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ABSTRACT

In a sharp departure from the conventional approaches to deci
sion analysis, the linguistic approach abandons the use of numbers
and relies instead on a systematic use of words to characterize the
values of variables, the values of probabilities, the relations
between variables, and the truth-values of assertions about them.

The linguistic approach is intended to be used in situations
in which the system under analysis is too complex or too ill-defined
to be amenable to quantitative characterization. It may be used,
in particular, to define an objective function in linguistic terms
as a function of the linguistic values of decision variables.

In cases in which the objective function is vector-valued, the
linguistic approach provides a language for an approximate linguis
tic characterization of the trade-offs between its components.
Such characterizations result in a fuzzy setof Pareto-optimal solu
tions, with the grade of membership of a solution representing the
complement of the degree to which it is dominated by other
solutions.

1. INTRODUCTION

The past two decades have witnessed many important theoretical

"Research sponsored by Naval Electronics Systems Command Contract
N00039-76-C-0022, U.S. Army Research Office Contract DAHC04-75-
G0056 and National Science Foundation Grant ENG74-06651-A01.



advances in decision theory [1-18] as well as in such related fields
as mathematical programming, statistical analysis, system simula
tion, game theory and optimal control. And yet, there are many
observers who would agree that it is by no means easy to find con
crete examples of successful applications of decision theory in
practice. What, then, is the reason for the paucity of practical
applications of a wide-ranging theory that had its inception more
than three decades ago?

Although this as yet may not be a widely accepted view, our
belief is that the limited applicability of decision theory to real-
world problems is largely due to the fact that decision theory —
like most other mathematical theories of rational behavior — fails
to come to grips with the pervasive fuzziness and imprecision of
human judgment, perception and modes of reasoning. Thus, based as
it is on the foundations of classical mathematics, decision theory
aims at constructing a model of rational decision-making which is
quantitative, rigorous and precise. Unfortunately, this may well be
an unrealizable objective, for real-world decision processes are,
for the most part, far too complex and much too ill-defined to be
dealt with in this spirit. Indeed, to be able to cope with real-
world problems, the mathematical theories of human cognition and
rational behavior may have to undergo an extensive restructuring —
a restructuring which would entail an abandonment of the unrealis-
tically high standards of precision which have become the norm in
the literature and an acceptance of modes of logical inference
which are approximate rather than exact.

The linguistic approach outlined in the present paper may be
viewed as a step in this direction. In a sharp break with deeply
entrenched traditions in science, the linguistic approach abandons
the use of numbers and precise models of reasoning, and adopts
instead a flexible system of verbal characterizations which apply
to the values of variables, the relations between variables and the
truth-values as well as the probabilities of assertions about them.
The rationale for this seemingly retrograde step of employing words
in place of numbers is that verbal characterizations are intrin
sically approximate in nature and hence are better suited for the
description of systems and processes which are as complex and as
ill-defined as those which relate to human judgment and decision
making.

It should be stressed, however, that the linguistic approach

1In fact, far from being a negative characteristic of human think
ing — as it is usually perceived to be — fuzziness may well be
the key to the human ability to cope with problems (e.g., language
translation, summarization of information, etc.) which are too com
plex for solution by machines that lack the capability to operate
in a fuzzy environment.



is not the traditional non-mathematical way of dealing with human
istic systems. Rather, it represents a blend between the quantita
tive and the qualitative, relying on the use of words when numerical
characterizations are not appropriate and using numbers to make the
meaning of words more precise [19,20].

The central concept, in the linguistic approach is that of a
linguistic variable, that is, a variable whose values are words or
structured combinations of words whose meaning is defined by a
semantic rule [20]. For example, Age is a linguistic variable if
its values are assumed to be young, not young, very young, not very
young, more or less young, etc., rather than the numbers 0,1,2,...,
100. The meaning of a typical linguistic value, say not very young,
is assumed to be a fuzzy subset of a universe of discourse, e.g.,
U = [0,100], with the understanding that the meaning of not very
young can be deduced from the meaning of young by the application
of a semantic rule which is associated with the variable Age. In
this sense, then, young is a primary term which plays a role akin
to that of a unit of measurement. However, it is important to note
that (a) the definition of young is purely subjective in nature;
and (b) in contrast to the way in which the conventional units are
used, the semantic rule involves nonlinear rather than linear opera
tions on the meaning of the primary terms. These issues are dis
cussed in greater detail in Section 2.

An important part of the linguistic approach relates to the
treatment of truth as a linguistic variable with values such as
true, very true, not very true, more or less true, etc. The use of
"iuch linguistic truth-values leads to what is called fuzzy logic
[21] which provides a basis for approximate inference from possibly
fuzzy premises whose validity may not be sharply defined. As an
illustration, an approximate inference from (a) x is a small number,
and (b) x and y are approximately equal, might be (c) y is more or
less small. Similarly, an approximate inference from (a) (x is a
imall number) is very true, and (b) (x and y are approximately
equal) is very true, might be (c) (y is more or less small) is true.
In these assertions, small is assumed to be a specified fuzzy sub
set of the real line R £ (-»,«>) ; approximately equal is a binary
fuzzy relation in R*R; and true and very true are fuzzy subsets of
the unit interval [0,1].2 Because of limitations on space, we shall
not discuss the applications of fuzzy logic to decision analysis in
the present paper.

2A brief exposition of the basic properties of fuzzy sets is con
tained in the Appendix. A more detailed discussion of various
aspects of the theory of fuzzy sets and its applications may be
found in [22]. The most comprehensive treatise on the theory of
fuzzy sets is the five-volume work of A. Kaufmann [23]. Some of
the applications of the theory of fuzzy sets to decision analysis
are discussed in [24-32].



Insofar as decision analysis is concerned, the linguistic
approach serves, in the main, to provide a language for an approxi
mate characterization of those components of a decision process
which are either inherently fuzzy or are incapable of precise mea
surement. For example, if the probability of an outcome of a deci
sion is not known precisely, it may be described in linguistic
terms as likely or not very likely or very unlikely or more or less
likely, and so forth. Or* if the degree to which an alternative a
is preferred to an alternative $ is not well-defined, it may be
assigned a linguistic value such as strong or very strong or mild
or very weak, etc. Similarly, a fuzzy relation between two varia
bles x and y may be described in linguistic terms as "x is much lar
ger than y" or "If x is small then y is large else x is approximate
ly equal to y," etc.

As will be seen in Section 2, a linguistic characterization
such as "x is small" may be viewed as a fuzzy restriction on the
values of x. What is important to realize is that the assertion
"x is small" conveys no information concerning the probability dis
tribution of x; what it means, merely, is that "x is small" induces
an elastic constraint on the values that may be assigned to x.
Thus, if small is a fuzzy set in R whose membership function takes
the value, say, 0.6 at x = 8, then the degree to which the constraint
"x is small" is satisfied when the value 8 is assigned to x, is 0.6.

In what follows, we shall outline the main features of the lin
guistic approach and indicate some of its possible applications to
decision analysis. It should be stressed that such applications
are still in an exploratory stage and experience in the use of the
linguistic approach may well suggest substantive changes in its
implementation.

2. LINGUISTIC VARIABLES AND FUZZY RESTRICTIONS

As stated in the Introduction, a linguistic variable is a
variable whose values are words or sentences which serve as names
of fuzzy subsets of a universe of discourse. In more specific
terms, a linguistic variable is characterized by a quintuple
(X,T(X),U,G,M) in which X is the name of the variable, e.g., Age;
T(X) is the term-set of X, that is, the collection of its linguistic

3The linguistic approach has been applied to various problems in
situation calculus by Yu. Klikov, G. Pospelov, D. Pospelov,
V Pushkin, D. Shapiro and others at the Computing Center of the
Academy of Sciences, Moscow, under the direction of N.N. Moyseev.
Other types of applications of the linguistic approach have recent
ly been reported by P. King and E. Mamdani [33], R. Assilian [34J,
G. Retherford and G. Bloore [35], F. Wenstop [36], L. Pun [37],
V: Dimitrov, W. Wechler and P. Barnev [38], and others.



values, e.g., T(X) = {young, not young, very young, not very young,
—}; U is a universe of discourse, e.g., in the case of Age, the
set {0,1,2,3,...}; G is a syntactic rule which generates the terms
in T(X); and M is a semantic rule which associates with each term,
x, in T(X) its meaning, M(x), where M(x) denotes a fuzzy subset of
U. Thus, the meaning, M(x), of a linguistic value, x, is defined
by a compatibility — or, equivalently, membership — function
px: U -*• [0,1] which associates with each u in U its compatibility
with x. For example, the meaning of young might be defined in a
particular context by the compatibility function

u (u) = 1 for 0 < u < 20 (2.1)
young — — v '

1+(H=§V
for u > 20

which may be viewed as the membership function of the fuzzy subset
young of the universe of discourse U = [O,00). Thus, the compati
bility of the age 27 with young is approximately 0.66, while that
of 30 is 0.5. The variable u e U is termed the base variable of X.
The value of u at which yx(u) = 0.5 is the cross-over point of x.

If X were a numerical variable, the assignment of a value, say
a, to X would be expressed as

X = a . (2.2)

In the case of linguistic variables, the counterpart of the assign
ment equation (2.2) is the proposition "X is x," where x is a lin
guistic value of X. From this point of view, x may be regarded as
a fuzzy restriction on the values of the base variable u. This
fuzzy restriction, which is denoted by R^u) (or simply R(u)), is
identical with the fuzzy subset M(x) which is the meaning of x.
Thus, the proposition "X is x" translates into the relational
assignment equation

R(u) = x (2.3)

which signifies that the proposition "X is x" may be interpreted as
an elastic constraint on the values that may be assigned to u, with
the membership function of x characterizing the compatibility,
u (u), of u with x.

As an illustration, consider the proposition "Edward is young."
The translation of this proposition reads

4 ;
As will be seen later, a relational assignment equation involves,
more generally, the assignment of a fuzzy relation to a fuzzy
restriction on the values of a base variable [39].



R(Age(Edward)) = young (2.4)

where Age(Edward) is a numerical variable ranging over [0,«>),
R(Age(Edward)) is a fuzzy restriction on its values, and young is a
fuzzy subset of [0,°°) whose membership function is given by (2.1).
To simplify the notation, a relational assignment equation such as
(2.4) may be written as

Age(Edward) = young (2.5)

with the understanding that young is assigned not to the variable
Age(Edward) but to the restriction on its values.

In this sense, each term, x, in the term-set of a linguistic
variable X corresponds to a fuzzy restriction, R(u), on the values
that may be assigned to the base variable u. A key idea behind the
concept of a linguistic variable is that these fuzzy restrictions
may be deduced from the fuzzy restrictions associated with the so-
called primary terms in T(X). In effect, these fuzzy restrictions
play the role of units which, upon calibration, make it possible to
compute the meaning of the composite (that is non-primary) values
of X from the knowledge of the meaning of the primary terms.

As an illustration of this technique, we shall consider an
example in which U = [O,00) and the term-set of X is of the form

T(X) = {small, not small, very small, very (not small), (2.6)

not very small, very very small, ...}

in which small is the primary term.

The terms in T(X) may be generated by a context-free grammar
[40] G = (VT,VN,S,P) in which the set of terminals, VT, comprises
(, ), the primary term small and the linguistic modifiers very and
not; the nonterminals are denoted by S, A and B and the production
system is given by:

S •* A ' (2.7)
S -*• not A

A -»• B

B •*- very B

B + (S)
B -»• small

Thus, a typical derivation yields

S -»• not A •> not B => not very B =» not very very B (2.8)

=* not very very small



In this sense, the syntactic rule associated with X may be viewed
as the process of generating the elements of T(X) by a succession
of substitutions involving the productions in G.

As for the semantic rule, we shall assume for simplicity that
if yA is the membership function of A then the membership functions
of not A and very A are given respectively by

not A A

and

w .= (v.)2 • <2-10>very A A

Thus, (2.10) signifies that the modifier very has the effect of
squaring the membership function of its operand.

Suppose that the meaning of small is defined by the compati
bility (membership) function

9 -1
p (u) = (l+(0.1u)Z) , u>0. (2.11)
small

Then the meaning of very small is given by

o -2
u ni = (l+(0.1u)Z) (2.12)
very small

while the meanings of not very small and very (not small) are
expressed respectively by

o -2

u ni = 1 - (l+(0.1u)Z) (2.13)
Knot very small

and _ £

y , „. = (1 -(l+(0.1u)V ) . (2.14)
Mvery (not small)

In this way, we can readily compute the expression for the member
ship function of any term in T(X) from the knowledge of the member
ship function of the primary term small.

In effect, a linguistic variable X may be viewed as a micro-
language whose syntax and semantics are represented, respectively,
by the syntactic and semantic rules associated with X. The sen
tences of this language are the linguistic values of X, with the
meaning of each sentence represented as a fuzzy restriction on the
values that may be assigned to the base variable, u e U, of X.

5A more detailed discussion of the effect of linguistic modifiers
(hedges) may be found in [41], [42], and [43].



In the characterization of a decision process, we usually have
to deal with a collection of interrelated linguistic variables. In
this connection, it is helpful to have a set of rules for transla
ting a proposition involving two or more linguistic variables into
a set of relational assignment equations. The rules in question
are as follows."

Let X and Y be linguistic variables associated with possibly
distinct universes of discourse U and V, and let P and Q be fuzzy
subsets of U and V, respectively. Then, the conjunctive proposi
tion p defined by

p A X is P and Y is Q (2.15)

translates into the relational assignment equation

R (u,v) = PxQ (2.16)
p

where R(u,v) is the restriction on the values that may be assigned
to the ordered pair (u,v), u e U, v £ V, and P*Q denotes the car
tesian product of P and Q. Equivalently, (2.16) may be expressed
as

R(u,v) = P OQ (2.17)

where P and Q are the cylindrical extensions of P and Q, respec
tively, and P H q is their intersection. (See Appendix.)

Similarly, the disjunctive proposition

p A x is P or Y is Q (2.18)

translates into

R (u,v) = P U Q (2.19)
P

where P U Q is the union of the cylindrical extensions of P and Q.

The conditional proposition

p A if X is P then Y is Q (2.20)

translates into

R (u,v) = P' 0 Q (2.21)
P

6Such rules will be referred to as semantic rules of Type II when
it is necessary to distinguish them from the semantic rules which
apply to individual variables (i.e., semantic rules of Type I).



where P1 is the complement of P and © denotes the bounded sum.
(See A36). More generally, the conditional proposition

p A if x is P then Y is Q else Y is R (2.22)

translates into

Rp(u,v) -(f•* Q) n (P 9 K) . (2.23)

Eq. (2.23) follows from (2.21) by the application of (2.15) and the
fact that

p i X is not P (2.24)

translates into

R (u) = P» (2.25)
P

where P* is the complement of P.

In cases where a linguistic truth-value, T, such as true, very
true, more or less true, etc. is associated with a proposition, as
in

p 4 (X is small) is very true (2.26)

the following rule of truth-functio'nal modification may be used to
translate p into a relational assignment equation:

p A (X is A) is T (2.27)

translates into

R (u) = ]T\t (2.28)
P A

where y^ is the inverse of yA and * denotes the composition of the
binary relation y^ with the unary fuzzy relation T. (See A60.)
It can readily be verified that the membership function of Rp(u) is
given by

uR (u) = y (y <u)) , u eU (2.29)
P

where yT is the membership function of the linguistic truth-value T
and y^ is that of A.

The basic translation rules stated above may be employed, in
combination, to translate more complex propositions involving



relations between two or more variables. As an illustration, con

sider the following proposition:

tt A x is large and Y is small or (2.30)

X is not large and Y is very small

which may be regarded as a linguistic characterization of the table
shown below:

(2.31)X Y

large

not large

small

very small

For simplicity we shall assume that U = V = {0,1,2,4} and that
small and large are fuzzy sets defined by (see Appendix)

small = 1/1 + 0.6/2 + 0.2/3 , (2.32)

large = 0.3/2 + 0.7/3 + 1/4 . (2.33)

In this case, the application of (2.15) and (2.18) leads to
the following expression for the restriction on (u,v) which is
induced by the proposition in question:

R (u,v) = largexsmall + not largexvery small (2.34)
P

where x and + represent the cartesian product and the union,
respectively. Now, from (2.9) and (2.10) it follows that

not large = 1/1 + 0.7/2 + 0.3/3 (2.35)

very small = 1/1 + 0.36/2 + 0.04/3 (2.36)

and hence

R (u,v) = 0.3/(2,1) + 0.7/(3,1) + 1/(4,1) (2.37)

+ 0.3/(2,2) + 0.6/(3,2) + 0.6/(4,2)

+ 0.2/(2,3) + 0.2/(3,3) + 0.2/(1,3)

in which a term such as 0.6/(3,2) signifies that the compatibility
of the assignments u = 3 and v = 2 with p is 0.6.

As a further illustration, consider the proposition

q A if (x is large and Y is small or X is not large (2.38)

and Y is very small) then Z is very small

10



in which the proposition in parentheses is that of the preceding
example and the universe of discourse associated with Z is assumed
to be the same as U.

In this case, using (2.20), we have

where

R (u,v,w) = R'(u,v) ® very small (2.39)
q P .—

R (u,v) = 0.3/((2,l,l) +(2,l,2) +(2,l,3) +(2,l,4)) + --- (2.40)
+ 0.2/((4,3,l) +(4,3,2) +(4,3,3) +(4,3,4)) ;

very small = 1/((1,1,1)+ (1,1,2) +(1,1,3) +(1,1,4) + (2.41)

+ (1,2,1)+(1,2,2)+ (1,2,3) +(1,2,4) +

+ (1,4,1) + (1,4,2) + (1,4,3) + (1,4,4)) + •-•
+ 0.04/((3,l,l)+(3,1,2)+ (3,1,3) +(3,1,4)+

+ (3,4,1)+ (3,4,2)+ (3,4,3)+ (3,4,4)) ;

R* (u,v) is the complement of R (u,v) and © is defined by (A36).
p P

To illustrate the rule of truth-functional modification, con

sider the proposition

p A (x is small) is very true (2.42)

where small is defined by (2.32) and

true A 0.2/0.6 + 0.5/0.8 + 0.8/0.9 + 1/1 . (2.43)

In this case,

very true = 0.04/0.6 + 0.025/0.8 + 0.64/0.9 + 1/1 (2,44)

and (2.29) yields

y (1) = 1 (2.45)
P

y (2) = 0.2
P

y(3) = u (4) = 0
P P

which means that the compatibility of the assignment u = 2 with p
is 0.2, while those of u = 3 and u = 4 are zero.

The above examples serve to illustrate one of the central
features of the linguistic approach, namely, the mechanism for

11



translating a proposition expressed in linguistic terms into a
fuzzy restriction on the values which may be assigned to a set of
base variables. Once the translation has been performed, the
resulting fuzzy restrictions may be manipulated to yield the
restrictions on whichever variables may be of interest. These
restrictions, then, are translated into linguistic terms, yielding
the final solution to the problem at hand,.

In what follows, we shall illustrate this process by a few
simple applications which are of relevance to decision analysis.

3. LINGUISTIC CHARACTERIZATION OF OBJECTIVE FUNCTIONS

In the literature of mathematical programming and decision
analysis, it has become a universal practice to assume that the
objective and utility functions are numerical functions of their
arguments.

In most real-world problems, however, our perceptions of the
consequences of a decision are not sufficiently precise or consis
tent to justify the assignment of numerical values to utilities or
preferences. Thus, in most cases it would be more realistic to
assume that the objective function is a linguistic function of the
linguistic values of its arguments, and employ the techniques of
the linguistic approach to assess the consequences of a particular
choice of decision variables.

To be more specific, consider a simple case of a decision pro
cess in which the objective function G(u^,...,un) takes values in a
space V while the decision variables u-,,...,un take values in
Ui,...,Un, respectively. To simplify the discussion, we shall
assume that U-^ = U£ = ••• = Un = U.

The linguistic values of decision variables as well as those
of the objective function are assumed to be of the form {low, not
low, very low, not very low, ..., medium, high, not high, very high,
not very high, not low and not high, not very low and not very high,
...}. It can readily be verified that these linguistic values can
be generated by a context-free grammar whose production system is
given below:

(3.1)S •> A

S -»• S and A

A -»» B

A -*• not B

B •*• C

C -*• very C

D -*• very D

C -*• low

D -*• high

B •* D

B -*• medium

12



in which S, A, B, C, D are non-terminals, S is the starting symbol,
and and, not, very, low, medium and high are terminals, with low,
medium and high playing the role of primary terms.

The simplicity of this grammar makes it possible to compute
the meaning of various linguistic values by inspection. For exam
ple, the meaning of the value not very low and not high is given by

2
M(not very low and not high) = (low )» O (high1) (3.2)

where low is a fuzzy set whose membership function is the square
of that of low, and ' and O denote the complement and intersection,
respectively.

It is important to note that the assumption that all of the
decision variables and the objective function have the same term-
set does not imply that the corresponding primary terms are also
identical. Thus, low, for example, in the case of i-th decision
variable need not have the same meaning as low for j-th decision
variable (j ^ i) or G. To illustrate this point, suppose that
U = {1,2,3,4}. Then low for ux might be defined as

low = 1/1 + 0.8/2 + 0.2/3

whereas low for u2 may be

low = 1/1 + 0.6/2 + 0.1/3

(3.3)

(3.4)

Typically, a tabulation of the linguistic values of G as a
function of the linguistic values of the decision variables would
have a form such as shown below (low2 A very low, med ^ medium)

ul u2 G

low

low

low

high

low

med

low

high

low

low

not low

high

(3.5)

It should be noted that, in general, not all of the possible com
binations of the linguistic values of decision variables will
appear in the tableau of G.

The definition of G by a tableau of the form (3.5) induces a
fuzzy restriction on the values that may be assigned to the deci
sion variables and G. More specifically, let fc-y denote the

13



linguistic value of j-th decision variable in the i-th row of the
tableau, and let v.^ be the corresponding linguistic value of the
objective function. Then the fuzzy restriction in question is
expressed by

RG(V...,Vv) =*11*"-**la'"i+ — <3-6>
+ % x ••• x I xv

ml mn m

where m is the number of rows in the tableau, and x and + denote
the cartesian product and union, respectively. The fuzzy restric
tion Rg(ui, ... ,un,v) on the values of ulf... ,un and v may be viewed
as the meaning of the tableau of G in the same sense as the trans
lation rules (2.15-2.29) express the meaning of various proposi
tions as fuzzy restrictions on the values of the base variables.

As a very simple illustration of (3.6), assume that the
tableau of G is given by

ul u2 1 G
i

low

low

low

low*

low

1 low1

(3.7)

where low for ux and u2 is defined by (3.3) and (3.4), respective
ly, and low for G has the same meaning as for u2.

In this case, we have

R(uru2,v) = (1/1+0.8/2 +0.2/3) x(1,1+0.6/2 +0.1/3) (3.8)
x (1/1 + 0.36/2 + 0.01/3)

+ (1/1 + 0.8/2 +0.2/3) x(0.4/2 + 0,9/3 + 1/4)

x (0.4/2 + 0.9/3 + 1/4)

= 1/(1,1,1) +0.6/(1,2,1) +0.36(1,1,2) + -...

+ 0.9/(1,3,3) + ---+l/(l,4,4) .

Note that the restriction defined by (3.8) is a ternary fuzzy
relation in U-j^xU^xv.

An important aspect of the linguistic definition of G is that
it provides a basis for an interpolation of G for values of the
decision variables which are not in the tableau. Thus, since the
meaning of the tableau is provided by the fuzzy (n+l)-ary relation
RG(u1,...,un,v), we can assert that the result of substitution of

7A more detailed discussion of this point may be found in [44].

14



arbitrary linguistic values £ii,.».,&in for ui,...,un is the com
position of Rq with 1±1,... 9l±Vi. This implies that the value of G
corresponding to the prescribed values of u1,...,un is given by

G(I±1,... ,\a) - yV... ,Vv>*Jil*-•-*l±a (3-9)
8

where * denotes the operation of composition.

As a very simple illustration of (3.9), assume that
Rq(u1,u2,v) is expressed by (for simplicity, Ui =U2 =V= {1,2})

RG(WV) =0-8/(1»1»1)+0-9/(1'2»1)+0-3/(2»1»1) (3'10)
+ 0.7/(2,2,1)+0.3/(1,1,2)+0.2/(1,2,2)

+ 0.6/(2,1,2)+0.5/(2,2,2)

and that

I = 0.3/1 + 0.5/2

l2 = 0.9/1 + 0.2/2 .

(3.11)

(3.12)

The ternary fuzzy relation (3.10) may be represented as two
matrices

A A
0.8 0.9

0.3 0.7

B A
0.3 0.2

0.6 0.5

(3.13)

Forming the max-min products of A and B with the row matrix
[0.3 0.5] we obtain the matrix

C A
0.3 0.5

0.5 0.5

(3.14)

and forming the max-min product of this matrix with the row matrix
[0.9 0.2] we arrive at

D = [0.3 0.5]

which implies that the interpolated value of G is

G(Ilf&2) = 0.3/1 + 0.5/2 .

(3.15)

(3.16)

8In the terminology of relational models of data, (3.9) may be
viewed as an extension to fuzzy relations of the operation of
disjunctive mapping [45].

15



To express this result in linguistic terms, it is necessary
to approximate to the right-hand member of (3.16) by a linguistic
value which belongs to the term-set of G. The issue of linguistic
approximation is discussed in greater detail in [20] and [36].

In summary, if the objective function is defined in linguis
tic terms by a tableau of the form (3.5), the fuzzy restriction on
the values of the decision variables which is induced by the defi
nition is an (n+l)-ary fuzzy relation in Uj x ... xun xV which is
expressed by (3.6). By the use of this relation, the objective
function may be interpolated for values of the decision variables
which are not in the original tableau.

4. OPTIMIZATION UNDER MULTIPLE CRITERIA

The linguistic approach appears to be particularly well-
adapted to the analysis of decision processes in which the objec
tive function is vector- rather than scalar-valued.9 The reason
for this is that when more than one criterion of performance is
involved, the trade-offs between the criteria are usually poorly
defined. In such cases, then, linguistic characterizations of
trade-offs or preference relations provide a more realistic con
ceptual framework for decision analysis than the conventional,
methods, employing binary-valued preference relations.

A detailed exposition of the application of the linguistic
approach to the optimization under multiple criteria will be pre
sented in a separate paper. In what follows, we shall merely
sketch very briefly the main ideas behind the method.

To simplify the notation, we shall assume that there are only
two decision variables and two real-valued objective functions Gi
and G2. The values of Qi and G2 at the points (uj.uj) and (u-puj)
are denoted by gJ and G2, respectively.

In the conventional formulation of the problem, the partial
ordering defined by

«sj,<£) >CgJ.C*) * g\ >G* and g\ >G* (4.1)
induces a pre-ordering in U-^ xu2 defined by

(uj.uj) ><u*,u*) * (gJ.gJ) ><gJ,G*> . (4.2)

The literature on the optimization under multiple criteria is
quite extensive. Of particular relevance to the discussion in
this section are the references [46]-[48].
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With each point (ui,u2) in Uixu2, we can associate the set
of points D(uJ,u2) which dominate it; that is,

D(u°,u°) ={(ulfu2)| (u1>u2)>(uj,u°)} . (4.3)

If C is a constraint set in U-^u^ then a point (u1,u2) in C
is undominated if and only if the intersection of C with D(uJ,u§)
is the singleton {(uj,u§)}. The set of all undominated points in
C is the set of Pareto-optimal solutions to the optimization under
the objective functions G-^ and G2.

Generally, additional assumptions are made to induce a linear
ordering in the set of undominated points in C or, at least, to
disqualify. some of the points in this set from contention as solu<-
tions to the optimization problem. The main shortcoming of these
techniques is that the assumptions needed to induce a linear orders
ing tend to be rather arbitrary and hard to justify.

In the linguistic, approach to this problem, the Pareto-optimal
set is fuzzified and its size is "reduced" by making use of what
ever information might be available regarding the trade-offs
between Gi and G2. Since the trade-offs are usually poorly
defined, they are allowed to be expressed in linguistic terms.
Generally, the trade-offs are assumed to be defined indirectly via
fuzzy preference relations [49], although in some cases it may be
possible to define an overall objective function directly as a lin
guistic function of the linguistic values of G^ and G2.

As a simple illustration, a linguistic characterization of a
fuzzy preference relation might have the following form.

Assume that the strength of preference is a linguistic varia
ble whose values are strong, very strong, not strong, not very
strong, weak, not very strong and not very weak, ... in which the
primary terms strong and weak are fuzzy subsets of the unit inter
val. The meaning of such linguistic values may be computed in
exactly the same way as the meaning of the linguistic values of X
in Example 2.6.

Let pdenote the degree to which (uj,u2) is preferred to
(u?,u2). Then, a partial linguistic characterization of pmay be
expressed as:
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i 2If (G^ is much larger than G1 and (4.4)
1 2G is approximately equal to G2 or

1 2G« is much larger than G2 and

1 2
G- is approximately equal to G-)

then p is strong .

In this expression, the terms much larger and approximately
equal play the role of linguistic values of a fuzzy binary rela
tion in Vxv, while strong is a linguistic value of p. By the use
of appropriate semantic rules, the expression in question can be
translated 'into a fuzzy restriction on 5-tuples of ,the form
(uJ,ui,u?,u?,v). Combined with similar fuzzy restrictions result
ing from whatever other linguistic characterizations of p might be
available, (4.4) yields a fuzzy preference relation p in
U-i xU2 xUx xu2 xV which provides a basis for fuzzifying the Pareto-
optimal set and thereby reducing the degree to which some of the
points in this set may be regarded as contenders for inclusion in
the set of optimal solutions.

More specifically, let u° A (uJ,u2) be apoint in U^^.
Furthermore, let D(u°) be the fuzzy set of points in Uxx U2 which
results from setting u1 eaual to uD in the fuzzy preference rela
tion p. As in (4.3), D(u<b is the fuzzy set of points which domi
nate uO.

It will be recalled that when D(u ) is a non-fuzzy set, the
point u° is undominated and hence an element of the Pareto-optimal
set if and only if the intersection of D(uu) with the constraint
set C is the singleton {u0}.' More generally, if D(uu) is a fuzzy
set then the degree to which u° belongs to the fuzzy Pareto-
optimal set, P, may be related to the height10 of the fuzzy set
D(u°) He - {u0} by the relation

vAu°) =1-sup (D(u°)nc-{u°}) . (4.5)
P ul

In this sense, then, the Pareto-optimal set is fuzzified, with
each point u° assigned a grade of membership in the fuzzy Pareto-
optimal set by (4.5).

The fuzzification of the Pareto-optimal set has the effect of
reducing the degree of contention for optimality of those points

10The height of a fuzzy set is the supremum of its membership func
tion over the universe of discourse.
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which have a low grade of membership in the set. In general, the
extent to which the size of the Pareto-optimal set is reduced in
this fashion depends on the linguistic information provided by the
trade-offs. Thus, if the fuzzy restrictions which are associated
with the translations of the linguistic statements about the trade
offs are only mildly restrictive — which is equivalent to saying
that they convey little information about the trade-offs —- then
the reduction in the size of the Pareto-optimal set will, in
general, be slight. By the same token, the opposite will be the
case if the restrictions in question are highly informative --
that is, have the effect of assigning low grades of membership to
most of the points in U^xU2xV.

In sketching the application of the linguistic approach to
optimization under multiple criteria, we have side-stepped several
non-trivial problems. In the first place, the preference relation
p which results from translation of linguistic propositions of the
form (4.4) is a fuzzy set of Type 2 (i.e., has a fuzzy-set-valued
membership function), which makes it more difficult to find the
intersection of D(uQ) with the constraint set as well as to com
pute the grade of membership of u° in the fuzzy set of Pareto-
optimal solutions. Secondly, the preference relation represented
by pmay not be transitive (in the sense defined in [49]), in which
case it may be necessary to construct the transitive closure of p.
And finally, it may not be a simple matter to apply linguistic
approximation to ]ip(u°). Notwithstanding these difficulties, the
linguistic approach sketched above or some variants of it may even
tually provide a realistic way of dealing with practical problems
involving decision-making under multiple criteria.

5. CONCLUDING REMARKS

In the foregoing discussion, we have attempted to outline some
of the main ideas behind the linguistic approach and point to its
possible applications in decision analysis. The specific problems
discussed in Sections 3 and 4 are representative -- but not exhaus
tive — 0f such applications. In particular, we have not touched
upon the important subject of the manipulation of linguistic proba
bilities in problems of stochastic control nor upon the problem of
multistage decision processes and inference from fuzzy data.

At this juncture, the linguistic approach to decision analysis
is in its initial stages of development. Eventually, it may become
a useful aid in decision-making relating to real-world problems.
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APPENDIX

FUZZY SETS - NOTATION, TERMINOLOGY AND BASIC PROPERTIES

The symbols U,V,W,..., with or without subscripts, are gener
ally used to denote specific universes of discourse, which may be
arbitrary collections of objects, concepts or mathematical con
structs. For example, U may denote the set of all real numbers;
the set of all residents in a city; the set of all sentences in a
book; the set of all colors that can be perceived by the human eye,
etc.

Conventionally, if A is a fuzzy subset of U whose elements are
u......u , then A is expressed as
In

A * {u-,...,u } . (Al)
1 n

For our purposes, however, it is more convenient to express A as

A = u, + •••+ u (A2)
1 n

or

A - I u * (A3)
i=l

with the understanding that, for all i, j,

u, + u,, = u, + u. (A4)
i j j i

and
u. + u, = u_, . (A5)
i i i

As an extension of this notation, a finite fuzzy subset of U
is expressed as

F = u, u, + •••+ y u (A6)
11 n n

or, equivalently, as

F=P1/u1+•••+yn/un (A7)

where the yif i=1,...,n, represent the grades of membership of
the u- in F. Unless stated to the contrary, the y± are assumed to
lie in the interval [0,1], with 0 and 1 denoting no membership
and full membership, respectively.

Consistent with the representation of a finite fuzzy set as
a linear form in the u±, an arbitrary fuzzy subset of U may be
expressed in the form of an integral

24



=fu_(u)/u (A8)

in which y^: U -*• [0,1] is the membership or, equivalently, the
compatibility function of F; and the integral L. denotes the union
(defined by (A28)) of fuzzy singletons yp(u)/u over the universe
of discourse U.

The points in U at which yp(u) > 0 constitute the support of
F. The points at which y^(u) =»0.5 are the crossover points of F.

Example A9. Assume

U=*a + b + c + d. (A10)

Then, we may have

A = a + b + d (All)
and

F = 0.3a + 0.9b + d (A12)

as nonfuzzy and fuzzy subsets of U, respectively.

If

U =» 0 + 0.1 + 0.2 + ••• + 1 (A13)

then a fuzzy subset of U would be expressed as, say,

F = 0.3/0.5 + 0.6/0.7 + 0.8/0.9 +1/1 . (A14)

If U = [0,1], then F might be expressed as

J0 l+ u
(A15)

which means that F is a fuzzy subset of the unit interval [0,1]
whose membership function is defined by

Vu) =—^"T * (A16)
l + u

In many cases, it is convenient to express the membership
function of a fuzzy subset of the real line in terms of a standard
function whose parameters may be adjusted to fit a specified mem
bership function in an approximate fashion. Two such functions
are defined below.
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S(u;a,3,Y) =0 for u < a (A17)

u-a
= 2

Y-aJ

= 1-2^=1
lY-°v

for a <_ u <_ 3

for 3 < u < y

= 1 for u > y

tt(u;3,Y) =S(u;y-3,Y-|,Y) for u<y (A18)
=1-S(u;y,Y+§»Y+3) for u>y .

In S(u;a,3,Y)» the parameter 3, 3a^P^ is the crossover
point. In tt(u;3,y), 3 is the bandwidth, tnat is the separation
between the crossover points of ir, while y is the point- at which it
is unity.

In some cases, the assumption that yF is a mapping from U to
[0,1] may be too restrictive, and it may be desirable to allow yF
to take values in a lattice or, more particularly, in a Boolean
algebra. For most purposes, however, it is sufficient to deal with
the first two of the following hierarchy of fuzzy sets.

Definition A19. A fuzzy subset, F, of U is of type 1 if its
membership function, yF, is a mapping from U to [0,1]; and F is of
type n, n=2,3,..., if yF is a mapping from U to the set of fuzzy
subsets of type n-1. For simplicity, it will always be understood
that F is of type 1 if it is not specified to be of a higher type.

Example A2Q. Suppose that U is the set of all nonnegative
integers and F is a fuzzy subset of U labeled small integers.
Then F is of type 1 if the grade of membership of a generic ele
ment u in F is a number in the interval [0,1], e.g.,

„ 2 -1
P ,14- <u> = (1+(t) ) , u-0,1,2,... . (A21)
Hsmall integers 5

On the other hand, F is of type 2 if for each u in U, yF(u) is a
fuzzy subset of [0,1] of type 1, e.g., for u = 10,

y -- . «. (10) = low (A22)
small integers

where low is a fuzzy subset of [0,1] whose membership function is
defined by, say,

u (v) = 1 - S(v;0,0.25,0.5) , v e [0,1] (A23)
low
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which implies that

rl

low = (l-S(v;0,0.25,0.5))/v . (A24)
0

If F is a fuzzy subset of U, then its g-level-set, Fa, is a
nonfuzzy subset of U defined by

for 0 < a < 1.

F = {u| u_(u) >a} (A25)
(X r

If U is a linear vector space, the F is convex if and only if
for all X e [0,1] and all u,, ^ in U,

p^Au^ (l-p)u2) >minfypCu^.UpC^)) - (A26)

In terms of the level-sets of F, F is convex if and only if the Fa
are convex for all a e (0,1]. •*•

The relation of containment for fuzzy subsets F and G of U is
defined by

F C G o yT7(u) < y.(u) , u e U . (A27)

Thus, F is a fuzzy subset of G if (A27) holds for all u in U.

Operations on Fuzzy Sets

If F and G are fuzzy subsets of U, their union, FUG,
intersection, FOG, bounded-sum, F ® G, and bounded-difference,
F © G, are fuzzy subsets of U defined by

F U G A y_(u) Vy_(u)/u (A28)
U F G

HG AjyF(u) AuG(u)/u (A29)

11
This definition of convexity can readily be extended to fuzzy
sets of type 2 by applying the extension principle (see (A75))
to (A26).



F © G A 1A (y (u)+y (u))/u
U

(A30)

F 0 G A OV (p,(u) -yr(u))/u (A31)

U

where V and A denote max and min, respectively. The complement of
F is defined by

F'

U

(l-y_(u))/u (A32)

or, equivalently,

F? = U 0 F . <A33)

It can readily be shown that F and G satisfy the identities

(F O G)' = F' U Gf (A34)

(FUG)* = F' flG' (A35)

(F © G)' = F! © G (A36)

(F © G)' = F1 © G (A37)

and that F satisfies the resolution identity

rl

F = aF (A38)

0
a

where Fft is the a-level-set off F; aFa is aset whose ^mb«sh^
function" is yaFn -ay. ,and Jj denotes the union of the aF, with
a e (0,1]. a a

Although it is traditional to use the symbol U to denote the
union of nonfuzzy sets, in the case of fuzzy sets it is advanta
geous to use the symbol + in place of Uwhere no confusion with
the arithmetic sum can result. This convention is «Pl^ " the
following example, which is intended to illustrate (A28) , (A29;,
(A30), (A31) and (A32).

Example A39. For U defined by (A10) and F and G expressed by

F = 0.4a + 0.9b + d (A40)
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G = 0.6a + 0.5b (A41)

we have

F + G = 0.6a + 0.9b + d (A42)

FHG= 0.4a + 0.5b (A43)

F©G = a + b + d (A44)

F © G = 0.4b + d (A45)

F' = 0.6a + 0.1b + c (A46)

The linguistic connectives and (conjunction) and or (disjunc
tion) are identified with O and +, respectively. Thus,

F and G A F O G (A47)
and

F or G A F + G . (A48)

As defined by (A47) and (A48) , and and or are implied to be
noninteractive in the sense that there is no "trade-off" between

their operands. When this is not the case, and and or are denoted
by <and> and <or>, respectively, and are defined in a way that
reflects the nature of the trade-off. For example, we may have

F <and> G A

F <or> G A

yi,(u)y_(u)/u (A49)
U F G

(yp(u) +yG(u) -yp(u)yQ(u)) /u (A50)

whose + denotes the arithmetic sum. In general, the interactive
versions of and and or do not possess the simplifying properties of
the connectives defined by (A47) and (A48), e.g., associativity,
distributivity, etc.

If a is a real number, then Fa is defined by

Fa A (y (n))°7u . (A51)
V

For example, for the fuzzy set defined by (A40), we have

F2 = 0.16a + 0.81b + d (A52)
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and

F1/2 = 0.63a + 0.95b + d . (A53)

These operations may be used to approximate, very roughly, the
effect of the linguistic modifiers very and more or less. Thus,

very FAF2 <A54)

more or less FAF1/2 . (A55)

If F-,,...^ are fuzzy subsets of U^...^, then the carte
sian prodict of F^...,Fn is afuzzy subset ofU^-x^ defined
by

F x ... x F =
1 n

(yF (ux) A•'' Ayp (un)) /{jiv ... ,un) . (A56)
1 n

U x-.-xu
1 n

As an illustration, for the fuzzy sets defined by (A40) and (A41),
we have

FXG= (0.4a+0.9b +d) x(0.6a+0.5b) (A57)
= 0.4/(a,a)+0.4/(a,b)+0.6/(b,a)

+ 0.5/(b,b)+0.6/(d,a)+0.5/(d,b)

which is a fuzzy subset of (a+b+c+d) x(a+b+c+d).

Fuzzy Relations

An n-ary fuzzy relation R in Uj.x ••• xUn is a fuzzy subset of
U]L x... xun. The projection of Ron U±1 x•••xU±k> where
(ilf...,ik) is asubsequence of (l,...,n), is arelation in
U. x — xu,-, defined by
il xk

Proj Ron U±1 x•••xU±k (A58)

V«Jx unVul Un)/(U1 ^
Ui]Lx---xUik

where (ji,...,J2,) is the sequence complementary to (il«-"^k>
(e.g., if n=6 then (1,3,6) is complementary to (2,4,5)), and
v denotes the supremum over Uj..x ••• xUj^.
uJl'"*'uJ£
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If R is a fuzzy subset of Ui;L,... ,Uik> then its cylindrical
extension in Ux x-•-xun is a fuzzy subset of Ux x... xun defined
by

i-[yRCU±i...-.ulk)/(uli....«n) . (A59)
U x...xu
1 n

In terms of their cylindrical extensions, the composition of
two binary relations R and S (in U^U2 and U2*U3, respectively)
is expressed by

Ro s=Proj RHS on ^ xU3 (A60)

where R and S are the cylindrical extensions of R and S in
U-, XU9XU3. Similarly, if R is abinary relation in Ux xU2 and S
is a unary relation in U2, their composition is given by

Ro s=Proj RHS on \5± . (A61)

Example A62. Let R be defined by the right-hand member of
(A57) and

S » 0.4a + b + 0.8d . (A63)

Proj R on U <£ a+b+c+d) = 0.4a + 0.6b + 0.6d (A64)

Ro S = 0.4a + 0.5b + 0.5d . (A65)

The Extension Principle

Let f be a mapping from U to V. Thus,

v = f(u) <A66>

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F = y..u + •••+y u (A67)

or, more generally,

F = u_(u)/u . (A68)
U F
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By the extension principle, the image of F under f is given by

f(F) « u^Oj^) + + uf(u )
n n

(A69)

or, more generally,

f(F) - up(u)/f(u) . (A70)

U

Similarly, if f is a mapping from UxV to W, and F and G are
fuzzy subsets of U and V, respectively, then

f(F,G) =
W

(y_(u) Ay (v))/f(u,v) .

Example A72. Assume that f is the operation of squaring,
Then, for the set defined by (A14), we have

f(0.3/0.5+ 0.6/0.7+ 0.8/0.9+ 1/1)

= 0.3/0.25 + 0.6/0.49 + 0.8/0.81 + 1/1 .

Similarly, for the binary operation V (A max), we have

(0.9/0.1 + 0.2/0.5 + 1/1) V (0.3/0.2 + 0.8/0.6)

= 0.3/0.2 + 0.2/0.5 + 0.8/1 + 0.8/0.6 + 0.2/0.6 .

(A71)

(A73)

(A74)

It should be noted that the operation of squaring in (A73) is dif
ferent from that of (A51) and (A52).
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