

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SHIFTING GARBAGE COLLECTION OVERHEAD TO COMPILE TIME

by

Jeffrey M. Barth

Memorandum No, ERL-M524

17 June 1975

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

+

SHIFTING GARBAGE COLLECTION OVERHEAD TO COMPILE TIME

Jeffrey M. Barth

Computer Science Division
Department of Electrical Engineering and Computer Sciences

and the Electronics Research Laboratory

University of California at Berkeley

June 1975

Abstract

This paper discusses techniques which enable automatic storage

reclamation overhead to be partially shifted to compile time. The

paper assumes a transaction oriented collection scheme, as proposed by

Deutsch and Bobrow, the necessary features of which are summarized.

Implementing the described optimations will require global flow analysis

to be performed on the source program. Also discussed is a way of

integrating these techniques into the source language to give the

programmer extensible garbage collection.

Keywords and Phrases; garbage collection, global flow analysis,
list processing, optimization, reference counts,
storage management

CR Categories: 3.80, 4.12, 4.20, 4.34

tResearch sponsored by National Science Foundation Grant
DRC74-07644-A01.

Introduction

The process of collecting heap storage no longer accessible from

program variables has traditionally been done either by garbage collec

tion or by reference counts [K]. Garbage collection involves a periodic

disruption of program execution, during which any one of several well

known scan, mark, and collect algorithms can be employed. Reference

counting, although less disruptive, normally requires substantial

storage overhead. Both schemes are expensive in time, garbage collection

requiring time proportional to used storage and reference counts which

need to be updated each time a pointer is created or destroyed.

In a recent paper by Deustch and Bobrow a combination garbage

collection and reference count scheme is proposed [DB], Their scheme

maintains reference counts in a way that can be expected to require less

space than usual. It has the property that the counts need to be updated

far less often than by traditional methods. Moreover, their method is

incremental, hence unlike garbage collection is not disruptive of real

time computation.

Their scheme, which assumes a LISP environment, works as follows:

Unused list entities, called cells, are chained together on a free list.

Associated with each used cell is a count of the number of references

to that cell which originate from cells. That is, references that arise

directly from program variables are not counted. The counts are main

tained in one of three ways:

1) Addresses of cells with reference count zero are kept in a

hashtable, called the Zero Count Table (ZCT).

2) Addresses of cells with reference count exceeding one are kept

in another hashtable along with their counts. This table is called the

Multiple Reference Table (MRT).

3) Cells with count one are ignored.

Statistical evidence indicates that in LISP programs a vast percentage

of the accessible cells fall into the third category [CG].

Given these tables, storage reclamation is straight-forward. A cell

can be freed if its address is in the ZCT and no program variable directly

points to it.

The tables are assumed to reside on backing storage. When a cell

is grabbed from the free list, or when a pointer in a cell is altered,

a transaction is written to a sequential transaction file. There are

three possible transactions:

1) ALLOCATE — enter a cell address in the ZCT.

2) CREATEREF — if the cell address is in the ZCT then delete it,

otherwise if the cell is in the MRT then increment its count, otherwise

add its address to the MRT with count two.

3) DELETEREF — the inverse of CREATEREF.

Periodically the tables are brought into core and the transaction file

is processed. In the garbage collection like phase of the reclamation,

the variables are scanned against the ZCT to determine which cells can

be freed.

The principal costs of this scheme fall into two general categories.

Firstly, a program statement which causes a transaction uses time on

each execution to write onto the transaction file. Secondly, each

transaction will subsequently require processing. Methods for generat

ing fewer transactions, as well as for decreasing the amount of neces

sary processing at collection time, are discussed in the remainder of

this paper. Various kinds of canceling transactions and ways to find

them at compile time are explored. Two levels of generating fewer,

larger transactions are investigated. Machinery is outlined for deter

mining which variables need not be scanned against the ZCT and for find

ing classes of cells for which counts are totally unnecessary. Finally,

a mixed automatic and programmer controlled storage reclamation scheme

is presented which is a natural extension of the previous sections.

Garbage collection typically uses a substantial percentage of the

total computation time for list processing programs. The aggregate

effect of these techniques is to partially shift storage reclamation

costs away from a program's run time overhead. In some cases the improve

ment will be dramatic, eliminating virtually all overhead, but in all

cases the computation time performance of the program will not be

degraded.

Assumptions and Syntax Conventions

In order to talk about compile time considerations, it is necessary

to assume a language with a compilation process distinct from program

execution. Moreover, since the intent is to examine the program text

statically and deduce useful information, a language with static naming

structure is assumed. It will be possible to say more about programs

written in a language with typed variables, but in all cases it is

necessary to be able to recognize syntactically when pointers are being

manipulated. We assume that the language maintains an area of the

address space, commonly called the heap, in which all list cells are

stored and into which all pointers point. ALGOL 68 is one of the few

languages that allows other variations.

Examples will be illustrated in PASCAL which meets all the

criterion mentioned above [WJ]. The noninteractive nature of PASCAL is

not essential to anything that follows.

Using the Deutsch-Bobrow method in a language with static naming

structure introduces no added complications. Note merely that all

cells pointed to by variables on the run time stack are potentially

accessible, not only those statically addressable. Generalizing to cells

of variable size and internal structure will entail having additional

information available at collection time, but this will not be pursued

further here.

Deutsch and Bobrow cite Clark and Green's study of LISP list

structure which indicates the overwhelming percentage of singly

referenced cells. We have no way of knowing whether this remains true

in the kind of language environment being considered here.

Syntactically, variables like P, PI, and SOMEPOINTER should be

considered to have been declared as pointer variables. The pointer

dereference is f. Record fields follow dots and we will use F and

CAR for the examples. The PASCAL procedure NEW assigns to its argu

ment the address of a freshly allocated cell of the type pointed to by

that variable. All uninitialized pointers have been set to NIL.

Comments are delimited (* and *). In presenting algorithms, the COND

statement selects the first TRUE boolean expression and executes the

statement following it.

A transaction may be considered to be generated by inline code at

a point in the program text. Sometimes for clarity we explicitly write

the transaction code with the source text. There will be default trans

actions associated with some program statements. In particular,

NEW(P)

becomes

NEW(P)

ALLOCATE address pointed to by P

and for assignments

P+.CAR := P2

becomes

DELETEREF to P+.CARi

Pf.CAR := P2

CREATEREF to P+.CAR+

When additional information is available at compile time, the in

line code will be varied or moved accordingly. Suppose in the above

sequence, P+.CAR is known to be NIL before the assignment. The

code can then be altered to:

P+.CAR := P2

CREATEREF to P+.CAR+

saving a transaction generation and processing.

Regarding this process as a transformation on the program text aug

mented by the underlying transaction code, we specify two criterion

necessary to preserve the program's semantics. A transformation is safe

if it does not allow a cell to be put on the free list which is still

accessible. A transformation is effective if everything which could

have been on the free list before optimization at any given dynamic

instant of the program can be on it after optimization. This insures

that storage will not be exhausted prematurely because freeing cells is

delayed.

Canceling Transactions — Discussion

There are four ways in which the effect of a transaction may be

canceled by events which follow it sequentially. They are:

1) ALLOCATE followed by CREATEREF — Unoptimized execution would

entail entering the cell address in the ZCT for the ALLOCATE and remov

ing it for the CREATEREF. The code sequence may be transformed so that

no transactions are generated,

2) ALLOCATE followed by a loss of all variable references to the

cell — The default execution is to make an entry in the ZCT, deleting

it in the process of placing the cell on the free list. An optimization

of this sequence is to suppress the ALLOCATE and provide inline code in

the program to return the cell to the free list at the point where the

last variable reference is lost.

3) CREATEREF followed by DELETEREF — which has no total effect.

4) DELETEREF followed by CREATEREF — which cancel.

Clark and Green indicate that two frequent occurrences in a program

are that a cell is created and "nailed down" shortly thereafter and that

a cell is created and quickly discarded, which correspond to the first

two kinds of cancellation. Deutsch and Bobrow suggest that the former

case be treated by maintaining a buffer of the transaction file in core,

hash addressed, so that the CREATEREF transaction may delete the ALLOCATE

transaction. Unfortunately, this implies that the CREATEREF transaction

is nontrivial computationally. This combination is often easy to detect

at compile time:

NEW(Plf.CAR)

or

NEW(P) (* would generate an ALLOCATE transaction *)

(* nothing bad intervening *)

Pl+.CAR := P (* would generate a CREATEREF *)

An additional savings is reaped since it is now doubtful that the more

expensive CREATEREF transaction is still justified. The second kind of

cancellation can also frequently be detected in the same process needed

to detect the first. This is typified by the variable which points to

the cell being assigned or going out of scope.

The cancellation of CREATEREF by DELETEREF is illustrated in the

following example:

P+.CAR := P2
(* nothing bad intervening *)

Pf.CAR := P3

It is doubtful that enough such occurrences could be found to make the

optimization worthwhile. An algorithm is discussed to detect these can

cellations because its limitations are informative.

The fourth class of cancellation is included only for completeness.

The reader can construct an example to see how contorted code would have

to be to give rise to the possibility of detecting a CREATEREF after a

DELETEREF on a particular cell.

Canceling Transactions — Algorithms

This section will present algorithms for finding canceling trans

actions. The first is presented in detail, including correctness proofs

and running time bounds which appear in Appendix A. It illustrates com

putationally how one would go about actually doing the transformations

suggested in this paper. Since subsequent algorithms are patterned on

8

this one, and since the main intent of this paper is to raise ideas on

what might be done at compile time rather than to present exactly how to

do it, the remaining programs will be sketched only. In practice the

running time is one order of magnitude smaller than the worst case,

since in program flow graphs nodes tend to be sparsely connected.

We use a variation of the global flow techniques studied by UlLnan,

Hecht, and Kam [HU][KU]. Nodes in the flow graph are ordered in some

fixed ordering, FIXEDORDER, with the program entry node appearing

first. The ordering used by Hecht and Ullman will work best in practice,

but identically in the worst case to any other ordering. Sets are main

tained in bit vectors, and computation steps are row operations on those

vectors. The flow graph has |e| edges, |n| nodes, and |v| variables.

We use the term "assignment statement" to capture all program actions

with the semantic effect of changing a value that can be interrogated

by the program. Assignments that are implied, such as a variable going

out of scope being assigned UNDEFINED and a parameter being initialized,

are assumed to be explicitly present in the flow graph. The uniform

convention is adopted that the semantic effect of an assignment state

ment is that something called LHS is altered to agree with a value RHS.

Finally, the generic term "variable" refers to an assignable entity which

by convention is not in the heap.

As a simplification, the language is assumed to have no calls to

user subroutines. Techniques commonly used in optimization to relax

this restriction apply to this problem as well [R].

The Allocate/Cancellation Algorithm is based on the observation

that a cell freshly allocated at a NEW statement, NEWCELL, is easy to

keep track of until first pointed to from the heap. The algorithm

deduces the variable names which are known definitely to point to NEWCELL

9

on an edge, E, of the flow graph. It remembers them in a set E.DS

(definitely set). Similarly, names which may point to NEWCELL, that

is are not known not to point to NEWCELL, are recorded in set E.MS

(maybe set). Along a flow path originating at the NEW statement one of

three things will happen:

1) A point is reached where it is determined that a reference to

NEWCELL is created in the heap. This is when ALLOCATE is compile time

cancelled by CREATEREF.

2) A point is reached where it is determined that no variable

still points to NEWCELL, and Case 1 has not occurred. This is ALLOCATE

cancelled by the actual loss of the node.

3) Inconclusive information at compile time.

The algorithm is going to perform best when DS and MS are identical

everywhere, which is how a majority of programs can be expected to look.

The algorithm takes a program flow graph and inserts safe and effective

transactions for all the cell allocations.

The program is organized into routines as follows:

MAIN iterates over each NEW statement.

FINDSETDS expands the set of variable names known to point to

NEWCELL on flow graph edges until no more can be found.

FINDSETMS removes variable names from the MS sets as long as there

are names that can be shown not to point to NEWCELL.

ENTERTRANSACTIONS effectively walks all flow paths originating at

the NEW statements in order, examining the MS and DS sets. It processes

each path in the particular way appropriate, depending on which of the

three cases above describe it. The effect of these infinitely many walks

is achieved by propagating markers associated with each node of the flow

graph.

10

ALLOCATE/CANCELLATION ALGORITHM
(* Enters all transactions for allocation needed in program *)
BEGIN

FOR PICKEDNEW := each NEW statement in program DO
IF argument to PICKEDNEW is a variable THEN

BEGIN

FINDSETDS;

FINDSETMS;
ENTERTRANSACTIONS;

END;

END; (* MAIN *)

PROCEDURE FINDSETDS

BEGIN

FOR E := each edge in flow graph DO
E.DS := {all variables in program};

ENTRYEDGETOPROGRAM.DS := 0;

VISIT all nodes, N, in the flow graph using ordering FIXEDORDER
UNTIL nothing changes for an entire pass and DO

COND

N is the PICKEDNEW:

EDGESOUTOFN.DS := {argument of PICKEDNEW};

N is an assignment statement, LHS is a variable,
and RHS ij: HEDGESINTON.DS:

EDGESOUTOFN.DS :=* HEDGESINTON.DS - {LHS};

all other cases:

EDGESOUTOFN.DS := HEDGESINTON.DS;

END (* COND *);
END (* FINDSETDS *);

PROCEDURE FINDSETMS

BEGIN

FOR E := each edge in flow graph DO
E.MS := 0;

ENTRYEDGETOPROGRAM.MS := 0;

VISIT all nodes, N, in the flow graph using ordering FIXEDORDER
UNTIL nothing changes for an entire pass and DO

COND

N is the PICKEDNEW:

EDGESOUTOFN.MS := {argument of PICKEDNEW};

N is an assignment statement, LHS is a variable,
and RHS e UEDGESINTON.MS:

EDGESOUTOFN.MS := UEDGESINTON.MS U {LHS};

all other cases:

EDGESOUTOFN.MS := UEDGESINTON.MS ;

END (* COND *)
END (* FINDSETMS *);

11

PROCEDURE ENTERTRANSACTIONS

BEGIN

FOR E := each edge in flow graph DO
E.MARK := 0;

FOR E :« each edge emanating from node PICKEDNEW DO
BEGIN

E.MARK := 2;
IF node entered by E has all entering edges marked 2

THEN place entered node on QUEUE;
END;

REPEAT

N := first element on QUEUE;
DELETE N from QUEUE;
FOR E := each entering edge of N DO

E.MARK := 1;

COND

N is PICKEDNEW:
generate an ALLOCATE transaction on each entering edge of
N using a variable in the DS set of that edge;

N is an assignment statement, LHS is a heap resident pointer,
and RHS £ HEDGESINTON.DS:

nothing, this is ALLOCATE followed by CREATEREF. Note
somewhere that this assignment should not generate a CREATEREF;

N is an assignment statement, LHS is a heap resident pointer,
and RHS e UEDGESINTON.MS:

on all entering edges generate an ALLOCATE transaction.
Can't tell if cell is getting a pointer from the heap;

EDGESOUTOFN.DS = 0 and EDGESOUTOFN.MS = 0:
generate code to free the cell formerly pointed to by LHS.
This is ALLOCATE followed by a loss of the cell. See proof
to see why this has to be an assignment statement;

ENDSOUTOFN.DS = 0:
generate an ALLOCATE on each entering edge to N using some
variable in the DS set on each edge. This is leakage in
the algorithm, since the MS set might go away later, but we
must insure that a definite pointer to the cell is available
anywhere a transaction might be generated;

all other cases:

FOR E := each edge emanating from N DO
BEGIN

IF E.MARK ^ 1 THEN E.MARK := 2
ELSE generate an ALLOCATE transaction on E using

a variable in DS;

IF all marks on edges entering the node entered by E
are 2 THEN put this node on the QUEUE;

END;

END; (* COND *)

UNTIL QUEUE is empty;

FOR E := each edge marked 2 DO
generate an ALLOCATE transaction on E using some variable in E.DS;

END (* ENTERTRANSACTIONS *);
12

In the Appendix this algorithm is proven to enter all the transac

tions needed for cell allocation in a program. The running time is shown

to be 0(|P| |n| |e| |v|) where |p| > 1 is the number of NEW statements

with variable argument. The transformations induced by the algorithm

are proven to be safe and effective.

Note that the Allocation/Cancellation Algorithm involves a time-

space tradeoff. The ALLOCATE transaction may be generated at several

places rather than just one. Only one instance of these will be executed,

and in many cases not even that. Also, inline code to free cells may

appear repeatedly. One may opt to save the program space if the solution

to the flow problem indicates that more than a particular threshold

number of code insertions would need to be done. A likely value for the

threshold would be one.

The Create/Cancellation Algorithm attempts to find instances of a

CREATEREF followed by a DELETEREF on the same address. In principle, it

might be possible to see a sequence like:

P1+.F1 := SOMEPOINTER

' . (* nothing bad intervening *)

P2+.F2 ;= ANYPOINTERORNIL

and know that P2+.F2 had value SOMEPOINTER before its assignment. This

case of Create/Cancellation will be hard to find except if it looks like:

P1+.F1 := P2+.F2 (* CREATEREF to P2+.F2* *)

• . (* nothing bad intervening *)

P2+.F2 := ANYPOINTERORNIL (* DELETEREF to P2+.F2+ *)

which is typical code for inserting a cell in a list structure, where

P2+ is inserted after P1+.

There are also realistic possibilities for finding the sequence:

13

P+.CAR := SOMEPOINTER

* . (* nothing bad intervening *)

P+.CAR := ANYPOINTERORNIL

where the CREATEREF following the first statement cancels the DELETEREF

preceding the second.

There are two major problems to deal with in finding Create/Cancella

tion. We must understand precisely what the vague statement "nothing bad

intervening" means and we must take care that safety is retained.

The following sequence illustrates one kind of bad intervening code

from which a characterization of all bad intervening code is obtained:

P+.CAR := SOMEPOINTER

Pl+.CAR := P2

P+.CAR := ANYPOINTERORNIL

Should P = PI on one execution of this sequence, the cancellation trans

formation produces wrong results. The second assignment generates a

DELETEREF on a cell address for which no CREATEREF was done and no

DELETEREF is generated in the third assignment statement for the reference

created in the second. In the absence of further information, assignments

into the heap in intervening code must be forbidden. This condition

alone is strong enough since it assures that the reference not created

is the same as the one not deleted by the cancellation.

The safety question arises in the case that SOMEPOINTER* may for an

interim have exactly one reference and no variables pointing to it. If

this is the reference that the transformed sequence fails to create, the

cell could be inappropriately collected.

Having specified the potential hazards, the Create/Cancellation

Algorithm follows directly. At an assignment into the heap, we "remember"

14

the heap variables assigned to and, if it exists, the heap variable

assigned from. Along flow paths, we look for instances in which either

one of the heap variables being remembered is assigned. No information

is allowed to pass over flow graph nodes that assign into the heap.

Given that two potentially canceling transactions are found, a check is

made to see that the cell in question always has additional references.

If the RHS of the first assignment is a variable, a modification of the

FINDSETDS subroutine supplies the information. If the RHS of the first

assignment is a heap resident pointer, then it is sufficient to check

that this heap pointer is still in scope, since no assignment could have

occurred into the heap removing this reference.

The transformation is safe because the construction explicitly

guarantees it. It is effective since DELETEREF transactions are only

removed to prevent them from decrementing counts that never were incre

mented .

Discussion

There is a noteworthy difference in the expected impact of the two

types of cancellation. The ALLOCATE information propagates with robust

ness, becoming imprecise at flow graph joins. The CREATEREF information

is abruptly halted with the least perturbation in the heap. The under

lying reason is that in the latter case a pointer object is in the heap

where it is difficult to keep track of.

The finding of Create/Cancellation transformations can be improved

in the presence of additional information at compile time. We charac

terized "bad intervening code" as containing assignments into the heap.

Actually, the necessary condition is that we can tell that the reference

not created is the one not deleted. That is, we must be sure that the

15

reference is still where we put it at the time the DELETEREF would be

issued. Consider:

P1+.F1 « P2+.F2 (* fields are pointer valued *)

in a language in which pointers can be declared of not mutually assignable

types. Assignments into the heap can not be "bad" unless the pointer

assigned is of the same type as P1+.F1 and P2+.F2. Additionally,

assigning P3+.F1 whose type matches Pli.Fl can not be "bad" if the type

of P3 differs from PI. In general, intervening code is "bad" if it

includes an assignment into the heap which is both of the same pointer

type as the reference being remembered and if the cell being stored into

is of the same type as the cell in which the remembered pointer was

assigned.

At this point a peculiarity enters into this analysis. The design

decisions of the programmer come into play, including efforts he may

make to improve the compile time information gathering process. Whereas

this may be a controversial point, it seems that whatever node partition

ing is done through the types probably adds security and structure to

the program.

Batching

The next transformation to be explored is compile time batching.

This will take two drastically different forms, referred to as simple

batching and heterogeneous batching.

In order to do simple batching, the transaction repertoire is

enhanced to include

1) Create N references to a cell (CREATENREFS).

2) Delete N references to a cell (DELETENREFS).

16

and the MRT is allowed to also maintain counts less than zero. The

motivation for these extensions is that at user run time only one trans

action need be written to the transaction file, a time savings. In addi

tion, the collection time processing for these extended transactions

appears to be no greater than for simple ones. Since there will be

fewer extended transactions, this is a collection time economy.

Simple batching can be implemented by a variation of the now familiar

global flow techniques. Rather than describe a simple batching algorithm,

the issues that must be dealt with are presented.

There are two ways that CREATENREFS can be used in safety. One way

is to trace flow paths from a heap assignment to other heap assignments,

putting the CREATENREFS transaction after the computation path. Under

this scheme, just as in Create/Cancellation, an independent assurance

that the node has other references is necessary. The alternative is to

work backwards from heap assignments and put the CREATENREFS transaction

at the location where the first CREATEREF would have been. This is

clearly superior in straight line code, but the former captures some

additional cases of batching.

An example code sequence illustrates all of these points:

PI*.CAR := SOMEPOINTER

P2*.CAR := SOMEPOINTER

IF boolexp THEN P3+.CAR :« SOMEPOINTER

ELSE stmt

Ideally, a CREATE3REFS to SOMEPOINTER* is added to the THEN part and a

CREATE2REFS to SOMEPOINTER* is added to the ELSE part. Consider the

case where SOMEPOINTER is a variable. Even if PI = P2 = P3 and

PI*.CAR = SOMEPOINTER before the code is executed, no unsafe reclamation

17

can occur because SOMEPOINTER prevents the collection while the cell is

in the ZCT. Note that the count for SOMEPOINTER* will be driven negative

if it starts with count one, the PI*.CAR reference. If SOMEPOINTER is a

heap resident pointer, and nothing is known about the cells pointed to

by PI, P2, and P3, then at best we can batch the first two CREATEREFs

and place the CREATE2REFS before the code sequence.

Fortunately, effectiveness will be preserved regardless of where

the CREATENREFS batch is placed. Even if it is done early, it will only

be done on cells that are uncollectable until all N references go away.

Similarly, care must be taken with DELETENREFS with respect to

effectiveness and safety. More interesting is the observation that it

is going to be harder to find DELETENREFS batches. We must find N

references, all of which previously pointed to a particular cell. This

is in contrast to the CREATENREFS situation in which a pointer value is

followed around to see what it gets assigned to.

The expectation is that in list structures with multiple links these

batches will be found. Consider adding a new leaf to a tree structure

with "sibling" pointers. The added cell is likely to obtain references

in batchable proximity.

Heterogeneous batching is the collection of as much information as

is possible in the given program text into one specialized transaction.

Here the transaction repertoire is amended to include transactions T±

for as many new transactions as are needed in the particular program.

The compile time system produces a table for the collection algorithm

which specifies what actions are associated with each new transaction.

That is, the collection system is viewed as an interpreter executing a

program of sequential T instructions whose logic is table specified.

Heterogeneous batching completely handles the simple batching case,

18

but with additional collection time overhead. Even if the more inclusive

process is carried out, the faster and simpler special cases may be worth

separate treatment.

The implementation idea here is to start anywhere in the code,

collecting actions along a flow path so long as increasing definite

information is available. A new transaction, whose collection time

semantics are tailored to the collected information, will be generated

somewhere along this path.

In addition to the added collection time complexity, heterogeneous

batching raises nontrivial safety and effectiveness questions for the

optimizer. Suppose, for example, aDELETENREFS transaction for cell CI

is followed in straight line code by a CREATEMREFS transaction for cell

C2. Grouping the two at the latter point may violate effectiveness in

delaying the release of cell CI. Adding a third cell, C3, we can exhibit

a situation in which there is no location that is both safe and effective

for the largest heterogeneous batch, by appending a DELETEREF on C3 to

those above:

DELETENREFS on Cl (* cannot be delayed effectively *)

CREATEMREFS on C2

DELETEREF on C3 (* cannot be done earlier safely *)

For these reasons, automating this optimization is impractical.

Invariants

It may be worthwhile to check at compile time to see if some specific

class of cells will never be freed at run time. A typical such class

might be cells which permanently hang from a global pointer which is

never assigned. The economy aimed for here is in both time and space

19

since no MRT table entry need be made for them.

The primary danger to cope with is that a DELETEREF transaction may

spuriously enter the cell's address into the ZCT leading to its unsafe

collection. The criterion for this transformation is: There can be no

statement of the form

P*.CAR := ANYPOINTER

if there is uncertainty whether P*.CAR points to a cell for which counts

are not being kept before the assignment.

The reader may doubt that such a condition could ever be deduced at

compile time. Consider the following typical scenario for building a

singly linked list which will never be deallocated. There will probably

be a global LISTHEADP and created cells will be linked between it and

the former first element. We might well expect that after all of the

several possible NEW calls for this cell type, the LINK field is imme

diately filled, at a time when it is easily seen to be still NIL, and it

is subsequently pointed to by LISTHEADP. The former assures that no

interesting DELETEREF could be lost and the latter that the list is not

reclaimable. This is, in fact, the most direct program to build a list,

or for that matter a tree, doubly linked list, tree with backlinks, etc.

so long as no deallocation is planned. Extending the example somewhat,

it may be possible to notice that something like a balanced binary tree

has its LINK fields reassigned, but only in some locally rebalancing way.

This example illustrates that some class of cells may be busy, in this

case pointers may crawl all over the cells, but no cell of the type in

the list ever need have a transaction generated or. processed at run time.

We call a class of cells invariant accessible if all existing cells

20

in the class are always accessible and we can effectively prevent any

DELETEREF transaction from entering the address of any cell in the class

into the ZCT. In general we do not require that CREATEREF be findable

and forbidden, but in practice we eliminate all found CREATEREFs, A

class of cells which are invariant accessible need not, but often will,

correspond to a pointer type. This makes the task of finding the loca

tions that generate DELETEREF and CREATEREF transactions easy.

A satisfying aspect to this optimization is that the programmer who

attempts to capitalize on it by partitioning nodes into type classes

as finely as possible gets a program with improved security and structure.

More obscure from the point of view of compile time deduction are

a host of other invariants. A pointer type may be known invariant

accessible with respect to a particular scope. This leads to a situation

where counting may be omitted, and all cells of the type be released on

scope exit. It is conceivable that parity invariants could be deduced,

where references to a class of cells come in pairs so one need count

only one of the twins. It may be possible to observe a class of cells

for which references always increase at least as fast as they are

destroyed with respect to each individual node. An example of this

might be the double linked list header pointed to by the first and last

sequence element.

There is no end to the kinds of invariants one might be able to

speculate on. It would be interesting to see empirical work done to

determine what is deducible in practice and how much the information is

worth. A profoundly useful result would be frequently determinable cri

terion to capture the commonly used data structures under conditions of

sublist release.

A side benefit of determining invariants is that when the ZCT is

21

scanned against the variables on the run time stack, fewer variables need

be looked at. Specifically, those variables known to point to invariant

cells may be skipped. This suggests a generalization. A variable may

be invariant in the property that it need not be scanned against the ZCT.

Variables for which non invariant variables, or cell references always

exist which point to the same cell are in this class.

Discussion

The previous section suggests optimizations that can be better

realized through language design than by compile time deduction. Should

it not be possible to declare a class of cells to be not collectable?

This could be an attribute of selected pointer types. The programmer

does not lost security in case of misuse, only fails to get effective

storage reclamation. Since an infrequent classical garbage collection

is recommended by Deutsch and Bobrow to reclaim circular structures,

warnings could be obtained at this time that unexpected cells were

inaccessible.

An extension to mixed automatic storage reclamation and explicit

storage release in the same program is possible. A program declares a

pointer type to be EXPLICIT and no reference counts need be kept for it.

The downfall of this plan is that whatever method of release is supplied

will destroy compiler guaranteed safety. If this is considered acceptable,

and it probably should not be, then a cell DISPOSE as well as a cell

and all its descendants DISPOSE should exist. The well disciplined

data structures, like list or tree, can now conveniently be disposed of

by section and at low run time overhead.

The next section proposes a far more drastic approach aimed at

giving the programmer greater control of storage reclamation, with

22

hopefully more local ability to check the correctness of his actions.

Extensible Storage Reclamation

The original goal of freeing the programmer from the tedium of heap

storage management inspired automatic storage reclamation. The utility

is bought at considerable expense. The ideas presented in this paper

tend to move the associated costs to compile time. Most of the techniques

can be exploited to far less than their true potential because obtaining

information by statically inspecting a program is inherently difficult.

What will be explored in this section is returning partial control back

to the user who desires it, hopefully without reintroducing the tedium

previously experienced.

There are two levels of control that can be distinguished. The

programmer may be given the opportunity to generate transactions, and

suppress defaults, or he may be allowed to amend the transaction inter

preter. In either case, his knowledge of the program's behavior is

essential, and the danger of mishap is real. It appears that the

inconvenience of adding handwritten transaction code as an afterthought

to a program is an order of complexity lower than being forced to mani

pulate storage from scratch. The programmer might do this only for the

inner loop sections of code. Since economy may be gained because larger

heterogeneous batches can be recognized by hand, it appears reasonable

to allow extensions to the transaction interpreter. These extension

programs would be written in a language consisting of other transactions

and appropriate control structure. At a lower level, the programmer

might be given direct access to the tables and the free list.

The extender might want to specify points in his source program at

which the storage reclaimer is invoked, and other areas in which it is

23

forbidden. In this way, he can use his knowledge of the program's beha

vior to avoid being caught in the reclaimer in sections that are tem

porarily embarassing for the shortcuts he has employed. Also, he can

limit the number of known variables at reclamation time, economizing

on the time needed to scan the variables against the ZCT.

Conclusion

Automatic storage reclamation, when viewed in the Deutsch-Bobrow

transaction model, can benefit from compile time optimization. Some

amount of this can be automatically done using global flow analysis.

To achieve greater improvement, the programmer can be asked to supply

information or instructions.

There are two major unanswered questions. It is uncertain how the

transaction model would work in a language with the properties assumed

here. Secondly, it requires substantial empirical study to determine

whether conditions necessary for the transformations can be determined

and whether this will result in much actual time saving.

Inspection of some sample programs seems to indicate that Allocation/

Cancellation and detecting pointers that are NIL before assignment are

the easiest transformations to deduce and the most worthwhile in terms

of the number of occurrences found. Invariants are well understood by

programmers and, being hard to deduce, should be user supplied optimiza

tions. Batching is going to be most useful in the kind of system which

allows the transactions to be hand supplied.

The kinds of issues addressed in this paper are just beyond the

range of what is considered practical in running language systems. A

problem which is normally thought of totally in the context of run time

has been viewed in a different perspective. This kind of thinking is

24

important for the future when run time problems will be more and more

compile time oriented. What was once debugging has been superseded by

the compile time function of verification. Dynamic program measurement

will be feasible if it is partially preprocessed at compile time. Given

that enough of these economies and services can be made available, it

will pay to routinely design compiler systems that have built in machinery

to handle the necessary bookkeeping.

Acknowledgments

I would like to thank Professor Susan Graham and Mark Wegman, both

of the University of California, Berkeley, for their valuable assistance

at different stages in the preparation of this paper.

25

APPENDIX

Proof of Correctness for Allocation/Cancellation Algorithm

Claim. v £HEDGESINTON.DS implies for all computation paths to N,

v points to the last allocated cell of PICKEDNEW.

Proof. Assume for contradiction that there are incorrect variables

in the DS sets. A variable is incorrect at a node N if there exists

acomputation path from the entry node of the program to N on which the

variable is incorrectly set to point to something else at N. Pick the

minimal length such computation path:

Case 1: Path of zero length. Then N is the entry node and

HEDGEINTON.DS « 0 and claim holds vacuously. Contradiction.

Case 2: Path of non-trivial length. Then a node M Immediately

precedes N on the path. Since v £ EDGESOUTOFM.DS.

Case 2.1: M is PICKEDNEW. Then v £ EDGESOUTOFM.DS means v

was the argument of PICKEDNEW. Contradiction.

Case 2.2: M is an assignment statement. If v was not LHS,

then it could not have been altered. So, v £HEDGESINTOM.DS. Since

shortest path picked for which claim fails, v must point to last node

allocated by PICKEDNEW. If v was LHS then RHS must have pointed to

last allocated node by the same argument. Contradiction.

Case 2.3: In no other way could v have been altered, so again

v £HEDGESINTOM.DS implies by shortest path assumption that v is

correctly valued. Contradiction.

Claim, v4UEDGESINTON.MS Implies there is no computation path to

N that would allow v to point to the last allocated cell of PICKEDNEW.

26

Proof. The proof is like above. Pick the shortest path that exhi

bits an incorrect omission to an MS set. The critical argument is now

rephrased to "since v is not in UEDGESINTON.MS, it is not in

EDGESOUTOFM.MS for its predecessor M in the shortest path". Beyond

this it is only to check that the program handles Case 1 correctly and

substitutes union for intersection. LJ

Claim. ENTERTRANSACTIONS correctly enters transactions and code

to put cells back on the free list.

Proof. A MARK of 2 travels down a flow path and says "this path is

short a delayed ALLOCATE". An edge can be defaulted by changing the mark

of 2 to the appropriate ALLOCATE transaction.

All edges with the MARK of 2 have nonempty DS sets.

An owed ALLOCATE flowing into PICKEDNEW can be defaulted.

An owed ALLOCATE flowing into a heap assignment can be canceled when

RHS is known to point to the last cell allocated by PICKEDNEW.

Given a node where both MS and DS disappear, code to free storage

can be generated. No more variables point to the cell since MS is empty

and the fact that an ALLOCATE is owed implies that no heap pointer to it

exists. Since on each edge MS £ DS, and EDGESOUTOFN.MS is empty, all

of the incoming edges must have had MS = DS = {some single variable v}.

This follows from the non-emptiness of each DS set on an edge marked 2.

Moreover, v is removed from UEDGESINTONODE.MS by what must have been

an assignment to v. Thus, using the value of LHS before the assignment

as the cell to free after the assignment is executed is correct.

In the EDGESOUTOFN.DS = 0 case, the all other cases code, and the

last FOR loop, default transactions are generated. E

27

Proof of Termination and Time Bounds for Allocation/Cancellation Algorithm

Claim. PROCEDURE FINDSETDS terminates in 0(|n||e||v|) bit

vector steps.

Proof. Each time every node is visited, some membership in the DS

sets changes, except the terminating pass. All changes monotonically

decrease the total set population for the total collection of the DS sets.

The original total population is |e||v|. Visiting each node is 0(|n|)

bit vector steps. 0

Claim. PROCEDURE FINDSETMS terminates in 0(|N||E||V|) bit

vector steps.

Proof. Same as above with the MS sets monotonically increasing and

maximum population being 0(|e||v|). Ll

Claim. PROCEDURE ENTERTRANSACTIONS terminates in 0(|n|) steps.

Proof. The first FOR loop looks at each edge, but there are no more

than |n| edges in the flow graph.

Each execution of the REPEAT statement causes an increase in the

number of 1 marks. No 1 mark is ever erased. This gives a crude upper

bound of E on the number of executions of the REPEAT statement. Actually,

a node appears on the QUEUE at most once, since to appear its entering

edges must all be marked 2 and changed to a permanent 1 when processed.

So, the body of the REPEAT is executed at most |n| times. Each case

of the REPEAT body is easily executed in time 0(|n|) except the last

one. We have |n| edges, each of which enter a node. Checking for these

nodes that all entering edges are marked 2 can be done with a count

AHMoclattsd with the node. Thus, the last case 1b also 0(|n|).

28

2* DIt follows that the entire procedure is 0(|N|).

Theorem. The running time for the Allocation/Cancellation Algorithm

is 0(|P| |N| |e| |v|) where |p| is the number of NEW statements in the

program with variable argument, and is not less than 1.

Proof. The main loop looks at each node in the flow graph once,

and calls the three subroutines |p| times. The theorem follows from

the claims above and the fact that 0(|n|) is dominated by

0(|n||e||v|) in the case of connected flow graphs. a

Theorem. The transformations generated by the Allocation/Cancellation

Algorithm are safe.

Proof. The only way a cell can be collected is if its address is

in the ZCT. Addresses get entered into this table by ALLOCATE and

DELETEREF transactions. By delaying the ALLOCATE transaction, nothing

additional is entered into the ZCT. No DELETEREF can happen on a cell

with a pending, but unexecuted ALLOCATE transaction since no ALLOCATE

transaction is left owed beyond the point where a heap pointer to the

cell might exist.

An additional way that a cell can be put on the free list is through

added inline code to free the cell. This is only done when no heap

pointer is known to exist and no variable could still point to the cell,

hence this too is safe.

Theorem. The transformations generated by the Allocation/Cancella

tion Algorithm are effective.

29

Proof. The only time that a cell can be collected is when no

variable points to it. By insuring that DS is non-empty on every edge

of the flow graph for which a transaction is owed, effectiveness is

insured. U

30

REFERENCES

[CG] Clark, Douglas and Green, C. Cordell. An empirical study^of list
structure in LISP. Stanford University Technical Report (in prepa
ration) .

[DB] Deutsch, L. Peter and Bobrow, Daniel G. An efficient incremental
automatic garbage collector. Xerox Palo Alto Research Park Report
(January 1975).

[HU] Hecht, Matthew S. and Ullman, Jeffrey D. Analysis of a simple
algorithm for global data flow problems. Proceedings ACM Symposium
on Principles of Programming Languages (October 1973), 207-217.

[KU] Kam, John B. and Ullman, Jeffrey D. Global optimization problems
and iterative algorithms. Princeton Computer Science Laboratory
Technical Report 146 (January 1974).

[K] Knuth, Donald E. The Art of Computer Programming, Vol. 1: Funda
mental Algorithms. Addison-Wesley Publishing Co., Reading, Mass.
(1969).

[R] Rosen, Barry K. Data flow analysis for recursive PL/l programs.
IBM Research Report, Yorktown Heights, N.Y. (January 1975).

[WJ] Wirth, Niklaus and Jensen, Kathleen. PASCAL User Manual and Report.
Springer Verlag, New York (1974).

31

	Copyright notice 1975
	ERL-524

