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The currently operational (March 1976) version of the INGRES database management systemZl7^™*™\tiJer system gives arelational view of data, support, two, h,gilevel
nonprocedural data sublanguages, and runs as acollection of user processes on top of the UMXSS^^ to DlSS Equipment Corporation PDP 11/40,11/45, and 11/70 computer^
SSiSTS the design decisions and tradeoffs related to (1) structuring the system into
^ceTes ^2) embedding one command language in ageneral purpose programming anguage,
SSSorithm. implemented to process interactions, (4) the access methods implemented
(5) the concurrency and recovery control currently provided, and (6) the data structures used
for system catalogs and the role of the database administrator.
XdLussed are (1) support for integrity constraints (which is only partly operaUonal),

(2) the not yet supported features concerning views and protection, and (3) future plans con-
cerning the system.
Key Words and Phrases: relational database, nonprocedural language, query language, data
sublanguage, data organization, query decomposition, database optimization, data integrity,
protection, concurrency
CR Categories: 3.50,3.70,4.22,4.33,4.34

1. INTRODUCTION

INGRES (Interactive Graphics and Retrieval System) is a relational database
system which is implemented on top of the UNIX operating system developed at
Bell Telephone Laboratories [22] for Digital Equipment Corporation PDP 11/40,
11/45 and 11/70 computer systems. The implementation of INGRES is primardy
programmed in C, a high level language in which UNIX itself is written. Parsing
isdone with the assistance of YACC, a compiler-compiler available on UNIX [19].
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The advantages of arelational mode. ^^.^ZZT^^Z
been extensively discussed in *« '"re ,W^ ^an™Jly *otivatcd by
elaboration. In choosing the relat.o"£ model, ^»e^ fford and (b) thc
(a) the high degree of data mdepend"J ^U^urc frce faciUty for data
SXS2££&^&-^-vic-and intP6rity vcr,fica-
tion.

js^e^rr^ntS
an^rit c—ds^accepted by the current*"^^£££
face, Com, is agraphics oriented, ^£**$%£*££££. (Km-
t20 211 but not discussed in this paper. In Section 1.3 wo aescriDe wu. vi >.
ted*d Quel) precompiler, which allows the^'f^V^o^M^lallpam for the "front end" process. This precompiler has the f%«*£*f£f£
oflNGRES in the general purpose programming language C. In Section 1.4 a
"£££?^<£X^factors in the UNIX environment whicji

•ha "SSS oiMP decUions. Moreover, we indicate the structure of th^f «r
prases into which INGRES is divided and the reasoning behind the choices im
P,r^ttn 3we indicate the catalog (system) relations which exist•£* the role
of the database administrator with respect to all relations in adatabase The mi
plemented access methods, their filing conventions, and, where appropriate, the
actual layout of data pages in secondary storage are also Panted

Sections 4 5 and 6discuss respectively the various functions of each of the three
W pTocesse"ri the system. Ako discussed are the design and ««£»«££
strttejof each process. Finally, Section 7draws conclusions, suggestfuture ex
tensioS, and indicates the nature of the current W}™1™™™^?™^Except where noted to the contrary, this paper describes the INGRES sjstcm
operational in March 1976.

12 QUEL and the Olher INGRES Utility Commands
0ml fouErv Laneuase) has points in common with Data Language/ALPHA 18],&l3Und^S4] in that it is acomplete query language «h«=h frees the
o™mer from concern or how data structures are implemented and what algo-
rZTare grating on stored data [9]. As such it facilitates aconsiderable degree
of data independence [24]. .The Quel examples in this section ail concern the following relations.
ACM Transactions on Database Systems. Vol. I. No. 3, September 1976.
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The Design and Implementation of INGRES 191

EMPLOYEE (NAME, DEPT,SALARY, MANAGER, AGE)

DEPT (DEPT, FLOOR/)

AQuel interaction includes atleast one RANGE statement of the form
RANGE OF variable-list IS relation-name

The purpose of this statement is to specify the relation over which each variable
ranges. The variable-list portion of aRANGE statement declares variables which
will be used asarguments for tuples. These are called tuple variables.

An interaction also includes one or more statements of the form

Command tresult-namel (target-list)
[WHERE Qualification!

Here Command is either RETRIEVE, APPEND, REPLACE, or DELETE. For
RETRIEVE and APPEND, result-name is the name of the relation which quali
fying tuples wuTbe retrieved into or appended to. For REPLACE and DELETE,
result-name is the name of a tuple variable which, through the qualification, iden
tifies tuples to be modified ordeleted. The target-list is a list of the form

result-domain = QUEL Function

Here the result-domains are domain names in the result relation which are to be
assigned the values of the corresponding functions.

The following suggest valid Quel interactions. A complete description of the
language is presented in [15].
Example 1.1. Compute salary divided by age-18 for employee Jones.

RANGE OF E IS EMPLOYEE
RETRIEVE INTO W.
(COMP = E.SALARY/(E.AGE-18))
WHERE E.NAME = "Jones"

Here E is a tuple variable which ranges over the EMPLOYEE relation, and all
tuples in that relation are found which satisfy the qualification E.NAME =
"Jones." The result of the query is a new relation W, which has a single domain
COMP that has been calculated for each qualifying tuple.

If the result relation is omitted, qualifying tuples are written in display format
on the user's terminal or returned to a calling program.

Example 1.2. Insert the tuple (Jackson,candy,13000,Baker,30) into EMPLOYEE.
APPEND TO EMPLOYEE(NAME = "Jackson", DEPT = "candy",

SALARY = 13000, MGR = "Baker", AGE = 30)

Here the result relation EMPLOYEE is modified by adding the indicated tuple to
the relation. Domains which are not specified default to zero for numeric domains
and null for character strings. A shortcoming of the current implemcnation is that
0 is not distinguished from "no value" for numeric domains.

Example 1.3. Fire everybodyon the first floor.
RANGE OF E IS EMPLOYEE
RANGE OF D IS DEPT
DELETE E WHERE E.DEPT = D.DEPT

AND D.FLOOR/ = 1

ACM Transactions on Database Systems. Vol. 1, N»». 3, September 1976.
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Here Especifics that the EMPLOYEE relation is to be modified. All tupleswto
beTemov^which have avalue for DEPT which is the same as some department
on the first floor.

Example 1.4. Give a10-percent raise to Jones if he works on the first floor.
RANGE OF E IS EMPLOYEE
RANGE OF D IS DEPT
REPLACE E(SALARY = l.LE.SALARY)
WHERE E.NAME = "Jones" AND

E.DEPT = D.DEPT AND D.FLOOR? = 1

Here E.SALARY is to be replaced by l.UE.SALARY for those tuples in EM
PLOYEE where the qualification is true.

In addition to the above Quel commands, INGRES supports avariety of utility
commands. These utility commands can bo classified into seven major categories.

(a) Invocation of INGRES:

INGRES data-base-name

This command executed from UNIX "logs in" auser to a given database. (A data
base is simplv a named collection of relations with a given database administrator
who has powers not available to ordinary users.) Thereafter the user may issue all
other commands (except those executed directly from UNIX) within the environ
ment of the invoked database.

(b) Creation and destruction ofdatabases:
CREATEDB data-base-name

DESTROYDB data-base-name

These two commands are called from UNIX. The invoker of CRE\TEDB must be
authorized to create databases (in a manner to be described presently), and he
automatically becomes the database administrator. DESTROYDB successfully
destroys a database only ifinvoked by the database administrator.

(c) Creation and destruction of relations:

CREATE relname(domain-name IS format, domain-name IS format,...)

DESTROY relname

These commands create and destroy relations within the current database. The
invoker of the CREATE command becomes the "owner" of the relation created.
Auser may only destroy a relation that he owns. The current formats accepted by
INGRES are 1-, 2-, and 4-byte integers, 4- and S-byte floating point numbers, and
1-to 255-byte fixed length ASCII character strings.

(d) Bulk copy of data:

COPY relname (domain-name IS format, domain-name IS format,...) direction "file
name"

PRINT relname

ACMTransa«k.DS un Databaw Systems. Vol. 1. Xo. 3. September1970.
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The command COPY transfers an entire relation to or from a UNIX file whose
name is "filename." Dtoection is cither TO or FROM. The format for each domain
is a description of how it appears (or is to appear) in the UNIX file. The relation
relname must exist and have domain names identical to the ones appearing in the
COPY command. However, the formats need not agree and COPY will auto
matically convert data types. Support is also provided for dummy and variable
length fields in a UNIX file.

PRINT copies a relation onto the user's terminal, formatting it as a report. In
this sense it is stylized version of COPY.

(e) Storage structure modification:

MODIFY relname TO storage-structure ON (keyl, key2,. . . )

INDEX ON relname IS indexname(keyl, key2,...)

The MODIFY command changes the storage structure of a relation from one
access method to another. The five access methods currently supported are dis
cussed in Section 3. The indicated keys arc domains in relname which are con
catenated left to right to form a combined key which is used in the organization of
tuples in all but one of the access methods. Only the owner of a relation may modify
its storage structure.

INDEX creates a secondary index for a relation. It has domains of keyl, key2,
..., pointer. The domain "pointer" is the unique identifier of a tuple in the in
dexed relation having the given values for keyl, key2,.... An index named AGE-
INDEX for EMPLOYEE might be the following binary relation (assuming that
there arc six tuples in EMPLOYEE with appropriate names and ages).

Age Pointer
25 identifier for Smith's tuple
32 identifier for Jones's tuple

AGEINDEX 36 identifier for Adams's tuple
29 identifier for Johnson's tuple
47 identifier for Baker's tuple
58 identifier for Harding's tuple

The relation indexname is in turn treated and accessed just like any other relation,
except it is automatically updated when the relation it indexes is updated. Natur
ally, only the owner of a relation may create and destroy secondary indexes for it.

(f) Consistency and integrity control:

INTEGRITY CONSTRAINT is qualification

INTEGRITY CONSTRAINT LIST relname

INTEGRITY CONSTRAINT OFF relname

INTEGRITY CONSTRAINT OFF (integer,.... integer)

RESTORE data-base-name

The first four commands support the insertion, listing, deletion, and selectivedele
tion of integrity constraints which are to be enforced for all interactions with a
relation. The mechanism for handling this enforcement is discussed in Section 4.
The last command restores a database to a consistent state after a system crash.

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.
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It must be executed from UNIX, and its operation is discussed in Section 6.The
RESTOREcommand is only available to the database administrator.

(g) Miscellaneous:

HELP (relname or manual-sectionl

SAVE relname UNTIL expiration-date

PURGE data-base-name

HELP provides information about the system or the database invoked. When
called with an optional argument which is a command name, HELP returns the
appropriate, page from the INGRES reference manual [31]. When called with a
relation nameas an argument, it returns all information about that relation. With
no argument at all, it returns information about all relations in the current data
base.

SAVE Is the mechanism by which a user can declare his intention to keep a rela
tion until a specified time. PURGE is a UNIX command which can be invoked by
a database administratoi to delete all relations whose "expiration-dates" have
passed. This should be done when space in a database is exhausted. (The database
administrator can also removeany relations from his database using the DESTROY
command, regardless of who their owners are.)

Two comments should be noted at this time.
(a) The system currently accepts the languagespecifiedas Queli in [15]; extension

is in progress to accept Quel„. (b) The system currently does not accept views or
protection statements. Although the algorithms have been specified [25, 27], they
are not yet operational. For this reason no syntax for these statements is given in
this section; however the subject is discussed further in Section 4.

1.3 EQUEL

Although Quel alone provides the flexibility for many data management require
ments, there are applications which require a customized user interface in place of
the Quel language. For tliis as well as other reasons, it is often useful to have the
flexibility of a general purpose programming language in addition to the database
facilities of Quel. To this end, a new language, Equel (Embedded Quel), which
consists of Quel embedded in the general purpose programming language C, has
been implemented.

In the design of Equel the following goals were set: (a) The new language must
have the full capabilities of both C and Quel, (b) The C program should have the
capability for processing each tuple individually, thereby satisfying the qualifica
tion in a RETRIEVE statement. (This is the "piped" return facility described in
Data Language/ALPHA [8].)

With these goals in mind, Equel was defined as follows:

(a) Any C language statement is a valid Equel statement.
(b) Any Quel statement (or INGRES utility command) is a valid Equel state

ment as long as it is prefixed by two number signs (##).
(c) C program variables may be used anywhere in Quel statements except as

ACM Transactions on Database Systems, Vol. I, No. 3, September 1976.
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command names. The declaration statements of C variables used in this
manner must also be prefixed by double number signs.

(d) RETRIEVE statements without a result relation have the form
RETRIEVE (target-list)

(WHERE qualification!
tt\
C-block

m

which results in the C-block being executed once for each qualifying tuple.
Two short examples illustrate Equel syntax.

Example 1.5. The following program implements a small front end to INGRES
which performs only one query. It reads in the name of an employee and prints
out the employee's salary in a suitable format. It continues to do this as long as
there are names to be read in. The functions READ and PRINT have the obvious
meaning.

main()

[
ft char EMPNAME[20];
ft int SAL;
while (READ(EMPNAME))

I
// RANGE OF X IS EMP
ft RETRIEVE (SAL = X.SALARY)
ff WHERE X.NAME = EMPNAME

PRINT("The salary of", EMPNAME, "is", SAL);

I

I

In this example the C variable EMPNAME is used in the qualification of the
Quel statement, and for each qualifying tuple the C variable SAL is set to the
appropriate value and then the PRINT statement is executed.

Example 1.6. Read in a relation name and two domain names. Then for each of
a collection of values which the second domain is to assume, do some processing on
all values which the first domain assumes. (We assume the function PROCESS
exists and has the obvious meaning.) A more elaborate version of this program
could serve as a simple report generator.

main( )

I
ff int VALUE;
ff char RELNAME[1Z), DOMNAME[lZ], DOMVAL[SO];
ft char DOMNAME 2(13];
READ(RELNAME);
READ (DOMYAME);
READ (DOMXAME 2);
ff RANGE OF X IS RELNAME
while (READ(DOMVAL))

I

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976.
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ft
ft

?
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RETRIEVE (VALUE = X.DOMNAME)
WHERE X.DOMNAME 2 = DOMVAL

PR0CESS(7i4Lr/£);
//}

I

^«*_**M*iMh>

}Anv RANGE declaration (in this case the one for X) is assumed by INGRES
totd^ defined. Hence only one RANGE ^^'^P^^Zof the number of times the RETRIEVE statement is executed. Note ctearly that
fnySnng except the name of an INGRES command can be aCvariable. In the
aotve example ^LA^il/£ is aCvariable used as arelation name, while DOM-
NAME and DOMNAME 2 arcused as domain names.

1.4 Comments on QUEL and EQUEL
In tlu. section a few remarks are made indicating differences between Quel and
Equel and selected other proposed data sublanguages and embedded data sub-
^Efborrows much from Data Language/ALPHA. The primary differences are:
(a) Arithmetic is provided in Quel; Data Language/ALPHA suggests reliance on a
host language for this feature, (b) No quantifiers are present in Quel This results
hta consistent semantic interpretation of the language in terms of function^m
the crossproduct of the relations declared in the RANGE statements Hence, Quel
is considered by its designers to be alanguage based on functions and not on afirst
order predicate calculus, (c) More powerful aggregation capabilities are provided

mTheElatest version of Sequel 12] has grown rather close to Quel. The reader
is directed to Example 1(b) of [2], which suggests a variant of the Quel syntax
The main differences between Quel and Sequel appear to be: (a) Sequel
allows statements with no tuple variables when possible using a block oriented
notation, (b) The aggregation facilities of Sequel appear to be different from
those defined in Quel. , DT ,, w

Svstem R [2] contains a proposed interface between Sequel and PL/1 or
other host language. This interface differs substantially from Equel and contains
explicit cursors and variable binding. Both notions are implicit in Equel. The
interested reader should contrast the two different approaches to providing an
embedded data sublanguage.

2. THE INGRES PROCESS STRUCTURE

INGRES can be invoked in two ways: First, itcan be directly invoked from UNIX
bv executing INGRES database-name; second, it can be invoked by executing a
program written using the Equel precompiler. We discuss each in turn and then
comment briefly on why two mechanisms exist. Before proceeding, however, a few-
details concerning UNIX must be introduced.

2.1 The UNIX Environment

Two points concerning UNIX are worthy of mention in this section.
(a) The UNIX file system. UNIX supports a tree structured file system similar

ACM Transactions on Database Systems. Vol 1. No. 3.Septeml*r 1976.
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to that of MULTICS. Each file is either a directory (containing references to de
scendant files in the file system) or a data file. Each file is divided physically into
512-byte blocks (pages). In response to a read request, UNIX moves one or more
pages from secondary memory to UNIX core buffers and then returns to the user
the actual byte string desired. If the same page is referenced again (by the same or
another user) while it is still in a core buffer, no disk I/O takes place.

It is important to note that UNIX pages data from the file system into and out
of system buffers using a "least recently used" replacement algorithm. In this way
the entire file system is managed as a large virtual store.

The INGRES designers believe that a database system should appear as a user
job to UNIX. (Otherwise, the system would operate on a nonstandard UNIX and
become less portable.) Moreover the designers believe that UNIX should manage
the system buffers for the mbc of jobs being run. Consequently, INGRES contains
no facilities to do its own memory management.

(b) The UNIN process structure. A process in UNIX is an address space (64K
bytes or less on an 11/40, 128K bytes or less on an 11/45 or 11/70) which is asso
ciated with a user-id and is the unit of work scheduled by the UNIX scheduler.
Processes may "fork" subprocesses; consequently a parent process can be the root
of a process subtree. Furthermore, a process can request that UNIX execute a file
in a descendant process. Such processes may communicate with each other via an
interprocess communication facility called "pipes." A pipe may be declared as a
one direction communication link which is written into by one process and read by
a second one. UNIX maintains synchronization of pipes so no messages are lost.
Each process has a "standard input device" and a "standard output device." These
are usually the user's terminal, but may be redirected b}' the user to be files, pipes
to other processes, or other devices.

Last, UNIX provides a facility for processes executing reentrant code to share
procedure segments if possible. INGRES takes advantage of this facility so the
core space overhead of multiple concurrent users is only that required by data
segments. -

2.2 Invocation from UNIX

Issuing INGRES as a UNIX command causes the process structure shown in Fig
ure 1 to be created. In this section the functions in the four processes will be indi
cated. The justification of this particular structure is given in Section 2.4.

Process 1 is an interactive terminal monitor which allows the user to formulate,
print, edit, and execute collections of INGRES commands. It maintains a work
space with which the user interacts until he is satisfied with his interaction. The
contents of this workspace are passed down pipe A as a string of ASCII characters
when execution is desired. The set of commands accepted by the current terminal
monitor is indicated in [31].

user

term
inol

t l 1 « i 1 o | i r r
h--H i--"-+i »--°-M U-^-rt
i i

I I

H 4

J L.

process
I

i

i

- - 4

F L.

l i

.1 I

J E l_

i i

i i

to 1

J 0 |_

process

2
process

3
process

4

Fig. 1. INGRES process structure
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As noted above, UNIX allows a user to alter the standard mput and output
devices for his processes when executing a command. As a result the invoker of
INGRES may direct the terminal monitor to take input from a user file (m which
case he runs a "canned" collection of interactions) and direct output to another
device (such as the line printer) or file. #

Process 2 contains a lexical analyzer, a parser, query modification routines for
integritv control (and, in the future, support of views and protection), and con
current control. Because of size constraints, however, the integrity control rou
tines are not in the currently released system. When process 2 finishes, it passes a
string of tokens to process 3through pipe B. Process 2is discussed in Section 4.

Process 3 accepts this token string and contains execution routines for the com
mands RETRIEVE, REPLACE, DELETE, and APPEND. Any update is turned
into a RETRIEVE command to isolate tuples to be changed. Revised copies of
modified tuples are spooled into a special file. This file is then processed by a "de
ferred update processor" in process 4, which is discussed inSection 6.

Basically, process 3 performs two functions for RETRIEVE commands, (a) A
multivariable query is decomposed into a sequence of interactions involving only a
single variable, (b) Aone-variable query is executed by a one-variable query pro
cessor (OVQP). The OVQP in turn performs its function by making calls on the
access methods. These two functions are discussed in Section 5; the access methods
are indicated in Section 3.

All code to support utility commands (CREATE, DESTROY, INDEX, etc.)
resides in process 4. Process 3 simply passes to process 4 any commands which
process 4 will execute. Process 4 is organized as a collection of overlays which ac
complish the various functions. Some of these functions are discussed inSection 6.

Error messages are passed back through pipes D, E, and F to process 1, which
returns them to the user. If the command is a RETRIEVE with no result relation
specified, process 3 returns qualifying tuples in a stylized format directly to the
"standard output device" of process 1. Unless redirected, this is the user's termi
nal.

2.3 Invocation from EQUEL

We now turn to the operation of INGRES when invoked by code from the pre
compiler.

In order to implement Equel, a translator (precompiler) was written to convert
an Equel program into a valid C program with Quel statements converted to
appropriate C code and calls to INGRES. The resulting C program is then com
piled by the normal C compiler, producing an executable module. Moreover, when
an Equel program is run, the executable module produced by the C compiler is
used asthe front end process in place of the interactive terminal monitor, asnoted
in Figure 2.

"» A '
• --•!

I I

I I
M 1

j F i

•» B r
•- M

I I

I I

t»- - -i
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J D L.

C
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Fig. 2. The forked process structure
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During execution of the front end program, database requests (Quel statements
in the Equel program) are passed through pipe A and processed by INGRES.
Note that unparsed ASCII strings are passed to process 2; the rationale behind
this decision isgiven in[1]. If tuples must be returned for tuple at a time processing,
then they are returned through a special data pipe set up between process 3and the
C program. Acondition code is also returned through pipe F to indicate success or
the type of error encountered.

The functions performed by the Equel translator are discussed in detail in [1].

2.4 Comments on the Process Structure

Theprocess structure shown in Figures 1and 2 is the fourth different process struc
ture implemented. The following considerations suggested this final choice:

(a) Address space limitations. To run on an 11/40, the 64K address space
limitation must be adhered to. Processes 2 and 3 are essentially their maximum
size; hence they cannot be combined. The code in process 4 is in several overlays
because of size constraints.

Were a large address space available, it is likely that processes 2, 3, and 4 would
be combined into a single large process. However, the necessity of 3 "core" processes
should not degrade performance substantially for the following reasons.

If one large process were resident in main memory, there would be no necessity
of swapping code. However, were enough real memoryavailable (~300K bytes) on
a UNIX system to hold processes 2 and 3 and all overlaj-s of process 4, no swap
ping of code would necessarily take place either. Of course, this option is possible
only on an 11/70.

On the other hand, suppose one large process was paged into and out of main
memory by an operating system and hardware which supported a virtual memory.
It is felt that under such conditions page faults would generate I/O activity at
approximately the same rate as the swapping/overlaying of processes in INGRES
(assuming the same amount of real memory was available in both cases).

Consequently the only sources of overhead that appear to result from multiple
processes are the following: (1) Reading or writing pipes require system calls which
are considerably more expensive than subroutine calls (which could be used in a
single-process system). There are at least eight such system calls needed to execute
an INGRES command. (2) Extra code must be executed to format information for
transmission on pipes. For example, one cannot pass a pointer to a data structure,
through a pipe; one must linearize and pass the whole structure.

(b) Simple control flow. The grouping of functions into processes was moti
vated by the desire for simple control flow. Commands arc passed only to the right;
data and errors only to the left. Process 3 must issue commands to various over
lays in process 4; therefore, it was placed to the left of process 4. Naturally, the
parser must precede process 3.

Previous process structures had a more complex interconnection of processes.
This made synchronization and debugging much harder.

The structure of process 4 stemmed from a desire to overlay little-used code in
a single process. The alternative would have been to create additional processes
5, 6, and 7 (and their associated pipes), which would be quiescent most of the time.
This would have required added space in UNIX core tables for no real advantage.
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The processes arc all synchronized (i.e. each waits for an error return from the
next process to the right before continuing to accept input from theJP^ ^tte
left) simplifying the flow of control. Moreover, in many instances the various.vl^ZZt £ synchronized. Future versions of INGRES^may— ^
ploit parallelism where possible. The performance payoff of such parallelism is
unknown at the present, time. r, nivvrpflm

(c) Isolation of the front end process. For reasons of protection the Cprogram
which replacesthe terminal monitor as afront endmust run with auser-id different
from that of INGRES. Otherwise it could tamper directly with data managed by
INGRES. Hence, it must be either overlaycd into a process or run in itsown process.
The latter was chosen for efficiency and convenience.

(d) Rationale for two process structures. The interactive terminal monitor
could have been written in Equel. Such a strategy would have avoided the exis
tence of two process structures which differ only in the treatment of the data pipe.
Since the terminal monitor was written prior to the existence of Equel, this option
could not be followed. Rewriting the terminal monitor in Equel is not considered
a high priority task given current resources. Moreover, an Equel monitor would
be slightlv slower because qualifying tuples would be returned to the calling pro
gram and"then displayed rather than being displayed directly by process 3.

3. DATA STRUCTURES AND ACCESS METHODS

We begin this section with adiscussion of the files that INGRES manipulates and
their contents. Then we indicate the five possible storage structures (file formats)
for relations. Finally we sketch the access methods language used to interface uni
formly to the available formats.

3.1 The INGRES File Structure

Figure 3indicates the subtree of the UNIX file system that INGRES manipulates.
The root of this subtree is a directory made for the UNIX user "INGRES." (When

•-• •-• •-•
system

initiotizotion

files

catalog DBA otheruser
reto'ions relations relalons

Fig. 3. The IXGKKS subtree

ACMTransactions on Database Systems,Vol. I. No. 3. September 1976.

source (C- language)
code files



.*M«t«rtiTti r*u\tt(ik\titfiirr)ifi*mi*tt* imiiU in iinil*i<»«r niliin n -r-^ •-•.-'»»-»•• i n/mt - '< utiwifc •« twmwftiiii*-^

The Design and Implementation of INGRES 201

the INGRES system is initially installed such a user mast be created. This user is
known as the "superuser" because of the powers available to him. This subject is
discussed further in [2S].) This root has six descendant directories. The AUX direc
tory has descendant files containing tables which control the spawning of processes
(shown in Figures 1and 2) and an authorization list of users who are allowed to
create databases. Only the INGRES superuser may modify these files (by using
the UNIX editor). BIN and SOURCE are directories indicating descendant files
of respectively object and source code. TMP has descendants which are temporary
files for the workspaces used by the interactive terminal monitor. DOC is the root
of a subtree with system documentation and the reference manual. Last, there is
a directory entry in DATADIR for each database that exists in INGRES. These
directories contain the database files in a given database as descendants.

These database files are of four types:
(a) Administration file. This contains the user-id of the database administrator

(DBA) and initialization information.
(b) Catalog (system) relations. These relations have predefined names and are

created for every database. They areowned by the DBA andconstitute the system
catalogs. They may be queried by a knowledgeable user issuing RETRIEVE state
ments; however, they may be updated only by the INGRES utility commands (or
directly by the INGRES superuser in an emergency). (When protection state
ments are implemented the DBA will be able to selectively restrict RETRIEVE
access to these relations if he wishes.) The form and content of some of these rela
tions will be discussed presently.

(c) DBA relations. These are relations owned by the DBA and are shared in
that any user may access them. When protection is implemented the DBA can
"authorize" shared use of these relations by inserting protection predicates (which
will be in one of the system relations and may be unique for each user) and de-
authorize useby removing such predicates. This mechanism is discussed in [28].

(d) Otherrelations. These arerelations created by other users (byRETRIEVE
INTO W or CREATE) and are not shared.

Three comments should be made at this time.
(a) The DBA has the following powers not available to ordinary users: the abil

ity to create shared relations and to specify access control for them; the ability to
run PURGE; the ability to destroy any relationsin his database (except the system
catalogs).

This system allows "one-level sharing" in that only the DBA has these powers,
and he cannot delegate any of them to others (as in the file systems of most time
sharing systems). This strategy was implemented for three reasons: (1) The need
for added generality was not perceived. Moreover, added generality would have
created tedious problems (such as making revocation of access privileges nontriv-
ial). (2) It seemsappropriate to entrust to the DBA the duty (and power) to resolve
the policy decision which must be made when spaceis exhaustedand somerelations
must be destroyed or archived. This policy decision becomes much harder (or im
possible) if a database is not in the control of one user. (3) Someone must be en
trusted with the policy decision concerning which relations are physically stored
and which are defined as "views." This "database design" problem is best central
ized in a single DBA.

ACM Transactions on Database Systems, Vol. I. No. 3, September 1976.
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0* Exceot for the single administration file in each database, every file is treated
as* rettTon Storing" stem catalogs as relations has the followmg advantages:
tt) C^TcconomiLl by sharing routines for accessing both catalog and date
£l.fi™» <2<TshT several storage structures arc supported for accessing data"b S"O.KTnd flelly under various interaction mixes, these^amcstorage
choices may be utilized to enhance access to catalog information. (3) The ability to
«ecu"^EL statements to examine (and patch) system relations where neces-
^S^XttA file, i.e. no attempt is made to "cluster"
tuples torn different relations which may be accessed together on the same or on a
Tote d£riv that this clustering is analogous to DBTG systems in declaring a
record type to be accessed via aset type which associates records o that recordIy£ JuTa record of adifferent record type. Current DBTG implementations
usually attempt to physically cluster these associated records. ^

Note also that clustering tuples from one relation in agiven file ^ obvious per
formance implications. The clustering techniques of this nature that INGRES
supports are indicated in Section 3.3. ... «... f„ii„„.The decision not to cluster tuples from different relations is based on the follow
ing reasoning. (1) UNIX has asmall (512-byte) page size. Hence it is expected that
the number of tuples which can be grouped on the same page is sma 1 Moreover,
logically adjacent pages in a UNIX file are not necessarily physica£ adjac*nt
Hence clustering tuples on "nearby" pages has no meaning in UNIX; the next
logical page in a file may be further away (in terms of disk arm motion) thani a
page in adifferent file. In keeping with the design decision of not modifying UNIX,
these considerations were incorporated in the design decision not to support clus
tering (2) The access methods would be more complicated if clustering were sup
ported. (3) Clustering of tuples only makes sense if associated tuples can be linked
together using "sets" [6], "links" [29], or some other scheme for identifying clusters.
Incorporating these access paths into the decomposition schemewould have greatly
increased its complexity. , . ,.„ ,

It should be noted that the designers of System Rhave reached a different con-
elusionconcerning clustering [2].

3.2 System Catalogs
We now turn to a discussion of the system catalogs. We discuss two relations in
detail and indicate briefly the contents of the others. Aa,a^QCO

The RELATION relation contains one tuple for every relation in the database
(including all the system relations). The domains of this relation are:

the name of the relation. ,
the UNIX user-id of the relation owner; when appended to rehd it produces

a unique file name for storing the relation. . . j. »•
indicates one of five possible storage schemes or else aspecial code indicating

a virtual relation (or "view").
flag set if secondary index exists for this relation. (This flag and the follow

ing two are present to improve performance by avoiding catalog lookups
when possible during query modification and one variable query pro-
cessing.)

ACM Transactions on Database Systems. Vol. 1. No. 3.September 1976.

relid
owner

spec

indexd



•nmrwiMttniiai--- ^.,,..:>^.^ll • • .. •^....W.Hi. .rfn.r»m.,»h- .1 arw.nl .^«* *'•*'"•> ""™rtl

The Design and Implementation of INGRES • 203

protect flag set ifthis relation has protection predicates.
integ flag set if there are integrity constraints.
save scheduled lifetime of relation. .,,,»> j«tuples number of tuples in relation (kept up to date by the routine closer dis-

cussed in the next section),
atts number of domains in relation,
width width (in bytes) of a tuple,
prim number of primary file pages for this relation.

The ATTRIBUTE catalog contains information relating to individual domains
of relations. Tuples of the ATTRIBUTE catalog contain the following items for
each domain of every relation in the database:

relid name of relation in whichattribute appears,
owner relation owner.
domain name domain name. Tvrr-ntrcdomain-no domain number (position) in relation. In processing interactions INGRES

uses this number to reference this domain,
offset offset inbytes from beginning of tuple tobeginning ofdomain,
type data type of domain (integer, floating point, or character string),
length length (in bytes) of domain. .keyno if this domain is part of akey, then "keyno" indicates the ordering of this

domain within the key.

These two catalogs together provide information about the structure and content
of each relation in the database. No doubt items will continue to be added or de
leted as the system undergoes further development. The first planned extensions
are the minimum and maximum values assumed by domains. These will be used by
a more sophisticated decomposition scheme being developed, which is discussed
briefly in Section 5and in detail in [30]. The representation of the catalogs as rela
tions has allowed this restructuringto occur very easily.

Several other system relations exist which provide auxiliary information about
relations. The INDEX catalog contains a tuple for every secondary index in the
database. Since secondary indices are themselves relations, they are independently
cataloged in the RELATION and ATTRIBUTE relations. However, the INDEX
catalog provides the association between a primary relation and its secondary
indices and records which domains ofthe primary relation arein the index.

The PROTECTION and INTEGRITY catalogs contain respectively the pro
tection and integrity predicates for each relation in the database. These predicates
are stored in a partially processed form as character strings. (This mechanism
exists for INTEGRITY and will be implemented in the same way for PROTEC
TION.) The VIEW catalog will contain, for each virtual relation, a partially pro
cessed QuEL-like description of the view in terms of existing relations. The use of
these last three catalogs is described in Section 4. The existence of any of this
auxiliary information for a given relation is signaled by the appropriate flag(s) m
the RELATION catalog.

Another set of system relations consists of those used by the graphics subsystem
to catalog and process maps, which (like everything else) are stored as relations in
the database. This topic has been discussed separately in [13].

ACM Transactions on Database Systems. Vol. I. N*o. 3, September 1976.
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3.3 Storage Structures Available
We will now describe the five storage structures currently available in I^0?^-
Four of the schemes are keyed, i.e. the storage location of a tuple within the file is
a function of the value of the tuple's key domains. They are termed hashed
"ISAM," "compressed hash," and •'compressed ISAM." For all four structures the
key may be any ordered collection of domains. These schemes allow rapid access to
specific portions of a relation when key values are supplied. The remaining non-
keyed scheme (a "heap") stores tuples in the file independently of their values and
provides a low overhead storage structure, especially attractive in situations re
quiring a complete scan of the relation.

The nonkeyed storage structure in INGRES is a randomly ordered sequential
file. Fixed length tuples are simply placed sequentially in the file in the order sup
plied. New tuples added to the relation are merely appended to the end of thc_™c-
The unique tuple identifier for each tuple is its byte-offset within the file. This
mode is intended mainly for (a) very small relations, for which the overhead of
other schemes is unwarranted; (b) transitional storage of data being moved into
or out of the system by COPY; (c) certain temporary relations created as inter
mediate results during query processing.

In the remaining four schemes the key-value of a tuple determines the page of
the file on which the tuple will be placed. The schemes share a common "page-
structure" for managing tuples on file pages, as shown in Figure 4.

Atuple must fit entirely on a single page. Its unique tuple identifier (TID) con-
.sists of a page number (the ordering of its page in the UNIX file) plus a line num
ber. The line number is an index into a line table, wiiich grows upward from the
bottom of the page, and whose entries contain pointers to the tuples on the page.
In this way the physical arrangement of tuples on a page can be reorganized with
out affecting TIDs.

Initially the file contains all its tuples on a number of primary pages. If the rela
tion grows and these pages fill, overflow pages are allocated and chained by pointers

LINE
TABLE

NEXT
PRIMARY
PA6E

/L
next/
overflow
PAGE

NEXT AVAILABLE
LINE NUMBER

TUPLE AREA

GROWS

y

h-r-7-
|_l I L—
Jill!
}_lj 1 L__li i ii i i t—i—

_i—j—i.—i \
_l J L 1 > OVERFLOW

PAGES

PRIMARY^/
PAGE

c BYTE OFFSET OF
TUPLE ON PAGE

Fig. 4. Page layout for keyed storage structures
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to the primary pages with which they arc associated. Within a chained group of
pages no special ordering of tuples is maintained. Thus in a keyed access which
locates a particular primary page, tuples matching the key may actually appear on
any page in the chain.

As discussed in [1G], two modes of key-to-addrcss transformation are used—ran
domizing (or "hashing") and order preserving. In a "hash" file tuples arc distrib
uted randomlv throughout the primary pages of the file according to a hashing
function on a key. This mode is well suited for situations in which access is to be
conditioned on a specific key value.

As an order preserving mode, a scheme similar to IBM's ISAM [18] is used. The
relation is sorted to produce the ordering on a particular key. Amultilevel direc
tory is created which records the high key on each primary page. The directory,
which is static, resides on several pages following the primary pages within the file
itself. Aprimary page and its overflow pages are not maintained in sort order. This
decision isdiscussed inSection 4.2. The "ISAM-like" mode is useful in cases where
the key value is likely tobe specified as falling within a range of values, since a near
ordering of the keys is preserved. The index compression scheme discussed in [16] is
currently under implementation.

In theabove-mentioned keyed modes, fixed length tuples are stored. In addition,
both schemes can be used in conjunction with data compression techniques [14] in
cases where increased storage utilization outweighs the added cost of encoding and
decoding data during access. These modes are known as "compressed hash" and
"compressed ISAM."

The current compression scheme suppresses blanks and portions of a tuple which
match the preceding tuple. This compression is applied toeach page independently.
Other schemes are being experimented with. Compression appears to be useful in
storing variable length domains (which must be declared their maximum length).
Padding is then removed during compression by the access method. Compression
may also be useful when storing secondary indices.

3.4 Access Methods Interface

The Access Methods Interface (AMI) handles all actual accessing of data frons
relations. The AMI language is implemented as a set of functions whose calling
conventions are indicated below. A separate copy of these functions is loaded with
each of processes 2, 3, and 4.

Each access method must do two things to support the following calls. First, it
must provide some linear ordering of the tuples in a relation so that the concept of
"nexttuple" is well defined. Second, it must assign to each tuple a unique tuple-id
(TID).

The nine implemented calls are as follows:

(a) OPEXR (descriptor, mode, relation—name)

Before a relation may be accessed it must be "opened." This function opens the
UNIX file for the relation and fills in a "descriptor" with information about the
relation from the RELATION and ATTRIBUTE catalogs. The descriptor (storage
for which must bo declared in the calling routine) is used in subsequent calls on
AMI routinesas an input parameter to indicate which relation is involved. Conse-
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quently, the AMI data accessing routines need not themselves check the system
catalogs for the description of a relation. "Mode" specifics whether the relation is
being opened for update or for retrieval only.

(b) GET(descriptor, tid, limit—tid, tuple, next—flag)

This function retrieves into "tuple," a single tuple from the relation indicated by
"descriptor." "Tid" and "limit__tid" are tuple identifiers. There are two modes of
retrieval, "scan" and "direct." In "scan" mode GET is intended to be called suc
cessively to retrieve all tuples within a range of tuple-ids. An initial value of "tid"
sets thelow end of the range desired and "limit_tid" sets the high end. Each time
GET is called with "next-flag" = TRUE, the tuple following "tid" is retrieved
and its tuple-id is placed into "tid" in readiness for the next call. Reaching "limit—
tid" is indicated by a special return code. The initial settings of "tid" and "limit—
tid" are done by calling the FIND function. In "direct" mode ("next—flag" =
FALSE), GET retrieves the tuplewithtuple-id = "tid."

(c) FIND(descriptor, key, tid, key_type)

When called with a negative "key-type," FIND returns in "tid" the lowest tuple-id
on the lowest page which could possibly contain tuples matching the key supplied.
Analogously, the highest tuple-id is returned when "key-type" is positive. The
objective is to restrict the scan of a relation by eliminating tuples from considera
tionwhich areknown from their placement not to satisfy a given qualification.

"Key-type" also indicates (through its absolute value) whether the key, if sup
plied, is an EXACTKEY or a RANGEKEY. Different criteria for matching are
applied ineach case. An EXACTKEY matches only those tuples containing exactly
the value of the key supplied. ARANGEKEY represents the low (or high) end of
a range of possible key values and thus matches any tuple with a key value greater
thanorequal to(orlessthan or equal to) the key supplied.Note thatonlywithan order
preserving storage structure can a RANGEKEY be used to successfully restrict a
scan.

In cases where the storage structure of the relation is incompatible with the
"key-type," the "tid" returned will be as if no key were supplied (that is, the
lowest or highest tuple in the relation). Calls to FIND invariably occur in pairs,
to obtain the two tuple-ids which establish thelow and high ends of thescan done
in subsequent calls to GET.

Two functions are available for determining the access characteristics of the
storage structure ofa primary data relation orsecondary index, respectively.
(d) PARAMD (descriptor, access—characteristics—structure)

(e) PARAMI(index-descriptor, access—characteristics—structure)

The "access-characteristics-structure" is filled in with information regarding the
type of key which may be utilized to restrict the scan of a given relation-. It indi
cates whether exact key values or ranges of key values can be used, and whether a
partially specified key may be used. This determines the "key-type" used ina sub
sequent call to FIND. The ordering ofdomains in the key is also indicated. These
two functions allow the access optimization routines to be coded independently of
the specific storage structures currently implemented.
ACM Transactions on Database Systems, Vol. 1. No. 3, September 1976.
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Other AMI functions provide a facility for updating relations.
(f) INSERT (descriptor, tuple)

The tuple is added to the relation in its "proper" place according to its key value
and the storage mode of the relation.

(g) REPLACE(descriptor, tid, new—tuple)

(h) DELETE(descriptor, tid)

The tuple indicated by "tid" is either replaced by new values or deleted from the
relation altogether. The tuple-id of the affected tuple will have been obtained by a
previous GET.

Finally, when all access to a relation is complete it must be closed:
(i) CLOSER (descriptor)

This closes the relation's UNIX file and rewrites the information in the descriptor
back into the system catalogs if there has been any change.

3.5 Addition of New Access Methods

One of the goals of the AMI design was to insulate higher level software from the
actual functioning of the access methods, thereby making it easier to add different
ones. It is anticipated that users with special requirements will take advantage of
this feature.

In order to add a new access method, one need only extend the AMI routines to
handle the new case. If the new method uses the same page lavout and TID scheme
only FIND, PARAMI, and PARAMD need to be extended. Otherwise new pro
cedures to perform the mapping of TIDs to physical file locations must be supplied
for use by GET, INSERT, REPLACE, and DELETE. "

4. THE STRUCTURE OF PROCESS 2

Process 2contains four main components:
(a) a lexical analyzer;
(b) a parser (written in YACC [19]);
(c) concurrency control routines;
(d) query modification routines to support protection, views, and integrity con

trol (at present only partially implemented).
Since (a) and (b) are designed and implemented along fairly standard lines, onlv

(c) and (d) will be discussed in detail. The output of the parsing process is a tree
structured representation of the input query used as the internal form in subsequent
processing. Furthermore, the qualification portion of the querv has been converted
to an equivalent Boolean expression in conjunctive normal form. In this form the
query tree is then ready to undergo what has been termed "query modification."
4.1 Query Modification

Query modification includes adding integrity and protection predicates to the
original query and changing references to virtual relations into references to the ap
propriate physical relations. At the present time only asimple integrity scheme has
been implemented. *

ACM Transactions on Database Systems. Vol. 1. No. 3. September 1976.
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In (27] algorithms of several levels of complexity are presented for performing in
tegrity control on updates. In the present system only the simplest case, involving
single-variable, aggregate free integrity assertions, has been implemented, as de
scribed in detail in [23].

Briefly, integrity assertions an- entered in the form of Quel qualification clauses
to be applied to interactions updating the relation over which the variable in the
assertion ranges. Aparse tree is created for the qualification and a representation of
this tree is stored in the INTEGRITY catalog together with an indication of the
relation and the specific domains involved. At query modification time, updates arc
checked forany possible integrityassertions ontheaffecteddomains. Relevant asser
tions are retrieved, rebuilt into tree form, and grafted onto the update tree so asto
AND the assertions with the existing qualification of the interaction.

Algorithms for the support of views are also given in [27]. Basically a view is a
virtual relation defined in terms of relations which plrysically exist. Only the view-
definition will be stored, and it will be indicated to INGRES by a DEFINE com
mand. This command will have a syntax identical to that of a RETRIEVE state
ment. Thus legal views will be thoserelations which it is possible to materialize by a
RETRIEVE statement. They will be allowed in INGRES to support Equel pro
grams written for obsolete versions of the database and for user convenience.

Protection will be handled according to the algorithm described in [25]. Like in
tegrity control, this algorithm involves adding qualifications to the user's interac
tion. The details of the implementation (which is in progress) are given in [28],
which also includes a discussion of the mechanisms being implemented to physically
protect INGRES files from tampering in any way other than by executing the
INGRES object code. Last, [28] distinguishes the INGRES protection scheme from
the one based on views in [5] and indicates the rationale behind its use.

In the remainder of this section we give an example of query modification at work.
Suppose at a previous point in time all employees in the EMPLOYEE relation

were under 30 and had no manager recorded. If an Equel program had been written
for this previous version.of EMPLOYEE which retrieved ages of employees coded
into 5 bits, it would now fail for employees over 31.

If one wishes to use the above program without modification, then the following
view must be used:

RANGE OF E IS EMPLOYEE

DEFINE OLDEMP (E.NAME, E.DEPT, E.SALARY, E.AGE)
WHERE E.AGE < 30

Suppose that all employees in the EMPLOYEE relation must make more than
$8000. This can be expressed by the integrity constraint:

RANGE OF E IS EMPLOYEE
INTEGRITY CONSTRAINT IS E.SALARY > 8000

Last, suppose each person is only authorized to alter salaries of employees whom
he manages. This is expressed as follows:

RANGE OF E IS EMPLOYEE

PROTECT EMPLOYEE FOR ALL (E.SALARY; E.NAME)
WHERE E.MANAGER = ♦

ACM Transactions <id Ihttolcwe Systems, Vol. 1, No. 3. September 1976.
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The *isa surrogate for the logon name ofthe current UNIX user ofINGRES. The
semicolon separates updatable from nonupdatable (but visible) domains.

Suppose Smith through an Equel program or from the terminal monitor issues
the following interaction:

RANGE OF L IS OLDEMP
REPLACE L(SALARY = .9.L.SALARY)
WHERE L.NAME = "Brown"

This isan update on a view. Hence the view algorithm in [27] will first be applied to
yield:

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY = .9«>E.SALARY)
WHERE E.NAME = "Brown"
AND E.AGE < 30

Note Brown is only in OLDEMP if he is under 30. Now the integrity algorithm in
[27] must be applied to ensure that Brown's salary is not being cut to as little as
S8000.This involves modifying the interaction to:

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY « .9*E.SALARY)
WHERE E.NAME = "Brown"

AND E.AGE < 30
AND .9*E.SALARY > $8000

Since .9+E.SALARY will be Brown's salary after the update, the added qualifica
tion ensures this will be more than SS000.

Last, the protection algorithm of [28] is applied to yield:-

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY = .9*E.SALARY)
WHERE E.NAME = "Brown"

AND E.AGE < 30
AND .9*E.SALARY > $8000
AND E.MANAGER = "Smith"

Notice that in all three cases more qualification is ANDed onto the user's inter
action.The view algorithm must in addition change tuplevariables.

In allcases thequalification isobtained from (or isaneasy modification of) predi
cates stored in the VIEW, INTEGRITY, and PROTECTION relations. The tree
representation of the interaction is simply modified to AND these qualifications
(which are all stored in parsed form).

It should be clearly noted that only one-variable, aggregate free integrity asser
tions arc currently supported. Moreover, even thisfeature isnot in the released ver
sion of INGRES. The code for both concurrency control and integrity control will
not fit into process 2 without exceeding 64K words. Thedecision was made to release
a system with concurrency control.

The INGRES designers are currently adding a fifth process (process 2.5) to hold
concurrency and query modification routines. On PDP ll/45s and ll/70s that have
a 12SK addressspace this extra process will not be required.
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4.2 Concurrency Control

In any multiuser system provisions must ho inMi.,i~i *
current updates are executed in*m.T„ ** "£ <** to cnsur(4 «»t multiple con-

RANGE OF E IS EMPLOYEE
Ul REPLACE E(DEPT « "toy")

WHERE E.DEPT = "candy"

RANGE OF F IS EMPLOYEE
V2 REPLACE F(DEPT = "candy")

WHERE F.DEPT = "toy" !

cnL?ina"lSartZtlCd0?hCUrrenttly H n° «"**• ^employees maydatable is S^^&SZZX*r> - ^^tab.e*the
after »nv rfu jTV . that lt "PPtar* instantaneous and before or

to IWRK tt^ rrf'0n)LThiS at0miC|tmit *»«*«=a1^ •"tmnSon?.inJl^ORES there are five basic choices available for defining atransaction-
(a) something smaller than one INGRES command: transa<*'°n-
(b) one INGRES command; ';
(c) acollection of INGRES commands with no intervening Ccode•

allv fin Pit»,„, nr.A ^ • V, . ult ff8 lf thev wereexecutedsequenti-
coidTaa ol^L'^r C°II?ti°.n °{INGRES I**"* In fact, the outcome
unde^ble ^ '" "*d" "* """"ft ab°Ve- Tbis situation «• «*»*

Option (e) is, in the opinion of the INGRES designers imDossible to «,nn™+ Tk„
follo^ng transaction could be declared in an EQUEL plogZT *'

BEGIN TRANSACTION
FIRST QUEL UPDATE
fvI^Tm n^Vt, ™CREATE AND DESTROY FILES

SYSTEM CALLS TO READ FROM ATERMINAL
SYSTEM CALLS TO READ FROM ATAPE

EK^^S^DATE (Wh0SC form d^nds r Pre-<>- two system calls)
Suppose Tl is the above transaction and runs concurrently with atransaction T2

™nZl~L°* *? Z^ fT,ThC SeC°nd V"' <>f ea^h £SS£nHnriffll? \ t^firSt Updat0 of the othcr- *&*« that there is no way to tell aprion that Tl and T2 conflict, since the form of the second update is notknown'm
advance Hence adeadlock situation can arise which can only be revived bv aborT
attempting to back out one transaction. The overhead of backing out through tZintermediate system calls appears prohibitive (if it isj^bkS
ACM Transactions on Database Systems. Vol. 1. No. 3. September W78. \
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Restricting a transaction to have no system calls (and hence no I/O) cripples the
power of atransaction in order to make deadlock resolution possible. This was judged
undesirable.

For example, the following transaction requires such system calls:

BEGIN TRANSACTION
QUEL RETRIEVE to find all flights on a particular day from San Francisco to Los

Angeles with space available.
Display flights and times to user.
Wait for user to indicate desired flight.
QUEL REPLACE to reserve a seat onthe flight of the user's choice.

END TRANSACTION

If the above set of commands is not a transaction, then space on a flight may not
be available when the REPLACE is executed even though it was when the
RETRIEVE occurred.

Since it appears impossible to support multi-QuEL statement transactions (ex
cept in a crippled form), the INGRES designers have chosen Option (b), one Quel
statement, as a transaction.

Option (c) can be handled by a straightforward extension of the algorithms to
follow and will be implemented if there is sufficient user demand for it. This option
can support "triggers" [2] and may prove useful.

Supporting Option (d) would considerably increase system complexity for what
is perceived to be a small generalization. Moreover, it would be difficult toenforce in
the Equel translator unless the translator parsedthe entire C language.

The implementation of (b) or (c) can be achieved by physical locks on data items,
pages, tuples, domains, relations, etc. [12] or by predicate locks [26]. The current im
plementation is by relatively crude physical locks (on domains of a relation) and
avoids deadlock by not allowing an interaction to proceed to process 3 until it can
lock all required resources. Because of a problem with the current design of the RE
PLACE access method call, all domains of a relation must currently be locked (i.e. a
whole relation is locked) to perform an update. This situation will soon be rectified.

The choice of avoiding deadlock rather than detecting and resolving it is made
primarily for implementation simplicity.

Thechoice ofa crude locking unit reflects ourenvironment where core storage for
a large lock table is not available. Our current implementation uses a LOCK rela
tion into which a tuple for each lock requested is inserted. This entire relation is
physically locked and then interrogated for conflicting locks. If none exist, all needed
locks are inserted. If a conflict exists, the concurrency processor "sleeps" for a fixed
interval and then tries again. The necessity to lock the entire relation and to sleep
for a fixed interval results from the absence ofsemaphores (oran equivalent mecha
nism) in UNIX. Because concurrency control can have high overhead as currently
implemented, it can be turned off.

The INGRES designers areconsidering writing a device driver (a clean extension
to UNIXroutinely written for new devices) to alleviate thelack ofsemaphores. This
driver would simply maintain core tables to implement desired synchronization and
physical locking in UNIX.

The locks are held by the concurrency processor until a termination message is
received on pipe E. Only then does it delete its locks.

ACM Transactions on Database Systems. Vol. 1, No. 3. September 1070.
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CPUot^ acrude (and thereby low
approach may provide consArable ^Z Ŝ '^ d™r'lM in ™- Such ™^ospacean^Pji^^^^^y atf? *CC^^ overhead in lock

To conclude tin's section !! hHi a^mjnt is highly speculative.
page and its JS^"5?^^^*** ** «*»• •discussed in [17]. ^A.M-like access method. This topic is also

would stiM bo reouireflo l^^hH ,HoCK ;;,:rf" "T** IXGRESany proposed predicate locking Jl, , , ?P .« ° lnscrt !ocks- Moreover,operation. If tne <ock ^T^^^r^*1^ such •» "
tuple from arelation by holding only oTetck £ . i ^ ^ •,nS"rt a"d d°lete a
overflow page are unordered However Jit, , f Pr""ary "agc and its
pages may require the access metho 11, 'i SJ^T of "* «t order of these
tuple. Clearly deadlock ™" ml m°r° tKa" °',C Page when !t *"»*» athe,ock table in the tSv^ottS^T11'"^^ ^ ™°!pages remain unsorted. Predictable. To avoid both problems these
5. PROCESS 3

SCIK^* " <**>™ «>e fol owing two functions, which m

evaluated. This programt^X^O^T^t^ "" T* ^ *
appropriate queries to isolate oualihW ,J 'i j any Updates into thcsocial file for deferred update. ' P fnd *P°°ls "odifications into a
query S^O^"*"8 qUCH°S' P* Pr°gram"cal,ed the ""variable
5.1 DECOMP

searching as small aportion of tic am oorh.ee ? f °' ^^ Nwtane. inCOMP uses three techniques in Z2£ P" Hcrossproduct space as possible. DE-
and then give theSSSffiil'"^^ *****

<£2&£SRa a«?t r* 5?EC0JIP to «—ain the query is selected for sutetltuto The Axfe T ^ 1^^ ™ny)tion associated with the variable „ ' ''T' 'S USed loscan "* rcla-
domains in that relation are ubsUtuted ,n « ' "r™* tUP'e th<' Valura of
Query, all previous references "ofhe ut, 13P ^ ," "'" W*Wn« m°difiod
by values (constants) and the queryVaM^S Va"abl^haW n™ been replaced
composition is repeated (rocuHvo) -, on ^Jfe?""' * °"'*1<?SS Variable' Dc"-ains, a, which point LOVQ^aSfe^n""*~ "**
ACM Transactions on I^tabas* System, Vol 1 W« t c
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(b) One-variable detachment. If the qualification Qof the query is of the form
Q,(F,) AND Qt(Pi ,..., V*)

for some tuple variable l'i , the following two steps can be executed:
(1) Issue the query

RET1UEVE INTO W (TLlV'il)
WHERE QilFi]

Here TL[K,] are those domains required in the remainder of the query. Note that
this is a one-variable query and may be passed directly to OVQP.
(2) Replace ft, , the relation over which Vx ranges, by Win the range declaration and delete

Q,[I',1 from Q.

The query formed in step 1is called a"one-variable, detachable subquery," and
the technique for forming and executing it is called "one-variable detachment
(OVD) This step has the effect of reducing the size of the relation over which ,
ranges by restriction and projection. Hence it may reduce the complexity of the
processing to follow.

Moreover, the opportunity exists in the process of creating new relations through
OVD, to choose storage structures, and particularly keys, which will prove helpful
in further processing. . .

(c) Reformatting. When a tuple variable is selected for substitution, a large
number of queries, each with one less variable, will be executed. It (b) is a possible
operation after the substitution for some remaining variable 1, , then the relation
over which \\ ranges, ff, , can be reformatted to have domains used in QiO'O as a
key. This will expedite (b) each time it is executed during tuple substitution.

We can now state the complete decomposition algorithm. After doing so, we illus
trate all steps with an example.

Step 1. If the number of variables in the query is 0or 1, call OVQP and then return; else go on
to step 2.

Step 2. Find all variables, \\\, . . ., Vn\, for which the query contains a one-variable clause
Perform OVD to create new ranges for each of these variables. The new relation for each

variable V, is stored as a hash file with key A, chosen as follows:
2.1. For each;select from the remaining multivariable clauses in the query the collection,

Cij, which have the form Vrdt = Vr <*j , where d\ ,d, are domains of ,\ and V,- .
2.2. From the key A, to be the concatenation of domains dtl ,d.2,...on >appearing in

clauses in C,,. ,. .. •-
2.3. If more thanone; exists, for which C.y is nonempty, one C, is chosen arbitrarily tor

forming the key. IfC„ is empty for all j, the relation is stored as an unsorted table.
Step 3. Choose the variable V. with the smallest number of tuples as the next one for which to

perform tuple substitution.

Step 4 For each tuple variable V, for which C„ is nonnull, reformat if necessary the storage
structure of the relation /,', over which it ranges so that the key of /.', is the concatenation
of domains d,x .... appearing in C.. . This ensures that when the clauses in Cj. become
one-variable after substituting for V. , subsequent calls to OVQP to restrict further the
range of V, will be done as eiliciently as possible.

Step o. Iterate the following steps over all tuples in the range of the variable selected in step
3 and then return:
5..1. Substitute values from tuple into query.

ACM Transaction* ..n DataLax- S>slei..>. V.,!. 1. N» 3. Sc|.l.ml*r 1076.
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has bti'rXd7T^rthm"^°n a«™ °< —*• query which now
o.3. Merge the results from 5.2 with those of previous iterations

We use the following query to illustrate the algorithm:
RANGE OF E, MIS EMPLOYEE
RANGE OF D IS DEPT
RETRIEVE (E.NAME)
WHERE E.SALARY > M.SALARY AND

E.MAN ACER = M.NAME
E.DEPT = D.DEPT
D.FLOOR* = i
E.AGE > 40

This request is for emplovees over 40 on thr. fiU a
manager. 0n the hrbt floor who earn more than their
LEVEL I

Step 1. Query is not one variable.

Step 2. Issue the two queries:

RANGE OF D IS DEPT
RETRIEVE INTO Tl(D.DEPT)
WHERE D.FLOORy = l

RANGE OFE IS EMPLOYEE

WHERE K^oj,™ £(E-NAME' ESALARV. E.MANAQEB, E.DKPT;

AND

AND

AND

0)

(2)

original query now becomes SjPP°SC 'l Cll005"s MANAGER. The
RANGE OF D IS Tl
RANGE OF E IS T2
RANGE OF M IS EMPLOYEE
RETRIEVE (E.NAME)
WHERE E.SALARY > M.SALARY \SD

E.MANAGER = M.NAME AND
E.DEPT = D.DEPT

Step 3. Suppose Tl has smallest cardinality. Hence Dis chosen for substitution
Step 4. Reformat T2 to be hashed on DEPT; the guess chosen in step2above was ap00r one
Step o. Iterate for each tuple in Tl and then quit:

rInGEOf'e?S Tl'" °- DEPT 3ieIding '
RANGE OF M IS EMPLOYEE
RETRIEVE (E.NAME)
WHERE E.SALARY > M.SALARY A.ND

EDEPT*GER " Mf«E AND
^.ut^fi = value

53 Cul.Vr^ ' "'ith the ab°Ve querv" inPut (Level 2below) -o.3. Cumulat.vely merge results as they are obtained.
ACM iWctio* on Datat^ S^ma, Vol. ,. No. 3. September „«.
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LEVEL 2

Step 1. Query is not one variable.

Step 2. Issue the query
RANGE OF E IS T2 tr^ (2)
RETRIEVE INTO T3 (E.NAME, E.SALARY, E.NAME) W
WHERE E.DEPT = value

T3 is constructed hashed on MANAGER. T2 in step 4in Level 1above is^refor
matted so that this query (which will be issued once for each tuple in Tl)jnll be
done efficiently by OVQP. Hopefully the cost of reformatting is small compared to
thesavings at thisstep. What remains is

RANGE OF E IS T3
RANGE IF M IS EMPLOYEE
RETRIEVE (E.NAME)
WHERE E.SALARY > M.SALARY AND

E.MANAGER = M.NAME

Step 3. T3 has less tuples than EMPLOYEE; therefore choose T3.
Step 4. [unnecessary!
Step 5. Iterate for each tuple in T3 and then^return APrevious level:

5.1. Substitute values for E.NAME, E.SALARY, and L.MANAGEk, >.eld.ng

RANGE OF M IS EMPLOYEE (4)
RETRIEVE (VALUE 1)
WHERE Value2 > M.SALARY AND

Value3 = M.NAME

52. Start atstep 1with this query as input (Level 3below).
5.3. Cumulatively merge results asobtained.

LEVEL 3

Step 1. Query has one variable; invoke OVQP and then return to previous level.
The algorithm thus decomposes the original query into the four.P^pe, one-

variable queries labeled (l)-(4), some of which are executed repetitive ^»
ent constant values and with results merged appropriately. Queries (.1 and.V are
executed once, query (3) once for each tuple in Tl, and query (4) the number of
times equal to the number of tuples in Tl times the number of tuples in 13.

The following comments on the algorithm are appropriate.
(a) OVD is almost always assured of speeding processing Not onlj is it possible

to choose the storage structure of atemporary relation wisely, but also he carn
ality of this relation may be much less than the one it replaces as the range tor a
tuple variable. It onlv fails if little or no reduction takes place and reformatting
is unproductive. . ... f -,.,_«It should be noted that atemporary relation is created rather than aI. t of quali
fying tuple-id's. The basie tradeoff is that OVD must copy quahiy.ng tuples; bucan
remove duplicates created during the projection. Stonng tuple-id sayo.ds the copj
operation at the expense of reaccessing qualifying tuples and -tammg duphca^
It is clear that cases exist where each strategy is superior. The INGRES designers

ACM TmnMCtiooa on D.i.Uo* Sy.t.m.. Vol. I.So. 3. Sc|.u™l*' 1«»-
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^S^Zlaoffer worscpcrlormance than the
. Wthealgorithmab^^^^^^^^

jffiSEss;a sr^s*,- r variab,c -0--with*•calk on OVQP. '" Cff°Ct °f rcducm8 the ™mber of eventual

; -ns. This almost -SSSSKCTL""^*" SC0"CCti°n °f*—
*£&££Sritt^^ cfficiont'y hand,es a,arge —of **~There are, howe -er ca^ he e,1 T^H-*0 CPU overhrad to D"f°™-
ing comment app&sTo^h cases ^ aIg°rfthm"indicated- The follow-

. (c) Suppose that we have two or more strategies ST. IT w
being better than the previous one but nl™ ?1 • ' '''""; ST" •each onp
further that we begin an int ra'tion on Srtdn,^^ "*""" °Verhcad- BbW"fraction of the estimated overhead of ST At t^ >rf am°Unt°f time eaual to aiug the number of tuples ofTfe fcffL';fV Cndo[ hat (i™. by simply count-
processed, we can getIn£££?„TeESS T^^ ^ "^ been

5.2 One-Variable Query Processor (OVQP)

ssst'v^a^s^cffic ™acccssi,is °f tup-fr- •**known as STRATEGY dot, I T"'' Th° lnitial portion °f thi* program
cess the rela,^n™t\l^:^tk wiifhany) T* ^ *"*»* to~
FIND, and whether accessm^-h! 1 ^, '"Ca"S to the AMI r0*™
storage structure ofthXZrohZTuV™*' thr°Ugh thp AMI »° «">should be used. If accesTto S£. t " *1jeconda^ ind» °» the relation

ceased by S SclvTiTon of OTOpS The" T ^f^ "* « "»
the qualification part of the ouen c^L? /r", "?°Va'UatC °ach tuR,c a8ainstdispose of the target fet appSely *^ f"" ^ «'"*tUBl". a»d
rnattSSTIUTEGVh'Ciy «"**"*"«• ™4"* only the policy decisions
*513K32LeSffil:qualifieation for c,ausra which «•«•— •

".domain op constant

or

constant op F.domain
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where "op" is one of the set {=, <, >, <, > }. Such clauses are termed "simple"
clauses and are organized into a list. The constants in simple clauses will determine
the key values input to FIND to limit the ensuingscan.

Obviously a nonsimple clause may be equivalent to a simple one. For example,
E.SALARY/2 = 10000 is equivalent to E.SALARY = 20000. However, recogniz
ing and converting such clauses requires a general algebraic symbol manipulator.
This issue has been avoided by ignoring all nonsimple clauses.

STRATEGY must select one of two accessing strategies: (a) issuing two AMI
FIND commands onthe primary relation followed bya sequential scan of the rela
tion (using GET in "scan" mode) between the limits set, or (b) issuing two AMI
FIXD commands on some index relation followed by a sequential scan of the index
between the limits set. For each tuple retrieved the "pointer" domain is obtained;
this is simply the tuple-id of a tuple in the primary relation. This tuple is fetched
(using GET in "direct" mode) and processed.

To make the choice, the access possibilities available must be determined. Keying
information about the primary relation is obtained using the AMI function
PARAMD. Names of indices are obtained from the INDEX catalog and keying in
formation about indices is obtained with the function PARAMI.

Further, a compatability between the available access possibilities and the speci
fication of key values by simple clauses must be established. A hashed relation re
quires that a simple clause specify equality as the operatorin order to be useful; for
combined (multidomain) keys, all domains must be specified. ISAM structures, on
the other hand, allow range specifications; additionally, a combined ISAM key re
quires only that the most significant domains be specified.

STRATEGY checks for such a compatability according to the following priority
order of access possibilities: (1) hashed primary relation, (2) hashed index, (3)
ISAM primary relation, (4) ISAM index. The rationale for this ordering is related
to the expected number of pageaccesses required to retrieve a tuple from the source
relation in each case. In the following analysis the effect of overflow pagesis ignored
(on the assumption that the four access possibilities would be equally affected).

In case (1) the key value provided locates a desired source tuple in one access via
calculation involving a hashing function. In case (2) the key value similarly locates
an appropriate index relation tuple in one access, but an additional access is re
quired to retrieve the proper primary relation tuple. For an ISAM-structured scheme
a director}- must be examined. This lookup itself incurs at least one access but
possibly more if the directory is multilevel. Then the tuple itself must be accessed.
Thus case (3) requires at least two (but possibly more) total accesses. In case (4)
the use of an index necessitates yet another access in the primary relation, making
the total at least three.

To illustrate STRATEGY, we indicate what happens to queries (l)-(4) from
Section 5.1.

Suppose EMPLOYEE is an ISAM relation with a key of NAME, while DEPT is
hashed on FLOOR=. Moreover a secondary index for AGE exists which is liashed on
AGE, and one for SALARY exists which uses ISAM with a key of SALARY.

Query (1): One simple clause exists (D.FLOOR= = 2). Hence Strategy (a) is ap
plied against the hashed primary relation.

ACM Transactions on Database Systems. Vol. 1, No. 3, SVpteiiilwr 1<<7*.
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Query (2): One simple clause exists (E.AGlE!
limit the scan on ahashed index. Hence aconipl
is required. Were the index for AGE an ISAM
used on this index. J

Query (3): One simple clause exists and Tl has
(a) against the hashed primary relation. i! !

Query (4): Two simple clauses exist (Mi
M.NAME). Strategy (a) is available on the
(b) for the ISAM index. The algorithm cho

6. UTILITIES IN PROCESS 4

6.1 Implementation of Utility Commands |\j
We have indicated in Section 1several database
f—ids are organized into several overlay P^aiIIiJ „ n0Lea previously
^^rl??^*0 COrC M̂ ^"d#h *̂ raightfoLrd way

" StlitT li !dmnd k6yS (wWch necd not *WKthe «"«data type) Pages are

CREATE1™°^ 'M8 ^ Wh° creates M» empty hash relation using the
«v.7^*°T ? and then COpi6S aIai*e UNP ^ mt° it using COPY create!ayeryineffic,ent structure. Thisis because arelatfvL small default number of^rf
TZ^7" ^*"%>*«*** b>' CREATBiaidoverflowchaSoeLns
t££ T^' V° C°PY int0 Munsorted 4W» so that MODIFY can suSquently make agood guess at the number of primafefages to allocate.
«.2 Deferred Update and Recovery I !'
^CtT'^P^' ^ELETE' REPLACaiare processed by writing thetuples to be added, changed, or modified into aTtemporary file When nrocess I
K5 to« r6" V° ar% Perf°Im th« rfation7r;SdPaXny
sa^sss^nrsrta requ?r a-, step fa —*^^Secondary index considerations. Suppose, p\ following QUEL statement is

RANGE OF E IS EMPLOYEE | ii
REPLACE EfSALARY = 1.1.E.SALARY) !
WHERE E.SALARY> 20000 !

2^.^.thatJhere kaSeCOnd!Uy *** °n'̂ »l»ry domain and the primary relation is keyed onanother domain i P
OVQP, in finding the employees who qualify for &raise, wUI use the secondary

ACM !*•«*«... IkutaS»«.n^ VoL 1. N.. J. ii.pM.ab., OX, •!•'•] ,

40). However, it is not usable to
»(unkeyed) scan of EMPLOYEE

inflation, then Strategy (b) would be

been reformatted toallow Strategy

ete

Uie2 > M.SALARY; value3 =
primary relation, as is Strategy

lirategy (a).

utilities available to users. These
ms as noted previously. Bring-
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dices must be updated in deferred mode. statement(b) Primary relation considerations. Suppose the Qt,ll state mc nt
RANGE OF E, M IS EMPLOYEE
REPLACE ECSALARY = .9.E.SALAI >)
Where E.MGR = M.NAME AND

E.siLARY > M.SALARY
is executed for the following EMPLOYEE relation:

MANAGER
Jones

Smith

NAME

Smith

Jones

Brown

SALARY

10K

8K

9.5K

cuted:

RANGE OF E, M IS EMPLOYEE
REPLACE E(SALARY = M.SALARY )

soon be operational. nroeram) wishes to stop a commandJl^:^^Z^t^^^clr, «cePt the deferred
update program, which covers in the same manner as above.

-. v o„-.,.~.. Vol l Ni 3 September 19<6.ACM Tn.r.sact:...nson Database >., -•• •
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All update commands do deferred update; however the INGRES utilities have
not yet been modified to do likewise. When this has been done, INGRES will
recover from all crashes which leave the disk intact. In the meantime there can be
disk-intact crashes which cannot be recovered in this manner (if they happen in
such a way that the system catalogs are left inconsistent).

The INGRES "superuser" can checkpoint adatabase onto tape using the UNIX
backup scheme. Since IXGRES logs all interactions, aconsistent system can always
00 obtained, albeit slowly, by restoring the last checkpoint and running the log of
interactions (or the tape ofdeferred updates ifit exists).
iJn^M ** n°t0d that d°fcrrcd updato is a ver>' <*F>ensivo operation. One
INGKLb user has elected to have updates performed directly in process 3, cogni
zant that he must avoid executing interactions which will run incorrectly. Like
checks for functionality, direct update may be optionally available in the future.
Of course, a different recovery scheme must be implemented.

7. CONCLUSION AND FUTURE EXTENSIONS

The system described herein is in use at about fifteen installations. It forms the
basis of an accounting system, a system for managing student records, a geodata
system, a system for managing cable trouble reports and maintenance calls for a
large telephone company, and assorted other smaller applications. These applica
tions have been running for periods of up to nine months.

7.1 Performance

At this time no detailed performance measurements have been made, as the current
version (labeled Version 5) has been operational for less than two months. We have
instrumented the code and are in the process of collecting such measurements.

The sizes (in bytes) of the processes in INGRES are indicated below. Since the
access methods are loaded with processes 2 and 3 and with many of the utilities,
their contribution to the respective process sizes has been noted separately.

access methods (AM) UK
terminal monitor 10K
EQUEL 30K + AM
process 2 45K + AM
process 3 (query processor) 45K -f AM
utilities (8 overlays) 160K + AM

7.2 User Feedback

The feedback from internal and external users has been overwhelmingly positive
In this section we indicate features that have been suggested for future systems

(a) Improved performance. Earlier versions of INGRES were very slow the
current version should alleviate this problem.

(b) Recursion. Quel does not support recursion, which must be tediously pro
grammed in Cusing ihe precompiler; recursion capability has been suggested as a
desired extension.

(c) Other language extortions. These include user defined functions (especially
ACM Transaction* on Dntaba* $,«„, Vol. 1. No. 3. September 1976.
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counters), multiple target lists for a single qualification statement, and if-thcn-elsc
control structures in Quel; these features may presently be programmed, but only
very inefficiently, using the precompiler.

(d) Report generator. PRINT is a very primitive report generator and the
need for augmented facilities in this area is clear; it should be written in Equel.

(e) Bulk copy. The COPY routine fails to handle easily all situations that
arise.

7.3 Future Extensions

Noted throughout the paper are areas where system improvement is in progress,
planned, or desired by users. Other areas of extension include: (a) a multicomputer
system version of INGRES to operate on distributed databases; (b) further per
formance enhancements; (c) a higher level user language including recursion and
user defined functions; (d) better data definition and integrity features; and (e) a
database administrator advisor.

The database administrator advisor program would run at idle priority and issue
queries against a statistics relation to be kept by INGRES. It could then offer
advice to a DBA concerning the choice of access methods and the selection of
indices. This topic is discussed further in [16].
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