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ABSTRACT

An elementary yet novel approach is presented for analyéing large-
scale networks with coupled elgmeﬁts by tearing aléng the nodes rather
;han branches of the associated network graph. This node-tearing approach
leads to a sjstqn of nodal equations whose associated nodal admipténce
matrix assumes either a bordered-block-diagonal form or a bordered-block-
triangular form. Compared to conventional diakoptic analysis, the node-
tearing nodal analysis is shown to be superior in several important aspects:
number of variables, sparsity, susceptibility'to ill-conditioning, etc.

" Two graph optimization problems associated with the node-tearing

approach are formulated for the purpose of developing an optimum node-

‘partitioning algorithm. These problems are then shown to belong to the

NP-complete class of hard problems where no polynomial-bounded global
optimum algorithms are likely to be found. However, an efficient heuristic
algorithm for partitioning the nodes into clusters has been developed and
pfesentgd.. Several examples have verified the validity and usefulness of

this algorithm.

Finally; the same tearing approach is extended to loop and cutset analysis

thereby obtaining the fundamental loop and cutset equations in a corresponding

bordered-block~diagonal or a bordered-block-triangular form.
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I. Introduction

Récently, much effoft has been devdteq to tearing methods fpr the
analysis of electrica; netéorks 11;5]. Teéring, usually referred to as
diakoptics, was first introduced by Kron tG]. It basically consists of - | !
.breakiﬂg up the original analysis problem‘into smaller subproblems whose
solutions gre combined appropriately to'givé the ;olution of the original
problem. Chua and Chen [4,7] have.shown that all previ&uély_published
tearing methods.éan be ;nterpreted.as special cases of their generalized.

hybrid analysis involving both voltage and cufrent‘variables.

Among the numerous diakoptic methods, one is of particular interest;

namely, the so-called diakoptic nodal analysis introduced by Wu [5].

Nodal analysis (or its modification [8]) is likely to be the most widely
used analysis method because of its simplicity and efficiency [9]. Our
main goal in this paper is to derive a new tearing approach‘based on nodal

analysis —— henceforth called the node-tearing nodal analysis —-- which uses

only the familiar node-to-datum voltage variables, rather than a mixed set

of voltage and qurrent.variables required in all existing methods of
diakoptié analysis. In other words, our method is not a special case of the
generalized hybrid analysis of [4] and is therefore not proned to numerical
ill-conditioning often caused by the wide disparity in the order of

magnitude of the elements of the associated hybrid matrix.

This paper is organized as follows: In Section 2, the node-tearing
nodal analysis approach is introduced by simply partitioning the nodes -
and branches in a particular way. The further impOSitibn of a rather

mild branch-coupling condition leads naturally to a nodal analysis»havingb

" either a bordered-block-diagonal or triangular structure. This node-

tearing approach is then given a circuit-theoretic interpretation somewhat

reminiscent of that given in [4].
-2-
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In Section 3, a comparison with Wu's diakoptic nodal analysis is
carried out. It is shown that, in almost all cases, node-tearing nodal
analysis is superior to diakoptic nodal analysis.

In Section 4, optimization problems related to the choice of the
partition of nodes and branches are introduced. They are also given
graph-theoretic interpretations. Furthermore, their computational
complexities are discussed and shown to belong to a class of hard problems,

the so-called NP-complete problems [10,11], where no efficient global

solution algorithm can be expected.

In Section 5, an efficient heuristic cluster algorithm is introduced.
From test results, the heuristic solutions are found to be very close to
the global optimal solutions. In Section 6, some concluding remarks
are given.

In Appendix A, the most efficient mathematical methods for solving
the tearing equations are discussed. Their computational complexities
are evaluated and compared under various sparsity assumptions. In
Appendix B, a brief discription of NP-complete problems is presented.
Also included are the proofs that the optimization problems introduced in
Section 4 are indeed NP-complete. Finally, in Appendix C, some other
tearing methods based on the same principle as node-tearing nodal analysis

are described.

II. Node-Tearing Nodal Analysis

Our goal in this section is to derive a new tearing approach [4]
based on nodal analysis. To simplify the notation, we consider only

linear resistive networks. However, the same approach can be easily +

generalized for nonlinear networks following the procedure given in [4].



Let us briefly recall that, if N is a connected network whose
- branches are grouped into the standard composite form (Fig. 1) and if

(] is its associated graph, then the standard nodal analysis yields [12]:

4ATY, = I, o BN
where . . ’
' DB prieey | _ -
3= AQ Ge) : 3 - (2)

' é is the reduced incidence matrix of g}, G is the branch conductance
matrix, V is the'node-to-datum voltage vector, j is the branch current-
source vector and e is the branch voltage-source vector. J» can also be
interpreted as an equlvalent current-source vector representing all the
currents injected into each node due to the independent sources.

As pointed out in [4], the tearing approach can be interpreted as
partitioning the nodes and branches of N in such a way.that the associated
network equations involve a matrix with a special structure. This special
structure must lead to a straight-forward decomposition of the system of
equations into smaller subsystems, each of which can be solved either
4independently or in accordance with certain ordering. Furthermore, the
decomposed soiutions should coincide with the original solutions.

Two structures (or forms) of a square matrix satisfying the above
requirement are the bordered-block-diagonal form, henceforth denoted by 2

- BBDF, and the borderedgblock-triangular form,1 henceforth denoted by

BBTF [13] (also, see Fig. 2 and Appendix A). Hence our aim is to partition
the nodes and branches of N in such a way that the nodal admittance matrix
Y 4 Agét is in BBDF or in BBTF. The resulting nodal equation will then

be referred to as the node—tearing nodal analysis, denoted by NTNA.

1Th:ls is also referred to as the borderedgblock-lower-triangular form.

e



Basic Partition:

Remark 1. A

'Let\J“ denote the nondatum nodes of g} and 1et»13 denote the set of

branches of g}. Partition the nondatum node set\,\[into two arbitrary
subsetsu\l1 and J“2. Partition the branch setijg into two subsetsijgl
and CBZ such that:

(i) 1121 contains all those branches infjg that are incident with nodes
in '\./Ul;

(ii) CIBZ contains all the remaining branches offIB.-

Graphically, this basic partition of nodes and branches is illusérated
in Fig. 3. Topologically, it yields the following sﬁeéial structure for
the reduced incidence matrix A:

B, B,
N LSTRIY

A= | 3)

uMz 621 622

. -~

Aig = le is of fundamental importance for subsequent derivations.

If we rearrange the branch conductance matrix G with respect to the
basic partition as
B, B,
Byle; &

G

G = (4)
B¢

21 g22

then the nodal equation becomes



N, N,

Ny Ty Yof| ¥

-n ~s. - , ‘
41 151 | )
Ny ¥ Ypo| Va I |
2 2
where
Y., = A .G..At | (6)
i * faftn
Y.. = A,.G AL +A G A N
T2 = 813611821 * 4a%12%22 | | - ,
_ t ot . ' 8
Y1 = 221%811 T 4280%n | - ( )
_ t t t t o
Y,y = 851601851 + 808011 ¥ 221812822 * 222822020 - ®

Let us now look at the conditions that assure Y to be in a form suitable
for tearing. Basically, they are of two kinds:
(i) the connection between branches, henceforth called the topological

condition;

(ii) the coupling between branches, henceforth call the branch coupling

condit ion.

Topological Condit;ion:

. : . s 3
The section graph2 g ( ,\J 1) has "m" (m>1) disconnected components

. : \
2Given a graph Q = (X, 1) where X denotes the set of nodes and U denotes
the set of branches, let S be a subset of nodes, then the section graph
[14] g (S) is the graph (S,Ug) where Ug = {b € U|b incidents only with S}.
The séction graph can also be interpreted as the graph obtained from
by removing all {X-S} nodes and all branches with at least one terminal node

belonging to {X-S}. Hence, both terminal nodes of each branch in g(s)
must belong to S. :

3
In [4] we required the coumponents to be separable whereas here we require

the components to be disconnected. In other words, we need a slightly stronger
requirement here.

-6~



1 1 »ll 2 21 m _ o pml, 4
Ql = (/\‘l’:gl )’ J = ( \_‘ ’j )’ seey gl = (_/\Jl):Rl )-
It follows from the topological condition that A can be further partitioned

as:

B B .- B B,

“1 ( 1 A : h
N | 4 ;

2 2 ~ .

1 O 11 ;O

a= | L ) \J, (10)
Mm m :
~ l e ® o o * o o+ a - - 1 ° -
1 2 m 2" :

A, L2821 221 -0 85 4 ) )

where CRII Q:BI;]' U:QIIO UCBIIZ,:BIIO is the set of branches connecting

an_/\j‘f node and the datum node,(l?liz

an~jU§ node and an,,\j2 node. The notations are fully illustrated in

is the set of branches connecting

Fig. 4.

Remark 2. The upper left submatrix 511 of (3) has the block diagonal
structure as shown in (10).

As an example, consider the graph of Fig. 5(a). First, let us

}.

partition the nondatum node set into‘,Ul = {nl,nz,n3,n4} and./U2={n5,n6

Accordingly, <R is partitioned intoijgl = {b »b,,b.,b ,b7} and

2°23743P5:b¢ |
CEE = {bs,bg,blo}. Note that the section graph {3(/“1) has three disconnected

components C}i, gji and (3: (Fig. 5(b)).S The reduced incidence matrix

A of this example can then be partitioned as follows:

“0bserve that bl t’,bz ceees ULAum b and { k’iizkl} U {branches
k=1

between an \ node and the datum node} U {branches between an.,\)1 node and
an \2 node}"\bl.

Observe that {}1 and ‘ji contain no branches because each branch

connected to either node nl or nz is also incident with some node not

belonging to_,“l.
-7-
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Before considering the branch coupling:cdndition, let us relate the
‘structure of G with the structure of Y of a network in which the topological

condition is satisfied.

Lemma 1. If the topological condition holds, then the submatrix 311 of

-(5) preserves the nonzero block structure of 911 of (4) in the sense that

both Y and G

11 €11 have identical nonzero blccks as illustrated in Fig. 6.

t

Proof: Recall from (6) that A12 = 0 guarantees the relation Y AllGlléll'
Since the topological condition implies that A11 is block diagonal, then
the product A11 RE: 11 can be regarded as a block diagonal transformation
of nonzero elements. Thus gll preserves the nonzero block structure of

' - n
€1 (Fig. 6).

Now, it is straight-forward to give conditions on G such that Y is

in a form suitable for tearing.

Branch 00upling,Condition 1:

Branches infig are not coupled to branches inCIBj for all i # 3

and 1,j = 1,2,...,m.

According to branch coupling condition 1, G can be recast as

-8-
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c 1 :—32 DT D
, B - By B,
A
Cgﬁ-cn gl
1| °11 1 212
-~ ]
2 22 ;A2
B; O ‘1  S12 |
6= :{\ ‘. : . i (12)
ZTHym mn { m
A=l R S W Y I
1 2 m |
@B, |¢ G .. G G
2721 21, =22

Theroem 1. If the topological condition and the branch coupling condition 1

hold, Y can be put in the bordered—block-diégonal form (BBDF). In
particular, we have )
1 2 ,m
J\‘l J\Il AL | "'\IZ
— ~
1|11 |
ANy |1 O F Y12
2 22 ~
N} I ' Y3,
!
y=: O SR (13)
~ ]
m mm g
J\]]_ e __ _!_11_ u_g_tfg_
1 2 [
Ny (¥ Y5 - Yy t ¥y
- -~
where, for k = 1,2,...,m,
kk _ 4k Kk
111 7 4€ 11("‘11 (14)
_ kKK k. k k
e © A11 11(A21) + 8116158, (15)
k _ ,k Kk k¢
, Yoy = 851601 (AP " + AyyCh (AT)° (16)
¢ = [k Kk ak yt k kot k k
‘ Y2 = E: [ 21811 (510" + 85,000 (A;)° + A7,61,47, ] + Ap282o8s; an
e Proof: Obvious by Lemma 1. B



It follows from Theorem 1 that the nodal equation (5) now has the

following block structure, henceforth called the node-tearing nodal analysis in

bordered—block-d@ggpnai form (or simply as NINA in BBDF):

il : szlﬂ1 v | ot |
F11 \ =12 "0, ~s
22 I | 2

11 1 339 v gsl

t Py . . .
: . _‘ . o o (18)

. ,m

I ~2 B B

oY .. Yo ly v J
=21 -21 ~21, ~22 =0, | LJ~§2“

where Yﬁ and Yn denote respectively the node-to-datum voltage vectors
1 2
of nodes in_,“i and,,“z, g§ and gs denote respectively the equivalent
1 2 »
" current vectors representing the net current injected into nodes_)“t and

‘)UZ due to all independent sources. Moreover,

k _ ,k (k_ Kkk k ) ' o
g, " 511(3-1 €11817%12%2 - a9
m m. . o
- k ( k_.kk k_k ) _ k k_
Is, ~ kz=:1 Ay \d176181 %1082/ * ‘3*22(32 1§=:1 €211 92292) (20)

where j, and j, (resp.; G&

and gz) are the branch current-(resp.; voltage-)
source -vectors of branches in @l; and ':BZ’ respectively.
Now, let us focus on the other form that is also suitable for

tearing; namely, the bordered block triangular form (BBTF). The following

condition guarantees that Y is in BBTF if the topological condition holds.

Branch Coupling Condition 2:

Branches inijgi are not coupled to branches inCIgi for all i < j and
i’j = 1’2’..."m.
It follows from branch coupling condition 2 that G can be partitioned

as follows:

-10-



1 1
1{ 11 Coq )
“B1|fn O ' 612
2| 21 22 ¢ 2
¢ |
1% Su L S12
6= .|. .. Lo (21)
' L d
m Gml m2 g ! o
181 %1 S S
D 1 2 m
By 1 S - - G %2

Observe that this condition is weaker than the branch coupling

condition 1 in that condition 1 implies condition 2, but not vice-versa.

Theorem 2. If the topological condition and the branch coupling condition

2 hold, then Y can be put in bordered-block—triangular form (BBTF). 1In

particular, we have

1 2 m .'
.JUl .J“l ° . “AJI .Adz
~ n
1.1 roq
' |
Ny | Y31 O L Y12
2121 22 2 | o2
A ¥ Yin L Y12
Yy = .. .. - (22)
3 : ) o
m ml m2 mm | . m
R RTINS TR TR T
1 2 m
Ny [¥p1 ¥ - - Yy Yy
Y —
Proof: Obvious from Lemma 1. H

It follows from Theorem 2 that the nodal equation (5) now has the BBTF

structure, henceforth called the node-tearing nodal analysis in bordered-—

block-triangular form (or simply as NTNA in BBTF).

Let us now pause to look at the example shown in Fig. 7. The reason
why we choose a network with so many voltage-controlled current sources
(i.e., couplings) is to illustrate that our branch coupling conditions

are actually very mild.
-11-
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— -W r— -w r— ~
i i
Y110 () R AT an !
e — e — = T e wm am o= e - e o — - -
' Y92, 725 726 || "o, 0
_ e e e e e ———— —— e} = - s — —
y Yo !y y v J
() 1733 734 735 736 ny | _ 2 (25)
“ | ! _ ~
RIS Y45 O Vn4 9,
e L T __ S N S
0 1¥55! O Ys4Yss Yse || Vng 0
Pty 'y v, 'y y \/ 0
| V611762, Y63 V641765 Y66 | _ng | L7 _
where
é + 4 .- é,_ - . \
Y11 = 811 T 8223 Y1s T T B22 T B8}
P S S
Va2 T B33 T B4’ Vo5 T84 Y2p €33 )
Y S :
Y33 = 855 T Bge T Bsed Y34 T Bs¢ T 8ge’ Y35 ~ B5,10°
s _ - . s _ . A g s
Y36 Bs5 = 85 10° Y43 866> Y44 = Bge T 8770
y 4. 8,95 Y 8. g8,, - 8 5y 4 8q7 ~ 8495 (26)
45 77 Y52 46 = 810,4% Ys4 = 897 T By73

A ' 4 _ .
Y55 = 844 ¥ 877 * 899 * 819,10 * 810,4 T 897° Y56 - ~ B10,10°
b_, ., B s by g, |

Y61 822° Y62~ 810,4 ~ B33° Y63 ~ Bse ~ Bss’

s _ . A _ - _ )
Ye4 = ~ 8563 Vg5 810,10 ~ 810,4 ~ 8s,10°

A
Yoo = 82 ¥ 833 * 855 t 8gg T 810 10 T 88 * 85 10"
Let us observe the following:

(1) A5 =04,

(ii) G as given in (24) has the same block structdre as (12) and therefore

satisfies the branch coupling condition 1.

(iii) Y of (25) is in BBDF.

Let us modify the G matrix in (24) by adding 831> 852 and 874"

Physically, we are adding voltage-controlled current sources across branches

19

respectively. Then, those elements of the resulting Y that differ from

b3, b5 and b7 which depend on voltages of branches b 52 and b&’

-13-~



(25) are listed as follows:

-

y 8 _g 5 4 _ . 4 - - . .
21 313 Y31 8525 Y36 - 852 ~ Bs5 T 85,10° Y42 T T Bp4’ a
A

A, o - - . A
Vs - 874 = 8775 Ys2 - " Bas t 874 T B10,43 Yss - Bas T B4 T B77 T Boy

: ; }
+g.o+ : a - 8.3 4
899 *+ 810,10 * 810,45 Y61 - 852 T 8225 Yee ~ 822 * B33 * 855 T Bss (27)

* 810,10 * 828 T 85,10 T 852 - -

Observe that both G and Y are in BBTF.

Remark 3. If neither branch'cpupling condition 1 nor 2 is satisfied
relative to the preceding partitioning of (‘(j“l) into m separable ,v
components, it is often possible to relax these conditions and still
obtain the nodal equation in BBDF or BBTF but with fewer blocks (of
course, the dimension of the resulting blocks will be larger). To see
: howAbranch coupling condition 1 can be relaxed, let us pertition the set
of separable components of g}(JUi), denoted by S; 4 {g}i,g}i,...,g}?},
into "r" disjoint subsets (r<m) S;l, 532,...,£;r, each -.containing one
or more separable components. Partition,)u andCIB each into "r" subsets
._)U and'Tgl, = 1,2,440,T where,)d contains all nodes in S; andCIB
contains all branches incident wlth,Aj nodes (Fig. 9). The submatrix
éll can then be partitioned with respect to this new partition of nodes
and branches. Since Lemma 1 still holds with respect to this new node
partition, we can relax branch coupling condition 1 as follows: branches
1nCI; are not coupled to branches in- J for all i # j and 1,j = 1,2,...,T.
Obviously, Theorem 1 still holds with respect to this new node partitlon.
The same reasoning (mutatis mutandis) can obviously be.applied to relax
branch coupling condition 2.

As an iliustracion, let us comnsider the same example in Fig. 7. Let

14—



us add 831 and 824 to (24) thereby violating the branch coupling condition
1 relative to the original node partition. However, if we choose our new
. —_ —_ o —_— —
i1 1 2
partitton as ! = AT U2, _\? = \3, B} - B! uR? ana B} =B},

then those elements of the resulting Y that differ from (25) are listed as follows:

a . & _ . s _ . A _ A
Y12 T 84% Y35 824° Y21 8313 Y61 ~ 831 T 822°
A A (28)
Y62 = 810,4 ~ 833 T 824 Y5 - 824 ~ 810,10 ~ 810,4 ~ B5,10

Observe that both G and Y are now in BBDF and notice that there are
only 2 diagonal blocks in this new partition as compared to the 3 diagon;l
blocks in (25). : -

So far, we have shown that these special cases of the well-known
nodal analysis are obtained merely by a simple partitioning of the nodes
and branches, and by imposing some rather mild branch coupling conditions.

We are now ready to give a circuit-theoretic interpretation of the
node-tearing nodal analysis given in (18) in the same spifit as that
given for diakoptic analysis in [4]. First, let us recast the k-th
component matrix eqdation of (18) as

Kk . k ok
AR A R A | @9)

Substituting (14), (15) and (19) into (29), we obtain

k kk/.k )c K K kk( K )c Kk k .t
511911(511 Ynl + 417613 Ynz + 511912522Yn2
ok .k _ Lk kk k _ Ak ok
=431 7 A58008 T A%e8 (30)

Let us next augment a voltage source between each,,”z node and the datum
node and let its terminal voltage waveform be assigned equal to the

corresponding node-to-datum voltage. Finally, let us remove all:@2

branches (Fig. 10(a)): Because of the Substitution Theorem [12], this



procedure will not alter the solution of the network. Furthermofe, these’
augmented voltage sources will summarize the "outside" influence due to
bfanche§ inijgzxupoﬁ each subnetwork Nk’ In other words, these augmented
voltage sources effectively "decouple" the original network into "m"
subnetworks (Fig. 10(b)). Each "decoupled" SUbnetwork Nk can now be

analyzed separately as follows:6

k.
-11~ "‘11 1 51141 ‘Hl(Gnd 12 2) A11j
X
= A11 11(Vk+e ) + '*11 12( - ‘3‘1131
_ t Lk
= 511911 [(9‘11) Yl;l + (521) Ynz ]+ A11~12 SRR 2+e ) - AL G

Observe that (31) is identical to (30).

0=

Similarly, if we‘augmént a voltége source between each_J“l node and
the datum node and let its terminal voltage waveform be assigned equal to
" the corresponding node-to-datum voltage, then upon removipg all branches

1nCIBI, we can show that the equation governing this augmented network
is identical to the last component matrix equation of (18).

In analogy to the diakoptics' tearing approach [4 ], we can now
interprete (18) as the result of a tearing process. Physically, we tear
the original network N apart at the\J“ nodes using augmented equivalent
voltage sources to account for the "outside” jnfluence upon each subnetwork
Nk' We analyze éach subnetwork separately. Finally, we interconnect the
4solutions via the.JUZ-node subnetwork. It is precisely this node-tearing
analogy which prompted us to call this approach as the nodé—tearing nodal

analysis.

6~chta1::|’.ons can be found in Fig. 1.

16~
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I1I. Comparison with Diakoptic Analysis

As already mentioned in the introduction, another tearing approach
based on nodal analysis has been developed and will henceforth be referred

to as diakoptic nodal analysis [5]. Our objective in this section is to

comparé the node-tearing nodal analysis (NTNA) with the diakoptic nodal
analysis (DNA). To do this, it is instructive to recgll briefly the
procedure involved in the derivation of DNA. We assume as usual the
standard composite branch format shown in Fig. 1 and ﬁartition the
nondatum node set ,\jarbitrarily into two disjoint subsets\J\j1 and\,“2.7
We next partition the branch set~j§ into two disjoint subsets~j§1iand‘j§2
such that no coupling exists between a :éh'branch aqd,a :E% branch.
The reduced incidence matrix A then assumes the following partitioned
form: - -

B B
M| 4 4

Ao 851 45

(32)

Depending on the context, let us partition all current and voltage

vectors x with respect to either fPa and~j§2, °r,JU1'andquE; namely

x]
x= : (33)
2 .

N>

Using this notation, KCL, KVL, and the branch relations assume the following

form:

In this section, we attach a "hat' to all symbols associated with DNA in
order to distinguish them from the corresponding symbols associated with
NTNA. .

-17-



Kirchhoff Current Law

A1, + 451, =70 (34)
A1 ¥ 40, =0, (33)
Kirchhoff Voltagg Law
AA - At“ -~ At ~ . . . . ' A
Y 74T, FinY | . (36)
1 2 . .
-~ =46t.h At -~ . . ) . . .
Vo =4,V F A0V ‘ ' : (37)
i 72
Branch Relations
Lt =4 =50 " Gy (Vytey) (38
Vp * &5 = ¥y = Rply = R (I5Hy) 39
Equations (34)-(39) can be combined into the following matrix
'equation, henceforth called.diakoptic nodal analysis (DﬁA)':8
\/\J _-/\] CQ
A [a cx et Al ) [0
1| 2%%n fnfita %a2 ) ta) 5
o ~ -~ At ~ ~ At‘ - . ~ -
Ny | 85061877 2516181 25 Ynz s, (40
K t At -~ - FS .
B, [ A2 42 BJE2 J (B2l
4 Y
———
K
where
A : A -~ P A A
= .- : 41
Is, 8,056 (1)
~ A -~ : A A .
I, - 82117618 | . (42)
~ é ~ _ ~ t .l .
Ey T8 7 Byly 43)

'SWhen_J“Z is empty, (40) reduces to the so-called radially attgched case [15].
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We shall later refer to the matrix in (40) as K.
Observe that if the removal of all 722 branches reduces the original

2
graph €3 into "m'" disconnected components €31 (3 ieey {3m (Fig. 11), then

the submatrix A,., can be partitioned into a block-diagonal form containing

~11
R "m" blocks. Consequently, Lemma 1 is also applicable to the product

A11 1A7p of (40).

We are now ready to point out the basic distinctions between NTNA
and DNA:?

(i) As far as the topological conditions are concetned, the NTNA
accomplishes the '"tearing" in m separable components by removing the
"VZ nodes and the datum node. In contrast to this, DNA‘accomplishes the

A

same task by removing theng branches. In other wordé, NTNA involves
“node removal'' whereas DNA involves "branch removal."

(ii) NTNA uses only voltage variables in the final network equation

- - whereas DNA uses both voltage and current variables.

Let us pause for a moment to introduce a lemma which relates the two

methods.

Lemma 2. Let g} be an undirected graph and let - FZ be a subset of branches

such that the graph (]1 obtained from (j by removing all 432 branches

contains "m" disconnected components. Then there always exists a subset
|
¢\2

: all‘,\l2 nodes contains "r' disconnected components, furthermore

A

of nodes of (}such that, the graph €31 obtained from (} by removing

9The same can be said about diakoptic methods in general [4].

lowe let |S] denote the number of elements in the set S.

-19-



(1) r<m
(i1) b\}lﬂ < [_,\)11(] where'_,\jllc denotes the nodes in Qk

: - < Jj
a) LN = [B,}-

Proof: For each branch in :Qz, we can choose any one of its end nodes

and store it in. _,\j Observe the following:

2°
(i) Since, by assumption, the removal of Céz branches separates

the graph g into 1tn disconnected components, it follows that the removal

of J‘.‘Z nodes will separate the remaining graph Ql into at most "m"

disconnecﬁed components. If some of the disconnected components of Ql contain

isolated nodes which are all chosen as \/“2 nodes, then gl contains léss

than "m" separable components.

(ii) Obvious from the construction of J\fz.

(iii) If a node happens to be the end node of two or more CRZ branches

(Fig. 12), then only this node needs to be put inq\fz. Hence [JUZI < ICBZI.
, . , n

Let us now compare NTNA and DNA with fespect to their’compu‘tational
complexities. As shown in Appendix A, the parameters in determining the
comﬁutational complexity are:

(i) the total dimension of‘ the coefficient matrix;

(ii) the dimensioﬁ of the border of the coeffic;ie:}t matrix;

(iii) the sparsity of the matrix.

\
Theorem 3. Let N be a network whose branches are not coupled to each

otherA, let /R, and CBZ be the disjoint subsets of the branch partition

satisfying thé topological condition of ‘diakoptic nodal analysis. Then

there always exists a partition of the set u\‘ of nondatum nodes into "\IJL

éndq\iz which sétisfies the topological condition of node-tearing nodal

-20-
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analysis and the following properties:

(i) the dimension of Y of (18) is less than the dimension of K of

(40);

t (i1) the dimension of the border of Y is less than or equal to the

dimension of the border of K;

(iii) Y is sparser than K.

Proof: (1) [y] = LN = LN |+ LA,1 < LT+ LU, + 1B,] = Ik
(ii) The dimension of the border of Y is equal to [JUZI whereas the
dimension of the border of K is equal to [Jﬁzl + l:ﬁél; It follows from
Lema 2 that | \,| < [B,| < LV, + IR,

(iii) We want to show that the number of off-diagonal terms in (18) is

| A

always less than those in (40). However, a direct comparison is impossible

because different submatrices are involved in Y of (18) and K of (40).

Therefo;e, in order to be able to compare directly, we will repartition
< the nodal admittance matrix Y with respect to the {,Ql;,JQé; :Ea, :EE}
partition, henceforth referred to as i, so that it involvesAthe same
submatrices as those contained in K of (40). Observe that the nodal
admittance matrix ? with respect to {,ﬂl,\/02;~q§i,~q§2} and the nodal
admittance matrix Y with respect to (’“l"’UZ;JIél"JQZ} (i.e., (18)) are
both nodal admittance matrices of the same network, and hence can differ
from each other only by a symmetric permutation of rows and columns. 1In
other words, they have the same number of nonzero terms. Therefore, we
need only to compare the number of nonzero off-diagonal terms of f with
those in K of (40).

Let us now partition the nodal admittance matrix with respect to the

= {‘/\ll’ "\|2; :Ql, :Rz} Partition:
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.R -~ -~ ~ l\t At
A A 4|6 2 -11 4
!-949-?= a2 Ile & Ilat. it
< Ay 222|102 € A12 49
'~ -~ t t
A,6A, +B 04, 4 c1"‘21 +4,,8,45, .
= ~ ~ ~ A a~ -~ “t
456 A + A8 AP W 1 21 + 8558585, :

-~ ~ At ~ -~ ~ t ~ At‘ ‘
| fnSt A11 11-21 o| A12fetz 412502 s
21618 A921G1A21 85582815 225887,
U —— Yl | ~— S
n 1,

-

where the last decomposition is made for comparison purposes. Observe that

~

since §1 andvgz'denote the branch conductance matrix associated with

branches in CBl and - ? respectively,‘ it follows that ’21 corresponds to
the Cél branches whereas-)t!z corresponds to the Céz brsnches..

Let us now Look at matrix K of (40). Observe that the four sub-
matrices in the upper left-hand corner of K, which are also due to branches

in@l are 1dentica1 to the submatrix Yl Observe also that the sub-

matrices such as {A12’ Bro» 12, ;’2, R } are due to theCB branches.

Since the branches in :Bl give rise to the same submat:r.n.x ’51 in both
—i of (45) and K of (40), therefore the nonzero terms due to the branches
in@ need nmot be considered in the comparison. Furthermore, 32 is
assumed d:l.agonal, hence we need only to compare the number of off-diagonal

terms in Y2 and the nonzero terms in {Alz’ 22. A12, } which are

contributed by the branches in 582.

Let b G /B be a branch connecting nodes ng and nJ. Then, Y 2

k

ij
(i.e., the (i j)th element of Y ) and Y2 are the only off-diagonal
i $!

terms in g that are due to branch bk' However, the column of the submatrix
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-

A
[212] that corresponds to hranch bk contains a "1".in the i-th row and a

22 1

"~1" in the j-th row (or vlée—-versa).1 In other words, branch bk contributes

ty. Hence, the following

~ ~t -
4220 %120 42

4 nonzero terms to {51 22° 8o

2!

relations always hold:
the number of nonzero off-diagonal terms of Y in_(18)

= the number of nonzero off-diagonal terms of i in (44)

< the number of nonzero off-diagonal terms of 21 and ?2 in (45)

< the number of nonzero off-diagonal terms of g

PS P At A
+ the number of nonzero terms in {512, A22’ 412, é;z}

~

= the number of nonzero off-diagonal terms of K in (40). R

Corollary 1 If the~3§l branches are coupled to each other, then (18)

is superior to (40) in the sense that properties (i), (ii) and (iii) of

Theorem 3 are satisfied.

Remark 4. If thefqéz branches are coupled to each othér, then properties
(1) and (ii) of Theorem 3 are still satisfied while property (iii) also
holds except in some speclal cases. For instance, in the case where the
<I§2 branches are very "strongly coupled" to each other,12 we can find

examples where (iii) is false.

Remark 5. For passive nctworks, the Y matrix in (18) is diagonally

dominant. Hence, for NTNA, any application of the Gaussian Elimination

lhhen branch by connects node nj to the datum node, no off-diagonal term in

A
Y will be contributed by b, whereas the column of the submatrix 512 that
b k éz
corresponds to branch by contains a "1" (or "-1") in the i-th row.““In

other words, the subsequent inequalities still hold.

2By strong coupling, we mean GZ and 32 are full matrices.
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~methddﬂwi£h diagonal pivoting on (18) is guaranteed to be stable.

However, in the case of DNA, we can not make a similar statement about

Remark 6. In the derivation of (40) for DNA, we require that the<qgl . {

branches are not coupled to the<132 branches. In the derivation of (18)

for NTNA, however, we do allow couplings betweenclal and?igz branches as
@, ,

IV.  Computational Considerations and Graph Optimization Problems Related

..

.to Node Tearing

As élready pointed out in the introduction and [4],.when Y is in
BBDF or BBTF, there exists several efficient'methbds for decomposing
the solution process. This decomposition step is not only convenient
bﬁt is in fact essential whén a}very large system of equatiéns has to be
solved. Indeed, even by.using advanced sparse matrix technidues [16-19],
‘the cémputer can not'héndie such large-scale systems efficiently.

In this paper, we critically énalyze three decomposition methods
which, to the best of our knowledge, are the most efficient solution

techniques available; namely, the LU method [20], the Block LU method [4,5]

and the TA method [21].13 Since each of these three methods decomposes

the solution process into several stages each involving a relatively

small matfix, we can either apply overlay techniques [22] to "stack"

the decompbsed solution stages, or apply parallel computation

teéhnigues'[23] to "speed up" the decomposed solution process.

’

13TA stands for Tearing Algorithm. -
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To avoid drifting too far from the main theme.of this paper, the

detailed description of these methods and a critical study of their

computational complexities -- defined as the number of multiplications
required -- are given in Appendix A. We note here for later reference that

the computational complexity of these methods for both BBDF and BBTF
depends on the number of nodes in_,\l2 and on the size, i.e., dimension,

of the diagonal blocks of Y In this section, we give only the final

11°
results of the comparisons carried out in details in Appendix A.
Compafisons of the computational complexities associated with
these three methods for BBDF and BBTF were obtained under the followiﬁg
two assumptions: |
(i) all the nonzero submatrices of Y are full;

(ii) all the submatrices and/or the vector on the right-hand side

of (1) are sparse.

The conclusions are summarized in the following Theorem:

Theorem 4 (Relative efficiency of the LU, Block LU and TA methods): For

the BBDF, under assumption (i), all three methods yield the same complexity.

Under assumption (ii), LU method is always better than Block LU method

14
which in turn is generally better than TA method. For the BBTF, under

both assumptions, TA method is always significantly better than the other

two methods. - n

In Section 2, we have assumed that a partition satisfying the tearing

requirements (namely, the topological and branch coupling conditions) was

14 .
The above statement is always true under one rather mild condition that

there is no fill-in in the lower border of the matrix considered (i.e.,
!21) during Gaussian Elimination.
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givén-apriﬁri; For some ptobléms,_a fairly good partition can be obtained
ffom a good layout. However, in general, this is not the case and a
partition has to be foﬁnd.

Observe that in genéral there exist many distinct partitions of the
Pondatum~node'set,{\[and the branch setilg of N such that the resulting
Y matrix is in BBDF or BBTF. ﬁe can rank these partitions in terms of
the computational effort needed to find the solutions of the derived system
of equations and choosévthe optimal one. Since thevcomputational complexity

is directly related to both L,“zl and the size of the diagonal blocks of

¥11’ we need to minimize both of them. Thﬁs we have a multi-criteria
optimization problem to solve. V

Thgre exist two general approaches for solving multi-criterié
optimization prdblems [24]. One approach is to conveff all but one
criterion into suit;ble constraiﬁts. The other approach is to combine
the criteria into a single weighted criterion. Fortunately, the choice
of our partition is often constrained by an upper bound for the size of -

the diagonal blocks of Y This upper bound is usually determined by

11’
the capability of the computer used. Hence, it is meaningful to adopt
the first approach and consider the following optimization problem for

tearing, henceforth'called the tearing optimization problem and denoted

by TOP:

. \

Find a partition of nodes and branches in N such that the dimensions of
the diagonal. blocks of gll are less than or equal to a prescribed upper
bound o oox and such that [JUZI is minimized.

Formally, TOP can be stated as follows:
-TOP: Minimize L/“zl over the family of all distinct partitioms {,UJ,.)UZ}

of nodes of g} such that
-26-



(i) the topological condition holds;
(ii) the branch coupling condition (1 or 2) holds;

@) LA <a k=1,2,0,m

Remark 7. In general, noax depends on the type of problem we are dealing

with, the computer being used and the sparsity of the matrices involved.

Remark 8. TOP is a combinatorial problem and is often more easily studied
if it is givenva graph-theoretic interpretatioﬁ. Qbserve that if the
branches are uncoupled, condition (ii) is automatically satisfied and .
hence can be dropped. Once (ii) is dropped, TOP reduces to a graph
optimization problem. However, in general some branches are coupled to
each other and (ii) can not be removed.

Observe that TOP actually consists of two problems, depending on
whether branch coupling condition 1 or 2 holds. We will prove shortly
that they can be reformulated into two equivalent graph optimization
problems. |

We want to pdint out again that the primary purpose of NINA is to

partition the nonzero elements of the nodal admittance matrix Y in BBDF

or BBTF. It is well-known that, in order to deal with the nonzero
elements of a matrix efficiently, it is best to work with its associated

graph -- the so-called sparsity graph [13,25,26]. We will therefore

present a graph-theoretic interpretation of TOP using the concept of
sparsity graph.
A sparsity graph associated with an nxn matrix Y is defined as a

A 15
directed graph (}Y containing '"n" nodes and a directed branch from node

15In this section, a hat is used to distinguish symbols associated with
a directed graph from symbols associated with an undirected graph.

" '
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n, to node n, vhenever Y # 0 (see Fig. 13(a) and (b) for illﬁstration).

i J ij
The undirected version of a directed graph GY is defined as an undirected
graph'.gY containing "n" nodes and an undirected branch between nodes n,

and n; whenever there is a directed branch in QY. from node n to node

nj (Fig. 13(c)).

We shall now define two graph optimization problems, henceforth

denoted by GOP1l and GOP2, on the séarsity graph associated with the nodal

admittance matrix Y as f._ollows:]'6

GOP1l: Minimize L’“Y | over the family of all distinct partitions
== 9 .

{ _/\]Yl, J\sz} of nodes of QY such that
(i) the topological condition holds on QY;
@) S [ <n,,, k=1,2....m
. -71 : .

COP2: Minimize ],\’ Y | over the family of all distinct partitions
VY, A

a

{J\‘Yl,_j] YZ} of nodes of QY such that

(i) the section graph g Y("\;Y ) has "m" (m>1) strongly-connected
- A1 c1 All, A2 c2 21 Am cm Amnl
components (Jz = (\l5 ,SBy)» = (NGBS cees G2 = (NS B
erl Ny Oy ng Y2 O JYl Y, 0Y
. tik
(i1) L\JYll S0 k= 1,2,.0m

Before we relate these two problems to TOP, let us prove the
following lemma which gives the relationship between the graph g of a

network and the sparsity graph QY of the nodal admittance matrix Y.

'16The following notations are the same as those in Section 2 except the
subscript "Y" which is used to emphasize that we are dealing with the
sparsity graph associated with matrix Y.
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Lemma 3. The undirected version of the sparsity graph gjy associated with

the nodal admittance matrix Y of N is the "union" of the section graph

gj(JUILL“ ) and the set of branches, connecting nodes in “ U \‘ which are

induced by the couplings. In other words, {3Y = (}( \ “2) + {branches

due to couplings}.

Proof: Observe that the section graph gj(JUILLUZ) can be obtained from
€} by removing the datum node and all branches conmnected to it. Let

branch b consist of a conductance Gk Kk in parallel with a voltage

1 171

controlled-current source Gk k Vi (Fig. 14(a)). If we denote the end
172 72 o
nodes of branches b and b asn, ,n, and n, , n, , respectively,
ky ky 9 17 3,
then G would contribute nonzero terms to Y. j and Y, i* Consequently,
kyky 13 3%
the sparsity subgraph and its undirected version due to G

k

are shown
klkl

in Figs. 14(b) and (c), respectively. Observe that, for the uncoupled
case, QBY = gj(/ulkb\&). Since Gk K would in general contribute nonzero
- 2 .
terms to Y D G Y. and Y, . , the associated sparsity subgraph
i1y i3 31 132

and its undirected version due to G
kyky

respectively. It is now obvious that (\ = C‘( Lb\f) + {branches. due
Yy = YO 2N,

are shown in Figs. 14(d) and (e),

to couplings}. "

Theorem 5. GOPl is equivalent to TOP with branch coupling condition 1.

Proof: (a) GOPl (i) = TOP (i) and (ii):

From Lemma 3, (“( LUN) is a subgraph of G GOP1 (i) impiies that
< V1 2 J

{o

17,
7The symbol “+" in this equation is used in the sense that the branches

due to couplings are to be added to the graph ( Q \i ) via soldering-
iron entries. In other words, no new node is 1ntroéuceu by this
augmentation. This notation is used quite often in the graph theory
literature [14].
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. there is no branch connecting g}i and g}J for i # 3. Hence, there is
bS] k51
no branch connecting their respective subgraphs 231 and g}] | Hence,
1 and g; are separable blocks (i.e., TOP (i)) and are not mutually
coupled (i.e., TOP (ii)).
(b) TOP (i) and (ii) = GOP1 (i):

This follows directly from the comnstruction of QEY‘ , : R

" Theorem 6. GOP2 is equivalent to TOP with branch coupling condition 2.

Proof' (a) GOP2 (i) = TOP (i) and (11)
i (i#j), then there is no branch
1
from C\J to ng ; otherwise, it would violate the definitionof a strongly-

Assume there is a branch from g}x to (\

connectechmponent. Therefore, this branch must come from the couplings
since each original branch in g; corresponding to Gkk would produce two
branches in QY formmg a 1oop. .Since each original branch in g remains
in one of the strongly—connected components, there is no orlginal branch
connecting nodes in EJY and EJY Hence, TOP (i) is satisfied.
Furthermore, if TOP (ii) is violated then Y can become structurally
symmetric and GOP2 (i) will be violated.

(b) TOP (i) and (ii) = GOP2 (i):

This follows directly from the construction of ng'

It has to be noted that both GOP1 and GOP2 are very difficult
graph optimization problems. In fact, it can be shown that they belong
to a class of hard probleme. This class of problems, called NP-complete
[10,11], has the property that if any one of them can be solved (i.e.,
yielding global optimal solution) in polynomial-bounded time with

respect to the dimension of the input, all of them-can. However, up
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until now, no polynomial-~bounded solution algorithm has been found for
any of these NP-complete problems. It is widely believed that no such
polynomial-bounded algorithm exists. The discussion on NP-complete
problems and the proof that GOP1 and GOP2 are NP-complete are given in
Appendix B.

In general, once we can prove that a problem is NP-complete, we
should avoid trying to find a global solution (unless the size of the
problem is so small that exponentially-bounded algorithm is acceptable).
Instead, some efficient heuristic algorithm [27] should be developed.

In the next section, we shall develop such an algorithm for solving

GOP1.
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V. A Heuristic Cluster Algorithm'

In this section we give a heuristic algorithm to solve one of the
optimization problems introduced in Section 4; namely, GOPl. This
problem arises in many different fields and is usually referred to as the

cluster problem. For example, it is encountered in computer logic and

‘page partitioning problems [28,29], in power system bus clustering
pFoblems [30], in network decomposition problems [4,31], in shortest path -
decomposition problems [32], in IC placement problems [33] and in |
statistical data grouping problems [34]. Depending on the nature of the
problem, the minimization objectives may be based upon the number of --
interconnection nodes t32], the number of interconnection branéhes
t4,28—31], the total c&st of.interconnection branches [33] or the distance
between the."centroids" of élusters [34]. The various approaches for
solving the clhstet problems may be classified into four major categories:

(i) growing clusters from scratch [28,31];

(ii) interchanging nodes until.some local optimality condition
is satisfied [33];

(iii) transforming the problem into some associated mathematical

equation t29,34];

(iv) finding the "contour" of an .associated graph [30].

Given an undirected sparsity graph g]Y’ the cluster algorithm to be
presented in this section for minimizing the number of interconnection

nodes (i.e., [JUY |) is based on the last approach and will henceforth
2

‘be referred to as the contour approach. Before introducing our

" algorithm, however, let us first discuss the concept of a contour tableau.
A contour tableau consists of an array of three columns as shown in

Fig. 15. The leftmost column is called the iterating set (IS), the middle
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column the adjacent set (AS) and the rightmost column the contour |

number (CN). The entries of the tableau are determined as follows:18

Contour Tableau Constrﬁction Algorithm

Step 1. Choose an initial iterating node and store it im IS(1).

Step 2. Store in AS(1) all nodes that are adjacent to the node in IS(1).
Step 3. Place the cardinality of AS(1l) in CN(1).

Step 4. Let i = 1.

Step 5. If CN (i) = 0, stop!

Step 6. Choose the next iterating node, denoted by n,qo from AS(i)

and place it in IS(i+l).

Step 7. Update AS(i+l) from AS(i) by deleting the node n, and adding

i+l

the set V representing all node adjacent to n that are not

(i
already in AS(i) or ~i U 18(3j)¢.
j=1

Step 8. CN(i+l) = |AS(i+l)].

Step 9. Let.i = i+l, go to Step 5.

Let us first clarify Step 7 with the aid of Fig. 16. In AS(i) and
AS(i+l), we store the adjacent nodes of the sets of iterated nodes
{.t‘ IS(j)} and {l:} IS(j)}, respectively. Instead of finding AS(i+l)
figi scratch at e;:i iteration, we want to find an efficient way of
updating AS(i+l) from AS(i). Now, let us look at Fig. 16 where the

solid lines denote adjacency relations and the dotted lines denote possible

adjacency relations. Two sets {IS(i+l)} and {AS(i) - IS(it+l)} are adjacent

i i+l
to { U 1S(j);. . Since {AS(i)—IS(i+l)} and V are adjacent to { U ISs(i),,
j=1 j=1

we can therefore update AS(i+l) from AS(i) by deleting IS(i+l) and adding

V which is precisely Step 7.

18The graph is assumed to be connected for simplicity.
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Now, let us pause to look at an example. Figure 17 shows a graph with

9 nodes. It is clustered into two groups of nodes {nl,nz,n3,n4} and

5

the construction of our contour tableau by selecting arbitrarily the

{n6,n7,n8,n9} which are separated by the hinged node n_. Let us start

.initial node, say n;, and store it in IS(1). Since {nz,n3,n4,n5} are the
nodes adjacent to n,, the& are stored in AS(1). Cénsequently, CN(1) = 4.
Let us choose arbitrarily an iterating node from AS(l), say nj, and put

it in IS(2). Observe that the nodes that are adjacent to {nl,n3} are
{nz,n4,n5}.v So they are put in AS(2) and hence CN(2) = 3. Choose the
next iterating node as IS(3) = g, then AS(3) = {nz,n4,n6,n7,n8,n9} and
hence CN(3) = 6. The complete tableau is shown in Fig. 18(a).

In order to understand how the preceding algorithm can be used to
separate the g£aph into clusters, let us observe that if X denotes the set
of nodes of a given graph, then t?e set of AS nodes always separates X
into 3 subsets; namely, Z(i) 4 t’ IS(j), AS(i), and W(i) A X-Z(i)-AS(1),

| 3=1 ‘
where Z(i) nodes are not adjacent to W(i) nodes (Fig. 19).

As we construct the tableau, the size of AS(i) (i.e., CN(i)) in e#ch step
varies. It is wheﬁ CN(i) is very small, henceforth called bottlenecks,
that Z(i) and W(i) form clusters. OQur aim then is to choose a particular
_ contour tabelau construction algorithm that would yield a good cluster
whenevef CN(i) encounters a bottleneck. By using arbitfary choices in
Steps 1 and 6 as in the preceding example, the best AS(i) is {nz,na,nS}
(Fig. 18(a)). However, it is far from the optimal result;namely,
AS(i) = {ns}, which in this case can be obtained by inspection.

In the original contour construction algorithm, there are'only two
places where choices are made. They are in Step 1 when choosing the

initial iterating node,and in Step 6 when choosing the next iterating node.
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Let us first examine Step 6. In [30], the strategy chosen is the .

minimumfill-in strategy which is quite time-consuming and hence inefficient.

- 1
In this paper, we propose another approach and call it the greedy strategy;

namely, at every iteration, we simply choose the node in AS(i) that
yields minimum CN(i+l) = |AS(i+1)|or, equivalently, we choose the node
that yields minimum IVI. If a tie is encountered; we choose arbitrarily
among the ties. To illustrate this strategy, we start with n, and
eventually construct the tableau shown in Fig. 18(b). Indeed, it yields
our desired goal; namely, to separate the 2 clusters {nl’nZ’DB’nA} and
{n6,n7,n8,n9} through the bottleneck {ns}.

Our main reason for choosing the greedy strategy is that it can
be easily implemented. To analyze the efficiency of this strategy, we
will shortly derive its computational complexity. Before doing this,
however, let us first identify its shortcomings by énalyzing the example
shown in Fig. 20(a). Suppose after the i-th iteration, AS(i) = {nl,nz}.
If we choose n; to iterate next, we will end up with the cluster shown by
the dotted line in Fig. 20(b) which has 2 bottleneck nodes. On the other
hand, since IV(nl)] = 3 and IV(nz)I = 2, an application of our greedy
strategy would require that n, be iterated next. The resulting cluster is
shown by the dotted line in Fig. 20(c) which has 5 bottleneck nodes.
This result of 5 bottleneck nodes versus the possible 2 bottleneck nodes
of course is undesirable.

Let us examine next the choice of the initial iterating node. If we

start the tableau construction from ng in Fig. 17 and use the greedy

strategy, then the resulting tableau is shown in Fig. 18(c). Observe

19 . :

The term ''greedy'" is a very common terminology in the graph literatures
[32]. It means that the algorithm determines the direction for iteration
by simply checking some local conditions.
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that the basic contour property for identifying the clusters is lost.
Althpugh there exists no optimal procedure to remedy this situation, a

good rule of thumb is to start with a node with the minimum degree. 1In

our example, all nodes except ng have degree 4. Observe that if we
choose any one of them as the starting node, they will all yield a tableau
;imilar to Fig. 18(b). Besides, this minimum-degree strategy coincides
with our greedy strategy since a node with the minimum degree will yield
a minimum CN(1).
We can now incorporate the minimum-degree jnitial-node strategy for

Step 1 and the greedy strategy for Step 6 into the tableau cﬁnstruction
algorithm. Furthermore, we can jntroduce an algorithm for finding clusters
Baééd on the conéour concept. The flow-chart of this algorithm is shown
in Fig. 21. Basically, if we regard CN as a function of the iteration
stepA(Fig. 22(a»,2q this algorithm will separate the nodes into clusters
whenever there is a local minimum in CN.

| In 6ur original cluster problém, the number of nodes in each cluster
is constrained to be less than or equal to noaxt In the preceding cluster
algorithm, this constraint has not yet been taken into consideration.
However, ﬁe can easily incorporate it by cutting the contour whenever the
number of nodes in the cluster reaches noox before a local minimum is
attained (Fig. 22(b)).

Another assumption that we have made in the preceding clpster

algérithm is that the CN curves in Figs. 22(a) and (b) are very "smooth."

In practiée, the CN curve could be very erratic and may in fact contain

2OAlthough CN is actually a discrete function of the iteration step, we
will approximate it by drawing a continuous curve through these discrete
points as shown ir Fig. 22.
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many small wiggles as illustrated in Fig. 22(c). Moreover, it may also
contain many small clusters as in Fig. 22(d). In such situations, our
cluster algorithm would simply yield too many clusters each with a very
small dimension. Besides, the total number of bottleneck nodes wbuld
become.too large.

To overcome the occurrence of small clusters, we can delay our
searching for a local minimum until after an_ o« nodes have been iterated,
wheéere a = 0.6 to 0.8 (Fig. 22(d)). To overcome the éccurrence of small

wiggles, we can keep a record of all local minima énd choose the smallest

‘local minimum that occurs between an and n as the cut-off point.
max max

This is illustrated in Fig. 22(e).

Finally, there is the so-called redundancy phenomenon which we will now
illustrate with the help of the example shown in Fig. 23(a). This example
shows 3 clusters A, B aﬁd C separated by bottleneck nodes D,E and F. Let
us start with A and use solid lines to denote adjacency relations and
dotted lines to denote possible adjacency relations. Using the preceding
cluster algorithm, we will end up with the tableau shown in Fig. 23(b)
and the associated CN curve shown in Fig. 23(c). Observe that the
bottleneck node F is redundant in the sense that it appeared twice as in
{D+F} and {E+F}. Therefore, in selecting the best place to cut the CN
curve into clusters, we have an inaccurate information because
| {D+F} U {E+F}| # [{D+F}| + |{E+F}|. The resulting cut may not be the
best one that is possible. Moreover, it is unnecessary to iterate on
D,E and F in the tableau because, once they are determined to be bottleneck
nodes, their adjacency is of no more concern to the remaining graph.

To overcome this redundancy phenomenon, we must resort to the

concept of dynamic contour cutting; namely, after we have determined the
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ciuster A and its bottleneck {D+F}, we throw away {D+F} from any future
itératipn. The dynamic contour cuﬁting sffategy will therefﬁre yield a
smaller and more efficient tableau as illustrated in Figs. 23(d) and (e).
We are now ready to pfesent a "refined" clusﬁer algorithm which
;akes into consideration all of the problems ideptified in the preceding
Qiscussions; namely, the noax constraint, the small wiggle and sﬁall
cluster properties of CN curves and the redundancy phenomenon. The flow-
chart for this refined cluster algorithm is presented in Fig. 24. Let

us now analyze the computational complexity21 of the cluster algorithm.

P

Theorem 7. Let "n" and "b" denote the number of nodes and branches of

the input graph, then the computational complexity of the cluster algorithm

is bounded by (j(nb).

gggggz The.most time-consuming step in the cluster algorithm is the
choice of the next iterating node from AS. Applying our greedy strategy,
each adjacency list [36] of nodes in AS is scanned once. Let lo(nk)
denote the lengfh of the original adjacenéy list of node n, and let~li(nk)
dendte the length of the adjacency list of node n in AS(i). The reason
for distinguishing 2o(nk), ll(nk),..., is that the adjacency lists |
actually become cshorter after every iteration. Now, the computational

bound can be expressed as

n n .
2 Z L, (n) = P> Z %.(n;) = n-2b ~(46)
i=1 nk§%S(i) k=1 nk&as(i)

The last equality holds because each list appear at most n times in the

21The compléxity used here is defined to be the number of comparisons
involved.
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whole tableau. Hence the computational éomplexity of our cluster

algorithm is bounded by ((nb). n

A ‘computer program for implementing this cluster algorithm has been
developed and the detailed results are given in [35]. We will just
mention here that the program employs an efficient data structure

—- the edge-oriented adjacency list [36] —- and a novel "flag" system in

updating ﬁhe list structures.

Part of the test results are shown in Table 1 which includés a total
of 10 examples. For each example we have listéd the number of nodes n,
the number of branches b, the product nb, the noax constraint, the
number of clus&ersyieldedbytjm:cluster algorithm, the total number of
‘boftleheck nodes and the computer time spent. In the sequel, we are
going to discuss some of these examples in detail.

VvLet us now examine Example 1 of Table 1 thofoughly, using the graph
shown in Fig. 25(a) with Nk T 10. The tableau derived from our cluster
algorithm is shown in Fig. 25(b). Observe that the resulting three
élusters coincide with those enclosed by the three dotted lines shown in
Fig. 25(a). The bottleneck is identified as {n8’n12’n14}' This result
is quite good since the optimal sclution as obtained by inspection consists
of one of the following three possibilities = {n8,nlo}, {n8,nll} and
TILIERE

‘Nine more examples, i.e., Examples 2-10 of Tabie 1, are shown in
Figs. 26(a)-(i), respectively, where the initial nodes are identified
by arrows and the clusters are encircled by dotted lines.

As a final remark about the computational complexity associated with

the cluster algorithm, let us plot the computer times spent of Table 1
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versus the product of nb in Fig. 27. It is clear that(ﬁ(nb) is'an upper
bound for the complexityAbecause all the data points are bounded:by a
straightvline.

Before we finish thlS section, let us look at the practical circuit
example shown in Fig. 28(a) where the schemat1c circuit dlagram for each
.ope;ational amplifier is shown in Fig. 28(b) [37]. Using the Ebers-Moll
model (Fig. 28(c) [9], eaeh transistor is replaced by a triangular graph in the
induced sparsity subgraph (Fig. 28(d)). Our associated graph optimization
problem (i.e., Example 5 in Table 1) centains 94 nodes and 176 branches.
Since each operational amplifier contains 19 internal modes, let us choose
noax = 27. Applying our cluster algorithm, we obtain 5 clusters shown
by the doteed lines ln Fig. 28(e), where the lst operational amplifier
is split into 2 clusters. This solution is reasonably good unléas we
demand that each operational amplifier be included in a single cluster.

A careful analysis of the tableau shows that the "local“ character of our
greedy strategy is respons1b1e for the separatlon of the 1st operat10nal
amplifier into two clusters. On the other hand, if one is adamant about
" retaining each operational amplifier as an inseparable unit'wlthin each
cluster, then we should transform this problem into the following welghted

cluster problem: Transform each operatlonal ampl1f1er into a “super"

node with weight 19 (i.e., the total number of internal nodes) and let
all other nodea have weight 1. Find the SEC.)UY with minimnm tetal weight

2
such that each cluster has weight b

Observe that with some minor modifications; our cluster algorithm is.
still applicable in solving the above weighted cluster problem;

Finally, we observe that the formulation of any heuristic algorithm

invariably involves various trade-offs. The fact that our cluster algorithm
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. leads to a very reasonable solution with a computational complexity
bounded by O(nb) shows that ours is indeed a very good heuristic:

algorithm [27].

Vi. Concludine Remarks

A new tearing approach to the analysis of large-scale electrical

.networks has been presented. This method, called the'node-tearing

nodal analysis (NTNA), is based on the well-known nodal analysis.

The contribution of this paper lies mainly in.two areas: circuit
theory and grapn theory. In the’circuit-tneoretic part, . NTNA has been.
derived ‘as the result of a simple partition of nodes and branches and a
straight—forward manipulation of KCL, KVL and the branch constitutive
relations. NTNA has also been proved to be in general snperior to Wu's
diakoptic nodal analysis. Moreover, it has been pointed out that, for
passive networks, NTNA yields a system-of equations which involves a
diagonally-dominant matrix. This property guarantees that any application
of the Gaussian Elimination method with diagonal pivoting.is stable. The
stability of such a process is often crucial when nonlinear networks are
analyzed by computers.

In the graph-theoretic part, graph optimization problems have been
related to the problem of finding the most efficient NTNA for a given
network.' These problems, which involve the partition of nodes and branches
of an appropriate graph, have been shown to belong to a olass of difficult
combinatorial problems, the so-called NP-complete class, where no efficient
global solotion can be expected. Consequently, an efficient heuristic
algorithm has been presented for the solution of a particular graph-

theoretic optimization problem, the so-called cluster problem, which arises
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also in many other research areas.
Finélly, we wish to point out that node-tearing nodal analysis (NTNA)
is but a particular formulation in a whole new class of formulationms.

In particular, a straight-forward extention to loop analysis and cutset

analzsis in either bordered-block-diagonal form (BBDF), or bordered-block—-

triangular form (BBTF), is given in Appendix C.
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A?pendix A. Comparison of Three Decomposition Methods.
Given a system of linear algebraic equatioms
Mz = s , (A.1)

We shall present and compare three decomposition methods for solving the
following two specialiied matrix structures:

(i). Bordered—Block-Diagonal Form (BBDF)

~ A ~
n - O ‘M | [N i 2 )

Yo - % Yo || %2 g2 .

S A O S B
_-Q_ _____________ T X N | Y N
w1 P2 0 Mmm Yo, | | 1 ) | w1 )

(ii) Borderedelock-Triangular Form (BBTF)

M 1. ) [
< L}
i O o, || B 1
Yo My Moo || %2 g2
I
L) . P’ l . () = . .
. . . . . . . (A.3)
]
M M .. M |
~ml ~m2 ~mm . yﬁ,m+1 *n *m
M M .. 'M
1,1 Yo, 2 Yort,m oo | Fe ) o)

These two structures are frequently encountered in the analysis of
large-scale systems, where the dimension of the associated matrix M is
often too large to be analyzed efficiently, even by large computers.

Fortunately, these two matrices are endowed with a special structure which

allows the original system to be decomposed and solved in several

)

stages, each involving a matrix of a much lower dimension. Consequently,
this method of analysis is often called the small computer approach for

solving large-scale problems.
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We shall discuss and compare three distinct decomposition methods
for solving each of the two matrix structures; namely, the LU method, the
Block LU method and the TA method. Since matrices associated with
large~scale systems are usually very sparse, any meaningful comparison
must take into cénsideration the sparsity of the submatrices nij and

Qectors s, in (A.2) and (A.3).

i

A.l. Comparison of the LU, Block LU and TA Methods for Solving Matrices

in Bordered-Block-Diagonal Form

We will first present the three methods in a form most convenient .

for their subsequent comparisons.

A.1.1. The Three Methods for BBDF

(a) The LU method [20]

Step 1. Factorize M as
‘M =1L1U (A.4)

where L is a lower-triangular matrix and U is a unit-upper-
triangular matrix.

Step 2. Forward substitute for v from

lu=s | .5)

where \
v -A'= -.3.{‘ . ) (A.6)

Step 3. Backward substitute for x from (A.6).
Let us make two observations. First, the triangular matrices

L and U associated with (A.2) have the following block structures
!
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i
0
O

“mtl,1 ~mtl,2 m+l,m, “mtl,mt+l
- =
~ S
1 O H01,mh
J !
gzz lQZ,m+1 :
U= i (A.8)
[ ] . ; .
() '
|
¥ gmm .|gm,m+1 ’
_________________ P
O Uy, w1
e -/

where kkk is lowe:-triangular and gkk is unit-upper-triangular for
1 < k < m+l. Second, during the factorization of M, for 1 <k<m

in Step 1 k
Step 1, only the submatrices M ,., uk,m+1’ ¥m+l,k and ¥m+1,m+1 are involved,

- where M .3 1 is recursively defined as follows:

1

A
Yor1,mi1 ~ Ypr1,on1 (4.9)
Mt Bk U | (A.10)

M1, ol - Smel,mtl Pl kCk,mil

It follows from the preceding observations that the LU method can be
reformuléted into the following equivalent form:

Step i. For k = 1,2,...,m, factorize the following submatrix

M Y, ol Lk 9 Yk Yk,mh1 -
. = (A.11)
+1 ’
Mo,k Mo, w1 Losr, x gkmﬂ,m!-l 0 loy,mn

and factorize
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Mfn+1

Mot ml ~ Cl,mH m] o ~ . (A.12)

Step 2. Forward substitute for v block-by-block from
Yavie T % (4.13)
for k =1,2,...,m, and
SLD‘
L1, mt%m1 ~ Sl T 2 B k% (A.14)
where w, s, x are partitioned into the following compatible
blocks:
Yy 51 X
Y, Ss )
w= : s S =1 ¢ > X =| ¢ (A.15)
s
~m ~m ~m
w s X
L.~m+{¢ L_:m+l_“ L:nﬂd.
Step 3. Backward substitute for x block-by-block from
Yol , w1 ¥l T Yl (A.16)
and, for k= 1,2,...,m, solve
Yt T % T Y, mfon (a.17)
(b) The Block LU method [4,5]
Step 1. For k = 1,2,...,m, factorize each submatrix M as
Mk = Bafie (A.18)
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Step 2. For k =1,2,...,m, backward substitute for L from

*m+l,k
Lot T Y - @19
Step 3. ‘For F =1,2,...,m, forward subsyitute for gk;mﬁl from
ka Yeymi1 T Y mi - (4.20)
gggg;g. Factorize M:II m+1.a§ in (4.12) where

m .
i -y L...T (A.21)

mHl,wHl © Smél,ml = YL, kek, mHl

Steg_S; Forward substitute for w block-by-block from (A.13) and (A.14)"

Step 6. ‘Backward substitute for x block-by-block from (A.16) and (A.17).

On first sight, it might appear that the LU method is the éame'as
the Block LU method. However, this observation is true only if .all the
submatriéesvare full. For‘sparse submatrices they are actually quite
different and we will show shortly that, under this conditién, the LU

method is always better.

(c) The TA method [21]
This method is relatively new and we shall briefly describe it here..

-Assume the matrix M of (A.l) can be decomposed as

M=P+HK (A.22)

where M and P are 2x% nonsingular matrices, and H and K are respectively
xq and—qiz (where q < %) matrices of rank q. Instead of solving (A.1l)

direétly, we can first solve

Pyo=s | (A.23) -

Then, by modifying the solution Zo "appropriately,” we can obtain x.
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In particular, given the decomposition (A.22), let Bp denote the p—-th
colum of H and let go a s, then the following modification algorithm

.2
can be used to compute for x: 3

Step 1. Factorize g as

P=1LU (A.24)
where g is lower-triangular and @ is unit-upper-triangular.

0,1,2,...,q, solve yp (via substitution) from

Step 2. For p

Loy =u (4.25)

Step 3. Solve z from
o .
1 +D)z = K A.26)
(~qq D)z = Ky (
where %qq is a qxq unit matrix and

D & xy :gzzg....gxyq] © (A.27)

Step 4. Obtain the original solution x of (A.1l) by

x =y - il 23" (A.28)
p=

.where zp is the p-th component of z.

23An alterhate formulation as given in [21] is as follows:

Step 1. P = @@

Step 2. Sélveip from @@ip = -gp for p = 1,2,...,q, and solve yo from @Qyo =s.
Step 3. (1o D)% = Ky© where D 2 (FHKE ... KE%

-~

Stég 4. x = yo + Epzp where EP is the p-th component of %.
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The validity of (A,28) is proved in [21]. However, a much éimpler

proof is given below:

Proof of (A. 28l

q

Mcy-z z ") =My° - z«zpr«x"
= p=l
)
= Py° + HKy® - szx Z‘i p“z
p—
q
(o}
=s+Hy - 3 zH -H zKy
p=1 PP g;i =

=8 + HKy - Hz - HDz

-~ oo ~ o

n
w

+ §(1$z°-(1qq +D)z)

o= § = Mx

~

Premultiplying both sides by yrl, we obtain’(A.28).. "

Observe that the effectiveness of the TA method depends on the
following two requirements regarding the decomposition given in'(A;ZZ):
(1) P should be easily factorizable into (A.24) apd the resulting
equation be readily solvable.
(ii) The border size "q" should be made as small as possible.
Our experience shows that for matrices in the bordered-block-diagonal

form, the best decomposition of M is given by [21]
- i FW — ™

311 ‘() :() yi,nﬂi

M2 e : Yoo
P= Q . : , H= . (A-29)
. 1 . :
yﬁm : yﬁ,m+1
""" it Fires B it
Mr1,1 Yorr,2 o0 Yoim! fmil,onl Mo, ol tokl,mhl
- I L. J
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5=[ 0 fgmﬂ’mﬂ]  (a.30)

Observe that the matrix P in (A.29) can be easily factorized. " In
fact, for k = 1,2,...,m, ykk can be factorized individually as in (A.18).
. Also observe that the resulting equation can be easily solved since each
block in P is decoupled from each other. Moreover, the‘dimension of
ym+1,m+l (i.e., q) is usually very small. Hence both requirements are
met for the above decomposition. In addition, we obtain the following
two desirable features:

(i) gyp requires no calculation for p = 0,1,2,...,q.

(ii) 2z as obtained from (A.26) is equal to 41 of (A.15) and hengé

we can save part of the calculation of (A.28).

A.1.2. Computational Complexities of the Three Methods for BBDF

Now that we have presented all three methods, let us compare their
computational complexitie524 with respect to the sparsity of the matrix
involved. The first case to be considered is when all submatrices are
full, i.e.,'the zero elements in the submatrices are too few to be
useful. The second case is when all submatrices are sparse, i,e., the
zero elements in the submatrices are abundant and can be efficiently
utilized. The third case is when the.right-hand-side vector is also sparse.

grec oM o

For simplicity, let us assume throughout that 511’32 M all

have the same dimension nxn while that of is assumed to be qxq.

Mk, ol

Let CLU’ CBLU and CTA respectively denote the computational complexity
of the LU method, the Block LU method and the TA method.

Case 1. All Submatrices are Full

The derivation for C o and CTA for this case is given as follows:

LU’ "BLU

2l‘Only multip}ications are counted.
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| v , 5 .
{m[(%— - %) + qn(g’il + qn(le"ll + qzn]+(93b - %)}(t:he above |

G T
computations are due to Step 1 of LU method) + {m[‘_"‘n(n; 1‘2]

f [mqn + -(L(ﬂ;—ll]}(Step 2) +{q(q2-1) + m[n(nz-l) + qn]} (Step 3)

3 3

=m(23—---§-+qn2+q2n+n2+2qn)+ﬂ-—-a+q3 (A.31)
. 3 3 -
3 .
= m~ _ 1 n(n-1) n(n+l)
CBLU {m(;j 3)} (Step 1) + {mq 5 } (Step 2) + {mq 2 (Step 3)

3 Y
+ {qun + 93— - :-;1} (Step 4) + {m BSB%'_]:l + mqn + ﬂ-(jg-]—')-} (Step 5)

{2052+ [+ ) im0 -

3 3
=m(%--%+qn2+q2n+n2+2qn)+33—-%+q2 (A.32)

| Cop = {m(%— - %)} (Step 1) + {(9+1) m[‘?(“;—ll + “(.“Zf 1? + qn]} (Step 2)

T.

+ {35_. + qZ - %} (Step 3) + {qmn} (Step 4)

, 3 . . 3
=m(9§---§+qn2+q2n+n2+2qn)+33--%+q2 (A.33)

As might have been expected, all three methods yield the same

computational complexity when all submatrices are full.

"Case 2. All Submatrices are Sparse

In this case, it is essential to consider the pivoting order used in

the factorization of sparse matrices. It is well known [38] Fhat different
pivoting order may yield drastically different fill-in patterns. Therefore,
it is desirable to choose pivoting order that yields minimum fill-ins.
Since the optimal pivoting order for one method is not necessarily

optimal for another method, we have to justify using the same optimal
pivoting order for ‘all three methods before any meaningful comparisons

can be made. )
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The optimal pivoting order for the LU method minimizes fill-ins
in the submatrices gkk’ yk,m+l’ ym+l’k and y§+l,m+1 for k=1,2,...,m.
The optimal pivoting order for the Block LU method, on first sight,
seems to minimizes fill-ins in the submatrices ykk for k =1,2,...,m.
’gowever, from [20] we know that the two submatrices £m+l,k and 9k,m+1
obtained from the Block LU method are identical to those obtained from
the LU methed. Hence, if we want to also minimize the fill-ins occurring
at Steps 2-4 of the Block LU method, the same minimization criterion

as that of the Lﬁ method should be used.

: . 1 . .
Fﬁom the observation that gﬁ:&,nﬁi is usually a fu;l matrix, there
is little reason to keep track of the fill-ins in g§+1,m+l at each step.

Therefore, a more meaningful optimal pivoting order for both methods is
to minimize fill-ins in the submatrices ykk,yk’m+l and‘§ﬁ+l’k.

With our choice of the decomposition of M as in (A.29) and (A-.30),
the obvious optimal pivoting order for the TA method is to minimize the
fill-ins of all submatrices ykk' However, we will now consider a Better,
though more subtle, optimal choice. In Step 2 of the TA method, (A.25) is
solved (mt+l) times with respect to different vectors on the right-hand
side. As we shall see shortly, the zeroes of the right-hand side vectors
" can be efficiently utilized if they are located at tﬁe top of each vector.
This requirement somewhat coincides with that requiring minimum fill-ins
for all yk,m+1' In other words, g better choice fo; the optimal pivoting
order would be to minimize fill-ins in the submatrices M and yk,m+1‘
Consequently, for symmetric matrices or almost symmetric matrices, the
same optimal piyoting order holds for all three methods.

,

To simplify our subsequent derivation, it is convenient to introduce

the following notations25 (see Fig. A.1):

25Notations with a hat denote the number of nonzero elements after fill-in
has occurred.



(1) ’(c§+1)(:esp.; (rE%i)) denotgs the number of nonzero elements
in ;he first column (resp.; row) of the reduced matrix of order
(n-i+l1) of_gkk,
(i1) (E§+l) (resp.; (;§31)) denotes the number of nonzero elements
‘in the first columm (:esp.; row) of the reduced matrix of order (n-i+l)
&uring the i-th step of Gaussian Elimination (or factorization) of ykk.

(iii) dg (resp.; 3?) denotes the number of nonzero elements in

column 1 of M 1,k (resp.; m+1,k)'
(iv) 'e? (resp.; ei) denotes the number of nonzero elements in row
i of yk,m+1 (resp.; gk,m+1)' ..

For simplicity, we shall omit writing the bounds of the indices over
the summation sign}i:. The actual bounds, unless otherwise given, are
defiﬁed as follow:

IEDINDIED M VLD (a.34)

i 1=l 'k =1 P p=
Finally, we shall treat Mﬁil o+l as a full matrix.

Using the preceding assumptlons and notations, we are now ready to

derive the computational complexities CLU’ CBLU and CTA for case 2 as

follows:
3 \
_ Ak, 2k, .\ 2k, -k k q(q+1)
Gy —{k ( e H +1)(ri+e )+33— - %} (Step 1) +{Zk: 21: (ci-f-l) + L8
+ X Z&k} (Step 2) +{2 (Z Eli‘ + 2 ;1;).,.31512:1_1} (Step 3)
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CBLU ={K zi:( )r]:}(Step 1) + {Z q )} (Step 2)
e . e o3
+ {% [q );, (cli‘ﬂ)]} (Step 3) + { }: aser + L - %} (Step 4)

k i
+{ ) (Eli‘+1)+3—‘1——l(2+1 I a‘;} (Step 5) +{-‘1£le'1
k1 k 1
(2

' +(3+'q2-%+m) (A.36)
Ak .\ -~k ( ~k ~k k
CTA ={zk:§ (ci+1)Ari}(Step 1) + i(q—i—l) Zk[g (ci+l) + % rg + % di]}

. 3
(Step 2) + {35- + q2 - —%} (Step 3) + {mqn} (Step 4)

EZ“““+ZE +22qr+zzqd+2§£§:§

+ 2mqn + EZ 6k+22 dk+(-q—+q2--q+mn) (A.37)
i . i 3 3
k 1 k i
In order to compare CLU and CBLU’ we will make use of the following three
inequalities: .
TY kT X . (A.38)
" i’i-— ) i
k i k 1i
T & T T o . (A.39)
k 1 k 1 . :
2 Z ;1: < mqn (A.40)
k 1
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Using (A.38)-(A.40) and comparingl(A.3S) with (A.36), we obtain

Ly = Cpu E : (a.41)

Observe ;hat CTA and CBLU

former expression contains dﬁ'wﬁile the latter contains 3?. Substracting

(or CLU) are not readily comparable because the

(A.37) from (A.36), we obtain
- = akak_ k) (~k_) (*k_ k)]
Cpry - Cra ijfi: [(diei qd¥) + (¥-q) + (&-a] @
If we assume &E = d?, then

Cpry = Cra o | (A.43)

A

However, if we assume di = 3: = q > di, then

Cpru = Cra - | | - (A.44)

Observe that if we choose the optimal pivoting order for the TA method

to be that which minimizes fill-ins in M, ¥ .. and M ., ,, then the
b} 9 .

k . ‘ -k k
i is quite reasonable. Actually, if d; = d;,

the interpretation that there is no fill-in in M

assumﬁtion &E = d " then it has

Mo,k Now, we can conclude

that, for sparse submatrices in (A.2), the LU method is always better than

the Block LU methoa, which in turn is better than the TA method under

k

. sk _
the assumption of di = di.

Case 3. All Submatrices and the Right-hand-side Vector are Sparse
Suppose the leading components of s in (A.5) of the forward

substitution step are zero, then (A.5) can be partitioned as follow:

w 0
~a ~a
1N b
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Observe that - Qa and we only need to solve

Lib¥ = § ‘ , (A.46)

Again, to simplify our derivation, let us introduce the following

notations:

w

(1) f_ denotes the number of leading zeroes in s

Kk’

(i1) fp (resp.; gﬁ)denotes the number of leading zeroes in column

)

~ 0

(resp.; row) p of yk,m+l (resp.; ym+1,k

Using these notations, we can now derive C and CTA for case 3

LU’ CBLU
as follows:

Cy = {Zk: 21: (6k+dk+1) ( 2k, k) +-‘L 3} (Step 1)

T (cg) NP zzd}mew

+[-‘133 +q¥ -3+ % (n-f‘;)] | (A.47)

P
3 o,
+4 - 3}(Step 4) + {Z T (chn) + 2
373 .\t 2
i= f°+1
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+)E %E§+§§&§+[3;—+q2-%+%(-f)] (A.48)

o p=0 k 1=£841 i
p -
(Step 2) +{—q— + q - }(Step 3) +{ } (Step 4)

):E“R“MZZ Y LT T gk T o

i i i
K P gep ko1 k1
n
+ZZZ r1:+[mqn+22(n—fk)]+z Z l;_
k 1 X p K ek
3 , [o]
k q_ a9 -
+§§ di+[3+g 3+z(nf)] (A.49)

To compare CLU and C

obtain

CLU-CBLU=Z (zi: 81;»1;_2; 2z 31:)+(§ 3;“;‘-% Ek: ;’1;)

/
k- 1=£541 1=gF41
+[ ok oY (n—fk)] (A.50)
i ° P P

Now that we have separated (A.50) into three terms, we can examine each
n
term one gt a time: Consider the first term ( kek _ > 3. “k).

c.e
i1 i
i P i=fl;+1
Let us focus our attention ‘on column p and note that the first nonzero
" term is in row (f!;-i—l) . The worst case of fill-ins occurs when all elements

in column p from row (flg+2) to the last row become nonzero. Thus its
. n
contribution to ZE?&I;,in the worst case, is 2 Ei. However, its
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n - n '
contribution to Y, Z Al; is always 2, EE Observe that only
P iethn 1=£541 ’

the first nonzero term m each column contributes to the first term.
Hence we can conclude that the first term is always < 0. By dual

arguments the second term (z akz k E 2 ;]:) is always < 0.
‘ * i=g +1
k P
Fmally, the third term [z e; - E (n—fp)] can be rewritten as

1 p
( 2 Z '1) which is a special case of the first term with
i=f +l
p

*k
i

these observations with (A.50), we obtain

=1 for all i. Therefore, the third term is always < 0. Combining

Cu = Cery (4.51)
To compa’rg CBLU and CTA’ let us substract (A.49) from (A.48) to
obtain
= 2k ~k S 9 ([ akck
CoLu = Cra = %(2 % Ty T qr1)+ =~ < (dli
P i=g +1 =
P
- qdk) (z z Eal: - mqn) + }: Z (&:—dl::) (A.52)
k 1 k 1
& .k
Let us again examine (A.52) term by term. The first term (Z z r,
~ P i=gk+l
P
n n gll‘c’
~k ~k ~k 2k
- qri) can be rewritten as Z( P r; - i) = - Z r; 2 0.
i : P Y, gk-l-]_ i= p i=1

The third term (z 2 él; - mqn) is always < 0. Furthermore, if we assume

k i
ali( = dli, then the second and the fourth term are again < 0. Thus we have

CBLU < Cra (A.53)

and C for the

TA

We can now summarize our comparisons of C C
P LU® “BLU
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bordered block diagonal case as follows:

(1) 4if the submatrices are full, then CLU = CBLU = CTA;

(1i) 1if the submatfices are sparse and if we assume 3? > di, then

Cru = Cpry = Crpas

(111) if, in addition, the right-hand-side vector is also sparse,

we still have CLU'i CBLﬁ~£ CTA’

A.2. Compérison of the LU, Block LU and TA methods for Solving Matrices

in Bordered Block Triahgular Form

Let us first present the three methods for solving matrices in BBTF:

A.2.1. The Three Methods for BBTF.

(a) The LU method
Step 1. Factorize M as in (A.4).
Step 2. Forward substitute for w from (A.5).

Step 3. Backward substitute for x from (A.6). .-

Observe that the lower-triangular matrix L in (A.4) now assumes the

| following'block'structure:

o
(L . \
"11 O )
0
b D2 - '\
. !
: : ' ! (A.54)
o e o tm
|
| Ew1,1 Boe1,2 o0 Yl | tmHl,mHl

The unit—uppér-triangular matrix U in (A.4) still has the same block

structure as in (A.8).
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(b) The Block LU method

Step 1. For k = 1,2,...,m, factorize ykk as in (A.18).

Step 2. For m+l > k, > k, > 1, backward substitute for Ly k from
1 2 — T tkgk,

- X U = N ° (A.55)
Mok, ok, T Mgk, | |
Step 3. For k = 1,2,...,m, forward substitute for U, .. from
- . »
k-1

L%k, mi1 = Me,mid T kz_l Yk, Yy w1
d

(A.56)

Step 4. Factorize MP+1 as (A.12) where Mm+ is shown in (A.21).

1
~mrtl, mtl ~mtl,mt+l

Step 5. Forward substitute for w from (A.5).

Step 6. Backward substitute for x from (A.6).

(c) The TA method

Our experience shows that the best decomposition for M is obtained

by choosing

r‘Ml . B
“11
My M O

~22 - -
g = . hd ° - (A.57)
Yo M2 R ™

M1,1 Yor,2 0 Yorlm

1
L m+1,m+¥4
Hence, the modification matrices H and K are the same as in (A.29) and
(A.30), respeétiyely. Observe that the TA method for this case is of the

same form as that of the bordered block diagonal case.
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A.2.2. Computational Complexit:ies of the Three Methods for BBTF

For the case where all submatrices are full, we obtain the following

expreésions
. ‘ . ‘ 3' ‘
Cy = {2;3 };. [n(m—kﬂ) +q-1+ 1] w-trq) + % -2} (seep D)
+ { Z [.n(m-k-i-l) +q - i] + Sﬁﬂz‘_ll + nmiq }(Step 2)
k i

+ {3-(%11 + 2 (n-i+q)} (Step 3)
- k1 |

2 2 2 :
= (P2} p3 4 (Re o9, m §_n_x)2-(2 _m
(4"'12)3 ’.*'( 2 +5 + %7 ) + (mq” + 2mq 3)n

3 2 |
+(S+d"-3) G

i 3 '
Cory = {m(%— - %)} (Step 1) +{m(m2'1) n n%-l) + mq n(“z' 1)}(Step_ 2)

. ,
+A{lpq p(n;l) + m(zm-l) nzq (Step 3) +{%— - % + mnqz} (Step 4)

+ {m n(2n+1) + m(mz"ll a? + 35921'-:9- + mqny (Step 5)

+{-‘1£92:—1l +m l@‘z‘—ll + mqn} (Step 6)

() (e ) (2 )
H e 3) ' e
| _CTA = {m(P;- - %)} (Step 1) + {(qﬂ.) [mn2 + 3(—@.2—-]1 n2 + mqn]}(SFep 2)
., {_g; + ;12 _ %} (Step 3) + {mqn (Step 4)

2 2

3 2 2 2 2 3 3

-n 3+(sm_+2_+39;+2)n2+(mq2.+-2mq-2)n-f(ﬂ;+q2-'ﬂ) (A.60)



Comparing (A.58) - (A.60), we find

(1) for k =1,

o = %Ly T C1a | {461

(ii) for k

v
[
-

Cu = CpLu > Cra | B SRR

Let us now consider the case where the submatrices and/or the right-

hand-side vectors are sparse. Observe first that the main advantage of

the TA method is that there is no need to factorize gk " for mtl > kl
: 172

> k2 > 1. This feature is particularly dominant for the present case
when the.submatrices and/or the right-hand-side vector are sparse.

Moreover, in cdncrast with the other two methods, no fill-in in Mklkz
would occur in the TA method. Hence, for sparse matrix equations, we

conclue that

Cra << CLu = Cpru (4.63)
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Appendix B. NP-Complete Problems Associated with Network Tearing
. Let NP [11] be the class of decision problems solvable by

Nondeterministic algorithms operating in Polynomial time. Roughly

speaking, a nondeterministic algorithm is one which is capable of making
an arbitrary choice between two alternate routes in which to branch.

A nondeterministic algorithm is said to operate in.polynomial time if
.theré is a‘pdlynomial P(+) such that, for any input x, the length of

computation corresponding to each decision sequence is bounded by P(|x]).26

Given two optimization problems c;i and 9s We say Cri is transformable
into Cp s denoted by q)l « CP » if there e#ists a function £ such that;27
: (i) £ traﬁsform's the input x, of Cpl into the input xz of CP s (B.1)
(ii) |x2| = I’([xll) where P'(:) is some polynomial function; (8.2)
(iii)i thg transformation preserves the answer, i.e., if ¥ is the

output of CF; with input Xy 5 then Yy will also be the output of CFE with

input x,. _ o : (8.3)

This transformation is illustrated symbolically in Fig. B.l.
A problem CP is said to be NP-complete if
1) Pewe; | (B.4)

(ii) satisfiability problem ‘44) L (B.5)

where the satisfiability problem is defined in [10,11]} An equivalent

definition for NP-completeness is the following:

26He‘re |x| may take on different meanings deBending on the nature of x.
In particular, if is an integer, then lxl £ x. If x is a set of
numbers, then |x| £ the cardinality of the set. Finally, if x is a graph,
then |x| 4 max {number of nodes, number of branches}.

Z?A more general definition is available in [11].
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Given that problem C?H is NP-complete, then problem sz is NP-complete
if
W P,ew (B.6)
an P, =P, B

The equivalence between these two definitions follows from the

I'xn

transitivity relation of ; namely,

satisfiability problem =P, « P, | (B.8)

We can interprete (B.7) as follows: If there exists a polynomial-
bounded solution for any problem in the NP-complete class, then there
exist polynomial-bounded solutions for all problems in this class.

This interpretation is extremely important because once we have
established a problem belonging to the NP-complete class, we should
avoid trying to find a polynomial-bounded (global) solution. Instead,
some efficient heuristic approach should be undertaken

The preceding equivalent definition is also very useful in allowing
one to establish the NP-completeness of a given problem by relating it
to any convenient problem whose NP-completeness has been previously
established. Therefore, in order to prove problem CFE € NP-complete,
it is essential to find a particular problem CF& € NP-complete such
that a transformation f satisfying (B.L)—(B.B) can be exhibited.

We are now ready to derive the main results in this section. A
technical detail which needs to be brought into attention is that the output
of all decision problems are assumed to be either "Yes" or "No" [11].
Hence, we shall avoid listing the output statement in the following

development.
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Theorem B.l. The cluster problem (i.e., GOP1) is NPQconplete."

Proof:" We can reformulate the cluster problem, henceforth denoted by

CI), by specifying the input ‘and property statements as follows.

sz_: Cluster problem (GOPI)

Input:' An . undirected graph ng and positive integers q2 and noox (B.9)

- Property: gY has 1, nodes such that their removal will leave ‘the
remaining graph dis.cOnnected whereas each component (i.e., each disconnected

subgraph) contains no more than nm§¥ nodes. ) . (B.10)

It is easy to. show sz € NP with the help of the 'btanching tree shown
in Fig. B.2, Since ':.‘_or each decision sequence of NY » the computation
for finding the disconnected components of the sectior21 .g'raph g('NY]_) is
linear [39] and therefote polynomial-bounded, it follows that @2 € NP.

Now, in selecting the problem CP , let us choose the following

node-cover problem which is known to be NP-complete [10]:-

CPI: Node-cover problem

Input: An undirected graph g and a positive integer q. (B.11)

‘Property: g has a subset of nodes R such that |R| < q, and every

branch of g -is incident with some node in CD : (B.12)

~ The i'ea_son for choosing this node-cover problem as CP becomes
apparent if we examine the following analogous matrix problem: |
leen a symmetric matrix M, can we find a symmetric permutation of rows
and columns such that M has a bordered-diagonal nonzero structure with

a border size no larger than q;?
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This structure is illustrated in Fig. B.3. Comparing Fig. B.3 with |
the structure associated with the matrix analogy of the cluster problem
in Fig. B.A,'Qe see that the node-cover problem is in fact a special
case of the cluster problem with Do 1. |

To complete the proof, we will construct the transformation f via

an example (Fig.'B.S(a)). For each node n, in CIH} construct nodes

ni ,ni,..,ni and undirected branches b, . (i.e., a branch between
1 2 n t1%2
max
nodes ng and n, ), b1 i ,...,bi i and bi i forcré. The
1 2 273 (n_ -1)n n 1
max max max

construction corresponding to B oax 3 is shown in Fig. B.5(b). For each

Ly

procedure yields the input graph for CFE having the input integers

branch bij in CT{, construct branches b for k,2 = 1’2”’°’nmax' This

A

noax and 9y = qQy°n -

Observe that the preceding construction transforms the original graph
with "n" nodes and "b" branches into a graph with (n-nmax) nodes and

(n-nmax+b»n§ax) branches. Thus the construction is polynomial-bounded.

Observe that each set of nodes‘}Ui g {ni My seve,D } forms 32

1 2 n
max

connected component and that the removal of up to (nmax—l) nodes
from the set_)Ui does not change the connectivity of the constructed
graph. Therefore, in order to change the connectivity, we have to remove

nodes in,JUi as a single unit. Since q, = qyn ,» we are actually removing

max
qq sets of 'Ni nodes. Hence, the solution of the associated sz problem
is the solution of the original CF& problem. Finally, observe that if

CFE has a solution with less than 9 nodes, it certainly has a solution

with ql'nodes.~ This establishes that a solution of the original CFH

problem is the solution of the associated problem. n
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‘Theorem B.2. The‘generalized feedback node problem (i.e., GOP2) is

NP-complete.

Proof ¢ We can reformulate the _generalized feedback node problen, -

henceforth denoted as CP , as follows:

—=2

Cp : Generalized feedback node problem (GOP2)
Input: A dlrect;ed graph QY and positive integers q, and oo (B.13)

Property: QY has 9, nodes such that 'their removal will leave the
remeining graph containing s‘everel stronglyeconnected components each -

containing <n . nodes. l (B.14)

To prove that sz € NP, we can use the same branching tree shown
in Fig. B2. In this case, for each decision sequence of NY » the
_ ' ‘ ' 2
computation for finding the strongly-connected components of the section

graph Q(_NY ) is also 1inear [39]

‘Now, in selecting the problem 1) , let us choose the following

-feedback node problem which is known to be NP-complete [11]:

@1: Feedback node grobleln

Input: A directed graph g and a positive integer 9y ' (B.15)

~

Property: g has a set of 93 nodes whose removal breaks all directed

cycles. _ . (B.16)

The ieason for choosing thie feedback node problem as Cp becomes
apparent if we examine the following analogous matrix problem:
Given an asymmetric matrix M, can we find a symmetric permutation of rows
and columns such that M has a bordered-lower—triangular nonzero structure

with a border size ol?
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This structure is illustrated in Fig. B6. Comparing Fig. B6 with the

structure associated with the matrix analogy of the generalized feedback

node problem in Fig. B7, we see that the feedback node problem is in fact

a special case of the generalized feedback node problem with Roox 1.

To complete the proof, we will construct the transformation £ via

i

secesDy and directed branches G. . (i.e., a branch from node
i i .
2 n 172
“max_ . . CF)
to node n, ), b1 i ,...,bi . , and bi i for 9 The

iy 1
1 2 273 (nmax 1) Do noox 1

construction corresponding ton = 2 is shown in Fig. B8(b). For

an example (Fig. B8(a)). For each node n 1nf431, construct nodes

n ,n
il i

ny

each branch sij in CF&, construct branches ﬁi . for k,2 =1,2,...,m___.

L

This precedure yields the input graph forq)2 having the input integers
n and 4 n |
max 92 7 91" Ppax- ,

It should now be obvious that the rest of the proof is exactly the

same as that given for the previous theorem. "
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Appendix C. Loop Analysis and Cutsét Analysis in Tearing Form

Let gz be the graph of a'lineaf resistive network N, let g}pdenote
some tree of gz and let Sf denote its associated cotree. Partition
the tree‘gj’into two arbitrary subsets %Jl and EJ; such that §)°= QJZ‘L’QI;.
Let E£l denote any subset of the cotree gf*which forms fundamental loops
exclusively with branches in EJ; and let §£2 denote the remaining branéhes
, e ) Z . : :
so that ;£-= 211 L,:£2' With respect to the above partitioning of branches,
the fundamental ;oop'matrix B and the fundaméntal cutset matrix Q are

given respectively by

¥ 9 4 qz

.é}‘,"tl"l 24,9, S22 9‘1‘.’; |

' L.gxfcl *2,3, ~14’f2’cz g‘.‘zjz_‘ “n
:3;1:’1 93, -13;231 93132‘-1

. n..g“tfl’z 2327,1 -]}’;2'32 }72'32_, o

Assuming the composite branch format as shown in Fig. 1, the loop and

cutset equations are given respectively by:

,gg =" B(e-Rj) - (C.3)
Q5Q"Y,, = Q(3-Ce) - L (C)

where 3 and G are the branch resistance matrix and the branch conductance
matrix,respectively.
Let us consider the following two special cases.

Case 1. Loop Analysis in Tearing Form

Upon open-circuiting all branches infifz LJQJ’, let us assume that
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the remaining Branches in ;Ql U.Ejl form "m" separable components

g}i, g}z,..., QBT' Partition the sets EQ and Q]’ into m correspoﬂding
components; namgly, ’:L’i, < 1,..., :Qm and j s T l""’ ’TT Then the
fundamental loop matrix B with respect to this new partition can be written

as follows:

1.\- 02 e o c)m CTm 'S
< ’J} @ g @ g @ g,
-
11,11 !
i.z%; 'i al () :
: |
: = i
1 B .
~,2,2-%,2.2
11115 xlal :
]
|
]
f

. B
~,M me- ~m
2747 AT
' B - B - B ‘B
-2 91 s Ok 2 I :~13m~ii'z'1
i ! A e N
(C.S)

Observe that the nonzero block structure of B in (C.5) is identical to the
nonzero block structure of the reduced incidence matrix A in (2). It

follows from Lemma 1 that the product §B§t will assume a bordered-block-

diagonal form if the analog of branch coupling condition 1 is satisfied,

or a bordered-block-triangular form,if the analog of branch coupling
condition 2 is satisfied.

Case 2. Cutset Analysis in Tearing Form

Upon short-circuiting all branches in if. L‘;J’, let us assume that

-0
the remaining branches in :iz L’:J; form "m" separable components

gl QZ’”.’Om

QL
2° Partition the sets 112 and :}; into m corresponding
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. ) '
component3° namely, > %2 ,...,gfz and T]i, 2,...,,|2. Then the
fundamental cutset matrix g with respect to this new partition can be

writteh as follows:

gzg g_glgl 22297 "."gmg;

2
-8, t '1 Bt - -t - -3¢ : -1
1 l' ~Jl31 ilg 0'623 ~i!;71:.
1:11 i B ' O
t )
-B 1 .
~ .tini "9 3
Q= (C.6)

t |
Zydp: 359

|

Obsefve that the nonzero biock structure of Q in (C.6) is again
similar to that of A in (2) except for a block permutation of rows and
columns. It follows from Lemma 1 that the product ggg will likewise
assume a BBDF if the analog of branch coupling condition 1 is satisfied.
or BBTF if the analogue of branch coupling condition 2 is satisfied.

So far, we have implicitly assumed that a tree Tj,has been given
apriori. Let us now consider the more realistic case where an optimal’
tree Has to be chosenjand partitioned relativé to some optimal criterion.
It suffices to consider the loop analysis case since the dual result
'would apply to the case of cutset aéalysis.

Leﬁ us recall that the removal of %fz L’QJ; branches would separate

the reﬁaining graph into "m" separable components g}i, 1""’€3m with
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gl; containing gel;. v Ell branches. Therefore, we can formulate an

analogous graph optimization problem by minimizing the number of branches

belonging to Sf LJQJ. subject to analogous topological constraints.
After Sf L’QJ. is found, we can determine easily which branches ' (31
can be a531gned to QI’ and then assign the remaining branches to gfl. To
separate 22 from QJ', we simply short-circuit all branches belonging

m .
to all "m" components gil’ 1""’€31’ and find a tree (which is to be

assigned as QJ.) on the reduced subgraph.
2
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Figure Captions | - S

Fig. 1. The standard éomposite branch.
Fig. 2. Two useful matrix strﬁctures.
V (a) BBDF. s

(b) BBTF.

Fig. 3. The basic partition of nodes and'brancbes.

«Fig.‘4."The topological coqditi&n.

?ig. 5. An exémple~illustrating the topological condition.
(a) The‘éxample graph. , |
(b) The section graph(é}()“l) where‘)Ul={nl,né,n3,n4}.

Fig. 6; A block-diagonal transformation of nonzero elements which
preserves the structures ofrgll in Yy31-

Fig. 7. A circuit exémple N for illustrating the branch coupling
condition 1. o | .

Fig. 8. The associated directed graph Q of N.

fig. 9. A new partitioﬁ of‘hodes.and branches.

Fig.10. The circuit-ﬁheoretic iﬁtérpretation of node-tearing nodal
analysis. | |
(a) Equivalent voltage source substitution.
(b) . Substituted voltage sources summarize the outside in-
fluence due to elements inclgz thereby decoupling the original
network into three separated subnetworks.

Fig;ll.‘ Application of (40) where all branches shown connecting the

"subnetworks belong to:i; .

Fig.12. An example showing nodes n, and ny attached to three<132 branches.
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Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.
Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20.

An example of the sparsity graph.

(a) The example matrix Y.

(b) The sparsity graph C}Y’°f Y.

(c) The undirected version ng of CiY'

Basic relationship between the graph'gx and its associated
sparsity subgraph.

(a) A typical branch.

(b) The sparsity subgraph €3Y due to lekl'
(c) The undirected version QZY due to lekl.
(d) The sparsity subgraph CBY due to lekz'
(e) The undirected version €3Y due to lekz.
A contour tableau.

A graphic interpretation of Step 7 for ﬁpdating AS(i+l)

from AS(i). 2

An example for illustrating the contour tableaqoconstruction
algorithms.

Three different contour tableaus associated with the graph
in.Fig. 17 by using three different strategieé during the
construction.

(a) Arbitrary choice.

(b) Greedy strategy in choosing the next iterating node.
(c) 1Initial iterating node selection.

Tﬂe graphical interpretation of the role of AS(i) as a
separating set.

An example showing that the greedy strategy may sometimes
give undesirable résults.

(a) The example graph.
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Fig. 21.

Fig. 22.

Fig. 23.

Fig. 24.

Fig. 25.

Fig. 26.

(b) Clustgf ;bfaiﬂed by choosing n; as-tﬁe pekt;itéfating
node.

(c) Cluster obtainea by choosiﬁg n,y as the next iterating
node.

Flow-chart for a cluster algorithm.

.An illustfation of the various éhapes'of CN.vs.'iteration

step and some methods for grouping the nodes into clusters.

“(a) Smoothvcufve with well-defined clusters.

(b) A cluster containing np,x nodes before a local minimum
is reached. | -

(c) A cluster containing many small wiggles.'

(d) A cluster containing mény small clusters.

(e) Least-local-minimum clustering strategy.

A graphical'illgstration of the redundancy fhendmenon and
the dynémic contour cutting strategy to overcome it.

(a) Exaﬁple with 3 clusters.

(b) Original contéur tableau.

(c) Original CN curve.

(d) Contour tableéu with dynamic contour cutting.

(e) CN curve with dynamic contour cutting.

Flow-chart for the refined cluster algorithm.

An example illustrates the cluster algorithm.

(a) Example with 3 clusters and Npay=10.

- (b) The resulting contour tableau.

Nine more examples of the application of the cluster algorithm.

(a) Example 2 with 3 clusters and “ﬁax=19°

(b) Example 3 with 2 clusters and npay=12.
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(c) Example 4 with 4 clusters and ng,,=12.
(d) Example 5 with 5 clusters and n,,=27.
(e) Example 6 with 4 clusters and nga,=15.
(f) Example 7 with 3 clusters and np,4=20.
(g)"Example 8 with 3 clusters and np,x=30.
(h) Example 9 with 4 clusters and ng,,=17.
(1) Example 10 with 3 clusters and nma¥=25.
Fig. 27. The "computer time spent" vs. "nb" plot illustrating the
@an) bound. The number in this plot corresponds to the
example number of Table 1.
Fig. 28. A pfaétical circuit cluster problem.
(2a) A frequency-shift keyer tone generator.
(b) The operational amplifier circuit schematic.
(c) The Ebers-Moll model for transistors.
(d) The induced transistor sparsity subgraph.
(é) ' The resulting 5 clusters. Note that due to the greedy
stratégy, the lst operational amplifier is broken into 2

clusters.

Fig. Al. Ve use c? (resp.; tt) to denote the number of nonzero elements
in the i-th column below (résp.; i-th row to the right of)the i-th
diagohalelemen; of M.

Fig. Bl. Symbolic representation illustrating the transformation of
graph problem Cpl into q> .

Fig. B2. A branching tree used for proving CIE € NP.

Fig. B3. A matrix analogy of the node-cover problem.

Fig. B4. A matrix analogy of the cluster problem.
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Fig.

BS.

An example for illustrating the construction of ‘the transformation
f with np,,=3. |

(a) Input ‘graph for @ .

(b) Input graph for sz.

A matrix analogy of the feedback node problem.

A matrix analogy 6f the generalized feedback node problem.‘

~ An example for illustrating the construction of the transformation

f with nmax=2'
(a) Input gfaph for CP .

(b) Input graph for sz.
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Construction Contour Tableau;

1=1; k=1; ¢V2=¢

cﬁ(1+1)5cu(1)j}

i=1+1

YES NO
e 1=1+1
\N2=J\’2UAS (1+1);
' k=142

1

i+l
NO {U IS(i)‘J\jZ}

J=k

form a cluster

Fig. 21
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?JU2=¢

.

Choose IS(l); i=1l; |e———— Update adjacency list.

Flag=0; Tempo=¢

Update AS(i), CN(1)

[ 3
YES

CAny node 1eft'2‘>—
Y )

» YES
CN(1)=0? > J\If,,\lz U Tempo;
i ot
U 1IS(j)} form a cluster
i=1
x ?
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v I
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Fig. 24
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1st cluster {1,2,4,3,7,5,6};
throw away cluster and bottlene
bottleneck nodes (i.e., node 8);
Start again.

2nd cluster {11,9,10,19,21, 20,
23,22,24,25}; throw away cluster
and. bottleneck nodes (i.e., nodes
12, 14); Start again.

3rd cluster {13,16,15,17,18};
Stop!
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Fig.28
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