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Abstract

We consider the problem of finding balanced hashing algorithms for

efficiently answering Boolean queries involving range specifications, from

a relation (multi-attribute file), residing in a secondary storage device.

A typical query under consideration has the form: retrieve all x = (x,,...,x )
k • n

in the relation.satisfying V A (x.er..)» where for each j, the sets
i=l jec; (C{l,,..,n}) J 1J r..

are ranges of values of the jtn attribute, 1 < j £ n. A probabilistic model ,J

is examined for the occurrence of such queries in which similar queries are

assumed to be equiprobable. For this model it is shown that there is often

a "box-like" hash function, for which the required average page access to

answer a query is near-minimal, in the class of all balanced hash functions

from the domain of the relation onto a number of pages in a secondary storage

device.
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1. Introduction

In this paper we analyze the average performance of hashing algorithms

for answering queries from a relation or a multi-attribute file residing in a

secondary storage device, and generalize in several directions, some of the

pioneering work of R.L. Rivest [15] in this area. The basic result to be

presented is that for a large class of queries, namely the class of Boolean

queries involving range specifications, and under certain somewhat mild homo

geneity restrictions on the probability of occurrence of such queries, hash-

ing algorithms that are efficient, in the sense that they minimize the

required average page access to answer a query, often have a simple "box-like11

structure.

Hashing, of course, is a method of storing information, in which the

location of an information item or a record x, is determined by a function

h(x). Since its invention in the fifties, a very rich literature has dealt

with various aspects of hashing when a record is characterized via a single

attribute or key, chosen from a linearly orderable universe of keys. Excel

lent summaries of this literature appear in Knuth [12], and in a recent

article by Knott [11].

Within the past decade, however, attention has been focused on the design

of filing schemes in general, and of hash functions in particular, for effi

cient retrieval of records from multi-attribute files [1-4,8,10,13-18]. In

the latter situation one identifies a record x, with an n-tuple of values

(x,,...,x ), chosen from an n-dimensional record space K = K-. x ••• * IC.
in in

A fcetrieval request or a query may then give a partial description of a

record through some of its attributes (components). In this paper we shall

only be concerned with situations requiring total recall, so that the answer

to such a query is the totality of records in a file satisfying the given

partial description.
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As an example consider a simplified Department of Motor Vehicles

file F» in which there is a record for each registered automobile in

California, and each record is characterized by the 3-tuple (last name, city

of residence, make of car). A typical query about such a file may be,

retrieve all records in F satisfying:
(1)

last name = Smith and city of residence = Berkeley .

A hash function designed to organize such a file in storage, should

strive to restrict, as much as possible, the number of distinct storage loca

tions (pages, if the file resides in a secondary storage device) that need

to be examined in order to answer a query. It should also have a structure

which makes it easy, given a query, to identify the storage locations rele

vant to its answer.

To these ends a number of authors, notably Terry A. Welch [17], Ronald

L. Rivest [15], and James B. Rothnie and T. Lozano [16], have proposed using
a hash function

h: K, x ... xK ->- {1,...,N}, whose value is a one-to-one function (e.g. a

concatenation) of the values of n simple hash functions, hn,,..,h , one

for each attribute, that is h(x,,,..,x ) =Rfh^x^),...,hn(xn)), where

h^: K. -> {1,...,N.}, 1 <i <n, N=^•••Nn, and R is one-to-one (see
also Knuth [12] pp. 563-564). Such hash functions are known as multiple-

key hash functions after Rothnie [16]. Their simple structure lends itself

to easy identifiability of relevant storage locations for a wide class of

queries. Furthermore, for answering partial-match queries from a file

residing in a secondary storage device, Rivest [15] was able to prove that

there is often a multiple-key hash function which minimizes the required

average number of pages accessed to answer a query, among all balanced hash

functions. Partial-match queries are queries similar to the query (1) above,
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which can be represented via a conjunction of attribute-value equalities,

and in computing the above average Rivest assumes that all such queries are

equiprobable.

In this paper we explore more general conditions under which multiple-

key hashing algorithms are optimal in the above sense.

In the first place, partial-match queries constitute but a small, albeit

important, subset of queries commonly used to retrieve information from a

relation, and the need arises to consider more general query types involving

disjunctions and range specifications. In this paper we consider arbitrary

"Boolean-range" queries representable as:

k

retrieve all x e F, satisfying V A (x.er..) , (2)
i=l jec.(c {l,...,n}) J 1J

XL

where for each j the sets r.. are ranges of values of the j attribute.
•j

Secondly, it would be more realistic to assume not that all queries

are equiprobable but only that queries having a similar structure occur

with equal probability. In this context we call two queries with defining
k k'

expressions V A (x.er..) and V A (x.er!.), similar, if and
i=l jec-j J 1J i=l jecj J 1J

only if k = k', and there is a permutation o: {l,...,k} -*• {1, ...,k},

such that c\ =c^j, and |r^.| = lra(i)jl» J6ci' ]- i' ~ k' where
|r| denotes the magnitude or the width of a range r. Notice that a partial-

match query is a query of the form (2) in which k = 1, and r,., j e c,,

consist of single points. Thus two partial-match queries would be similar

in the above sense, if and only if they specify particular values for exactly

the same set of attributes.

It turns out that even in the much more general setting described

above, one can usually find a multiple-key hashing algorithm, for which the

required average page access to answer a query is near-minimal in the class



of all balanced hash functions. This constitutes the principal result of

the present paper. In fact we will prove that a near-optimal hash function

h* in the above context often has a "box-like" structure, in that its

clusters h* (i), 1 <_ i £ N, are identical rectangular boxes in K.

It may be noted here that this paper deals with continuous files,

whose records are elements of a subset of the n-dimensional Euclidean

space Rn, this being an approximation to a discrete situation in which

the number of possible values of an attribute is reasonably large.

2. Basic Definitions and Assumptions

This section introduces a formal framework for the analysis of the

average performance of hashing algorithms in answering "Boolean-range"

queries. Much of the problem formulation is this section and the section

to follow is based on the earlier works of Welch [17] and Rivest [15],

A record is an n-tuple of the form (x,,...,x.), x. e K. = [a.,b.] c R,

1 1 i 1 n« The components of a record are also known as attributes, and

the record space K = K, x ••• x K will also be referred to as the attribute-

value space. In what follows we shall assume without loss of generality

that K - [0,l]n. A file or a relation is a finite set of records. We

assume that the file under consideration has approximately constant size,

+
and that the records in it are uniformly distributed within K.

We consider a paged environment in which the pages in a secondary storage

device provided for storing a file F have equal size, and we let b be
+ •

This assumption can be replaced by the somewhat weaker assumption that the
distribution of the records in K is independent in the n attributes.
See Bolour [2], and section 5 of the present paper for more details.



the number of pages necessary to store F. A hash function into b pages

is a function h: K -»• {l,...,b}, with the interpretation that h(x) is the

page wherein a record _x is to be stored, in case it belongs to the file

under consideration. We use the shorthand n for the set

{l,2,...,n} of positive integers less than or equal to an integer n.

Given a hash function h: K -*• b^, let X. = h (i), i e b\ X.. is known as

the r_ cluster or the extent of the i page, associated with h. In what

follows we shall find it more convenient to view a hash function h: K + b^,

as a partition of K into the b clusters X,,...,X. . Throughout the

remainder of this paper we shall be concerned with measurable subsets of K

only, and in particular we assume that X,,...,X. have measurable charac

teristic functions. An explicit statement of this assumption in every instance

in which it is needed will henceforth be omitted. We use the notation | |

to denote the size of a set, so that for a discrete set S, |S| will

denote its cardinality, whereas if S is a subset of Rn, then |S| will

denote its volume (Lebesgue measure) in Rn. A hash function is said to be

balanced if its associated clusters have equal size, |X. |=l/b, ieb. Since the records

are assumed to be uniformly distributed, arid the pages have equal size, we

will restrict our attention to balanced hash functions only. This insures

against consistent overflow/underflow, and we shall henceforth assume that

page overflow is negligible.

A multiple-key hash function is a hash function that can be represented

as h(x) =h(x1,...,xn) sF(h1(x1),...,h(x)), where h^: K^ ^Hj, and F

is a one-to-one function. It is easy to see that the clusters associated

with a multiple-key hash function have the form,

Yi x'"xYn , i. eN. , jen, (3)



where

u YJ = K. , jen.

A subset B of Rn is said to be a rectangular box or simply a box,

if B = r, x ... xr, and if for j e _n, r. is either a finite closed

interval [v.,v.+a-], or the entire real line. We call r. the j com-
J J J j

ponent of the box B. If the component clusters Y;? , i. e N., j e n,
ij J J -

associated with a multiple-key hash function are intervals, then the clus

ters (3) are boxes in K, and we call the corresponding hash function

box-like. Notice that the clusters associated with a balanced box-like hash

function, must be isomorphic rectangular boxes in K.

Let Q = Q(>0 denote a Boolean expression involving A, V, and atomic

range statements of the form "xi e [v.,v!]", for example, (0<x,<tA x2 =j)
1 3

V (^ix-^). A Boolean-range query is a query of the form, retrieve all
x e F, satisfying Q(x). (4)

In what follows since
there will be no chance of confusion we will not distinguish between a

Boolean-range query and the Boolean expression defining it. In particular

the notation Q (or Q(x)) will be used to denote the query (4), as well

as its defining Boolean expression. Given a query Q, let E(Q) = {xsRn|

x satisfies Q(x)}; E(Q) will be known as the extent of the query Q.

Notice that the answer to Q is simply FOE(Q).

If the expression Q(x) is in disjunctive normal form, then the corres

ponding query will be referred to as a canonical query. We note that an

arbitrary Boolean-range query can easily be converted into an equivalent

canonical query. This paper is concerned only with canonical queries,

which can without loss of generality be represented as,

Q(2L) =1=1 jecA(Cn)XJ *T» =[ViJ,ViJ+aiJ] {~<vij<M' °laij<-. J«V
1 < 1 < k).



In case Q(x) is composed of a single disjunct, its extent E(Q) =

E( A x. e r. =[v.,v.+a.]) is a rectangular box in Rn, Q will then be
jecJ J J J J

referred to as a box query; for example "O^x-jf^A x3 =4"" (5)
defines l 1 1 n-3a box query whose extent is [0,^]xRx[ii]xR" *. If in addition each r^,

j e c, consists of a single point, then the corresponding query will be

called a partial-match query, for example "x-j =̂ Ax3 =4»" (6)

Given a canonical query Q(x) = V A (x. e r..), let
1=1 jeci J 1J

Q,-(x) = A (x. e r..), 1 < i < k. The queries defined by Q., 1 < i < k,
jec. •J' 1J "" ~

may then be regarded as the components of the query Q, Since the order of

these components is unimportant, it follows that a canonical query Q corres

ponds uniquely to a subset {Q-.,...,Qk} of box queries, or equivalently to

acollection B(Q) ={B.,,...,Bk} ={E(Q1),...,E(Qk)} of boxes in Rn.
Notice that E(Q) = ue(Q.), so that the answer to Q is just u FHE(Q.).

1 1 1 1
In what follows we shall assume without loss of generality that

KnE(Q..) f 0, 1 < i < k.

Let X,, X« be subsets of Rn. We say X1 is equivalent to X? under
translation (denoted by X, = XJ if there is a translation T: Rn -*• Rn,

T(x,,...,x ) = (x,+cu,...,x +a ), a. e R, 1 < i < n, under which X, is

mapped onto Xp. Two box queries having extents B and B* are said to

be similar, if and only if B = B'. Thus, the query (5) is similar to the

13 1query "t<x, <J A x3 =3 » but 1S not similar to the query (6).

It will be helpful in our later development to characterize similarity

classes of box queries as follows. Let c denote a generic subset {i-.,....i.}

of the set of attributes n. If B = r, x ... xr is a box whose finite
— 1 n

components are [v. ,v. +a. ],...,[v. ,v. +a. ], then B may be charac-
1 M 'l nj nj ^

terized by c = c(B) = {i-,,...,i^}, an initial vector y_ = v_(B) =

(v. ,...,v. )6 RJ, and a dimension vector a = a (B) = (a. ,,..,a_. ) e R ™'
^ \|. .-c -c I-, lj
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= [0,°°)J. Two boxes B and B' are then equivalent under translation if and

only if c(B) = c(B') = c, and a(B) = a (B1). Thus a similarity class
—•c ""V

of box queries corresponds to a family of boxes in Rn characterized by the

set c of coordinates along which they have finite components, and by a

common dimension vector a e R ^J'; it is parameterized by a set of

vectors v e RJ. We will denote such a similarity class by S (a ), and
~^C C —'"C

we let S be the set of similarity classes of box queries.

Two canonical queries Q and Q', characterized by collections

8(Q) ={B1,...,Bk>, and B(Q') ={B-!,... ,B',} of boxes in Rn, are said
to be similar if and only if k = k', and there is a permutation o: k^-*- k^,

such that 8.. = 8 /.x, 1 < i < k. Thus Q and Q' are similar if and

only if they are composed of similar box queries. For example the query

"(0lxl£2 A x2 2^ v (jlx3lp" is similar to the query
15 13 3

"(Vl^lT?) v (4-xi -J A x2 =4^", ^ similarity class of canonical queries

can then be characterized by an element of S*, the set of finite subsets

of S. Let S* be such a similarity class corresponding to the subset

{S„ (a ),...,S^ (a )} of S*. The extents E(Q), Q6 S*, then define
cl "n ck "^k

a family of subsets of R parameterized by a set of vectors (v ,...,y^ )
k "^1 "S
qicti)

e R , where v , 1 < i < k, are the initial vectors of boxes asso-

ciated with a given query in S*. To avoid cumbersome notation, in what

follows we shall again not distinguish between a similarity class S* of

canonical queries, and the family of sets E(Q), Q 6 S*.

Our assumption about the frequency of occurrence of queries is simply

that all similar queries are equiprobable. The occurrence of queries is

then governed by an arbitrary probability measure P«* on the set S* of

equivalence classes of queries, which induces a probability measure P^ on



the set Q. of canonical queries, since all similar queries are assumed to

be equiprobable.

3. Problem Statement

Let a file F be stored according to a particular balanced hash func

tion h, characterized by clusters X-j,X2,.,.,Xb. In answering queries

we assume that no auxiliary information is available about the present con

tent of F. Since the answer to a query Q is E(Q)nF, the retrieval

algorithm must then access the V page in answering Q, if and only if the

i page maj^ contain a relevant record to Q, that is, if and only if

E(Q) nxi f 0. So let z..(Q), 1<i< b, be random variables defined on the

fl , X.nE(Q)..f 0
set Q. of queries as follows, z.(Q) = < . Then the number

1 (0 , X.nE(Q) =0
of pages that need to be examined in answering a query Q is just,

b

z(Q) = I z-(Q). The problem is then to choose a balanced hash function h,
i=l n

or equivalently a balanced partition of K into clusters X^,...9X|),

minimizing the average number, z, of pages that need to be examined in
b _ b

order to answer a query; where z = J z.(Q) = I P[E(Q)nx. + 0],
i=l n i=l 1

and P[E(Q)nx. f 0] =P^C^Ql E(Q) nx. f 0})
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For answering partial-match queries this problem has been considered

by Terry A. Welch [17] and later by Ronald L. Rivest [15], under the assump

tion that all partial-match queries are equiprobable,

Rivest's strategy in tackling the latter problem is quite simple, but

proves to be extremely useful in simplifying it, and provides a basis for

our approach to the more general problem at hand. His idea is simply this:

the average page access is minimized if the average access to each individual

page, i.e. P[X.^E(Q) f 0] is minimized.

Formally the problem is to find a partition X.j,...,Xb of K

minimizing,

1= I P[E(Q)nx. ^0] , (7)
i=l ^

subject to the constraints, |X.| = r-, 1 1 i < b.

Now let z^.x = inf P[Xn E(Q) f 0] , (8)
KD} |X|=l/b

XCK =[0,l]n

and let us call clusters achieving this infimum, optimal clusters. It

then follows from (7) that

I >bifb) . (9)
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This lower bound on the average page access is achievable if and only if

K can be partitioned into b optimal clusters.

The principal result of this paper (proved in the next section) is that

if similar queries are equiprobable, then optimal clusters can without

loss of generality be taken to be equivalent rectangular boxes, whose dimen

sions are determined by the problem parameter P~*. Notice that a

collection of identical rectangular boxes is about the simplest collection

of geometrical objects to fit together. Thus, if it is possible to partition

K into b optimal boxes, then the induced hash function is optimal: it

achieves minimal average page access. Otherwise a partition of K into

approximately optimal boxes is usually possible and induces a box-like

hash function from K into (approximately) b pages, achieving near-

minimal average page access.

4. Characterization of Optimal Clusters

The main result of this paper is embodied in the following theorem,

whose proof is the object of the present section.

Theorem 1. If similar canonical queries are equiprobable then

J*(b) = inf pCxn E^ * fl o°)w XC[o,l]n
|X|=l/b

is achieved by a rectangular box in [0,1]n.

To prove Theorem 1 we first need an expression for P[xnE(Q) j* 0] in

terms of the given probability measure P«*(S*) on similarity classes of

queries.

Let F={Ey| veV c Rm} be a family of subsets of Rn, parameterized
by a subset of points in Rm, and let X c Rn. The intersection measure

11



of X with respect to F (denoted by |X|F) is then defined as

lxljr = KyJ Eynx^0}|, and measures the size of the subset of F whose

elements intersect X. Identifying F with a similarity class S* of

queries, we see that since all queries in S* are assumed equiprobable,

P[XOE(Q)^0| QeS*] = |X|S*/|K|S*

and hence that

P[XnE(Q)^0] =
<*P5*(S*)

lxU* "Tin • ^^

We are now in a position to prove a stronger assertion than that of
%

Theorem 1.

Theorem 2. Given a set Xc [0,1]n of volume 1/b, there exists a

box B(X) c [0,1] of the same volume 1/b, whose intersection measure

with respect to every similarity class S* of canonical queries is no

larger than the corresponding measure of X; that is,

|B(X)|S*< |X|S* , S*6S* .

To see that Theorem 1 follows from Theorem 2, suppose the latter is

valid. Then from (11) it follows that the infimum (10) is achieved if and

only if it is achieved by a rectangular box. What then needs proof is that

among all boxes of a given size 1/b within [0,l]n, there is one for

which zfa is achieved. However, a box B having dimension vector

a(B) =(a1,...,an), satisfies the constraints |B| =1/b, Bc [0,l]n, if
and only if,

n 1 1n a1 =F and F <a. <1 , 1< i<n . (12)
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It is then easy to see from (11) that P[BOE(Q)^0] is a continuous func

tion of the dimension vector a(B) which from (12) spans a compact region

of Rn, and therefore,that inf P[BHE(Q)^0] is achievable. Q.E.D.
BC[0,l]n
|B|=l/b

We first prove Theorem 2 for similarity classes of partial-match queries.

The result is then used to prove the more general statement about canonical

queries. To begin with, however, we need to develop a few elementary concepts.

Since the dimension vector associated with a partial-match query is

(0,0,...,0), similarity classes of partial-match queries can be characterized

by a subset c of the coordinates. If S is such a similarity class,

then the expression defining a typical query in S has the form,

x^ = (x. ,...,x. ) = (v. ,...,v. ) =v . Letting it (X) denote the1 «j l-j lj -t c

projection of a set X (c Rn) on the subset c of the coordinates,

ttc(X) ={^(v. ,...,v. )| 3x=(Xl,...,xn)eX, x. =v. A— Ax.^v. },

we see that the extent of a query () :x =v intersects X, if and only if v stt (X)
Z_q ~C —"C •* -—q c

Hence |X|£ =Kyc|E(Qv )nx^0>| =|irc(X)|. The appropriate definition of
C ~~° fl , Xt 0K0(X)| here is |tt0(X)| =1

* * (0 , X=0
In our later proofs, as in most inductive, proofs in n-dimensional geo

metry, we will need the notion of a section of a set in Rn. Let t e R. The

n-1 dimensional hyperplane in Rn defined by the equation X. =t will

be denoted by H^t). Given aset XcRn, We let X^t) =irn /^(XHH^t));
X^t) will be known as the section of X, perpendicular to the ith coor
dinate axis, defined by t.

The following assertions relate the projected volume of a set X c Rn

to the projected volumes of its sections perpendicular to a given coordinate

axi s.

13



Assertion 1. Let cCn, and suppose i e c. Let c' = c-{i}. Then

\\W\ =J lv(x.(t))|dt •

Assertion 2. Let c c n, and suppose now that i $ c. Then

|ttc(X)| > Kc(Xi(t))| , teR.

The proofs are trivial and will be omitted.

Theorem 3 (A Minimal Projection Property of Rectangular Sets in Rn)

Given a set Xc Rn of size |X|, there exists a box B(X) c Rn of the

same size (as X), whose projected volume on every hyperplane defined by

equating a subset of the coordinates to zero,is no larger than the corres

ponding projected volume of X; that is,

|B(X)| = |X| ,

but

|irc(B(X))| < |irc(X)| , for all cCn. (13)

(In particular the dimensions of B(X) are no larger than the correspond*

ing dimensions of the smallest box enclosing X, so that if Xc [0,1]n,

then we can assume without loss of generality that B(X) c [0,l]n.)

Proof. Given a set c of coordinates, let c be an n-vector of

zeroes and ones defined as, c_(i) = 1 if and only if i e c. For example

if n = 4 and c - {1,4}, then c would be (1,0,0,1). We let

I,, = 0»...»1) be the vector of n ones. The following lemma turns out

to be equivalent to Theorem 3.

14



Lemma 1. Let c.,...,c. be not necessarily distinct subsets of n,
1 K k

and let A,,...,A. be positive reals such that Y A.c = 1 , Then
i=l ^~^ "

k a.

n K W\ > Ix| . (14)
1 ci

Since the inequality (14) is tight when X is a box, Lemma 1 is seen to

be an easy consequence of Theorem 3.

We will now prove the sufficiency of Lemma 1 for Theorem 3. The case

|X| = 0 is trivial. Assume then that |X| > 0. It is easily justified

that for any subset c c n, and its complement c = n-c, |tt (X)| |tt-(X)|

> |X|. It follows that |-rr (X)| > 0 for all c c n.

Let us now consider the problem of maximizing the volume of a rectan

gular box B of dimensions y^,...9y9 satisfying the constraints (13):

n

maximize n y. such that
1 1 (15)

K(B)| = n y. < |tt (X)| , c Cn . .
i e c

Letting e= min |ir (X)| '' ' we see that e>0 and (e,6,...,e) is
cCn c

feasible for the above problem. Hence no box having

a zero dimension can be optimal for (15). We can therefore use the standard

transformations x.. = log y.., 1 < i < n, reducing the problem (15) to the

linear programming problem,

n

x. = (1.1 l}«x = .
-n

maximize xn = T x. = (1,!,...,!)-x = 1 »x
1

such that for all c c n, [ x. = c/x < log |tt^(X)| , (16)
iec 1 c

x unconstrained .

The dual linear program to (16) is,

15



minimize I A log |-it (X) | ,
/- c ' c

cCn

such that I A c = 1 (17)
cCnc *"*

and A > 0 , c c ji .

Now both the primal and the dual systems above are feasible: x= (log e,...,log e)

is feasible for (16), while A^, =•♦• =Ar ,=1, A =0 otherwise, is

feasible for (17). Hence by the Duality Theorem of Linear Programming [6,

section 6.3] the optimal solution to (16) may be written as,"

Xn - I K ^9 K(X)| ,
ccn

where

s\&-v h>-0' (18)
ccn

Thus the maximum volume of a box satisfying the constraints (15) is
A

n KrOOl » with the A *s satisfying (18), and is therefore no less
cCn c c
than IX| if Lemma 1 is valid. Theorem 3 would then follow by shrinking

the maximizing box to the correct size |X|.

Proof of Lemma 1. We proceed by induction on n, For n = 1, we

need to prove that lir^X)!1 U*W\ 0>|X|, which is trivially true
since ff/-i\(X) =X and -1tt0(X)| =1. Suppose now that the lemma is true

for n=m-l. Let Xc Rm, and let Cj,...,ck cm, A1,...,Ak>0, anc
5! A,-c. = 1. Without loss of generality let
Y 1—1 -HI

m e c. if and only if 1 < i < j < k , (19)

and let c! = c. -{m} for 1< i< k. Then c^, 1< i< k, satisfy

l XiC! -T^ , (20)
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and we are in a position to use the induction hypothesis on sections of X

perpendicular to the m axis, obtaining

k A.

H kc.(yt))| '>|Xm(t)| , teR.

Hence using Assertion 1,

A.1*1 =f |xm(t)|dt< f n|v(xm(t))| *dtjR m jR 1 ci m

=[ n|ir ,(x (t))| 1 n |irc,(xm(t).)|Xldt
JR i=l ci m j<i<k ci m

±[ *MW^H1 n K (x)|XldtJr i=1 c. m+i j<i<k c.

(by Assertion 2 since for j < i < k, c. = c! and m £ c.)

= n |tt (x)| i f n|7rc,(xm(t))|Xidt
j<i<k ci JR i=l ci mj<r_

A. j r A.

j<i

n K (x)| i n[( Kc,(xm(t))|dt] j
j<i<k ci i=l Jr ci m

(by Holder's inequality [9, par. 188], since

from (18) and (19), J X1 =1)
k A, 1=1
n |irc (X)| 1

i=l ci

(by Assertion 1, since for 1 £i < j, c. = c!u{m}).

Q.E.D.

This proves Theorem 2 for similarity classes of partial-match queries.

We are now going to show that the box B(X) associated with a set X

in Theorem 3 has no larger intersection measure than X with respect to

any equivalence class of boxes in Rn; that is,

lxlS(a)ilB<X>ls(a) » Vac>«* *
cv-c' cv=c'
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The proof of this claim is an immediate consequence of the following

lemma and Theorem 3.

Lemma 2. Let S^a^J =S^a^ ,.,.,a.j ) be an equivalence class, of

boxes in Rn. Then

|X|S (a )> I ( n a)|tt ,(X)| . (21)
W c'cc iec' 1 c c

Theorem 2 for box queries would then follow from Lemma 2 and Theorem 3,

by noting that the inequality (21) is tight when X is a finite box so that,

|X|s(a)> I (. Vi^c-c'WI
cV£cy c'Cc iec' ' ** u

> I ( n a.)|ir _,(B(X))| (using Theorem 3)
c'Cc' iec' 1 c"c

->B<X>'sc(ac) •_

Proof of Lemma 2. Here we will only set up the machinery for an induc

tive proof of Lemma 2. The actual proof will be omitted as it is similar

to one used by Davenport [7] in connection with a different problem.

Let Sn(a_) =Sn^aT*,"an^ be an etJuiva^ence class of finite boxes in
R . (The case S (a ), c c n9 can be treated in a similar fashion.) Let

us denote by B(y;a) a box in Sn(a), with initial vector v, and let iL

be the unit vector in the i direction, 1 < i < n. Given a set XC Rn

define the set M.(X)CRn as, M.(X) = U X-b,y.: M.(X) is the

subset of R swept out by a translation of X through a distance of a.

units parallel to the i coordinate axis, in the negative direction.
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Claim.

{v| B(v;a)nx^0} =MM 1--M1(X)'« u (X - I b,y.)
n n"1 ' 0<b1<<i,,...,0<b<z i=l 1 1

— i—l — n— n

(and hence |X|S (a) =|Mn«--M1(X)|).

Proof. B(v;a) nx/0 <> 3x e X, xe B(v;a)

o 3x e X, y_ e B(x-aja)
n

o 3x e X, v = x - I b.y..* O^b.. <&., i en

o v e Mn--M1(X) . Q.E.D.

The assertion |M •••M,(X)| > I ( n a.)|fr-(X)| can now be proved
n ' ccniec1 c

by induction on n, using the induction hypothesis on sections of

"f"hM , "'M^X) perpendicular to the n axis. The details are similar to

the proof in Davenport [7], and the interested reader should have little

difficulty carrying out the latter proof in the context of the present

problem.

Proof of Theorem 3. Let S = {S^ (a, ),...,S^ (a. )} be a similarity
cl ~*1 ck "°k

class of Boolean-range queries. It is then easily justified that

l*ls*= £1*1$ (aj - ^'s,.^ r'^c^ • {22)

This can be proved by a straightforward manipulation of the definitions of

intersection measure and similarity. However it is perhaps most easily
k

seen by dividing both sides of (22) by H |K|C /. \, so as to convert
i=l V^.'

(22) into a statement about probabilities. It then asserts that the proba

bility that the extent of a query in S* does not intersect X, is the

product of the probabilities that the extent of a query in S. (a ) doesc. -c1
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not intersect X, 1< i< k. Hence |X|S* is an increasing function of

t'X's (a )"tf,lxls (a P* and since by Lemma 2>
cl "^1 ck ~°k

(|X|$ ( },...,|X|S {a ,)>(|B(X)|S (a , |B{X)|S (a })
c1 -c1 ck -ck c1 -c, ck -ck

it follows that

|X|S*> |B(X)|^ . Q.E.D.

5. Conclusions

We have thus far been able to reduce the problem of finding optimal

clusters among all subsets of K with a given volume, to that of finding

optimal rectangular clusters. Given P5*, the probability of accessing a

rectangular cluster with dimension vector a_ = (a, a ), is a polynomial

function of a_, say q(a_). Hence the dimensions of an optimal cluster can

be found by solving the following constrained minimization problem in Rn,

minimize q(a_) = q(a,,...,a )

such that 0 £ a. £ 1, 1 < i £ n, (23)

n . ,

and II a. = r- .

1 " b

Let (a|,...,ajj) be an optimal solution to (23). It follows from (9)

that if tO,l]n can be partitioned into boxes of the above dimensions then

the induced hashing algorithm is optimal. However, this is possible only

if each dimension a? of an optimal box is an integral divisor of 1,

which is of course extremely unlikely. One may therefore attempt to find

boxes of approximately the same shape and size as the optimal box, whose

dimensions are in fact integral divisors of 1. Of course to avoid page

overflow the size of the
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approximating boxes should be no larger than 1/b. Our preliminary computa

tional results indicate that roundoff errors incurred in the latter process

are generally quite small. There are, of course, two sources of errors

here. In the first place, the average page access after roundoff may be

larger than the minimum possible using b pages. On the other hand since

the boxes may have a smaller volume than 1/b, the number of clusters

could be greater than b and more pages may be required in memory for

storing the file.

We computed the optimal dimensions of a cluster, i.e. the optimal solu

tion of (23), in answering box queries for more than 100 cases in 3 and 4

dimensions with b = 1000, and b = 10,000, in which the coefficients of

q(a_) were chosen randomly from the integers 1 to 100. In carrying out the

roundoff process we found that no more than 10% extra storage space was

needed in any of the trials. In fact in 70% of the cases considered the

extra storage space required was less than 5%. Considering the fact that

it is desirable to leave some slack in each page to avoid excessive overflow,

the extra storage cost incurred seems quite tolerable.

More importantly, we found that the average page access after roundoff

was quite close to the derived lower bound (9). In more than 90% of the

cases considered the extra retrieval time due to roundoff was less than 5%,

and in the remainder it was less than 10%.

Although these preliminary results deal with box queries only, we see

no reason to believe that the above errors should be any larger for general

canonical queries.

Thus one can safely assert that in case similar queries are equiprobable,

there is often a box-like hash function for which the required average page

access to answer a query is near minimal in the class of all balanced hash

functions from the attribute-value space K onto approximately b pages
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in a secondary storage device.

From a practical point of view perhaps the most serious shortcoming

of the above model is the assumption of uniform distribution of records in

K. Under a suitable extension of the notion of similarity, however, the

results presented easily generalize to a situation in which the distribution

of the records in K is independent in the n attributes, i.e. where

the occurrence of records in K is governed by a probability density

P(x) = Pi(x, JpgUp)- "P (x ). A balanced hash function here is one whose

associated clusters have equal probability with respect to p(x), and the

problem of finding an optimal balanced hash function can be reduced to one

in which p(x) is uniform (and therefore the clusters have equal size), by a

suitable transformation of the coordinates (see Bolour [2] for more details).

However, in most applications one finds examples of both dependent and

independent attributes in a given file. Since multiple-key hash functions

treat the attributes independently of one another, in general no such hash

function can be balanced for a file with dependent attributes in the sense

that it distributes the records in a typical file evenly among the given

pages. It seems, therefore, that for files in which there are strong depen

dencies, hash functions that are efficient both in terms of storage utiliza

tion and retrieval time must necessarily have a more complex structure. The

simplest way perhaps to extend the results of this paper to such files, is

to partition the attribute-value space a priori into a small number of boxes

in each of which the assumptions of this paper are approximately justified,

and to hash each box according to an appropriate optimal box-like hash

function.
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