are tvo mechanismns which cean be used. One is to use the
eppend command. '

This command allows the wuser to add inforaufion to a relation
which already exists. In its simplist formn it looks 1like ¢the
folloving:

\r

go ‘

append to parts(pnun=18,pnane="disk revinder®,color="blue®”,
veight=7?,qoh=1)

hg

Again the only message you get from INGRES is:

query formulation complete
continue

figain you mnust print the parts relation if you do not believe
your update had the correct effect. After you do this try the
comnnand to delete the row you just put in.

In this simple forn an append comnand has the form of
append to relation-name(colunn=function.,...,colunn=function?

Each column nust appear inside the parentheses and mnust be get
equal to something (in the exanple oabove various constants).
These constants ere put into their cppropriate places in ¢ new
row of the relation indicated by relation-nane. Note clearly
that a new rov can be added to any relation in this fashion.

If one wishes to enter data into a new relation, he nust first
create ¢the relation wusing the INGRES create command. This has
the effect of creating an enpty relation with a given relation
nare and given colunn names. In a creoate stotement the formet of
each coluan nust formally be specified. An exanple of a create
statement is the following.

\r

go
create example(charecter = c10, integer = i2, float = f4)

k‘g

GETTING STARTED -27- 3-20-75

This stetement creates o new relation called exanple with coluans
character., integer and float. These columns are respectively a
character string of length 10 bytes, an integer of length 2 bytes
and a floating point number of length 4 bytes. This format in-
formation enables INGRES to correctly store and retrieve data of
various types. The types currently supported are the following:

it, i2, i4 (integers)
f4, 78 (floating point numbers)
cl, €2, ..., €255 (character strings)

Try printing the example relation to see what happens.

You can now execute append stotements to add rows to the example
relation since it novw exists.

Successive application of append statements can add any nuaber of
rows to a relation. However, if one hag nany additions ¢to nake
it may be easier to use the second update mechanisn.

-INGRES supports a facility to copy a relation into INGRES from a
given user file in UNIX. The general form of a copy statement is
the folloving:

-copy relation-name(colunn = format,..., colunn = fornmat)
{from, to) “UNIX-file-nane*

Be do an example of the copy operation at this time.

\e

go

copy examnplel(character = c10, integer = 2, float = £4)
from "/mnt/mnike/exenple”

\g

This exanple finds the file "/ant/mike/exanple® and réads the

first 16 bytes into row one of the examnple relation . it then
reads the next 16 bytes into rovw 2 and continues until an end of
file. In this way o user uvho has a tape in a given fixed length

format can copy it into a UNIX file and then use the INGRES copy
coamnand to form a relation from his data. Likevise, a user who
vishes to take information away from INGRES for processing under
control of UNIX may use the INGRES copy command to a UNIX file
(instead of from a UNIX file).

GETTING STARTED ~-28- 3-20-75

There are several points to be remenbered about copy!

a) the relation name to be copied into or féon nust exist prior
- to the copy command.

b) The format statements in the copy command specify the data
format of the UNIX file. This format need not be the same as the
one used for the INGRES relation being copied.

c) The colunns in the copy comrmand need not be in the same order
as they appeared in the create conmnend which forned the relation
involved. INGRES correctly reorders columnns vhere necessary.

d) If the length of the colunn in the copy conmnand does not equal
the length of the coluan from the create statement but the data
types are the same, the following operations take place:

for character string- they are padded with blanks if a larger field
is required. If o shorter field is desired, an error nessage results

for integers- they are converted to the appropriate length. The
result is unpredictable if this conversion causes an overflow.

for floating point- they are converted to the appropriate length

d) If the date format of a columan is not the same in the UNIX
file and the INGRES relation, appropriate conversions are made
using standard conventions.

Often one wants conversion to take place from character strings
of o variable length to either integer or floating point format.

Suppose, for exanple, one creates using the UNIX editor a file
called /nnt/mnike/semple vwith contents:

123, 46.5
402, 34.1
20, 7.3
2000, 700.0

In the editor it is a quick operation to perfora this task. VWhat
one would like novw is for INGRES to convert the first field to an
integer and the second to a floating point number for each of the
four desired rovs during the copy operation. Moreover, one would
like INGRES to recognize the comma and carriage return as delin-
iters between the variable length fields.

GETTING STARTED -29- ' 3-20-79

This is done as follows:

\p

go

create example2(int = i2, float = £4)

copy exanple2(int = c0, float = c0) fron “/nnt/nike/sanple”
\Ng . '

This will correctly copy and convert the four rows. The format c0
says sinply look for a character string delimited by o« comma, o
carriege return or other non numeric chaeracter and convert it to
the type specified in the create statement. Unfortunately, you
cennot put o decimal point into fields shich you wish converted
to integers. '

0f course, the user could have done the same transfer by correct-
ly alligning the information in /ant/mike/sanple s0 each colunmn
vas of fixed length. Hovever, c0 format spares the user this
hassle.

The last notion we discuss in this manual is how to discover what
format o relation is stored in. This is sonetines necessary wvhen
ue have to know whether to put quote marks eround strings that we
use in an interaction.

For example in the paerts relaetion discussed above there is a
colunn called pnumn. In one interaction wve required part naneg
that (among other things) had the property that pnum was less
than 10. If pnum was stored as a character string we would have
been required to put quotes around the 10 in order for the in-
teraction to work correctly. However, we knew it wes an integer
and the interaction worked correctly as stated. .

To find the format of a relation sinply type

\

help “relation-nane”

and the various columns, their formats and other information will
be returned to your terminal.

GETTING STARTED -30- 3-20-75

	Copyright notice 1975
	ERL-518

