

Copyright © 1975, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

DECOMPOSITION-A STRATEGY FOR QUERY PROCESSING

by

Eugene Wong and Karel Youssefi

Memorandum No. ERL-M574

15 January 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Decomposition-A Strategy for Query Processing

Eugene Wong and Karel Youssefi

Dept. of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory,
University of California, Berkeley

Abstract

This paper deals with the strategy for processing
raultivariable queries in the data base management system
INGRES. The general procedure is to decompose the query
into a sequence of one-variable queries by alternating
between (a) reduction: breaking off components of the
query which are joined to it by a single variable, and
(b) tuple-substitution: substituting for one of the vari
ables a tuple at a time. Algorithms for reduction and
for cnoosing the variable to be substituted are given.
In most cases the latter decision depends on estimation
of costs and heuristic procedures for making such esti
mates are outlined.

Research sponsored by the U.S. Army Research Office—Durham Grant
DAHC04-74-G0087 and the Joint Services Electronics Program Contract

F44620-71-C-0087.

1. Introduction

The structural simplicity of a relational data
model encourages the use of a non-procedural data sub
language which specifies what is to be found rather than
how it is to be found. Thus, it is not surprising that
nearly every one of the relational languages which have
been proposed is non-procedural. As is generally true
with high level languages, a price which may have to be
paid is a loss of efficiency. For a relational data base
of any size and for queries spanning several relations,
the price can be fearsome. Results of various degrees of
generality on improving search strategies for a relation
al data base system have been reported by Palermo
[PALE72], Astrahan and Chamberlin [ASTR75], Rothnie
[ROTH74,ROTH75], Pecherer [PECH75], Smith and Chang
[SMIT75], and Todd [TODD75]. Nonetheless, the lack of a
general approach to optimizing query processing remains a
major impediment to achieving a satisfactory degree of
efficiency for non-procedural relational languages.

The purpose of this paper is to describe in some
detail the query processing algorithm developed for QUEL
[HELD75], which is the data language for the INGRES sys
tem. Insofar as the problems encountered in QUEL are
common to all non-procedural relational languages, their
solution should find general application.

In section 2 a brief description of QUEL, the
query language to be processed, is presented. In section
3 we sketch a skeletal outline of the decomposition algo
rithm emphasizing the functions of the component algo
rithms and the flow of information and control among
them. The details of the component algorithms are
presented in subsequent sections.

2. QUEL

A complete definition of QUEL is given in
[HELD75]. Here, we shall confine ourselves to a brief
description sufficient to make the processing strategy
comprehensible. There are four commands: RETRIEVE,
REPLACE, DELETE. APPEND. An update command is turned
into a RETRIEVE command which is then followed by a low
level tuple-by-tuple operation. We shall restrict our
attention to RETRIEVE. A statement to retrieve in QUEL

has the following form.

RANGE OF (Variable [,Variable]) IS
(Relation Name {,Relation Name])

RETRIEVE [INTO result name] (Target List)

WHERE Qualification

Example 2. T:

Consider a data base with relations

Supplier (S#, Sname, City)
Parts (P#, Pnarae, Size)
Supply (S#, P#, Quantity)

and a query to find the names of all parts supplied by
suppliers in New York. This can be stated in QUEL as
follows:

RANGE OF (S, P, Y,) IS (Supplier, Parts, Supply)

RETRIEVE INTO NYparts (P.Pname) WHERE (P.P#r Y.P#)
AND (Y.S#=S.S#)
AND (S.City=%New York')

From the point of view of query processing there
are two principal sources of complexity. First, QUEL
permits aggregation operators such as MAX and AVG, and
nesting of such operators. Secondly, queries involving
several variables require deft handling in order to avoid
the obvious possibility of combinatorial growth. For ex
ample, if the query in Example 2.1 is processed by first
forming a cartesian product, then the number of tuples to
be scanned is equal to the product of the cardinalities
of the three relations. In our system all aggregations
are performed on single relations. If an aggregation is
to be done on a subset of the product of several rela
tions, the subset must first be assembled by processing a
multivariabe query. Aggregations once evaluated are kept
for possible reuse until updates render them obsolete.
In the remainder of the paper we shall deal only with
aggregation-free queries, and the thrust of the query-
processing strategy is to cope effectively with

aggregation-free but multivariable queries.

Let X s (X., Xp,...,X) denote the variables declared in
the range statement, and let Rjr R2,...,R be their
respective ranges. Then the qualification can be con
sidered to be a Boolean function B(X) on the cartesian
product R = R,x RpX...xR . The target list can be con
sidered to Be a set of functions (T1(X),
T2(X),...,T (X))=T(X) on the product space, and the
result relation of the query is constructed by evaluating
T(X) on the subset of R defined by B(X) = 1, and elim
inating duplicate tuples. We note that for a query free
of aggregation operators each tuple X in the product
space R contains enough information to completely deter
mine the values of B(X) and T(X).

The interpretation of QUEL statements suggests
the following procedure for their processing:

(a) Product: A cartesian product of the range
relation is formed.

(b) Restriction: Tuples X in the product which
satisfy B(X)=1 are determined.

(c) Computation and Projection: T(X) is comput
ed on the subset determined in (b) and dupli
cate tuples are eliminated.

Unfortunately, this procedure is as inefficient as
it is obvious. The cardinality of the product R
(i.e., the number of tuples in R) is equal to the
product of the cardinalities of R., i=1,2,...,n. It
does not take very large relations or very many of
them to make this number enormous. Aside from the
difficulty of having to form and store a very large
relation, to determine the subset which satisfies
B(X)=1 requires examining a number of tuples equal
to the cardinality of R.

3. Decomposition

The query processing strategy that we have
adopted nas two overall objectives:

(a) No cartesian product - The result re
lation is to be constructed by assembling
comparatively small pieces, rather than by
paring down the cartesian product.

(b) No geometric growth - The number of
tuples to be scanned is to be kept as
small as possible, and for most queries
this number is much less than the cardi
nality of R.

Our general procedure is to reduce an arbitrary mul-
tivariable query to a sequence of single-variable
ones. We call this process decomposition. Observe
that the first objective is automatically achieved
by such an approach. To attain the second requires
a detailed examination of the tactical moves which

are available.

The decision to reduce multivariable queries
to one-variable ones separates the overall optimiza
tion into two levels. It has obvious advantages in
structuring the optimization procedure which other
wise may well become unbearably complex. The only
situation in which our approach may be undesirable
is when inter-relational information such as "links"

[TSIC75] is available, in which case the desirable
atomic units may be two-variable queries.

It is useful to distinguish two types of
operations which are repeatedly invoked in decompo
sition.

(I) Tuple substitution: An n-variable
query Q is replaced by a family of
(n-D-variable queries resulting from sub
stituting for one of its variables tuple
by tuple, i.e.,

Q(X1,X2,...,Xn) —«* {Q'u (X2,X3,...,Xn),^R1}

(II) Detachment of a subquery with a sin
gle overlapping variable : A query Q is
replaced by Q' followed by Q" such that Q'
and Q" have only a single variable in
common.

Operations of these two types suffice to
decompose any query completely. Indeed, a series of

successive tuple substitutions is sufficient, albeit
tantamount to forming the cartesian product. Tuple
substitution for a single variable means that the
cost of processing the remaining portion of the
query is multiplied by a factor which in most cases
is equal to the cardinality of the range of the sub
stituted variable. It is important, therefore, that
the ranges of the variables be reduced as much as
possible before substitution takes place. The most
straightforward way of doing this is through res
triction and projection, which are special cases of
(II). Something equivalent to such a step has been
proposed in every paper on optimizing query process
ing.

Example 3.1

Consider a data base with three relations

Supplier (S#, Sname, City)
Parts (P#, Pname, Size)
Supply (S#, P#, Quantity)

and a query Q:

RANGE OF (3,P,Y) IS (Supplier, Parts, Supply)
RETRIEVE (S.Sname) WHERE (S.City r *New York')

AND (P.Pname = "Bolt')
AMD (P.Size = 20)
AND (Y.S# = S.S#)
AND (Y.P# = P.P#)
AND (Y.Quantity > 200)

If we represent a detachment of Q' from Q leaving Q"
by the binary tree

Q" / \Q'

then the successive detachment of subqueries can be

represented by

(P.P#) WHERE (P.Size=20) AND (P.Pname=%Bolt')

(Y.P#, Y.S#) WHERE (Y.Ouantity > 200)

(S.S#t S.Sname) WHERE (S.City = %New York')

(Y.S#) WHERE (Y.P# = P.P#)

(S.SMame) WHERE (Y.S# = S.S#)

In this example operations of type II have reduced 0
to three one-variable queries Q1, 02, Q3 which can
be processed in parallel or in arbitrary order, fol
lowed by a 2-variable query Qi|, and then another
2-variable query Q5. Q1* and Q5 cannot be further
reduced by operations of type II, and tuple-
substitution must be used to complete the decomposi
tion. We note, however, the ranges of the variables
in Q4 and 05 are likely to be very much smaller than
the original relations, and tuple substitution at
these stages is relatively harmless. As an example
of tuple substitution, consider

Q5 : RETRIEVE (S.Sname) WHERE (Y.S#=S.S#)

Suppose that at this point the range of Y is the re
lation

Then, successive substitution for Y yields

05(101)

05(107)

05(203)

RETRIEVE (S.Sname) WHERE (S.3#=101)

RETRIEVE (S.Sname) WHERE (S.S#=107)

RETRIEVE (S.Sname) WHERE (S.S#=203)

We note that unlike SEQUEL [ASTR75], QUEL has no
block structure and there is no a priori preferen
tial order of variables in substitution.

The general situation covered by (II) is the
following: Consider a query of the form

8

RANGE OF (XrX2,....,XR) IS (Rj,R2t •••• fRR)

Q RETRIEVE T(X<fX0,...,X)
id ID

WHERE Bn(Xt,X0,...,Xj
Id IB

AND B'(X.X t,...fXn)
m m+t n

It is natural to break off B' to form

RANGE OF (X.X .,...,XJ IS (Rfn,Rfn^1, •.. ,Rn)
m' ra+i' n m' ra+i' n

Q' RETRIEVE INTO R ' (T'(X))
m m

WHERE B'(Xm)Xm t,...,X)
m' m+V ' n

where T'(X) contains the information on X needed
by the remainder of the query which can now be ex
pressed as

RANGE OF (X1,X2,...,Xm) IS (Rj,R2»•••»*n'>

Q" RETRIEVE T(X-,X0,...,Xm)
\ d m

WHERE B"(Xi,X0,...,Xm)
id ro

Observations: (1) Q" is necessarily
simpler than the original query Q since m <. n and
R' is smaller than R . Even for the worst possible
caSe where R' = R and m=n, QM is no worse than Q.
(2) The detacfiment of Q' does not lead to an in
crease in the maximum number of variables for which
substitution has to be made. To see this, note that
the maximum number of variables to be substituted
for in an n-variable query is n->. Hence, this
number is (n-m+1)-1 for Q' and m-t for Q" so that
the total is again n-1. (3) Q' and QM are strictly
ordered. Q' needs no information from Q" so that it
can be processed completely before processing on Q"
begins. At any given time we only need to deal with
a total of n or less variables.

Two special cases of one overlapping-
variable subqueries are worthy of special note.
First, it may happen that the detached subquery Q'
has no variable in common with the remainder Qw.
That is, B' is a function of only (X *,...,X) and
not of X . In such a case we snail say ft' is a
disjoint sBbquery. The interpretation of this si
tuation is that if B' is satisfied by a nonempty set
then Q is equivalent to Q", otherwise Q is itself
void, i.e., its result is empty. The second special
case arises when m=n and B' is a one-variable query.

This is a frequent and important occurence, as the
previous example illustrates. We say a query is
connected if it has no disjoint subquery, one-free
if it has no one-variable subquery, and irreducible
if it has no one-overlapping-variable subquery. An
irreducible query is obviously both connected and
one-free.

Broadly speaking, we will always break up a
query into irreducible components before tuple-
substitution. In effect, we will always prefer not
to tuple-substitute if it can be avoided or post
poned. Although examples can be constructed to show
that such a choice is not always optimal, in general
this is not a bad heuristic. Detaching subqueries
involves an additive growth in complexity, while
tuple-substitution incurs a multiplicative growth.
Our decomposition algorithm is recursively applied
to all the subqueries which are generated.

The Decomposition Algorithm consists of four
sub-algorithms: Reduction, Subquery Sequencing,
Tuple Substitution and Variable Selection and makes
use of the One-Variable Processor of the system.
Tne interaction among these component processes is
indicated in Figure 3.1 below

Subquery
Sequence

Tuple
Substitution

Variable

Selection

One-

Variable

Processor

10

call

_ return

Figure 3.1 Flow of Control in Decomposition

The fact that the decomposition algorithm is recur
sive is made clear by the existence of a sequence of
calling-paths (Reduction-Subquery Sequencing-Tuple
Substitution-Reduction) which form a cycle. The
basic functions of the sub-algorithms are as fol
lows:

(a) Reduction breaks up the query into irreducible
components and puts them in a certain sequential
order.

(b) Subquery Sequencing uses the result of Reduction
and generates in succession subqueries each of which
contains a single irreducible component together
with one-variable clauses. As each subquery is gen
erated it is passed to Tuple-Substitution, and the
generation of the next subquery awaits return of the

result.

(c) Tuple Substitution manages the process of sub
stituting tuple values. It calls Variable-Selection
to select a single variable for substitution. After
substituting each tuple for that variable, it passes
the resulting reduced query to Reduction and awaits
the return before substituting the next value.

(d) Variable Selection is where most of the optimi
zation takes place. It estimates the relative cost
of substituting for each variable and chooses the
variable with the minimum estimated cost. In so do

ing, it may have to preprocess some one-variable
subqueries.

The details of the sub-algorithms will be described
in the next few sections.

11

4. Reduction Algorithm

The input consists of a raultivariable query
Q, and the output consists of the irreducible com
ponents of Q arranged in an appropriate sequential
order. This sequence is passed to Subquery
Sequencing, and the result relation for Q is re
turned. The basic steps of the algorithm are illus
trated below.

Separate Ino^/^v^
to disjointf-<pnnecte$>into

components

yes

separate into
irreducible

components

no

Output
Sequence

Figure 4.1 Reduction Algorithm

Let X = (X., X5,...,X) denote the variables
of Q and let T(X) afid B(X)ndenote its target list
and qualification respectively. We assume that B(X)
is expressed in conjunctive normal form

B(X) = A M*)
i x

where each clause C.(X) contains only disjunctions.
Now consider a binary (0 or 1) matrix with p+1 rows
corresponding to T(X) and the p clauses, and with n
columns corresponding to the variables X*,...,X .
An entry of 1 will denote the presence of a variable
in a clause (or target list), and 0 will denote its
absence. We shall call this the incidence matrix.
For example 3.1 this matrix is given by

12

to Subquery.
Sequencing

13

S p Y

T: S.Sname 1 0 0

C1: S.City='New York' 1 0 0

C2: P.Pname=*Bolt' 0 1 0

C3: P.Size=20 0 1 0

C4: Y.S#=S.S# 1 0 1

C5: Y.P#=P.P# 0 1 1

C6: Y.Quantity> 200 0 0 1

We note that in Figure 4.1 there are two
steps for which detailed algorithms remain to be
provided. First, we need a test for connectedness,
and to separate Q into disjoint components if it is'
not connected. Second, we need an algorithm to
separate a connected query into irreducible com
ponents and to put them in a suitable sequential
order.

(a) Connectivity Algorithm

yes

->—

yes

14

connected

yes

>f no

not connected

no

i = i+1

form the logical or
of all rows with 1

in column i

of the rows with 1 in

column i, replace the first
by the logical or and delete

the rest

Figure 4.2 Connectivity

If the connectivity algorithm results^ in a
matrix with a single row which is not all 1's then
the variables corresponding to the zero-entries are
superfluous and can be eliminated. If the final ma
trix has more than one row, then the sets of vari
ables corresponding to different rows must be dis
joint. If we keep track of the original rows which
are combined to make up each of the rows of the fi-

nal matrix, then the connected components of the
query can be separated.

Consider example 3»1> modified by the dele
tion of C4. The incidence matrix now has the form

S P Y

T 1 0 0

C1 1 0 0

C2 0 1 0

C3 0 1 0

C5 0 1 1

C6 0 0 1

Applying the connectivity algorithm, we get
successively

S P Y

T,C1 1 0 0

C2 0 1 0

C3 0 1 0

C5 0 1 1

C6 0 0 1

S P Y

T,C1 1 0 0

C2,C3,C5 0 1 1

C6 0 0 1

15

S P Y

T,C1 1 0 0

C2,C3,C5,C6 0 1 1

Hence, the query is not connected and the connected
components are (T,C1) and (C2,C3,C5,C6).

(b) Reduction into Irreducible Components

Let Q be a connected multivariable query.
We observe that it is reducible if the elimination
of any one variable results in Q being disconnected.
Let a variable with this property be called a
.joining-variable. Thus, Q is irreducible if and
only if none of its variables is a joining-variable.
Joining-variables have some important properties
which greatly facilitate the reduction algorithm,
and these are summarized as follows:

joining-
onnects Q

joining-
joining-

f Q is a
Further,

ables in

same dis

Proposition 4.1 Suppose that X is a
variable of Q such that its removal disc
into k connected components. Then any
variable of one of the components is a
variable of Q, and every joining-variable o
joining-variable of one of the components,
successive elimination of two joining vari
either order results in reducing Q to the
joint components.

proof: Each joining-variable joins a number of
components which can overlap only on the joining-
variable. Let X be a joining-variable of Q which
joins components Q., Q2,...,Q... Let Y be a joining
variable of one of these components, say Q-. Then,
Y joins components Ql1f Q1P»---iQn of Qi> onlv one
of which can contairl X, say Qi,. 'Therefore,
(
anu _„ „ ..._...

be a joining-variable of Q, and join components Q1 t
Q ' ...,Q.'. Only one of the set {Q-', Q2',#"#,QA *
can contain X, say Q ', and only one of the set {0.,
Q0,...,Q,,} can contain Y, say Q^ Then

"be disjoint since
each y. , i"2l *> can overlap its remainder in Q only
on X xand none of {Q ',...,Q,'} contains X. Hence,
Q0',...,Q.' are subsets of Q„Jjoined to it only by

components, say Q-

«iii Q12»•••»Qii of Q1>
>r which can contain X, say Qii* Thbi-ciwib,
'Q19,... iQ«i •) overlaps the remainder of Q only on Y
ind Y is a'rjoiriing-variable of Q. Conversely, let Y

Q ,...,Q.J can contain Y,
{6 ',...,Q.'} and {Q ,...,Qk) must
each Q., iJ>. 2, can overlap its rei
on X "'"and none of {Qp',... ,Qi'} c<
Q ',...,Q.' are subsets of Q..Jjoined to it ^-.j »j
Y? so tnat Y is a joining-variable of Q-. It is
clear that Q has components {Qp, Q^,...,(Jk} each
joined by only X, {Q2', Q3',...fQj'}Jeach jBined by

16

cr.ly Y, and a cc-ipcnent 0 joined by- both X and Y.
L'linination of X and_Y'"in either_crder results in
disjoint components {(%» C,,...,0 , roJ,...,0 ',
0,. } where 0. denotes Ot with X removed ,':0/ denotes
Cx'y i;ith Y rencved and 01 denotes 0 with1 both X
l . v . „ , xy xy

and Y removed.

The substance cf Proposition 4.1 is illus
trated by Firrure 4.3.

C
...xy.

Figure 4.3 Join inn;-Variables

The results of Preposition 4.1 mean that we
can find the irreducible components of 0 by succes
sively checking each variable for the possibility of
being a joining variable. Each variable only needs
to be examined once, and the order they are tested
is immaterial. Further, since a variable is joining
if and only if its elimination disconnects Q, we can
use the connectivity algorithm for the test.

0 and eliminate

"1". Beginning
in turn and

t when column n

connected com-

s respectively,
cf 0 with n +1,
y, any pair of
ow proceed to
hat each of the

ne of the com-

lumn (i.e., the
performed on

Take the incidence matrix of
from it all rows with only a single
with the first, eliminate each column
test for connectedness. Suppose tha
is eliminated Q breaks up into k
ponents with n., n2,...,nk variable
Then, these correspond to components
r^+1, •. •,n.+1 variables respectivel
which overlap only on X . We can n
test columns m+1,...,R. We note t
variables Xn+1>«-->X occur in only o
ponents so that arter the nth co
first joining-variable) the tests are
matrices of reduced size.

Each irreducible component of Q corresponds
to one or more row of the incidence matrix, and can
be represented by the "logical or" of the
corresponding rows. Hence, 0 can be represented in
terms of its irreducible components by a matrix with
variables as columns and components as rows. We
shall call this the reduced-incidence-matrix. It is
convenient to arrange the rows as follows:

17

(1) One-variable rows except the target list.
(2) Components which are one-overlapping after
deletion of one-variable clauses and which do
not contain the target list. These should be
grouped according to the joining variable.
(3) Other components which do not contain the
target list.
(4) The component which contains the target
list.

For example 3.1 the resulting reduced incidence ma
trix is given by:

S P Y

C1 1 0 0

C2 0 1 0

C3 0 1 0

C6 0 0 1

C5 0 1 1

T,C4 1 0 1

18

19

5. Subquery Sequencing

The task of this process is simple. It re
ceives the output of Reduction and forms a subquery
by taking the component corresponding to the first
multivariable row of the reduced-incidence-matrix

and combining it with all one-variable clauses in
the same variables. It deletes the rows which have

been used and passes the subquery to Tuple
Substitution. Upon return of the result of the
subquery, it repeats the process on the remaining
matrix until the matrix is exhausted and the result
of Q is returned. It then returns the result of Q
to the calling process.

For example 3.1, the subqueries which get
generated are as follows:

Q1 : C2, C3, C6, C5

Q2 : C1, C4, T

More explicitly, we have

Q1 : RANGE OF (P,Y) IS (Parts, Supply)

RETRIEVE INTO Supplyl (Y. S#) WHERE (P.Pname=%Bolt')
AND (P.Size=20)
AND (Y.Quantity > 200)
AND (Y.P# = P.P#)

Q2 : RANGE OF (S,Y) IS (Supplier, Supplyl)

RETRIEVE (S.Sname) WHERE (S.City=%New York')
AND (Y.S# = S.S#)

6- Tuple Substitution

The input to tuple substitution is a query Q
consisting of a single irreducible component in
variables X., X2,...,X , zero or more one-variable
clauses in each of the* variables, and the range re
lations R., R2,...,R of the variables. It returns
the result relation So the calling process.

The first thing that Tuple Substitution does
is to call Variable Selection which takes Q and the
range relations and chooses a variable to be substi
tuted for. In order to make this choice it may have
to process some or all of the one-variable clauses
to restrict the ranges. Thus, in general, it re
turns { Q', R ', Rp',...,R '} and the variable to be
substituted for (say X).' For each tuple in R ',
Q' becomes a (n-1)-variable query Q'(<<) in the
variables X-, Xp,...,X -. For each <* , Q'(<*) is
passed to Reduction which returns the result. The
results to Q'(<*) for all * in R are accumulated
and returned to the calling process1.

20

7. Variable Selection

This is the heart cf optimization. The in
put is a nuitivariable query which is irreducible
except for one-variable clauses. As its name su^-
gests, the task of this portion of the decomposition
algoritnm is to select a variable for substitution,
although to do so it nay also have to process some
cf the one-variable clauses.

is

bee

iy
ces

i\.
i

(7.

Consider a query 0 with variables X.,
...,X and ranges FL, R?,...,R . Suppose that x.
substituted tuple-by-tuple. F&r each tuple, o
orces an (n-1)-variable query O.(oC). It is like-
that QAai) takes the sane amount of time to pro-
s fcr every ©c , and in most instances every << in
has to be used. Hence,

1) Cost of processing 0 if X. is substituted

= (cardinality of R..) x Cost of nrocessing 0.

The first thought, therefore, is to choose X. with
the smallest range. However, this is not Jntimal
for several reasons.

First

all cf the re

one variable

for some, o
the R .

vclve's

plicated by t
decis.ion as
variable clau

chosen for

substitution

much as pes

waste of time

should be cno

reduced R

subquery

range a fter 0

cies seem to

, it may be possible to reduce some or
latiens R.., R_,...,R , by preprocessing
clauses. Shculd this* be dene for all,
r fcr none cf the variables? If all of
be reduced, this decision alone in-
choices. The situation is further ccn-
he fact that for a given variable the
to whether to preprocess the cne-

ses depends on whether the variable is
substitution. If it will be chosen fcr

then its range shculd be reduced as

sible. If not, preprocessing nay be a
On the ether hand which variable

sen depends not so much en R_. as on the
Let 0(X.) denote the one-variable

0 in X., and let R.' be the reduced
(X1) is processed. The following peli-
be reasonable alternatives:

can
.n

cf

(a) Preprocess every Q(X.), basing the pclicv
en the argument that the cost of processing
one-variable queries is relatively snail and it
is important to cheese the variable for substi
tution well.

(b) On the basis cf 0(X.), a decision is nade
for each variable whether tc preprocess or net.
Variable selection takes place after preore-

21

cessing.

The version of INGRES completed in January,
1976, opts for policy (a). In part, it is because
in this version the variable selection is then based
solely on the cardinalities of the reduced ranges
and no other information. It is important, there
fore, for these cardinalities to be accurate.

For (b) a workable policy is to use Q(X.) to
estimate the size of R.' for each i, and preprocess
only if X. is likely to be a contender for selec
tion. For example, we might choose the top three
contenders for preprocessing, or preprocess every
variable for which the estimated size of R.' is less
than min |R.|. One good feature of (b) is that ex
cept for very unusual situations, the actual vari
able selected will be among those which have been
preprocessed, and no further processing is necessary
before substitution.

A second and more important objection to the
strategy of choosing X. with the smallest range is
that the complexity of Q. can vary greatly with i
and this must be taken Into account in any strategy
which lays claim to being even near-optimal. What
must be determined is the extent to which 0 can be

reduced as a consequence cf substituting fcr X,.

Assume that we choose either (a) or (b) for
the policy on preprocessing one-variable clauses so
that that decision is decoupled from the selection
of variable. We can assume that the query at this
point consists of a single irreducible component
with some one-variable clauses. The crux of the
matter is how the irreducible component is affected
by the substitution. Assume that whatever prepro
cessing is to be done has been done. Let the query
be denoted by Q. Let X-,X?I.. .',X , be the vari
ables, and let R., R2,...,Rr! be their1 ranges. Let
Q.(oL) denote the resulting query from substituting
A for X. in Q. Let C(Q) denote the minimum cost of
processing Q. Then

(7.2) C(Q) = min { XL C(Q,(«0) }'
i R±

where R. denotes the set of tuple-values which have
to be substituted for X.. In most instances this is
simply R., although as we indicated earlier there
are exceptions.

Equation (7.2) is a dynamic programming

equation for the optimization problem at hand. As
it stands, it is not too useful, since how C(0)
depends on Q is not known. However, (7.2) is a
suitable starting point for optimization. The vari
able selected will correspond to the value of i
v/hich minimizes an estimated value for

(7.3) C = 51 C(Q.(»C))

Although we have in effect transferred the optimiza
tion problem to one of estimating cost, the latter
is amenable to a variety of heuristic approaches.
Consider some of these:

(i) Suppose we take
C(Q.(o<)) to be independent of
minimum C. corresponds to the
somewhat simplistic policy is
mented in the version cf INGRES
January, 1976.

the estimate of

«< and i. Then, the
smallest R.. This

what has been imple-
operational as of

(ii) We observe that unlike Q, Q.(*c) is
not irreducible. One should therefore call
Reduction-Subquery-Sequencing to reduce 0.(«c) to a
sequence S. of subqueries, each of which is irredu
cible except for one-variable clauses. Now, <<
enters the subqueries only as a parameter, and the
sequence S. is really independent of *c. Thus, we
have

(7.4)

V*

Since the structure of Q.(p<) has now been
represented, we can accept a relatively crude esti
mate for C(qe<). For example, we might take the esti
mate of C(qo<) to be

(7.5) C(qo<) = TT P(lO

where R are the ranges of q and P(R) is the number
of pages occupied by R.

(iii) We might try to obtain an estimate
for cost by sampling. Consider the equation ob
tained from using (7.4) in (7.2)

(7.6) C(0) =min|H YL C(q,)
i U6^ qeS. ,

This is truly recursive, since Q and q^ are queries
of the same restricted type (viz, irreducible except

for one-variable clauses). If tne number of vari
ables in Q is not enormous (in practice, very few
queries contain more than 4 or 5 variables) one
might try to push the recursion (7.6) all the way
down to one-variable queries, but using small sam
ples for the range relations of Q. It is very like
ly that the costs of different paths in the decision
tree vary widely, and only a few are contenders for
the optimal path. With efficient management, this
approach need not be prohibitively expensive.

These are but three possible approaches to
estimating C(Q). Other approaches including some
variants and combinations of these are under con

sideration. We expect to implement at least the
three outlined above for experimental evaluation.
Indeed, (i) has been implemented, and (ii) is in the
process of being implemented.

24

8. Estimate of Result Parameters

In order to use (7.5) in (7.4), we must know
the number of pages occupied by the range relations
for every q^ in the sequence S.. We note that 3. is
a sequence and not a set, so that the range relation
of a query may involve the result relations of
queries which precede it. Therefore, knowing the
sizes of the range relations of Q is not sufficient
to determine (7.5) for the q^ 's. Since we don't
want to execute the sequence 3. except for the op
timal i, we must rely on a procedure to estimate the
sizes and other parameters of the result relation
for a query.

Consider a query Q with range relations
R.,R2,...,R , a target list T(X) and a qualification
B(X). Let the domains of R, be denoted by D. .,
j=1,2,...,d.. Each R. is by definition a subset if

j<d± 1J
Hence, the product TTR. is a subset of

(8.1) D = TT TT D
i<n j<d. lj

To determine what subset of TfR. satisfies B(X)=1
requires accesses to the actull relations, but to
determine what subset of D satisfies B(X)=1 requires
only knowing the domains {D..}. The storage re
quired to represent {D..} is inJ general far less
than that required for ^R.}.

25

Let R(Q) denote the result relation of 0.
We can estimate the cardinality of R(Q) as

(8.2) |R(Q)| = | TT R.| • {fraction of D satisfying B(X)=1}
i<n x

The domains of R(Q) can be estimated by evaluating
T(X) on the subset of D which satisfied B(X)=1.
That is, the kth domain of R(Q) is estimated to be

(8.3) (Tk(X) ; Xe D, B(X) = 1}

In most cases D. . has sufficient regularity
to permit it to be represented by just a few parame
ters. For example, D. might be simply all integers
between a and b. Thai, the storage requirement for
keeping track of the domains for the result rela
tions of the sequence S. can be expected to be rea
sonable.

Since the sizes of the tuples are always
known, the number of pages required for each of the
result relations for the sequence can be computed
from the estimated (8.2), which in turn is computed
from the estimated domains using (8.3).

26

9. Summary

In this paper we have presented a detailed
account of how multivariable queries are decomposed
in system INGRES. The basic ingredients of the
decomposition are two in number:

(a) To discover pieces of a query which are
joined to the remainder by a single joining-
variable.

(b) To substitute for a variable.

The overall strategy is to break up a query at the
joining-variables whenever this is possible, and to
select a variable for substitution which incurs a

"minimum cost" whenever substitution can no longer
be postponed. A detailed algorithm for reducing a
query into irreducible components has been given.
Alternative approaches to estimating costs have also
been discussed.

Optimization itself incurs a cost which has
not been taken into consideration. For simple
queries, elaborate optimization may well do more
harm than good. The approach to resolving this dif
ficulty that we have opted is one suggested by M.R.
Stonebraker. Suppose that we have two or more stra
tegies st0,st.,...,st , each one being better than
the previous one but also requiring a greater over
head. Suppose we begin a query on stn, and run it
for an amount of time equal to a fraction of the es
timated overhead of st... At the end of that time,
by simply counting the number of tuples of the first
substitution variables which have already been pro
cessed, we can get an estimate for the total pro
cessing time using stQ. If this is significantly
greater than the overhead of st-, then we switch to
st.. Otherwise we stay and complete processing the
query using stQ. Obviously, the procedure can be
repeated on st., to call stp if necessary, and so
forth, st may correspond, for example, to progres
sively mor§ levels in the decision tree, or to pro
gressively more elaborate estimates of result param
eters, or better sampling.

We have not addressed the question of optim
izing the processing of one-variable queries. Some
optimization is currently being done in INGRES, and
this is described elsewhere [STON76].

In the appendix we have given a brief
description of how INGRES is implemented. The ori
ginal design of the implementation was primarily the

27

work of M.R. Stonebraker and G.D. Held. Redesign of
process 3, and in particular the design of the query
tree and the implementation of the decomposition al
gorithm in the current version (as of January, 1976)
have been largely the work of Peter Kreps. We have
also included in the appendix specifications of the
principal data structures needed for our decomposi
tion algorithm.

One of us (E.W.) is responsible for intro
ducing the conceptual framework in which the decom
position algorithm rests, viz. the policy of
transforming a multivariable query to one dimension
al ones, and the strategy of alternating between
reduction and tuple substitution. We have colla
borated on the reduction algorithm, and on the
heuristics for variable selection. The implementa
tion of the full algorithm as well as monitoring
subsystems for the performance evaluation is being
designed and executed by K.A.Y. The decomposition
algorithm» being at the heart of INGRES, has enjoyed
the attention of many participants of the project.
It is difficult to remember who suggested what, but
the three aforementioned colleagues have all made
important contributions. In particular, as in every
aspect of INGRES, the influence of M.R.S. is discer
nible throughout our algorithm.

28

REFERENCES

ALLM75 Allman, E., & Stonebraker, M., "Embedding a
Relational Data Sub-language in a General
Purpose Programming Language.", Univ. of
Calif., Berkeley, ERL Mem. No. M564.

ASTR75 Astrahan, M.M. & Chamberlin, D.D., "Imple
mentation of a Structured English Query
Language", CACM, Vol. 18, No. 10, pp.
580-588, October, 1975.

CODD74 Codd, E.F., "Seven Steps to Rendevous with
the Casual User", Proc. IFIP TC-2 Working
Conference on Data Base Management Systems,
Cargese, Corsica, Apr. 1974.

HELD75 Held, G.D. & Stonebraker, M. & Wong, E.,
"INGRES - A Relational Data Base Management
System", Proc. 1975 NCC, AFIPS Press, 1975.

MCD074 McDonald, N. & Stonebraker, M. , "Cupid —
The Friendly Query Language", Univ. Of Cal
ifornia, Berkeley, ERL Mem. No. M487, Oct
1974

PALE72 Palermo, E.P., "A Data Base Search Prob
lem", Proc. 4th International Symposium on
Computers and Information Science, Miami
Beach, Dec. 1972.

PECH75 Pecherer, R.M., "Efficient Evaluation of
Expressions in a Relational Algebra", Proc.
ACM-Pacific 75 Conference, pp. 44-49, Apr.
1975.

RITC73 Ritchie, D. & Thompson, K., "The UNIX Time
Sharing System", CACM Vol. 17, No. 7, pp.
365-375, July 1974.

RITC74 Ritchie, D.M., "C Reference Manual", UNIX
Programmer's Manual, Bell Telephone Labs,
Murray Hill, N.J. July 1974.

ROTH74 Rothnie, J., "An Approach to Implementing a
Relational Data Base Management System",
Proc. 1974 ACM-SIGFIDET Workshop on Data
Description, Access and Control, Ann Arbor,
Mich., May 1974.

ROTH75 Rothnie, J.B., "Evaluating Inter-Entry Re
trieval Expressions in a Relational Data
Base Management System", Proc. 1975 NCC,
AFIPS Press, 1975.

SMIT75 Smith, J.M. & Chang, P.Y.T., "Optimizing
the Performance of a Relational Algebra Da
tabase Interface", CACM, Vol. 18, No. 10,
pp. 568-579, October, 1975.

STON76 Stonebraker, M.R., Wong, E., Held, G.D. and
Kreps, P., "The Design and Implementation
of INGRES", To appear.

TODD75 Todd, S., "PRTV: An Efficient Implementa-

29

tion for Large Relational Data Bases",
Proceedings of International Conference on
Very Large Data Bases, Framingham, Mass.,
Sept. 1975

TSIC75 Tsichritzis, D., "A Network Framework for
Relational Implementation", University of
Toronto, Computer Systems Research Group
Report CSRG-51, Feb. 1975

30

APPENDIX A.

System Organization

INGRES, Interactive Graphics and Retrieval
System, runs on a PDP 11/45 under the UNIX operating
system[RITC73]• The entire system is written in the
programming language "C" [RITC74]. It has four ma
jor components which are organized as shown below.

user

interface

parser
>

<

decom

position

These four components are set up as processes under
UNIX and communicate through the use of pipes. The
user interface can be one of several forms: an in
teractive text editor, a graphics interface
[MCD074], an interactive English-like language
[C0DD74], or part of a host programming language
[ALLM75]. The parser accepts the user's query and
processes it into a tree in conjunctive normal form.
This query tree and a table of relations declared in
the RANGE statements are passed to decomposition.
The decomposition process contains not only the
decomposition algorithm but also the one-variable
query processor. The utilities process contains
many functions which can be used by the system or
the user.

31

APPENDIX B.

Data Structures

There are three main data structures which

are used during decomposition of a query.

Range Table:
Some of the information for this structure

is gathered during parsing and passed to decomposi
tion as an ordered matrix. It is then put into a
matrix, each entry of which has the following form:

struct rangev
{ char relid [HAXNAME];

struct descriptor *desp;
int setup;

}

The parser sends a table of relation names which
have been declared in RANGE statements; the order of
these names indicate the variable associated with

each. These are relid. The second entry is a
pointer to an in-core copy of the system catalogue
description for that relation. The third entry is a
flag which is set when the corresponding variable
has been selected for substitition.

The use of this table will aid decomposition in the
use of temporary relations. When a new range is
created for a variable by execution of a one-
variable query, the entry in the range table for
that entry is the same except for the pointer to the
catalogue description. The relid is always the ori
ginal relation name for that variable and the
descriptor is for the current subrelation it is
ranging over. In this way, if a temporary relation
must be created several times during the process of
substitution, the same temporary relation name and
descriptor can be reused by simply deleting the old
tuples from the previous iteration. This saves much
overhead in the creation of temporary relations.

Incidence Matrix:

This is a binary matrix of clauses (or
subqueries) vs. variables which is used within
decomposition to represent the current query under
consideration. It is used during reduction to
determine all irreducible subqueries and can be used
during selection to represent the component
subqueries in a compact form. This matrix will also
contain an entry for each clause which points to the
actual clause so that it may be easily obtained when
it is necessary to build a query tree for execution
of a subquery.

32

Query Tree:
The parser sends a list representing the

query tree to decomposition which then rebuilds the
query tree adding useful information as it is recog
nized. The general form of this tree is a root node
with the target list of the query as the left branch
and the qualification as the right branch. Since
the query is in conjunctive normal form, all the in
termediate nodes along the right side will be AND
(conjunction) nodes.

tl AND
Element 1

disjunctive^
clause

tl AND

Element2

/ disjunctive
END clause END

More specifically, nodes of the tree are defined as:

struct querytree
{ struct querytree *left, *right;

struct symbol sym;
}

where left and right are the pointers to the respec
tive branches. The second entry defines the struc
ture within the node and this varies depending on
the type of node.

For nodes representing arithmetic operators, dis
junctions (OR), result domains and constants, the
structure is:

struct symbol
{ char type;

char len;
int value[];

}

where type is a code representing the type of the
node (i.e., plus, minus, OR, etc.) and len is the
length in bytes of value. value is a variable
length field (0-255 bytes) and contains the ap
propriate value for that type of node. For example,
if the node is representing a constant then the
value contains the actual constant.

33

For nodes representing variable.attribute (i.e.,
L.SALARY) the structure is:

struct symbol
{ char type;

char len;
char varno, attno;
char frmt, frml;
char *valptr;

}

where type is the same as above and len is fixed,
varno is an index into the range table for the
correct variable; attno is the domain number (from
the system catalogue) of the correct domain refer
enced, frmt and frml give the format of the attri
bute (i.e., A6, 12, etc.). This is used to deter
mine new domain types and for calculations. The
last entry is used during tuple substitution. If a
particular variable is selected for substitution,
all variable.attribute nodes involving that variable
will become nodes representing constants. But the
tree itself need not be changed. This field,
valptr, is simply set to point to the constant value
that should be used. This position remains fixed so
when a new tuple value is substituted, the pointer
does not change, only the value it is pointing to
changes. In this way, a new tree is not needed for
each level of substitution or for each iteration of

substitution values. If the pointer is zero, the
variable information is used; if it is nonzero, It
is a constant node.

For nodes representing the root or conjunctions
(AND), the structure is:

struct symbol
{ char type;

char len;
char tvarc;
char lvarc;
int lvarm;
int rvarm;

}

where type is the same and len is fixed, tvarc and
lvarc are both counts of the variables used, tvarc
is the number of variables in the sub-tree below
this node and lvarc is the number of variables in
the left branch. So for the root node, tvarc is the
total number of variables in the query and lvarc is
the number of variables in the target list. For an
AUD node, tvarc is the number of variables in the
remaining clauses and lvarc is the number of vari-

•54

ables in the single clause of its left branch,
lvarm and rvarm are bit maps of the variables used
in the left and right branches of the node respec
tively.

This structure is not as costly as it might appear.
It is true that during decomposition many subqueries
are created and executed many times, but it should
be noted that all of these subqueries use clauses
v/hich appear in the original query. The target
lists may change, but no new clauses are ever creat
ed except through substitution. Since this is true,
when a subquery is to be executed, a query tree can
be constructed using nodes from the original tree.
A new root node must be created for each subquery
and for some target list nodes, but all the AND
nodes can simply be detached from the original query
tree and added to the new query tree.

35

	Copyright notice 1975
	ERL-574

