Copyright © 1976, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



)

THE DESIGN AND IMPLEMENTATION OF INGRES

by

Michael Stonebraker, Eugene Wong,
Peter Kreps and Gerald Held

Memorandum No. ERL-M577

27 January 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



u

o0 Tabodell Aetih €iaes o adatmidi N

S

\ - ~

— . . -

The Design and Implementation of INGRES
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The currently ;)pera{ ional (March 1976) version of the INGRES database management system -

is described. This multiuser system gives a relational view of data, supports two high level
nonprocedural data sublanguages, and runs as a collection of user processes on top of the UNIX
operating system for Digital Equipment Corporation PDP 11/40, 11/45, and 11,70 computers.
Emphasis is on the design decisions and tradeoffs related to (1) structuring the system into
processes, (2) embedding one command language in a general purpose programming language,
(3) the algorithms implemented to process interactions, () the access methods implemented,
(5) the concurrency and recovery control currently provided, dnd (6) the data structures used
for system catalogs and the role of the database administrator.

Also discussed are (1) support for integrity constraints (which is only partly operational),
(2) the not yet supported features concerning views and protection, and (3) future plans con-
cerning the system.

Key Words and Phrases: relational database, nonprocedural language, query language, data
sublanguage, data organization, query decomposition, database optimization, data integrity,

protection, concurrency
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1. INTRODUCTION ]

INGRES (Interactive Graphics and Retrieval System) is a relational databas

system which is implemented on top of the UNIX operating system developed at
Bell Telephone Laboratories [22] for Digital Equipment Corporation PDP 11/40,
11/45, and 11/70 computer systems. The implementation of INGRES is primarily
programmed in C, a high level language in which UNIX itself is written. Parsing
is done with the assistance of YACC, a compiler-compiler available on UNIX [19].
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The advantages of a relational model for database management systems have
been extensively discussed in the literature (7, 10, 11] and hardly require further
elaboration. In choosing the relational model, we were particularly motivated by
(a) the high degree of data independence that such a model affords, and (b) the
possibility of providing a high level and entirely procedure free facility for data
definition, retrieval, update, access control, support of views, and integrity verifica-
tion. ‘

1.1 Aspects Described in This Poper

In this paper we describe the design decisions made in INGRES. In particular we
stress the design and implementation of : (a) the system process structure (see Sec-
tion 2 for a discussion of this UNIX notion); (b) the embedding of all INGRES
commands in the general purpose programming language C; (c) the access methods
implemented; (d) the catalog structure and the role of the database administrator;
() support for views, protection, and integrity constraints; (f) the decomposition
procedure implemented; (g) implementation of updates and consistency of second-
ary indices; (h) recovery and concurrency control.

In Section 1.2 we briefly describe the primary query language supported, QUEL,’
and the utility commands accepted by the current system. The second user inter-
face, CuPID, is a graphics oriented, casual user language which is also operational
[20, 21] but not discussed in this paper. In Section 1.3 we describe the EqueL (Em-
bedded QUEL) precompiler, which allows the substitution of a user supplied C pro-
gram for the “front end” process. This precompiler has the effect of embedding all
of INGRES in the general purpose programming language C. In Section 1.4 a few
comments on QUEL and EQUEL are given.

In Section 2 we describe the relevant factors in the UNIX environment which

- have affccted our design decisions. Moreover, we indicate the structure of the four

processes into which INGRES is divided and the reasoning behind the choices im-
plemented.

In Section 3 we indicate the catalog (system) relations which exist and the role
of the database administrator with respect to all relations in a database. The im-
plemented access methods, their calling conventions, and, where appropriate, the
actual layout of data pages in secondary storage are also presented.

Sections 4, 3, and 6 discuss respectively the various functions of each of the three
“‘core” processes in the system. Also discussed are the design and implementation
strategy of each process. Finally, Section 7 draws conclusions, suggests future ex-

. tensions, and indicates the nature of the current applications run on INGRES.

Except where noted to the contrary, this paper describes the INGRES system
operational in March 1976.

1.2 QUEL and the Other INGRES Utility Commands ;
QueL (QUEry Language) has points in common with Data Language/ALpHa (8],
SqQUARE [3], and SEQUEL [4] in that it is a complete query language which frees the
programmer from concern for how data structures are implemented and what algo-
rithms are operating on stored data [9]. As such it facilitates a considerable degree
of data independence [24]. '

“The QUEL examples in this section all concern the following relations.

* ACM Trunsactivns on Database Systems, Vol. 1, No. 3, September 1976.
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EMPLOYEE (NAME, DEPT, SALARY, MANAGER, AGE)
DEPT (DEPT, FLOORY) , .

A QuEL interaction includes at least one RANGE statement of the form
RANGE OF variable-list IS relation-name . ’ '

The purpose of this statement is to specify the relation over which each variable
ranges. The variable-list portion of a RANGE statement declares variables which
will be used as arguments for tuples. These are called tuple variables.

An interaction also includes one or more statements of the form

Command [result-name](target-list)
[WHERE Qualification]

Here Command is either RETRIEVE, APPEND, REPLACE, or DELETE. For

_RETRIEVE and APPEND, result-name is the name of the relation which quali-

fying tuples will'be retrieved into or appended to. For REPLACE and DELETE,
result-name is the name of a tuple variable which, through the qualification, iden-
tifies tuples to be modificd or deleted. The target-list is a list of the form
result-domain = QUEL Function. . .. Co

Here the result-domains are domain names in the result relation which are to be
assigned the values of the corresponding functions.

The following suggest valid QUEL interactions. A complete description of the
language is presented in [15].

Example 1.1. Compute salary divided by age-18 for employee Jones.

RANGE OF E IS EMPLOYEE
RETRIEVE INTO W.

(COMP = E.SALARY/(E.AGE-18))
WHERE E.NAME = “Jones”

Here E is a tuple variable which ranges over the EMPLOYEE relation, and all

tuples in that relation are found which satisfy the qualification ENAME =

“Jones.” The result of the query is a new relation W, which has a single domain
COMP that has been calculated for each qualifying tuple.
If the result relation is omitted, qualifying tuples are written in display format
on the user’s terminal or returned to a calling program. .
Example 1.2. Insert the tuple (Jackson,candy,13000,Baker,30) into EMIPLOYEE.
APPEND TO EMPLOYEE(NAME = “Jackson”, DEPT = ‘‘candy”, V
SALARY = 13000, MGR = ‘“Baker”, AGE = 30) )

Here the result relation EMPLOYEE is modified by adding the indicated tuple to

" the relation. Domains which are not specified default to zero for numeric domains

and null for character strings. A shortcoming of the current implemenation is that
0 is not distinguished from “no value” for numeric domains. '

Example 1.3. Fire everybody on the first floor.

RANGE OF E IS EMPLOYEE :
RANGE OF D IS DEPT
DELETE E WHERE E.DEPT = D.DEPT

‘ AND D.FLOOR{f =1

ACM Transactions un Database Systems, Vol. 1, No. 3, September 1976.
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ation is to be modified. All tuples arc to

Here E specifies that the EMPLOYEE rel
as some department

be removed which have a value for DEPT which is the same
on the first floor. :

Erxample 1.4. Give a 10-pe

RANGE OF E IS EMPLOYEE
RANGE OF D IS DEPT
REPLACE E(SALARY = 1L.1:E.SALARY)

WHERE E.NAME = “Jones” AND
E.DEPT = D.DEPT AND D.FLOOR§ =1

Here ESALARY is to be replaced by 1.1+ESALARY for those tuples in EM-
PLOYEE where the qualification is true. ' :

In addition to thc above QUEL commands, INGRES supports a variety of utility
These utility commands can be classified into seven major categories.

-

reent raise to Jones if he works on the first floor.

‘commands.
(a) Invocation of INGRES:

INGRES data-base-name _
cuted from UNIX “logs in” a user to a given database. (A data-

This command exe
base is simply a named collection of relations with a given database administrator

who has powers not available to ordinary users.) Thercafter the user may issue all
other commands (except those exccuted direetly from UNIX) within the environ-

ment of the invoked databasc.
(b) Creation and destruction of databases:
CREATEDB data-base-name

DESTROYDB data-base-name .

These two commands are called from UNIX. The invoker of CREATEDB must be

authorized to create databases (in & manner to be described presently), and he
automatically becomes the database administrator. DESTROYDB successfully
destroys a database only if invoked by the database administrator.

(¢) Creation and destruction of relations:
CREATE relname(domain-name IS format, domain-name IS format, . ..)
DESTROY relname

These commands create and destroy relations within the current database. The
invoker of the CREATE command becomes the “owner” of the relation created.
A user may only destroy a relation that he owns. The current formats accepted by
INGRES are 1-, 2+, and 4-byte integers, 4 and S-byte floating point numbers, and
1- to 253-byte fixed length ASCII character strings. . :

‘(d) Bulk copy of data:

COPY relname(domain-name IS format, domain-name IS format, . . . ) direction *file-

name’’

PRINT relname
ACM Transsctivos un Datalase Systems, Vol. 1, No. 3, September 1976.




&

The Design and Implementation of INGRES 193

K]

The command COPY transfers an entire relation to or from a UNIX file whose
name is “filename.” Direction is cither TO or FROM. The format for each domain
is a description of how it appears (or is to appear) in the UNIX file. The relation
relname must exist and have domain names identical to the ones appearing in the
COPY command. However, the formats nced not agree and COPY will auto-
matically convert data types. Support is also prowded for dummy and vanablc
length fields in a UNIX file.

PRINT coplos a relation onto the user’s terminal, formatting it as a “(-port In
this sense it is stylized version of COPY.

(e) Storage structure modification:
MODIFY relname TO storage-structure ON (keyl, key2,...)
INDEX ON relname IS mdexname(keyl key2,...)

The MODIFY command changes the storage structure of a relatlon from one
access method to another. The five access methods currently supported are dis-
cussed in Scction 3. The indicated keys are domains in relname which are con-
catenated left to right to form a combined key which is used in the organization of
tuples in all but one of the access methods. Only the owner of a relation may modify
its storage structure.

INDEX creates a sccondary index for a relation. It has domains of keyl, key2,
..., pointer. The domain “pointer” is the unique identifier of a tuple in the in-
dexed relation having the given values for keyl, key2, . . .. An index named AGE-
INDEX for EMPLOYEE might be the following binary relation (assuming that
there are six tuples in EMPLOYEE with appropriate names and ages).

Age Pointer

25  identifier for Smith’s tuple

32  identifier for Jones’s tuple
AGEINDEX 36  identifier for Adams’s tuple

29  identifier for Johnson's tuple

47  identifier for Baker’s tuple

58  identifier for Harding’s tuple

The relation indexname is in turn treated and accessed just like any other relation,
except it is automatically updated when the relation it indexes is updated. Natur-
ally, only the owner of a relation may create and destroy secondary indexes for it.
(f) Consistency and integrity control:

INTEGRITY CONSTRAINT is qualification

INTEGRITY CONSTRAINT LIST relname
INTEGRITY CONSTRAINT OFF relname

INTEGRITY CONSTRAINT OFF (integer, . . . , integer)
RESTORE data-base-name

The first four commands support the insertion, listing, deletion, and selective dele-
tion of integrity constraints which are to be enforced for all interactions with a
relation. The mechanism for handling this enforcement is discussed in Section 4.
The last command restores a database to a consistent state after a system crash.

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976,
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It must be executed frém UNIX, and its operation is discussed in Section 6. The
RESTORE command is only available to the databasc administrator.

() Miscellaneous:

_ HELP {relname or manual-section]
SAVE relname UNTIL expiration-date
PURGE data-base-name

HELP provides information about the system or the database mvoked When
called with an optional argument which is a command name, HELP returns the
appropriate. page from the INGRES refercnce manual [31]. When called with a
relation name as an argument, it returns all information about that relation. With
no argument at all, it returns information about all relations in the current data-
base.

SAVE is the mechanism by which a user can declare his intention to keep a rela-
tion until a specified time. PURGE is 2 UNIX command which can be invoked by

. & databasc administrator to delete all relations whose “expiration-dates” have

passed. This should be done when space in a database is exhausted. (The database
administrator can also remove any relations from his database using the DESTROY

command, regardless of who their owners are.)

Two comments should be noted at this time.

(a) Thesystem currently accepts thelanguage speclﬁed as QUEL, in [15]; extension
is in progress to accept QUEL,. (b) The system currently does not accept views or
protection statements. Although the algorithms have been specified [25, 27], they
are not yet operational. For this reason no syntax for these statements is given in
this section; however the subjeet is discussed further in Section 4.

1.3 EQUEL

Although QuEL alone provides the ﬁex1b1hty for many data management require-
ments, there are applications which require a customized user interface in place of
the QUEL language. For this as well as other reasons, it is often useful to have the
flexibility of a general purpose programming language in addition to the database
facilities of QUEL. To this end, a new language, EQueL (Embedded QuEL), which
consists of QUEL embedded in the general purpose programmmg language C, has
been implemented.

In the design of EQUEL the following goals wereset: (a) The new language must
have the full capabilities of both C and QueL. (b) The C program should have the
capabilit_y for processing cach tuple individually, thereby satisfying the qualiﬁca-
tion in a RETRIEVE statement. (This is the “piped” return facility described in
Data Language/ALprHa [S].)

With these goals in mind, EQUEL was defined as follows:

(a) Any Clanguage statement is a valid EQUEL statement.

(b) Any QuEL statement (or INGRES utility command) is a valid EQuEL state-
ment as long as it is prefixed by two number signs (##).

(c) C program variables may be used anywhere in QUEL statements except as

ACM Transactivas on Database Systems, Vol. 1, Nou. 3, September 1976.
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command names. The declaration statements of C variables used in this
manner must also be prefixed by double number signs. i
(d) RETRIEVE statements without a result relation have the form
RETRIEVE (target-list)
. (WHERE qualification]

#t
C-block

L :

which results in the C-block being executed once for each qualifying tuple.
Two short examples illustrate EQUEL syntax. ’

Example 1.5. The following program implements a small front end to INGRE:
which performs only one query. It reads in the name of an employee and prints
out the employee’s salary in a suitable format. It continues to do this as long as
there are names to be read in. The functions READ and PRINT have the obvious
meaning. S ' '

main( )

{

## char EMPNAME[20);

## int SAL;

while (READ(EMPNAME))

{
# RANGE OF X IS EMP
## RETRIEVE (SAL = X.SALARY)
H WHERE X.NAME = EMPNAME
##1
PRINT(*The salary of”", EMPNAME, *‘is”, SAL);
##} )

i

In this example the C variable EMPNAME is used in the qualification of the
QUEL statement, and for each qualifying tuple the C variable SAL is set to the
appropriate value and then the PRINT statement is executed.

Ezample 1.6. Read in a relation name and two domain names. Then for each of
a collection of values which the second domain is to assume, do some processing on
all values which the first domain assumes. (We assume the function PROCESS
exists and has the obvious meaning.) A more elaborate version of this program
could serve as a simple report generator. '

main( )

{ .
#f int VALUE;
## char RELNAME13), DOMNAME(13], DOMV AL[80};
## char DOMNAME 2(13];
READ(RELNAME);
READ(DOMNAME);
READ(DOMNAME 2);
## RANGE OF X IS RELNAME
while (READ(DOMVAL))
t

ACM Transactions on Database Systems, Vol. 1, No, 3, September 1976.
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) RETRIEVE (VALUE = X.DOMNAJE)
## WHERE X.DOMNAME 2 = DOMVAL
#Ht
_ PROCESS(VALUE);
"

Any RANGE declaration (in this ease the one for X) is assumed by INGRES
to hold until redefined. Hence only one RANGE statement is required, regardless
of the number of times the RETRIEVE statement is exccuted. Note clearly that
anything except the name of an INGRES command can be a C variable. In the
above example RELNAME is a C variable used as a relation name, while DOAM -
NAME and DOMNAME 2 arc used as domain names.

1.4 Comments on QUEL and EQUEL
In this scction a few remarks are made indicating differences between QUEL and
Equer and sclected other proposed data sublanguages and cmbedded data sub-
languages. - : '
QuEL borrows much from Data Language/ALpHA. The primary differences are:
(2) Arithmetic is provided in QUEL; Data Language/ALPHA suggests reliance on a
host language for this feature. (b) No quantifiers are present in QueL. This results
in a consistent semantic interpretation of the language in terms of functions on

" the crossproduct of the relations declared in the RANGE statements. Hence, QUEL

is considered by its designers to be a language based on functions and not on a first
order predicate caleulus. (¢) More powerful aggregation capabilitics arc provided
in QUEL.

 The latest version of SEQUEL [2] has grown rather close to QuEeL. The reader
is dirceted to Example 1(b) of [2], which suggests a variant of the QUEL syntax.

The main differences between QUEL and SEQUEL appear to be: (a) SEQUEL
allows statements with no tuple variables when possible using a block oriented
notation. (b) The aggregation facilities of SEQUEL appear to be different from
those defined in QUEL.

System R [2] contains a proposed interface between SequeL and PL/1 or
other host language. This interface differs substantially from EQUEL and contains
explicit cursors and variable binding. Both notions are implicit in EQuEL. The
interested reader should contrast the two different approaches to providing an
embeddcd data sublanguage. :

2. THE INGRES PROCESS STRUCTURE
"INGRES can be invoked in two ways: First, it can be directly invoked from UNIX

by executing INGRES databasc-name; second, it can be invoked by executing a
program written using the EQUEL precompiler. We discuss cach in turn and then
comment briefly on why two mechanisms cxist. Before proceeding, however, a few
details concerning UNIX must be introduced.

2.1 The UNIX Environment

Two points concerning UNIX are worthy of mention in this section.
(2) The UNIX file system. UNIX supports a tree structured file system similar

ACM Traasactions un .D-uhusel Systems, Vol. 1, Nu. 3. September 1976.
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to that of MULTICS. Each file is either a directory (containing references to de-
scendant files in the file system) or a data file. Each file is divided physically into
512-byte blocks (pages). In response to a read request, UNIX moves one or more
pages from secondary memory to UNIX core buffers and then returns to the user
the actual byte string desired. If the same page is referenced again (by the same or
another user) while it is still in a core buffer, no disk I/O takes place. :

It is important to note that UNIX pages data from the file system into and out
of system buffers using a “least recently used” replacement algorithm. In this way
the entire file system is managed as a large virtual store.

The INGRES designers believe that a database system should appear as a user
job to UNIX. (Otherwise, the system would operate on a nonstandard UNIX and
become less portable.) Morcover the designers believe that UNIX should manage
the system buffers for the mix of jobs being run. Consequently INGRES contains
no facilities to do its own memory management.

(b) The UNIN process structure. A process in UNIX is an address space (641\
bytes or less on an 11/40, 128K bytes or less on an 11/45 or 11/70) which is asso-
ciated with a uscr-id and is the unit of work scheduled by the UNIX scheduler.
Processes may “fork’ subprocesses; consequently a parent process can be the root
of a process subtree. Furthermore, a process can request that UNIX execute a file

" in a descendant process. Such processes may communicate with each other via an

interprocess communication facility called “pipes.” A pipe may be declared as a
one direction communication link which is written into by one process and read by
a second one. UNIX maintains synchronization of pipes so no messages are lost.
Each process has a “standard input device” and a “standard output device.” These
are usually the user’s terminal, but may be redirected by the user to be files, pipes

. to other processes, or other devices.

Last, UNIX provides a facility for processes exccuting reentrant code to share
procedure scgments if possible. INGRES takes advantage of this facility so the
core space overhead of multiple concurrent users is only that required by data
segments. . -

2.2 Invocation from UNIX

Issuing INGRES as a UNIX eommand causes the process structure shown in Fig-
ure 1 to be created. In this section the functions in the four processes will be indi-
cated. The justification of this particular structure is given in Secction 2.4.

Process 1 is an interactive terminal monitor which allows the user to formulate,
print, edit, and cxecute collections of INGRES commands. It maintains a work-
space with which the user interacts until he is satisfied with his interaction. The
contents of this workspace are passed down pipe A as a string of ASCII characters
when execution is desired. The set of commands accepted by the current termmal
monitor is indicated in [31].

g ¢ f

T L] 1] 1 A 1 1 L] 1
] [ ] b == == L | ]
user
s 1 ] ! 1 ] ] ] i ] ]
erm-
V nat ! t 1 i A ] ] 1 ]
) [ | o - d [N ) o— - ]
L N ¢ ) ' ;s E 3 D )
process process process process
| 2 3 4

Fig. 1. INGRES process structure
ACM Transactions on Database Systems, Vol. 1, Nu. 3, September 1976.
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As noted above, UNIX allows a uscr to alter the standard input and output
devices for his processes when exccuting a command. As a result the mvokcr. of
INGRES may direct the terminal monitor to take input from a user file (in which

- ease he runs a “canned” collection of intcractions) and direct output to another

device (such as the line printer) or file.
Process 2 contains a lexical analyzer, a parser, query modification routines for

integrity control (and, in the future, support of views and protection), and con-
currency control. Because of size constraints, however, the integrity control rou-
tines are not in the currently released system. When process 2 finishes, it passes a
string of tokens to process 3 through pipe B. Process 2 is discussed in Section 4.

Process 3 accepts this token string and contains exccution routines for the com-
mands RETRIEVE, REPLACE, DELETE, and APPEND. Any update is turned
into a RETRIEVE command to isolate tuples to be changed. Revised copies of
modified tuples are spooled into a special file. This file is then processed by a ‘““de-
ferred update processor” in process 4, which is discussed in Section 6.

Basically, process 3 performs two functions for RETRIEVE commands. (a) A
multivariable query is decomposed into a scquence of interactions involving only a
single variable. (b) A one-variable query is executed by a one-variable query pro-
cessor (OVQP). The OVQP in turn performs its function by making calls on the
access methods. These two functions are discussed in Scction 5; the access methods
are indicated in Section 3.

All code to support utility commands (CREATE, DESTROY, INDEX, ete.)
resides in process 4. Process 3 simply passes to process 4 any commands which
process 4 will exccute. Process 4 is organized as a collection of overlays which ac-
complish the various functions. Some of these functions are discussed in Section 6.

Error messages are passed back through pipes D, E, and F to process 1, which
returns them to the user. If the command is a RETRIEVE with no result relation
specified, process 3 returns qualifying tuples in a stylized format directly to the
“standard output device” of process 1. Unless redirccted, this is the user’s termi-

nal.

2.3 Invocation from EQUEL
We now turn to the operation of INGRES when invoked by code from the pre-
compiler. :

In order to implement EQUEL, a translator (precompiler) was written to convert
an EqQuUEL program into a valid C program with QUEL statements converted to
appropriate C code and calls to INGRES. The resulting C program is then com-
piled by the normal C compiler, producing an exccutable module. Moreover, when
an EQUEL program is run, the executable module produced by the C compiler is
used as the front end process in place of the interactive terminal monitor, as noted
in Figure 2.

A Y

r 1] L] ' A
1 - st - - ]
1 ] [} ] ] [} | '
t t 1 ] ] ! ] ]
1 — - b— - o o— -4 '
'Y g F 3 E 3 D )
C process process process
progrom 2 3 4

Fig. 2. The forked process structurc
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During execution of the front end program, database requests (QUEL statements
in the EQUEL program) arc passed through pipe A and processed by INGRES.
Note that unparsed ASCII strings are passed to process 2; the rationale behind
this decision is given in [1]. If tuples must be returned for tuple at a time processing,
then they are returned through a special data pipe set up between process 3 and the
C program. A condition code is also returned through pipe F to indicate success or

the type of error encountered. o
The functions performed by the EQUEL translator are discussed in detail in {1). ’

2.4 Comments on the Process Structure

. 'The process structure shown in Figures 1 and 2 is the fourth different process strue-

ture implemented. The following considerations suggested this final choice:
(a) Address space limitations. To run on an 11/40, the 64K address space
limitation must be adhered to. Processes 2 and 3 are essentially their maximum

size; hence they cannot be combined. The code in process 4 is in several overlays

because of size constraints. .

Were a large address space available, it is likely that processes 2, 3, and 4 would
be combined into a single large process. However, the necessity of 3 “core’ processes
should not degrade performance substantially for the following reasons.

If onc large process were resident in main memory, there would be no necessity
of swapping code. However, were enough real memory available (~300K bytes) on
a UNIX system to hold processes 2 and 3 and all overlays of process 4, no swap-
ping of code would necessarily take place cither. Of course, this option is possible
only on an 11/70.

On the other hand, suppose one large process was paged into and out of main
memory by an operating system and hardware which supported a virtual memory.
It is felt that under such conditions page faults would generate I/0 activity at
approximately the same rate as the swapping/overlaying of processes in INGRES
(assuming the same amount of real memory was available in both cases).

Consequently the only sources of overhead that appear to result from multiple
processcs are the following: (1) Reading or writing pipes require system calls which
are considerably more expensive than subroutine calls (which could be used in a

- single-process system). There are at least eight such system calls needed to execute

an INGRES command. (2) Extra code must be executed to format information for

transmission on pipes. For example, one cannot pass a pointer to a data structure.

through a pipe; one must linearize and pass the whole structure.

(b) Simple control flow. The grouping of functions into processes was moti-
vated by the desire for simple control flow. Commands are passed only to the right;
data and errors only to the left. Process 3 must issuc commands to various over-
lays in process 4; thercfore, it was placed to the left of process 4. Naturally, the
parser must precede process 3.

Previous process structures had a more complex interconnection of processes.
This made synchronization and debugging much harder.

The structure of process 4 stemmed from a desire to overlay little-used code in
& single process. The alternative would have been to create additional processes
5, 6, and 7 (and their associated pipes), which would be quiescent most of the time.
This would have required added space in UNIX core tables for no real advantage.
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The proéosscs are all synchronized (i.e. each waits for an error return from the -
next process to the right before continuing to accept input from the process to the
left), simplifying the flow of control. Moreover, in many instances the various,
processes must be synchronized. Future versions of INGRES may attempt.to cx-
ploit parallelism where possible. The performance payoff of such paraliclism is
unknown at the present time.

(¢) Isolation of the front end process.  For reasons of protection the C program
which replaces the terminal monitor as a front end must run with a user-id different
from that of INGRES. Otherwise it could tamper dircctly with data managed by
INGRES. Henee, it must be cither overlayed into a process or run in its own process.
The latter was chosen for efficiency and convenicnce.

(d) Rationale for two process structures. The interactive terminal monitor
could have been written in EQUEL. Such a strategy would have avoided the exis-
tence of two process structures which differ only in the treatment of the data pipe.
Since the terminal monitor was written prior to the existence of EQUEL, this option
could not be followed. Rewriting the terminal monitor in EQUEL is not considered
a high priority task given current resources. Moreover, an EQUEL monitor would
be slightly slower because qualifying tuples would be returned to the calling pro-
gram and then displayed rather than being displayed directly by process 3.

3. DATA STRUCTURES AND ACCESS METHODS

We begin this section with a discussion of the files that INGRES manipulates and
their contents. Then we indicate the five possible storage structures (file formats)
for relations. Finally we sketeh the access methods language used to interface uni-

. formly to the available formats.

3.1 The INGRES File Structure

Figure 3 indicates the subtree of the UNIX file system that INGRES manipulates.
The root of this subtree is a directory made for the UNIX user “INGRES.” (When

DATADIR

——— e = — N e ot ———— S ——

. system binary source (C - langucge)
wuholizotion code code files
files files

catclog 0BA other user
relotons relgtions relahons
Fig. 3. The INGRES subtree
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the INGRES system is initially installed such a user must be created. This user is
known as the “superuser” because of the powers available to him. This subjeet is
discussed further in [28].) This root has six descendant directories. The AUX diree-
tory has descendant files containing tables which control the spawning of processes
(shown in Figures 1 and 2) and an authorization list of uscrs who are allowed to
create databases. Only the INGRES superuser may modify these files (by using
the UNIX cditor). BIN and SOURCE are directories indicating descendant files
of respectively object and source code. TMP has descendants which are temporary
files for the workspaces used by the interactive terminal monitor. DOC is the root
of a subtree with system documentation and the reference manual. Last, there is
a directory entry in DATADIR for cach databasc that exists in INGRES. These
directories contain the database files in a given database as descendants.

These database files arc of four types:

(a) Administration file. This contains the user-id of the database administrator
(DBA) and initialization information. - : -

(b) Catalog (system) relations. These relations have predefined names and are
created for every database. They are owned by the DBA and constitute the system
catalogs. They may be queried by a knowledgeable user issuing RETRIEVE state-
ments; however, they may be ipdated only by the INGRES utility commands (or

“directly by the INGRES superuser in an emergeney). (When protection state-

ments are implemented the DBA will be able to selectively restrict RETRIEVE
access to these relations if he wishes.) The form and content of some of these rela-
tions will be discussed presently.

(c) DBA rclations. These are relations owned by the DBA and are shared in
that any user may access them. When protection is implemented the DBA can
“guthorize” shared usc of these relations by inserting protection predicates (which
will be in one of the system relations and may be unique for cach user) and de-
authorize use by removing such predicates. This mechanism is discussed in [28].

(d) Other relations. These are relations created by other users (by RETRIEVE
INTO W or CREATE) and are not shared.

Three comments should be made at this time.

(a) The DBA has the following powers not available to ordinary users: the abil-
ity to create shared relations and to specify access control for them; the ability to
run PURGE; the ability to destroy any relations in his database (except the system
catalogs).

This system allows “one-level sharing” in that only the DBA has these powers,
and he cannot delegate any of them to others (as in the file systems of most time
sharing systems). This strategy was implemented for three reasons: (1) The need
for added generality was not perceived. Morcover, added generality would have
created tedious problems (such as making revocation of access privileges nontriv-
ial). (2) It seems appropriate to cntrust to the DBA the duty (and power) to resolve
the policy decision which must be made when space is exhausted and some relations
must be destroyed or archived. This policy deecision becomes much harder (or im-
possible) if a database is not in the control of onc user. (3) Someone must be en-
trusted with the policy decision concerning which relations are physically stored
and which are defined as “views.” This ‘‘database design” problem is best central-
ized in a single DBA.

Aﬁll Transactions on Database Systems, Vol. 1. No. 3, September 1976.
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(b) Except for the single administration file in cach database, every file is treated
as a relation. Storing system catalogs as relations has the following advantages:
(1) Code is cconomized by sharing routines for accessing both catalog and data
relations. (2) Since several storage structurcs are supported for accessing data
relations quickly and flexibly under various interaction mixes, these same storage
choices may be utilized to enhance access to catalog information. (3) The ability to
execute QUEL statements to examine (and patch) system relations where neces-
sary has greatly aided system debugging.

(c) Each relation is stored in a separate file, i.e. no attempt is made to “‘cluster”
tuples from different relations which may be accessed together on the same or on &
nearby page. '

Note clearly that this clustering is analogous to DBTG systems in declaring a
record type to be accessed via a set type which associates records of that record
type with a record of a different record type. Current DBTG implementations
usually attempt to physically cluster these associated records. _

Note also that clustering tuples from one relation in a given file has obvious per-
formance implications. The clustering techniques of this nature that INGRES

supports are indicated in Section 3.3.

The decision not to cluster tuples from different relations is based on the follow- :

ing reasoning. (1) UNIX has a small (512-byte) page size. Hence it is expected that
the number of tuples which can be grouped on the same page is small.. Moreover,
logically adjacent pages in a UNIX file are not necessarily physically adjacent.
Hence clustering tuples on ‘“‘nearby” pages has no meaning in UNIX; the next
logical page in a file may be further away (in terms of disk arm motion) than a
page in a different file. In keeping with the design decision of not modifying UNIX,
these considerations were incorporated in the design decision not to support clus-
tering. (2) The access methods would be more complicated if clustering were sup-
ported. (3) Clustering of tuples only makes sense if associated tuples can be linked
together using “sets” [6], “links” [29], or some other scheme for identifying clusters.
Incorporating these access paths into the decomposition scheme would have greatly
increased its complexity. '

It should be noted that the designers of System R have reached a different con-
clusion concerning clustering {2].

3.2 System Catalogs .
We now turn to a discussion of the system catalogs. We discuss two relations in
detail and indicate briefly the contents of the others.

The RELATION relation contains onc tuple for every relation in the database

(including all the system relations). The domains of this relation are:

relid the name of the relation.

owner the UNIX user-id of the relation owner; when appended to relid it produces
a unique file name for storing the relation.

spec indicates one of five possible storage schemes or else a special code indicating
a virtual relation (or “‘view™).

indexd flag set if secondary index exists for this relation. (This flag and the follow-

ing two are present to improve performance by avoiding catalog lookups
when possible during query modification and one variable query pro-
cessing.) ‘
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protect flag set if this relation has protection predicates.

integ flag set if there are integrity constraints.

save scheduled lifetime of relation. .

tuples number of tuples in relation (kept up to date by the routine “‘closer” dis-
cussed in the next section).

atts number of domains in relation.

width width (in bytes) of a tuple.

prim number of primary file pages for this relation.

The ATTRIBUTE catalog contains information relating to individual domains
of relations. Tuples of the ATTRIBUTE catalog contain the following items for
each domain of every relation in the database: . .

relid name of relation in which attribute appears.

owner relation owner.

domain_name domain name. )

domain_no domain number (position) in relation. In processing interactions INGRES
uses this number to reference this domain. . C

offset. offset in bytes from beginning of tuple to beginning of domain.

type data type of domain (integer, floating point, or character string).

length length (in bytes) of domain.

keyno if this domain is part of a key, then “keyno” indicates the ordering of this

domain within the key.

These two catalogs together provide inforination about the structure and content
of each relation in the database. No doubt items will continue to be added or de-
Jeted as the system undergoes further development. The first planned extensions
are the minimum and maximum values assumed by domains. These will be used by
a more sophisticated decomposition scheme being developed, which is discussed
briefly in Scction 5 and in detail in {30]. The representation of the catalogs as rela-
tions has allowed this restructuring to occur very easily.

Several other system relations exist which provide auxiliary information about
relations. The INDEX catalog contains a tuple for every secondary index in the
database. Since secondary indices are themselves relations, they are independently
cataloged in the RELATION and ATTRIBUTE relations. However, the INDEX
catalog provides the association between a primary relation and its secondary
indices and records which domains of the primary relation are in the index. :

The PROTECTION and INTEGRITY catalogs contain respectively the pro-
tection and integrity predicates for each relation in the database. These predicates
are stored in a partially processed form as character strings. (This mechanism
exists for INTEGRITY and will be implemented in the same way for PROTEC-
TION.) The VIEW catalog will contain, for each virtual relation, a partially pro-
cessed QuEL-like description of the view in terms of existing relations. The usc of
these last three catalogs is deseribed in Section 4. The cxistence of any of this
auxiliary information for a given relation is signaled by the appropriate flag(s) in
the RELATION catalog. ' .

Another set of system relations consists of those used by the graphics subsystem
to catalog and process maps, which (like everything clse) are stored as relations in
the database. This topic has been discussed separately in [13}.
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3.3 Storage Structures Available )

We will now deseribe the five storage structures currently available in INGRES.
Four of the schemes are keyed, i.e. the storage location of a tuple within the file is
a function of the value of the tuple’s key domains. They are termed “hashed,”
“ISAM,” “compressed hash,” and “compressed ISAM.” For all four structures the
key may be any ordered collection of domains. These schemes allow rapid access to
specific portions of a relation when key values are supplied. The remaining non-
keyed scheme (a “heap”) stores tuples in the file independently of their values and
provides a low overhead storage structure, especially attractive in situations re-
quiring a complete scan of the relation.

The nonkeyed storage structure in INGRES is a randomly ordered sequential
file. Fixed length tuples are simply placed sequentially in the file in the order sup-
plied. New tuples added to the relation are merely appended to the end of the file.
The unique tuple identifier for cach tuple is its byte-offset within the file. This
mode is intended mainly for (a) very small relations, for which the overhead of

" other schemes is unwarranted; (b) transitional storage of data being moved into
or out of the system by COPY; (c) certain temporary relations created as inter-
mediate results during query processing. '

In the remaining four schemes the key-value of a tuple determines the page of
the file on which the tuple will be placed. The schemes share a common ‘“page-
structure” for managing tuples on file pages, as shown in Figurc 4.

A tuple must fit entirely on a single page. Its unique tuple identifier (TID) con-

- _sists of a page number (the ordering of its page in the UNIX file) plus a line num-
ber. The line number is an index into a line table, which grows upward from the
bottom of the page, and whose entries contain pointers to the tuples on the page.
In this way the physical arrangement of tuples on a page can be reorganized with-
out affecting TIDs.

Initially the file contains all its tuples on a number of primary pages. If the rela-
tion grows and thesc pages fill, overflow pages are allocated and chained by pointers

7
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to the primary pages with which they are associated. Within a chained group of
pages no speeial ordering of tuples is maintained. Thus in a keyed access which

_ locates a particular primary page, tuples matching the key may actually appear on

any page in the chain.
As discussed in {16}, two modes of key-to-address transformation arc used—ran-
domizing (or “hashing”) and order preserving. In a “hash” file tuples are distrib-
uted randomly throughout the primary pages of the file according to a hashing
function on a key. This mode is well suited for situations in which access is to be
conditioned on a specific key value.
As an order preserving mode, a scheme similar to IBM’s ISAM [18] is used. The

-relation is sorted to produce the ordering on a particular key. A multilevel diree-

tory is created which records the high key on cach primary page. The directory,
which is static, resides on several pages following the primary pages within the file
itself. A primary page and its overflow pages are not maintained in sort order. This
decision is discussed in Section 4.2. The “ISAM-like” mode is useful in cascs where
the key value is likely to be specified as falling within a range of values, since a near
ordering of the keys is preserved. The index compression scheme discussed in [16] is
currently under implementation. :

In the above-mentioned keyed modes, fixed length tuples are stored. In addition,
both schemes can be used in conjunction with data compression techniques {14] in
cases where increased storage utilization outweighs the added cost of encoding and
decoding data during aceess. These modes are known as “compressed hash” and
“compressed ISAM.”

The current compression scheme suppresses blanks and portions of a tuple which
match the preceding tuple. This compression is applied to cach page independently.
Other schemes are being experimented with. Compression appears to be uscful in

- storing variable length domains (which must be declared their maximum length).

Padding is then removed during compression by the access method. Compressicn
may also be useful when storing secondary indices.

3.4 Access Methods Interface

The Access Methods Interface (AMI) handles all actual accessing of data from
relations. The AMI language is implemented as a set of functions whose calling
conventions are indicated below. A separate copy of these functions is loaded with

" each of processes 2, 3, and 4.

Each access method must do two things to support the following calls. First, it
must provide some lincar ordering of the tuples in a relation so that the concept of
“next tuple” is well defined. Sccond, it must assign to each tuple a unique tuple-id
(TID). : '

The nine implemented calls arc as follows:
(a) OPENR (descriptor, mode, relation__name)

Before a relation may be accessed it must be “opened.” This function opens the
UNIX file for the relation and fills in a *“‘descriptor” with information about the
relation from the RELATION and ATTRIBUTE catalogs. The descriptor (storage
for which must be declared in the calling routine) is used in subsequent calls on
AMI routines as an input parameter to indicate which relation is involved. Conse-
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quently, the AMI data accessing routines need not themsclves check the system
catalogs for the description of a relation. “Mode” specifics whether the relation is
being opened for update or for retrieval only.

(b) GET (descriptor, tid, limit_tid, tuple, next_flag)

This function retrieves into “tuple,” a single tuple from the relation indicated by
“descriptor.” “Tid” and “limit_tid” are tuple identifiers. There are two modes of
retrieval, “scan” and “direct.” In “scan” mode GET is intended to be called suc-
cessively to retrieve all tuples within a range of tuple-ids. An initial value of “tid”
sets the low end of the range desired and “limit__tid” scts the high end. Each time
GET is called with “next-flag” = TRUE, the tuple following “tid” is retrieved
and its tuple-id is placed into “tid” in readiness for the next call. Reaching “limit—
tid” is indicated by a special return code. The initial settings of “tid” and “limit__
tid” . are done by calling the FIND function. In ‘“‘dircet” mode (“next_flag” =
FALSE), GET retrieves the tuple with tuple-id = “tid.”

(c) FIND(descriptor, key, tid, key—type)

When called with a negative “key-type,” FIND returns in “tid” the lowest tuple-id

on the lowest page which could possibly contain tuples matching the key supplied.
Analogously, the highest tuple-id is returned when “key-type” is positive. The
objective is to restrict the scan of a relation by eliminating tuples from considera- |
tion which are known from their placement not to satisfy a given qualification.

“Key-type” also indicates (through its absolute value) whether the key, if sup-
plied, is an EXACTKEY or a RANGEKEY. Different criteria for matching are
applied in each case. An EXACTKEY matches only those tuples containing exactly
the value of the key supplied. A RANGEKEY represents the low (or high) end of
a range of possible key values and thus matches any tuple with a key value greater
than orequal to (orless than or equal to) the key supplied. Note that only withanorder
preserving storage structure can a RANGEKEY be used to successfully restrict a
scan.

In cases where the storage structure of the relation is incompatible with the
“key-type,” the “tid” returned will be as if no key were supplied (that is, the
lowest or highest tuple in the relation). Calls to FIND invariably occur in pairs,
to obtain the two tuple-ids which establish the low and high ends of the scan done
in subsequent calls to GET.

Two functions are available for determining the access characteristics of the
storage structure of a primary data relation or secondary index, respectively.

(@) PARAMD (descriptor, access—characteristics—structure) -
(e) PARAMI (index-descriptor, access__characteristics_structure)

The “access-characteristics-structure” is filled in with information regarding the
type of key which may be utilized to restrict the scan of a given relation: It indi-
cates whether exact key values or ranges of key values can be used, and whether a
partially specified key may be used. This determines the “key-type” used in a sub-
sequent call to FIND. The ordering of domains in the key is also indicated. These
two functions allow the access optimization routines to be coded independently of
the specific storage structures currently implemented.
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Other AMI functions provide a facility for updating relations.
(f) INSERT (descriptor, tuple)

The tuple is added to the relation in its “proper” place according to its key value
and the storage mode of the relation.

(8) REPLACE (descriptor, tid, new_tuple)
(b) DELETE (descriptor, tid)

The tuple indicated by “tid” is either replaced by new values or deleted from the
relation altogether. The tuple-id of the affected tuple will have been obtained by a

previous GET.
Finally, when all access to a relation is complete it must be closed:

(1) CLOSER (descriptor)

This closes the relation’s UNIX file and rewrites the information in the descriptor
back into the system catalogs if there has been any change.

3.5 Addition of New Access Methods

One of the goals of the AMI design was to insulate higher level software from the
actual functioning of the access methods, thereby making it easier to add different
ones. It is anticipated that users with speeial requirements will take advantage of
this feature.

In order to add a new access method, one need only extend the AMT routines to
handle the new case. If the new method uses the same page layout and TID scheme,
only FIND, PARAMI, and PARAMD need to be extended. Otherwise new pro-
cedures to perform the mapping of TIDs to physical file locations must be supplied
for use by GET, INSERT, REPLACE, and DELETE.

4. THE STRUCTURE OF PROCESS 2

Process 2 contains four main components:

(a) a lexical analyzer;

(b) a parser (written in YACC [19));

(¢) concurrency control routines;

(d) query modification routines to support protection, views, and integrity con-

trol (at present only partially implemented).

Since (a) and (b) are designed and implemented along fairly standard lines, only
(c) and (d) will be discussed in detail. The output of the parsing process is a tree
structured representation of the input query used as the internal form in subsequent
processing. Furthermore, the qualification portion of the query has been converted
to an equivalent Boolean expression in conjunctive normal form. In this form the
query tree is then ready to undergo what has been termed “query modification.”

4.1 Query Modification

Query modification includes adding integrity and protection predicates to the
original query and changing references to virtual relations into references to the ap-
propriate physical relations. At the present time only a simple integrity scheme has
been implemented.

ACM Traasactions on Dutabase Systems, Yol. I, No. 3, September 1976.
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In [27] algorithms of several levels of complexity are prescented for performing in- -

tf*grity control on updates. In the present system only the simplest case, involving
single-variable, aggregate free integrity assertions, has been implemented, as de-
seribed in detail in [23], . ’
Briefly, integrity assertions are entered in the form of QuEL qualification clauses
to be .appliod to interactions updating the relation over which the variable in the
assertion ranges. A parse tree is created for the qualification and a representation of

this tree is stored in the INTEGRITY catalog together with an indication of the

relation and the specific domains involved. At query modification time, updates are
checked for any possible integrity assertions on theaffected domains. Relevant asser-
tions arc retricved, rebuilt into tree form, and grafted onto the update tree so as to
AND the asscrtions with the existing qualification of the interaction.

Algorithms for the support of views are also given in [27). Basically a view is a

_ virtual relation defined in terms of relations which physically exist. Only the view

definition will be stored, and it will be indicated to INGRES by a DEFINE com-
mand. This command will have a syntax identical to that of a RETRIEVE state-
ment. Thus legal views will be those relations which it is possible to materialize by a
RETRIEVE statement. They will be allowed in INGRES to support EQUEL pro-’
grams written for obsolete versions of the database and for user convenience.
Protection will be handled aceording to the algorithm described in [25]. Like in-
tegrity control, this algorithm involves adding qualifications to the uscr’s interac-
tion. The details of the implementation (which is in progress) are given in [28],
which also includes a discussion of the mechanisms being implemented to physically
protect INGRES files from tampering in any way other than by executing the
INGRES object code. Last, [28] distinguishes the INGRES protection scheme from
the one based on views in [5] and indicates the rationale behind its use.
In the remainder of this scction we give an example of query modification at work.
Suppose at a previous point in time all employees in the EMPLOYEE relation
were under 30 and had no manager recorded. If an EQUEL program had been written
for this previous version of ENIPLOYEE which retricved ages of employeces coded
into 5 bits, it would now fail for employces over 31. :
If one wishes to use the above program without modification, then the following
view must be used:
RANGE OF E IS EMPLOYEE
DEFINE OLDEMP (E.NAME, E.DEPT, E.SALARY, E.AGE)
WHERE E.AGE < 30 :

Suppose that all employees in the EMPLOYEE relation must make more than

$8000. This can be expressed by the integrity constraint:

RANGE OF E IS EMPLOYEE .
INTEGRITY CONSTRAINT IS E.SALARY > 8000
Last, suppose cach person is only authorized to alter salaries of employces whom
he manages. This is expressed as follows:
RANGEOFEIS EMPLOYEE

. PROTECT EMPLOYEE FOR ALL (E.SALARY; E.NAME)
WHERFE E.MANAGER = «
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The » is a surrogate for the logon name of the current UNIX user of INGRES. The
semicolon scparatces updatable from nonupdatable (but visible) domains.

Suppose Smith through an EQUEL program or from the terminal monitor issucs
the following interaction:

RANGEOF L ISOLDEMP
REPLACE L(SALARY = .9¢L.SALARY)
WHERE L.NAME = “Brown”

This is an update on a view. Hence the view algorithm in [27] will first be applied to
yield:

RANGE OF E IS EMPLOYEE

REPLACE E(SALARY = .9+E.SALARY)

WHERE E.NAME = “Brown”
AND E.AGE < 30

Note Brown is 6nly in OLDEMP if he is under 30. Now the integrity" algorithm in
[27] must be applied to ensure that Brown’s salary is not being cut to as little as
$8000. This involves modifying the interaction to: '

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY = .9+E.SALARY)
WHERE E.NAME = ‘“Brown”

AND EAGE < 30

AND .9+E.SALARY > $8000

Since .9+ESALARY will be Brown’s salary after the update, the added qualifica-
tion ensures this will be more than $8000.
Last, the protection algorithm of [28] is applied to yield:

RANGE OF E IS EMPLOYEE
REPLACE E(SALARY = .9+E.SALARY)
WHERE E.NAME = “Brown”

AND E.AGE < 30

AND .9+E.SALARY > $8000

AND E.MANAGER = “Smith”

Notice that in all three cases more qualification is ANDed onto the user’s inter-
action. The view algorithm must in addition change tuple variables.

In all cases the qualification is obtained from (or is an easy modification of) predi-
cates stored in the VIEW, INTEGRITY, and PROTECTION relations. The tree
representation of the interaction is simply modified to AND these qualifications
(which are all stored in parsed form).

It should be clearly noted that only one-variable, aggregate frec integrity asser-
tions arc currently supported. Moreover, even this feature is not in the released ver-
sion of INGRES. The code for both concurreney control and integrity control will
not fit into process 2 without exceeding 64K words. The decision was made to release
a system with concurrency control.

The INGRES designers are currently adding a fifth process (process 2.5) to hold
concurrency and query modification routines. On PDP 11/43s and 11/70s that have
a 128K address space this extra process will not be required.

AC)I Trunsactions un Database Systems, Vol. 1, No. 3, September 1976.
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4.2 Concurrency Control ‘ .
In any multiuser system provisions must be included to ensure that multiple con-

"

current updates are executed in a manner such that some level of data integrity can
be guaranteed. The following two updates illusﬁrato the problem. -

RANGE OF E IS EMPLOYEER :
Ul REPLACE E(DEPT = “toy”) !
WHERE E.DEPT = “candy” ‘

B RANGE OF F IS EMPLOYEE
U2  REPLACE F(DEPT = “candy?”’)
WHERE F.DEPT = “toy”

If U1 and U2 are executed concurrently with no controls, some empioyées may
end up in each department and the particular result may not be repeatable if the
database is backed up and the interactions reexccuted.

The control which must be provided is to guarz;z;ntec that some database operation
is “atomic” (occurs in such a fashion that it appears instantaneous and before or

after any other databasce operation). This atomic unit will be called a “transaction.” -

In INGRES there are five basic choices available for defining a transaction:

(8) something smaller than one INGRES command;

(b) one INGRES command; 'i

(¢) a collection of INGRES commands with nqiintervening C code;

(d) a collection of INGRES commands with C ‘c‘pde but no system calls;

(@) an arbitrary Equgr program. | :
If option (a) is chosen, INGRES could not guarantee that two concurrently execut-
ing update commands would give the same result as if they were excecuted sequenti-
ally (in either order) in one collection of INGRES processes. In fact, the outcome
could fail to be repeatable, as noted in the example above, This situation is clearly
undesirable, d -

Option (e) is, in the opinion of the INGRES designers, impossible to support. The
following transaction could be declared in an EQUEL program.

BEGIN TRANSACTION :
FIRST QUEL UPDATE N
SYSTEM CALLS TO CREATE AN D DESTROY FILES
SYSTEM CALLS TO FORK A SECOND COLLEJ;CTION OF INGRES PROCESSES
TO WHICH COMMANDS ARE PASSED l .
SYSTEM CALLS TO READ FROM A TERMINAL
SYSTEM CALLS TO READ FROM A TAPE b
SECOND QUEL UPDATE (whose form depends on previous two system calls)
END TRANSACTION "

* .
‘Suppose T1 is the above transaction and runs coq?urrently with a transaction T2
involving commands of the same form. The second update of each transaction may

"well conflict with the first update of the other. Not(jr that there is no way to tell a

priori that T1 and T2 conflict, since the form of the second update is not known in

advance. Hence a deadlock situation can arise which Fan only be resolved by abort-

ing one transaction (an undesirable policy in the eyes of the INGRES designers) or

attempting to back out one transaction. The overhead of backing out through the

intermediatc system calls appears prohibitive (if it is}fpossible at all).
ACM Trasactions on Datatase Systems, Vo, 1, No, 3, September 1976.
it

.

 wmen —

RS

-



i e SS——

The Design and Implementation of INGRES . n

Restricting a transaction to have no system calls (and hence no I/0) cripples the
power of a transaction in order to make deadlock resolution possible. This was judged
undesirable.

For cxample, the following transaction requires such system ecalls:

BEGIN TRANSACTION
QUEL RETRIEVE to find all flights on a particular day from San Francisco to Los
Angeles with space available.
Display flights and times to user.
Wait for user to indicate desired flight.
QUEL REPLACE to reserve a seat on the flight of the user’s choice.
END TRANSACTION

If the above set of commands is not a transaction, then space on a flight may not
be available when the REPLACE is executed even though it was when the
RETRIEVE occurred.

Since it appears impossible to support multi-QUEL statement transactions (ex-
cept in a crippled form), the INGRES designers have chosen Option (b), one QUEL
statement, as a transaction.

Option (c¢) can be handled by a straightforward extension of the algorithms to
follow and will be implemented if there is sufficient user demand for it. This option
can support “triggers” [2] and may prove uscful.

Supporting Option (d) would considerably inerease system complexity for what
is pereeived to be a small generalization. Moreover, it would be difficult to enforee in
the EQuEL translator unless the translator parsed the entire C language.

The implementation of (b) or (¢) can be achieved by physical locks on data items,
pages, tuples, domains, relations, ete. [12] or by predicate locks [26]. The current im-
plementation is by relatively crude physical locks (on domains of a relation) and
avoids deadlock by not allowing an interaction to proceed to process 3 until it can
lock all required resources. Because of a problem with the current design of the RE-

" PLACE access method call, all domains of a relation must currently be locked (i.e.a

whole relation is locked) to perform an update. This situation will soon be rectified.

The choice of avoiding deadlock rather than detecting and resolving it is made
primarily for implementation simplicity.

The choice of a crude locking unit reflects our environment where core storage for
a large lock table is not available. Our current implementation uses a LOCK rela-
tion into which a tuple for each lock requested is inserted. This entire relation is
physically locked and then interrogated for conflicting locks. If none exist, all needed
locks are inserted. If a conflict exists, the concurrency processor “sleeps” for a fixed
interval and then tries again. The necessity to lock the entire relation and to sleep
for a fixed interval results from the absence of semaphores (or an equivalent mecha-
nism) in UNIX. Because concurrency control can have high overhead as currently
implemented, it can be turned off.

The INGRES designers are considering writing a device driver (a clean extension
to UNIX routinely written for new devices) to alleviate the lack of semaphores. This
driver would simply maintain core tables to implement desired synchronization and
physical locking in UNIX.

The locks are held by the concurrency processor until a termination message is
received on pipe E. Only then does it delete its locks. -

ACM Transactions on Database Systems, Vol. 1, No. 3, September 1975,
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In the future we plan to expcfinwntally implement a erude (and thereby low
CPU overhead) version of the predicate locking scheme deseribed in [26]. Such an
approach may provide considerable coneurrency at an acceptable overhead in lock
table space and CPU time, although such a statement is highly speculative,

To conclude this section, we briefly indicate the reasoning behind not sorting a
Page and its overflow pages in the “ISAM-like” access method. This topic is also
discussed in [17].

The proposed device driver f or locking in UNIX must at least cnsure that read-
modify-write of a single UNIX page is an atomic operation. Otherwise, INGRES
would still be required to lock the whole LOCKK relation to insert locks. Moreover,
any proposed prediecate locking scheme could not function without such an atomic
operation. If the lock unit is g UNIX page, then INGRES can insert and delete a
tuple from a relation by holding only one loek at a time if a primary page and its
overflow page are unordered, However, maintenance of the sort order of these
Pages may require the access method to lock more than one page when it inserts a
tuple. Clearly deadloclk may be possible given concurrent updates, and the size of
the lock table in the deviee driver is not predictable. To avoid both problems these
pages remain unsorted.

5. PROCESS 3

As noted in Section 2, this process performs the f ollowing two functions, which will
be discussed in turn:

(2) Decomposition of queries involving more than one variable into sequences of
one-variable querics. Partia] results are accumulated until the entire query is
evaluated. This program is called DECOMP. It also turns any updates into the
appropriate queries to isolate qualifying tuples and spools modifications into a
special file for deferred update.

(b) Processing of single-variable queries. The program is called the one-variable
query processor (OVQP). '

5.1 DECOMP

Because INGRES allows interactions which are defined on the crossproduct of per-
haps several relations, efficient execution of this step is of cruecial importance in
searching as smal] a portion of the appropriate crossproduct space as possible. DE-
COMP uses three techniques in processing interactions. We deseribe each technique,
and then give the actual algorithm implemented followed by an example which illus-
trates all features, Finally we indicate the role of a more sophisticated decomposi-
tion scheme under design.

(a) Tuple substitution. The basic technique used by DECOMP to reduce a
query to fewer variables is tuple substitution, Qne variable (out of possibly many)
in the query is scleeted for substitution, The AMI language is used to scan the rela-
tion associated with the variable one tuple at a time. For each tuple the values of
domains in that relation arc substituted into the query. In the resulting modified
query, all previous references to the substituted variable have now been replaced
by values (constants) and the query has thus been reduced to one less variable, De-
composition is repeated (recursively) on the modified query until only one variable

remains, at which point the OVQP is ealled to continue processing.
ACM Transactions on Database Systems, Vol. 1, No, 3, September 1976,
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(b) Onc-variable detachment.  If the qualification Q of the query is of the form
Q(Vi) AND Qu(Vi,..., V)
for some tuple variable 17, the following two steps can be exceuted:

(1) Issue the query

RETRIFEVE INTO W (TL{V)))

WHERE Qi{V]
Here TL[V;] are those domains required in the remainder of the gquery. Note that
this is a one-variable query and may be passed dircetly to ovQr.

(2) Replace R, , the relation over which V, ranges, by W in the range declaration and delete

Qi[V,] from Q.

The query formed in step 1is called a “onc-variable, detachable subquery,” and
the technique for forming and exceuting it is called “one-variable detachment”
(OVD). This step has the cffect of reducing the size of the relation over which 17
ranges by restriction and projection. Henee it may reduce the complexity of the
processing to follow.

Morcover, the opportunity exists in the process of ereating new relations through
OVD, to choose storage structures, and particularly keys, which will prove helpful
in further processing.

(¢) Reformatting.  When a tuple variable is seleeted for substitution, a large
number of queries, cach with one less variable, will be exceuted. If (b) is a possible
operation after the substitution for some remaining variable 171, then the relation
over which 17y ranges, Ry, can be reformatted to have domains used in Q1)) asa
key. This will expedite (b) cach time it is executed during tuple substitution.

We ean now state the complete decomposition algorithm. After doing so, we illus-
trate all steps with an example.

Step 1. If the number of variables in the query is 0 or 1, call OVQP and then return; else go on
to step 2.

Step 2. Find all variables, {Vy, ..., Val, for which the query contains a one-variable clause.

Perforni OVD) to create new ranges for each of these variables. The new relation for each
variable V;is stored as a hash file with key K chosen as follows: -

2.1. For each j select from the remaining multivariable clauses in the query the collection,
Cij, which have the form  Vi-d; = V;-d;, where d; ,d; are domains of 1yand V.

2.2. From the key K to be the concatenation of domains dy ,dis,...of 17;appearing in
clauses in C;,.

2.3. If more than one j exists, for which C;; is nonempty, one C;; is chosen arbitrarily for
forming the key. If C.; is empty for all j, the relation is stored as an unsorted table.

Step 3. Choose the variable V, with the smallest number of tuples as the next one for which to
perform tuple substitution.

Step 4. For each tuple variable V; for whieh €. is nonnull, reformat if necessary the storage
structure of the relation 12, over which it ranges so that the key of I?; is the concatenation
of domains d,; , . . . appearing in C,. . This ensures that when the clauses in ;, become
one-variable after substituting for 1, , subsequent calls to OVQP to restrict further the
range of V; will be done as efficiently as possible.

Step 5. Iterate the following steps over all tuples in the range of the variable selected in step
3 and then return:
5.1. Substitute values from tuple into query.

ACM Transactions on Datalase Systems, Vol. 1, No. 3, september 1975,
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5.2. Invoke decomposition algorithm recursively on a copy of resulting query which now
has been reduced by one variable,

5.3. Merge the results from 5.2 with those of previous iterations.

We use the following query to illustrate the algorithm:

RANGE OF E, M IS EMPLOYEE

RANGE OF D IS DEPT

RETRIEVE (E.NAME)

WHERE E.SALARY > M.SALARY AND

E.MANAGER = M.NAME AND
i E.DEPT = D.DEPT AND
i D.FLOORs = AND
5 E.AGE > 40 i
This request is for employees over 40 on the first floor who earn more than their
manager.
LEVEL 1

Step 1. Query is not one variable.
Step 2. Issue the two queries:

RANGE OF D IS DEPT
RETRIEVE INTO T1(D.DEPT)

e e e e e+ e e =

RANGE OF E I8 EMPLOYEE

RETRIEVE INTO T2(E.NAME, E.SALARY, E.MANAGER, E.DEPT) (2)
WHERE E.AGE > 40

T1 is stored hashed on DEPT; however, the algorithm must choose arbitrarily be-
tween hashing T2 on MANAGER or DEPT., Suppose it chooses MANAGER. The
original query now becomes: '

RANGE OF D IS T1

RANGE OF E 1S T2

RANGE OF M IS EMPLOYEE

RETRIEVE (E.NAME)

WHERE E.SALARY > M.SALARY AND
EMANAGER = M.NAME AND
E.DEPT D.DEPT

w!

o

Step 3. Suppose T1 has smallest cardinality. Hence D is chosen for substitution.

Step 4. Reformat T2 to be hashed on DEPT; the guess chosen in step 2 above was a poor one.

Step 5. Iterate for each tuple in T1 and then quit:
5.1 Substitute value for D. DEPT yielding
RANGE OF E IS T1
RANGE OF M 13 EMPLOYEE
RETRIEVE (ENAME)
WHERE E.SALARY > M.SALARY AND
EMANAGER = M.NAME AND
E.DEPT = value
5.2. Startatstep I with the above query as input (Level 2 below).
5.3. Cumulatively merge results as they are obtained.

ACM Transactivns un Database Systems, Vol. 1, No. 3, September 1976,
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LEVEL 2

Step 1. Query is not one variable.

~ Step 2. Issue the query

RANGE OF EIS T2
RETRIEVE INTO T3 (E.NAME, E.SALARY, E.XNAME) 3)
WHERE E.DEPT = value

T3 is constructed hashed on MANAGER. T2 in step 4 in Level 1 above is refor-
matted so that this query (which will be issued once for cach tuple in T1) will be
done efficiently by OVQP. Hopefully the cost of reformatting is small compared to
the savings at this step. What remains is

RANGEOF E IS T3
RANGE IF M IS EMPLOYEE
-RETRIEVE (E.NAME)
WHERE E.SALARY > M.SALARY AND
EMANAGER = M.NAME

Step 3. T3 has less tuples than EMPLOYEE; therefore choose T3.
Step 4. [unnecessary]

Step 5. Iterate for each tuple in T3 and then return to previous level:
5.1. Substitute values for E.XNAME, E.SALARY, and EMANAGER, yielding

RANGE OF M IS EMPLOYEE
RETRIEVE (VALUE 1) “)
WHERE Value2 > M.SALARY AND

Value3 = M.NAME

5.2. Start at step 1 with this query as input (Level 3 below).
5.3. Cumulatively merge results as obtained.

LEVEL 3

Step 1. Query has one variable; invoke OVQP and then return to previous level.

The algorithm thus decomposes the original query into the four prototype, one-
variable queries labeled (1)-(4), some of which are executed repetitively with differ-
ent constant values and with results merged appropriately. Queries (1) and (2) are
executed once, query (3) once for each tuple in T1, and query (4) the number of
times cqual to the number of tuples in T1 times the number of tuples in T3.

The following comments on the algorithm are appropriate.

(a) OVD is almost always assured of speeding processing. Not only is it possible
to choose the storage structure of a temporary relation wisely, but also the cardin-
ality of this relation may be much less than the one it replaces as the range for a
tuple variable. It only fails if little or no reduction takes place and reformatting
is unproductive.

It should be noted that a temporary relation is created rather than a list of quali-
fying tuple-id’s. The basic tradeoff is that OVD must copy qualifying tuples but can
remove duplicates created during the projection. Storing tuple-id’s avoids the copy
operation at the expense of reaccessing qualifying tuples and retaining duplicates.
It is clear that cases exist where cach strategy is superior. The INGRES designers
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alternative, allows a more accurate choice of the variable with the smallest range in

step 3 of the algorithm above, and results in cleaner code.

(b) Tuple substitution is done when nhecessary on the variable associated with the
smallest number of tuples. This has the effeet of reducing the number of eventual

calls on OVQP.

(c) Reformatting is done (if necessary) with the knowledge that it will usually re-
place a collection of complete sequential scans of a relation by a collection of limited

scans. This almost always reduces processing time.

(d) It is believed that this algorithm efficiently handles a large class of interac-
tions. Moreover, the algorithm does not require excessive CPU overhead to perform.
There are however, cases where a more elaborate algorithm is indicated. The follow-

b

ing comment applies to such cases.

(e) Suppose that we have two or more strategies 8Ty, 8Ty, ..

being better than the previous one but also requiring a greater

-. 8T, , each one
overhead. Suppose

further that we begin an interaction on SToand run it for an amount of time equal to a
fraction of the estimated overhead of § Ty . At the end of that time, by simply count-

ing the number of tuples of the first substitution variable which
Processed, we can get an estimate for the tota] processing time u
significantly greater than the overhead of STy, then we switch

have already been
sing .STD oI thiS is
to ST . Otherwise

we stay and complete processing the interaction using ST, . Obviously, the pro-
cedure can be repeated on ST} to call ST, if necessary, and so forth,
The algorithm detailed in this section may be thought of as ST, . A more sophisti-

cated algorithm is currently under development [30].

5.2 One-Variable Query Processor (OVQP)

This module is concerned solely with the efficient accessing of tuples from a single
relation given a particular one-variable query. The initial portion of this program,
known as STRATEGY, determines what key (if any) may be used profitably to ac-
cess the relation, what value(s) of that key will be used in calls to the AMI routine
FIND, and whether access may be accomplished directly through the AMI to the
storage structure of the primary relation itself or if a secondary index on the relation

should be used. If access is to be through a secondary index,
must choose which one of possibly many indices to use,

then STRATEGY

Tuples are then retrieved according to the access strategy selected and are pro-

cessed by the SCAN portion of OVQP. These routines evaluate

each tuple against

the qualification part of the query, create target list values for qualifying tuples, and

dispose of the target list appropriately.

Since SCAN is relatively straightforward, we discuss only the policy decisions

made in STRATEGY.

First STRATEGY examines the qualification for clauses which speeify the value

of a domain, i.c, clauses of the form
V.domain op constant
or

constant op ¥V.domain
ACM Transactions on Database Systems, Vol. 1, No. 3, September 1976,
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where “op” is one of the set § =, <, >, <, > }. Such clauses are termed  “‘simple”
clauses and arc organized into a list. The constants in simple clauses will determine
the key values input to FIND to limit the ensuing scan.

Obviously a nonsimple clause may be equivalent to a simple onc. For example,
E.SALARY/2 = 10000 is cquivalent to ESSALARY = 20000. However, recogniz-
ing and converting such clauses requires a general algebraic symbol manipulator.
This issue has been avoided by ignoring all nonsimple clauses.

STRATEGY must scleet one of two accessing strategics: (a) issuing two AMI
FIND commands on the primary relation followed by a sequential scan of the rela-
tion (using GET in “scan” mode) between the limits set, or (b) issuing two ANI
FIND commands on some index relation followed by a sequential scan of the index
between the limits sct. For each tuple retrieved the “pointer” domain is obtained;
this is simply the tuple-id of a tuple in the primary relation. This tuple is fetched
(using GET in “direct” mode) and processed. )

To make the choice, the access possibilities available must be determined. Keying
information about the primary relation is obtained using the AMI function
PARAMD. Names of indices are obtained from the INDEX catalog and keying in-
formation about indices is obtained with the function PARAMI.

Further, a compatability between the available access possibilities and the speci-
fication of key values by simple clauses must be established. A hashed relation re-
quires that a simple clause specify equality as the operator in order to be useful; for
combined (multidomain) keys, all domains must be specified. ISAM structures, on
the other hand, allow range specifications; additionally, a combined ISAM key re-
quires only that the most significant domains be specified.

STRATEGY checks for such a compatability according to the following priority
order of access possibilities: (1) hashed primary relation, (2) hashed index, (3)
ISAM primary relation, (4) ISAM index. The rationale for this ordering is related
to the expeeted number of page accesses required to retrieve a tuple from the source
relation in cach case. In the following analysis the effect of overflow pages is ignored
(on the assumption that the four access possibilities would be equally affected).

In case (1) the key value provided locates a desired source tuple in one aceess via
calculation involving a hashing function. In case (2) the key value similarly locates
an appropriate index relation tuple in one access, but an additional access is re-
quired to retricve the proper primary relation tuple. For an ISAM-structured scheme
a directory must be examined. This lookup itself incurs at least once access but
possibly more if the directory is multilevel. Then the tuple itself must be accessed.
Thus casc (3) requires at least two (but possibly more) total accesses. In case (4)
the use of an index necessitates yet another aceess in the primary relation, making
the total at least three.

To illustrate STRATEGY, we indicate what happens to queries (1)-(4) from
Scetion 5.1.

Suppose EMPLOYEE is an ISAM relation with a key of NAME, while DEPT is
hashed on FLOOR=. Morcover a secondary index for AGE exists which is hashed on
AGE, and onc for SALARY exists which uses ISAM with a key of SALARY.

Query (1): One simple clause exists (D.FLOOR= = 2). Hence Strategy (a) is ap-
plied against the hashed primary relation.

ACM Transactions on Database Systems, Vol. 1, Na. 3, September 1976,
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o
Query (2): One simple clause exists (EAGJE‘: 40). However, it is not usable to
limit the scan on a hashed index. Hence a corﬁplf te (unkeyed) scan of EMPLOYEE
is required. Were the index for AGE an ISAI\‘I| relation, then Strategy (b) would be
used on this index. .
. Query (3): One simple clause exists and T1 has
(a) against the hashed primary relation. 1 '
Query (4): Two simple clauses exist (Val he2 > MSALARY; value3 =
M.NAME). Strategy (a) is available on the hash
(b) for the ISAM index. The algorithm chooses Strategy (a).

been reformatted to allow Strategy

é. UTILITIES IN PROCESS 4 |
6.1 Implementation of Utility Commands ?l \

We have indicated in Section 1 several dataﬁqse utilities available to users. These

commands are organized into several overlay prog ]
ing the required overlay into core as needed i done i

Most of the utilitics update or read the systemipgl
contains a sort routine which puts tuples in collating sequence according to the con-

catenation of the desired keys (which necd not ﬁe: f the same data type). Pages are

initially loaded to approximately 80 percent of cﬁ acity. The sort routine is a re-
" . cursive N-way merge-sort where & is the maximum number of files process 4 can

have open at once (currently eight). The index buil
To convert to hash structures, MODIFY must s X ci
to be allocated. This parameter is used by the AMI i
standard modulo division method). SEa
It should be noted that a user who creates.

CREATE command and then copies a large UN';IX file into it using COPY creates

mary pages will have been specified by CREATE'; A 1d overflow chains will be long.
A better strategy is to COPY into an unsorted thb 50 that MODIFY can subse-
quently make a good guess at the number of pnmimy ages to allocate.
. ER

6.2 Deferred Update and Recovery 1 !jf"

Any updates (APPEND, DELETE, REPLAC E) are processed by writing the
tuples to be added, changed, or modified into aj,{tle‘mporary file. When process 3
finishes, it calls process 4 to actually perform the imodifications requested and any

updates to secondary indices which may be require 1as a final step in processing.

(2) Secondary index considerations. Suppose, qhe foﬂoxs‘ing QUEL statement is
executed: ‘ | s

RANGE OF E IS EMPLOYEE AR
REPLACE E(SALARY = 1.1.E.SALARY) Rt
WHERE E.SALARY > 20000 o | it

Suppose further that there is a secondary index on!the salary domain and the pri-
mary relation is keyed on another domain. 1'i ¥ '
OVQP, in finding the employces who qualify for #hé raise, will use the secondary
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index. If onc employee qualifics and his tuple is modified and the secondary index

updated, then the scan of the secondary index will find his tuple a second time since
it has been moved forward. (In fact, his tuple will be found an arbitrary number of
times.) Either sccondary indexes eannot be used to identify qualifying tuples when
range qualifications are present (a rather unnatural restriction), or secondary in-

dices must be updated in deferred mode.

(b) Primary relation congiderations.  Suppose the QueL statement

5o
1 RANGE OF E, M IS EMPLOYEE
e REPLACE E(SALARY = .9+E.SALARY)
- Where EMGR = M.NAME AND
! E.SALARY > M.SALARY
is executed for the following EMPLOYEE relation:
NAME SALARY MANAGER
Smith 10K Jones
' Jones 8K
Brown 9.5K Smith |
Logically Smith should get the pay cut and Brown should not. However, if Smith’s
tuple is updated before Brown is checked for the pay cut, Brown will qualify. This
undesirable situation must be avoided by deferred update.
(¢) Functionality of updates. Suppos¢ the following QUEL statement is exe-
cuted:
RANGE OF E, M IS EMPLOYEE
REPLACE E(SALARY = M.SALARY)
This update attempts to assign to cach employce the salary of every other employee,
j.e. a single data item 1s to be replaced by multiple values. Stated differently, the
REPLACE statement docs not speeify a function. In cortain cases (such as a RE-
PLACE involving only one tuple variable) functionality is guaranteed. However,
in general the functionality of an update is data dependent. This nonfunctionality
can only be checked if deferred update is performed.
To do so, the deferred update processor must check for duplicate TIDs in RE-
PLACE calls (which requires sorting or hashing the update file). This potentially
expensive operation does not exist in the current implementation, but will be op-
tionally available in the future.
(d) Recovery considerations.  The deferred update file provides a log of up-
_} dates to be made. Recovery 18 provided upon system crash by the RESTORE
1' command. In this case the deferred update routine is requested to destroy the
{ temporary file if it has not yet started processing it. If it has begun processing, it
.. reprocesses the entire update file in such a way that the effect is the same as if it
were processed exactly onee from start to finish.
Hence the update is “backed out” if deferred updating has not yet begun; other-

wise it is proeessed to conelusion. The
be optionally spooled onto tape and recove

soon be operational.
ram) wishes to stop & command
<ses reset except the deferred

If a user from the terminal monitor (or a C prog

“break” character. In this case all proce

he can issuc a
er as above.

update program, which recovers in the same mann
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All update commands do deferred update; however the INGRES utilities have
not yet been modified to do likewise. When this has been done, INGRES will
recover from all crashes which leave the disk intact. In the meantime there can be
disk-intact crashes which eannot be recovered in this manner (if they happen in
such a way that the system catalogs are left inconsistent).

The INGRES “superuser” can checkpoint a database onto tape using the UNIX
backup scheme. Since INGRES logs all interactions, a consistent system can always
be obtained, albeit slowly, by restoring the last checkpoint and running the log of
interactions (or the tape of deferred updates if it exists).

It should be noted that deferred update is a very expensive operation. One
INGRES user has elected to have updates performed directly in process 3, cogni-
zant that he must avoid executing interactions which will run incorrectly. Like
checks for functionality, direct update may be optionally available in the future.
Of course, a different recovery scheme must be implemented.

7. CONCLUSION AND FUTURE EXTENSIONS

The system described herein is in use at about fiftecn installations. It forms the
basis of an accounting system, a system for managing student records, a geodata
system, a system for managing cable trouble reports and maintenance calls for a

~ large telephone company, and assorted other smaller applications. These applica-

tions have been running for periods of up to nine months.

7.1 Performance

At this time no detailed performance measurements have been made, as the current
version (labeled Version 3) has been operational for less than two months. We have
instrumented the code and are in the process of collecting such measurements.

The sizes (in bytes) of the processes in INGRES are indicated below. Since the
access methods are loaded with processes 2 and 3 and with many of the utilities,
their contribution to the respeetive process sizes has been noted separately.

access methods (AN) 11K
terminal monitor 10K

EquEL 30K + AM
process 2 45K + AM
process 3 (query processor) 45K + AM
utilities (8 overlays) 160X 4+ AN

7.2 User Feedback

The feedback from internal and external users has been overwhelmingly positive.
In this section we indicate features that have been suggested for future systems.

(a) Improved periormance. Earlier versions of INGRES were very slow; the
current version should alleviate this problem.

(b) Recursion. Quzw does not support recursion, which must be tediously pro-
grammed in C using the precompiler; recursion capability has been suggested as a
desired extension.

(¢) Other language extensions. These include user defined funections (espceially

ACM Transactions on Dutabase Symems, Vol. 1, No. 3, September 1976.
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counters), multiple target lists for a single qualification statement, and if-then-else
control structures in QUEL; these features may presently be programmed, but only
very incfficiently, using the precompiler.
(d) Report generator. PRINT is a very primitive report generator and the
need for augmented facilities in this arca is clear; it should be written in EQuEL.
(e) Bulk copy. The COPY routine fails to handle casily all situations that
arise. :

7.3 Future Extensions

Noted throughout the paper are arcas where system improvement is in progress,
planned, or desired by uscrs. Other arcas of extension include: (a) a multicomputer
system version of INGRES to operate on distributed databases; (b) further per-
formanece enhancements; (¢) a higher level user language including recursion and
user defined funetions; (d) better data definition and integrity features; and (e) a
database administrator advisor.

The database administrator advisor program would run at idle priority and issuc
queries against a statisties relation to be kept by INGRES. It could then offer
advice to a DBA concerning the choice of access methods and the sclection of
indices. This topic is discussed further in [16].
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