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ABSTRACT

An elementary yet novel approach is presented for analyzing large-

scale networks with coupled elements by tearing along the nodes rather

than branches of the associated network graph. This node-tearing approach

leads to a system of nodal equations whose associated nodal admittance

matrix assumes either a bordered-block-diagonal form or a bordered-block-

triangular form. Compared to conventional diakoptic analysis, the node-

tearing nodal analysis is shown to be superior in several important aspects:

number of variables, sparsity, susceptibility to ill-conditioning, etc.

Two graph optimization problems associated with the node-tearing

approach are formulated for the purpose of developing an optimum node-

partitioning algorithm. These problems are then shown to belong to the

NP-complete class of hard problems where no polynomial-bounded global

optimum algorithms are likely to be found. However, an efficient heuristic

algorithm for partitioning the nodes into clusters has been developed and

presented. Several examples have verified the validity and usefulness of

this algorithm.

Finally, the same tearing approach is extended to loop and cutset analysis

thereby obtaining the fundamental loon and cutset equations in acorresponding

bordered-block-diagonal or a bordered-block-triangular form.
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+0n leave from Instituto di Elettrotecnica ed Elettronica, Politecnico
di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.
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I. Introduction

Recently, much effort has been devoted to tearing methods for the

analysis of electrical networks [1-5]. Tearing, usually referred to as

diakoptics, was first introduced by Kron [6J. It basically consists of

breaking up the original analysis problem into smaller subproblems whose

solutions are combined appropriately to give the solution of the original

problem. Chua and Chen [4,7] have shown that all previously published

tearing methods can be interpreted as special cases of their generalized

hybrid analysis involving both voltage and current variables.

Among the numerous diakoptic methods, one is of particular interest;

namely, the so-called diakoptic nodal analysis introduced by Wu [5].

Nodal analysis (or its modification [8]) is likely to be the most widely

used analysis method because of its simplicity and efficiency [9]. Our

main goal in this paper is to derive a new tearing approach based on nodal

analysis — henceforth called the node-tearing nodal analysis — which uses

only the familiar node-to-datum voltage variables, rather than a mixed, set

of voltage and current variables required in all existing methods of

diakoptic analysis. In other words, our method is not a special case of the

generalized hybrid analysis of [4] and is therefore not proned to. numerical

ill-conditioning often caused by the wide disparity in the order of

magnitude of the elements of the associated hybrid matrix.

This paper is organized as follows: In Section 2, the node-tearinjg

nodal analysis approach is introduced by simply partitioning the nodes

and branches in a particular way. The further imposition of a rather

mild branch-coupling condition leads naturally to a nodal analysis having

either a bordered-block-diagonal or triangular structure. This node-

tearing approach is then given a circuit-theoretic interpretation somewhat

reminiscent of that given in [4].
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In Section 3, a comparison with Wu's diakoptic nodal analysis is

carried out. It is shown that, in almost all cases, node-tearing nodal

analysis is superior to diakoptic nodal analysis.

In Section 4. optimization problems related to the choice of the

partition of nodes and branches are introduced. They are also given

graph-theoretic interpretations. Furthermore, their computational

complexities are discussed and shown to belong to a class of hard problems,

the so-called NP-complete problems [10,11], where no efficient global

solution algorithm can be expected.

In Section 5, an efficient heuristic cluster algorithm is introduced.

From test results, the heuristic solutions are found to be very close to

the global optimal solutions. In Section 6, some concluding remarks

are given.

In Appendix A, the most efficient mathematical methods for solving

the tearing equations are discussed. Their computational complexities

are evaluated and compared under various sparsity assumptions. In

Appendix B, a brief discription of NP-complete problems is presented.

Also included are the proofs that the optimization problems introduced in

Section 4 are indeed NP-complete. Finally, in Appendix C, some other

tearing methods based on the same principle as node-tearing nodal analysis

are described.

II. Node-Tearing Nodal Analysis

Our goal in this section is to derive a new tearing approach [4]

based on nodal analysis. To simplify the notation, we consider only

linear resistive networks. However, the same approach can be easily 1

generalized for nonlinear networks following the procedure given in [4].
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Let us briefly recall that, if N is a connected network whose

branches are grouped into the standard composite form (Fig. 1) and if

9 is its associated graph, then the standard nodal analysis yields [12]:

agaSt = J <1>
-7~ "n "s

where

j 4A(j-Ge) (2)

A is the reduced incidence matrix of Q, Gis the branch conductance

matrix, V is the node-to-datum voltage vector, j is the branch current-

source vector and e is the branch vpltage-source vector. Je can also be

interpreted as an equivalent current-source vector representing all the

currents injected into each node due to the independent sources.

As pointed out in [4], the tearing approach can be interpreted as

partitioning the nodes and branches of N in such a way that the associated

network equations involve a matrix with a special structure. This special

structure must lead to a straight-forward decomposition of the system of

equations into smaller subsystems, each of which can be solved either

independently or in accordance with certain ordering. Furthermore, the

decomposed solutions should coincide with the original solutions.

Two structures (or forms) of a square matrix satisfying the above

requirement are the bordered-block-diagonal form, henceforth denoted by

BBDF,' and the bordered-block-triangular form, henceforth denoted by

BBTF [13] (also, see Fig. 2 and Appendix A). Hence our aim is to partition

the nodes and branches of N in such a way that the nodal admittance matrix

Y = AGAt is in BBDF or in BBTF. The resulting nodal equation will then

be referred to as the node-tearing nodal analysis, denoted by NTNA.

1This is also referred to as the bordered^-block-lower-triangular form.
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Basic Partition:

Let ^/V) denote the nondatum nodes of Cj and let ^B denote the set of

branches of Cj. Partition the nondatum node set ^Vl into two arbitrary

subsets^VL and^AL. Partition the branch set Q into two subsets ^b.

and ^15~ such that:

(i) ^Q contains all those branches in ^R that are incident with nodes

(ii) ^~B7 contains all the remaining branches of ^Q.

Graphically, this basic partition of nodes and branches is illustrated

in Fig. 3. Topologically, it yields the following special structure for

the reduced incidence matrix A:

^x
A =

W,U

A ^
*11 -2i2

A A

""21 "22

(3)

Remark 1. A.« = 0.„ is of fundamental importance for subsequent derivations

If we rearrange the branch conductance matrix G with respect to the

basic partition as

^1^2

(4)G =

<R §21 522

then the nodal equation becomes
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where

<A -Ji:
Y Yill ^12

^21 -22

?u" hihi^n

v
~n

V
-n0

JumhL*u& +hA2&22

hi ' hlhlhl +^21*11

J
-s.

J
~s.

?22 " *2Al*21 +*22§21*21 +*2lSl2*22 +*22»22*22

(5)

(6)

(7)

(8)

(9)

Let us now look at the conditions that assure Y to be in a form suitable

for tearing. Basically, they are of two kinds:

(i) the connection between branches, henceforth called the topological

condition;

(ii) the coupling between branches, henceforth call the branch coupling

condition.

Topological Condition:

The section graph2 QOlj has "m" (m>X) di*c°nnected components3

_—.———— —————— (

2Given a graph Q = (X, U) where X denotes the set of nodes and U denotes
the set of branches, let S be a subset of nodes, then the section graph
[14] Q(S) is the graph (S,US) where Us = {b € u|b incidents only with S>.
The section graph can also be interpreted as the graph obtained from (j
by removing all {X-S} nodes and all branches with at least one terminal node
belonging to {X-S}. Hence, both terminal nodes of each branch in Cj(S)
mast belong to S.

3
In [4] we required the components to be separable whereas here we require
the components to be disconnected. In other words, we need a slightly stronger
requirement here. •?
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It follows from the topological condition that A can be further partitioned

as

A =

^1 "1 • -Dl D2

X
X

• 0 •

0:
• 0.

X A?
*11 .

A A1
^d21

A2
-21 '

Am "• d21 . *22 J

(10)

where ^ =^B^ U^^° U^2,^0 is the set of branches connecting
an-Ali node and the datum node,^ is the set of branches connecting

i k ian^AIl node and an^\i2 node. The notations are fully illustrated in
Fig. 4.

Remark 2. The upper left submatrix A-, of (3) has the block diagonal

structure as shown in (10).

As an example, consider the graph of Fig. 5(a). First, let us

partition the nondatum node set into^V^ ={^.n^n^n^ and .Mfitly n,}.
Accordingly, Q is partitioned into ^ ={b^b^b .b^.b ,b ,b }and

^2 =^b8'b9,bl0^* Note that the section graph Q(A^) has three disconnected
components Cj^, Q1 and Cj1 (Fig. 5(b)). The reduced incidence matrix
A of this example can then be partitioned as follows:

Observe that^VJ UA^ U^A<m =Ju± and {U^R^1} U (branches
k=l

between an _,\L node and the datum node} U {branches between an _^\), node and

an^V2 node} =^1#
Observe that (j and vj contain no branches because each branch

connected to either node n.. or n~ is also incident with some node not

belonging to _\L.
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Xh
X {n2

A- ,fn3

^i. f

<%{ <ej <£

o
O11-1-;-;-;

I

I

ill

1 1

1

D8 b9 b10

012

1 1

1 1

(11)

Before considering the branch coupling condition, let us relate the

structure of G with the structure of Y of a network in which the topological

condition is satisfied.

Lemma_l. If the topological condition holds, then the submatrix Y_- of

(5) preserves the nonzero block structure of G-^ of (4) in the sense that

both Y_- and G-- have identical nonzero blocks as illustrated in Fig. 6.

Proof: Recall from (6) that A-2 «0 guarantees the relation Y^ = ^ii^n^ii*

Since the topological condition implies that A^ is block diagonal, then

the product A-.G -A* can be regarded as a block diagonal transformation

of nonzero elements. Thus Y - preserves the nonzero block structure of

Gu (Fig. 6). n
Now, it is straight-forward to give conditions on G such that Y is

in a form suitable for tearing.

Branch Coupling Condition 1;

Branches in^I" are not coupled to branches in(^91 for all i^j

and i,j = l,2,...,m.

According to branch coupling condition 1, G can be recast as
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G =

^

0
^2

0
s2

•

•

•

0

^.mm

&

?21 4 Gm ?22

(12)

Theroem 1. If the topological condition and the branch coupling condition 1

hold, Y can be put in the bordered-block-diagonal form (BBDF). In

particular, we have

X X • • X A

X Yll
-11 u 'Y1

-12

X /
Y22 Y2

J12

? - • (J •• •

X
mm

^11
Y*
J12

M2 Y1
*21

Y2
-21 - *

Y™i21 , Y22

where, for k = 1,2,...,m ,

iS =^ii^ii^i^

*12 =*llSll (*21}t + All?12^22
k Jck,.k Nt k ,.k Nt

*9i = *?iSn(6n) + A9?9?i(An>22-21v-11

Y
-22

m r

-£[«
k=lL

A^G^A*,)* +A^G^CA^)' +A^G^2j +A^G^A?
21^11-21' "22-21-21

Proof: Obvious by Lemma 1.
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It follows from Theorem 1 that the nodal equation (5) now has the

following block structure, henceforth called the node-tearing nodal analysis in

bordered-block-diagonal form (or simply as NTNA in BBDF):

r
Jll

y22

0

0 "lY1
1 2
1?12
• .

Y™1! Y*

1 Y2 f |y
hi hi " # -21, -22

v1 J1
~nl "Sl
V2 j2
-°1 -fl

v* Jn
"nl "sl
V
-n SJ

(18)

where V* and V denote respectively the node-to-datum voltage vectors

of nodes^V* and^VL J* and Jg denote respectively the equivalent
current vectors representing the net current injected into nodes Ji± and
_AL due to all independent sources. Moreover,

where £ and j2 (resp.; e* and §,) are the branch current-(resp.; voltage-)
source vectors of branches in35* and 3?2, respectively.

Now, let us focus on the other form that Is also suitable for

tearing; namely, the bordered block triangular form (BBTF). The following

condition guarantees that Y is in BBTF if the topological condition holds.

Branch Coupling Condition 2:

Branches in^ are not coupled to branches in^ for all i<jand
i,j = 1,2,...>.

It follows from branch coupling condition 2that G can be partitioned

as follows:

-10-
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G -

Q{ v>l . .^i 3*.

hi 0
^

&
g21 g22?11

•

&
i •

•
•

•

rml
-11

g*2
-11 •

mm

* Sii
rm
?12

G1 G2
g21 " ' g21 ^

(21)

Observe that this condition is weaker than the branch coupling

condition 1 in that condition 1 implies condition 2, but not vice-versa.

Theorem 2. If the topological condition and the branch coupling condition

2 hold, then Y can be put in bordered-block-triangular form (BBTF). In

particular, we have

X
,2

,i

~i

Y =

-VI™

2

J

Jl

X X • • Jll JJ.

Yll
Jll
y21
-11

22
Y
£11

Q ,Y1*12
Y2J12

Yml
-11

m2

Jll

•

mm

' • -11

•

m

i12

Y1
J21

i. -

Y2
521

Ym• • *21 1 Yii22^

(22)

Proof: Obvious from Lemma 1.

It follows from Theorem 2 that the nodal equation (5) now has the BBTF

structure, henceforth called the node-tearing nodal analysis in bordered-

block-triangular form (or simply as NTNA in BBTF).

Let us now pause to look at the example shown in Fig. 7. The reason

why we choose a network with so many voltage-controlled current sources

(i.e., couplings) is to illustrate that our branch coupling conditions

are actually very mild.
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ThedirectedgraphQassociatedwiththenetworkNofFig.7is

showninFig.8.Letuspartitionthenodesandbranchesasbefore.

ThenthereducedincidencematrixA,thebranchconductancematrixGand

thenodalequationareshownbelow,respectively:

(23)

(24)
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C /-\
-> r n

r- ^

yn! o : ° y16 .'xl Jl

]y22 ! ,y25 ~y26~ V i

n2
0

A iy33 y34 ,y35 y36
V

n3 _

J2

Iy43 y44 |y45 0 V

n4 "J2

0 1y52 . 0 y54 Iy55 y56
V

n5
~~b~

y61 ,' y62 !y63 y64 !y65 y66
V

Ln6J
0

where

yll 811 + 822; y16 " 822 " 828;

y22 833 + 844; y25 "~844; y26 " 833;

A , A A
y33 " 855 + 866 " 856; y34 856 " 866' y35 " 85,10'

A A A
Y36 S55 ~ 85 -lo; y^3 " gfifiJ y^A gAr; 877»'66' '44 &66

y45 " 877; y52 844 " 810,4; y54 897 " 877;
A .A

y55 ~ 844 877 899 810,10 810,4 " 897* y56

A A A

y61 " 822; y62 810,4 " 833; y63 " 856 " 855;

= - g10,10'

y64 ~ " 856; y65 ~ 810,10 " 810,4 ~ 85,10;

y66 = 822 + 833 + g55 + 888 + 810,10 + g28 + 85,10*

Let us observe the following:

W *i2"?12--
(ii) G as given in (24) has the same block structure as (12) and therefore

satisfies the branch coupling condition 1.

(iii) Y of (25) is in BBDF.

(25)

>

(26)

J

Let us modify the G matrix in (24) by adding g . , g_« and %-,,•

Physically, we are adding voltage-controlled current sources across branches

b,, b_ and b which depend on voltages of branches b'^, b« and b,,

respectively. Then, those elements of the resulting Y that differ from
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(25) are listed as follows:

21 =" 831; y31 =" 852; y36 = 852 " 855 " 85,10; y42 "" 874;
"\

y45 " 874 " 87?; y52 " 844 + 874 810,4; y55 = 844 " 874 + 877 " 897

+899 +810,10 +810,4; y61 =852 "822; y66 =822 +833 +855 +888
>

(27)

+ 810,10 + 828 + 85,10 " 852

Observe that both G and Y are in BBTF.

Remark 3. If neither branch coupling condition 1 nor 2 is satisfied

relative to the preceding partitioning of Q(j^) into m separable

components, it is often possible to relax these conditions and still

obtain the nodal equation in BBDF or BBTF but with fewer blocks (of

course, the dimension of the resulting blocks will be larger). To see

how branch coupling condition 1 can be relaxed, let us partition the set

of separable components of QiM-j)* denoted by fi ={y1»yi»•••>\}-\}*
into V disjoint subsets (r<m) Sr 22'--->Sr» each containing one
or more separable components. Partition^ and^ each into V subsets
J]£ and 3^, k=l,2,...,r whereJjJ contains all nodes in Sk and^
contains all branches incident withJ\\ nodes (Fig. 9). The submatrix
A.x can then be partitioned with respect to this new partition of nodes
and branches. Since Lemma 1 still holds with respect to this new node

partition, we can relax branch coupling condition 1as follows: branches

intfj1 are not coupled to branches in-§^ for all i*jand i,j =1,2,...,r.
Obviously, Theorem 1still holds with respect to this new node partition.

The same reasoning (mutatis mutandis) can obviously be applied to relax

branch coupling condition 2.

As an illustration, let us consider the same example in Fig. 7. Let
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us add g^. and g , to (24) thereby violating the branch coupling condition

1 relative to the original node partition. However, if we choose our new

partition as Jjj -J)J U^V)2, Jj2 =J^^ -V\ U^2 and ^2 -̂ ,
then those elements of the resulting Y that differ from (25) are listed as follows

y12 "824; y15 ="824; y21 *"831; y61 "831 "822; ^
) (28)

A A [
y62 " 810,4 " 833 ~ 824; y65 824 " 810,10 " 810,4 g5,10 'J

Observe that both G and Y are now in BBDF and notice that there are

only 2 diagonal blocks in this new partition as compared to the 3 diagonal

blocks in (25).

So far, we have shown that these special cases of the well-known

nodal analysis are obtained merely by a simple partitioning of the nodes

and branches, and by imposing some rather mild branch coupling conditions.

We are now ready to give a circuit-theoretic interpretation of the

node-tearing nodal analysis given in (18) in the same spirit as that

given for diakoptic analysis in [4]. First, let us recast the k-th

component matrix equation of (18) as

kk ^c k = jk (29)
-11 -n± -12 -n2 ~S;L

Substituting (14), (15) and (19) into (29), we obtain

Ak Jek/.k \t k , Ak Jck/.k \t Ak Je t y
*ll?ll\*ll) \ +*ll?lll*2l/ \ +*ll5l2^22?n2

Ak .k Ak rkk k Ak rk (30)
= *11J-1 " *ll?llel - *ll?12e2

Let us next augment avoltage source between each_,\l2 node and the datum

node and let its terminal voltage waveform be assigned equal to the

corresponding node-to-datum voltage. Finally, let us remove all-(-_>2

branches (Fig. 10(a))'. Because of the Substitution Theorem [12], this
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procedure will not alter the solution of the network. Furthermore, these
augmented voltage sources will summarize the "outside" influence due to
branches in^2 upon ea<* subnetwork Hfc. In other words, these augmented
voltage sources effectively "decouple" the original network into »m"
subnetworks (Fig. 10(b)). Each "decoupled" subnetwork Nfc can now be

analyzed separately as follows:

"&£.<&£ +&5z<V*2> - 4*1

Observe that (31) is identical to (30).

Similarly, if we augment avoltage source between each Jl± node and
the datum node and let its terminal voltage waveform be assigned equal to
the corresponding nbde-to-datum voltage, then upon removing all branches
in%, we can show that the equation governing this augmented network
is identical to the last component matrix equation of (18).

In analogy to the diakoptics' tearing approach [4 ], we can now

interprete (18) as the result of atearing process. Physically, we tear
the original network Hapart at th.Jl2 nodes using augmented equivalent
voltage sources to account for the "outside" influence upon each subnetwork
N. . We analyze each subnetwork separately. Finally, we interconnect the
solutions via the^-node subnetwork. It is precisely this node-tearing
analogy which prompted us to call this approach as the node-tearing nodal

analysis.

Notations can be found in Fig. 1.

-16-
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III. Comparison with Diakoptic Analysis

As already mentioned in the introduction, another tearing approach

based on nodal analysis has been developed and will henceforth be referred

to as diakoptic nodal analysis [5]. Our objective in this section is to

compare the node-tearing nodal analysis (NTNA) with the diakoptic nodal

analysis (DNA). To do this, it is instructive to recall briefly the

procedure involved in the derivation of DNA. We assume as usual the

standard composite branch format shown in Fig. 1 and partition the

nondatum node set _A) arbitrarily into two disjoint subsets ^AL and^AL.

We next partition the branch set -R into two disjoint subsets -fc^ and Hb>2

such that no coupling exists between a *-]&. branch and a ^t52 branch.

The reduced incidence matrix A then assumes the following partitioned

form:

A
X

A =

^i %
-11 ^12

hi hi

(32)

Depending on the context, let us partition all current and voltage

vectors xwith respect to either Q and ^f^, or J^^ and ^V^J namely

?l
x - (33)

?2

Using this notation, KCL, KVL, and the branch relations assume the following

form:

In this section, we attach a "hat" to all symbols associated with DNA in
order to distinguish them from the corresponding symbols associated with
NTNA.
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Kirchhoff Current Law

A . A

hlh + hlh ' 01

hlh + hlh " °2

Kirchhoff Voltage Law

A A^ A A . A

V. = AT.V + A)Lv-1 -^"n- -21-n2

A A . A A - A

Branch Relations

h +h s ii =5iYi - ?i<yi4i>

?2 + ?2 = ?2 = ?2*2 =?2(?2+32)

Equations (34)-(39) can be combined into the following matrix
8

equation, henceforth called diakoptic nodal analysis (DNA):

X X %
X

^2

where

A a a £ a a . a £ a

Hlhhl hAhl *12
A A A£ A A a£ A

^21^11 *21§1*21 -22

*12
Vs.

-22 -1J

J

A A A AAA

^s2 =̂ r^

?2" ?2"%

A A

V j

~ni -8l
A

V ss J

~a?. ~s2.
A

-
*2 J ?2J

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

Ven^V is empty, (40) reduces to the so-called radially attached case [15]
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We shall later refer to the matrix in (40) as K.

Observe that if the removal of all -fL branches reduces the original

len
gra]iph Q into "m" disconnected components Cj1, 'j-^ •••» 'Ji (Fig* H)» tn<

the submatrix A - can be partitioned into a block-diagonal form containing

"m" blocks. Consequently, Lemma 1 is also applicable to the product

^ll^l-ll of (40)#
We are now ready to point out the basic distinctions between NTNA

and DNA:9

(i) As far as the topological conditions are concerned, the NTNA

accomplishes the "tearing" in m separable components by removing the

^V nodes and the datum node. In contrast to this, DNA accomplishes the

same task by removing the^R, branches. In other words, NTNA involves

"node removal" whereas DNA involves "branch removal."

(ii) NTNA uses only voltage variables in the final network equation

whereas DNA uses both voltage and current variables.

Let us pause for a moment to introduce a lemma which relates the two

methods.

Lemma 2. Let (j be an undirected graph and let Q be a subset of branches

such that the graph Q-, obtained from (\ by removing all -i->2 branches

contains "m" disconnected components. Then there always exists a subset

^\j of nodes of Q such that, the graph Q obtained from *j by removing
: ~-~ " " 7 10

all^AL nodes contains "r" disconnected components, furthermore

9The same can be said about diakoptic methods in general [4].

We let |s| denote the number of elements in the set S.
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(i) r < m;
A A A

(ii) L^V)xi £ lN\\ where^V* denotes the nodes in Q^;
cm) uy<p6,i-

Proof: For each branch in '^B*» we can choose any one of its end nodes

and store it in^\j_. Observe the following:

(i) Since, by assumption, the removal of ^Q~ branches separates

the graph Q into m disconnected components, it follows that the removal

of _AL nodes will separate the remaining graph y- into at most "m"

disconnected components. If some of the disconnected components of Q- contain

isolated nodes which are all chosen as^Mo nodes, then Cj1 contains less

than "m" separable components.

(ii) Obvious from the construction of ^Mo*

(iil) If a node happens to be the end node of two or more £R branches

(Fig. 12), then only this node needs to be put in^VL. Hence |_,\L| — l^*6ol#

Let us now compare NTNA and DNA with respect to their computational

complexities. As shown in Appendix A, the parameters in determining the

computational complexity are:

(i) the total dimension of the coefficient matrix;

(ii) the dimension of the border of the coefficient matrix;

(iii) the sparsity of the matrix.

Theorem 3. Let N be a network whose branches are not coupled to each

other, let H-^ and ^Bo be the disjoint subsets of the branch partition
-t. /. —~—

satisfying the topological condition of diakoptic nodal analysis. Then

there always exists a partition of the set ^M of nondatum nodes into Jv^

and^A) which satisfies the topological condition of node-tearing nodal
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analysis and the following properties:

(i) the dimension of Y of (18) is less than the dimension of K of

(40);

(ii) the dimension of the border of Y is less than or equal to the

dimension of the border of K;

(iii) Y is sparser than K.

Proof: (i) |y| =UH =IV +LV21 <LV»iI + LV2I + 1^1 = l?l •
(ii) The dimension of the border of Y is equal to LVUI whereas the

dimension of the border of K is equal to LAL| + |--I?21 • It follows from

Lemma 2that [_Al2l <KR,| 1 LA^I + \j>>2\ •
(iii) We want to show that the number of off-diagonal terms in (18) is

always less than those in (40). However, a direct comparison is impossible

because different submatrices are involved in Y of (18) and K of (40).

Therefore, in order to be able to compare directly, we will repartition

the nodal admittance matrix Y with respect to the {_A)i> ^VU? "-& »^6?}

partition, henceforth referred to as Y, so that it involves the same

submatrices as those contained in K of (40) . Observe that the nodal

admittance matrix Y with respect to C\L ,^AU* 'TJi* "TO and the nodal

admittance matrix Ywith respect to CV, ,n-A^J 'T>i» ^"O ^i*e*» (18)) are

both nodal admittance matrices of the same network, and hence can differ

from each other only by a symmetric permutation of rows and columns. In

other words, they have the same number of nonzero terms. Therefore, we

need only to compare the number of nonzero off-diagonal terms of Y with

those in K of (40).

Let us now partition the nodal admittance matrix with respect to the

0'i» ^V2» -35i» ^2' partition:
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Y i AGAT =

^A A

-ii -12

A A

?! 9 A* A*
-11 -21

A ' A

-21 -22

A A

9 <?9
~t ~t

Jl2 -22^

U?|l +I^Mtt ^11^21 +^12^22
*2lMll +kz*&Z ^21^21 +hl^ll

llA*ll *lAl^l
A A A . A A A .

*21?Al.±2A*21.
"V _ y

II

f—
•a a a^ a a a.

*12$24l2 ^12^22
A AA. A AA.

-22-2-12 -22?2-22j
v . /

h

(44)

(45)

where the last decomposition is made for comparison purposes. Observe that

since G. and G'denote the branch conductance matrix associated with
-\ - 2. ^

branches in ^ and <Qr respectively, it follows that Y^ corresponds to
.A

the Cgl branches whereas Y2 corresponds to the ^B2 branches.
Let us now look at matrix K of (40). Observe that the four sub-

matrices in the upper left-hand corner of K, which are also due to branches

in(^ ,are identical to the submatrix Y^ Observe also that the sub-

matrices such as {A^, A22, A^2, l\r ?2> are due to the^ branches.
Since the branches in ^ give rise to the same submatrix Y^ in both

"Y of (45) and K of (40), therefore the nonzero terms due to the branches

in^§ need not be considered in the comparison. Furthermore, R2 is

assumed diagonal, hence we need only to compare the number of off-diagonal
A A A A. A.

terms in Y£ and the nonzero terms in {A12> A22> A^, A^} which are

contributed by the branches in -B?.
^ A

Let b, ^^B9 be a branch connecting nodes n± and n.. Then, Y2

(i.e., the (i,j)th element of Y2) and Y2 are the only off-diagonal

terms in Y that are due to branch bfc. However, the column of the submatrix

-22-



/ *

hi
u 22

that corresponds to branch b, contains a "1" in the i-th row and a

"-1" in the j-th row (or vice-versa). In other words, branch b, contributes

4nonzero terms to {A ,A22, #12, A^}. Hence, the following
relations always hold:

the number of nonzero off-diagonal terms of Y in (18)

= the number of nonzero off-diagonal terms of Y in (44)

<_ the number of nonzero off-diagonal terms of Y- and Y? in (45)

< the number of nonzero off-diagonal terms of Y

+ the number of nonzero terms in {A-2, AAA-}

= the number of nonzero off-diagonal terms of K in (40). n

A

Corollary 1 If the ^P, branches are coupled to each other, then (18)

is superior to (40) in the sense that properties (i), (ii) and (iii) of

Theorem 3 are satisfied.

Remark 4. If the ^-£5 branches are coupled to each other, then properties

(i) and (ii) of Theorem 3 are still satisfied while property (iii) also

holds except in some special cases. For instance, in the case where the

<T> 12
^t^ branches are very "strongly coupled" to each other, we can find

examples where (iii) is false.

Remark 5. For passive networks, the Y matrix in (18) is diagonally

dominant. Hence, for NTNA, any application of the Gaussian Elimination

xken branch b^ connects node n^ to the datum node, no off-diagonal term in

thatY will be contributed by b. whereas the column of the submatrix
— K A

Lvoo
corresponds to branch bk contains a "1" (or "-1") in the i-th row. In
other words, the subsequent inequalities still hold.
12 -

By strong coupling, we moan Q2 and R? are full matrices.
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method with diagonal pivoting on (18) is guaranteed to be stable.

However, in the case of DNA, we can not make a similar statement about

(40).

A

Remark .6. In the derivation of (40) for DNA, we require that the Cf^
A

branches are not coupled to the ^92 branches. In the derivation of (18)

for NTNA, however, we do allow couplings between C-B1 and <-62 branches as

In (4).

IV. Computational Considerations and Graph Optimization Problems Related

to Node Tearing

As already pointed out in the introduction and [4], when Y is in

BBDF or BBTF, there exists several efficient methods for decomposing

the solution process. This decomposition step is not only convenient

but is in fact essential when a very large system of equations has to be

solved. Indeed, even by using advanced sparse matrix techniques [16-19],

the computer can not handle such large-scale systems efficiently.

In this paper, we critically analyze three decomposition methods

which, to the best of our knowledge, are the most efficient solution

techniques available; namely, the LU method [20], the Block LU method [4,5]

13
and the TA method [21]. Since each of these three methods decomposes

the solution process into several stages each involving a relatively

small matrix, we can either apply overlay techniques [22] to "stack"

the decomposed solution stages, or apply parallel computation

techniques [23] to "speed up" the decomposed solution process.

13
TA stands for Tearing Algorithm.
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To avoid drifting too far from the main theme of this paper, the

detailed description of these methods and a critical study of their

computational complexities — defined as the number of multiplications

required — are given in Appendix A. We note here for later reference that

the computational complexity of these methods for both BBDF and BBTF

depends on the number of nodes in ^\L and on the size, i.e., dimension,

of the diagonal blocks of Y... In this section, we give only the final

results of the comparisons carried out in details in Appendix A.

Comparisons of the computational complexities associated with

these three methods for BBDF and BBTF were obtained under the following

two assumptions:

(i) all the nonzero submatrices of Y are full;

(ii) all the submatrices and/or the vector on the right-hand side

of (1) are sparse.

The conclusions are summarized in the following Theorem:

Theorem 4 (Relative efficiency of the LU, Block LU and TA methods): For

the BBDF, under assumption (i), all three methods yield the same complexity.

Under assumption (ii), LU method is always better than Block LU method

14
which in turn is generally better than TA method. For the BBTF, under

both assumptions, TA method is always significantly better than the other

two methods. n

In Section 2, we have assumed that a partition satisfying the tearing

requirements (namely, the topological and branch coupling conditions) was

is
The above statement is always true under one rather mild condition that

there is no fill-in in the lower border of the matrix considered (i.e.,
Yot) during Gaussian Elimination.
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given apriori. For some problems, a fairly good partition can be obtained

from a good layout. However, in general, this is not the case and a

partition has to be found.

Observe that in general there exist many distinct partitions of the

nondatum node set ^Al and the branch set ^B of N such that the resulting

Y matrix is in BBDF or BBTF. We can rank these partitions in t-erms of

the computational effort needed to find the solutions of the derived system

of equations and choose the optimal one. Since the computational complexity

is directly related to both LAU and the size of the diagonal blocks of

-11' we need to minimize both of them. Thus we have a multi-criteria

optimization problem to solve.

There exist two general approaches for solving multi-criteria

optimization problems [24]. One approach is to convert all but one

criterion into suitable constraints. The other approach is to combine

the criteria into a single weighted criterion. Fortunately, the choice

of our partition is often constrained by an upper bound for the size of

the diagonal blocks of Y.-. This upper bound is usually determined by

the capability of the computer used. Hence, it is meaningful to adopt

the first approach and consider the following optimization problem for

tearing, henceforth called the tearing optimization problem and denoted

by TOP:

Find a partition of nodes and branches in N such that the dimensions of

the diagonal blocks of Y_- are less than or equal to a prescribed upper

bound n and such that |AL| is minimized,max l^v2i

Formally, TOP can be stated as follows:

TOP: Minimize L\L| over the family of all distinct partitions Ovlp -AIa.)

of nodes of Cj such that
-26-



4
1

(i) the topological condition holds;

(ii) the branch coupling condition (1 or 2) holds;

,ki(iii) LAl*| in^, k-1,2, . ,m.

Remark 7. In general, n depends on the type of problem we are dealing
—^—————— max

with, the computer being used and the sparsity of the matrices involved.

Remark 8. TOP is a combinatorial problem and is often more easily studied

if it is given a graph-theoretic interpretation. Observe that if the

branches are uncoupled, condition (ii) is automatically satisfied and

hence can be dropped. Once (ii) is dropped, TOP reduces to a graph

optimization problem. However, in general some branches are coupled to

each other and (ii) can not be removed.

Observe that TOP actually consists of two problems, depending on

whether branch coupling condition 1 or 2 holds. We will prove shortly

that they can be reformulated into two equivalent graph optimization

problems.

We want to point out again that the primary purpose, of NTNA is to

partition the nonzero elements of the nodal admittance matrix Y in BBDF

or BBTF. It is well-known that, in order to deal with the nonzero

elements of a matrix efficiently, it is best to work with its associated

graph — the so-called sparsity graph [13,25,26]. We will therefore

present a graph-theoretic interpretation of TOP using the concept of

sparsity graph.

A sparsity graph associated with an nxn matrix Y is defined as a

* 15directed graph (\ containing ."n" nodes and a directed branch from node

15In this section, a hat is used to distinguish symbols associated with
a directed graph from symbols associated with an undirected graph.
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n. to node n whenever Y.. # 0 (see Fig. 13(a) and (b) for illustration).

The undirected version of a directed graph C]Y is defined as an undirected

graph Q containing "n" nodes and an undirected branch between nodes n.
A

and n. whenever there is a directed branch in QY from node n. to node

n.. (Fig. 13(c)).

We shall now define two graph optimization problems, henceforth

denoted by GOPl and G0P2, on the sparsity graph associated with the nodal

admittance matrix Y as follows:

GOPl; Minimize LA(Y jover the family of all distinct partitions
2

iAfv »-AfY >of nodes of Q such that
xl x2

(i) the topological condition holds on Q^;
(ii) LA|£ |in^, k=1,2,...,m.

A

GOP2 j Minimize |,\) Y | over the family of all distinct partitions
2 a

(AI'y >_AIv } of nodes of Qy such that
xl 2

A A

(i) the section graph QY(AfY >has "*" (m>1* strongly-connected

components QY =CVY ^v^•Qy ^ 0MY ,^f)>.... QY " <AfY £&f>;
^Yl Yl Yl 1 1 1 1 1 1

(ii) LV)Y I <nmax, k =1,2,...,m.

Before we relate these two problems to TOP, let us prove the

following lemma which gives the relationship between the graph Cj of a

network and the sparsity graph QY of the nodal admittance matrix Y.

16The following notations are the same as those in Section 2 except the
subscript "Y" which is used to emphasize that we are dealing with the
sparsity graph associated with matrix Y.
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Lemma 3. The undirected version of the sparsity graph Cj associated with
— -^.x •

the nodal admittance matrix Y of N is the "union" of the section graph

yCvjU.AU) and the set of branches, connecting nodes in _\\ U \! f which are
—• — u A—1_2
induced by the couplings. In other words, (\ = fjCV-UAU) + {branches

due to couplings}.

Proof: Observe that the section graph QcVLU-AU) can be obtained from

y by removing the datum node and all branches connected to it. Let

branch b, consist of a conductance G, . in parallel with a voltage
Kl klkl

controlled-current source G, v. (Fig. 14(a)). If we denote the end
K1K2 2

nodes of branches b, and b, as n , n. and n. , n. , respectively,
1 k2 *1 Jl x2 J2

then G, , would contribute nonzero terms to Y. . and Y. . . Consequently,
1 1 11J1 3111

the sparsity subgraph and its undirected version due to G, , are shown
.klkl

in Figs. 14(b) and (c), respectively. Observe that, for the uncoupled

case, CjY = Cj CvJj^A^) • Since G, would in general contribute nonzero

terms to Y , Y Y and Y. . , the associated sparsity subgraph
1112 1J2' J1X2 JlJ2

and its undirected version due to G, are shown in Figs. 14(d) and (e),
12

respectively. It is now obvious that Qy =(jOV^^A^) + {branches due
to couplings}. n

Theorem 5. GOPl js equivalent to TOP with branch coupling condition 1.

Proof: (a) GOPl (i) =* TOP (i) and (ii):

From Lemma 3, {jCV'x^V^) is asubgraph of Qf. GOPl (i) implies that

The symbol "+" in this equation is used in the sense that the branches
due to couplings are to be added to the graph Q(_A!iU.AU) via soldering-
iron entries. In other words, no new node is introduced by this
augmentation. This notation is used quite often in the graph theory
literature [14].
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,ithere is no branch connecting Q and Q3 for i ^ j. Hence, there is
1 x i n-

no branch connecting their respective subgraphs Cj, and Cj-. Hence,

QJ and Q3 are separable blocks (i.e., TOP (i)) and are not mutually

coupled (i.e., TOP (ii)).

(b) TOP (i) and (ii) =* GOPl (i):

This follows directly from the construction of CjY. H

Theorem 6. G0P2 is equivalent to TOP with branch coupling condition 2.

Proof: (a) GOP2 (i)• => TOP (i) and (ii):
A .A

Assume there is abranch from Q to QY (i#J)» then there is no branch
*.'•*. 1 1

from Q3 to Q* ; otherwise, it would violate the definition of a strongly-
^Yl ^Yl

connected component. Therefore, this branch must come from the couplings

since each original branch in Q corresponding to Gj, would produce two

branches in QY forming a loop. Since each original branch in Q remains

in one of the strongly-connected components, there is no original branch
A * A •

connecting nodes in Q and Q3 . Hence, TOP (i) is satisfied.

Furthermore, if TOP (ii) is violated, then Y can become structurally

symmetric and G0P2 (i) will be violated,

(b) TOP (i) and (ii) => G0P2 (i):
A

This follows directly from the construction of QY. n

It has to be noted that both GOPl and G0P2 are very difficult

graph optimization problems. In fact, it can be shown that they belong

to a class of hard problems. This class of problems, called NP-complete

[10,11], has the property that if any one of them can be solved (i.e.,

yielding global optimal solution) in polynomial-bounded time with

respect to the dimension of the input, all of them can. However, up
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until now, no polynomial-bounded solution algorithm has been found for

any of these NP-complete problems. It is widely believed that no such

polynomial-bounded algorithm exists. The discussion on NP-complete

problems and the proof that GOPl and G0P2 are NP-complete are given in

Appendix B.

In general, once we can prove that a problem is NP-complete, we

should avoid trying to find a global solution (unless the size of the

problem is so small that exponentially-bounded algorithm is acceptable).

Instead, some efficient heuristic algorithm [27] should be developed.

In the next section, we shall develop such an algorithm for solving

GOPl.
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V. A Heuristic Cluster Algorithm

In this section we give a heuristic algorithm to solve one of the

optimization problems introduced in Section 4; namely, GOPl- This

problem arises in many different fields and is usually referred to as the

cluster problem. For example, it is encountered in computer logic and

page partitioning problems [28,29], in power system bus clustering

problems [30], in network decomposition problems [4,31], in shortest path

decomposition problems [32], in IC placement problems [33] and in

statistical data grouping problems [34]. Depending on the nature of the

problem, the minimization objectives may be based upon the number of *'

interconnection nodes [32], the number of interconnection branches

[4,28-31], the total cost of interconnection branches [33] or the distance

between the "centroids" of clusters [34]. The various approaches for

solving the cluster problems may be classified into four major categories:

(i) growing clusters from scratch [28,31];

(ii) interchanging nodes until some local optimality condition

is satisfied [33];

(iii) transforming the problem into some associated mathematical

equation [29,34];

(iv) finding the "contour" of an .associated graph [30].

Given an undirected sparsity graph QY, the cluster algorithm to be

presented in this section for minimizing the number of interconnection

nodes (i.e., \y\jy |) is based on the last approach and will henceforth
2

be referred to as the contour approach. Before introducing our

algorithm, however, let us first discuss the concept of a contour tableau.

A contour tableau consists of an array of three columns as shown in

Fig. 15. The leftmost column is called the iterating set (IS), the middle
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column the adjacent set (AS) and the rightmost column the contour

18
number (CN). The entries of the tableau are determined as follows:

Contour Tableau Construction Algorithm

Step 1. Choose an initial iterating node and store it in IS(1).

Step 2. Store in AS(1) all nodes that are adjacent to the node in IS(1).

Step 3. Place the cardinality of AS(1) in CN(1).

Step 4. Let i = 1.

Step 5. If CN-(i) = 0, stop!

Step 6. Choose the next iterating node, denoted by n. _, from AS(i)

and place it in IS(i+l).

Step 7. Update AS(i+l) from AS(i) by deleting the node n.+- and adding

the set V representing all node adjacent to n.,- that are not

1 u IS(j)K
Vi=l J

already in AS(i) or

"j

Step 8. CN(i+l) = |AS(i+l)|.

Step 9. Let i = i+1, go to Step 5.

Let us first clarify Step 7 with the aid of Fig. 16. In AS(i) and

AS(i+1), we store the adjacent nodes of the sets of iterated nodes

j U IS(j)| and i u IS(j)>, respectively. Instead of finding AS(i+1)
from scratch at each iteration, we want to find an efficient way of

updating AS(i+l) from AS(i). Now, let us look at Fig. 16 where the

solid lines denote adjacency relations and the dotted lines denote possible

adjacency relations. Two sets {IS(i+1)} and {AS(i) - IS(i+1)} are adjacent

to /U IS(j)|. Since JAS(i)-IS(i+l)i and Vare adjacent to <U IS(i)L

we can therefore update AS(i+1) from AS(i) by deleting IS(i+1) and adding

V which is precisely Step 7.

18
The graph iss assumed to be connected for simplicity.

-33-



Now, let us pause to look at an example. Figure 17 shows a graph with

9 nodes. It is clustered into two groups of nodes {n, ,n2,n3,n,} and

{n6,n_,n„,n } which are separated by the hinged node n . Let us start

the construction of our contour tableau by selecting arbitrarily the

initial node, say n,, and store it in IS(1). Since {nA,n«,n,,iir} are the

nodes adjacent to n_, they are stored in AS(1). Consequently, CN(1) = 4.

Let us choose arbitrarily an iterating node from AS(1), say n3, and put

it in IS(2). Observe that the nodes that are adjacent to {n^n,} are

{njjn^jnc}. So they are put in AS(2) and hence CN(2) = 3. Choose the

next iterating node as IS(3) = n,-, then AS(3) = {n2,n,,n6,n7,n8,ng} and

hence CN(3) = 6. The complete tableau is shown in Fig. 18(a).

In order to understand how the preceding algorithm can be used to

separate the graph into clusters, let us observe that if X denotes the set

of nodes of a given graph, then the set of AS nodes always separates X
i a

into 3 subsets; namely, Z(i) = U IS(j), AS(i), and W(i) = X-Z(i)-AS(i),

where Z(i) nodes are not adjacent to W(i) nodes (Fig. 19).

As we construct the tableau, the size of AS(i) (i.e., CN(i)) in each step

varies. It is when CN(i) is very small, henceforth called bottlenecks,

that Z(i) and W(i) form clusters. Our aim then is to choose a particular

contour tabelau construction algorithm that would yield a good cluster

whenever CN(i) encounters a bottleneck. By using arbitrary choices in

Steps 1 and 6 as in the preceding example, the best AS(i) is {n2,n,,n_}

(Fig. 18(a)). However, it is far from the optimal result;namely,

AS(i) = {n,-}, which in this case can be obtained by inspection.

In the original contour construction algorithm, there are only two

places where choices are made. They are in Step 1 when choosing the

initial iterating node,and in Step 6 when choosing the next iterating node.
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Let us first examine Step 6. In [30], the strategy chosen is the

minimum-fill-in strategy which is quite time-consuming and hence inefficient.

19
In this paper, we propose another approach and call it the greedy strategy;

namely, at every iteration, we simply choose the node in AS(i) that

yields minimum CN(i+l) = |AS(i+l)|or, equivalently, we choose the node

that yields minimum |V|. If a tie is encountered, we choose arbitrarily

among the ties. To illustrate this strategy, we start with n. and

eventually construct the tableau shown in Fig. 18(b). Indeed, it yields

our desired goal; namely, to separate the 2 clusters {n.. ,n2,n~,n,} and

{n,,n7,n8,ng} through the bottleneck {n^}.

Our main reason for choosing the greedy strategy is that it can

be easily implemented. To analyze the efficiency of this strategy, we

will shortly derive its computational complexity. Before doing this,

however, let us first identify its shortcomings by analyzing the example

shown in Fig. 20(a). Suppose after the i-th iteration, AS(i) = {n^,^}.

If we choose n, to iterate next, we will end up with the cluster shown by

the dotted line in Fig. 20(b) which has 2 bottleneck nodes. On the other

hand, since |V(n1)| = 3 and |v(n2)| = 2, an application of our greedy

strategy would require that n2 be iterated next. The resulting cluster is

shown by the dotted line in Fig. 20(c) which has 5 bottleneck nodes.

This result of 5 bottleneck nodes versus the possible 2 bottleneck nodes

of course is undesirable.

Let us examine next the choice of the initial iterating node. If we

start the tableau construction from n,. in Fig. 17 and use the greedy

strategy, then the resulting tableau is shown in Fig. 18(c). Observe

19The term "greedy" is a very common terminology in the graph literatures
[32]. It means that the algorithm determines the direction for iteration
by simply checking some local conditions.
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that the basic contour property for identifying the clusters is lost.

Although there exists no optimal procedure to remedy this situation, a

good rule of thumb is to start with a node with the minimum degree. In

our example, all nodes except n$ have degree 4. Observe that if we

choose any one of them as the starting node, they will all yield a tableau

similar to Fig. 18(b). Besides, this minimum-degree strategy coincides

with our greedy strategy since a node with the minimum degree will yield

a minimum CN(1).

We can now incorporate the minimum-degree initial-node strategy for

Step 1 and the greedy strategy for Step 6 into the tableau construction

algorithm. Furthermore, we can introduce an algorithm for finding clusters

based on the contour concept. The flow-chart of this algorithm is shown

in Fig. 21. Basically, if we regard CN as a function of the iteration

step (Fig. 22(a)),20 this algorithm will separate the nodes into clusters

whenever there is a local minimum in CN.

In our original cluster problem, the number of nodes in each cluster

is constrained to be less than or equal to n^. In the preceding cluster

algorithm, this constraint has not yet been taken into consideration.

However, we can easily incorporate it by cutting the contour whenever the

number of nodes in the cluster reaches n^ before a local minimum is

attained (Fig. 22(b)).

Another assumption that we have made in the preceding cluster

algorithm is that the CN curves in Figs. 22(a) and (b) are very "smooth."
In practice, the CN curve could be very erratic and may in fact contain

20Although CN is actually a discrete function of the iteration step, we
will approximate it by drawing a continuous curve through these discrete
points as shown ir. Fig. 22.
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many small wiggles as illustrated in Fig. 22(c). Moreover, it may also

contain many small clusters as in Fig. 22(d). In such situations, our

cluster algorithm would simply yield too many clusters each with a very

small dimension. Besides, the total number of bottleneck nodes would

become too large.

To overcome the occurrence of small clusters, we can delay our

searching for a local minimum until after an nodes have been iterated,
max '

where a * 0.6 to 0.8 (Fig. 22(d)). To overcome the occurrence of small

wiggles, we can keep a record of all local minima and choose the smallest

local minimum that occurs between an and n as the cut-off point.
max max r

This is illustrated in Fig. 22(e).

Finally, there is the so-called redundancy phenomenon which we will now

illustrate with the help of the example shown in Fig. 23(a). This example

shows 3 clusters A, B and C separated by bottleneck nodes D,E and F. Let

us start with A and use solid lines to denote adjacency relations and

dotted lines to denote possible adjacency relations. Using the preceding

cluster algorithm, we will end up with the tableau shown in Fig. 23(b)

and the associated CN curve shown in Fig. 23(c). Observe that the

bottleneck node F is redundant in the sense that it appeared twice as in

{D+F} and {E+F}. Therefore, in selecting the best place to cut the CN

curve into clusters, we have an inaccurate information because

|{D+F} U {E+F}| $ |{EH-F}| + |{E+F}|. The resulting cut may not be the

best one that is possible. Moreover, it is unnecessary to iterate on

D,E and F in the tableau because, once they are determined to be bottleneck

nodes, their adjacency is of no more concern to the remaining graph.

To overcome this redundancy phenomenon, we must resort to the

concept of dynamic contour cutting; namely, after we have determined the
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cluster A and its bottleneck {I>+F}, we throw away {D+F} from any future

iteration. The dynamic contour cutting strategy will therefore yield a

smaller and more efficient tableau as illustrated in Figs. 23(d) and (e).

We are now ready to present a "refined" cluster algorithm which

takes into consideration all of the problems identified in the preceding

discussions; namely, the n constraint, the small wiggle and small
J max

cluster properties of CN curves and the redundancy phenomenon. The flow

chart for this refined cluster algorithm is presented in Fig. 24. Let

21us now analyze the computational complexity of the cluster algorithm.

Theorem 7. Let "n" and "b" denote the number of nodes and branches of

the input graph, then the computational complexity of the cluster algorithm

is bounded by Q(nb).

Proof: The most time-consuming step in the cluster algorithm is the

choice of the next iterating node from AS. Applying our greedy strategy,

each adjacency list [36] of nodes in AS is scanned once. Let &Q(nk)

denote the length of the original adjacency list of node n^ and let ^(n^)

denote the length of the adjacency list of node n, in AS(i). The reason

for distinguishing I (i^), £-L(nk),..., is that the adjacency lists

actually become shorter after every iteration. Now, the computational

bound can be expressed as

e £ vv - £ £ vv - n-2b (A6)i=l Dj^ASCi) k=l ^Sd)

The last equality holds because each list appear at most n times in the

21The complexity used here is defined to be the number of comparisons
involved.
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whole tableau. Hence the computational complexity of our cluster

algorithm is bounded by Q(nb). n

A computer program for implementing this cluster algorithm has been

developed and the detailed results are given in [35]. We will just

mention here that the program employs an efficient(data structure

— the edge-oriented adjacency list [36] — and a novel "flag" system in

updating the list structures.

Part of the test results are shown in Table 1 which includes a total

of 10 examples. For each example we have listed the number of nodes n,

the number of branches b, the product nb, the n constraint, the
max

number of clusters yielded by the cluster algorithm, the total number of

bottleneck nodes and the computer time spent. In the sequel, we are

going to discuss some of these examples in detail.

Let us now examine Example 1 of Table 1 thoroughly, using the graph

shown in Fig. 25(a) with n =10. The tableau derived from our cluster
° max

algorithm is shown in Fig. 25(b). Observe that the resulting three

clusters coincide with those enclosed by the three dotted lines shown in

Fig. 25(a). The bottleneck is identified as ^n3>n12'nl4^* This result

is quite good since the optimal solution as obtained by inspection consists

of one of the following three possibilities = {nQ>n-irJ» ^n8,nll^ anci

{n10,nn}.

Nine more examples, i.e., Examples 2-10 of Table 1, are shown in

Figs. 26(a)-(i), respectively, where the initial nodes are identified

by arrows and the clusters are encircled by dotted lines.

As a final renaark about the computational complexity associated with

the cluster algorithm, let us plot the computer times spent of Table 1
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versus the product of nb in Fig. 27. It is clear thatO(nb) is an upper

bound for the complexity because all the data points are bounded by a

straight line.

Before we finish this section, let us look at the practical circuit

example shown in Fig. 28(a) where the schematic circuit diagram for each

operational amplifier is shown in Fig. 28(b) [37]. Using the Ebers-Moll

model (Fig. 28(c) [9], each transistor is replaced by a triangular graph in the

induced sparsity subgraph (Fig. 28(d)). Our associated graph optimization

problem (i.e., Example 5 in Table 1) contains 94 nodes and 176 branches.

Since each operational amplifier contains 19 internal nodes, let us choose

n =27. Applying our cluster algorithm, we obtain 5 clusters shown
max rr J

by the dotted lines in Fig. 28(e), where the 1st operational amplifier

is split into 2 clusters. This solution is reasonably good unless we

demand that each operational amplifier be included in a single cluster.

A careful analysis of the tableau shows that the "local" character of our

greedy strategy is responsible for the separation of the 1st operational

amplifier into two clusters. On the other hand, if one is adamant about

retaining each operational amplifier as an inseparable unit within each

cluster, then we should transform this problem into the following weighted

cluster problem: Transform each operational amplifier into a "super" .

node with weight 19 (i.e., the total number of internal nodes) and let

all other nodes have weight 1. Find the set _A)Y with minimum total weight
2

such that each cluster has weight < n. v
max.

Observe that with some minor modifications, our cluster algorithm is

still applicable in solving the above weighted cluster problem.

Finally, we observe that the formulation of any heuristic algorithm

invariably involves various trade-offs. The fact that our cluster algorithm
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leads to a very reasonable solution with a computational complexity

bounded byO(nb) shows that ours is indeed a very good heuristic

algorithm [27].

VI. Concluding Remarks

A, new tearing approach to the analysis of large-scale electrical

networks has been presented. This method, called the node-tearing

nodal analysis (NTNA), is based on the well-known nodal analysis.

The contribution of this paper lies mainly in two areas: circuit

theory and graph theory. In the circuit-theoretic part,.NTNA has been,

derived as the result of a simple partition of nodes and branches and a

straight-forward manipulation of KCL, KVL and the branch constitutive

relations. NTNA has also been proved to be in general superior to Wu's

diakoptic nodal analysis. Moreover, it has been pointed out that, for

passive networks, NTNA yields a system of equations which involves a

diagonally-dominant matrix. This property guarantees that any application

of the Gaussian Elimination method with diagonal pivoting is stable. The

stability of such a process is often crucial when nonlinear networks are

analyzed by computers.

In the graph-theoretic part, graph optimization problems have been

related to the problem of finding the most efficient NTNA for a given

network. These problems, which involve the partition of nodes and branches

of an appropriate graph, have been shown to belong to a class of difficult

combinatorial problems, the so-called NP-complete class, where no efficient

global solution can be expected. Consequently, an efficient heuristic

algorithm has been presented for the solution of a particular graph-

theoretic optimization problem, the so-called cluster problem, which arises
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also in many other research areas.

Finally, we wish to point out that node-tearing nodal analysis (NTNA)

is but a particular formulation in a whole new class of formulations.

In particular, a straight-forward extention to loop analysis and cutset

analysis in either bordered-block-diagonal form (BBDF), or bordered-block-

triangular form (BBTF), is given in Appendix C.
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Appendix A. Comparison of Three Decomposition Methods

Given a system of linear algebraic equations

& - § (A.l)

We shall present and compare three decomposition methods for solving the

following two specialized matrix structures:

(i). Bordered-Block-Diagonal Form (BBDF)

0 i
?l,m+l M ;i

^22 ~2,m+l ?2 ?2

0 •

#

M
.mm • -m,m+l

•

X
"*m

•

s
~m

^m+1,1 Wm+1,2 m+l,m l "m+l,m+l -m+1 Sm+1

(ii) Bordered-Block-Triangular Form (BBTF)

[hi
0

;^i,m+i.n H

hi
•

M22

• •

«^2,m+l
I

i

*2

•

•

s~2

•

•

M
-ml

M o-m2

•

M
~mm.

i

IM
, -m,m+l

X
-m ~m

jWl,! Vl,2 • -m+l,m
•M
I ~m+l,m+l -m+1 sm+l

(A.2)

(A.3)

These two structures are frequently encountered in the analysis of

large-scale systems, where the dimension of the associated matrix & is

often too large to be analyzed efficiently, even by large computers.

Fortunately, these two matrices are endowed with a special structure which

allows the original system to be decomposed and solved in several

stages, each involving a matrix of a much lower dimension. Consequently,

this method of analysis is often called the small computer approach for

solving large-scale problems.
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We shall discuss and compare three distinct decomposition methods

for solving each of the two matrix structures; namely, the LU method, the

Block LU method and the TA method. Since matrices associated with

large-scale systems are usually very sparse, any meaningful comparison

must take into consideration the sparsity of the submatrices M.. and

vectors s± in (A.2) and (A.3).

A'1' Comparison of the LUT Block LU and TA Methods for Solving Matrices

in Bordered-Block-Diagonal Form

We will first present the three methods in a form most convenient

for their subsequent comparisons.

A.1-1. The Three Methods for BBDF

(a) The LU method [20]

Step 1. Factorize M as

•-*-W (A.4)

where Lisa lower-triangular matrix and U is a unit-upper-

triangular matrix.

ltep_2. Forward substitute for w from

-*=§ (A.5)

where

* = y? (A.6)

j5tep_3. Backward substitute for x from (A.6).

Let us make two observations. First, the triangular matrices

L and U associated with (A.2) have the following block structures
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L «-.

U

hi
1

^

-22
•

0 i
• 1 0

0 L i
-mm ,

-m+1,1 -srt-1,a • ~m+l,m, -m+1,m+1

^

?u
o

~l,m+l

TT

322 , y2,m+l

0
•

•

U
-mm

•

i -m,m+l

0 | -m+1,m+1

(A.7)

(A.8)

where U. is lower-triangular and Ukfc is unit-upper-triangular for

1 <_ k < m+1. Second, during the factorization of M^ for 1 <_ k £ m

in Step 1, only the submatrices M^, M^^, ??m+1>k and M^^ are involved,
where M ., .i is recursively defined as follows:

—m+1,mTj.

M1 - M
-m+l,m+l "m+l,m+l

(A.9)

i^k+1 A .Jc — L U
-m+l,m+l "m+1,m+1 ~m+l,k~k,m+l

(A.10)

It follows from the preceding observations that the LU method can be

reformulated into the following equivalent form:

Step 1. For k = l,2,...,m, factorize the following submatrix

^ck ^k,m+l

M M^
-m+l,k -m+1,m+1

and factorize

hi ~kk -k,m+l

-m+l,k ^m+l,m+l - -m+1,m+1
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yP+1 = T U
-m+1,m+1 -m+1,m+1-m+1,m+1

Step 2. Forward substitute for w block-by-block from

*kk*k = hi

for k = l,2,...,m, and

m

-m+1,m+1-m+1 §m+l "^ tm+l,k^k

(A.12)

(A.13)

(A.14)

where w, s, x are partitioned into the following compatible

blocks:

w =

p 1
*1 5l *1

*2 52 ?2

• > § =
•

• » ?=
•

•

w
-m

S
-m

X
~m

-m+1 J-*-1- J^L

Step 3. Backward substitute for x block-by-block from

?m+l,m+l-m+l -m+1 ^

and, for k= l,2,...,m, solve

U,, x, - w, - U. _,, x
-kk-k -k ~k,m+l-m+l

(b) The Block LU method [4,5]

Step 1. For k = 1,2,...,m, factorize each submatrix M^ as

^ck " ^kAk
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Step_2. For k * l,2,...,m, backward substitute for L ,, , from
-m+l,k

-m+l,k?kk " ??m+l,k (A-1^)

Step 3. For k = l,2,...,m, forward substitute for Ut ., from
-k,m+l

^kk?k,m+l " ^k,m+l <A-2°)

Step 4. Factorize M*^ as in (A.12) where

Cfl,m+1 °?m+l,m+l "J^ ^m+l,k?k,m+l (A'21)
Step 5. Forward substitute for w block-by-block from (A.13) and (A.14)

Step 6. Backward substitute for 5 block-by-block from (A.16) and (A.17).

On first sight, it might appear that the LU method is the same as

the Block LU method. However, this observation is true only if all the

submatrices are full. For sparse submatrices they are actually quite

different and we will show shortly that, under this condition, the LU

method is always better.

(c) The TA method [21]

This method is relatively new and we shall briefly describe it here.

Assume the matrix M of (A.l) can be decomposed as

M = P + HK (A.22)

where M and P are £x£ nonsingular matrices, and H and K are respectively

£xq and qx£ (where q <_ £) matrices of rank q. Instead of solving (A.l)

directly, we can first solve

?y° = s (A.23)

Then, by modifying the solution y "appropriately," we can obtain x.
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In particular, given the decomposition (A.22), let Hp denote the p-th

column of H and let H = s, then the following modification algorithm
•o

23
can be used to compute for x:

Step 1. Factorize P as

P = £ U <A'24)

where L is lower-triangular and U is unit-upper-triangular.

Step 2. For p = 0,l,2,...,q, solve yP (via substitution) from

L U yP = H <A'Z5>

Step 3. Solve z from

(1 +D)z = Ky° <A-26)
-qq - -

where 1 is a qxq unit matrix and
-qq

D^ [K^Ky2:....JKyq] (A-27)

Step 4. Obtain the original solution x of (A.l) by

o

-£
rP (A.28)

? = y - l* v

where z is the p-th component of z,
P • "

23An alternate formulation as given in [21] is as follows:

Step 1. P = LU

Step 2. S61ve£p from Lu£P =-H for p=1,2,... ,q, and solve y° from Ltjv~ =s.
Step 3. (J -D)z =Ky° where D= [Ky1- Ky j |Kyq].

Step 4. x = y° + z yP where z is the p-th component of z.e— i p. p

-49-

*>*. o



The validity of (A.28) is proved in [21]. However, a much simpler

proof is given below:

Proof of (A.28):

*ty°-£ vP)
p=l

= My - Y z My1
— pti p^

HKy1-5» +H» " Ex zp?r -^ zpHK

- • +SR9- Z ZP?P -?E 2p5yp
p=l r r p=l v

= s + HKy° - Hz - HDz

= s + H(Ky°-(l +D)z)„qq ~ -

s: « Mx

rlPremultiplying both sides by M , we obtain (A. 28).

Observe that the effectiveness of the TA method depends on the

following two requirements regarding the decomposition given in (A.22):

(i) P should be easily factorizable into (A.24) and the resulting

equation be readily solvable.

(ii) The border size "q" should be made as small as possible.

Our experience shows that for matrices in the bordered-block-diagonal

form, the best decomposition of M is given by [21]

r* "^|

%x

?22 •0 0
P = 0 •

M
-mm

-m+1,1 ^m+1,2 • • M ,,
-iirrj.,m -m+1,m+1
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£=| (J ', ^m+l,m+l (A.30)

Observe that the matrix P in (A.29) can be easily factorized. In

fact, for k = l,2,...,m, M.. can be factorized individually as in (A.18).

Also observe that the resulting equation can be easily solved since each

block in P is decoupled from each other. Moreover, the dimension of

M ., ,, (i.e., q) is usually very small. Hence both requirements are
-m+1,m+1

met for the above decomposition. In addition, we obtain the following

two desirable features:

(i) KyP requires no calculation for p = 0,l,2,...,q.

(ii) z as obtained from (A.26) is equal to x,+1 of (A.15) and hence

we can save part of the calculation of (A.28).

A.l.2. Computational Complexities of the Three Methods for BBDF

Now that we have presented all three methods, let us compare their

24
computational complexities with respect to the sparsity of the matrix

involved. The first case to be considered is when all submatrices are

full, i.e., the zero elements in the submatrices are too few to be

useful. The second case is when all submatrices are sparse, i.e., the

zero elements in the submatrices are abundant and can be efficiently

utilized. The third case is when the right-hand-side vector is also sparse.

For simplicity, let us assume throughout that M|1 >M??>...9^mm all

have the same dimension nxn while that of M.- ._ is assumed to be qxq.

Let C..., C_T1T and C A respectively denote the computational complexity
LU BLU TA

of the LU method, the Block LU method and the TA method.

Case 1. All Submatrices are Full

The derivation for CLU, C and C for this case is given as follows:
24
Only multiplications are counted.
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** -{»M -1)+*^+*^+q2nW4 -t))(the above
,_ JX ^ f fn(n+l)1

computations are due to Step 1 of LU method) + <m| JTj

[^ +̂i]](SteP 2) +{afctiL +m^-+qn]} (Step 3)
.«(^.|+qn2 +q2n +n2 +2qn)+4-f+q3 <A'31)

CBLU *H4 "!)} (St6P 1} +{mq £iTa} (SteP 2) +{^ ^} (SteP 3>
+{mq2n +̂ "3*} (Step 4) +{m ^-+mqn +*&?-} (Step 5)
+hiSzil +n[»fell +qn]} (Step 6)

. m(^ -|+ qn2 +q2n +n2 +2qn) +\ - f+q2 U.32)

. (m(^ -I)} (Step 1) +{(q+D mp*P +̂ +qn]} (Step 2)
+j^- +q2 - ^} (Step 3) +jqmn} (Step 4)

. m(4 -f+qn2 +q2n +n2 +2qn) +£"§+** <A'33)

CTA

+

3

As might have been expected, all three methods yield the same

computational complexity when all submatrices are full.

Case 2. All Submatrices are Sparse

In this case, it is essential to consider the pivoting order used in

the factorization of sparse matrices. It is well known [38] that different

pivoting order may yield drastically different fill-in patterns. Therefore,

it is desirable to choose pivoting order that yields minimum fill-ins.

Since the optimal pivoting order for one method is not necessarily

optimal for another method, we have to justify using the same optimal
pivoting order for all three methods before any meaningful comparisons

can be made.
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The optimal pivoting order for the LU method minimizes fill-ins

in the submatrices M^, M^^, M^ and ^^ for k=1.2
The optimal pivoting order for the Block LU method, on first sight,

seems to minimizes fill-ins in the submatrices M., for k = l,2,...,m.

However, from [20] we know that the two submatrices L ., , and U, ,,
-m+l,k -k,m+l

obtained from the Block LU method are identical to those obtained from

the LU method. Hence, if we want to also minimize the fill-ins occurring

at Steps 2-4 of the Block LU method, the same minimization criterion

as that of the LU method should be used.

From the observation that WH ^.1 is usually a full matrix, there

is little reason to keep track of the fill-ins in M,, ,, at each step.
-m+1,m+1 r

Therefore, a more meaningful optimal pivoting order for both methods is

to minimize fill-ins in the submatrices M^*^ . and M .

With our choice of the decomposition of M as in (A. 29) and (A-30),

the obvious optimal pivoting order for the TA method is to minimize the

fill-ins of all submatrices M^* However, we will now consider a better,

though more subtle, optimal choice. In Step 2 of the TA method, (A. 25) is

solved (m+1) times with respect to different vectors on the right-hand

side. As we shall see shortly, the zeroes of the right-hand side vectors

can be efficiently utilized if they are located at the top of each vector.

This requirement somewhat coincides with that requiring minimum fill-ins

for all M, -. In other words, a, better choice for the optimal pivoting

order would be to minimize fill-ins in the submatrices M.. and M. _.

Consequently, for symmetric matrices or almost symmetric matrices, the

same optimal pivoting order holds for all three methods.
!

To simplify our subsequent derivation, it is convenient to introduce

25
the following notations (see Fig. A.l):

?5 '.
Notations with a hat denote the number of nonzero elements after fill-in

has occurred.



k k
(i) (c?+l)(resp.; (r.+l)) denotes the number of nonzero elements

in the first column (resp.; row) of the reduced matrix of order

(n-i+1) of ^

(ii) (cy+1) (resp.; (r.+l)) denotes the number of nonzero elements

in the first column (resp.; row) of the reduced matrix of order (n-i+1)

during the i-th step of Gaussian Elimination (or factorization) of M^.

(iii) d. (resp.; (ft denotes the number of nonzero elements in

column iof M^^ (resp.; L^^)-

(iv) e (resp.; ey) denotes the number of nonzero elements in row

iof *k,m+l (resp-; ?k,m+l}-

For simplicity, we shall omit writing the bounds of the indices over

the summation sign52. The actual bounds, unless otherwise given, are

defined as follow:

E*E , E ^E • E =E <A'34)
i i=l k k=l p p^l

Finally, we shall treat Ijfj^ ^ as afull matrix.
Using the preceding assumptions and notations, we are now ready to

derive the computational complexities CLU, CfiLU and CTA for case 2 as

follows:

^={l)5:(^+x)(^)+4-f}(Step X) +{Ei(« +*^
+-E Ed*} (Step 2) +{E (E r* +E %)*^} (Step 3)

kiki ki ki K1

+2Et £+EEsJ +XE a*+(4 +q2-! +,m) <A-35>
kiki k i
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^ ={E E(^l)r*} (Step 1) +{E(,£ r*)} (Step 2) •

*{E [< E(cH]} (seep 3) +{E Eaft+ 4-f}(step 4)
+{EE (^-O +̂ +EE s*}(step 5) +{^
* E(E£ +E ek)}(Step6)

k V i i n

=EE cft+ EE akq+ EE qrk +EE aft
kilx ki ki ki

+2£Erk +(EE ;| +J +ELJ{ +Ei: ak
kilvkix / ki1 ki

+(4+q2-f +nn) <A"36>
cIA ={EE(cH^}(steP i) +{(q+D E[E (ak+i) +E rk +E d|

(Step 2) +(^j- +q2 -|| (Step 3) +|mqn} (Step 4)

=EE eft +EE ak, +E E qr*+ E E qd* +2S £ rk
kiix ki1 ki ± ki X ki

+2mqn +EE cj +EE dk+(4 +q2 -f +-») <A-37>
kiki

In order to compare CLU and CfiLU, we will make use of the following three

inequalities:

EE£ftiEEakq • <A-38>
k i X k i

££ d^iZL qr* (A.39)
k i X k i

k i X

-55-



Using (A.38)-(A.40) and comparing (A.35) with (A.36), we obtain

^o^BLU
(A.41)

Observe that C and CBLU (or CLJJ) are not readily comparable because the
k "kformer expression contains d. while the latter contains d^ Substracting

(A.37) from (A.36), we obtain

'BLU
k i u

*k k
If we assume d. * d., then

CBLU - CTA

•*k ~k k
However, if we assume d.= e. * q > d., then

CBLU.- CTA

(A. 42)

(A.43)

(A.44)

Observe that if we choose the optimal pivoting order for the TA method

to be that which minimizes fill-ins in M^, Mk>m+1 and ^m+l.k* then the
i t "k k

assumption d. ~ d. is quite reasonable. Actually, if d± = d±» then it: has

the interpretation that there is no fill-in in M^ k- Now, we can conclude

that, for sparse submatrices in (A.2), the LU method is always better than

the Block LU method, which in turn is better than the TA method under

*k k
the assumption of d. = d..

Case 3. All Submatrices and the Right-hand-side Vector are Sparse

Suppose the leading components of s in (A.5) of the forward

substitution step are zero, then (A.5) can be partitioned as follow:

L 0 .
-aa -ab

J*ba ^bb,

r w
-a

w

.-b_
s

-b.
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Observe that w = 0 and we only need to solve
~a ~a

Hb^b a§b <A-46>

Again, to simplify our derivation, let us introduce the following

notations:

(i) f denotes the number of leading zeroes in s,.

k k
(ii) f (resp.; g )denotes the number of leading zeroes in column

(resp.; row) pof ^ ^ (resp.; M^^)

Using these notations, we can now derive CTTT, C_TTT and C_A for case 3
LU BLU TA

as follows:

CLU ={E E(ak«k+l) (rk+ek) +4 -f} (Step 1)

+{E E (ck+i) +̂ m + EE Sk} (step 2)
k i=fk+l k x

+{E(E°rk +Eek) +̂^}(SteP3)
= EEaft+ EEaft.EEaft.EEaft

kx ki ki ki

n

+2 EE rk +2 EE ek +E E ck+EEai
k i k i k £k+, k i

+[4 +,2 -f+E (n-fk)] ° (A.,7)
CBLU={EE(cH^}(Stepl)+{EE E rk}(SteP2)

Vk ± l k P i=8k+l .
+{EE E (ak+i)}(step3)+{Ei:akek

1 k P i=£k+l J l k x

+̂ -f}(step4) +{E E (£|J+x) +atoii
k i=fk+l

o
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+

k i

ZT. ak}(Step 5) +{ai!ClI +E (E rk +E %)} (Step 6)
n . JL

=EE2ft+EE E ck+EE E %
k i k P i=fk+1 k P k+1

p p

+EEdft+2EE rk +[EE ak+EEK)]
k i k i L k i k p

k . Jc., k i L k
i=f~+l

o

Sa

3 P(Step 2) +{^- +q2 -§} (Step 3) +jmqnj (Step 4)
=EEcft+EE E ck +EE,;k +EEqdk

k i x x k P i=fk+1 x k i 1 k i

+2EErk+[mqn+EEK)]+E E ck
k i l k P K i=f +1

o

3 " ' —' ^ (A.49)EE<ik +fr +q2-f+EK)]
To compare CTTT and C^..., let us first substract (A.48) from (A.47) to

'LU BLU

obtain

v.-s--?{(?«-= %*)♦(?«:? A?)k V i P i=fK+1 -1- v is=Sp+1

+[Eak-E (n-fk)]}P (A.50)
Now that we have separated (A.50) into three terms, we can examine each

term one at a time: Consider the first term ( £c.e. - £ Z, c±J.
V ± P i=fk+l

P

Let us focus our attention on column p and note that the first nonzero

term is in row (f-+l). The worst case of fill-ins occurs when all elements
in column pfrom row (f*+l) to the last row become nonzero. Thus its

n ,

contribution to ^c^eSin the ^^t case, is X V However, its
TT 1 l k
1 -58- i=f*+l

P



n • n

contribution to £ £ c± is always £ c-- Observe that only
P i=f^+l i=fk+l

P p
the first nonzero term in each column contributes to the first term.

Hence we can conclude that the first term is always <_ 0. By dual

arguments the" second term (£ dkrk -£ £ rk) is always _< 0.

Finally, the third term |£ek -£ (n_fk)l can be rewritten as
(^ n . Li p x P'J
£ ei""£ £ i) which is a special case of the first term with
1 P i=fk+l '

P

c± ~ 1 for all i. Therefore, the third term is always <_ 0. Combining

these observations with (A.50), we obtain

^u-Slu <a-51>

To compare CfiLlJ and CTA, let us substract (A.49) from (A.48) to

obtain

CBLU ~CTA =? (£ £ rk -£ qrk) +£ 52 (dkek
k P i=gk+l * k i

P

"qdk) +(£ £ ek -mqn) +£ £ (dk-dk) (A.52)
' x k i ' k i X '

(n ,

£ £ r.
P • Kj_-i 1

x-gp+1

8P-£ qrk) can be rewritten as £( £ rk -£rk) =-££ r\ <0.
1 P \„k+i i=1 1A P i=sl

bP
The third term '(£ £ e - mqn) is always _< 0. Furthermore, if we assume
-k k k x
d. = d , then the second and the fourth term are again <_ 0. Thus we have

CBLU i CTA <A-53>

We can now summarize our comparisons of CT1T, CT>TM and C_A for the
LU BLU TA
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bordered block diagonal case as follows:

(i) if the submatrices are full, then C.„ = CRLU " CTA'
~k k(ii) if the submatrices are sparse and if we assume d^ * d^9 then

CLU - CBLU - CTA;
(iii) if, in addition, the right-hand-side vector is also sparse,

we still have C^ < CBLU < CTA.

A.2. Comparison of the LU, Block LU and TA methods for Solving Matrices

in Bordered Block Triangular Form

Let us first present the three methods for solving matrices in BBTF:

A.2.1. The Three Methods for BBTF

(a) The LU method

Step 1. Factorize M as in (A.4).

Step 2. Forward substitute for w from (A. 5).

Step 3. Backward substitute for x from (A.6).

Observe that the lower-triangular matrix L in (A. 4) now assumes the

following block structure:

hi

hi -22

•

• • .

L i-ml ^

0

L
—mm

L-m+1,1 -m+1,2 " -m+l,m

The unit-upper-triangular matrix U in (A.4) still has the same block

structure as in (A.8).

-60<
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(b) The Block LU method

Step 1. For k = l,2,...,m, factorize M^ as in (A.18).

Step 2. For m+1 >_ k- > k- _> 1, backward substitute for L^ fe
1 *

from

^lk2~k2k2 lk2

Step 3. For k = l,2,...,m, forward substitute for yk m+1 from

k-1

hckVk.m+1 =«k,m+l "^ Hk2?k2,m+1 (A'56)

Step 4. Factorize rf£J ^ as (A.12) where rfj^^ is shown *» (A-21>

(A.55)

Step 5. Forward substitute for w from (A.5).

Step 6. Backward substitute for x from (A.6).

(c) The TA method

Our experience shows that the best decomposition for M is obtained

by choosing

P =

^11

*21 hi 0
•

0

•

-ml

•

-m2
. . M

—mm

-m+1,1 Vi, 2 -m+l,m -m+1, m+1

Hence, the modification matrices H and K are the same as in (A.29) and

(A.30), respectively. Observe that the TA method for this case is of the

same form as that of the bordered block diagonal case.
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A.2.2. Computational Complexities of the Three Methods for BBTF

For the case where all submatrices are full, we obtain the following

expressions

^ -{£ £ fn(m-k+l) +q-i+l] (n-i+q) +̂ - -§j (Step 1)

+{£ £ [n(m-k+l) +q-i] +̂ 3=^L+nm+q |(Step 2)

+ft^T1 +^^ (n-i-^)} (Step 3)

+(4 +q2-f) (A-58)

SL„ ={<i ~!)} <"• »'i^"^^^(-ep 2)
+Jmq Bi2±H +BiS-n. n\\ (step 3) +[\ _i +onq2J (Step 4)

+LH^til +Hfcll n2 +sl3±il+̂ J (step 5)

+|q(q-i) +mn("-1) +mqn j (step 6)

=(4 +t)n3+(4a +m+^+̂)n2 +(IBq2 +2mq.!)n

CTA {̂m(4"f)} (Step 1) +{(q+1) [mn2 +2^ n2 +mqn]}(Step 2)
+fe- +q2 -|| (Step 3) +jmqn} (Step 4)

=|n3+(^+̂ +^+B)n2 +(mq2 +2lllq-f)n+(4+q2-f) (A
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Comparing (A.58) - (A.60), we find

(i) for k = 1,

C.' » C = Cm, <A.61)
T.U BLU TA

(ii) for k > 1,

C « C » C . (A.62)
HLU BLU TA

Let us now consider the case where the submatrices and/or the right-

hand-side vectors are sparse. Observe first that the main advantage of

the TA method is that there is no need to factorize M . for m+1 >. k
*1K2

> k > 1. This feature is particularly dominant for the present case

when the submatrices and/or the right-hand-side vector are sparse.

Moreover, in contrast with the other two methods, no fill-in in ^ k

would occur in the TA method. Hence, for sparse matrix equations, we

conclue that

C « C < C (A.63)
CTA ULU ~ UBLU

-63-



Appendix B. NP-Complete Problems Associated with Network Tearing

Let NP [11] be the class of decision problems solvable by

Nondeterministic algorithms operating in Polynomial time. Roughly

speaking, a nondeterministic algorithm is one which is capable of making

an arbitrary choice between two alternate routes in which to branch.

A nondeterministic algorithm is said to operate in polynomial time if

there is a polynomial P(•) such that, for any input x, the length of

26
computation corresponding to each decision sequence is bounded by P(|x|).

Given two optimization problems ^P, and <P2» we sav ^3. is transformable

into ^P2, denoted by ^P, =^P2» if there exists afunction fsuch that
(i) ftransforms the input xx of ^ into the input x2 of ^P^ (B.l)

(ii) |x9| = P,(|x1|) where P'(-) is some polynomial function; (B.2)

(iii) the transformation preserves the answer, i.e^, if y^ is the

output of ^P with input x^ then y^^ will also be the output of P2 with
input x2. (B.3)

This transformation is illustrated symbolically in Fig. B.l.

A problem ^P is said to be NP-complete if

(i) <p€NP; <B-4>

(ii) satisfiability problem <^P (B.5)

where the satisfiability problem is defined in [10,11]. An equivalent

definition for NP-completeness is the following:

Here |x| may take on different meanings depending on the nature of x.
In particular, if x is an integer, then |x| ^ x. If x is a set of
numbers, then |x| = the cardinality of the set. Finally, if x.is a graph,
then |x| = max {number of nodes, number of branches}.

27A more general definition is available in [11].
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Given that problem <P is NP-complete, then problem ^ is NP-complete

if

(i) 92GNP <B'6>

(ii) ^-^ (B'7)

The equivalence between these two definitions follows from the

transitivity relation of "<*"; namely,

satisfiability problem "^ «^ <B-8>

We can interprete (B.7) as follows: If there exists a polynomial-

bounded solution for any problem in the NP-complete class, then there

exist polynomial-bounded solutions for all problems in this class.

This interpretation is extremely important because once we have

established a problem belonging to the NP-complete class, we should

avoid trying to find a polynomial-bounded (global) solution. Instead,

some efficient heuristic approach should be undertaken

The preceding equivalent definition is also very useful in allowing

one to establish the NP-completeness of a given problem by relating it

to any convenient problem whose NP-completeness has been previously

established. Therefore, in order to prove problem ^ G NP-complete,

it is essential to find aparticular problem ^ G NP-complete such

that a transformation f satisfying (B.1)-(B.3) can be exhibited.

We are now ready to derive the main results in this section. A

technical detail which needs to be brought into attention is that the output

of all decision problems are assumed to be either "Yes" or "No" [11].

Hence, we shall avoid listing the output statement in the following

development.
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Theorem B.ll The cluster problem (i.e., GOPl) is NP-complete.

Proof: We can reformulate the cluster problem, henceforth denoted by

^Rf by specifying the input and property statements as follows:

<P2? Cluster problem (GOPl)

Input: An undirected graph QY and positive integers q2 and njnax (B.9)

Property: Qv has q~ nodes such that their removal will leave the

remaining graph disconnected whereas each component (i.e., each disconnected

subgraph) contains no more than n ' nodes. (B.10)
" max

It is easy to show ^ £NP with the help of the branching tree shown
in Fig. B.2, Since for each decision sequence of^AL , the computation

2

for finding the disconnected components of the section graph Q(/My ^ is

linear [39] and therefore polynomial-bounded, it follows that *-P2 e NP-

Now, in selecting the problem ^P, let us choose the following

node-cover problem which is known to be NP-complete [10]:-

^p.: Node-cover problem

Input: An undirected graph Q and a positive integer q_. • (B.ll)

Property: Q has asubset of nodes H2 such that |^j5| <. q1 and every
branch of Q is incident with some node in^K. (B.12)

The reason for choosing this node-cover problem as ^P becomes

apparent if we examine the following analogous matrix problem:

Given a symmetric matrix M, can we find a symmetric permutation of rows

and columns such that M has a bordered-diagonal nonzero structure with

a border size no larger than q1?
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This structure is illustrated in Fig. B.3. Comparing Fig. B.3 with

the structure associated with the matrix analogy of the cluster problem

in Fig. B.4, we see that the node-cover problem is in fact a special

case of the cluster problem with n =1.
max

To complete the proof, we will construct the transformation f via

an example (Fig. B.5(a)). For each node n in ^P., construct nodes

n. ,n ,..,n. and undirected branches b. . (i.e., a branch between
h X2 xn xlx2

max

nodes n. and n ), b...... ,b. and b. . for^P,. The
jL *2 V3 V -l)1!! \ xl 2

max max max

construction corresponding to n - 3 is shown in Fig. B.5(b). For each

branch b.. in sP, construct branches b. . for k,£ =* l,2,...,n . Thisij 1 \3Z » > »^x

procedure yields the input graph for ^2 having the input integers

n_aY and q« = q- «n
max ^2 ^1 max

Observe that the preceding construction transforms the original graph

with "n" nodes and "b" branches into a graph with (n-n ) nodes and
0 r v max

2
(n-n „ +b»n ) branches. Thus the construction is polynomial-bounded.

max max r J

Observe that each set of nodes J^. = {n. ,n. ,...,n. } forms a
12 n

max

connected component and that the removal of up to (n -1) nodes

from the set^AI. does not change the connectivity of the constructed

graph. Therefore, in order to change the connectivity$ we have to remove

nodes in WAI. as a single unit. Since q« = q,n , we are actually removing

q. sets of _A). nodes. Hence, the solution of the associated H\ problem

is the solution of the original ^D problem. Finally, observe that if

^P has a solution with less than q nodes, it certainly has a solution

with q, nodes.- This establishes that a solution of the original Hr

problem is the solution of the associated problem. n
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Theorem B.2. The generalized feedback node problem (i.e., G0P2) is

NP-complete*

Proof: We can reformulate the generalized feedback node problem,

henceforth denoted as 4^, as follows:

£P : Generalized feedback node problem (G0P2)

Input: Adirected graph QY and positive integers q2 and n^. (B.13)

Property: Qy has %nodes such that their removal will leave the

remaining graph containing several strongly-connected components each

containing <_ n nodes. (B.14)
max

To prove that ^P„ £ NP, we can use the same branching tree shown

in Fig. B2. In this case, for each decision sequence ofJvY »the

computation for finding the strongly-connected components of the section

graph Q<JlY )is also linear [39].

Now, in selecting the problem ^V^ let us choose the following
feedback node problem which is known to be NP-complete [11]:

^P : Feedback node problem

Input: Adirected graph Q and a positive integer q^ (B.15)

Property: Q has a set of qx nodes whose removal breaks all directed
, (B.16)

cycles. N

The reason for choosing this feedback node problem as 4^ becomes
apparent if we examine the following analogous matrix problem:

Given an asymmetric matrix M, can we find a symmetric permutation of rows

and columns such that M has a bordered-lower-triangular nonzero structure

with a border size q^?
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This structure is illustrated in Fig. B6. Comparing Fig. B6 with the

structure associated with the matrix analogy of the generalized feedback

node problem in Fig. B7, we see that the feedback node problem is in fact

a special case of the generalized feedback node problem with ^max = !•

To complete the proof, we will construct the transformation f via

an example (Fig. B8(a)). For each node n± in ^T^, construct nodes
n. ,n. ,...,n. and directed branches b. . (i.e., a branch from node
*! 12 n 12

n. to node n. ), b. , ,...,b. , and b. . for P . The
H h 2 3 (n -1)\ n 1x . v max ' "max max

construction corresponding to n = 2 is shown in Fig. B8(b) . For

each branch b.. in ^P,, construct branches b. . for k,A = 1,2,... j**,..
ij 1 ij^J^ ^^

This precedure yields the input graph for ^P2 having the input integers

n and q_ = q-«n
max 2 1 max

It should now be obvious that the rest of the proof is exactly the

same as that given for the previous theorem. n
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Appendix C. Loop Analysis and Cutset Analysis in Tearing Form

Let Q be the graph of a linear resistive network N, let y denote

some tree of Q and let Sl denote its associated cotree. Partition

the tree *3T into two arbitrary subsets (JL and \$ such that \) - cJjl u <J2«

Let ^L1 denote any subset of the cotree y. which forms fundamental loops

exclusively with branches in ~J1 and let 9-2 denote the remaining branches
so that i£ = St U 9L* With respect to the above partitioning of branches,

the fundamental loop matrix B and the fundamental cutset matrix 9 are

given respectively by

d-i ij-t P^2 2

"~rt. ~*iri ¥2 *iJ2

b =

9 =

~*Z*1 ~*2ai ~*2*2 ~**Pl
" t t -

"^1^1 ~Vl ^2^1 ~^T?2

~*V*2 ""^2^1 ~^2?2 "^2^2

(C.l)

(C.2)

Assuming the composite branch format as shown in Fig. 1, the loop and

cutset equations are given respectively by:

BRB^ fB(e-Rj)

S59 Ij = 9Q"5e)

(C.3)

(C.4)

where R and G are the branch resistance matrix and the branch conductance

matrix,respectively.

Let us consider the following two special cases.

Case 1. Loop Analysis in Tearing Form

Upon open-circuiting all branches in Sf U^ let us assume that
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the remaining branches in Si, U xj form "m" separable components

0l» 9i»,,#' 9i# Partition the sets Si^ and <rf1 into mcorresponding
components; namely, Si-i* ^l-,*•••» Sii and XJ^XJ ]»•••» tJi* Tnen tne

fundamental loop matrix B with respect to this new partition can be written

as follows:

sej' 3j ^2 s?

B = 0

B

vi
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• . ££j xT® 9?2 <3r2
1

0.

0

: b

~*2*2: -^2^2

(C.5)

Observe that the nonzero block structure of B in (C.5) is identical to the

nonzero block structure of the reduced incidence matrix A in (2). It

follows from Lemma 1 that the product BRB will assume a bordered-block-

diagonal form if the analog of branch coupling condition 1 is satisfied,

or a bordered-block-triangular form,if the analog of branch coupling

condition 2 is satisfied .

Case 2. Cutset Analysis in Tearing Form

Upon short-circuiting all branches in it. ^ TJ^9 let us assume that

the remaining branches in Si-2 u ~X2 form "m" seParable components
Q2»92f*»02' Partition the sets xi-2 and ^ into mcorresponding



components; namely, S£*, C£\> ---.^ and ^2*^2'"" ''^l' Then the
fundamental cutset matrix Q with respect to this new partition can be

written as follows:

_Bt :ml
2 l:

3* %

2 1-

-B

2J2. &

Q =
*2°2: °232

0
0

SK9?

a-2J1:

0

-b^ :i

*2J2; J2J2

(C.6)

Observe that the nonzero block structure of Q in (C.6) is again

similar to that of A in (2) except for a block permutation of rows and

columns. It follows from Lemma 1 that the product QGg11 will likewise

assume a BBDF if the analog of branch coupling condition 1 is satisfied.

or BBTF if the analogue of branch coupling condition 2 is satisfied.

So far, we have implicitly assumed that a tree TJ has been given

apriori. Let us now consider the more realistic case where an optimal

tree has to be chosen and partitioned relative to some optimal criterion.

It suffices to consider the loop analysis case since the dual result

would apply to the case of cutset analysis.

Let us recall that the removal of ^2 U^ branches would separate
the remaining graph into "m" separable components yi,yi>---»yi with
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J '

Qk containing ^ UQ^ branches. Therefore, we can formulate an
analogous graph optimization problem by minimizing the number of branches

belonging to ^L U QL subject to analogous topological constraints.

After 32 u?X> is found, we can determine easily which branches in ?J1
nk

can be assigned to £J* and then assign the remaining branches to ^^ To

separate 92 from 'cJl, we simply short-circuit all branches belonging

to all "m" components Q\t (£,..., Q*. and find atree (which is to be
assigned as <cT2) on the reduced subgraph.
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Figure Captions . .

Fig. 1. The standard composite branch.

Fig. 2. Two useful matrix structures.

(a) BBDF.

(b) BBTF.

Fig. 3. The basic partition of nodes and branches.

Fig. 4. The topological condition.

Fig. 5. An example illustrating the topological condition.

(a) The example graph.

(b) The section graph Q(_,Mi) where^A^-Inpn^n^n^}.

Fig. 6. A block-diagonal transformation of nonzero elements which

preserves the structures of G^ in Tn*

Fig. 7. A circuit example N for illustrating the branch coupling

condition 1.

Fig. 8. The associated directed graph Q of N.

Fig. 9. A new partition of nodes and branches.

Fig.10. The circuit-theoretic interpretation of node-tearing nodal

analysis.

(a) Equivalent voltage source substitution.

(b) .Substituted voltage sources summarize the outside in

fluence due to elements in^B2 thereby decoupling the original

network into three separated subnetworks.

Fig.11. Application of (40) where all branches shown connecting the

subnetworks belong to ^{5?.

Fig.12. An example showing nodes na and nb attached to three ^2 branches,
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Fig. 13. An example of the sparsity graph.

(a) The example matrix Y.

(b) The sparsity graph QY of Y.

(c) The undirected version QY of fly

Fig. 14. Basic relationship between the graph Q and its associated

sparsity subgraph.

(a) A typical branch.

(b) The sparsity subgraph QY due to ^ik *

(c) The undirected version QY due to Gt^^ .

(d) The sparsity subgraph QY due to Gk k.

(e) The undirected version yY due to G^ , .

Fig. 15. A contour tableau. p

Fig. 16. A graphic interpretation of Step 7 for updating AS(i+1)

from AS(i). *

Fig. 17. An example for illustrating the contour tableau construction
«

algorithms.

Fig. 18. Three different contour tableaus associated with the graph

in Fig. 17 by using three different strategies during the

construction.

(a) Arbitrary choice.

(b) Greedy strategy in choosing the next iterating node.

(c) Initial iterating node selection.

Fig. 19. The graphical interpretation of the role of AS(i) as a

separating set.

Fig. 20. An example showing that the greedy strategy may sometimes

give undesirable results.

(a) The example graph.
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(b) Cluster obtained by choosing n^ as the next iterating

node.

(c) Cluster obtained by choosing n2 as the next iterating

node.

Fig. 21. Flow-chart for a cluster algorithm.

Fig. 22. An illustration of the various shapes of CN vs. iteration

step and some methods for grouping the nodes into clusters.

(a) Smooth curve with well-defined dusters.

(b) A cluster containing n^x nodes before a local minimum

is reached,

(c) A cluster containing many small wiggles.

(d) A cluster containing many small clusters.

(e) Least-local-minimum clustering strategy.

Fig. 23. A graphical illustration of the redundancy phenomenon and

the dynamic contour cutting strategy to overcome it.

(a) Example with 3 clusters.

(b) Original contour tableau.

(c) Original CN curve.

(d) Contour tableau with dynamic contour cutting.

(e) CN curve with dynamic contour cutting.

Fig. 24. Flow-chart for the refined cluster algorithm.

Fig. 25. An example illustrates the cluster algorithm.

(a) Example with 3 clusters and n^^lO.

(b) The resulting contour tableau.

Fig. 26. Nine more examples of the application of the cluster algorithm.

(a) Example 2 with 3 clusters and n^^^.

(b) Example 3 with 2 clusters and nmax=12.
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I,

(c) Example 4 with 4 clusters and nmax=12.

(d) Example 5 with 5 clusters and nmax=27.

(e) Example 6 with 4 clusters and nmax~15»

(f) Example 7 with 3 clusters and nmax=20.

(g) Example 8 with 3 clusters and nmax=30.

(h) Example 9 with 4 clusters and ^^^17.

(i) Example 10 with 3 clusters and nmax=25.

Fig. 27. The "computer time spent" vs. "nb" plot illustrating the

Q(nb) bound. The number in this plot corresponds to the

example number of Table 1.

Fig. 28. A. practical circuit cluster problem.

(a) A frequency-shift keyer tone generator.

(b) The operational amplifier circuit schematic.

(c) The Ebers-Moll model for transistors.

(d) The induced transistor sparsity subgraph.

(e) The resulting 5 clusters. Note that due to the greedy

strategy, the 1st operational amplifier is broken into 2

clusters.

k k
Fig. Al. We use C (resp.; r.) to denote the number of nonzero elements

in the i-thcolumn below (resp.; i-th row to the right of) the i-th

diagonal element of M,. .

Fig. Bl. Symbolic representation illustrating the transformation of

graph problem 4^ into ^P2.

Fig. B2. Abranching tree used for proving ^P2 G NP.

Fig. B3. A matrix analogy of the node-cover problem.

Fig. B4. A matrix analogy of the cluster problem.
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Fig. B5. An example for illustrating the construction of the transformation

* with "max"3'

(a) Input graph for ^p,.

(b) Input graph for P2.

Fig. B6. A matrix analogy of the feedback node problem.

Fig. B7. A matrix analogy of the generalized feedback node problem.

Fig. B8. An example for illustrating the construction of the transformation

f with nmax=2.

(a) Input graph for H^.

(b) Input graph for ^2*
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form a cluster

Fig. 21
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IS AS CN

1 2,4 2

2 4,3,5,6 4

4 3,5,6 3

3 5,6,7 3

7 5,6 2

5 6,8 2

6 8 1

8 9,11 2

9 11,10 2

11 10,19,21 3

11 9,10,19,21 4

9 10,19,21 3

10 19,21,12,14 4

19 21,12,14,20,22,24 6

21 12,14,20,22,24 5

20 12,14,22,24,23 5

23 12,14,22,24 4

22 12,14,24,25 4

24 12,14,25 3

25 12,14 2

13 16 1

16 15,17 2

15 17,18 2

17 18 1

18 4> 0

(b)

Fig. 25
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1st cluster {1,2,4,3,7,5,6};
throw away cluster and bottlene
bottleneck nodes (i.e., node 8);
Start again.

2nd cluster {11,9,10,19,21,20,
23,22,24,25}; throw away cluster
and bottleneck nodes (i.e., nodes
12, 14); Start again.

3rd cluster {13,16,15,17,18};
Stop!
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