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Abstract

An attempt is made to tackle some design and operational

problems related to parallel pipeline systems in a unified way,

hoping to represent some initial efforts towards the development

of a structural theory for such a powerful and versatile process

ing scheme. Previous work in related areas will be reviewed to

form the background of research work reported here. Specific

areas studied include: (1) sequencing algorithms and control in

different classes of parallel pipeline systems, (2) system parti

tioning and decomposition to improve system throughput and control

complexity, (3) availability improvement via proper redundancy

allocation and graceful degradation, (4) restructure architecture

and a suggested implementation to increase system flexibility to

cope with the requirements of specific application environments.

The classification of different parallel pipeline systems

permits one to pursue further the relevance of different optimi

zation aspects to different classes. In sequencing, fast heuristics

are necessary to dynamically optimize the instruction processing
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in an ordinary pipelined processor. The design criteria developed

in this thesis are useful in validating one's initial design or

conjecture. As throughput and availability are now primary per-

formance measures of a system, the algorithms introduced here will _

be oriented towards the improvement of either or both measures. *

Finally the modularity of a parallel pipeline system is

further examined. In proposing a future design where restructuring

of system components physically and logically is allowed many

related aspects are discussed. Restructuring permits the system

control to match the system configuration with the application

requirement. Consequently, the system utilization, throughput and

availability can be enhanced. The internal routing structure in a

restructurable pipeline system is also investigated. The proposed

scheme tries to reduce the need of memory fetches (therefore

reducing memory interference) and to simplify the switching hard

ware involved. It is in fact quite similar to an extended data

flow architecture that has recently received quite a lot of

attention.

The wide scope of this thesis does not represent an overflow

of ambition. The areas studied are chosen to provide a more global

picture of parallel pipeline systems in computers which otherwise

may be misinterpreted in many respects.
L
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CHAPTER 1

Introduction

In the growth of computer architecture, many innovative

designs were studied and developed. Deviations from Von Neuman's

type of computer organization readily emerged and have significant

impact on the power and processing capability of a conventional

computer system. For many applications, a fast processing speed

and turnaround time are demanded. To cope with this requirement,

and considering the cost-effectiveness or flexibility of the

resulting system, a multiprocessor type of design is often adopted.

In almost all cases, the multiprocessor system can be identified

as consisting of parallel processors, pipelined processors or both.

Then why is parallel or pipeline processing advantageous?

Before attempting to discuss the various characteristics of

parallel and pipeline processing, the basic philosophy behind a

multiprocessor design should be revealed. In thepast decade,

hardware technology, especially large scale integration circuit

techniques, has advanced so much that the logical elements

(processing facilities) no longer dominate the cost of a hardware

system. Disregarding the peripherals, the cost of a hardware

1



system is more likely dominated by the main memory capacity and it

is most desirable to incorporate more logical elements if the

latter can increase the throughput of the system, with little con

trol overhead. The study of modular memory and processing systems

also facilitates the growth in multiprocessor designs. With modular

memory banks, in a dedicated assignment or interleaved arrangement,

a higher throughput or bandwidth is available [1]. And with modular

processing systems, additional processors can be added and a global

controller can monitor all processing activities. A general multi

processor system can be as illustrated in Figure 1.1. In this

example system, concurrent processing among the processors is

allowed so that more useful outputs may be produced by the overall

system. It should be noted, however, that the real obstacle in a

multiprocessor system is not on the inclusion of additional pro

cessors, but the efficient control and exploitation of its power.

The cost of adding a processing element often can be ignored com

pared to the other additional control and memory overhead (hardware

or software) needed. Therefore, many crucial and complicated

decisions are involved in a multiprocessor design.

While both parallel and pipeline processing are techniques to

speed up the throughput rate of a processing system because of

application requirements, they are similar and different in many

respects. There are two situations where a multiprocessor system

is being used. One is for executing a single program and the other

is for executing multiple programs simultaneously. Naturally the

former can be called a uniprogramming environment and the latter a

multiprogramming environment. In the former case, parallel

/^..
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processing is employed to reduce the execution time of some impor

tant applications programs. Normally, the program will be parti

tioned into parallel tasks to be executed by the parallel processors.

The 'partitioning1 of programs can be accomplished in different

ways. Sometimes, a programmer can explicitly indicate these

•partitions' and sometimes, the system has to 'detect' these

'partitions'. Then the parallel tasks can be executed by the

available processors and consequently a shorter execution time may

be achieved. Parallel processing is extremely useful and important

in some applications that have real time urgency, such as weather

forecasting, air traffic control, ABM defense and other real time

problems. In many of these cases, the objective is to execute some

programs as fast as possible at all costs in terms of system

resources.

In a multiprogramming environment, the partitioning of a

single program is no longer a prime concern. Now different programs

(processes) can be run on different processors sharing some crucial

system resources such as memory in an effective way. The system

does not worry about the execution time of a single job only, but

has to manage its resources carefully to satisfy the demands of all

users, subject to some priority criterion. Under this situation,

therefore the system increases its production of useful outputs in

a most desirable way.

Hence, parallel processing can be characterized by the over

lapped operations among processing elements in a computer system

Sometimes, multiple instruction streams may be identified and

sometimes, only multiple data streams are noticeable. This is



because parallel processing is a technique implementable in several

levels of design. In a high level, independent processors can

execute independent program segments concurrently. Then, a multiple

instruction multiple data stream is clearly visible with a result

ing speed-up of the original sequential program. Although from the

surface it seems this is a logical way to speed up a system and

upgrade the utilization of other system resources such as memory,

peripheral devices, it has tremendous operational problems that

often beat the original objectives in mind. These problems include

the task specification or detection, sychronization, scheduling

and other management problems which will be discussed shortly

afterwards. So in a uniprogramming environment, except for special

applications, real time problems or process control systems, parallel

processing in such a high level is yet to be justified. Because

of this reason, parallel processing systems (for a uniprogramming

consideration) are quite rare. The PEPE machine exhibits some form

of parallel processing of this kind [2], In PEPE, each of the

three control units contains program segments to be executed by

the processing elements they control, in an array type of organi

zation. But in a lower level, array processing is a special form

of parallel processing where autonomous processing elements execute

the same instruction simultaneously, in their own data stream.

Hence, a single instruction multiple data stream characterization

fits the system quite well [3], Examples of array processors are

numerous. They include the ILLIAC IV with 64 processing elements

under a central control, the STARAN associative array processor

which includes associative processing capability to the processing



elements, as well as the PEPE system mentioned previously [4,5].

It should be noted that the STARAN and PEPE systems are designed

especially for the purpose of air traffic tracking and therefore

special functional facilities for associative and correlation pro

cessing are incorporated. _-&

In a lower level still, parallel processing can be observed

among special purpose processing facilities such as arithmetic

units for performing different kinds of arithmetic operations.

Here, the smaller types of parallelism in programs can be exploited.

Many computer systems exhibit this characteristic including the

more common CDC 6400, 6600, 7600, and some IBM System 360 machines .

[6,7]. With multiple arithmetic units, multipliers, adders, etc.,

independent operations can be performed in parallel. These logical

elements help to increase the utilization and throughput of the

rest of the system because more work can be performed by the system

per unit time. For if multiple instructions are executable by

these adders, multipliers, etc., more effective memory fetches and

stores per unit time are achievable, and more productive outputs

generated. The system as a whole benefits.

So the idea of overlapped processing as exemplified by parallel

processing can reduce the execution time of programs by a satisfac-

tory amount. In a fairly analogous way, pipelining can also pro

duce the same effect. Pipelining is a common technique in almost ^

all processing systems to satisfy some cost-effective and speed

criteria. Ranging from manufacturing assembly lines in industry to

minute LSI chips for performing some fast operations such as

multiplication, pipelining has been a common tool. The philosophy



behind pipelining is to subdivide a long, complicated process into

sequential subprocesses each executed or accomplished by an indivi

dual autonomous station or facility which operates in an overlapped

mode with the others. Overlapping exists among subprocesses for a

sequential set of input (to be processed), the so-called tasks.

The idea of pipelining and parallel processing can be best demon

strated using a space-time diagram, the Gantt chart in Figure 1.2

[8]. The horizontal axis represents time, and the vertical space.

From this figure, the overlapping mechanism in both techniques are

fully manifested.

Similar to parallel processing, pipelining in computer systems

also exists in many levels of consideration. In the highest level,

the overlap between the central processor unit and the input-output

mechanism can be viewed as a primitive pipeline for processing

tasks from programs. After streaming through the CPU, a task will

be operated upon by the next station, the input-output. By so

doing, precious CPU and I/O times are saved so that none has to

wait and waste time before the next task is ready for execution.

In a slightly lower level, pipelining is a technique used to speed

up the central processor unit. When the speed of a central pro

cessor unit is not fast enough to generate a satisfactory through

put rate, the instruction execution process is partitioned into

subprocesses executed by autonomous modules. This is typically

found in many systems including the original IBM STRETCH, 7094,

System 360 Model 91, 195, etc. [9,10], In the latter system, the

instruction execution process is subdivided into five phases:

instruction fetch, decode, effective address calculation, operand
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fetch, and execute. Each of these units can process independent

instructions simultaneously for the specific subphases. This more

flexible structure permits a higher throughput.

In an even lower level, pipelined execution units are quite

popular. In many systems, the other phases of pipelined instruc

tion processing are still faster than the action taken by the

execution unit which performs different kinds of arithmetic opera

tions or logical operations. To remedy this effect, the execution

unit can be effectively pipelined, with the aid of present day

hardware technology. So at least two levels of pipelining action

can be visualized in many systems. With the advancement in inte

grated circuit technology, pipeline action can be used to construct

faster special purpose chips or modules such as multipliers where

each phase of the multiplication algorithm is essentially pipelined.

In its ultimate form, very fast pipelined circuits are implementable

as demonstrated in [11], A distinction of the various possible

levels of pipelining that appear in a computer system may be con

structed directly from the level of the local control immediately

supervising the particular pipelined segment.

Hence parallel and pipeline processing are complementary tech

niques to speed up a computation process. Equipped with parallel

processing capability, independent tasks can be initiated and pro

cessed at the earliest possible time. Coupled with pipelined

facilities, the throughput rate of an individual processor can be

multiplied to a large extent, depending the feasibility of practical

implementation (in many situations, the subdivision of a process

is governed by the feasibility in practice). Looking at a lower



level, there is some tradeoff consideration involved between an

array type of processing system and a pipelined processor. Usually

pipelining is favorable compared to array processing if the follow

ing guidelines are satisfied.

(1) The process can be subdivided most efficiently into sub-

processes each executed by an independent module or facility in a

compatible speed with respect to the others. When a certain facility

in the pipe has a much slower speed than the rest, it will be the

sole bottleneck and hence uniquely affects the throughput rate of

the pipe. In fact, the throughput rate of a pipe is limited pre

cisely by the throughput rate of its bottleneck, just analogous to

the fluid flow in a physical pipeline.

(2) The submodules in the pipe are cheaper than the original

nonpipelined module. This is equivalent to a cost-effectiveness

consideration. For if not, the system may consider array process

ing as well.

(3) Intermediate buffering is relatively cheap. Therefore

the size of intermediate data packet or information transfer should

be reasonably small, depending on the level of the pipelining

action.-

(4) Routing of intermediate information is easily accomplished.

If very complicated decision or switching is involved, perhaps the

overhead and interference defeat the purpose of pipelining entirely.

(5) Sharing of system resources, including buses, memory,

registers, etc. does not result in severe interference that degrades

actual throughput to a large extent. In a pipelined or parallel

processor system, the memory-processing facility interconnection

10
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and control often create tremendous amounts of headache not easily

resolvable. In the end, the inadequate operand supply or lack of

parallel executable tasks (instructions) destroys the power of the

pipelined processor. There is some basic argument or debate about

the appropriateness of a Von Neuman type of computer design with

centralized memory for the purpose of multiprocessing. But, drastic

changes and their justification in practice are yet to be sought.

These five guidelines are merely suggested to evaluate the

suitability of a process (hardware or software) to be pipelined.

Here, it is intended to stress that pipelining is a technique

applicable to any suitable process, whether it be a pure hardware

process (hardwired or microprogrammed control) or a software and

hardware process (such as compilation, or the different states that

a process goes through in the consideration of an operating system

[12]). Though most of the discussion in this thesis will be

illustrated with well-defined hardware examples, the reader is

reminded that the general theories developed are applicable to any

kind of pipeline system that fits the characterization or specified

properties.

The efficiency and throughput of a multiprocessor system are

often representable by a space-time diagram. A space-time diagram

is most suitable to reveal precisely how the different processing

facilities operate. Analytical evaluation and representation of

a parallel or pipelined processing system are possible if provided

with such a space-time diagram [13,14]. Specifically, for a

parallel processor system, assuming all tasks have the same execu

tion speed on each processor, the space-time diagram is as shown

11
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in Figure 1.3a. If the execution times are different, and the next

set of tasks cannot be initiated unless the previous set is com

pletely finished, a similar space-time diagram is in Figure 1.3b.

Observe that the idle time of a processor can be explicitly measured.

If we define efficiency of the processor system by: 'P

p = total weighted space-time span of all tasks
total weighted space-time span of all processors *

Then, for the case in Figure 1.3b,

S =
-EkktoV

3 ' "3

where a.. = weight designating importance of facility or

processor i (e.g. costxspeed product)

t. = execution time of task i

k(i) = processor assigned to task i

L = total number of processors
J.L.

S. = set of tasks executed in the j set

p = total number of sets of tasks considered

So if all tasks have the same execution time, and a.'s are

the same, then the efficiency reduces to

I |siI
Lp

(Note |S.|<L.) C + 1 if |S.|=L for all j.
J J

I I max [t.] I a. m
j=l ieS, n ieS, k°}
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In a similar way, a space-time span can facilitate understand

ing the pipeline principle. In the case of a linear pipeline, the

efficiency is (see Figure 1.4):

r _ total weighted space-time span of L tasks
total weighted space-time span of n facilities

L(IVi)

• 14

where t. = speed of bottleneck
v • -

J.L.

t. = speed of i facility in the pipeline

a. = weight attached to the space-time space of the i

facility as determined by the cost and speed of the

facility, for example, cost-speed product

L = number of tasks pumped into the pipeline in a

certain period of time. For maximum efficiency, it

will be assumed that the tasks are pumped in con

tinuously, that is, the buffer at the entrance of

the pipeline is never empty. (True for some repeti

tive tasks.)

n = number of facilities in the pipeline

In the ideal situation where all facilities have the same speed

and importance,

F - I
* " n+ (L-l)

so that when L approaches infinity, the efficiency approaches unity.
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In all other cases, as L approaches infinity, the efficiency

approaches

n

Tout.
4j-!-<1 .

16
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Having gone through how parallel or pipeline processing helps

to impove throughput, one can immediately suggest an incorporation

of both techniques in a design, just to receive the best out of the

two kinds of systems. With this objective in mind, this thesis

endeavors to explore such a possible parallel-pipelined mode of

processing. In particular, the investigation will be generalized

to the study of parallel processing paths (pipes) sharing strategic

resources wherever appropriate. Three aspects will be emphasized:

throughput, availability and flexibility (reconfigurability). Demon

strations of such a mixed mode of processing in some existing

computer systems will also be included wherever possible.

Before proceeding to the individual topics, the problems asso

ciated with the design and operational decisions of a parallel

pipelined system will be reviewed. First of all, in order to fully

utilize the overlapping power in a parallel or pipelined system,

the system should have available a continuous stream of independent

tasks (instructions) to be executed in an overlapped mode. This

poses the first problem, namely, parallelism detection. Parallelism

exists in many levels and in many forms. Sometimes, a programmer

can explicitly indicate where parallel tasks or instructions exist,

exploiting special language features or primitives designed for this
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purpose. A huge amount of effort has been spent in the study of

such primitives whichresult in the implementation of some useful

ones in some existing array processors or general multiprocessor

systems. TRANQUIL, IVTRAN for ILLIAC IV, PARTRAN for PEPE, APPLE

for STARAN are some examples [15,16,17,18]. Some example primitives

are: while, do; For, do; Fork, Join, etc. With these primitives,

the system can recognize immediately where instructions or tasks

are parallel processable or pipelinable.

But to avoid the additional responsibility on programmers,

implicit parallelism in programs can also be detected. In order

that two sequential statements or tasks are parallel processable,

their "input-set" and "output-set" have to be compared to check for

any precedence constraint. [19] includes a proposed set of condi

tions for parallel processability and also proved formally that

complete deterministic detection of parallelism is an undecidable

problem. The reasoning is based on the same argument as the deter

mination of proper program behavior and termination which are well

known undecidable problems.

Hence complete parallelism detection is undecidable. But most

often, partial detection is very hard to define. In other words,

how much parallelism should be detected is a sensitive but important

question, which unfortunately is often overlooked. In many situations,

excessive parallelism being detected brings more disadvantages than

advantages. The reason is quite simple. In detecting more paral

lelism, more parallel tasks will be 'created' and monitored. This

incurs a dynamic control overhead which appears in every run. Such

overhead can offset the gain in throughput by promoting overlapped
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operation. Besides, if the system resources are insufficient to

process all parallel tasks in parallel (or in a pipelined fashion),

their existence or creation as individual entities merely represents

waste which otherwise could and should be avoided.

In the light of developing automated tools for detecting ^

parallelism in programs written in a certain high level language,

[20] describes a Fortran Parallel Task Recognizer. Such a recogni

tion process actually consists of comparing the operand requirements

of adjacent statements to construct a precedence graph whose nodes

represent statements and arcs the precedence relationship. There

is a large amount of analysis required if the detection mechanism

is to be applied to a large program. Thus a suitability criterion

for expending this detection cost for individual programs is also

proposed in [21], By so doing, via a simple scanning, the suita

bility of a program will be decided very quickly.

An alternative but very meaningful approach is to invest the

detection cost only to a certain segment of programs most actively

involved during execution. This is especially important because in

many programs [22] results indicated only 4% of the program is exe

cuted for more than half of the time. These portions of the program

therefore should be executed as fast as possible for the sake of

fast turnaround and highest throughput. Logically, to avoid the

exhaustive overhead in implicit detection, the latter is applied to V

those 'busy' segments of a program. In detecting these busy por

tions, some simple strategy may be used. For deterministic loops,

the number of iterations per entry will be known easily. But for

nondeterministic loops, a run time monitoring system may be inserted



at chosen locations so that the desirable frequency estimates are

obtainable. Then from the collected statistics, an estimate of the

traffic intensity of program segments will be available for the'

application of the parallelism detection algorithm. For the purpose

of path frequency counting, the algorithm in Section 5.2 is also

adaptable for implementation. The parallelism detection problem can

be tackled by many ad hoc approaches, since theoretically, it is an

exhaustive process in nature and practical implementation seems to

be the only meaningful effort in this area. For this reason, this

thesis will not try to tackle this problem and will concentrate on

other aspects of parallel pipeline systems.

A second problem is the memory organization and processor inter

connection. Interleaved memory is a popular choice in many multi

processor or pipelined systems [23], By interleaving, memory band

width increases, and with the aid of sufficient buses, the memory-

processor system has a satisfactory coupling that results in good

utilization of the entire system. In many cases of parallel and

pipeline processing, local memory buffer units are of special

interest. For example, in ILLIAC IV, PEPE, array processors, indi

vidual processing elements or control units have dedicated memory

modules so that during execution, the least amount of interaction

between any two instruction streams or processing phases will occur.

In pipelined system, memory buffers for pre-fetching and arrangement

of operations are used to increase the effective memory bandwidth

needed to keep a pipe busy, as in the CPU of the TIASC system, the

memory buffer units (MBU) serve this purpose [24]. These are prac

tical methods to relieve the unpredicted bottlenecks of a

19
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multiprocessor system that in many ways still resembles the highly
sequential nonoverlapped Von Neuman computer organization.

In this thesis, the parallel pipeline system will be named a

Mcojiaciurable Shared Resource Pipeline (RSRP) system. In particular,

several areas of interest will be discussed and investigated.

(1) Modeling of RSRP System

(2) Sequencing Strategy

(3) Sequencing Control

(4) Performance Monitoring

(5) Dynamic Reconfiguration

(6) Restructurable Architecture and a Proposed Design

(7) System Partitioning

(8) Resource Decomposition

(9) Reliability and Availability Enhancement

As a brief introduction to these topics, an outline description

of each will be provided in the following.

(1) Modeling of RSRP System. An RSRP system can be charac

terized by the existence of several parallel functional pipes sharing

resources at strategic points. The operational control adopted

lends one the means to distinguish two types of RSRP systems:

static and dynamic RSRP. A graph model of a RSRP system is proposed

in Section 2.2. The model is chosen for the sake of analyzing the

throughput, availability and cost-effectiveness, assuming the system

functions as it is designed for (this removes some details which

otherwise may have been included in the modeling). There are two

kinds of RSRP systems when processing speeds are considered:
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deterministic and nondeterministic. The term deterministic refers

to the fact that the facility speeds are known and fixed, whereas

the term nondeterministic refers to the variable speeds of facilities

for different tasks to be processed. For all studies in the consi

deration of throughput, unless otherwise stated explicitly, a deter

ministic RSRP will be assumed. But for the other areas such as

availability, restructuring architecture and reconfiguration, the

results are applicable to both types of RSRP systems. Almost all

of the analysis in this thesis will be established around this graph

representation of a RSRP system.

(2) and (3) Sequencing Strategy and Control. Sequencing is

the important activity in enhancing the throughput of a system by

proper operational control and strategy. Chapter 2 of this thesis

is devoted entirely to the scrutiny and derivation of sequencing

strategies. First, the intrinsic difficulty of optimal sequencing

is explored and characterized. From the characterization, a strong

assertion as to the exhaustive nature of optimal sequencing under

different control and RSRP systems is revealed. Consequently simple

heuristics will also be developed and compared using experimental

simulation on some models based on some existing systems. Their

implementation schemes and complexity will also be covered.

Implementation of simple sequencing strategies using hardware

or firmware is a meaningful approach to upgrade the utilization of

system resources, especially for a highly overlapped system design

where concurrent processing are allowed and encouraged to a large

extent. But often a good strategy is measured not just from the

21



quality of sequences it develops for different sets of tasks (with

the objective of minimal execution time or highest throughput), but

also the implementation complexity. This complexity consists of

two parts, the static hardware or software overhead for carrying out

the strategy. The latter may consist of runtime delay as well as

runtime interference to other processes in competing for the needed

resources (for example, buses). Thus both aspects of the sequencing

strategies will be evaluated in hoping to generate a meaningful study

of the problem both from a theoretical point of view and from an

engineering point of view. Hopefully, a complete and less biased

picture may be obtained.

As a brief introduction to the significance of sequencing to

the throughput of a pipelined system, some analytical evaluation may

be helpful. Consider a linear deterministic pipeline and suppose

p = probability that a task (instruction) does not

depend on anyone already in the pipe

p. = probability that task (instruction) depends on

th
the i previous instruction still in the pipe,

for i = 1,... ,L.
L

Thus I p, = 1 ..
1=0 th

T. = relative initiation time of the i instruction.

For simplicity, let all facilities have the same speed T. Then,

L

Ti =Ti-1 +poT +plLT + J PjCmaxCO.T^j+LT-T^.,}] .
3~^-

In the steady state, assume
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T, -T. , = T.-T. , = d
l l-l J J-l

(that is, expected delay in initiation between two consecutive

tasks is d). Since

Ti-j"Ti-l =Ti-j"Ti-j+l+Ti-j+l Ti-1

= (j-l)d

L

d = p T + p LT + I p.[max{0,LT-(j-l)d}]
0 • j=2 J

More precisely, there exists an r such that

LT- (r-l)d > 0 but LT -rd < 0 . (1)

Then

d = pT + p,LT+ I p.[LT-(j-l)d] . (2)
0 ' j=2 J

Equations (1) and (2) can be used to solve for r and d given

p.,., L, T. But due to the nonlinear characteristics, a closed form

solution is not available and an iterative algorithm for specific

values of p^, L, T has to be used. The index r arises because

the present instruction may depend only up to r previous instruc

tions (on the average) still inside the pipe, instead of a maximum

of L. This is because a cumulative delay may have resulted in

these r previous instructions so that when considering the pre

sent instruction, the earlier ones (earlier than those r instruc

tions) have already left the pipe.

Here, for the purpose of demonstrating the effects of sequenc

ing, equation (2) is worth a second look. By proper sequencing,
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for every step, one tries to increase pQ (no dependency) and other
higher pk (k > r) (or depends on instructions that have effectively

left the pipe) as much as possible and hence reduces p,,...,p

effectively to reduce the value of d. The strategy to achieve

this is often to allow higher priority to ready tasks with a lot of

successors and promoting the existence of more ready tasks during

execution. The sequencing problem in a more complex RSRP system

will be studied thoroughly in Chapter 2.

(4) Performance Monitoring. In monitoring the performance

of difference resources in a RSRP system (possibly in the context

of a higher level design), many useful observations can be obtained

for reconfiguration or later modification purposes. But first of

all, the insertion of monitors to the RSRP system for monitoring

the paths or pipes should be minimized so as to reduce the overhead.

Again, it should be noted that monitoring in general may incur both

static and dynamic overheads. In Section 5.2, a methodology for

generating this minimal cost set of monitors will be developed for

the purpose of the restructuring control also studied in Chapter 5;

The strategy is amenable to other applications even in the monitor

ing of program behaviors and to reduce unnecessary parallelism

detection overhead as discussed previously.

(5) and (6) Dynamic Reconfiguration and Restructurable

Architecture. Static and dynamic RSRP systems require different

kinds of operational control for reconfiguration. In the static

RSRP system, only one active path (pipe) may exist at any time

instant. So the pipe configuration and operand routing are
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relatively simpler. In dynamic RSRP systems, the concurrent process

ing in parallel pipes sharing resources demands more sophisticated

control and routing methods which will be explored. The reconfi

guration mechanism will be examined from an engineering viewpoint.

Then a restructurable architecture related to RSRP systems will

be proposed and studied. Restructuring may occur due to component

failure or need to enhance throughput. Both directions will be

sought in Chapter 5 which also includes a hypothetical design of a

completely restructurable asynchronous design. The purpose of the

design is to promote as much overlapped processing as possible by

asynchronous execution and to enhance the graceful degradation

ability of the system. It is completely restructurable because pipe

configurations are dynamically specifiable. It can be foreseen that

such a general purpose architecture is easily adaptable to some

special purpose systems such as test-control systems, process-

control systems, etc. and may be of great impact to future genera

tion of systems where larger pieces of processing facilities such

as microprocessors will be widely used throughout the system to

perform specially dedicated functions.

(7) System Partitioning. System partitioning is a well-known

term in system designs and appearsin many levels as well. The

original interest of this problem here is to study the impact of

"de-coupling". A RSRP system is said to be tightly-coupled if its

graph model is a connected graph. To remove the magnitude of the

coupling or interference effects at shared resources as well as to

reduce control complexity of the RSRP system, sometimes a designer
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may partition it into two or more disconnected parts (subgraphs),

perhaps having duplicated some resources. Thus the system parti

tioning problem arises. The philosophy that lies behind the study

is that the local control of a set of subsystems (for example, pipes)

has a complexity that is a large function of the size of subsystems

(number of pipes). Hence by de-coupling and partitioning effectively

the control complexity and throughput may be improved simultaneously.

In a lower level of application, system partitioning also appears

in the actual fabrication of the system using LSI technology and

the distribution of chips on PC boards with the objective of mini

mizing the cross coupling or wiring between the boards, as well as

for testing, diagnostic and repair purposes. In all of these appli

cations, algorithmic approaches to solve the problem will be the

subject of Sections 3.1 to 3.4.

(8) Resource Decomposition. For a deterministic RSRP system,

the ideal throughput rate is readily computable. To obtain a most

cost-effective design given a budget constraint has always been an

interesting topic. To begin with, there are many different techniques

(such as parallel or pipeline processing) as well as many implemen

tation schemes for each functional process. In considering the

throughput rate of a complicated RSRP system from a global viewpoint,

it results in the optimal choice of techniquesand implementation

schemes for each, functional process. An obvious but exhaustive

approach is always available to solve this problem, but to avoid

exhaustive enumeration, a simple and algorithmic method is proposed

in Sections 3.5 to 3.6. Dominance criteria will be set up to
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eliminate unnecessary searches (enumerations) at the earliest pos

sible time during the development of an ultimate design.

(9) Reliability and Availability Enhancement. A RSRP system

consists of many parallel functional pipes. When some components

malfunction, the system may still be able to satisfy all specified

operations or functions it has to perform. The notion of graceful

degradation flourishes. With graceful degradation power, a system

can 'switch off faulty components and reconfigure itself if neces

sary in order to maintain a specified set of services. Being a

flexible and powerful design, an RSRP system is liable to this

useful graceful degradation, and the natural question is how to

improve its availability (which means effective throughput in the

long run). An analytical approach will be adopted to tackle this

problem in Chapter 4. Different redundancy techniques will be

reviewed and an algorithmic approach to assign.redundancy to func

tional modules in order to maximize the 'availability' via graceful

degradation given a budget constraint will be formulated. The

approximateness of the optimal solution and the mathematical rigor

of the approach will be examined. These efforts regarding the

system design hopefully will form a basis for designers to evaluate

initial designs or conjectures in a more analytical manner.
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CHAPTER 2

Sequencing and Dynamic Reconfiguration

In Reconfigurable Shared Resource Pipeline Systems

2.1 Scheduling and Sequencing Problems in General

In a multiprocessor system (including both parallel and pipe- ^

line systems), concurrency of execution on independent tasks is the

major vehicle to increase the throughput of the system and decrease

the computational time needed for some privileged programs. The

maximization of overlapping is especially important in real-time

applications and for lengthy computations, such as those involving

experimental data reduction (for example, weather forecasting) where

the conclusion or result is needed sooner than can be generated by

a uniprocessor system. How best to expoit such a multiprocessor

system to satisfy the application requirement or to maximize its

utilization hinges upon the effectiveness of scheduling or sequenc

ing the tasks to be executed by the system.

Throughout this thesis, unless stated otherwise, the term task

is used to refer to a part of a program which once initiated can

be executed to completion without pending on new data to be generated

somewhere else in the processing system. In the lowest level, a

task could be just a single instruction executable by a processing

element. In a very high level, a task could be part or all of a

subroutine or procedure. Then scheduling is the activity of properly

ordering the tasks to be executed by the system so as to meet certain

objectives, such as minimal computation time for some programs or

maximal throughput from the system. Usually scheduling is used to

describe this activity when the processors are identical and each



29

task is executable by any one of these processors. When a chain

of processing facilities in a pipeline configuration is concerned,

then 'sequencing' is often used to represent the above activity —

now a task is sequenced through a chain of pipeline modules. Though

the two terms can be used inchangeably (by some authors), it is the

intention of this thesis to follow the slight distinction.

In this section, some previous work in the area of scheduling

and sequencing will be reviewed. Most of the discussion will be

devoted to a deterministic model adopted by many authors. In this

model, the task systems to be scheduled or sequenced are assumed

known in advance and they are simultaneously available for scheduling.

Also, the execution time of each task on each processing facility

is specified. It could be a rough estimate, a maximum execution

time or a mixture of both. There are some basic limitations to this

deterministic model, but it does have some validity when applied

carefully. For example, the execution time estimates may be obtained

using some past performance statistics. One noteworthy point is

that even though erroneous estimates may sometimes occur, an

erroneous, non-optimal list schedule does not cause any invalidity

in the course of actual computation, provided the tasks are initiated

according to the schedule with proper synchronization. In particular,

tasks are initiated only if the precedence relationships among them

are not violated. A centralized task table containing this prece

dence information may be used in this respect as implemented in the

experimental decentralized operating system for a parallel processing

system in [25]. Also, results in the deterministic model can be

used to draw appropriate conclusions regarding a more realistic
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adaptive or semi-stochastic model where the execution time and prece

dence relationships are not fixed permanently [26],

The usefulness and objectives of scheduling are best demon

strated with some examples. Consider the scheduling of related

tasks in a parallel processing system first. Figure 2.1 tabulates &

the relationship among a 6-task system whose execution times are

known a priori. The task system is executed on a 2-processor system.

The gantt chart for the optimal schedule is shown in Figure 2.1b

and the gantt chart for a non-optimal schedule is shown in Figure 2.1c.

It is readily observable that optimally the task system can be com

pleted within 38 units of time as compared to the inferior schedule

which will require 47 units of time. Hence proper scheduling here

can reduce the execution time of the whole task system by 24%.

With the objective of minimization of the computational time

of a task system, numerous endeavors were made to find optimal

scheduling algorithms [27,30,31,32,33,34,35]. The optimal algo

rithms should be able to derive an optimal schedule for the task

system under specified conditions in a very efficient manner. Their

qualities are judged mainly by their average speed, and sometimes,

their worst case performance. Since 'average speed' is hard to

define and compare both qualitatively and quantitatively in this

case, the latter figure of merit is adopted by many people. For

instance, essentially enumerative methods are considered poorer '*-

than systematic simple procedures which take a 'well-bounded' number

of iterations and steps before its termination even in the worst

situation.

Here a brief review of the successful attempts will be included
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(the complexity of the general problem will dealt with in Section 2.4)

Basically two special cases were studied and simple optimal algo

rithms were discovered.

0) Tree-type Precedence Graph, Uniform Execution Time

In [27], a very simple and appealing algorithm for deriving

optimal schedules for a tree-type of task system with unit execu

tion time for each task is proposed. A tree-typed precedence task

system can be as depicted in Figure 2.2. It is characterized by

the fact that either all of the tasks each has exactly one

successor (except the set of terminal tasks) or all of the tasks

each has exactly one predecessor (except one task, the entry root).

Before proceeding, some terminology has to be mentioned.

Given a precedence graph, it can be partitioned into earliest parti

tions E.j such that E is the set which can be executed first

(no predecessor), and E1 is the set that can follow after part

or all of EQ is completed. Inductively therefore E. is the

set which has predecessors in the set E. ,. In a unit execution

time task system, E.'s really represent the earliest times for

executing that set of tasks without violating precedence require

ments. In an analogous way, the set of latest partitions L. can
j

be defined. L. will represent the set of tasks which have
%}

successors in L.+,. For the tree in Figure 2.2,

EQ = {1,2,3,4,6,7} E1 = {8,5}

E2 = {9} E3 = {10}

and
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LQ ={1,2} L1 * {3,4,5,6,7}

L2 = {8,9} L3 = {10}

The procedure to derive these earliest or latest partitions of

a graph is very simple and can be found in [92].

The appealing property of a unit execution time precedence tree

is the fact mentioned in the beginning: all of the tasks (except

the root or terminal nodes) have exactly one successor (predecessor).

Consequently, if they are scheduled according to their membership

in the latest partitions which describe their urgency, the result

will be optimal. The uniform execution time requirement helps to

guarantee optimality since it does not pay to keep a processor idle

to wait for some future task. For the example, in a 3-processor

system, the gantt chart representing the optimal schedule is shown

in Figure 2.3. To derive this schedule, whenever a processor is

available, the task at the lowest latest precedence partition whose

predecessors are completed will be assigned the processor. If more

than one task satisfies this condition, it will be chosen randomly

among them.

Unfortunately, in practice, many programs do not exhibit this

nice property, and even if some do, their task execution times may

not be the same. However, the above method still works fairly well

as near-optimal heuristics as discovered in [28,29].

(2) 2-processor System, Unit Execution Time Task System

[30] introduces an optimal algorithm for scheduling a unit

execution time task system on a 2-processor system. It is compara

tively more complicated than the previous algorithm and consists of
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a bottom-up labeling procedure of the graph, taking into account

the significant implications of a latest partition characterization.

Very briefly, the procedure may be summarized as follows. First

label tasks in the highest latest partition (last) with 1,2,... .

At each stage afterwards, for those tasks whose immediate successors

are labeled, compare their values lexicographically in descending

order. Label the one whose successor labels are smallest lexico

graphically with k. Increment k by 1 and repeat the procedure

until the entire graph is labeled. Then at run time, the ready

tasks are assigned according to descending order of labels as

illustrated in the example in Figure 2.4. Some attempts have been

made to generalize this approach to n-processor systems or unequal

execution time task systems but no success has been reached. In

fact, the intrinsic complexity of this general problem will be

discussed in Section 2.4.

Except for these two special cases, in a nonpre-emptive deter

ministic model, no other success has been known up to now. There

were other attempts in deriving efficient scheduling algorithms

(but not well-bounded in complexity) using partial enumeration,

branch and bound or dynamic programming (where the number of state

variables is huge) techniques as reported in [31,32]. In general,

dominance criteria may be used to speed up the partial enumeration

procedure. For practical situations, efficient heuristics are more

useful. A likely acceptable candidate is the method using the

latest partition characterization. It is noteworthy that optimal

scheduling of independent tasks is still among those without a fast

algorithm, although they exhibit total freedom as regards to
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precedence relationship.

A different scheduling situation arises when a task can be

preempted by another during processing. Under an idealistic assump

tion, then optimal pre-emptive scheduling of independent tasks may

be achieved, because the scheduler only has to split long tasks

into subtasks and fill up all of the processors. However, this is

not very realistic especially when preemption introduces overhead

which is not considered in the model.

Under the same deterministic model, another possible scheduling

objective has been investigated [33,34]. Sometimes, instead of

minimization of the execution time of task system, it is more advan

tageous to minimize the average response time, the so-called mean

flow time. Figure 2.5 represents a situation where minimal execu

tion time does not necessarily yield minimum mean flow time. How

ever, this aspect of scheduling will be out of the scope of this

chapter.

Sometimes, the deterministic model may be insufficient because

the execution time of a task varies from one run to another. But,

it has been reported in many simulation experiments, the effective

ness of some scheduling method is not very sensitive to small

changes in the execution time [29], Yet for analytical evaluation,

a stochastic or adaptive model may be used in some cases. Then

optimal scheduling based on a stochastic model is difficult to grasp

unless some nice distribution (such as memoryless) is assumed for

the task execution times. In [35], a preemptive scheduling is pro

posed assuming the task execution times obey exponential distribu

tions. Even so, the dynamic programming formulation requires
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n state variables (n = number of tasks) and therefore resembles

the similar formulation for the traveling salesman problem which

is known to be complicated. For the nonpreemptive case, it is not

possible to derive or define strictly optimal schedules for the

stochastic model; rather, comparisons have to be performed based

on simulation or queueing models over a long run situation [36,37].

These previous worksand experiences indicate that even though

sufficient simplicity has been assumed in the scheduling model, in

the large majority of situations, no efficient optimal algorithms

are implementable. When more realistic parameters are included, an

optimal schedule may turn out to be nonoptimal. Observe that the

task system has been assumed to be available for scheduling and the

transitions in a program are known a priori. Also operating system

overheads are ignored throughout so that implementation details of

any scheduling technique are left out of the model. An attempt to

include such runtime overhead into a scheduling model has been

reported in [38], but simple and successful results are yet to

emerge in future research. Meanwhile, the analytic modeling and

evaluation of scheduling disciplines still suffer a lot of handicap

and the validity of the derived optimality remains questionable.

Having discussed so much about scheduling of tasks on parallel

processors, let us come back to sequencing on pipeline machines.

Sequencing may be viewed as a more complicated activity because now

not only the tasks have precedence relationship but also the system

possesses certain pipeline configuration(s) for processing. Multiple

pipeline systems (the pipes may be heterogeneous) can be treated

as parallel processors as well so that a pipe is regarded as a
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processor. In some cases, the execution of a task on a facility

(pipeline segment) is variable. Adopting the same deterministic

model of a task system, [39] proposed a simple optimal algorithm

for processing independent tasks to be executed on a 2-facility

pipeline. The method is very simple as illustrated in Figure 2.6.

First the two columns of execution time requirements are scanned.

The smallest entry is detected. If it appears in the first column,

the corresponding task is placed after the first part of the partial,

schedule generated. If not, the task is placed ahead of the second

part of the partial schedule. The corresponding row is removed

and the process repeated until all tasks are scheduled. Finally

the two parts are joined together as shown in Figure 2.6.

Apart from this simple result, other attempts to produce simple

optimal sequencing algorithms are rather fruitless. In [40], the

many facets of pipeline systems characterized by flow-shop and

job-shop problems are studied. A flow-shop problem involves tasks

executed by the pipeline facilities arranged in a fixed sequence,

whereas a job-shop problem relaxes the constraint on the fixed

ordering by which all tasks will traverse the facilities. Many

ingent>us efforts [41,42] were devoted to produce improved sequencing

algorithms using techniques such as branch and bound or longest

path where non-enumerative termination is not guaranteed. But

because of their enormous implementation overhead and the weakness

of a deterministic model, they may not be very suitable for a

computer system. Together with the experience encountered in a

parallel processor system, it seems simple effective heuristics are

more desirable and realistic. One problem arises: how can the
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heuristics be compared? Analytical comparison may be derived using

either the deterministic or adaptive model [43,44] but such compari

sons mostly can only deal with worst case situations. As mentioned

earlier, average performance is hard to characterize with reasonable

validity. So in this chapter, our evaluation of the sequencing

heuristics will be based primarily on simulation for a long run

behavior where more parameters and wider spectra of applications

may be included.

2,2 Modeling

The processing phase within a computer system can be described

by many possible models, based on the objective of modeling. For

some purposes, a very detailed modeling is necessary. But for

others, a simplified model helps the analysis and reveals the most

critical characteristics of the actual system. In most cases,

system modeling revolves around a graph representation. Sometimes,

additional semantics of tokens provide the additional information

desirable. Because of the space and time structure of a processing

system, the exact operation and synchronization of an asynchronous

modular system are well illustrated using Petri-Nets or marked,

graphs [45,46,47],

Very briefly, a typical Petri-net may be characterized as

having three types of constituents. First there is a set of tran

sitions where actual events take place. They may represent the

processing modules in the system.. Then there is a set of places

which are responsible for holding some condition information such

as status or control words. Finally there is a set of directed
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arcs liking input places to transitions and transitions to output

places. Places are used to hold tokens which mark the presence of

certain conditions. A place without a token is empty and denoted

by O, and if it is full, it is denoted by 0 . An event may

« occur if all of its input places are full so that the corresponding

transition is fired. After firing (corresponding to the processing

operation of the facility or module concerned), a token is removed

from each input place and a token added to each output place. A

•simple Petri-net representation of a two-facility pipeline with or

without buffer can be as shown in Figure 2.7. For specific purposes,

such a Petri-net representation may be modified to cope with the

application. For instance, a transition can fire under some logical

condition such as exclusive OR instead of when all input places are

full (analogous to multiplexing in systems), Liekwise, queues may

be included in the model to hold tokens in places to fully describe

the capability of the system.

Hence, very detailed modeling may be derived using some form

of Petri-net. Such modeling is useful for performing some analysis

on the correctness and synchronization property of a processing

system [48], because the exact control and data flow are represented

explicitly in the model.

But much of the information extractable from a detailed Petri-

«- net representation is redundant when optimization aspects in both

the design and operation of a processing system where the correctness

and synchronization problems are assumed to be solved or handled by

other means. Rather, only those features pertinent to the optimiza-

• tion aspects need be considered. Under the scope of this thesis,
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where sequencing and resource allocation are the main problem areas,

a graph model simpler than the Petri-net seems sufficient. Both

the throughput and the cost-effectiveness of the system are readily

computable analytically from a simple graph model as suggested in

the following.

For the purpose of this thesis, we are concerned with the

throughput and cost-effectiveness of the design of a complex system

which has a structure describable by the various functional paths

(pipes) within the system, sometimes with some strategic resources

being shared among the functional paths. Under this processing

organization, both parallel and pipelining characteristics are

noticeable. Pipelining is recognized because a functional path is

composed of a sequence of modules each performing some phase of

processing in an overlapped mode with the others. So the speed of

processing is faster than that of a non-pipelined path. Simultaneously

parallel processing may be achieved because concurrency of execution

may take place among the various functional paths (pipes), quite

analogous to the Multiple Instruction Multiple Data (MIMD) stream

type of computer systems [3]. As a result, independent instruction

or task streams are guided through the different required functional

paths in a pipelined manner with the objective of getting the most

utilization from the system resources and hence the highest

throughput rate possible.

It is to this type of mixed mode processing that this thesis

endeavors to address; and for obvious reasons such a processing

system will be named Reconfigurable Shared Resource Pipeline (RSRP)

system. Apparently it is actually a pipeline system consisting of
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one to several multifunctional pipelines each of which possesses

different configurations or path structures for performing different

types of operations or functions. Examples of RSRP systems can be

recognized from some existing multifunctional pipelines in computer

systems including the CDC STAR-100 and TI-ASC [49,50]. In the

example of TI-ASC system, the arithmetic unit has fourteen groups

of instructions. Groups 1 to 11 are synthesized such that instruc

tions from the same group can follow one another without delay in

.the arithmetic unit. As an example, most of the load, store and

logical instructions can be grouped together because their arithmetic

processing requires the same configuration in the arithmetic unit

pipe. Hence in the ideal case, where the operands are pre-fetched

fast enough, the arithmetic unit can produce a fastest throughput

rate of one output per minor cycle. On the other hand, groups 12

to 13 contain instructions that require additional waiting or latency

so that a smaller throughput rate is attainable. Finally group 14

includes instructions that do not require any processing within

the arithmetic unit.

There are actually two types of RSRP systems which will be

considered here -- static and dynamic RSRP systems. A static RSRP

system is less flexible and less intelligent in the sense that at

any time instant, only one configuration or functional pipe may be

active. Therefore pure pipeline characteristics exist, though over

a time period different pipes may be excited. This design has the

advantage of less control circuitry and overhead needed in monitoring

the routing of operands and gating activities in the pipeline seg

ments. It has also the disadvantage of less overlapping in the



other inactive paths and hence reducing the opportunity to achieve

maximum throughput. The examples in TI-ASC and STAR-100 mentioned

previously fall into this category [51,52], On the other hand, a

dynamic RSRP system permits concurrent processing in the various

functional paths (pipes) with some additional control to route

operands to correct transitions. Then, simultaneously several

functional pipes may be active, although collisions at a shared

resource have to be either avoided or resolved by proper buffering

and sequencing control. There are certainly some tradeoffs between

a static and dynamic RSRP system. These will become more apparent

later.

Hence, formally a RSRP system can be represented by a modified

digraph consisting of a three-tuple G = (N,A,P) where N denotes

the set of facility modules or nodes, A the set of transition arcs

among the nodes, and P the set of legal functional paths (pipes)

in the system. Sometimes when used in a deterministic model, it

can be extended to a quadruple G = (N,A,P,T) where T provides

the additional information about the execution speeds of the faci

lities in N such that the execution time, throughput rate, etc.

of the functional pipes under no interference condition are compu

table. A simple graph representation of the configurations of the

arithmetic unit in TI-ASC for carrying our floating point addition

and fixed point multiplication can be as drawn in Figure 2.8.

Since all segments of the facilities have the same speed (synchro

nized by the same clock), the vector T can be omitted here. Using

this model, the throughput rate and reliability of the system as a

function of cost associated with different designs can be evaluated
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with little trouble as we will see in later chapters. Observe that

not all possible paths in the digraph are legal paths because there

may exist configurations that do not have logical meaning and hence

their activation will introduce erroneous outputs.

2,3 Collision Avoidance

Given a RSRP system, some deterministic analysis will be useful

for controlling the operation of the system for optimization purposes

under different operating conditions. Because of the presence of

shared resources and multiple tasks currently being executed in a

dynamic RSRP system, care must be taken to accomodate the occurrence

of collisions. A collision occurs when two or more tasks try to

access the same facility at the same time. When a collision has

occurred, the system control must have built-in (hardware or software)

collision resolvers and/or buffers of some kind in order that proper

execution can continue at its normal pace.

Similar to other undesirable events, collisions can be either

prevented or resolved. If prevention is the goal adopted, some

global sequence controller may be designed so that a task (instruc

tion), once initiated, will not cause any collision with other tasks

still inside the pipeline system. This further implies that a task

will flow through the pipeline system without waiting inside after

its admission. This goal has the advantage that no explicit require

ment on intermediate buffer storage between facilities is imposed.

The disadvantage is that it may lose the flexibility to enhance more

overlapped operations provided by sufficient buffering. Also this

scheme is safe only for a completely deterministic system.
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An almost exactly analogous situation between a dynamic RSRP

system and a traffic network in this respect can be drawn up easily.

A shared resource corresponds to a junction in a traffic road.

Under the deterministic model, the exact speeds of vehicles and the

lengths of blocks of roads are assumed known and fixed. Also it is

assumed that there are distinct entrance points to the traffic net

work if necessary. The junction of a road represents a facility

which may be controlled by a traffic signal as in the case of a

clock pulse. Cars may be admitted under a global controller which

will allow .entrance at some pre-determined sequence of the synchro

nization signals. On the other hand, internal buffering may be used

to avoid collision at a junction in a similar way as the use of

traffic signals. Of course, excessive traffic congestion on one

route will result.in the overload of 'buffers' — an expected pheno

menon of an ill-balanced RSRP system. Sometimes, remedy may be

sought by dynamically changing the periodic ratio of traffic signals

for the junctions concerned so that the heavily loaded direction

is favored to relieve the unbalance — similar to a dynamic priority

assignment to shared resources among the different related process

ing paths.

So there are many similarity aspects of a general dynamic RSRP

system and a traffic network. For our immediate discussion, we will

try to tackle specifically the collision avoidance technique in a

dynamic RSRP system. This is especially important when pipelining

is implemented at a very low level (in order to achieve the ultimate

speed) such as ordinary LSI chip level. Under this level of consi

deration, tho speed of a facility nodo may bo of the order of 10 nsoc



and therefore intermediate buffering demands comparatively large

static and dynamic overhead. The cost of intermediate buffer will

be almost the same as other component costs and the total delay of

the pipeline may be doubled. Hence except for simple operand rout

ing, additional buffering between facilities may be undesirable

when pipelining is performed in a lower level, for instance, in the

arithmetic unit of TI-ASC or STAR-100.

When sufficient buffering is absent, collision inside the

pipeline system has to be avoided by the global control mechanism.

In [53], a reservation table approach is suggested for sequence

control of a linear pipe with a single configuration. From a static

reservation table, the initiation procedure (of a certain periodic

length) is chosen such that higher throughput rate is attainable

for complete collision avoidance. The idea behind a reservation

table can be depicted by the example in Figure 2.9. For a multi

functional pipeline system, a similar approach utilizing a two-

dimensional collision matrix is proposed here [14]. As the name

implies, a collision matrix is a generalization of a one dimensional

collision vector characterizing a unifunctional pipeline.

Eacn entry in the collision matrix contains information regard

ing the collision relationship between the two pipes concerned.

Specifically, the (i,j) entry represents the time intervals after

the initiation of pipe i so that the excitation of pipe j will

not cause collision inside. For example, {(2,6),(10,17),(20,°°)}

in the (i,j) entry means the excitation of pipe j after pipe i

can take place between the 2 and 6 cycles, or 10 and 17

cycles, or after the 20 cycle, so that between the 7 and 9
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cycles or 18 1and 19 cycles, collision will result. Each entry

in a collision matrix may contain several time intervals instead

of a single one because the two pipes involved may share more than

one resource, thus introducing more sites where collision can take

place. Of course, multiple shared resources do not necessarily imply

a compound entry in the collision matrix. As an example, the RSRP

system in Figure 2.10 has a collision matrix as shown. The (1,1)

entry is (15,°°) indicating that pipe 1 can be excited at regular

intervals of 15 cycles or more because the slowest facility in

pipe 1 generates an output in every 15 cycles and therefore forms

the bottleneck of this pipe. (The term "bottleneck" is often used

to describe the slowest facility which places the limitation on the

speed of flow of instruction or task stream in much the same way

as in physical bottlenecks.) The (1,2) entry is {(4,10),(16,°°)}

because pipe 2 may collide with pipe 1 at facility 1 as well as

facility 3. During the (4,10) time interval after pipe 1 has been

excited, if pipe 2 is excited, the two instructions or tasks will

not collide anywhere inside the pipe. But after the 10 cycle and

before the 16 cycle concerned, if pipe 2 is excited, a collision

will occur in facility 3. So excitation in pipe 2 must be delayed

in order to avoid collision, a consequence of the second task catch

ing the first one in the system. Notice that the (2,1) entry is

single-valued, despite the fact that pipes 1 and 2 share two

resources. This is so because once pipe 2 is excited and the task

lias left the first collision site, there is no way for the task in

pipe 1 to catch up.

The flow chart of the algorithm which can be used to construct
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Speed of Facility is
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Figure 2.10

Example Collision Matrix

54

f



Notation:

A collision site

may have been found,
Calculate TR(i),

TR(j), TC(i), TC(j)

No

Create new time interval

(TC(i)-TR(j),°°)

Form appropriate
overlapping products
with previous time
intervals generated

Create new time intervals

(0,TR(i)-TC(j)) and
(TC(i)-TR(j),°°)

Figure 2.12

Flow Chart for Constructing Collision Matrix

TC(i) = time to leave the collision site via pipe i
TR(i) = time to reach the collision site via pipe i

Overlapping product: Illustration - Suppose previous time interval
is (4,°°) and the newly generated are (0,7)
and (10,°°). The resulting intervals will be
(4,7), (10,«>).
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the collision matrix given (N.A.P.T) is illustrated in Figure 2.11
which gives the procedure for deriving the (i,j)th entry. For
simplicity, if pipe iand pipe jsnare ,sequence Qf consecutive

facilities, the latter are grouped together with athroughput rate
corresponding to that of the slowest facility in this group. Also
the time to reach and leave the.composite facility will correspond
to that for the slowest facility.

With this collision matrix, an external global sequencer may
sequence instructions or tasks according to some sequencing rule
and initiate them so that no collision will occur inside the pipeline
system. One may wonder then what sequencing rules should be used
given atask system. Should the controller try to minimize the
execution time of the task system? What is the gain-overhead trade
off? Is optimal sequencing intrinsically different? Why? These
problems will be the subject of the next section.

2-4 Theoretical Basis of Sequent,,

In this section, an optimal sequencing algorithm for atask
system executed on aRSRP system will be described. Before doing
so, in order to justify the approach taken, athorough study of
the intrinsic difficulties of optimal sequencing will be included.

As demonstrated in Section 2.1 proper scheduling or sequencing
may help to reduce the execution time of tasks systems and increase
the throughput rate. But an optimal algorithm for the general case
often implies semi-exhaustive enumeration of all possible combina
tions of sequences in executing the tasks. To reveal the intrinsic
difficulty, the classification of difficult problems termed
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"polynomial complete" will be used.

A big class of combinatorial problems require the determination

of certain properties in graphs, integer arrays, boolean functions

and finite sets. Through the use of suitable encoding, these pro

blems can be transformed into language recognition problems over a

finite alphabet. Then we could test the intrinsic complexity or

difficulty of such problems by developing a conclusion as to whether

there exists a fast recognizer for the language concerned. In parti

cular, for convenience of generality, a nondeterministic Turing

machine characterization will be used. First, a brief review of

the basic materials will be mentioned.

A Turing machine can be denoted by (K,£,r,6,q ,F) [34] where

K = a finite set of states

Z = a finite set of alphabets on tape

r = a subset of I not including the blank B used
for input

6 = a set of transitions which maps Kxr to K* (r-{B})
where L/R implies moving reading head to the
left/right for one cell

q = the initial state

F = set of final states.

If there is more than one transition in 6 possible for some

Kxr, the Turing machine is called nondeterministic. In this case,

two or more copies of the tape can be regarded to be created so

that all of the alternatives may be taken up. Repeated splitting

may lead to an exponentially growing number of copies. However,

the input is accepted and computation halts if a final state is

reached in any one of the copies.
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Now given a problem specification, we can encode it into E*

to be used as the input to some Turing machine constructed in such

a way that if the specification obeys some property, the input will

be accepted. Thus, this Turing machine will accept a language

L £ £ which contains encoded information or specification which

obeys the desirable property.

Having discussed the recognition problem, different problems

sometimes can be tied together by some mapping function or corres

pondence using the notion of reducibility. Literally, a problem

is reducible to another problem if a transformation from the former

to the latter is always possible so that the former is solvable if

the latter is. Formally, the notion of reducibility is defined as:

Definition. Let L] c £*, L2 c£*, then L] < L2 (L1 is

reducible to L2) if and only if there is amapping or Turing machine

which started with xeZ*, halts with some yez£ on its tape

so that

(1) x6 L1 o y e L2;

(2) the mapping or machine carries out its computation within

a polynomial bounded time.

Using this reducibility property, one can characterize a large

class of problems (languages) which bind themselves together in the

sense that a simple, fast algorithm (Turing machine) for one implies

the existence of a simple, fast algorithm for the others in the

class. To complete the picture of complexity measure, the complexity

of a Turing machine (algorithm) is measured as functions of length

of the original input. A simple, fast algorithm is said to exist



if its complexity is bounded (lower bound) by a polynomial of the

size of its input.

Equipped with these basic notions, the class of polynomial

complete problems can be defined.

Definition. A language L is polynomial complete (PC) if

(1) there exists a nondeterministic Turing machine which

recognizes L in polynomial bounded time;

(2) given the satisfiability problem is PC, there exists a

language M which is PC such that M < L where the
-p

satisfiability problem is:

Input: Clauses C.,...,C

Output: Yes if the conjunction of the given clauses

is satisfiable by assigning Boolean values

to the variables.

Therefore, the satisfiability problem can be viewed as the

generator of this class of problems. The original classification

of PC [55] is not in this form. For instance, in [56], condition 2

is written as satisfiability < L. But, for the sake of exposing
~P

the inter-relationship of problems in PC, the self-generative defi

nition is proposed here instead. The equivalence of the two defini

tions are readily observable.

The fact that a nondeterministic Turing machine is used as

recognizer rather than a deterministic one introduces the difficulty

of implementing the algorithm in the real world where only deter

ministic rules are used. Falling into the PC class of problems

include well known combinatorial problems such as 0-1 integer
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programming, set packing, node covering, set covering, Hamiltonian

circuits, knapsack, partition, etc. [56]. Although there is no

rigorous and' formal proof regarding the actual complexity of PC

problems, it has been conjectured, with strong circumstantial evi

dence, that the class of PC problems do not have any fast (polyno

mial bounded time) deterministic algorithms. It is noteworthy that

there do exist problems which definitely require exponential time

deterministic algorithms but whether their membership is PC is yet

to be established. An example of such problems is the equivalence

problem for regular expressions with squaring [57]. Actually, a

hierarchy of languages using a similar approach (polynomial bounded •

quantification) can be exhibited as in [58]. For the purpose of

this section, the polynomial complete classification is sufficient.

It is nice to be able to classify languages in the previous way.

But optimization problems in general do not limit themselves to a

Yes or No type of answer supplied by a recognizer. More generally,

a minimization or maximization of some objective function subject

to constraints is imposed. So a modification of the previous defi

nition may be helpful to extend its application. For simplicity,

an optimization problem can be treated as if it is coded in some

alphabet.

Definition. A language LeZ? is reducible to an optimiza

tion problem Pc z* (L < P) if and only if there exists a poly

nomial bounded time transformation F from zt to zt and a simple

recognition function 6 such that x e L <> G(Z(F(x))) = 1 where

Z(F(x)) is the output left in the optimization problem P (for
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example, the final content of the tape in a Turing machine) corres

ponding to its objective function value. The optimization problem

P is said to be inherently difficult if there exists a PC language

L < P.

Therefore, if an inherently difficult problem has a fast optimal

algorithm, then Z(F(x)) can be generated in polynomial bounded

time. This further implies x can be recognized in polynomial

bounded time by simply concatenating the fast recognizer G. Conse

quently, L will also have a fast recognition algorithm. Based on

our previous explanation on the complexity of polynomial complete

problems, therefore likewise, inherently difficult problems also do

not seem to possess any fast algorithm.

As an illustration of this notion of inherent difficulty and

an aid to later proofs, the following example assertion is provided.

Lemma 1. The Traveling Salesman Problem (TSP) is inherently

difficult.

Proof. The traveling salesman problem (TSP) is to find a

shortest tour (through each city once and only once and return to

the origin) given a (directed) graph indicating all the routes

between cities [59]. We will show that TSP is inherently difficult

by reducing the (directed) Hamiltonian circuit problem (HCP) which

is PC to it [56].

HCP < TSP: Given HCP, attach a cost of 0 to all existing

arcs and a cost of 1 to arcs that have to be added (see Figure 2.12

as an example). This completes the F transformation.



Figure 2.12
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Define

(l if Z=0
G(Z(F(X))) = I

[0 otherwise.

Clearly, both F and G are polynomial bounded in time so that

HCP = TSP. In fact, if the resulting TSP has a shortest tour of

zero cost, then the original HCP has a tour or circuit. Q.E.D.

Now one can realize that if the scheduling or sequencing

problems are polynomial complete or inherently difficult (depending

on the formulation and the objective), perhaps one should not try

too hard to create a polynomial bounded time optimization technique

for them. Rather some efficient semi-exhaustive techniques become

legitimate candidates. Before proceeding to discuss them, some

conclusive results about general scheduling and sequencing problems

based on these two characterizations will be included.

Scheduling: Both D(l) and D(2) are found PC [60].

D(l): General scheduling for a set of related tasks

Input: a) Precedence relationships

b) Execution times

c) K processors and deadline

Output: Yes if system can finish the tasks in deadline.

D(2): General scheduling with equal execution time

Input and output are the same as in D(l) except task execution

time = 1 throughout.
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Theorem 1. Both D(3) and D(4) are inherently difficult.

D(3): Minimization of execution time

Input: Same as in D(l) except there is no deadline.

Output: An ordering of tasks to be executed on the processors

such that the total execution time is minimized.

D(4): Minimization of critical resources with deadline

Input: Same as in D(l) except number of processors is not

specified.

Output: An ordering of tasks to be executed on the processors

such that total amount of critical resources (processors

here) incurred at any time is minimized whereas the •

deadline is obeyed (if possible).

Proof. D(3) is inherently difficult because D(l) < D(3).

Given D(l), treat it as D(3) by ignoring the deadline. Then G is

constructed so as to compare results of D(3) with the original dead

line. If the latter is not smaller than the former, provide an output

of Yes for D(l). Clearly if D(3) has a fast optimal algorithm, so

does D(l). D(4) is inherently difficult because D(l) <_D(4). Given

D(l), again treat it as D(4) and obtain the minimum number of processors

needed to process the task system within the deadline. Then the

recognition function G is constructed so that it yields 1 if

and only if the minimum number of processors needed is less than

or equal to K. Q.E.D.

These two results indicate the space-time relationship when

trying to optimize the processing of a task system. They also

explain why the tremendous amount of effort spent in pursuing fast



algorithms for these scheduling problems is fruitless. In fact,

the special case of D(l) with two processors and empty precedence

relationship (independent tasks) is also polynomial complete [60].

So in general, fast optimal scheduling algorithms seem to be out

of reach.

For sequencing problems directly associated with different

kinds of RSRP systems, similar derivations will be applicable.

However, care must be taken in the reduction process. In many

cases, the interested sequencing problem may be easily formulated

into (and therefore reducible to) an inherently difficult problem.

But this does not automatically imply the former is inherently

difficult. To be accurate, the reduction has to go the other way.

That is, an inherently difficult problem has to be reducible to the

sequencing problem before we can conclude about the intrinsic

complexity of the latter.

Let us deviate a little bit for the time being and consider

a sequencing problem for a task system to be executed by a linear

pipeline with variable execution times (a nondeterministic pipeline

system). So each task has a distinct execution time vector on the

facilities concerned. This will form the basis of the sequencing

discussion in RSRP systems. Here, the inherent difficulty of this

sequencing problem will be proved first.

Theorem 2. Under the assumption that a task should not be

initiated if it would cause a collision inside the system, the

minimum execution time of the task system is given by

IN

n'n [ 7 d.. +7 t .]
S (i,j)eS1J j ^

65



66

where S is an ordering of the tasks indicating v/hich task should

follow which, and t.. = execution time of task i on facility j,

and d.. = delay caused by initiating task j after task i, and

r = index of the last task in the sequence S.

Proof. See Figure 2.13 for illustration. Y d.. gives
(i,j)eS1J

the total delay in initiating all tasks. The last term
N

I t . will complete the total execution of the tasks by the pipe-
j=l rj
line. (Observe that the collision avoidance assumption here guaran

tees the same ordering of tasks as they leave the pipe.) Therefore

the minimum execution time corresponds to the minimum if there is an

expression for a certain sequence S. Q.E.D.

In exploring the difficulty of this sequencing problem, let us

be more general and assume that we want to minimize the execution

time of a task system on a 'perturbed' pipeline. The perturbation

is used to describe that there is still some previous task executed

on the pipe. It therefore fits very well in a local optimization

scheme of tasks systems in an adaptive model where a continuous

stream of task systems is available for sequencing at some time

intervals. Situations where no perturbation exists can be taken

care of by ignoring this parameter. Under this assumption, the

following theorem is proposed.

Theorem 3. The aforementioned sequencing problem is inherently

difficult.

Proof. The traveling salesman problem (TCP) proven to be

inherently difficult (Lemma 1) can be shown reducible to it.
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where dQ(S) = perturbation (measured in delay) due to previous task

system to the sequence S.

Now the similarity between this problem and the TSP suddenly

reveals itself. Observe that the sequencing problem is actually

.equivalent to finding a cheapest trip through m+1 cities once and

only once starting at some city (perturbed state) and then leaving
N

the last one to a sink with a cost of It.. Therefore a given TSP
j=l rJ

can be reduced easily by adding a fictitious node t and arc (i,t)

for all nodes i in the original TSP with costs d.. by choosing

an arbitrary starting node p. The resulting specification is solved

as a sequencing problem whose optimal solution is obviously an

optimal solution for the TSP (with node p as the perturbation

state) because any shortest trip through the m+1 cities to the

sink t will correspond to a shortest tour through the m+1 cities

(see Figure 2.14). To complete the proof, we have to show how to

derive the specification for the sequencing problem given the speci

fication of a TSP of the reduced form. The procedure is done induc

tively. Assume it is completed k cities. For the (k+l)th city,

extend the k-task system table to a (k+l)-task system as follows:
%



(k,T)

(T,k)

(T,k)

Traveling Salesman Problem

Sequencing Problem .
starting at node k
and ending at s

Figure 2.14
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Facility

n+1 -. n+2k

For the (k+l)th city, assign

«?

»i

Then let

execution time of the ith task on facilities
1 through j, j = 1,2,...,N

(slack) execution time of task i on facility j

= tn

max{0,tf2i-3-t^i-2}
max{0,t^i-2_tn+2i-3} for *

di,k+l
for i = l,2,...,k.

£,0,»«.,K.

sn+1sk+l
.n+2i-l
'k+1
n+2i-l

i

n+2i

si

cn+2i
sk+l = d

k+l,i
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All other unspecified s3. =0. Then the complete task system for

(k+1) tasks will be specified, and inductively, their delays after

one another are precisely the respective distances. By construction,

the starting city t represents the perturbed state (task 1) of

the pipe which is initially present and causes delay to any sequence

denoted by dQ(S). To complete the picture, the arc distances to

the sink dit have to be modeled into the task system. Suppose

the number of facilities so far is q. Compute



and let

t a max {t?}
0 i=l,...,n+l 1

71

s?+i - t - t9
i o i

s?+2i = d5i Qit *

With this, the return distance from any node to the starting node p

is modeled into sv while all tasks will have the same remaining

execution time from facility 2 to facility q+m+1. The return dis

tances are included as additional execution time on some later

facilities. If the sequencing problem has a fast algorithm, so

does the TSP. Q.E.D.

This theorem therefore asserts that even for a linear pipeline,

if the task execution time on a facility is variable, then optimal

sequencing under collision avoidance assumptions is inherently

difficult. Consequently, the optimal sequencing for a nondeterministic

RSRP system under similar situations will also be inherently

difficult.

If, however, the facilities have fixed speeds, will the optimal

sequencing problem be simpler? Two different cases will be studied,

and in both cases, static and dynamic RSRP systems, optimal

sequencing is inherently difficult in general.

Theorem 4. The sequencing problem for a static RSRP system

with reconfiguration cost is inherently difficult.

Proof. Observe that if more than one pipe can process some

task, then trivially from D(3), the problem will be inherently
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difficult. So let us assume this is not so. Again, a reduction

from the TSP will be used. Recall a static RSRP system permits one

active pipe or configuration at one time. If a different configu

ration is needed, an extra amount of waiting for flushing the system

and establishing the desired configuration will be necessary. Let

0.. =overhead of ith configuration to the j configuration.

Then given a task system with task i going through a pipe, say

•u(i), the total execution time will be minimized if and only if

I 0.. +t is minimized where t = execution time of

(^(ihu-^jneS 1J
the last task in the sequence S. By a similar argument to Theorem 3,

obviously TSP = static RSRP sequencing. The variable tr corres

ponds to the distance from the last city visited to the original

city. (Whether the perturbed state exists or not is irrelevant

here. Also observe that no assumption has been made on the prece

dence relationship of the task system. The theorem holds whether

or not this is empty.) Q.E.D.

So general optimal sequencing algorithms for static RSRP systems

are complicated by prediction. Apparently, for the more flexible

dynamic RSRP system, where more overlapping among parallel pipes

is allowed, the problem will be at least as difficult. Indeed it

is so and can be cited as a theorem.

Theorem 5. Optimal sequencing in a dynamic RSRP system is

inherently difficult.
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Proof. A similar reduction procedure from the TSP can be

constructed. First, given the specification of a TSP of m cities,

add a fictitious sink node t and arc (t,i) with cost 0 and

arc (i,t) with cost t for all i = l,...,m and some t to
o o

be determined. Trivially, the solution of the resulting RSP will

also yield the solution of the original TSP. Next try to reduce

the resulting TSP to a sequencing problem in a dynamic RSRP system.

The TSP is to minimize I d.. +t where S is a sequence of
(i,j)eS1J °

traversals of the cities. The transformation is similar to that

in Theorem 3. The procedure is done inductively, assuming having

completed the task specification for k cities. Then for the

(k+1) n city, expand the task table:

tl =execution time of ith task on facilities 1 through j;

J _

Let

s^ = (slack) execution time of task i on facility j.

sf21-1 =max{0,t^2i-2-t"+2i-3}
for i = 2,3,...,k

•K?1-1 =«x{o.ty2i'-3-t£f-2}

si =di,k+l w .
n+2i . >f°r lBl» k

sk+l " Vl,i
sn+l = n
sk+l rl

After the RSRP system is completed for the m+1 cities, let us

assume the number of facilities so far is q. Compute

tn = max {t?}
0 i=l,...,m+l n
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and let

si+1 =*o "*1 j=1«---»m+1

and all other unspecified s^ =0. This completes the RSRP speci
fication whose optimal sequencing solution turns out to be precisely

Id-H +t0 because by construction, the delay of executing task j

after task i is precisely d.. and also each facility has the

same speed if d^ .= d.^ which holds for a TSP in an undirected

graph. Hence if the sequencing problem in a dynamic RSRP has a

fast algorithm, so does the TSP. Q.E.D.

These results indicate the necessity of simple heuristics

(near-optimal) to be used in sequencing under the different condi

tions discussed. Some simple heuristics will be discussed in the

next section. Meanwhile a semi-exhaustive approach to generate an

optimal sequence for a dynamic RSRP system will be included to com

plete the discussion. Its application may be justified when the

RSRP system is implemented at a high level so that each facility is

actually a large computing module for performing specific computa

tions. Also, in some cases, static local optimization for RSRP

systems may be used to increase the throughput. Then an optimal

sequencing algorithm for statically sequencing the pipes will be

needed. So the following optimal algorithm is included. First,

a theorem has to be developed.

Theorem 6. When maximum overlap in execution among all func

tional pipes is desired, the execution time of a given task system

Sf, S is bounded by



LB(Sf) = max {T.(S )+ £ t..+ min [ J t..]>
i jeS^ 1J jeS„ k follow- KJ

r r
ing i

where Ti(Sf) = completion time of the partial schedule on facility
i containing the set of tasks Sf

t^j = execution time of task j on facility i

Sf =a partial schedule for the task in Sf

Sr = remaining tasks to be scheduled.

Proof.- W yields tne time facility i becomes available

for any task in S , and I t.. corresponds to the minimum
3eS 1J

additional time to finish the remaining tasks on facility i. The

term min I t. gives the time needed for the fastest
jeS k follow- KJ

ing i
task to leave the pipe after leaving itn facility. Then their

sum will naturally form a lower bound on the execution time of

{W* Q.E.D.

With the above lower bound, one could devise a branch and

bound algorithm [61] to locate the optimal sequence as follows.

For simplicity, we will consider only a list sequencing method,

that is, the tasks will be ordered in a list to be executed on a

first come first served basis based on the ordering. The extension

to an exact initiation schedule can be easily established.

Algorithm Search. Let

S = task system

i = 1

Tc = To
Mark T

o
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Step 1: Among the ready tasks in S not yet in T , say this set

is Sc ={ur...,up}, create T.,T.+1,... J.^ such
that T.+|< = (Tc,uk+1) for k=0,1,...,p-l. Obtain

LB(T.+k). Let i= i+p=l. For all T. (j <i)such
Jo °

that |T. | = |S|, a feasible solution has been found.
Jo

Fathom (discard) all T. (j < i) such that LB(T.) > LB(T. )
J J J0

Step 2: Among all T. (j < i) unfathomed and unmarked, choose one
J

with smallest LB(T. ) and let T = T. . Mark T. and
J-j c J-j J-j

repeat Step 1. If no other is available, the only feasible

solution unfathomed will be the optimal solution. So halt.

This procedure obviously will halt since there are only N!.

possible sequences and there always remains one feasible

solution unfathomed.

The inherently difficult characterization propels one to believe

that optimal sequencing in the dynamic situation may involve extra

ordinary amounts of overhead which causes a degradation in perfor

mance instead. Even after a task system (in a deterministic or

adaptive sense such as in a lookahead type of sequencing) is identi

fied to be sequenced, any optimal sequencing strategy developed for

the general case, as the characterization is conjectured, will incur

some decision discipline that takes a long time (if implemented by

software means) or a large additional cost of hardware (if imple

mented by hardware and firmware mechanisms) or both. Also, what is

optimal in a local task system may not be optimal in a more 'global1

or larger task system that the former belongs. Under these circum

stances, naturally a simple and near-optimal heuristic is often
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more advantageous. In view of this, the next section will be devoted

to the comparison of some heuristics.

2.5 Sequencing Heuristics

In this section, sequencing in an adaptive environment will

be discussed. The term adaptive is used to mark the fact that the

tasks or instructions are sequenced in a fixed burst under some

lookahead scheme. So complete deterministic knowledge of the task

systems (instructions) will not be available. The realism of this

modeling assumption is easily conceivable because in the continuous

behavior of the real world, a deterministic and finite model often

is insufficient.

Three heuristics will be of particular interest here. They

will be named First Come First Served (FCFS), Clustering, and RSRP

Clustering. Their special features will be described and performance

compared using some experimental simulation. Their implementation

using hardware and firmware control will also be included.

2.5.1 First Come First Served

As the name implies, FCFS discipline will allow the tasks or

instructions to enter the RSRP system in the same ordering as they

have arrived. So it is the simplest heuristic possible and its

implementation schemata can be sketched as in Figure 2.15. The

initiation control is responsible for allowing the task or instruc

tion at the end of the queue to enter the system at the correct

moment to avoid collision inside or to allow proper reconfiguration

.to take place in the static RSRP system. The task queue will be



Incoming

Task Queue

Initiation
Control

Figure 2.15

FCFS Sequencing
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monitored by the initiation control and there is little additional

hardware or firmware needed to perform any reordering. Its perfor

mance can then be referred to as one achievable with the cheapest

cost, and legitimately it may be compared to filter out other heu

ristics that are more costly but not much superior to FCFS in

performance.

2.5.2 Clustering

In a static RSRP system, the reconfiguration due to different

types of instructions or tasks incur extra overhead and delay to

the normal stream of execution. Specifically in a static RSRP system,

if a task has to flow through one pipe different from the current

one in the system, it has to wait for some latency period until the

latter has emerged, as in the arithmetic unit pipe of the TIASC

system. So a sensible approach to remedy the situation is to reduce

the occurrence of reconfiguration as much as possible. This is the

reasoning behind the clustering heuristic where ready tasks or

instructions that involve the same configuration or pipe are grouped

together to be executed one after the other. So clustering really

involves a scanning and group mechanism and its implementation can

be as depicted in Figure 2.16. The additional hardware and control

circuitry needed include possibly an associative queue rather than

an ordinary queue for the set of lookahead instructions so that

independent instructions are searched in parallel during execution

in such away that instructions of a same type are detected almost

instantaneously and hence are available for the initiation control

for controlling their entrance to the static RSRP system. For the
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other parts of the sequencing modules, no significant deviation

from the previous scheme is necessary (except the synchronization

clock pulses in the initiation control and the additional clustering

unit which will change its associative match word from time to time

based on signals from the initiation control). With the aid of the

associative queue, prolonged delay due to retrieving or detecting

clustered instructions is avoided. Hence, this sequencer can func

tion almost as quickly as the FCFS discipline. In addition, observe

•the static control overhead of clustering is primarily a linear

function of the size of the task system in the lookahead set since

it merely involves some additional associative registers.

The usefulness of clustering can be illustrated with the follow

ing example.

(Ro)- (R^ + (R2) (RQ) «- (R,) + (R2)

(Rj) - (R2) * (R3) (R4) <- (R2) + (R5)

(R4) +• (R2) + (R5) (V - (R2) + (R3^
(R6) «• (R5) * (R6) (R6) <- (R5) * (R6)

Takes 3 reconfigurations Takes 1 reconfiguration

The two execution sequences will produce the same results, but

the one on the right hand side is preferable because it requires

fewer reconfigurations and hence its execution speed is faster.

2.5.3 RSRP Clustering

The same clustering rule may be applied to a dynamic RSRP

system where concurrent processing among the various functional

pipes are allowed. In many cases, grouping of tasks of the same
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type in a dynamic RSRP system still is advantageous because tasks

of the same type usually incur less latency. The routing of operands

in a dynamic RSRP system is a bit more complicated than that in a

similar but static RSRP system because a correct transition at a

shared resource has to be chosen dynamically rather than statically.

A localized monitor scheme for this routing is exemplified in

Figure 2.17. Each data packet will contain some redundancy holding

encoded information about the path desirable. This encoded path

information will be used by the second part, the decoding control

at each shared resource (one with multiple exit arcs), to enable

the correct transitions. Since this decoding activity can be per- .

formed in parallel with the actual processing, there is no dynamic

runtime overhead involved which may delay the availability of an

output. Also since multiplexors are used to choose correct transi

tions at a static RSRP system in any case, the overhead discussed

above is really quite negligible. The schematic diagram of RSRP

clustering is exactly the same as that of the clustering method

except in the initiation control, a two-dimensional collision matrix

constructed by the algorithm in Figure 2.11 is also provided. The

matrix can be stored in shift registers or counters whose contents

are constantly updated to control the initiation of tasks (instruc

tions) already re-ordered.

2.6 Experimental Demonstration

The three heuristics (2 for static and 1 for dynamic RSRP systems)

were tested on RSRP systems whose configurations are taken directly

from the arithmetic units of TIASC and the floating point pipes of
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the CDC STAR-100 systems. The environments are parameterized in

three ways. First, the different types of tasks, in this case

instructions, are given some relative frequency of excitation. For

instance, (0.1,0.2,0.4,0.1,0.2) implies that the percentage of

instructions executed are 0.1, 0.2, 0.4, 0.1, 0.2 for the five

types (configurations) respectively. Second, the size of the look-

ahead set of tasks or instructions is variable. This marks a

variable structure in the adaptive sequencing discipline explained

in the previous section. Third, the nature and amount of inter-

dependency or precedence relationships of the instructions (mainly

in operands) as they are generated are parameterized such that the

amount of interaction and levels of dependency within and between

lookahead sets of instructions are encompassed. Therefore, a sto

chastic precedence relationship is also allowed in the simulation

model.

With these three types of parameters, the heuristics can be

compared under different RSRP systems. The simulator built mainly

consists of three parts.

(1) Instruction generator which generates the instructions

according to the parameters specified. (A random number generator

is used particularly to create instructions according to the mix

ratio, dependency parameters, etc.)

(2) Collision matrix constructor which constructs the two-

dimensional collision matrix given a RSRP system specification

(including paths, execution times) according to the algorithms in

Figure 2.11.

(3) Heuristic sequencers which simulate the hardware sequencers
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in Figures 2.15 and 2.16 according to the sequencing discipline

chosen and monitor the execution of the instructions. The output

of the simulator consists of a time-driven execution profile of

the instructions as they are generated and executed under the three

heuristics adopted so that they can be compared easily.

A typical comparison is shown in Figure 2.18. The horizontal

axis gives the number of iterations (one iteration corresponding

to the execution of the ready instructions in a lookahead set of

instructions) and the vertical axis the corresponding execution time

profile. This particular output illustrates that indeed the clus

tering philosophy is wery useful compared to FCFS since it brings

a reduction in execution time by 30%. But the dynamic RSRP system

using the same clustering rule is even more attractive as it further

reduces the execution time by as much as 40%. To compare the three

cases, a relative efficiency index is set up. Let

aij = relative efficiency of heuristic j with respect to
heuristic i

where T. = execution time of the instructions under heuristic i.

(Observe that a.. = a.,a, ..)
lj ik kj '

The results of the comparisons under different parameters for

the three cases are tabulated in Figures 2.19a, 2.19b, and 2.19c.

From it, several observations are to be discussed.

(1) ou.. is usually sensitive to the size of the lookahead

set and the individual system tested. This is readily explainable

because with more instructions (which depend on the size of the
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Tl T2 T3 T2/Tl T3/T2 0 *
L FRFS Clustering RSRP

MIX = (0.2,0.2,0.1,0.2,0.1,0.2)

8 2056 1672 1004 0.815 0.605 0.5 0.4

16 3936 2797 1252 0.71 0.45 0.5 0.4

32 7195 4040 1780 0.562 0.44 0.5 0.4

8 2095 1661 973 0.795 0.575 0.3 0.4

16 3820 2794 1135 0.73 0.407 0.3 0.4

32 7509 4227 1729 0.564 0.409 0.3 0.4

8 1709 1340 869 0.785 0.658 0.3 0.6

16 3499 2578 1147 0.739 0.445 0.3 0.6

32 6672 3920 1605 0.59 0.41 0.3 0.6

MIX = (0.3,0.2,0.1,0.2,0.1,0.1)

8 1608 1330 888 0.83 0.552 0.5 0.4

16 3227 2433 1187 0.745 0.49 0.5 0.4

32 6027 3571 1724 0.593 0.483 0.5 0.4

8 1793 1546 923 0.865 0.595 0.3 0.4

16 3734 2771 1251 0.74 0.46 0.3 0.4

32 6979 3951 1962 0.566 0.498 0.3 0.4

8 1816 1427 943 0.785 0,65 0.3 0.6

16 3628 2611 1316 0.71 0.501 0.3 0.6

32 6933 3906 1883 0.572 0.475 0.3 0.6

Figure 2.19a

STAR-100 Pipe 1
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L
••l

FRFS
T2

Clustering
T3

RSRP
VT1 YT2 e <f>

MIX = (0.2,0.2,0 .2,0.1,0.2,0. 1)

8 4143 3377 2997 0.82 0.89 0.5 0.4

16 7795 5191 3318 0.67 0.64 0.5 0.4

32 13369 7291 3850 0.545 0.53 0.5 0.4

8 4277 3493 2859 0.815 0.82 0.3 0.4

16 7170 5148 3112 0.716 0.61 0.3 0.4

32 14180 7462 3826 0.53 0.515 0.3 0.4

8 3119 2524 2472 0.81 0.97 0.3 0.6

16 6582 4826 3094 0.734 0.645 0.3 0.6

32 12386 6960 3572 0.574 0.508 0.3 0.6

MIX = (0.3,0.1,0. 3,0.1,0.1,0.1)

8 3900 3044 2851 0.78 0.935 0.5 0.4

16 6144 4251 3237 0.676 0.76 0.5 0.4

32 11436 6797 3990 0.594 0.59 0.5 0.4

8 3142 2636 2430 0.805 0.85 0.3 0.4

16 6287 4594 3107 0.73 0.665 0.3 0.4

32 11894 6808 3905 0.575 0.575 0.3 0.4

8 2457 1977 1950 0.805 0.98 0.3 0.6

16 5515 4072 3141 0.74 0.77 0.3 0.6

32 10160 6274 3657 0.62 0.58 0.3 0.6

Figure 2.19b

STAR-100 Pi pe 2
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T, T2 T3 YV VT2 9 *
L FRFS Clustering RSRP

8 1190 981 811 0.824 0.825 0.5 0.4

16 2050 1373 1112 0.67 0.81 0.5 0.4

32 4312 2101 1830 0.488 0.87 0.5 0.4

8 1297 993 801 0.766 0.806 0.3 0.4

16 2210 1405 1060 0.64 0.73 0.3 0.4

32 4180 2084 1767 0.5 0.845 0.3 0.4

8 1010 852 737 0.84 0.868 0.3 0.6

16 18.85 1276 975 0.677 0.767 0.3 0.6

32 3861 1934 1575 0.52 0.815 0.3 0.6

8 1034 850 762 0.824 0.895 0.3 0.6

16 1975 1322 998 0.78 0.805 0.3 0.6

32 3766 . 1906 1501 0.506 0.79 0.3 0.6

8 1267 986 791 0.78 0.805 0.3 0.4

16 2189 1411 1049 0.642. 0.742 0.3 0.4

32 3981 2021 1590 0.51 0.786 0.3 0.4

8 1079 945 866 0.865 0.91 0.5 0.4

16 2038 1344 1072 0.66 0.798 0.5 0.4

32 4092 2034 1134 0.499 0.81 0.5 0.4

Figure 2.19c

TIASC Results
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lookahead set) clustered at one time, fewer reconfigurations may be

necessary. Since the amount of concurrent processing possible is

limited by the system structure, the latter dependency is also

reasonable.

(2) a.. is quite insensitive to other parameters such as

instruction mix ratio, and dependency structure. These two para

meters have the same common characteristics; they tend to limit the

amount of independent instructions of each type to be executed.

•With a reasonable lookahead set size, here they influence the three

heuristics to a relatively similar extent.

(3) In particular, 0.6 <a^ <0.8 for 90% of the cases,

hinting that the clustering discipline is really beneficial compared

to FCFS in a static RSRP design. But, a32 < 0.7 for most cases in

the STAR model and a32 £ 0.8 for most cases in the TIASC model

further reflect the advantages of a dynamic RSRP system over a static

one under the same clustering discipline.

These heuristics can be extended to other RSRP systems, perhaps

at a higher level than the ones tested (which are execution units

of an instruction processing pipe). In such cases, the additional

hardware control cost in the dynamic RSRP system compared to that

of a similar but static one will be negligible so that RSRP cluster

ing or some other simple rule under a global controller is clearly

a good candidate to be incorporated into the system. Also, sequenc

ing has been illustrated to be an activity well-implementable using

hardware. With the decline of hardware cost and unreliability,

contrasted with the fast climbing software cost and unreliability

as the system grows, perhaps more such system functions should be
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implemented using as much hardware as possible.

Finally, due to the complexity of the optimal sequencing

algorithms and the long run behavior of the system tested, the

optimal solutions are not generated and compared with those of the

three heuristics (though its simulator has also been constructed).

But it is firmly believed that RSRP clustering is near-optimal for

most situations (part of the confidence comes from a partial compari

son of some runs of the optimal simulator with the heuristic).

This is because in many practical situations, the latency to initiate

the same pipe configuration is usually smaller than the latency to

initiate some other pipe configurations.
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CHAPTER 3

System Partitioning and Decomposition

3.1 System Partitioning

As may be apparent from discussions in previous chapters, RSRP

is a powerful model which can be applied to almost any system design.

From it, we can perform various analytical evaluations and optimiza

tions of the design and operation discipline adopted. In this

chapter, two specific design problems will be considered, namely,

system partitioning and resource decomposition.

In a RSRP system, if the amount of resources shared by different

functional or processing paths of the system is enormous, the com

plexity of the system control to avoid or resolve resource conflicts

may be prohibitive and severely degrades the performance of the

system. Since sharing of resources at some level of the system is

inevitable, a problem that a designer often faces is how to choose

strategic resources to be shared by other subsystems or modules.

There are two major reasons that lie behind system partitioning.

First, as most designers realize, the complexity of the control

circuitry as well as the software or firmware algorithms needed for

a system of n modules does not usually obey a linear relationship

with n. A typical example can be seen in scheduling or sequencing

control where collisions in the system modules are to be avoided.

This is certainly the case for the global controller developed in

Chapter 2. We can see traces of this partitioning philosophy in

some existing systems. In the PEPE machine built for the ABMDA,

essentially the ensemble of processing element units are partitioned
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into three functional paths: (1) arithmetic control unit followed

by the arithmetic unit, (2) associative output control unit followed

by the associative output unit and (3) the correlation control unit

followed by the correlation unit. Therefore concurrency of opera

tions can exist in three different paths. An alternative but similar

design can be represented by the HAPPE (Honeywell Associative £arallel

Processing Ensemble) machine which contains two control units

(correlation and arithmetic units) followed by onje processing element

unit so that the processing elements operate in either of two modes

— the correlation mode and the arithmetic mode which are exclusive

events. Of course, the superiority of any design depends heavily

on the application(s) it is designed for as well as the cost con

straints imposed on it. But for a designer, some analytical tools

to solve this kind of problem seem very useful and desirable --

not only to find an optimal design, but also to back up his initial

conjectures from past experiences or to look for better alternatives.

In addition to the complexity of control or optimization

during operation, by partitioning a system using duplication, the

system throughput will very likely increase because less coupling

(or interference) among functional paths occur. As just illustrated,

in the PEPE system, concurrency of operation exists in all three

functional paths whereas in the HAPPE system, only one of the two

modes will be active in the processing element. Therefore, it may

be expected that a higher throughput rate can emerge from the former

system. Another example can be established using a parallel pro

cessing system with n parallel processors and m memory modules.

If the m memory modules are shared simultaneously by all n
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processors via techniques such as interleaving, Severe interference

may lower the throughput of the system (especially in a parallel

processing environment). Therefore, in many situations, it is more

beneficial to allocate a subset of the memory modules to serve a

subset of the processors (a dedicated assignment) which are pro

cessing a certain task. This is why in ILLIAC IV local memories

exist within each processing element. Then processing of parallel

tasks may be achieved with little or reduced interference among

tasks in memory references [64]. Of course, there remain a lot of

yet-to-be-solved problems in this area which are out of the scope

of this thesis. It can be observed from this example that by proper

duplication or partitioning of some resource, a system can be parti

tioned into subsystems which provide a higher throughput rate (and

reliability too!).

To further exemplify this partitioning problem analytically,

consider the RSRP system G depicted in Figure 3.1. It consists

Of six functional paths and six shared resources. If resource ©

is being duplicated or partitioned, G will be partitioned into

G-. and G2 as depicted in Figure 3.2 each consisting of three

functional paths (pipes). Then the control of subsystems G, and

G2 individually will be easier to handle. In fact, G, and G2

could be allowed some intelligence in the form of local monitors

(controllers) which supervise and optimize the operation of indivi

dual subsystems and concurrently interact with other subsystems via

a global medium (for example, global controller) in much the same

flavor as distributed intelligence [8]. This will be the subject

of a later chapter. It is noteworthy at this point that the



An example RSRP: 6 paths

P^ 1-2-3-4

P2: 1-2-6-4

P3: 5-2-3-4

P4: 9-6-7-8

p : 9-6-7-10
5

P6: 11-7-10

Figure 3.1
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If © is duplicated, G
is partitioned into G-. and G2

G^ P^ 1-2-3-4

P2: 1-2-6-4

P3: 5-2-3-4

G2: P^ 9-6'-7-8

P2: 9-6'-7-10

P3: 11-7-10

Figure 3.2
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partitioned system in Figure 3.2 not only is easier to control

locally but also can most likely generate a higher throughput rate

because resource © is partitioned or duplicated so that inter

ference in resource ® occurs only within G«. Thus both objec

tives of partitioned systems are achieved as G, and G2 are

autonomous subsystems capable of performing parallel processing.

97

3.2 Problem Formulation for Partitioning

In order to locate the strategic resources in partitioning

the original system, we have to generate an associated graph G.

which contains all information pertinent to the resources shared

by various paths (pipes). It can be done by the following proce

dure:

Algorithm 3.1: GEN

Step 1: Given RSRP system G = (N,A,P), from the set P generate

all resources shared by different pipes.

Step 2: Define the associated graph G$ = (N$,AS) such that

P1 eP if and only if ieN$, and (i,j) eA$ if and

only if P.. and P. e P share some resource detected in

Step 1. Associated with each arc (i,j) e A. is a cost

C(i,j) which is a complex measure of throughput, control

complexity and other parameters to be discussed later.

For example, the RSRP system in Fig. 3.3a has an associated

graph as drawn in Figure 3.3b.

For simplicity in revealing the algorithms to follow, it will

be assumed that at most two functional pipes share any single
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resource. Any further complication can be easily handled by appro

priate modification or continued iterations in the algorithms to
follow and does not incur special difficulty in solving the problem.

Before proceeding further, one may question what the cost

C(i,j) of each arc in G$ represents. Because asystem designer
often is forced to face cost constraints (cost-effective designs),

it is natural to assume that when he partitions (duplicates) a system

into subsystems, he has to meet some cost constraints. However, the

direct cost of a module is not the only cost it incurs. There are

other parameters such as operational cost which should not be over

looked. Even the expected throughput gain of some subsystem by

duplication of some shared resource can be modeled into this cost

function. Thus the cost function of the associated graph G$ is a

very flexible function of multiple parameters -- one way to lend

flexibility to the algorithms to be developed when used by general

practicing designers. Then given the associated graph G$, different

designers may have different goals to meet. Some may want to parti

tion the system into subsystems at minimum total cost so as to maxi

mize the throughput gain (here cost is a complex function of through

put and other investments). Another possibility is how to parti-

tionthe system into subsystems each containing about the same number

of pipes at minimum cost so as to minimize the operational control

complexity discussed in the previous section. For the former problem,

it can be formally stated as follows:

Given: G~ = (N$»AS) and C= cost matrix.

Objective: Find a globally minimum set of cut sets of G<..
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Remark. When a 2-way partitioning is desired, methods such as

Floyd's max-flow min-cut algorithm can be used. But when m-way

partitioning is the goal, the problem becomes complicated. Since

this problem is a subproblem of the latter (with the additional

equi-partition constraint), attempts will not be made to solve the

former one. Rather, attention will be focused on analyzing and

solving the second problem in the following sections.

3.3 Solutions

•3.3.1. Previous Attempts

The m-way partitioning into equi-partitions (m-way uniform

partitioning) is a nontrivial optimizing problem. To manifest its

intrinsic difficulty, one formulation is provided here for the 2-way

uniform partitioning:

min H C1jXl(l-X )
U ,J

such that

2n
I X. = n , X. e {0,1} , i = l,...,2n .

(o if node i belongs to first partition
Note. X. = < y

1 ll if node i belongs to second partition.

In this formulation, it can be observed that it is a quadratic ^

integer programming problem and difficulties in getting simple

optimal algorithms should be expected.

In [66], Kernighan and Lin proposed an algorithm for the 2-way

uniform partitioning problem. Essentially, K-L algorithm starts
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with a feasible solution by partitioning the system (therefore the

associated graph Gs) into two equipartitions (therefore 2 subgraphs

of Gs each containing the same number of nodes). Then it inspects

the possibility of interchanging a pair of nodes in the two parti

tions so as to improve the objective function value. The algorithm

.is speeded up by maximizing the improvement in exchanging some pairs

of nodes at each iteration until no further improvement is possible.

[For reference, the K-L algorithm has been included in the Appendix

at the end of this section.] However, quite unfortunately, the K-L

algorithm does not have a neat bound of computational complexity

because the number of iterations is not well bounded. Furthermore, .

when the K-L algorithm is generalized to solve the m-way uniform

partitioning, the computations become prohibitive. Evidently, sim

pler heuristic procedures may be very desirable in many applications

then. Therefore the following sections will focus on exploring the

difficulty of this problem and try to find alternative optimal

algorithms or heuristics.

3.3.2 Relation to Quadratic Assignment Problem

The fundamental approach hidden under the K-L algorithm is a

technique known as X-opting developed by Lin [67] in solving the

classical traveling salesman problem. It involves the rearrange

ment of basic feasible solutions (0-1 integers) in X-groups so as

to improve the objective function most greedily at every iteration.

This research consequence leads one to doubt and question the rela

tionship between the traveling salesman problem and the m-way uniform

partitioning (m-way UP) problem. Are they actually equivalent?



102

Before attempting to answer this question, a description of

the traveling salesman problem (TSP) is helpful. Suppose a salesman

has to travel through n cities exactly once and only once and

return to his home. The TSP is to find a tour which minimizes the

total distance of his trip [59]. Considerable amounts of research

effort have been devoted to deriving simple optimal algorithms but

there has been a general belief that no polynomial bounded algorithm

exists which can solve this problem in general.

But unfortunately, up to now no success has been achieved in

producing a direct link between TSP and m-way UP. Instead, an

indirect link can be established using the quadratic assignment

problem. To begin with, the quadratic assignment problem (QAP) can

be stated as follows:

Given a set of n locations in which m plants must be

constructed (m < n), the cost of shipping one unit from location i

to location j is C and the amount to be shipped from plant k

to plane £ is dkr Find the optimal assignment of plants to

locations.

Formally, the QAP can be stated as:

subject to:

n m

max

I x = 1 k = 1 m
i=l 1K

m

I X.k< 1 i- l,....n
k=l 1K

X.. e {0,1} .

«.



1 if plant j is assigned to location i
Note. X.. = <

J 0 otherwise.

Realizing the QAP, it can be deduced that both the TSP and

m-way UP are special cases of QAP. Thus the revelation of the

indirect link. To clarify the link, observe that the TSP and

m-way UP can be written as:

such that

where

% =

TSP: max I £ C d X X
i,j k,£ 1J K36 lk J*

pik =1

ZXik =]k 1K

Xik e {0,1}

1 if i = j-1

Cii = 1 "• = 1» — .n-1
0 otherwise

1 if j = 1

0 otherwise

d,, = -I..

A.. = distance between city i and city j

On the other hand, m-way UP can be stated as:

maX i?j k^ijVikV
such that
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where
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X^k binary

1 if there exists k f 0, i e I. , j $ I
kC,, =

1J [0 otherwise

Ik = [kn,k(n+l)]

d..= N if ilj
1J [0 otherwise.

The TSP formulation above is simple and self-explanatory. For

the m-way UP formulation, some explanation may be needed. We could

view this problem as having np locations (where p = number of

partitions and n = number of nodes per partition) to be assigned

for np plants. The first n locations form the first partition

and the second and so on. The cost of transportation of location i

to location j is 1 if and only if they belong to different

partitions. The amount to be transported from plant k to plant %

(the actual cost) is (-cost for arc (k,l) in G<J since maximization

is desired. To avoid double-counting of cost, a strictly descend

ing order of indices in d.. is imposed.

Now it can be verified that the TSP and m-wory UP do bear close

resemblance by scrutinizing the two formulations. If a transforma

tion can be derived from one cost matrix of TSP to a corresponding

cost matrix of m-way UP and vice versa, the two problems will be

equivalent. But unfortunately, it remains an open problem.
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3,3.3 Difficulties and Non-Optimal Approaches

Because of the quadratic integer programming characteristics

that it possesses, the m-way UP does not lend itself easily solvable

using simple strategies such as minimum spanning trees (greedy),

dynamic programming, or successive clustering of nodes (for network

synthesis). Pitfalls in using these strategies are apparent. If

we use the minimum spanning tree (greedy) approach, the information

contained in the forest or tree is insufficient to describe all cuts

in the original graph. Consequently an intermediate form of a minimum

spanning tree does not seem to be useful in deriving the optimum

cuts. Dynamic programming techniques do not appear to be efficient

because of the binary-value constraint as well as the quadratic

nature of the objective function. Any approximate or improved

techniques in dynamic programming fail to be an impressive candidate

of an optimal algorithm. Finally, clustering of nodes to form

bigger nodes has a flavor of both of the two techniques just men

tioned. But likewise, the quadratic nature of the objective function

eliminates its direct applicability without considerable modification.

Appendix

A.l K-L (Kernighan-Lin Algorithm) for 2-way Uniform Partitioning

Let A, B be two sets of nodes.

Lemma [66]: Consider a e A, b e B. If a and b are

interchanged, the change in cut value is precisely D +D. - 2C . = g
a d ao

where Cab = cost (flow) on (a,b), D = £C - I C .
yeB y yeA y

Then the algorithm can be simply formulated as:
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Step 1: Obtain a partition (S,S) such that |S| = |S| = n.

St§ELl: Choose ai e S, b.. eS such that gi is maximum. Set

a.j, b.j aside by constructing subgraphs (S-a.+b. ,S-a.+b.).

Repeat Step 2 n times. Observe some g. may be negative
k 1

Step 3: Find k such that G = J g. is maximized (since
i=l 1

n

I g. = 0 necessarily). Perform the interchange. If
k=l n
G = 0, an optimal solution is reached. If not, go to

Step 1.

This algorithm provides an efficient means to improve the

objective function value. But as explained in Chapter 3, it may

be quite complex in some applications. Some speedup technique

was also proposed in [66] but is excluded here.

A.2 FF Algorithm (Ford-Fulkersen max-flow min-cut)

It can generate a max-flow s-t or minimum s-t cut of a directed

graph G= (N,A) and terminate in < IN'-*-1 |A] iterations [69].

The algorithm can be stated as follows:

Step 1: Construct a network called the augmentation network

G(f) = {N,A(f)} in which each arc is labelled with a

number a(i,j) where for each arc (i,j) e A. If current

flow f(i,j) < C(i,j) (the capacity of arc) then

(i,j) e A(f) and a(i,j) = C(i,j) - f(i,j) (forward arc).

If f(i»j) > 0, then a(j,i) = f(i,j) (reverse arc).

Step 2: If there is no path from s to t in G(f), terminate,

f is a maximum s-t flow. Let X = {xeNl x reachable
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from s on G(f)}, (X,R) is a minimum s-t cut.

Step 3: Otherwise let P be (an arbitrary) path from s to t in

G(f) and let it equal min a(i,j). Define a new flow
(iJ)eP

f on G as follows: For every (i,j) e A, if (i,j)

corresponds to a forward arc on P, let f'(i,j) = f(i,j)+a.

If (i,j) corresponds to a reverse arc on P, let

f'(i»j) = f(i>j)-ct. If (i,j) corresponds to no arc on

P, let f(i,j) = f(i,j).

Step 4: Let f = f. Go to Step 1.

3.4 An Optimal Algorithm

In solving an optimization problem, two different approaches

can often lead to two different optimal algorithms. In the case

of integer programming, in many cases, one can try to tackle the

problem beginning with a feasible solution and systematically

improving the objective function; one can also start with an infea-

sible solution (which maximizes or minimizes the objective function)

and systematically search for a feasible solution which hurts the
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objective function minimally. This is just like trying to locate

an object on a path with two extreme ends. You can start searching

from either extreme. Sometimes one approach is faster and sometimes

the other is superior.

The K-L algorithm mentioned in Section 3.3.1 falls in the first

category. In the 2-way uniform partitioning, the endeavor involves

an initial 2-partition and thus a feasible solution which is improved

systematically at every iteration. Its efficiency depends heavily

on the initial choice of a feasible solution as well as the parti

cular group structure of the problem. Here in this section, an opti

mal algorithm which falls into the second category will be introduced.

The merit of this new algorithm is its simplicity in terms of compu

tation when moving from one iteration to another. Some experimental

demonstration will be performed to compare its efficiency with that

of the K-L algorithm.

Basically this algorithm (MP) depends heavily upon the Ford-

Fulkersen max-flow min-cut (FF) algorithm (see Appendix) which is

being used to find a lower bound on a future feasible solution at

every iteration. More explanation will be provided after the

description of the MP algorithm below:

MP Algorithm (for 2-way uniform partitioning):

Data: The associated graph Gs = (NS,A~), |NJ = 2n.

Initialize r = 1, i = 2, S f <f).

Step 1: Let s = {1}, t = {i}. Obtain the minimum s-t cut

using the FF algorithm. For each cut, let P, , P2r be

the two partitions created (note s e P, , t e P2r)«
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S=Su {(Plr,P2r,sr,tr)}, r= r+1, iQ = 1+1. If

i < 2n, repeat Step 1. Go to Step 3.

Step 2: Inspect S to find k such that min ftPi^PoJ =
ieS

f(Plk,P2k). If |Plk| > |P2k|, choose jQ e P]k and

let sf = sk> t =tku{jQ} (or vice versa). If

|srl = |tp|, Plr = sr, P2r = tr. Otherwise, apply

algorithm Update to find new minimum s-t cut from the
r r

final augmentation network of (pir»pp ^ ^or directly use

the FF algorithm if so desired). Let S ,= Sk u {j },

Vl =V S•Su {<Plr'P2r»sr'tr)»(Plk-P2k'sr+TVl)}

Step 3: Inspect S to find k such that |P,J = |P2J and

ieS^nd ^W^ *f{VzJ (s0 that (Plk'P2k>
lPlil=lp2il
corresponds to a local optimum solution). T = {cutse S

so that its cut value >_ f(Plk,P2k)}, S = S-T. If

|S| = 1, S = optimum solution; so halt. Otherwise,

go to Step 2.

The MP algorithm therefore can be seen to be systematically

progressing towards a best feasible and hence optimal solution.

The objective function value is increased at every iteration until

an optimal solution is reached. Notice that this method actually

follows the branch-and-bound philosophy [61] where at every itera

tion, a best possible bound for a s-t cut is obtained. The

beauty of this approach lies in the easiness of getting a best

bound from information available from some past iteration (algorithm



Update) which will be described later. First, a proof is provided

for the termination of the MP algorithm.

Theorem 3.1. The MP algorithm terminates with an optimal

2-way uniform partition.

Proof. Step 1 generates all possible minimum r-t cuts where

t consists of a single node (though the two resulting partitions

need not contain single nodes). Then any future optimal solution

that contains node i in a different partition from node r, the

cut value _> that of minimum r-i cut. Therefore, if some feasible

solution turns up in Step 1 whose objective function value is less

than or equal to that of some other cuts created, the latter can be

"fathomed" and removed from future consideration.

Step 2 represents branching from the current best solution

and trying to derive a feasible solution by taking a node from the

larger partition to the other one.

Then Step 3 will fathom inferior solutions based on the best

current feasible solution until only one is left (which will always

occur when all solutions become feasible perhaps after enough itera

tions when |sr| * |t | for all r in the worst case).

Algorithm Update.

Step 1: Suppose (p]k»P2k) is the cut provided for some final aug

mented network using the FF algorithm. Now at the r itera

tion, Sr = Sk, tp =tkU{jQ} where j e P1(<. In the

augmented network, coalesce j and t, (observe t. can

be a compound node consisting of several simple nodes).

no



Step 2: Continue the augmentation procedure to find max-flow (and

min-cut) on the modified augmentation network until no

further augmentation is possible for an s -t path.

Then halt.

Theorem 3.2. Algorithm Update indeed can generate a minimum

sr-tr cut.

Proof. Suppose Gk is the final augmented network for the

sk_tk mininium cut* By coalescing t. and j in Gk to form

GJ, it is meant that the flow between (t.,j ) is not limited while

other flow-values are conserved. But this is precisely the same

information provided by coalescing (tk,j ) in G~. That is, we

can always repeat the same procedure from G~ to Gk to obtain

Gr- Q.E.D.

It is appropriate at this point to illustrate the MP algorithm

in detail with an example.

Consider the associated graph G~ shown in Figure 3.4.

Application of the Algorithm results.

Step 1: S] ={1} t1 ={2} Pn ={1,3} P£1 ={2,4,5,6} f=9

s2 ={1} t2 ={3} P]2 ={1,2} P22 ={3,4,5,6} f=9

s3 = {1} *3 = {4} P13 =^»2'3> p23 = {4»5»6} •»- feasible
f = 5

s4Ml} t4 = {5} Pu= {1,2,3} P24 ={4,5,6} f=5

.'. feasible

s5 ={1} t5 = {6} P15 = {1,2,3,4,5} P25 ={6} f=4

m



Figure 3.4

Example Associated Graph
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Step 3: S,, S?, S~ are fathomed. S = {S4,Sr}

Step 2: s6 = {1} tg = {2,6} P]6 = {1} P£6 = {2,3,4,5,6} f=5

Therefore Sg is fathomed. S = {S4,S5}. It is interesting

to see how Algorithm Update operates to get P,6, P26-

The final augmented network for Sr is shown in Figure 3.5a.

The coalesced and final augmentation networks are drawn in

Figures 3.5b and 3.5c. (Notice that the graph G~ has been

changed to a directed network before applying the FF algo

rithm [69].) s7={l,2} t7 ={6} S={S4,S?}

Steps 2 & 3:

s8 = {1,2} *8 ={6,3} P18 = {1,2} P28 = {3»/!'5»6} f* 5
Therefore Sg is fathomed.

sg= {1,2,3} t9 = {6} Pig = {1,2,3} P2g = {4,5,6} f=5

Therefore Sg is fathomed.

S= {S4} = optimal solution. Optimal cut is: {1,2,3} {4,5,6}

The efficiency of the MP algorithm appears to rely very much

on the deviation of the optimal solution from one of those 2n initial

cuts. Because only one or a few additional augmentation steps (some

times none) are needed at every iteration, the algorithm seems to

be quite efficient in most cases tested. It can be speeded further

by asserting a feasible bound from any arbitrary feasible cut.

Applying either the K-L or MP algorithm to solve the design

problem may be worthwhile because the design is done once and for

all. But when approximate designs are desired, for example, for

iterative purposes, simple heuristic procedures may be more appli

cable. This is especially true when m-way uniform partitioning is



114

Figure 3.5a

Figure 3.5b

Figure 3.5c



wanted because although both the K-L and MP algorithms are exten

dible to solve it, they incur a tremendous amount of computational

overhead. As a result, simple but near-optimal heuristic procedures

may be more desirable. Here, a heuristic procedure will be intro

duced for the m-way uniform partitioning:

Algorithm NOP (for mn nodes into m partitions).

Step 1: Let S = {i} such that J f(i,j) is minimal.

jeN

Step 2: Choose j { S such that f(SU{j},su"{jT) is minimal

. where SU{j} = n-(SU{j}). Let S = SU{j}. if |S| < n,

repeat Step 2.

Step 3: Let N = N-S. If |N| > n go to Step 1. Otherwise halt.

An example is worked out in Figure 3.6a to show it sometimes

yields an optimal solution. But in Figure 3.6b it only yields a

near-optimal solution.

Other applications of m-way UP algorithms can be found in [66].

They include the assignment of modules to different PC boards as

well as tasks to memory modules. Therefore the algorithms mentioned

can have a wide range of interesting applications in both the design

and operation of a system.

3.5 Resource Decomposition Via Pipelining and Other Techniques

Having constructed the basic skeleton (functional assignment)

of a RSRP system, some modifications can be introduced to improve

its overall throughput rate. One viable approach is by pipelining

a module (2-level pipelining) into smaller submodules or segments

11



Steps: S = {2}

S = {2,4}

S = {2,4,6} = optimal

S = {1,3,5}

f(S,S) = 1 +1 +2 + 1 +2 = 7

Figure 3.6a

Steps: S = {1}

S = {1,3}

S = {1,3,2}

f(S,S) = {6}

Optimal: {1,2,4} f(S,S)

Figure 3.6b

= 5
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as long as current technology allows and the resulting additional

cost is "tolerable". From Chapter 2, the efficiency analysis

reveals that the efficiency and throughput of a system depends

heavily on the bottlenecks) of the system. After identifying

these bottlenecks, a designer can drastically improve the system

throughput by some simple means of "bottleneck removal". In some

cases, the bottlenecks can be replaced by faster but usually more

expensive modules, and in some others, some useful techniques such

as pipelining can be incorporated. In the latter scheme, a bottle

neck is replaced by a sequence of autonomous submodules connected

in a pipeline fashion. (Therefore a pipeline segment is actually

a local pipeline itself.) This pipeline is responsible for all

operations handled by the module in the original design but has a

much higher throughput because of the segmentation of the opera

tions. It is understandable that the cost of the latter scheme

may be more expensive than the original module and a discussion

of its cost-effectiveness is clearly needed here.

Several reasons may justify the use of the pipeline scheme

for bottleneck substitution. Among them are: (1) when a suffi

ciently fast module cannot be built (within some cost constraint)

because of limitations in technology and operation algorithm

adopted, a sequence of pipeline segments functioning synchronously

often relieves the problem and proves to be the most cost-

effective design, (2) when the application requires a speed that

exceeds technological feasibility, pipelining submodules (need not

be identical) usually are more efficient and cost-effective than

performing parallel processing on identical modules in order to

117



match the speed requirement. The reason is two-fold. First, it

is usually less expensive and simpler in control to have n sub-

modules (each performing some dedicated suboperations) than to have

n identical modules (each performing the same operation handled

by the n composite submodules). Second, the resulting throughput

rate of the former scheme is compatible to (if not the same as)

that of the latter scheme, since a submodule often operates much

faster than a module for the same function. Ideally, even if they

have the same speed and if sufficient work to be executed is

available, the two schemes have the same throughput, being n

outputs/basic cycle where a basic cycle is the speed of each sub-

module or module.

Examples of this bottleneck substitution can be seen in many

computer systems. In fact, any pipelined processor design can be

viewed as an illustration. In [70], an alternative design of the

HP 2116 processor is examined, based on the instruction set and

the fact that each major cycle of the machine is divided into eight

minor cycles. Speed can be improved if it is a pipelined processor

utilizing those discrete minor cycles for different functions.

It is shown how pipeline decomposition is superior to the parallel

7-module ensemble and how it can be speeded up seven times (based

on analytical evaluation). A natural question arises: if the

speed achievable using some scheme far exceeds the objective

desirable or if it is too expensive, what other alternative should

be considered and how should a designer pick the optimum design?

In [71], different implementation schemes are compared but only

locally. That is to say, cost-effectiveness is considered local

118
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to the design of the module and not to the global system where

other bottlenecks may co-exist or even override. Obviously, a

systematic way to tackle this problem is needed, particularly for

a complex system such as a RSRP system. Observe that the improve

ment of a bottleneck often introduces new bottlenecks to the per

turbed system. This will be the subject of the rest of this

chapter.

Some readers may recognize that this bottleneck removal using

.pipelining in an RSRP system actually represents some form of multi

level pipelining -- pipelining within pipeline segments. No

attempt will be made here to complicate future discussions by

using the term "multi-level pipelining" since it is a practical

tool amenable to any pipelining scheme. For instance, the pro

cessing unit of the TIASC or STAR has this structure. In TIASC,

the instruction processing unit is piped and its next station in

the central processor, the arithmetic unit, is also piped. Similar

situations occur in the stream and floating point units of the

STAR-100 computer. Therefore, multi-level pipelining is a powerful

modeling tool; even a microprogrammed processing unit can be

modeled as a sophisticated multi-level pipeline where each instruc

tion is streamed through a sequence of microphase executor groups

which are responsible for different phases of an instruction execu

tion process. For brevity here, more elaborate extensionsof this

modeling will be omitted. It should be mentioned, however, that •'

the techniques and algorithms to be introduced in the next section

do not restrict themselves to the removal of bottlenecks using

•pipelined submodules only. Other substitution alternatives are
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legitimate candidates for improving the original design and there is

no a priori bias on any substitution technique to be used in the

system.

3.6 Problem Formulation and Algorithms

3.6.1 Problem Formulation

The analysis and synthesis will be based on the RSRP graph

modeling proposed in Chapter 2. In addition, the implementation

.candidates for each facility node are known so that their speeds

and costs are deterministic. Hence, any decomposition technique

for a resource node is permissible and its acquisition is to be

determined by the algorithms to be developed.

The cost-effectiveness of an implementation scheme in many

advanced systems or application environments is not a sufficient

measure of good design. In many circumstances, the buyer or

designer is just interested to obtain a most efficient (maximum

throughput) system given a cost constraint. The term cost in this

sphere of discussion again refers to many parameters including

actual fabrication cost, design and development cost, control over

head cost and many others depending on how the designer would like

to specify or assign cost to various parameters. This is especially

true when some applications require a throughput rate higher than

the one provided by the "most cost-effective" design. Then the goal

should be re-phrased as: "getting the most cost-effective design

subject to some throughput rate constraint" or alternatively

rephrased as: "getting the highest throughput rate system subject

to some cost constraint". Although these two objectives are "not
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completely equivalent, they exhibit a lot of similarities. The

latter formulation is particularly powerful because very often the

designer wants to get the best machine given the amount of money

allocated to him.

There is a considerable amount of difficulty in solving this

problem. The throughput of an RSRP system is a complicated (non

linear) function of the speeds of the various functional paths and

this results in the most stubborn obstacle. Simple techniques such

as linear programming, dynamic programming or network flows are

inapplicable without modification. Exhaustively enumerating all

combinations of alternative designs for the modules of the RSRP

system is virtually an impossible task when there are more than

10 modules (nodes) and each node has four or more alternative

designs or architectures, because then there are 410 = 106 com

binations to be evaluated and compared before arriving at a final

decision. Evidently some efficient procedure should be devised

to solve this problem analytically. Towards this end, the remainder

of this section is devoted.

Recall that a RSRP system is modelled by a directed graph

G = (N,A,P) where N = set of facility nodes, A = set of transi

tion arcs and P = set of functional paths (pipes). The throughput

of such a system is a very complex function. Therefore, to begin

with, let us consider a linear pipeline -- that is, a linear con

nection of facilities each having a single entry and a single exit

transition arc.
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3.6.2 Linear Pipeline

By definition, a linear pipeline is a strictly sequential

connection of n facilities (nodes) which can be easily represented

by a simple chain of n nodes. In such a pipeline, if the faci

lities have different speeds, the throughput rate is limited entirely

by the slowest facility in the chain, the so-called bottleneck. If

there is more than one such slowest facility, the pipe has several

bottlenecks which must be simultaneously improved using some substi

tution so that the pipe as an entity can generate a higher through

put rate. Even if some facilities have the provision of temporary

storage spaces for work waiting to be done, in the steady state, the.

speed of a bottleneck still governs the processing speed of a

pipeline. However, the removal of a bottleneck always uncovers

some other bottlenecks) that did not exist previously in the pipe

simply because the bottleneck of a linear pipeline is the slowest

facility in it. Iteratively, one can improve bottlenecks after

bottlenecks but this is not a very efficient procedure in the cost-

effectiveness point of view. Since there may be many candidates

for substituting a bottleneck, it really is hard to know which one

to pick. If too fast (and more expensive) a candidate is chosen

and the final implementation turns out that such speed is not needed

(remember a global cost constraint has been imposed) because

other facilities cannot match it, the design is not optimal. As

an illustration, consider the design shown in Figure 3.7 which is

composed of three modules whose alternative architectures or imple

mentations are tabulated in Figure 3.7. If the cost constraint

imposed is 15 units, then in the initial step of removing the first



(throughput,cost)

(1,1)

(2,2)

(3,3)

design
alter

native

1

(1,1)

(2,2)

(3,2)

cost constraint = 15

(2,3)

(3,6)

(4,3)

(3,5)

(4,9)

Optimal:

Design 3 for module A

Design 2 for module B

Design 1 for module C

Total cost = 13

Figure 3.7
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bottleneck (module A), it is hard to judge which design to adopt.

If design 4 is chosen, as it turns out, the speed of module A exceeds

others because of the cost constraint. In this example, the optimal

architecture is design 3 for module A, design 2 for module B, and

design 1 for module C with a composite cost of 13 units. If design 4

for module A is chosen, and the rest of the decisions kept, the

composite cost is 15 units. But the throughput rate will be the

same, being 3 units/cycle. Thus the former candidate is superior

and more "cost-effective". It should be noted here that the modules

are sufficiently independent of one another and their individual

cost-performances are affected by others to a negligible extent.

Rather than exhaustively enumerating all, possible combinations

of designs to get the optimal solution, a neat and orderly way to

handle this problem is to use a dynamic programming approach, realiz

ing the relative simplicity of the objective function in this special

case. The recursive algorithm can be presented in the following

form: Let

S(i) ={s^. =(throughput,cost) =(t^.c^OI s^ is the jth
4*It

alternative design for i module and arranged in
J.L.

ascending order of cost}, e.g. the i row in the

table in Figure 3.7

C = total cost constraint

ni = |S(i)| = number of candidates for the- i module

N = number of modules (nodes).

Initialize

LIP(N,k) -max (tNj)



such that CN- < k,

CAN(N.k) = {j}

where j is chosen above in LIP(N,k).

Algorithm LIP(i,m). Initialize j = 1.

Step 1: Recursively find LIP(i+l,m-c..)•

Find P.j =min {t.^LIPd'+l .m-c^)}-

Record CAN.(i,j) = [j,CAN(i+l,m-c. .)].
J 1 J

j = j+1

If j exceeds n. or c.. exceeds m, go to Step 2.

Otherwise repeat Step 1.

Step 2: Find j such that P.. = max {P-J. (Note: There may be
Jo q<j iq

more than one j in v/hich case CAN(i,j) is a set.)

CAN(i,m) = {CAN, (i,m)}

LIP(i,m) = P.

Return with LIP(1,m), CAN(i.m).

Jo

1Jo

Theorem 3.3. Algorithm LIP(l,c) produces a maximum throughput

design for a cost constraint of c.

Proof. The algorithm merely follows a dynamic programming

formulation as:

LIP(i,m) = max {min{LIP(i+l,m-c. .),t..}}
Vc..<m 1J 1J

vl

= maximum throughput of the partial system consisting

of nodes (modules) i through N with a total

incurred cost < m
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The boundary condition is given by LIP(N,k) as defined in the

algorithm.

Since the throughput rate of a linear pipe is given by min t.

th i-N
(t. = throughput of i module) which can be optimized by solving

individual subproblems of maximizing min t. as k decrements
i<k 1

from N to 1 subject to the cost constraint of c — in the

direction of the principle of optimality. Then from dynamic pro

gramming principles or directly using induction, the theorem follows

trivially. Q.E.D.

Before illustrating the algorithm, one more point should be

discussed. That is, in the solution of LIP(l,c) and CAN(l,c)

which is a set of ordered indices representing the optimal choices

to be made regarding the respective modules, some surplus (unused)

cost may result. To chew up any surplus in c (in order to obtain

the most cost-effective design) we can use instead of c, min cQ <_ c

such that LIP(l,c ) = LIP(l,c). There is a simple way to detect

c from CAN(l,c). Because of its importance, it will be cited

as a theorem.

Theorem 3.4. Suppose

CAN(l,c) = {s.| s. =(ir...,iN)}

= set of ordered sequence of choices for nodes 1

to N and |CAN(l,c)| = p .

If

c = min I c.
0 j<p i=l Ji



then c is the minimum cost such that LIP(l,c ) = LIP(l.c).

Proof. From Theorem 3.3, LIP(l,c) maximizes the throughput

under cost constraint of c. If there exists another c' < c
o o

such that LIP(l,c^) = LIP(l,c), then CAN(l.c^) must also be

included in CAN(l,c). Then since

= mi n Y c.. , c > c' .
0 j<p i=l 1Ji ° - °

This is a contradiction. Therefore CAN(l,c ) represents the

optimal design for CAN(l,c) as well. Q.E.D,
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Corollary 3.1. By chewing up surplus cost in LIP(l,c), the

most cost-effective design that lies within some cost bracket con

straint can be derived.

Proof. From Theorems 3.3 and 3.4.

Hence, a designer can use the algorithm LIP(l,c) and the chew

ing procedure to obtain the optimal architecture or implementation

scheme.

To facilitate the understanding, the LIP procedure for the

design in Figure 3.7 with c = 13 is illustrated in Figure 3.8.

A tree is used to represent the various recursive calls. The optimal

design CAN(1,13) = {(3,2,1)} which is also optimal for c = 15

is worked out in Figure 3.9. The chewing procedure for CAN(1,15)

indicates how the surplus of 2 units is manipulated from CAN(1,15).

The complexity of the algorithm LIP is not very huge. When

N = number of nodes and M = cost constraint, then its complexity



LIP(1,13) =

Since

therefore

2 .LIP(3,10) =4

LIP(2,12) = 3 LIP(3,6) = 4

LIP(3,3) = 3

2 .LIP(3,8)

LIP(2,10) =3<^~— LIP(3,4)

4

4

LIP(3,1) = 3

A. LIP(2,8) = ®
4^ 3"*^ LIP(3,2)

LIP(2,6) = 2

LIP(3,i) =
3 if i < 3

4 if i > 3

CAN(1,13) = (3,2,1)

= optimal design

Figure 3.8

2_^-LIP(3,6) = 4

- <D

LIP(3,4) = 4
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LIP(2,14) = 4

LIP(2,12) =4

LIP(1,15) =®

LIP(2,10) =(3)

LIP(2,8) =©

2 /LIP(3,12) = 4

LIP(3,8) = 4

LIP(3,5) = 4

LIP(3,10) = 4

LIP(3,6) = 4

4^LIP(3,3) =4

2 -LIP(3,8) = 4

3^LIP(3,4) =®

2^-LIP(3,6) = 4

3^-LIP(3,2) =(3)

CHEWING:

CAN(1,15) = {(3,2,1),(4,2,1)}

c = mi.n{5+6+2, 7+9+2} = 13

CAN(1,13) = (3,2,1) is still optimal here,

surplus = c-c=15-13 = 2

Figure 3.9
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2
is bounded by 0(NM ). It represents a very organized searching

procedure for the optimal design. Actually its complexity is much

2
less than 0(MN ) because at every stage, only a few candidates

are available. If this number of candidates is bounded by a < M,

its complexity correspondingly is bounded by 0(aMN). But when we

want to generalize this procedure for the case of RSRP systems,

a considerable amount of difficulty is encountered. This is the

subject of the subsequent section.

3.6.3 Resource Decomposition in RSRP

Previous discussions have indicated that optimal decomposition

in RSRP systems is very difficult. The origin of such difficulties

is in complex sharing of resources among the functional paths or

pipes. Several functional paths interact and influence the speeds

of others via the resources they share in common — a coupling

effect occurs. To analyze such a coupling effect in order to find

the optimal design is a nontrivial task. To begin with, every

shared resource is a site of interaction and by improving the

speed(s) of some resource(s), the overall throughput gain of the

system must consider all coupling sites as well. This point of

view is extremely useful in grasping the conceptual understanding

of the problem at hand. Second, the throughput function of the

system is a function of the union of several non-exclusive events

— each being the processing in a path. In order to fruitfully

evaluate the throughput, some usage ratio among the paths should

be established so that at least the minimum knowledge about the

operating philosophy in regards to servicing which path for each
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shared resource is available. For example, if a resource is shared

by two pipes whose excitation ratio is 1 to 2, then it may be

assumed that 1/3 of that resource is devoted to serving pipe 1 and

2/3 to pipe 2 via some operating control such as static assignment

of the cycles of the resource to the two pipes. Then the analytical

throughput rate of the overall system can be derived. Before

doing so, the following lemma is useful.

Lemma. Suppose

u. = expected usage ratio of pipe i (relative to some frame,

say u^ .

The static assignment of a shared resource k among its paths can

be viewed as having separate resources (of the type i) with a

throughput rate (of the module) given by

keP. J

of the throughput of that original resource k allocated to pipe i

(k e P.) and *ik =0 if k| P..

Proof. If we just assign alternate cycles of resource k to

the pipes it serves according to the u^s, the number of cycles

for serving pipe i in £ u. cycles is precisely u. cycles.
kePj J "•

(A cycle in this case is defined as the time needed for resource k

to generate an output.) With enough buffering at the shared resource,

the resource k serving pipe i can be viewed as a separate

resource serving pipe i only whose throughput rate is yielded by



the expression £ikfk where fk = throughput of resource k.

Q.E.D.

The incorporation of &..'s into the design model introduce

a reasonable parameter, namely, the expected usage or processing

load on the various functional paths. It yields a new dimension

of flexibility to adapt a design to some application environment

in the mind of the designer. In scientific applications, arith

metic pipes (with complex functions) are important, whereas in some

data processing or information retrieval systems, other processing

or data handling pipes are more important. A good design for one

application may turn out inefficient for some other applications.

Thus the inclusion of these ^^'s to specific applications in mind

seems to be a natural maneuver for the designer.

With this assumption, the problem of maximizing throughput

of the overall system can be formulated as:

Maximize I min {f.*,..}
i=l jeP, J 1J

N

I
i=l

subject to J x. < c

where |P.| = p = number of pipes

x. = cost of module i.
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However, the basic problem of interaction among pipes is yet

to be resolved because the improvement of f. of some shared

resource i may perturb not only locally within a pipe but globally
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the throughput of all pipes sharing resource i. Towards this end

we invest our next effort.

Casting a second glance over the formulation of optimization

problems urges one to treat the RSRP system as a parallel connection

of modules (the shared ones will be fictitious autonomous modules)

and try to use the same approach developed for the linear pipes.

To get around the coupling effect, modifications of the previous

algorithm are necessary.

Parallel-Series Representation (Canonical Representation)

The RSRP system can be modeled by a digraph G = (N,A,P)

where P = {P.} = set of functional paths/pipes. Therefore equi

valent^ the RSRP system can be represented by a parallel connection

of the pipes, each of which is a series connection of individual

facility modules. A simple example can be as depicted in

Figures 3.10a and 3.10b.

Now if the throughput rates of the shared resources are known

or fixed, the rest of the system can be optimized with respect to

these shared resources using the technique developed for linear

pipelines. Before presenting the final algorithm, the strategy to

pick initial decisions for the shared resources will be set up

first.

Dominance

The purpose of the strategy is to pick good, feasible initial

decisions of the set of shared resources S. To accomplish this,

some dominance criteria can be set up to eliminate combinations of



P, =

Po =

P. =

P„ =

1-2

1-3-2

1-3-4-5-6

7-8-5-9

Figure 3.10a

RSRP Graph Modeling

Figure 3.10b

Canonical Representation
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initial decisions which will never be better than some other combi

nations and hence will never be in a unique optimal solution.

Several simultaneous dominance criteria can be developed but their

usefulness is decided by many non-cooperative factors such as

(1) simplicity in detecting dominance relationships, (2) complete

ness in eliminating inferior initial decisions. These two example

factors in many cases are not cooperative just as optimal algorithms

which are complex compared to near-optimal algorithms which can

be very simple. In the context of resources decomposition, two

dominance criteria will be developed. Their simplicity and useful

ness can be easily observed from the example worked out later.

Phase 1: Monotonicity - First Dominance Criterion

Let f.j(x-) be the throughput attainable by the ith module
using the j scheme whose cost is represented by x.. Also

assume the candidate schemes for each module are listed in ascend

ing order of cost (i.e. x. >_ x. 1).

Definition. A scheme j s-dominates another scheme k for

the same module i if in any resulting architecture of the entire

system, the throughput rate of the entire system will not be reduced

when in module i, scheme k is replaced by scheme j and x.

(cost of scheme j) < xfc (cost of scheme k). Scheme k is then
said to be an irrelevant candidate.

Lemma. If f^) <^-(x^), then the jth scheme is
s-dominated by the (j-1) scheme.

135



Proof. The problem objective is maximizing £ min {f }
N j«l ieP. 1

such that U. <c. Since xjM <x. but f.fx.^) >f.(x.),
then Xj replaced by x^ is still afeasible solution and the
resulting objective function value is not reduced. From definition,
it follows that the jth scheme is s-dominated by the (j-l)tn
scheme.

Q.E.D.

Thus whenever acost-throughput function f! given is not

monotonically nondecreasing, an equivalent monotonically nonde-

creasing function f. will be constructed from it by eliminating
irrelevant schemes. The elimination process can be visualized as

depicted in Figure 3.11. The dotted line represents the original
f\ which is not monotonically nondecreasing. The solid line

stands for the truncated or dominated f. which is monotonically
nondecreasing. From now on, all discussion or manipulation in

fj's will assume f.«s have this monotonic property, that is, no
irrelevant candidates will be considered.

Iheorem 3.5. Let F(X) =throughput of overall RSRP system

given X to be the cost vector for the n modules. Then F(X)
is monotonically nondecreasing, that is, monotonic in each of its
arguments.

Proof. FQO = I min {f,(x.)£..}
i=l jeP. J J TJ

Since the f.'s are monotonically nondecreasing, the theorem

follows trivially. Alternately, an inductive proof can be provided
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throughput
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cost

Figure 3.11

Monotonically Nondecreasing f..
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as follows.

Induction on N where N = |Xj. When N = 1, it is obvious

Assume for N = k the theorem holds. When N = k+1,

Suppose

and

F(X) = I min {f.(x.)A..)
i=l jePi J J 1J

j<k+l

Sh c {1,2 p}

min ^j(xj)} =fk+1(xk+1)
VI elb

This is equivalent to saying that module (k+1) is the bottleneck

of pipes in the set S,. Therefore

F(X)= I Wx^Wl *" <WV
b b j/k+1

- Ft(X) +F2(*o)

where X = (x,,...,xk). Clearly, since fk+1 and hence F^(X)

is monotonically nondecreasing in xk+, and by the induction

hypothesis, F2(X ) is monotonically nondecreasing in each of its

arguments, F(X) must also be monotonically nondecreasing in each

of its arguments. Q.E.D.

This theorem is rather useful in later discussions of the

second dominance criterion which is based on the comparison of

cost vectors and their throughputs. To facilitate understanding

the strategy chosen, several observations will be helpful. First
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notice that the set of solution spaces (in a piecewise continuous

approximation as in Figure 3.11) is the set of candidate designs

with no a priori restrictions. Hence, one may be tempted to think

that the solution space need not form a convex set (in the discrete

sense, the space is covered by a minimal set v/hose boundaries are

defined by lines joining two points in the discrete space). But a

second thought clarifies this misconception when one realizes that

the space is actually covered by a rectangle which is necessarily

convex and defined by [c,-, >c12] x[c21 >c22] x•*•xCcni'cn2^ where

C... = minimum cost among all candidates for i module and

c-2 = maximum cost among all candidates for i module. However,

secondly, the objective function is by no means a linear function,

and techniques such as extreme point analysis or cutting plane

cannot be applied directly. Consequently, cost vector dominance

seems to be a natural alternative.

Phase 2: Vector Dominance

For the time being, let us concentrate on the set of shared

resources (A) so as to determine undominated initial decisions.

A partial cost vector will represent the costs of those shared

resources in A for some initial decision.

Definition. Let (c.»c_) represent the complete cost vector

of the system -- c. for A and £ for the rest in some preassigned

ordering and for c. = (c. -.,..., c. ), c_. <c. if and only if

cik — cik' k ~ ^>*<*»cl* Then a partial cost vector Cj v-dominates

another partial cost vector c. if and only if F(c.,cj j' F(c.,cJ

for any c, and c. < c.
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Lemma. v-dominance is a transitive relation.

Our temporary objective is to eliminate as many v-dominated

partial cost vectors as possible by some simple detection scheme.

This can reduce the number of iterations (using different initial

conditions) while carrying out the optimization procedure. The

detection rule is presented as a theorem. Without loss of generality,

it will be assumed that the shared resources A are labelled

l,2,...,q.

Theorem 3.6. Suppose the partial cost vector c_. <_ c_. and

cip < c. for peYc {l,2,...,q}. Let c-j = (c.. ,c) for any c.

Then £. v-dominates c. if and only if for all P. such that

p e P. and p e Y, min {f (x U. } evaluated at cn can bei mep. m m im -1
found equal to f-(x ) for some u $ Y.

Proof. Recall F(cJ = I min {fm(xU. }
*~i 4_i m^n mm imi=l mePj

I min {f (x H. }
A-t m ^ n mm im1=1 me P^

m^Y

evaluated at £•,

£•1

if and only if the condition stated above holds. Then follows the

theorem. # Q.E.D.

Using v-dominance property, many initial combinations for

the set of shared resources can be eliminated from consideration.

Physically the criterion and the theorem simply assert that when

there are some other bottlenecks due to other shared resources,

improvement of a certain set of shared resources (e Y) does not
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help to improve the throughput of the system and therefore should

be discarded from any future evaluations. Correspondingly, in the

solution space, search is carried out to remove unsatisfactory

points(vectors) so that the remaining number of candidates is only

a small portion of the original space.

A highly effective algorithm for this purpose will be introduced

Keep in mind that A (the set of shared resources) is ordered

1,2,...,q.

Algorithm DOM

Step 1: Choose as the initial pivot the partial cost vector

c = (c ,,...»c ) so that c . is the minimum cost

among all candidates for the shared resource i, for

i=l,2,...,q. Set c£ =c^ =(c£l,...,c£q), DOM =0,
CAN = {c^}.

Step. 2: Derive for each pipe P. a set J. c {l,2,...,q} such

that jeJ. <=> fj(c£j) = min ^(c^). Let J=uj..
k 6 Pi

Set DOM =DOMU^I c^c^ and for each i, 3j eJ^ such

that ckj. =c£j.}. CAN =CANU{c£+6.} where {c^+6^-

is defined as follows: Perturb c0 by setting for each

0.:

£*+«< "Cfc- (ckl,...,ck.)

such that c.. = {c^., j$J., smallest cost greater than

c0. which is a candidate for module i and f.(c, .) >f.(c0.)
*t J kj' jv &j'

if jeJ..}. Mark off c£ in CAN. Choose one of the oldest

unmarked members in CAN and repeat Stop 2. If no unmarked

element is left, halt.
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Definition. The vector £ is a critical point if

F(c) >F(c^) for all c^ <£. Thus £ represents alocally most
cost-effective design.

Lemma. A critical point is never v-dominated.

Proof. Obvious from the definition.

Theorem 3.7. Algorithm DOM yields CAN which is a set of

feasible solutions and DOM which is a set of v-dominated solutions

from the original solution space. In fact CAN is a set of critical

points.

Proof. First, CAN is a set of critical points. This can

be proved using induction on the iterations of Step 2. The indue-

tion basis is trivially true (that for c ). In the induction hypo-
—o

thesis, assume at the k iteration, CAN contains critical points,

at the (k+irn iteration, {c^+6.} is added to CAN. Obviously

^(££+A-j) > F(£fl) (by monotonicity Theorem 3.5 and the construction

of £^+ii)- Also for all c<_c&+^t F(c) <. F(c£) because. 6.

for some i is the minimum perturbation from £« to change F(£^)

and c_? c^ +§_^ (i = l,2,...,p) by construction. Therefore

fejj,"1"!.^ 1S also critical. On the other hand, DOM only accepts

elements £k >££ but c^ ^ c^+i^ (for all i= l,2,...,p) so

that Ffc^) = F(£^) and hence c. is v-dominated by £^ however

large £^ may be (Theorem 3.6). Therefore DOM is a set of

v-dominated solutions of the original solution space. Q.E.D.

Lemma. The final CANuDOM forms the entire solution set (E).



Proof. If 3^6 1 and c^ £DOM, c^ is not dominated by

any c& e CAN. Then from the construction of the algorithm c

will be reached by continuously adding some 6. to some c0 and
1 —Xj

hence c^ e CAN. Q#E#D#

Therefore algorithm DOM generates only the minimal set CAN

of critical points which have to be compared since their costs and

overall throughput still obeys some sort of global monotonic beha

vior. The algorithm will be demonstrated later with the final

optimization algorithm which is a combination of the LIP and DOM

algorithms. Observe that in the DOM algorithm, in actual usage the

set DOM needn't be generated and stored. It has been constructed

solely for demonstrating the relationship between CAN and E

(the entire solution space). Observe also that algorithm DOM can

be applied to any set of resources (c N = set of modules in the

system) whether they are shared or not. However, in some cases,

it may not be very efficient and this is why the next algorithm

will be proposed as an alternative.

To introduce the final algorithm OPT, first let CLIP(k,c,t)

denote the application of LIP to find optimal design of cost = c

for pipe k restricted to candidates {x..} for module i e P.

such that either f^x^.)-> t or jQ is the smallest candidate
just satisfying f.(x.. )> t. Without going into the details, it

,Jo
will be assumed LIP recursively refers to module:: included in the

pipe k specified and its boundary conditions are preset correctly.

Also let S= {Sj} denote the set of throughputs for the p pipes

restricted by the set of initial decisions to be tested (therefore
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one corresponds to each element in CAN). For example, S-. = (1,2)

implies P1 is limited to throughput <1 and P2 to < 2. In

general, S. is represented as (S.,,...,S. ).
i v il ' iq'

Let

c.. = total cost of the ith decision (S.) for A,

m. - minimum cost of the remainder set of unshared resources

(N-A) using the cheapest implementation scheme for pipes

i through p.

Algorithm OPT(c)

Step 1: Initialize i ^ 1.

Ste£__2: For Si e S, if c-c^ >m], go to Step 3. Otherwise call

recursive algorithm DEC(l,c-c.,S.). i = i+1. If i < |S|,

repeat Step 2.

Step 3: Obtain max {DEC(1,c-c.,S.)}. This yields the optimal
i i '

design.

Recursive Algorithm DEC(i,j,S.)

Step 1: Call CLIP(i,j ,S..) and DEC(i+l,j-j.S. ) for each j
U i\ I OK 0

such that j-j >m. , and obtain CLIP(i,j ,S..)
U 1*•" I OKI

+ DEC(i+l,j-jQ,Sk). If i = p, DEC(i+l,j-Jo,Sk) = 0.
Step 2: Return with max {CLIP(i,j .S. .) +DEC(i+l ,j-jrt,S. )} and

•i 0 Kl 0 K

the candidates chosen at every stage.

Lemma. Algorithms OPT, DEC and CLIP yield an optimal design.

Proof. From the same argument used in Theorem 3.3. Q.E.D.
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The entire procedure for the final algorithm including the DOM

will be illustrated with an example.

Consider the example system drawn in Figure 3.12. Its canonical

representation is depicted in Figure 3.13a and the (cost, throughput

table) is shown in Figure 3.13b.

Algorithm DOM operates as:

Step 1: CAN = {(8,4)}

Step 2: J] = {3}, J2 = {3,8} =J3

CAN = {(8,4),(15,4),(15,10)} (underlined represents the

vector is marked)

Step 2: c1 = (15,4)

J1 = {3}, J2 = {8} = J3

CAN = {18,41,(15,4),(15,10),(25,4),(25,10)}

Step 2: Cj = (15,10)

J1 = {3} = J2 =J3

CAN = {(8,4), (15,4),(15,10),(25,4),(20,10)}

Step 2: c;j - (25,4)

J1 = {3}, J2 = J3 = {3}

CAN - {(8,4),(15,4),(15,10),(25,4),(25,10)}

Step 2: Cj = (25,10)

J1 = {3}, J2 = {3,8} = J3

CAN = {(8,4),(15,4),(15,10),(25,4),(25,10)}

So DOM returns.



Figure 3.12

Example RSRP

P] = 1-2-3-4-5

P2 = 6-7-3-8

P3 = 9-10-3-8

146



3 0.5 3 0.3

Figure 3.13a

Canonical Representation

0.2

^^^ Design

Module""^^^ 1 2 3 4

1 (2,1) (5,1.5) (10,2)

2 (U) (6,1.5) (10,2)

3 (8,2) (15,3) (25,4)

4 (7,0.5) (9,1) (1.5,1.5) (20,2)

5 (2,1) (4,1.5) (5,2)

6 (2,0.5) (5,1) (10,1.5)

7 (2,0.5) (5,1) (12,1.5)

8 (4,1) (10,2) (20,3)

9 (5,0.5) (6,1) (15,1.5)

10 (8,0.5) (10,1) (20,1.5)"

Figure 3.13b

(cost,throughput) Table
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Next algorithm OPT proceeds as: (Suppose total cost c=45.)

m] =2 +1+7 +2+2+2+5+8 = 29

m2 = 17

m3 = 13

S1 = (1,0.6,0.4) for vector (8,4)

Let x(i) =candidate chosen for module i. To indicate the

essence and reduce unnecessary complication the procedure for

CLIP (demonstrated in LIP before) will be skipped.
DEC operates as:

DECd.SS.S,)^0^2'19'5^-111-^3-15'5!)^^
O.VdeC(2,21,S1) -I^-DECOJ?,^) =0.4

The best choice is the upper path which yields total through
put =1+0.5+0.4 =1.9 with asurplus of 15-13 =2 (observe
the same surplus theorem as in Theorem 3.4 similarly applies).

The locally optimal design is

x(D =x(2) =x(3) =x(5) =x(6) =x(7) =x(8) =x(9) =x(10) =1
x(4) = 2

Next, with (15,4), c-c. =45-19 =26 <m, =29 implies no
feasible solution. Similarly for the rest in CAN.

Hence the solution just obtained is also globally optimal.
To further illustrate DEC, suppose the total cost c is 68 instead

of 45. Then for S, -(1,0.6.0.4) (i.e.. for cost vector (8,4)):
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O.B^DECO.SI.SJ = 0.4
, yDEC(2,35,S1)<T '
/ ' O.^DECO^S.St) = 0.4

DECO/O^K '
o 5\ oj^decO^.s,) = o.4
U,t)\DEC(2,37,S1)<" '

1O^DEC^^^) =0.4

The locally optimal solution is X = (1,1,1,2,1,2,2,1,1,1).

Total throughput = 1+0.6 + 0.4 = 2

Total cost = 2 + 1+8 + 9 + 2+ 5+ 5+ 4 + 5+ 8 = 49

Surplus = 68-49 = 19

Next for S2=(15,4), X= (2,2,2,3,2,1,1,1,1,1).

Total throughput = 1.5 + 0.5 + 0.4 = 2.4

Total cost = 5+ 6 + 15+ 15+ 4 + 2+ 2+ 4 + 5+ 8 = 66

Surplus = 2

For S3 = (15,10), X= (1,1,2,2,1,2,2,2,2,2)

Total throughput = 1+0.9 + 0.6 = 2.5

Total cost = 2+1+15+9 + 2+ 5+5+10 + 6+10 = 65

Surplus = 3

For S4=(25,4), X= (1,1,3,2,1,2,2,1,1,1).

Total throughput = 1+0.6 + 0.4 = 2

Total cost = 2 + 1+25 + 9+ 2+ 5+ 5+ 4 + 5 + 8 = 66

Surplus = 2

For S5 = (25,10), X= (1,1,3,2,1,1,1,2,1,1).

Total throughput = 1+0.5 + 0.5 = 2

Total cost = 2+ 1+25 + 9 + 2+ 2+ 2+ 10 + 5+ 8 = 66

Surplus = 2

Therefore the globally optimal solution corresponds to

S3 = (15,10) and X = (1,1,2,2,1,2,2,2,2,2) whose total throughput
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is 2.5 units and surplus is 2 units. Observe that the locally

optimal solutions are not monotonically increasing in cost as the

globally optimal solution has a smaller cost than most other

locally optimal ones but possesses the highest throughput rate.

The DOM algorithm just presented can be modified (if the size

of the set of shared resources A is too huge) so that DOM is

applied into disjoint subsets of A. For example, if

A = {1,2,...,19,20}, it can be separated into A, = {1,...,10}

and A2 = {11,...,20} and DOM applied to A, and Ap separately

generate CAN] and CAN2 respectively. Then CAN, xCAN£ defines

a possible set of critical points for A. Further reduction of

this set CAN] *CAN2 using the same criterion in DOM can be

achieved if so desired. But for simplicity the procedure will be

omitted here. Hopefully in most applications in computer systems,

the size of A is not very big, so that DOM can operate very

effectively.

The algorithms in partitioning and decomposition presented

in this chapter can be used for system designs. First a basic

skeleton machine can be derived based on the system and application

objectives. The decomposition algorithms are applied to the

skeleton machine (maximizing the throughput). Then the system can

be partitioned into easily controllable subsystems and finally an

optimal design with highest throughput under some usage frequency

assignment.
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CHAPTER 4

Design of Ultra-reliable and Available RSRP Systems

4• 1 IQJ^aj^JJable Fault-tolerant Techniques

The reliability of a module is commonly interpreted as the

probability that the module will function correctly under specified

conditions. Consequently, the reliability of a digital system

can be enhanced by improving the reliability of individual modules

via the various techniques developed and available. An obvious

way to increase the reliability of a module is by introducing

redundancy in the design. There are many forms of redundancy. At

the lowest level of implementation, a non-voting scheme termed

"quadded" logic is quite popular. The fundamental ideas behind

"quadded" logic as conceived by Tryon can be summarized as:

(i) the logical circuit appears in quadruplicate, (ii) an error is

corrected in the logic just downstream of the fault that caused it

by good signals from the neighbors of the faulty unit [74]. A

simple quadded logic circuit is shown in Figure 4.1b. By inspec

tion, it can be easily observed how erroneous outputs from the

first level AND gates can be masked off by correct neighboring

outputs downstream. As a result, the reliability of the quadded

logic is higher than that of the original unredundant circuit

drawn in Figure 4.1a. But because of its low level of implementa

tion, replacement of faulty gates is improbable and often the whole

module or circuit has to be replaced when sufficient permanent

faults have accumulated. In contrast with the nonvoting scheme,

the voting scheme involves the usage of voters which are assumed to
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be perfectly reliable or so-called "hardcore". Such voters are

easily distinguishable from other units actually performing the

specified logic functions. The essence behind the voting scheme

is to replicate the functional units so that simultaneous execution

of some function is performed and the results compared by the

voter (usually a majority voter) so that a "correct" output is

generated. There are two main of kinds of voting redundancies.

First, the redundancy can be fixed and all active -- hence given

the name static redundancy. For example, the system can have two

or more identical modules performing the same function and the

results monitored by a voter. Von Neumann [75] developed and

analyzed a highly reliable scheme employing triplication of all

units. This is called Triple Module Redundancy (TMR) and has

general appeal. Further generation yields NMR (N Modular Redun

dancy) by replicating N times a functional unit in order to

enhance its composite reliability. Such a scheme can be described

as in Figure 4.2. The reliability of NMR can be given by

R(NMR) = I(^(l-RjW"1
i=0 1

where R = reliability of each unit. In the case of TMR, the

previous formula converts into

2

R(TMR) = ); (^(l-RjV"1 =R3 +3R2(1-R) .
1=0 *

Compared to the original nonredundant unit (simplex),

R(TMR) -R(simplex) = R3 +3R2(1-R) -R >0 <* R>1. .
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NMR Scheme
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That is to say, TMR is better than simplex when the reliability of

eachcomponent unit is greater than ». A similar approach can be

used to compare the various redundancy schemes.

Besides static redundancy, another popular scheme emerges

later and is naturally called dynamic redundancy (standby sparing).

Instead of having all redundant units active concurrently, some are

reserved to wait until some faulty unit is located so that they

can be used as substitutes. A standby sparing notion is therefore

invented. Its operation can be represented by the schematic

diagram in Figure 4.3. This scheme, has the obvious advantage of

lower power consumption by the spares and higher survival time

(until all spares are exhausted) but has the disadvantage of addi

tional hardware for the fault detector and locator as well as a

switching unit to perform the automatic replacement of faulty

units by good ones. Such a "hybrid" redundancy scheme under

certain assumptions of hardcore usually has higher reliability

than a similar NMR scheme (in the sense that both have the

same number of replications) and its reliability is given by [76]:

R(N,S)(T) = reliability of hybrid redundant system with

N+S units of which N are active and S are

standby spares as a function of time T

RNRS[l+SffNK+Sl
5 j=o j+1 4-'

j+1
NK+S

s
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R = reliability of an active unit = e"

Rs - reliability of aspare unit = e"^
and K = ~

Some other forms of redundancy may also exist for special

applications or modules, such as error detecting or correcting

codes in memory cells. Thus there is a large variety of techniques

to improve system reliability for the ultimate objective of creat

ing an ultra-reliable system.

What confronts a system designer with this objective is

naturally how redundancy should be optimally chosen for the

different functional units so that the resulting system has the

highest reliability under some cost constraints. Here cost is

again a multi-parameter including the direct cost of redundancy,

the cost due to power dissipation and other needed hardcores of

the schema chosen, yery often, a system may not be able to

tolerate too many replications of an important module because of

the limitations in power consumption allowable without incurring

additional hazards. Also additional spares implies additional

control and switching costs which are not to be ignored. The cost

of fault detection and location increases with the amount of

redundancy present as well. All this pinpoints the necessity of

an efficient method to derive optimal or near optimal redundancy

schemes tu be used for different parts of a system. This chapter

will be devoted to solving such a problem in a system, particularly

in a RSRP system where graceful degradation can often be achieved.

Because of the complexity of the problem, first a linear pipeline
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system will be considered in the next section before the general

problem will be tackled.

4.2 Optimal Redundant Selection in Linear Pipes

Recalling that a linear pipe is modeled by a connected digraph

whose nodes are single-entry and single-exit, it seems that this

problem possesses some linearity characteristic. In fact, this

is true and can be observed from the expression for the reliability

of the pipe. Let R.. denote the reliability of module i in the

pipe of N- modules. Then the reliability of a linear pipe is:

N

R(1inear pipe) = n R.
i=1 1

(assuming that all modules are independent). This means that when

any of the modules malfunction, the pipe is not operating correctly

and some remedy or repair has to be performed. Because its

reliability is the product of individual reliabilities, its value

is usually much lower than the latter. For example, if R. = 0.8

for i = 1,2,3,4, then

4

R = H R. = 0.4096 ,
i=1 1

a considerably much poorer result. To further reveal the importance

of improving individual reliabilities in a pipeline, compare the

case when R.. = 0.9 and the case when R. = 0.95 for i = 1,2,3,4.

The resulting reliability of the linear pipe in the former case

becomes 0.6561 while in the latter case, it is 0.8124 so that 0.05
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improvement in individual reliability upgrades the resulting

reliability by 0.1563 --a three-fold improvement. Therefore, to

obtain a sufficiently reliable linear pipe, care must be taken to

get optimal returns from different modules by allocating different

redundancy schemes. Since often reliability is expressed in terms

of a function of time, a system is designed to maximize the

probability that the system survives a mission time TM. In this

case, R. in the previous formula is converted to

T
f m

f.(t)dt
J0 1

where f.(t) is the density function of the reliability of module i

Returning to the optimization problem, it can be written

formally as: Given the various redundancy schemes implementable

for modules i through N,

N

maximize n F.

i=l 1

subject to I C.(F.) < C
i=l 1 1

where

C^(F.) = cost of redundancy scheme chosen for module i,

F. = reliability function of module i defined above.

To avoid exhaustively enumerating the different combinations

of redundant schemes for N modules, an efficient method can be

derived by utilizing the "separability" of the objective functior

and the constraint. Recognizing that the objective function is a
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product of terms and the constraint is on the sum of functions of

these terms, a dynamic programming approach is clearly seen. Thus

the optimal algorithm follows.

Algorithm 0RLP(I,C) (Optimal Redundancy in Linear Pipe)

Let

J.L.

F... = reliability function of module i using j

redundancy scheme, for example, TMR, NMR,

hybrid, etc.

th
C..(F..) = cost of the j redundancy scheme chosen for

module i

0RLP(I,C) = optimal redundancy assignment for modules I

through N under a composite cost of not more

than C units

Assign

0RLP(N,C) =FNj

^ CNj+l - C- CNi (assumin9 tnat all redundancy schemes are
ordered in ascending order of cost and thus reliability).

Let

m. = minimal cost for minimal redundancy assigned to

nodes i through N

u. = maximal cost for maximal redundancy assigned to

nodesi through N

and it. = product of the maximum reliabilities for modules

i through N.
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Step 1: Recursively find ORLP(i+l,C-C,.) for all C. such that

C"cij^mi+V If cHJi» return with 0RLP(i ,C) = tt.
and CHOICE(i) = j where j* = maximum index in redundancy

oo

.schemes for module i.

Step_2: Find max {0RLP(i+1,C-C..)F..} and assign its value to
jeS 1J ^

ORLP(i,C). Retain the decision made at this stage, that is,

let CHOICE(i) =jQ where j is the redundancy scheme

chosen for module i to maximize the terms above. Return

with ORLP(i,C) and CHOICE(i).

Lemma. Algorithm ORLP(i,C) provides an optimal assignment of

redundancy schemes to the N modules of a linear pipe without

exhaustively enumerating all combinations.

Proof. Its optimality is straightforward from principles

used in dynamic programming or simply using induction. It avoids

exhaustive enumeration by eliminating at every stage {every recur

sive call) those future candidates or combinations whose composite

costs exceed the current available amount. The variables m. and

ir.. are included in order to speed up the algorithm and serve only

this purpose. If desired, these variables may be removed from

the algorithm. Q.E.D.

To illustrate the algorithm, an example is worked out as

follows. Consider a linear pipe of three modules v/hose redundancy

candidates are tabulated in Figure 4.4.

The application of the algorithm when total cost C = 10 can

be depicted by the following tree representing the recursive calls.
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redun

dancy
scheme

module 1

(2,0.8)

(1,0.8)

(3,0.8)

(3,0.86)

(3,0.81)

(4,0.87)

(4,0.9)

(6,0.87)

(6,0.93)

(6,0.95)

(7,0.95)

(8,0.97)

( , ) = (cost, reliability factor)

r

Figure 4.4

The redundancy candidates of three modules in a linear pipe
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Notice some "fathomed" combinations are ignored and not shown.

m2 = 4

m3 = 3

7 0.93 1
0.8^ '

(1,3)^^.5^5 °'87
8-^To

2

fathomed

(1,3) 0.8_^6 0.93

0.85 ^4-^^-0

(1,2)0^_-5 0-87 1
6<Cd 08

0/85—^^ 3-^- 0

4_M_ 3-M_ o
(1,1)

Explanation. The label at each node above represents the

remaining cost for later stages and the label on each arc repre

sents the reliability achieved using that particular redundancy

candidate. Observe that the same surplus theorem as stated in

Chapter 3 applies here and the surplus of any combination is shown

as a terminal node of the tree. The optimal decision at each node

is labelled and enclosed by parentheses. For example, (1,3)

represents schemes 1 and 3 respectively for the next two modules

given the present choice. The optimal design in this example is

given by (2,1,3) with total reliability 0.6398and the optimal

chain in the tree is denoted by dotted lines. The procedure avoids

complete enumeration since not all paths (combinations) are tested.

In addition to future combinations fathomed, an optimal decision
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is made at every intermediate node of the tree for the rest of the

subtree with that node as the root. Therefore this cleverly

escapes the difficulty of exhaustive enumeration. The complexity

of the algorithm is bounded by O(aMN) where

a = maximum number of redundancy candidates for each module

M = total cost available

N = total number of modules to be considered

4.3 Optimal Redundancy Allocation in RSRP

A RSRP system is modeled by a three-tuple (N,A,P) as in

previous chapters where P is a set of pipes or paths in the

system. Following the notions of reliability of a digital system

introduced in Section 4.1, it is natural to define the reliability

of a RSRP system to be the probability that all of its components

or module nodes operate correctly as specified. By assuming

statistical independence of correct operation in these modules,

the reliability of a RSRP system is therefore given by

N

R(RSRP) = n R. .
1=1 '

Noticeably, this expression is identical with the one adopted

in Section 4.2 for a linear pipe and hence the same optimal algo

rithm ORLP can be used to find the optimal redundancy assignment

to all modules. The fact that the pipes share a set of resources

does not, in this case, bother the optimal strategy developed.

But exact reliability is not the only or most meaningful
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measure of a good system design. A system may still operate and

process jobs even if some components fail — the notion of graceful

degradation emerges. By graceful degradation, it is meant that a

highly intelligent system can reconfigure itself dynamically by

some control discipline when some faulty components are detected

and located so that it still has sufficient capability to handle

the jobs waiting to be processed, perhaps with a "gracefully

degraded" performance or speed. Under such circumstances, the

system is still available and therefore it is still surviving some

expected mission time despite the fact that some of its modules

have become unreliable and are abandoned or under repair. Of course

the ability of a system to degrade itself gracefully is limited

and some vital modules of the system must not malfunction in order

that the system can be declared available. An example of such a

system can be found in the PRIME system [78] where multiple pro

cessors are proposed, the malfunctioning of some (but not all) of

which causes graceful degradation and the system is still available.

The importance of graceful degradation rises abruptly for

a RSRP system because now the pipes are multi-functional so that

some function can be performed by a sub-set of the pipes, perhaps

with different speeds or orientations instead of just a certain

fixed pipe. Therefore even if some module failure causes a pipe

failure, other pipes not utilizing that failed module may have

the capability to take over functions handled by the failed pipe.

This scheme seems very realistic when future system design using

micro-processors to implement individual functional modules is con

sidered. Such a design has the advantage of higher availability
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and ability to balance the throughput of the system. The latter is

true because when certain pipes are overloaded with waiting tasks,

other pipes can be "configured" or devoted to share their respon

sibilities. This will be the subject of a later chapter.

The former graph model of (N,A,P) for a RSRP system must be

extended to describe this graceful degradation property. In this

chapter, it is extended to a quadruple (N,A,P,M) where M= {M^}

and M.. = a set of pipes in P whose proper (reliable) functioning

enables the system to be available under operating mode i. Note

that these. M..'s are not necessarily exclusive and a system may be

in more than one operating mode. For example, a system of four

pipes may have M] ={P^P^}, M£ ={P2»P4> and M3 s{Pi »P2'P3»P4}
so that M3 implies M, and M^. Then a system is available if

it is operative in at least one of the operating modes. The pro

blem we now face is how to maximize the probability of this

occurrence given a budget cost constraint as in Section 4.2 and an

expected desirable mission time. It is understood that u M. e M
M-jeS n

since the composite of any operating mode must be an operating

mode itself, usually with better speed or performance.

Our immediate problem is to find an expression which represents

the probability of the system surviving in at least one of its

operating modes. Let us denote this variable by 6F and call it

the graceful factor of the system. Observe that GF actually

represents the availability of the system when repair time is

ignored (availability is defined as the probability or fraction of

time that the system is operative over a long range of time).

Therefore



GF(RSRP) = P(UM.) .

Theorem 4.1. Suppose R. denotes the reliability of module i

Then

GF = I [(-1)^ n R.]
j-l . ieS.1

where S. c {1,...,N} and q. is some positive integer and
j j

r<2N-K

Proof. This theorem asserts that GF is a sum and difference

of products of individual reliabilities of the modules. It follows

from the inclusion exclusion principle [79] since

P(UM.) = P(M1) +...+P(MS)-P(M1M2) P(Ms-]M )

+P(M1M2M3) +... etc.

N
There are at most 2 - 1 terms and since

P(nM )= p(a subset S. of pipes functioning correctly)
J' v J

It R

'j
ieS, •"

the theorem follows. Q.E.D,

As an illustration, consider the RSRP system in Figure 4.5.

Then

GF = P(M1UM2UM^)

= P(M]) +P(M2) +P(M3) -P(M]M2) -P(M2M3) -P(M1M3) +P^M^-U)

= R(P1) +R(p2p3) +R(p-,p2p3) -R(P!P2p3) "R(P1P2P3)
+R(p1p2p3) +R(P1P2p3)
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Suppose

p ={PrP2,P3> M={M1,M2,M3>

pl = 1-2-3 M] = {P-,}

P2 = 4-2-5-6 M2 ={P2,P3>

P3 = 7-6 M3 ={PrP2,P3}

Figure 4.5
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= R1R2R3 +R2R4R5R6R7-R1R2R3R4R5R6R
7 #

To optimize this complex objective function with basic relia

bility terms appearing in one or more product terms is a nontrivial

task. In the remainder of this section, efforts will be devoted

to exploring and tackling this problem.

At this point, it is appropriate to discuss some past history

associated with optimal redundancy allocation. Efficient strategies

exist when the objective function obeys some separability criterion.

For instance, if X.'s are decision variables and f.(X.) is the

return (i.e., R. above), then fk(Xk) ^^(X^)^) for
some function gfc. This means that the return due to the decision

made at stage k is determined by the return due to the decision

made at the adjacent stage (k-1) and the present decision only.

Naturally, g.. 's are strictly increasing functions because obvious

inferior decisions can be discarded immediately. Under this

assumption, another algorithm which works is the generalized

Kettelle Algorithm [80] which examines and generates a sequence of

undominated allocations (with different costs) until a target cost

is reached. This algorithm exhibits the flavor of dynamic pro

gramming which is most efficient for optimizing separable objective

functions (in the sense as just illustrated in Section 4.2).

Unfortunately, the objective function at hand is not one which

exhibits useful separability properties in genetul. There may

exist some basic reliability terms (such as R2 in the previous
example in Figure 4.5) which can be factored out completely from

the expression in some cases so that these can be optimized
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separately using dynamic programming techniques as is apparent by

now. But this need not be very helpful when there are a lot of

other nonseparable remaining terms such as in the example. An

alternative efficient method must be devised.

First of all, a fast procedure for detecting subsets of

{R-j,... ,RN> which can be optimized separately using dynamic pro

gramming seems very desirable. To show this point clearly, consider

in the previous example, it can be easily shown that R,R2 and

R4R5R5R7 always appear together in any term of the expression for

GF(RSRP). This hints toward the possibility that R,R3 and

R4R5R5R7 may be optimized as separate objective functions under

different cost constraints. If they are denoted by b and c,

then GF = R2b +R2c-R2bc which has only three variables and

therefore is easier to optimize exhaustively (or semi-exhaustively)

or approximately.

A fast algorithm is now proposed to achieve this purpose of

identifying maximum subsets of {1,2,...,N} optimized separately.

Algorithm IDENT

Step 1: Initialize i = 1.

Step 2: Let Si ={j|jeP.. and for all kjM, j4Pk> =set of nodes

in P. not shared by any other path, Q. = {j| P.eM. if
• 1 J K

Pi eMk for all Mk>. If Qi = Q. for some j< i, set

Si =SiUSp and Sp =0* Let i=i+1- RePeat steP 2
if i < |P|.

Step 3: Initialize j = 1, i = 1.

Step 4: If S. = 0, go to Step 5. Z. = n R. , j = j+ 1.
J ke S-

Step 5: i=i+1, If 1< |P|, go to Step 4]
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Definition. An expression is said to be in its most compact

form if no two or more terms can be represented and replaced com

pletely by an equivalent single term in the.expression without

changing the latter. For example, abx + aby is equivalent to

xZ+ yZ where Z = ab.

Lemma. Algorithm IDENT can be used to produce a GF which

is in the most compact form.

Proof. From definition, if two or more terms can be grouped

together and represented by a single term in GF, then these terms

must be the reliabilities of unshared modules in either the same

pipe or pipes which always appear together in any operating mode M.

Algorithm IDENT does precisely this detection and hence the lemma

is proven. Q.E.D.

For the example, GF = Z-iR2 +Z2R2 -Z-jZ^ where Z, = R^R3

and Z2 = R^RnRgRy Note that Z2 actually is the reliability

of unshared resources in pipes P? and P3.

Then algorithm ORLP can be used to find optimal redundancy

assignments for Z-, and Z2 separately under different cost

constraints of interest. For simplicity, in the remaining discus

sions, it will be assumed that these optimal assignments have been

found already and represent the candidates of redundancy assignments

as if the Z.'s are single entities. Hence the graceful factor GF

from now on will be in its most compact form where no two or more

terms can be grouped together and replaced by a single term

completely.
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Next, we still have to find the optimization of a sum and

difference of products of terms subject to certain cost contraints.

For the example,

maximize Z-^ +Z^- Z,Z2R2

such that C1(Z1) +C2(Z2)+C3(R2) <C.

In the general case, the objective function may involve too

many variables (although IDENT and ORLP have significantly reduced

this number of variables) so that exhaustive testing of combinations

is prohibitive. On the other hand, because of the nonseparability

of GF, no simple optimal algorithm seems to ever be derivable.

In fact, the nonseparability of GF can be cited as a theorem.

Theorem 4.2. After using IDENT to produce an equivalent GF,

the latter cannot be expressed as

GF = X. X ...X. [GFJ , t > 2

where GF„ is a function of the other terms,
r

Proof. Suppose GF = X. X. ---X. [GFJ for t > 2. Then

X. •••X. can be replaced by a single term. But this contradicts

the previous lemma. Q.E.D.

When GF now involves only a few variables; exhaustive

enumeration may be used. If not, an approximate but simple method

to find near-optimal assignments may be most desirable. To do this,

several definitions have to be introduced first. Let GF be a
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function of Z^---Z. for some t£N without loss of generality.

Each Z. may represent the reliability of a single module (when

shared) or the composite reliability of unshared modules discovered

in algorithm IDENT. In the latter case, those modules will be

treated as a single module in the following discussion.

Definition. The structural importance of module i is

represented by

3GF

9Z,
Z. = l
J

Vj

= I$(i) .

The availability importance of module i is represented by

8GF

3z: • V1>
keeping other
(Zj) fixed at
some value = (Z)

For the example, if GF = Z]Z3 +Z2Z3 - Z]Z2Z3

Is(l)-0-ls(2) IA(1)=Z3-Z2Z3
Is(3) =1 IA(2) = Z3-Z1Z3

Observe that the.use of structural importance here deviates

slightly from its use in other applications because here a system

is considered to possess graceful degradation capabilities. The

term availability importance is used for the same reason and the

repair time has been ignored.

The approximation algorithm depends on the following theorem

as a basis.
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Theorem 4.3.. GF(Z +AZ) -GF(Z) = I IA(S)AS
SC2N

evaluated

at Z

where 2N denotes the power set of {1,2,...,N} and

I(S) = n IA(j), AS = n AZ., AZ =some feasible change .of
A jeS A JeS
Z.'s with cost C(AZ).

Proof. Using induction on the number of AZj ?« 0. The induc

tion basis is obviously true. Suppose it holds for any number

of changes < k. Then for the case of k+1, suppose AZN f 0

and AGF(Z) = GF(Z +AZ) -GF(Z). So

AGF(Z) = AGF(Z)

SC2N-1

keeping
ZN fixed

+vv AZf) evaluated
at Z + AZ except
ZN is kept fixed

i«(s)| +iA(zH)
IAS eval
uated at

Z

AXn evaluated
at Z + AZ except
Zn is kept fixed

by the induction hypothesis.

But IA(ZN) -f^,...^), since

GF(Z) =ZNf1(Z1 ZN-1) +f2(Zr...,ZN.i)

and by induction,

A n Ievaluated at
Z + AZ keeping
ZN fixed

I USUZN)AS
Jl-l A

SC2
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Therefore

W

Thus,

AZN, Z+ AZ
keeping 1^
fixed

I IA(S)AS
N

& NeS

AGF(Z) =-- I K(S)
AS eval
uated at Z

SC2'

If AGF(Z) is approximated by

the error is given by

LWj=i AZj eval
uated at Z

6GF(Z) = I IA(S)AS
N A

SC2N

Q.E.D,

and S f {i}, i = 1,...,N. Usually, AZ. « 1, so that

AS « AZ. if |S| > 1. So the above approximation may serve to

generate a reasonably accurate prediction on AGF(Z) from which

the approximation algorithm is derived.

The approximation can be further interpreted as successive

changes of the Z= (Z1,...,Zt) taking into account only unidirec

tional changes. In other words, {2^9...9l ) are each changed to

(Z1+AZ1,...,Zt+AZt) respectively assuming that the others are not

changed. The interaction due to simultaneous changes in reality

gives rise to the error term just explained. However, the latter
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belongs only to a second order effect and thus the approximation

provides a convenient means to perform optimization. Before

doing so, the following definition is relevant.

Definition. Avector Z=(Z1>...,Zt) is a type-1 approxi

mate local maximum (1-alm) for a cost constraint C if and only if

XlA(j)AZ. < 0
eva luated at

Z and
t

I
j=l

AC,(AZ,) <C
j u —

for any Z+AZ. neighbor of 1, Here neighborhood is interpreted

as the alternative solution vector Z+AZ so that the constraint
N - -

I AC.(AZ.) < C is satisfied. A vector Z = (Z,,...,ZJ is a
j=l J J -It
type-2 approximate local maximum (2-alm) for a cost constraint C

if and only if

} > 0

bi

maximum {jL.(j)AZ.
Z. and

t its actual corresponding value is \ Ifl(S)AS < 0.
S£2t

Returning now to the optimization problem, the desirable

solution is now given by the following approximate formulation

Suppose we start with, a feasible redundancy assignment Z and

the remaining cost is C . It is now stated as:

t

maximize £ Ifl(j)AZ.
j=l A J evaluated at Z

t

such that 7 AC.(AZ.) < C .
j=l J J '" r
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Now the separability property that we have been looking for

suddenly reveals itself. IA(J) is fixed, so are the different
Z

alternative redundancies. The only variables are AZ.'s which

nicely exhibit the separability property previously described. In

fact, the following dynamic programming algorithm which is quite

similar to ORLP solves the problem.

Algorithm ORAP(I.C)

Let

AZi .= reliability improvement of (composite) module i
th

using the j redundancy scheme compared to the

present choice Z.

AC... = change in cost by having the above change AZ..

0RAP(I,C) - optimal change in redundancy for modules I through

N under a change of cost < C.

Let

if AC < AC... for all j
0RAP(N,AC) = I NJ

llA(N)AZN. if ACNj <AC <ACNj+1

(assume AC^. are arranged in ascending order of value).

m. = the smallest AC feasible for change in redundancy

for modules i through N.

Step 1: Recursively find 0RLP(i+l,C-AC..) for all AC., such that

C-AC.. > m.+,. Let S = set of indices j so obtained.
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Step 2: Assign ORLP(i,C) = max {ORLP(i+l,C-AC..+I.(i)AZ..}
ieS .iJ " iJ

= ORLP(i+l,C-AC.. )+ Ifl(i)AZ.. and CHOICE(i,C) = j .
U0 a U0 o

Return with ORLP(i,C) and CHOICE(i,C).

This algorithm indeed generates an optimized solution for the

approximate formulation. The proof follows in exactly the same

fashion as that for ORLP. It will be illustrated later with an

example.

Notice that three possibilities may emerge from 0RAP(1,C ).

First, the maximized objective function value may be negative which

means a type-1 aim results. Second, the actual change in the

graceful factor (GF) may be negative although the optimized objective

function value is positive. This implies the presence of excessive

error in the approximation and according to definition, a type-2 aim

results. Finally, the optimal objective function value as well as

the actual change AGF are both positive which means a better solu

tion has been obtained.

Let us complete the procedure by considering the third kind

of occurrence. Type-1 and 2-alms will be discussed later. The

approximately local maximum solution generated by 0RAP(1,C) can

be further tested or improved by re-applying ORAP to it. Hence

the following procedure is suggested.

Algorithm S0RAP(C ) (Successive ORAP).

Step 1: Apply 0RAP(1,C ) and obtain AZ +Z. Let C = C - I AC..r r r j=1 j
Step 2: Test if either a 1-alm or 2-alm solution has been reached.

If not, repeat Step 1.
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Using SORAP, the GF will be improved at every iteration

until a 1-alm or 2-alm situation occurs. The algorithm is illus

trated with the example in Figure 4.6 which corresponds to candi

dates for Figure 4.5.

Suppose we start with Z= (0.8,0.9,0.7) with C = 1000,

Cr = 0, GF = 0.7(0.9 +0.8-0.9x0.8) = 0.686. 0RAP(1.0 yields:

0RAP(l,0)f._"

ORAP(2,-200) fathomed

0.05 0RAP(3,0)

-0.4*

0.05

-0.4

0.05

ORAP(2,300)
-0.1

0RAP(3,200) 0.2

0RAP(3,250) _J.2_

0RAP(3,100) 0

0RAP(3,300)
._0.95_

0RAP(3,350) 0.25

0RAP(3,200) 0.2

ORAP(3,400) 0.25

IA(1)

IA(2)

IA(3)

-0.4^QRAP(3,450) -^-

0.08

0.14

0.98

£lA(j)AZj =0.08(-0.3)+0.14(-0.1)
= 0.98(0.25) = 0.213

Surplus

0

0

50

100

0

50

0

100

150

The optimal solution is shown above by dotted lines and the label

on each arc represents AZ.. For this case,
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Candi

date

180

modul(T\^^ 1 2 3 4 5

h (100,0.2) (200,0.5) (300,0.7) (400,0.8) (600,0.9)

h (50,0.5) (100,0.8) (200,0.9) (300,0.95)

Z3 (400,0.7) (600,0.9) (700,0.95)

GF = Z«[Z, +Z« -Z-jZ«]

Figure 4.6

Data for ORAP



so that

Z+AZ = (0.5,0.8,0.95)

GF = 0.95[0.5 +0.8-0.5x0.8] = 0.855

AGF = 0.855-0.686 = 0.169

error in prediction of AGF = 0.213-0.169 = 0.044

new Cr =Cr -JAC. =0

The next itEration of 0RAP(1,0)
(0.5,0.8,0.95)

produces

-0.3

0RAP(1,0)<

IA(D = 0.19

IA(2) = 0.475

IA(3) = 0.9

m2 = -350

m3 = -300

0,15^^0RAP(2,-100) ~0'05
0RAP(2,100)<~^Il_0RAp(3j0) 0__

0.3

0RAP(2,-200)

-0.3 0RAP(150) 0

0j5^^-0RAP(3,-300) -~0>25
0RAP(2,-100)<^QJ 0RAP(3,-200) '°'05

-0-3^^0RAP(3,-50) "°-05

0RAP(3,-400)fathomecl

0RAP(3,-300) ~0'25

"°*3^^0RAP(3,-150) -rQ^L

ORAP(2,-400) fathomed

Surplus

0

0

150

0

100

50

0

50
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In this iteration,

t

max { I IA(j)AZ.} <0
j=l A J

and hence a type-1 aim has been reached.

Two questions remain to be solved. First, what should be

done to type-1 or type-2 alms? Second, how could we pick a satis

factory starting point (pivot) for SORAP? When a type-1 aim occurs,

the predicted GF in all neighboring points is smaller than the

current GF-because the maximum AGF is negative. But this is not

necessarily true due to the existence of the error term in the

prediction. Testing of all neighboring points to validate the

correctness of its local maximum property involves too much enumera

tion. In the case of type-2 aim, the actual change in GF is nega

tive although the predicted is positive. This means that the i

current solution is fairly close to a local maximum as well. We

can terminate the optimization procedure here if so desired. How

ever, an alternative way to check the validity of aim properties

in both cases is to pick another starting pivot and apply SORAP to

it. This pivot should be as far away from the current solution as

possible. The resulting solution is compared to another or perhaps

a near-global optimal solution. Observe that there may be more than

one local maximum in the grid of feasible solution space.

Regarding the choice of an initial pivot, some observation on

the structural importance I~(j) of the modules may be helpful

and the following procedure is suggested. Suppose the total cost

constraint is C. We will solve:
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t

maximize j Z.I-(j)
j=1 J b
t

such that V C.(7.) < C
j=l J J -

The ORLP algorithm in Section 4.2 can be used to solve this

problem where F. is replaced by IA(j)Z. in Step 2of the algo

rithm as well as in the initial assignment of the boundary condi

tion. For brevity, the procedure will not be illustrated here

again. The philosophy behind this procedure of getting a good

initial pivot is to provide higher weights (and therefore higher

values) to those Z^s which have higher structural importance (in

the sense which will likely influence the graceful factor more).

In fact, in some example cases tested, it also helps to avoid the

occurrence of type-2 aim.

In summary, the optimal choice of fault tolerant schemes (per

haps the degree of redundancy in some cases) can be approximately

solved using the fast heuristic developed in this section. This

assumes that the graceful degradation capability of the RSRP system

is well-defined so that any concrete fault tolerant scheme may

contribute a definite amount in establishing the availability or

reliability of the system. In practice, we can try to apply the

approximate model to evaluate some design alternatives. The exact

optimal solution in theory may be of less importance in practice

if it requires too much computation, because after all, the modeling

and parameters used in the evaluation are approximate and valid to a

certain extent only.
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CHAPTER 5

Restructurable (Reconfigurable) Architecture for RSRP Systems

5•1 Origin of Restructurable Architecture a

To avoid the possible confusion between dynamic reconfigura-

tion in a multifunctional pipeline system as used in previous chap

ters and the global reconfiguration to be explored in this chapter,

the latter will be termed restructurable architecture. Computer

architecture is not a well-defined term. Among the many attempts

in defining it [81][82][83], the following one proposed to the

IEEE Technical Committee on Computer Architecture seems most com

plete. It states: "Computer Architecture is the study and design

of algorithms and logical control for the management of the physical

resources of a computer system." In other words, it involves the

design (and decision making) and implementation (both functional

and logical flow of information) of algorithms so as to satisfy

the user's needs. One obviously vital step is how the physical

resources of a computer system should be tied together to most

effectively satisfy all demands.

A restructurable architecture can be characterized by its

variable appearance to either the active operating system or the

user. Its conception is based primarily on the versatility of *

many existing physical resources in a system such as one consisting

of microprocessor chips. To remove the vagueness in the above

characterization, we can explicitly assume a restructurable archi

tecture to be one composed of numerous kinds of functional modules

(processing ilements, buffers, memories, channels, stacks, etc.)



whose connectivity and logical interpretation to define the system

configuration and operating algorithms are variables subject to

some incorporated control mechanism. The means and ends of restruc

turing capability will be the subject of this chapter.

There are two principal reasons for a restructuring architec

ture. First, restructuring may be due to reliability and availa

bility purposes. In improving the reliability of a system, several

redundancy schemes may be adopted. In the voting schemes, dynamic

or standby redundancy is a favorable choice. When some active

module fails, it will be switched off and substituted by a standby

unit. This switching of an inactive to an active state of a module

is a form of change of logical function and connectivity which fit?.

quite well into our restructuring characterization. Hence redun

dancy switching manifests a simple form of restructuring. On the

other hand, systems capable of graceful degradation (as explained

in Chapter 4) exhibit another form of restructuring phenomenon.

After some module failure, the system redefines its connectivity

and logical interpretations sd as to be still capable of carrying

out all specified functions. The simplest form of graceful degra

dation is the switching out of a failed processor in a multiprocessor

system and the possible reassignment of other resources previously

"owned" by this failed processor to other parts of the system. A

more complex form of graceful degradation may involve a re-distri

bution of responsibility (logical functions) of the functional

modules so as to take over responsibilities previously controlled

by the failed module. Of course, when this cannot be done, the

system is no longer available because it cannot satisfy all of the
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specified functions. An example for this kind of restructuring

can be found in a multiple pipeline system containing (1) a scalar

pipe for scalar fixed point arithmetic operations, (2) a floating

point pipe for floating point arithmetic operations, (3) a float

ing point pipe for other special floating point operations and *>

vector type of operations {very similar to STAR-100 floating point

pipes). Then failure to pipe 2 or 1 may be accomodated by some

additional changes to pipe 3 which now becomes responsible to

operations previously executed on pipe 1 or 2. As is apparent,

the system.throughput will be reduced. Nevertheless, the system

is still available by a logical restructuring in this case.

The second cause of a restructurable architecture is to make

the most efficient use out of the system resources and hence to

produce the highest throughput achievable. With a static design

(non-restructurable architecture), application environment changes

or unexpected factors (not anticipated in the original design) may

introduce bottlenecks and poor utilization of some resources as

well as poor turnaround time of user jobs. To alleviate the impact

of such unforeseen situations which may be discovered much later

than in the initial design and implementation, a restructurable

architecture lends a helping hand. During the earlier stage of

design and development, a system can certainly be trimmed to a most

effective form (with some application objectives in mind). But <s>

as it often turns out, the success of a static design is unpredic

table until fairly late in the development stage at which point no

inexpensive vital change of the design can be made, even though the

objective application environment has not yet changed. With the



latter change, the success of a static design is even more unsecured.

Consequently, failure results in many recently built super-computers.

With a restructurable architecture, things are quite different.

Instead of making drastic changes to the initial design, whenever

such a need occurs, the system can restructure itself based upon

the amount of restructuring capability incorporated in its design.

Now the system can respond to application environments or demands.

It can also cope with factors which are not predictable during the

design and development phases. For example, a floating point pipe

may be restructured to become a string manipulation pipe when the

system is responding to data processing other than complex arith

metic operations. Similarly, in a multiprocessing system, the

processors can be structured to execute the tasks in array fashion,

pipeline fashion, or a mixed mode of both depending on the applica

tion.. This hints another advantage of restructuring, namely,

the improvement of throughput and turnaround time of jobs by having

an architecture which closely "resembles" the application. Restruc

turing is handled by mainly hardware, and firmware, and sometimes

a little bit of software aid. Hence it is quite different from

ordinary resource management done at a higher level by the operating

system. Some analogy can be observed between this kind of restrue-

turable architecture and the concept of virtual machines. Their

diverging objectives, however, explain their differences in philosophy

and implementation. Here restructuring serves to adapt a system

to application for availability or effectiveness purposes. Virtual

machines provide adaptiveness for other purposes such as protection

security or resource management for different processes. These



two approaches are not exclusive and can be used simultaneously to

most effectively utilize the system resources.

It may be noted at this point that the usefulness of restruc

turing depends on some suitability criteria. It is certainly true

that many modules are restricted to a subset of functions for which

they can be responsible. For example, pure processing elements can

assume the responsibility of processing operations and are of

little use for storage purposes. But rather than treated like

general purpose modules, they can be structured to process the tasks

in such a way that they distribute the responsibilities among them

selves perhaps using microprogrammed control (for example, in a pipe

line fashion where each facility node handles some phase of the

processing). In such cases, the versatility of the modules plays

an important role. The modules must be capable of doing different

functions to be specified by the restructuring control.

Besides versatility, another suitability criterion is the

tradeoff consideration. Restructuring requires static and dynamic

overheads. Static overhead exists in the form of additional logic

in hardware and firmware for switching and specification of func

tional modules. It is an overhead composed of the direct cost of

the logic and the delay caused by the switches which need not be

present in a static design. A reasonable and inexpensive form of

switches is multiplexor (implemented in more than two levelr of

logic gates) whose delay is a function of the number of alternative

links to be established. On the other side, dynamic overhead is

present because restructuring is a dynamic process which requires

an extra switching time. Together with the decision making involved
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occurs, some detection mechanism has to be inserted to efficiently

locate the set of dispensable resources automatically.

Such detection strategies naturally are system dependent.

The following are some suggested guidelines:

(1) Automatic Evaluation and Self-Monitoring

To detect the need and source of restructuring, the restructure

control may monitor the performance of different resources. Moni

toring is a method of collecting data on the performance of an

existing system [84]. It is useful in locating the bottlenecks of

the system when an analysis is made on the usage profiles of the

resources. There are two possible ways of monitoring. One is

implemented using hardware and/or firmware to directly collect data

and generate usage profile.*. The other is implemented using soft

ware routines. Tradeoffs are involved in deciding which one should

be adopted in specific cases. In general, hardware Monitors are

usually faster and serve in lower levels of monitoring whereas

software monitors are usually more flexible and do not involve

dedicated hardware to accomplish the job.

There are many levels of monitoring the activities or events

of a system. Hardware monitors may be used for monitoring channel

behaviors, CPU and I/O time, system idle parameters, memory utili

zation, etc. On a slightly lower level, they can also be used .o

monitor activities in a functional module level, such as those in

a RSRP system. The shared resources in a RSRP system appear to be

good candidates where monitors should be inserted. A hardware

monitor is easily implemented because it involves merely the
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connection of the monitors to the appropriate modules of the system

If a timing-usage profile is desired, the collected data have to

be stored suitably. But if usage frequency or utilization measure

ment is the sole objective, then a simple counter scheme may be

employed.

Very analogously, monitoring may be used on any logical or

control flow existing in a program. Hence, a program behavior may

also fit into a general monitoring scheme which makes use of softv/arc

monitors extensively. In the latter case, monitors are inserted

at chosen locations of the program control flow so as to collect

all relevant data such as path frequencies, node frequencies which

are significant criteria in constructing reliable programs.

In the context of monitoring discussed in this section, no

a priori assumption will be made on the type of control flow we

are considering in order to broaden the scope of application of

the techniques to be developed. Instead, all assumptions made

will be stated explicitly.

An interesting question is how monitors or counters should be

inserted so as to measure path behaviors at minimal cost (some cost

is incurred whenever a monitor is introduced). Returning to the

context of a RSRP system, it will correspond to measuring the

utilization of each functional path at minimal cost. From this

measurement, then the restructure control may try to restructure

itself to obtain the highest throughput. (To understand this

assertion, recall that in Chapter 3 an optimal system configuration

is obtained based on the excitation ratio or usage frequency \i?

of different paths.) For the sake of simplicity, it will be assured



that the monitors mainly provide a frequency count. Generalization

of the method to other uses of monitors can be readily observed

from the result, since then the monitor's output will be a function

of time and the method introduced is time invariant (provided

suitable delays are included depending on the application).

The following discussion will still be based on our graph

model of (N,A,P) and P is the set of paths whose behavior is

to be measured. To be general, arc transitions could be determined

dynamically during execution. Also it will be assumed that there

is a unique entry node of the system and monitors can be inserted

at any transition arc in A as well as in a subset of arcs in A

to form a composite monitor.

First, some basic properties of a graph are needed.

Lemma. In the RSRP model (single entry node) with N nodes,

the number of simple paths is bounded by (N-l)! and the number

of arcs (N-1) . [A simple path is one without traversing a node

twi ce.]

Theorem. If only simple monitors are inserted at all single

arcs in A, then they may not be sufficient to yield the distinct

frequency of all distinct simple paths in P.

Proof. Let f. be the frequency of P.. Then the frequency

count given by monitor m.. will be equivalent ;.o

, I fk =miJ ' % (e)(i,j)ePkk 1J

Since |P| <(N-l)! and |A| <(N-l)2, then |P| > |A| for some
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cases. Then the number of equations of the form (e) = |A| < |P|

= the number of variables involved. From linear algebra, this system

of linear equations will have either no feasible solution or an

infinite number of solutions. Q.E.D.

Clearly, in some cases, more complex monitors or frequency

counters have to be incorporated. Some form of memory seems neces

sary in order to trace some precise segment of subpaths in providing

more information about the flow of control or information. For

example, the frequency when two arcs in a path are traversed together

in a.flow has to be noted. (Therefore, a traversal to the 2nd arc

requires knowledge about whether the first arc has been traversed.)'

A simple illustration can be seen in Figure 5.1. For simplicity,

the word "simple" will be omitted for simple path whenever referred

to in this section.

There are four paths and let xi be the counters in the ith
arc. Therefore

Wxi

WX2

Wx3

f1 +f3 " *4

W x5

(x2 =x3)

These five equations degenerate into only three independent

equations which implies no unique solutions for f„ f„, f ,f
I Cm O T"

What will be required in addition is a composite monitor as explained

previously, for instance, a monitor which traces subpath 1-2-5

(call it x6). Then



1-2-3

1-2-5

1-4-2-3

1-4-2-5

Figure 5.1

Example Graph Where Simple Monitor is Insufficient
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fl = X6
f1+f2 = x

uniquely solves for f-, > fo> fot fA •
f + f = y ico1*
T2 T4 x5

f3 +f4- x3

Obviously, tracing of a segment of path directly is very expen

sive. Indeed, the more transition arcs it involves, the more expen

sive it will become. Hence, there are different classes of monitors

or counters and their costs are different. Our problem is still to

be tackled. The previous analysis, however, does hint at some

insight into the problem which can be fruitfully used to develop

the following optimization algorithm. Again, we will start with

a basic theorem.

Theorem. To obtain a distinct frequency for each path, we

need exactly |P| monitors in the minimal case.

Proof. Since there are |P| frequencies to be determined

|P| linearly independent equations will be needed in the minimal

case. One feasible choice is to have a composite monitor for each

complete path but it may require excessive cost. Q.E.D.

Fomr this theorem, it can be concluded that all we need is to

generate |P| linearly independent equations for the |P| variables

concerned such that the cost of implementation is minimized. Towards

this end lies the following algorithm.
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Algorithm MINPATH

SteiLJ?.: From the path-arc matrix specification, obtain the set of

arcs = Au, each of which exists in one and only one path.

Initialize k = 1, S = 0.

Step 1: For P. e P, if there does not exist (i,j) e A and
N u

0\j) e Pk, then S=SUPk; else insert monitor in (i,j),

k = k+ l. If k<|P| repeat Step 1. Initialize m = l,

Step 2: For all arcs Ar e P. e S, form all m-arc combinations

such that n p = m-arc combination where S c s.

pl 6sr r~
Assume a monitor is inserted at each m-arc combination and

derive an equation I f. = m to equate the relationship
P-l eSr 1 r

between the monitor and tne paths to which it is related.

Let E.= set of equations so generated. Let E« = FAUEd-

(using Gaussian Elimination for instance) where E.. CE

and E«UE,. is a set of linearly independent equations

(that is, E... is the subset of E. which is linearly

independent with respect to Ej. If |E«| = |P|, insert

monitors to arcs corresponding to E« and halt.

Step 3: m = m + 1. Repeat Step 2.

Algorithm MINPATH essentially tries to obtain as many m-arc

monitors as possible for small m's at every step (which increments

m by 1) until precisely |P| independent monitors are located.

The checking of linear independence in E. with respect to E„ at

Step 2 can be accomplished easily using Gaussian elimination tech

niques. The example in Figure 5.1 is worked out below to illustrate



its application.

In the first iteration: (m = 1)

1

1 1 0 0

0 0 1 1

0 0 1 1

1 0 1 0

0 1 0 1

*" X.

'4

-1

0

1

0

1

Thus only three linearly independent equations are found.

In the second iteration: (m = 2) Suppose xfi is added,

10 0-1

0 0 11

0 10 1

10 0 0

'V

10 0 0

0 10 0

0 0 10

0 0 0 1

This implies that exactly four linearly independent equations are

generated, x^, x3, x&, xg are chosen as monitors.

Theorem. Algorithm MINPATH generates the minimal cost monitor

insertion (assuming cost of m-arc monitor is monotonically increas

ing in m).

Proof. Let us assume the contrary, that is, some m-arc combi

nation is replaceable by some set of n-arc monitors (m > n) at a

minimal cost. Let E? = set of independent equations for the first

case, E^ = set of independent equations for the second case. There

fore

EX •EAX{En} =EB
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where Em = equation of the m-arc monitor, {E }= equation of the

n-arc monitors. However, in the process, it has been found that

{En> is dependent on some subset of EB (which causes its removal
from EA in Step 2). Instead EB will be the set of minimal

equations. But |Eg| < |P| implies acontradiction/ Also, algorithm

MINPATH always terminates with an optimal solution because in the

worst case, individual complete paths may be monitored at a maximal

cost (when m = n). Q.E.D.

The MINPATH algorithm is a very efficient procedure to generate

the cheapest (minimal) set of monitors needed. As a byproduct, it

also provides the formula by which each f. would be computed from

the x.'s.

From monitoring, the restructuring control can restructure the

system comfiguration (for example, switching more resources to serve

those frequently used paths) to achieve a higher throughput rate.

The criteria for restructuring will be the subject of the next

section.

(2) Explicit Declaration

Automatic evaluation and monitoring can be assisted with some

explicit declaration from the external environment of the system.

In a future flexible architecture, both the user or external controller

and the internal controller should be capable of defining an effi

cient structure for the system so as to reflect the program structure

as much as possible.

In this direction, [85] develops a REsource Allocation and

STructuring language (REALIST) which can be used to explicitly define



a system processing configuration such as a pipeline of several

kinds of functional modules or an array with the appropriate con

trol and data flow. It is very similar to the job control language

of an operating system. The basis of REALIST is a set of special

language primitives executable by the restructure control to esta

blish the specified links either physically or in a virtual machine

sense. In a similar manner, rather than complete explicit declara

tion, some intermediate form of specification may be more realistic.

In particular, primitives such as RELEASE for releasing a set of

dispensable resources to serve reconfiguration purposes in order to

increase throughput and utilization may be helpful. After expli

citly receiving this information of dispensable resources, the

restructure control may then reconfigure the system using the dispen

sable resources and the reconfigurable criteria to be introduced in

the next section. Such language primitives are certainly worth

developing and studying.

5.3 Decision Making

Before proceeding to presenting the decision making of

restructuring, a brief review of Chapters 3 and 4 is suggested.

In Chapter 3, algorithm OPT(C) is designed for obtaining an optimal

decomposition of the system subject to the total cost constraint C.

Taking a closer look, it can be stated that OPT(C) actually produces

an optimal resource assignment to the various functional blocks

based on a total composite cost of C (in Chapter 3, the resource

is interpreted as "cost"). Then, can the restructure control in

a restructurable system efficiently utilize OPT(C) to handle the
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set of dispensable resources detected or declared?

The difference between the current problem and the decomposi

tion problem in Chapter 3 is that the set of dispensable resources

in r structuring exists in separate entities of each kind and is

not represented by a single cost. If OPT can be modified to operate

on a vector C rather than a single cost C (each entry in the

vector represents the amount available in that type of resource),

then the problem is resolved. This modification, fortunately, ir

•easily accomplished. Specifically, in its sub-algorithm LIP(i,m),

m is now expressed as a vector of resources and recursively defined

by

L.IP(i,m) = max {min{LIP(i-M ,m-C. .),t..}}
VC..<m ~~1J 1J
~U -

in the recurrence relation of the dynamic programming formulation

(p.125). The dominance relationship on p.139 is easily generalized

to a vector of resources without further ado. Finally, OPT(C) will

be able to produce the optimal assignment of the dispensable

resources to the functional blocks. In some cases, the system may

keep some resources undisturbed and so CLIP(k,C,t) can work

effectively by restructuring candidate considerations to those

faster than t in path k, based on the current usage frequency

u/s detected. From now on, whenever OPT(C) is referred, it

generates an optimal assignment of dispensable resources in terms

of throughput gain.

Concurrently, the restructure control may devote some dispen

sable resources to improve the reliability or availability of the
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system by employing them as additional redundancies to some functional

blocks. For instance, some of them can be turned into standby spare

units of some function. Necessarily this may reduce the processing

capability of the entire system but it is one way to upgrade its

availability. It is especially important when the current process

ing speed is quite satisfactory already so that speed improvement is

not as precious as reliability improvement. Suppose wo know how

much dispensable resources are available for improving the graceful

degradation ability of the system. They can then be assigned accord

ing to some algorithm such as SORAP in Chapter 4. In Chapter 4,

algorithm 0RLP(i,C) has been derived for obtaining optimal redun

dancy assignment to maximize the reliability of an RSRP system and

algorithm SORAP(C) has been derived for maximizing the "graceful

factor" for availability reasons. In either case, the cost parameter

C can be generalized to a cost vector C as in the case of OPT

just discussed. Explicitly, the changes are:

0RLP(i,C) (p.160). Ignore all m.,u.,7r..

Step 1: Recursively find ORLP(i+1,C-C.•) for all C. ., C.

Step_2: Find max {0RLP(i+l>C-C..),F,.} where S is the set of
jeS ~~,J !J

feasible candidates for node i. (Observe that candidates

are restricted to those whose reliabilities are better than

the current redundancies since mobility is allowed in the

set of dispensable resources only). Assign this value to

0RLP(i,C) and retain the decision, say j , by setting

CHOICE(i) = jQ. Return with 0RLP(i,C) and CHOICE(i).

(Note: When used in restructuring, C.. is the additional



cost vector for the jth candidate as compared to the cost
vector of the current candidate.)

Similar changes are made to 0RAP(i,C) so that S0RAP(C )

yields:

Generalized Algorithm S0RAP(C ) (p.177)

Step 1: Apply 0RAP(1,C ) and obtain AZ +Z (C = set of dispensable
N "*

resources). Let C = C - I AC. .
"* r j=l "3

Step 2: Test if either 1-alm and 2-alm solutions have been reached.

If not, repeat Step 1. (Again, 1-alm and 2-alm are

generalized to

iyo)Az.
evaluated at 1 and •

lACjtAZj) <C ).
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Equipped with algorithms OPT(C) and SORAP(C), the restructure

control is ready to re-assign the dispensable resources to take up

new responsibilities. This reassignment is similar to a post-

optimization procedure or sensitivity analysis of an initial design

because in throughput considerations, a new optimal design is obtained

due to changes in u.'s, and similarly for the reliability analysis.

It should be noted again that it has been assumed that the set of

dispensable resources exclusively include all those capable of

moving around. The rest of the system resources will be assumed

static for the current restructuring consideration. This has the

advantage of flexibility, avoiding excessive overhead in deriving

an optimal configuration (because the candidate's solution space

.is restricted) and also in the switching and transformation of

&

V
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responsibility of the modules. In many situations, it is desirable

and advantageous to keep some resources fixed and immobile. We will

now study individual situations where the restructuring mechanism

is invoked.

(1) System Throughput Has Been Satisfactory

But Reliability or Availability is Not

After the set of dispensable resources is detected or declared,

they are represented by avector C= (C15...,C ) where C. =amount

of i type resources dispensable. If either reliability or availa

bility is the goal, then the generalized 0RI.F(1,C) or SORAP(C) may

be used respectively to obtain the optimal redundancy assignment

using this set of dispensable resources. As a simple illustration

0RLP(1,C) is operated on the redundancy table in Figure 5.2. In

the initial redundancy allocation using 0RLP(1,C), the optimal allo

cation for C = (7,4) is given by X - (2,1,3) because:

(7,4)

(7,2)
?JU-(6,1)

0.93
(0,1)

7,D^

fathomed

fathomed

0.8.,.(6)0) -0,93.. (0>1)

•fathomed

Maximal reliability = 0.86x0.8x0.93 = 0.6398



redun

dancy
module 1

(0,2,0.8)

0.1,0.8)

(3,0,0.8)

(0,3,0.86)

(1,3,0.85)

(4,0,0.87)

(0,4,0.9)

(2,6,0.87)

(6,0,0.93)

(resource 1, resource 2, reliability)

(0,6,0.95)

(2,7,0.95)

(8,0,0.97)

Figure 5,2

An example redundancy table involving 2 kinds of resources
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Now if module 3 is perturbed so that part of its resources

become dispensable, let the dispensable resources (some used for

normal operation for throughput purposes and some for the corres

ponding redundancy chosen) be given by (2,4). Observe that the

structure in module 3 is perturbed and its redundancy cost may be

changed to, perhaps, (4,0) instead of (6,0). But the exact chonge

in module 3 is irrelevant to the algorithm. All that is needed is

the set of dispensable resources. Then the modified version of

ORLP yields:

(2,4)

(2,4K~^-(1,2)

fathomed

0.86

(2,4)

(2,4) "-(2,3)

(2,1)

The label at each node above represents the* remaining cost

vector and the label on each arc gives the reliability of the new

redundancy candidate. For example, in stage 1 (node 1), (2,4)

changes to (2,3) with an arc of 0.9 because candidate 3 costs
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(0,1) more than the current candidate (candidate 2) for module 1

with a reliability factor of0.9. Also observe that the candidates

for consideration may be restricted to those feasible ones, for

instance, those which do not involve switching out of any existing

units of each module unless specified in the dispensable set of

resources. The new optimal redundancy assignment is given by

X. = (3,2,2) with a composite reliability of 0.9x0.85x0.87 = 0.6656

In an analogous way, SORAP(C) also provides the new near-optimal

redundancy assignment to maximize the graceful factor of the system

given the set of dispensable resources. Since the two algorithms

involve the same procedure, an example to illustra:.: S0RAP(£) has '

been omitted.

(2) System Throughput is Unsatisfactory

While Reliability is Satisfactory

In a similar flavor, the set of dispensable resources may be

devoted entirely to improving system throughput usi;v 0PT(C). In

this case, OPT is called to change the current resource allocation

by assigning additional resources from the set of dispensable

resources to each node.

Another alternative is to apply 0PT(iy from the very beginning

assuming all system resources are dispensable. This may be the case

when the usage frequencies u.'s have changed drastically. Then

any local perturbation to the present configuration may be insuffi

cient to guarantee a satisfactory throughput. Rather, the whole

configuration and resource assignment may have to be adapted to

the application changes.

«?
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In either case, OPT(C) will be capable of obtaining the desirable

configuration and its application should be apparent from the example

illustrated in Chapter 3 and the previous example on extending a

single cost to a vector cost.

(3) When Both Throughput and Reliability Are Unsatisfactory

It is often harr; to rationalize the tradeoff between throughput

and reliability. In some applications, reliability is much more

important than throughput. But in some others, the converse is

true. For example, in some critical systems such as defense and

nuclear reactor control, reliability is definitely crucial; whereas

in some batch mode processing, reliability is less crucial. A

rational viewpoint of the tradeoff involved often is to interprete

the importance of reliability improvement as a function of the

throughput rate. Explicitly this permits the former to increase

when the latter has reached some values. A possible functional

view of the importance of reliability with respect to throughput

is depicted in Figure 5.3. When throughput is very lo-/, the impor

tance of reliability improvement is low, but when throughput has

reached some upper bound value, it may drastically increase.

Even with a rational view, it is still hard to qualitatively

derive an optimal design with respect to both throughput and relia

bility because specific values in the tradeoff function do not

actually exist. Hence an alternate approach will be proposed here.

Given the set of dispensable resources, the restructure control

may devote part or all of it to improving the throughput of the

system and tiie rest to improving reliability. The ratio of splitting



Importance of
Reliability

Figure 5.3
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up the resources is dependent on a guessed or computed value

relating the importance of reliability improvement to throughput

improvement. Then the two sets of resources C, and iC are

assigned using 0PT(C,) and SORAP(Cp) respectively.

5•4 Implementation

A flexible architecture predictably pays a price for its

flexibility. A static architecture following the original proposed

Von Neumann design is no longer adequate for many optimized tech

niques adapting the system to applications. Many evolutionary

design approaches have been proposed [85-87]. In the Holland

Universal Machine, the computer is regarded as a 2-dimensional

rectangular grid of modules with some basic storage and processing

capabilities (Figure 5.4). To execute an instruction in a module,

a path is set up to fetch the operand from some other module (a

module can communicate with its four neighbors) before the module

enters an active state to execute the instruction. Concurrent

processing appears in simultaneous independent paths of the grid.

Eight basic orders are designed for each module to handle the pro

cessing and communication problems. Intuitively, such a system

will have complete decentralization and flexibility to adapt to

the application or user programs because no intrinsic static archi

tecture is imposed. However, overhead in control and actual useful

operations forms a severe obstacle to the success of this design.

Quite recently, towards a flexible design, Dennis and Misunas for

mulated an architecture based on data flow representation. In this

design, the memory and functional units are distributed (Figure 5.5)
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The processing system is decomposed into seven major sections:

(1) memory section containing n basic cells each including three

registers, (2) arbitration network which switches or sends "ready"

cells to be executed by a certain type of functional unit, (3) func

tional units which may have several types responsible for several

operations, (4) distribution network which distributes computed

results to the appropriate registers in the memory cells, (5) con

troller which controls the command, control and distribution

network, (6) command network which sends commands to set up the

memory cells, (7) control network which directly controls and

initiates the execution of instructions in the active cells. Intui

tively this design involves a lot of communication between sections

1 through 4 in a ring fashion and switching of connection between

a cell arid a functional unit is replaced by a dynamic information

packet dispatching scheme. This structured design particularly

suits the data flow representation languages [88] and permits con

current processing to a large extent as well. However, overheads

exist in the distribution network, command and control networks as

well as the necessity of a fast memory system.

While both the Holland machine and the data flow architecture

suit very well the philosophy of an unconstrained and flexible

design, it is quite difficult to efficiently utilize their intrinsic

flexibilities. The reason is because either the user or compiler

has to be highly intelligent to make use of the flexibility.

On the other hand, a completely restructurable architecture

discussed in this chapter requires numerous fast switches to dyna

mically establish the chosen links between modules. Hence a
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one-to-many switch is needed. An example of such a switch is shown

in Figure 5.6. It is often implemented using basic logic gates

arranged in two levels (like a decoder) and hence involves an

additional delay in the logic flow. To avoid the presence of exces

sive or complex switches, the system may be stripped of its full

restructurability. Instead, only certain kinds of links are esta-

blishable and the system can structure itself into one of many

possible configurations subject to the restructuring criteria pre

sented previously.

If the above still proves to be undesirable, an alternative

flexible and easily utilizable architecture seems to be an important

goal. Here such a design will be. proposed, It bears resemblance

to many techniques including the data flow architecture and micro

programming. For ease of understanding, a simplified diagram is

shown in Figure 5.7.

The processing system is divided into three main sections,

namely, functional modules, dispatching control and buffer, and

restructure control. There are k distinct types of functional

resources. For type i, there may exist n. number of such

resources. In the context of a processing system, a resource could

be a functional module performing any arithmetic operation, or

specific kinds of more complex operations such as merge, square

root, as well as modules which handle a particular phase of the

instruction processing (such as storage, address calculation, fetch).

Some versatile resource may be switched from one type to another.

For instance, when demand arises, a microprocessor performing some

simple arithmetic operation may be transformed into other
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responsibility and performing other distinct functions.

The dispatching control and buffer unit is the crucial unit

for allowing flexibility and restructurability in the system. It

also serves as buffers between the functional units. The elements

in this unit can be divided into two parts. First, there are n

path control words each specifying a desirable path. They are

updated if necessary by control signals from the restructure con

trol. As an illustration, if word i is 14323, it is meant that

path i goes through resources types 1, 4, 3, 2, 3 in sequence.
k

The second part is composed of Y x. buffers queues, x. queues

for each resource type i. (x. is chosen for specific designs,

e.g. x. = 1). A package in the buffers contains the needed data

and an updated version of the path to be traversed. A more detailed

diagram of the system is shown in Figure 5.8 and the mechanism of

path traversal and package routing is illustrated in Figure 5.9.

Figure 5.9 shows that each functional unit includes a shift register

(parallel-in) which accepts inputs from the updated path cell of

the information package it is to execute. During execution, the

content of the shift register is shifted right for a fixed number

of bits. This leftmost output will be used to route the resulting

package to the correct buffer queue where the next execution phase

is to be started.

As a further illustration, suppose some processing is to

traverse path i which reads 14323. A package is formed consist

ing of the initial data (if any) and the path control word and

entered into queue type 1. Type 1 functional module fetches and

executes this package according to its well-specified function.
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At the same time 14323 is left shifted (in the shift register) so

that the readout is 4. The resulting package is sent to queue

type 4. Processing is performed in an asynchronous mode so that

maximum overlap among resources is achievable when the shift

register read-out (for the left most bits) is null (or an end

marker), the processing of that particular package is completed

and hence can be eliminated. Observe the necessary storage of

generated data might have been accomplished before arriving at

this stage, perhaps by the last resource type it traversed. The

entire process is illustrated in Figure 5.10.

The path control words are dynamically alterable by the

restructure control (in addition to switching amor.g resource types).

This adds a high degree of flexibility while concurrent processing

is taking place asynchronously. Now the system can adopt different

hardware algorithms (for example, in floating point arithmetic)

for instruction processing. In a higher level of implementation,

the operating system or user may be allowed to configure the system

in the most effective way to do vector manipulations. As an

illustration, consider the processing of vector A(I) <- A(I)+ B(I) *r(j)

as shown in Figure.5.11. Assume four types of resources, namely,

Fetch, Store, Add, Multiply are available. Then a path control

word for this array operation may be 112134. After B(I) and C(I)

are fetched, they are multiplied. A(I) is fetched and their sum

added and stored at A(I). Observe no intrinsic sequencing to avoid

collision is necessary because of the inclusion of buffer queues.

The package in this case contains three data words and a control

word. The data words should be interpreted in some pro-assigned
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order when used in a high level implementation, here pseudo-

stack mechanism is used.

It can now be observed that this restructurable architecture

has many distinguishable advantages including:

(1) Maximum overlap with little control or sequencing problem.

Since both pipeline and parallel processing are intrinsically adopted

so that overlapped operations emerge in an asynchronous fashion,

near ideal utilization of the functional units may be achievable.

There is no danger of collision because the buffer queues can

accommodate them.

(2) The processing paths are dynamically adaptable to any

desirable change. The only requirement is some control signal be

sent from the restructure control to the path control words. Hence

it adds another dimension of flexibility.

(3) Intermediate results are readily available at the infor

mation packages. Hence fewer memory fetches may be needed.

(4) Whenaver desirable, a resource of type i may be switched

or changed into a type j (if it is versatile enough) to maintain av-

system balance (for instance, overflow in queue of type i).

The major price to be paid for the full reconfigurability and

maximum overlap is the comparatively larger buffer queues and the

restructure control. However, since buffering is needed in a pipe

line syslem any way, the cost of additional buffer size may be

marginal compared to the gain in flexibility and throughput. Also

performance monitoring and system reconfiguration are needed for a

successful system in any case so the restructure control does not

really raise some nonexistent cost. Consequently, this design
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approach' is clearly a feasible one.

Five control primitives are included for the reconfiguration

and setting up of paths.

(1) SET P. (Path Sequence) which sets the i path control

word to a certain traversal sequence.

(2) FETCH P. which fetches the i path control word from

the dispatching control to the restructure control.

(3) RELEASE i, k which releases k units of resource type i

to the restructure control.

(4) CREATE i, k which creates k units of resource type i

using those available to the restructure control.

(5) SWITCH i, j, k which transforms k units of resource

type i into type j directly (using facilities available to the

restructure control).

To perform a floating point add, a possible illustration is

to use the algorithm which

(1) fetches tvto operands,

(2) aligns them,

(3) adds them,

(4) normalizes,

(5) stores the result.

The path and resource set up becomes (assume the five phases

are executed by five types of resources)

Procedure SETPATH;

begin

FOR i :-l step 1 until 5 do

begin CREATE i, 1 end;

SET P] (112345);
end
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Then the floating point add corresponding to A <~ B+C can be

executed as illustrated in Figure 5.12.

This type of higher level dynamic architecture with sufficiently

intelligent facilities or modules may mark one way to cope with a

machine with its applications. The machine may be structured to

fit the processing requirements, schemes, data structures and so on

in order to produce a near-optimal computation procedure or execution

of the algorithm concerned. There is much work left to be done in

different respects discussed in this chapter including both hardware

and software considerations. Hardware-wise, special attention has

to be paid to the advancing technology that promises more flexible,

high level (extra-large scale integration) modules. Software-wise,

the design of efficient language constructs to utilize the power of

the system is needed. Of course, good management is always needed

to match the speeds of the various independent parts of the system.
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CHAPTER 6

Conclusion and Future Extension

This thesis attempts to tackle design and operational problems

related to parallel pipeline systems in a unified way, hoping to

represent some initial efforts towards the development of a st.ruc- v

tural theory to such a powerful and versatile processing scheme.

In the past, a lot of research efforts have been directed toward

studying parallel processing as outlined throughout this thesis,

either from a theoretical or practical implementation point of view.

The literature related to parallel or array processing blossomed

during the last decade wluri some super machines were studied,

deigned and developed. The interest of researchers was aroused

to such an extent that sophisticated theories or results were pro

posed in different aspects of parallel processing, for example,

in modeling, scheduling, parallelism detection [89-93]. Yet there

is a wide gap between these sophisticated results and practice

that reminds one to watch out for pitfalls in the course of research.

On the other hand, pipelining in computers is a less well developed

area. Judging from the literature, it definitely lacks the width

and depth of research efforts, especially from a theoretical and

development viewpoint, as compared to parallel processing, though

pipeline machines are more popular and versatile (in terms of

influence to computer systems in general). Some may think that

pipelining is a special case of parallel processing -- but not quite,

since the reverse is also correct. Pipelined computers have special

characteristics that a parallel machine does not possess. If one

r%
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looks at the gantt chart representation of the execution of both

types of systems, the difference will become apparent. Hence,

pipelined computers deserve more attention for future improvement

and development, partly because it has been over looked by the

majority of people and partly because it has shown significant

promise especially when discussed in the context of cost-effective

ness and speed of computation. With this orientation in mind, this

thesis sets out to investigate a mixed mode of processing: parallel

pipelined computers. Rather than just exploring the pipeline space,

a sufficiently large scope of problems is encompas/ed. Parallel

and pipeline processing are tied together, rather than considered

as separate entities. Useful results can also be linked together

to prevent any waste of efforts. However, being neither an optimist

nor a pessimist, this author also tried to combine both theoretical

and practical studies from the engineering viewpoint. The feeling

is that more fruitful results may be derived if both theoretical

and practical results of a problem solution are investigated simul

taneously — for this is the only way to reduce the chance of.being

trapped in some "pitfall".

The scope of study is divided into two parts: one part deals

with operational problems (Chapters 2 and 5) and the other part

deals with design problems (Chapters 3, 4, 5). The graph modelling

and the investigation apply conveniently to both hardware and soft

ware processes or systems, though the demonstrations have been con

fined to mostly hardware systems. The parallel pipeline modeling

is extendible to cover software processes that employ the same over

lapping mechanism (since pipelining can be generalized to the .
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subdivision of processes into subprocesses). The directed graph

model in Section 2.2 is chosen for the sake of considering through

put, reliability and restructurability later. It can be modified

with the addition of dynamic information if desired for simulation

purposes. However, such explicit modifications have been purposely

omitted.

Actually four kinds of reconfigurable shared resource pipelines

can be distinguished: static vs. dynamic and deterministic vs. '

nondeterministic. Static and dynamic RSRP classification refers

to whether the system allows one or more cpnfigurations to be active

simultaneously. The tradeoff involved is quite obvious: throughput

gain vs. additional control complexity. In a low level of implemen

tation, a static design may be justifiable, but in general, a dynamic

RSRP seems more appealing. The latter option permits more over

lapping in a synchronous or an asynchronous mode of processing at

a slight additional overhead of proper information packet routing.

It is attractive especially in a loosely coupled environment wl.err

distributed processing appears in many forms. The second classifi

cation, deterministic and nondeterministic, deals primarily with

the speeds of individual facilities or subprocesses. When the speeds

of facilities are fixed, the system is called deterministic, other

wise, the term nondeterministic is applied. The throughput analysis

in this thesis has been developed for deterministic RSRP systems,

though the sequencing problem for the nondeterministic case has also

been included. More future development and investigation of other

similar aspects, such as efficiency, of a nondeterministic RSRP

system is certainly a next step to be taken.. The results and
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experience obtained in examining deterministic RSRP systems then will

be valuable aids to perceive a clear and correct direction in which

to continue.

9 Among the many problems that affect the efficiency of RSRP

systems of any kind, sequencing stands out as a crucial area on which

to be focused. An overview of previous work in related areas, namely,

scheduling of parallel tasks in a strictly parallel processing

environment, and the scheduling of tasks in a strictly pipeline

environment indicates that optimal sequencing for RSRP systems may

also face difficulty (in complexity) as in those cases. So inves

tigation was directed to look for some explanation or characteriza

tion of this intrinsic difficulty of sequencing. With a little bit

of luck, success was reached in characterizing the "inherently diffi

cult" properties of the sequencing problem in general. In fact,

it was shown that sequencing in both deterministic or nondeterministic

and'static or dynamic RSRP systems exhibits this type of inherently

difficult property, In fact, it was derived that these sequencing

problems are equivalent to the classical traveling salesman problem

whose complexity is a well established fact. This finding allows

one to choose from one of two alternatives: either to use optimal

(but semi-exhaustive) algorithms developed for the traveling salesman

"^ problem or to use efficient, near optimal heuristics for sequencing.
The semi-exhaustive optimal alternative nay be chosen when sequencing

is done once and for all (static sequencing) and" in a higher level

RSRP system (so that the sequencing overhead is less conspicuous).

In a higher level of consideration, the sequencing overhead (runtime)

may be concealed from the normal processing since it is an activity
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that may be per.ormed in an overlapped fashion with respect to the

usual execution. However, if done in a lower level, then the compli

cated optimal sequencing procedure may constitute an undesirable

bottleneck of the system. To alleviate this unfortunate possible

outcome, a simple effective heuristic is needed. However, a ques

tion arises: How con one conclude the near-optimalily or quality

of a heuristic? Many people adopt a near-optimality notion as being

95% optimal or 5% deviation from optimal solutions for the majority

of cases. But such a notion is not rigorous enough. On the other

hand, if one evaluates a heuristic based on upper bound or worst

case performance, it is not conclusive or realistic enough. Thus •

the heuristics discussed in Chapter 2 were evaluate! and compered

on a relative basis. A relative efficiency index is defined which

would compare the steady state (or asymptotic) performance of the

heuristics under various operating conditions and RSRP system. The

simulation results do agree with the expectation of the usefulness

of some very simple sequencing rule in practical syrterns. Forese:-

ably, thereforej hardware sequencers for many parallel pipeline

systems will be a next step to be actually implemented to increase

the throughput or efficiency of the system. Such a system function

should be implemented with as much hardware as possible for two

reasons. First, sequencing is a dynamic activity whose speed must

match with those of the system resources and since it deals directly

with hardware resources in most cases, often a fast speed require

ment must be met. Secondly, with the climbing cost and unreliability

of software and the cheaper and more reliable hardware, it is only

reasonable to implement as many system functions as possible using
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the latter.

Other general design problems are also studied with the objec

tive of developing algorithmic design guidelines, rather than using

pure instinct, experience or ad hoc solutions. The system parti

tioning and resource decomposition problems are the subject of

Chapter 3. In a RSRP system that utilizes distributed processing

to a certain degree, system partitioning allows a partitioning for

the allocation of controllers as well as improvements of throughput

that follow due to the duplication of some resources and the more

efficient functioning of the local controllers inserted. By parti

tioning, local optimization strategies can be applied to a large

extent and eliminate the inconvenience, inefficiency, and compli

cated responsibility of a global (optimized) controller. The

algorithm developed happens to be applicable to many other problems,

including distribution of chips to PC boards, partitioning a system

for implementation on LSI chips and even to serve as a paging

algorithm in a paged memory system. The different facets of

partitioning thus make it worthwhile for further scrutiny. In the

same context, resource decomposition is a "dual" of the previous

problem. Here, an optimal design (considering throughput) is the

objective. The canonical representation and the semi-dynamic

programming strategy form an efficient algorithmic approach to obtain

analytically the most cost-effective RSRP design without exhaustive

enumeration. The recursiveness of these algorithms lend themselves

easily programmable in most languages.

Another important problem is graceful degradation, the subjec"

of Chapter 4. Towards the design of ultra-reliable or highly
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available computer systems, the graceful degradation ability is often

an important asset. Via graceful degradation, a system can recon

figure itself (sometimes accomplished easily) so that it can still

perform all specified functions and hence is still available. The

important design decision is: Given a functional decomposition view

of the entire RSRP system, how could one allocate redundancy or

fault-tolerant techniques to the functional modules so that the system

can be most "available" (in the context of graceful degradation).

The operating modes defined and the resulting semi-dynamic program

ming solution to the problem are c. clear, neat analytical solution.

The systematic procedure is ersily implemented. It should be men

tioned here that those analytical design algorithms are developed

not for the decision making, but as a tool'to test decisions, justify

predictions or experience in a structured manner. In all cases,

it is recommended that both analytical and simulation evaluations

be used (if at all possible) to really search for a good or optimal

design. This thesis has every intention to follow this principle,

though due to obvious restrictions, an actual system has not been

designed and evaluated.

Finally, the work included in Chapter 5 constitutes some-

interesting innovative ideas. Here the concept of dynamic reconfi

guration is reviewed. A dynamic restructuring control can dyna

mically reconfigure the system for obtaining better throughput and/

or reliability. The algorithms developed in Chapters 3 and 4 are

obvious candidates which, after some modifications, can be used by

the restructuring control as operating criteria of restructuring.

The mechanism of restructuring is also examined. In the course of

^
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comparing and evaluating its usefulness and drawbacks, a more

flexible design results and is proposed. It involves a complete

restructurable architecture with paths dynamically definable and

resources shared by all paths in an asynchronous fashion. This is

a very powerful form of distributed processing because all resources

are operating in an asynchronous but overlapped mode with the others,

whether it is a deterministic or nondeterministic system. The

sequencing problem is not a "must" to be resolved any more because

of the asynchronous nature and the buffering provided. Intuitively,

it is an architecture that, fits very well in some special environ

ments such as process control, testing systems or other real time

applications. The restructurable and dynamically reconfigurable

characteristics allow the system to optimize its throughput and

availability with respect to applications without a thorough re

design. These and other advantages are yet to be revealed in future

extensions. A set of special language primitives for restructuring

and specifying dynamic reconfigurations has also been proposed.

These language primitives are usable either between some privileged

programmer and the restructure control or between the operating

system and the restructure control. With this capability, the

system can adapt itself very conveniently to the special appli

cation environments with which it has to deal for a certain period

of time.

The wide scope of this thesis does not represent an overflow

of ambition. The areas studied are chosen to provide a more global

picture of parallel pipelined systems in computers which otherwise

may be mis-interpreted in many respects. Yet there are many future
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areas that lie wide open and demand much additional effort.

In the first place, it is felt that the sequencing or scheduling

models adoptedby researchers are often too narrow and local. In

other word:;, insufficient system parameters are consider,-J in

sequencing or scheduling. Thi's is permissible when negative results

are derived (such as inherent difficult characterization). But

when heuristics are considered, since they are not optimal anyway,

perhaps more important system parameters that reflect real life

should be included in the model of consideration. Then their perfor

mance can be compared using analytical or simulation methods. Speci

fically, for RSRP systems, future work to include the consideration

of operand routing and memory (or register buffer) conflicts is a

fruitful vrez to explore. In a low level of study, the effectiveness

of a RSRP system relie-.: heavily on the availability of operands to

keep the pipes "busy". If insufficient memory bandwidths exist

(perhaps due to interference), then the power of the system is not

fully exploited. In the light of trying to keep a fast supply of

operands, the scheme in Figure 6.1 is certainly an interesting one

to investigate. In this scheme, "a fast buffer is available for

the storing of intermediate operands (or information.packets) which

may be needed in the near-future by the stream of tasks or instruc

tions coining in. The advantage of such a buffer is to initiate

the next instruction or task at the earliest moment (rather than

having to fetch it from memory which usually requires n or more

minor cycles). Therefore it is especially useful to speed up a

sequential computation. The management of the buffer may be set up

easily, borrowing results from other memory management problems
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such as replacement algorithms. If an operand is in the buffer,

then the instruction or task can be initiated almost instantaneously.

As there as many levels of consideration possible, it is advisable

to adopt a simulation approach as an initial step to study this 0

problem.

Besides buffering, a clever operand routing scheme from the ^

exit to th;. entrance buffer may alleviate excessive waiting due to

precedence relationships. For example, the short-stopping scheme

in the STAR-100 system is a first step to solve this problem and

more generalization seems beneficial.

Although the ianguage characteristic of a pipeline machine has

been omitted for most discussions in this thesis, it is certainly a

very important area. Many people overlooked the parallelism demand

for pipeline machines, so parallel high level languages are studied

primarily for parallel or array processors. But pipelining is

actually a time-stretched version of parallel processing. The impact

of this observation means a pipeline machine also requires a similrr

parallel language to facilitate its processing power. This certainly

is true for the TIASC and STAR systems where special system charac

teristics also have to be observed. Without appropriate programming

techniques, a flexible, powerful RSRP system will look like a

crippled giant. But then, it is believed that such a problem should 4

be studied on a case by case basis, because generality implies

inapplicability when insufficient system information is considered

(this is the main reason for its omission in this thesis).

The completely restructurable architecture proposed in Chapter 5

also deserves more attention. First a simulation study should be
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conducted to demonstrate its superiority over a similar but conven

tional system. In addition, a complete set of language features

should be implemented for the experimental simulation. Since hard

ware costs are less important these days, the cost comparison should

be based primarily on control and runtime overhead. The possibility

of actual implementation using microprocessors as basic chips seems

also promising and is worth further exploration.

All in all, this remains a new and open area for researchers

to shed some light in the common direction of obtaining a most power

ful, reliable and flexible design. Its impact on the science of

computer systems is to be discovered. Hopefully, one day parallel

and pipeline processing become so common that a conventional system

is also equipped with them to a certain degree. This may not be

too far away since technology has improved so much over the last

decade and the cost of hardware has reduced so very drastically over

the last few years. What was true 10 years ago need not hold any

more now or in the near future!



238

REFERENCES

1. Pirtle, M., "Intercommunication of processors and memory,"
Proc. AFIPS, FJCC, 1969, pp. 621-633.

2. Evensen, A.J. and Troy, J.L., "Introduction to the architec
ture of a 288-element PF.PE," Proceedings of 1973 Sagamore
Conference on Parallel Processing, pp. 1*62-169.

3. Flynn, M., "Some computer organizations and their effectiveness,"
IEEE Trans, on Computers, Vol. 21, Sept. 1972, pp. 948-960.

4. Batcher, K.E., "STARAN/RADCAP hardware architecture," Proc.
1973_Sagamore Conference on Parallel Processing, pp. 147-152.

5. Rudolph, J.A., "A production implementation of an associative
array processor - STARAN," Proc. AFIPS, FJCC, 1972, pp. 229-241.

6. Thornton, J.E., "Parallel operation in the Control Data 6600,"
Proc. AFIPS, FJCC, 19(4, Pan II, Vol. 26, pp. 33-4U.

7. Chen, T.C., "Distributed intelligence for user-oriented
computing," Proc. AFIPS FJCC 1972, pp. 1049-1056.

8. Anderson, D.W., Sparacio, F.J. and Tomasulo, R.M., "IBM System/360
Model 91, machine philosophy and instruction handling,"
]BM_Journal of Research and Development, Vol. 11, No. 1, January
1967, pp"." "8-24.

9. Buchholz, W. (ed.), Planning a Computer System, McGraw Hill
Book Company, New York, 1962.

10. Tomasulo, R.M., "An efficient algorithm for exploiting multiple
arithmetic units," IBM Journal of Research and Development,
Vol. 11, No. 1, January 1967"; pp. '25-33.

11. Cotton, L.W., "Circuit implementation of high-speed pipr :r.e'''" i'
systems," Proc. AFIPS FJCC 19G5, Part 1, pp. 489-504.

12. Wilkes, M.V.,Tiine Sharing Systems, American Press, 197;;. '

13. Chen, T.C., "Parallelism, pipelining and computer efficiency,"
Computer Design, Jan. 1971, pp. 69-74.

14. Ramamoorthy, C.V. and Li, H.F., "Efficiency in generalized
pipeline networks," Proc. AFIPS NCC 1974, pp. 625-635.

15. Abel, N.E., Budnik, P.P., Kuck, D.J., Muraoka, Y., Northcote, R.S.,
and Wilhclmson, R.B., "TRANQUIL: a language for an array'pro-
cessing computer," Proc. SJCC 1969, pp. 57-68.



239

16. Millstein, R.E. and Muntz, C.A.,."The ILLIAC IV Fortran compiler,"
Proc. Conference on Prc«qramirmic^ Lajiguag_esLj^ndJ?pjiinjJers for
Paral'l eT'and Vextor" Mach'i ne's, SIGPLATf Notices", March 1975"","
PP" T'ST

17. Dingeldine, J.R., Martin, H.G. and Patterson, W.M., "Operating
* system and support softv/are for PEPE," Proc. 1973 Sagamore Conference

on Parallel Processing, pp. 170-178.

*> 18. Davis, Edward W., "STARAN/RADCAP system software," Proc. 1973
Sagamore Conference on Parallel Processing, pp. 153-f59."

19. Bernstein, A.J., "Analysis of programs for parallel processing,"
IEEE Trans, on Electronic Computers, Vol. EC-15, October 1966,
pp."757-763.

20. Ramamoorthy, C.V. and Gonzalez, M.J., "The FORTRAN parallel
task recognizer," Final NASA report, Grant NGR 44-012-144, Univ.
of Texas at Austin, May 1970.

21. Gonzalez, M.J. and Ramamoorthy, C.V., "Program suitability for
para11e1 processing," IEFE Trans. on Computers, Vol. C-20, No. 6,
June 1971, pp. 647-6547""

22. Knuth, D., "An empirical study of FORTRAN programs," Software -
Practice- and Experience, Vol. 1, 1971, pp. 105-133.

23. Burnett, G.J, and Coffman, E.G., "A study of interleaved memory
systems," Proc. SJCC 1970, pp. 467-474.

24. Watson, W.J., "The TIASC - a highly modular and flexible super
computer; architecture," Proc. AFIPS FJCC 1972.

25. Ramamoorthy, C.V. and Gonzalez, M.J., "Parallel task execution
in a decentralized system," IEEE Trans, on Computers, Dec. 1972.
pp. 1310-1321. " " . "

26. Chandy, K.M. and Dickson, J.R., "Scheduling unidentical processor?
in a stochastic environment," Proc. COMPCON 73, pp. 171-174.

27. Hu, T.C., "Parallel sequencing and assembly line problems,"
-S Operations" Research, Vol. 9, Nov. 1961, pp. 841-843.

28. Chandy, K.M., Sauer, C.H. and Browne, J.C., "An overview of
modeling techniques for parallel processing systems," Proc.

< COMPCON 75, pp. 212-218.

29. Ramamoorthy, C.V., Fox, T.F. and Li, H.F., "Scheduling paral"^
tasks in a uniprocessing system," submitted to IEEE Trans, o;;
Computers.



240

30. Muntz, R.R. and Coffman, E.G., "Optimal preemptive scheduling
on two processor systems," IEEE Trans, on Computers, Vol. C-18,
Nov. 1969, pp. 1014-1020.

31. Conway, li., Maxwell, W.L. and Miller, L.W., Theory of
Scheduling, Addison-Wesley, Reading, Mass., T967". ~>

32. Ramamoorthy, C.V., Chandy, K.M. and Gonzalez, M.J., "Optimal
scheduling strategies in a multiprocessor system," IEEE Trans.
M^lM^s* Vo1.. C-21, Feb. 1972, pp. 137-146. ~ Q

33. Bruno, J., Coffman. E.G. and Sethi, R., "Algorithms for
minimizing mean flow time," IFIPS Congress 74, Stockholm.

34. Clark, D., "Scheduling independent tasks on non-identical
parallel machines to minimize mean flow time," Computer Science
Department, Carnegie-Mellon University, June 1974.

35. Chandy, K.M., "The analysis and solutions for general queuing
networks," Proc. Sixth.^nnjjaj^Princeton Conforen...::jm
Inforrnatirvi Science:*a^djfysterns, pHpc'eton "'Uii'-.versiTy. N.J.,
pp. 2?6~y?M\ A

36. Coffman, E.G. and Kleinrock, L., "Computer scheduling methods
and their countermeasures," Proc. AFIPS SJCC 19C8, pp. 11-21.

37. Brown, J.C.,. Chandy, K.M., Hogarth, J. and Lee. Chester C,
"The effect on throughput of multiprocessing in a multipro
gramming environment," IEEE Trans, on Computers, Vol. C-22,
Aug. 1973, pp. 728-735.

38. Yazdotii, R., "Optimal Multiprocessor Scheduling." Ph.D.
dissertation, Dept. of EECS, UC Berkeley, June 1974.

39. Johnson, S.M., "Optimal two- and three-stage production sche
dules with sot up time included," Naval Resear-:hJ.ogjjs tics
Quarterly, Vol. 1, 1954.

40. Reddi, S.S. and Ramamoorthy, C.V., "Sequencing strategies in
pipeline computer systems," TR-134, Information Science
Research Laboratory, University of Texas at Asutin, Aug. 1972.

41. Gilmore, P.C. and Gomory, R.E., "Sequencing a one state-
variable machine, a solvable case of the traveling salesman
problem," Operations Research, Vol. 12, No. 5, Sept. 1965.

42. Gupta, J.N.D., "A functional heuristic algorithm for the flow-
shop sequencing problem," OpcratjouaJ ^ose-arch Quarterly, Vol. 22,
No. 1, Karen 1971. """ ~~

43. Graham, R.L., "Bounds on multiprocessing and timing anomaly,"
SI AM Journa1_of Ajip1ied _M.- thomatics, Vol. 17, Ma reh 1969,
pp." 416-429'; ""* ' " "

-¥



44. Fernandez, E.G. and Bussell, B., "Bounds on the number of
processors and time for multiprocessor optimal schedules,"
Jl^LI^^^nX0^^."^.?.' Vo1- c"2?» August 1973, pp. 745-751.

45. Pa til, S.S., "Coordination of asynchronous events," Ph.D.
dissertation, M.I.T., Cambridge, Mass., 1970.

46. Petri, C.A., "Kommunication mit automate!!," translated in
Project MAC M-212 Report, 1962.

47. Holt, A. and Commer, P., "Events and conditions -a. an approach
to the description and analysis of dynamic systems, b. marked
graph mathematics,"

48. Agerwala, T. and Flynn, M., "Comments on capabilities, limita
tions and correctness of Petri-nets," Proc. Sym£osium_or.
Cojjjputer Architecture, Dec. 1973, pp. "Sl-'lS'ST*"

49. Hintz, R.G. and Tate, D.P., "Control Data STAR-100 processor
design," C0MPC0N '/?.

50. Texas Instruments Incorporated, "The ASC system - Central
Processor," Austin, Texas, Dec. 1971.

51. Control Data Corporation, "Control Data. S7AR-100 computer
hardware reference manual," 1974.

52. Texas Instruments Incorporated, "A description of the Advanced
Scientific Computer system," April 1973.

53. Davidson, E., "The design and control of pipeline function
generator," Stanford report.

54. Hopcroft, J.E. and UHman, J.D., Formal Languages and Their
B^A^ipnJt"J\yJlP^A» Addison WcsleyT Reading3lass .7T<A>97

55. Cook, S.s "The complexity of theorem proving procedures,"
C°Mir.e.ncr Record of Third ACM Symposium on Theory of Ccmpt'fir-,
1970, pp. T'5T-TbS. ~ ~

56. Karp, R.M., "Reductibility among combinatorial problems,"
TR-3, Department of Computer Science, UC Berkeley, April 1972.

57. Meyer, A.R. and Stockmcyer, L.J., "The equivlence problem
for regular expressions with squaring requires exponential
space," Proc. _13t_h_Annua1 IEEE Symposium on Switching and
Automata Theory, 1972". , ~ ~"~

58. Rogers, II., Theory ofRecursive Functions and Effective
££!L?.l!?Ab.LLiti., i-icGraw ffiTl Book Company," New" York", i%7.

59. Wagner, H.M., Principles of Operations Research, Prentice Hall.
New Jersey, 1969. " '

241



242

60. Ullman, J.D., "Polynomial complete scheduling problems," TR-9,
Department of Computer Science, UC Berkeley, March 1973.

61. Lawler, E.L. and Wood, D.E., "Branch-and-bound methods: a survey,"
Operation- Research, Vol. 14, 1966, pp. 699-719.

62. Crane, B.A., Gilmartin, M.J. et. al., "PEPE computer architecture,
COMPCOi? 72 Proc, Sept. 1972, pp. 57-60.

63. Marvel, O.E., "IIAPPE - Honeywell Associative Parallel Process-
ing Ensemble," Proc. Symposium on Computer Architecture,
Dec. 1973, pp. 261-263.

64. Mclntyre, D.E., "An introduction to the ILLIAC IV computer,"
Datamation, April 1970, pp. 60-67.

65. Lawler, E.L., "The quadratic assignment problem," Management
Science, Vol. 9, 1963, pp. 586-599.

66. Kernighan, B.W. and Liu, S., "An efficient heuristic procedure
for partitioning graphs," The Bell System Technical Journal>
Feb. 1970, pp. 291-307.

67. Liu, S. , "Computer solutions of the traveling salesman problem,"
The Pcli System Tcchnv..al Journal, Vol. 44, No. tC, Dec. 1965,
pp .~~2245-22i5v).~

68. Hu, T.C., Jnteger Programming and Network Flows, Addison-
Wesley, Reacfi ng," Mass., 1969.

69. Ford, D.R. and Fulkerscn, J.R., Network Flow, Princeton
University Press, Princeton, N.J"., 1968.

70. Shar, Leonard E. and Davidson, E.S., "A virtual multiminiprecesscr
system imp!emented through pi peli ning," IEEE Trans, on Computers,

71. Davidson, E.S. and Larson, A., "Pipelining and parallelism
in cost-effective processor design."

72. Bellman, R.E. and Dreyfus, S., Applied Dynamic Programming,
Princeton University Press, Princeton, N.J., 1962.

73. Garfinkel, R.S. and Nemhauser, G.L., integer P^gramming,
John Wiley & Sons, New York, 1972.

74. Tryon, J.G., "Quadded Logic," in Redi.mc^
Computing Systems, Spartan Books, Washington, D.C., 1962.

75. Von Neumann, J., "Probabilistic logics and the synthesis of
reliable organisms from unreliable components," in Aujtomata
Studjios, Princeton University Press., Princeton, N.J., 1956.



76. Mathur, F.P. and Avizienis, A., "Reliability analysis and
architecture of a hybrid redundant digital system," Proc. AFIPS
SJCC 1970, pp. 375-383.

77. Ramamoorthy, C.V. and Cheung, R., "Redundancy techniques in
ultra-reliable computer design," Course Notes for National
Electronic Conference, Oct. 1972.

78. Baskin, H., Borgerson, B. and Roberts, R., "PRIME - a modular
architecture for terminal-oriented systems," Proc. AFIPS SJCC
1972, pp. 431-437.

79. Feller, W., An Introduction to Probability Theory and Its
Applications, John WilejT&'Sons, New York, 1968."

80. Kettelle, J.D., "Least-cost allocation of reliability invest
ment," Operations Research, Vol. 10, pp. 249-265.

2l:

81. Abram, M.D. and Stein, P.G., Computer Hardware a Software,
An_Jntor-discipiinary Introduc'tTon,""Addison Wesl... :'.eading,""
Mass.", 19737"

82. Foster, C.C., "Computer architecture," IEEE Trans, on Computers,
March 1972, p. 19. :

83. Amdahl, G.M., Glaauw, G.A. and Brooks, F.P., "Architecture of
the IBM System/360," IBM Journal of Research and Development,
April 1964, pp. 87-101.

84. Lucas, H.C., "Performance evaluation and monitoring," Cjojjipjrv'nc
Survey^, No. 3, Sept. 1971, pp. 79-91.

85. Reddi, S.S. and Feustel, E.A., "Resource structuring and
management in computer systems," March 1974.

86. Holland, J.H., "A universal computer capable of executing an
arbitrary number of subprograms simultaneously," Proc. 1959
Ecistern_J_qjnt Computer Conference, Sparlan Books, New York,
pp". '108-1137 "

87. Dennis, J.B. and Misunas, D.P., "The design of a highly parallel
computer for signal processing applications," Project MAC,
Computation Group Memo 101, August 1974.

88. Misunas, D.P., "Petri nets and speed independent designs,"
Communications of the ACM, August 1973, pp." 474-481.

89. Karp, R.M. and Miller, R.E., "Properties of a model for parallr'
computation: determinacy, termination, queueing," SIAM Journal
2fJ^JPA!c±J^ v°l- 14, Nov. 1966, pp*. 1390-T4T1.



90. Ramamoorthy, C.V., Park, J.H. and Li, H.F., "Compilation
techniques for recognition of parallel processable tasks in
arithmetic expressions," IEEE Trans, on Computers, Vol. C-22,
Nov. 1973, pp. 986-998. ~

91. Ramamoorthy, C,V. and Li, H.F., "Optimal•algorithms in evaluat
ing arithmetic or logical expressions," Hawaij International
Con Terence on Systems Sciences, 1974. "" "" "' "'""'

92. Ramamoorthy, C.V. and Gonzalez, M.J., "A survey of techniques
for recognizing parallel processable streams in computer
programs," Proc. AFIPS FJCC 1969. pp. 1-15.

93. Kraska, P.W., "Parallelism exploitation and scheduling,"
Department of Computer Science, University of Illinois,
Report UIUCDCS-R-62-51B, June 1972.

244


	Copyright notice 1975
	ERL-530
	ERL-530 (1 of 3)
	ERL-530 (2 of 3)
	ERL-530 (3 of 3)


