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LOCAL AND FUZZY LOGICS1"

R.E. Bellman* and L.A. Zadeh**

Abstract

Fuzzy logic differs from conventional logical systems in that it

aims at providing a model for approximate rather than precise reasoning.

The fuzzy logic, FL, which is described in this paper has the follow

ing principal features, (a) The truth-values of FL are fuzzy subsets of

the unit interval carrying labels such as true, very true, not very true,

false, more or less true, etc.; (b) The truth-values of FL are structured

in the sense that they may be generated by a grammar and interpreted by a

semantic rule; (c) FL is a local logic in that, in FL, the truth-values as

well as the connectives such as and, or, if...then have a variable rather

than fixed meaning; and (d) The rules of inference in FL are approximate

rather than exact.

The central concept in FL is that of a fuzzy restriction, by which

is meant a fuzzy relation which acts as an elastic constraint on the values

that may be assigned to a variable. Thus, a fuzzy proposition such as "Nina

is young" translates into a relational assignment equation of the form

R(Age(Nina)) = young in which Age(Nina) is a variable, R(Age(Nina))

is a fuzzy restriction on the values of Age(Nina), and young is a fuzzy

unary relation which is assigned as a value to R(Age(Nina)).
_
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In general, a composite fuzzy proposition translates into a system

of relational assignment equations. In this paper, translation rules are

developed for propositions of four basic types: Type I, of the general

form "X is mF," where X is the name of an object or a variable, m is

a linguistic modifier, e.g., not, very, more or less, quite, etc., and F

is a fuzzy subset of a universe of discourse. Type II, of the general form,

"X is F * Y is G" or "X is in relation R to Y," where * is a binary

connective, e.g., and, or, if...then, etc., and R is a fuzzy relation,

e.g., much greater. Type III, of the general form "QX are F," where Q

is a fuzzy quantifier, e.g., some, most, many, several, etc., and F is a

fuzzy subset of a universe of discourse. And, Type IV, of the general form,

"X is F is t," where t is a linguistic truth-value such as true, very true,

more or less true, etc. These rules may be used in combination to trans

late composite propositions whose constituents are instances of some of the

four types in question, e.g., "'Most tall men are stronger than most short

men' is more or less true," where the italicized words denote labels of

fuzzy sets.

The translation rules for fuzzy propositions of Types I, II, III

and IV induce corresponding truth valuation rules which serve to express

the fuzzy truth-value of a fuzzy proposition in terms of the truth-values

of its constitutents. In conjunction with linguistic approximation, these

rules provide a basis for approximate inference from fuzzy premises,

several forms of which are described and illustrated by examples.



LOCAL AND FUZZY LOGICS1*
* **

R.E. Bellman and L.A. Zadeh

1. Introduction

Traditionally, logical, systems have aimed at the construction of exact

models of exact reasoning — models in which there is no place for impreci

sion, vagueness or ambiguity.

In a sharp break with this deeply entrenched tradition, the model of

reasoning embodied in fuzzy logic [1], [2], aims, instead, at an accomodation

with the pervasive imprecision of human thinking and cognition. Clearly,

we reason in approximate rather than precise terms when we have to decide

on which route to take to a desired destination, where to find a space to

park our car, or how to locate a lost object. Furthermore, we frequently

use a mixture of precise and approximate reasoning in problem-solving situa

tions, e.g., in looking for ways of proving a theorem, choosing a move in a

game of chess, or trying to solve a puzzle. On the whole, however, it is

evident that all but a small fraction of human reasoning is approximate in

nature, and that such reasoning falls, in the main, outside of the domain

of strict applicability of classical logic.

To provide an appropriate conceptual framework for approximate reason

ing, fuzzy logic is based on the premise that human perceptions involve, for

the most part, fuzzy sets, that is, classes of objects in which the

fInvited paper presented at the International Symposium on Multi-Valued
Logic, University of Indiana, May 1975.
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transition from membership to non membership is gradual rather than abrupt.

It is such sets — rather than sets in the traditional sense -- that corres

pond to the italicized words in the propositions "Nina is very attractive,"

"Mary is extremely intelligent," "Most Swedes are blond," "It is very true

that John is much taller than Betty," "Many tall men are not very agile,"

"It is quite likely that it will be a warm day tomorrow," etc. We shall

refer to such assertions as fuzzy propositions in order to differentiate

them from nonfuzzy propositions like "All men are mortal," "x is larger

than y," Gisela has two sons," etc.

A distinctive feature of fuzzy logic is that the meaning of such terms

as beautiful, tall, small, approximately equal, very true, etc. is assumed

to be not merely subjective but also local in the sense of having restricted

validity in a specified domain of discourse. Thus, the definition of a

small number, for example, as a fuzzy subset of the real line may hold only

for a designated set of propositions and is allowed to vary from one such

set to another. The same applies, more importantly, to the definition of

the linguistic truth-values true, very true, etc. as well as the connectives

and, or and if...then. It is in this sense that fuzzy logic may be viewed

as a local logic in which the meaning of propositions, connectives and

truth-values is, in general, of local rather than universal validity.

An important consequence of the local validity of meaning is that the

inference processes in fuzzy logic are semantic rather than syntactic in

nature. By this we mean that the consequence of a given set of premises

depends in an essential way on the meaning attached to the fuzzy sets which

appear in these premises. As a simple illustration, the consequence of the

premises "X is a small number," and "X and Y are approximately equal," depends

Relevant aspects of the theory of fuzzy sets are discussed in references
[ 3]-[60]. For convenience of the reader, a summarized exposition is pre
sented in the Appendix. Alternative approaches to vagueness and inexact
reasoning are discussed in [61]-[78].



on the meaning of small and approximately equal expressed as fuzzy subsets
2

of the real line, R, and R , respectively. More specifically, the con

sequence in question may be expressed as "Y is H," where H is a fuzzy set

which, as will be shown in Sec. 7, is given by the composition of the unary

fuzzy relation small with the binary fuzzy relation approximately equal.

It is important to observe that fuzzy logic, in the sense used above,

is a generic term which refers not to a unique logical system but to a col

lection of local logics in which the truth-values are fuzzy subsets of the

truth-value set of an underlying multivalued logic. For example, if the

underlying logic (i.e., base logic) is Lukasiewicz's Lalepn "logic, then

the truth-values of a fuzzy logic whose base logic is Lfll h would be fuzzy
2

subsets of the unit interval.

In this paper, our attention will be focussed on a particular fuzzy

logic which, for convenience, will be referred to as FL [ 1 ]. The base logic

for FL is L , . and its truth-value set is a countable collection of fuzzy
alepn,

subsets of the unit interval [0,1], carrying labels of the form true,

very true, not very true, more or less true, not false and not true, etc.

The principal feature that distinguishes FL from classical logics as

well as other types of fuzzy logics is that its truth-values are (a) linguistic

and (b) structured in the sense that such truth-values may be generated by

a grammar and interpreted by a semantic rule. Thus, as will be seen in

Sec. 4, with true playing the role of a primary term, the non-primary truth-

values in the truth-value set of FL may be generated by a context-free grammar

and related to fuzzy subsets of [0,1] by an attributed grammar [1 ],[17],

[110], [in].
2In this sense, the conventional multivalued logics may be viewed as degener
ate forms of fuzzy logics in which the fuzzy truth-values are singletons.
Somes authors, e.g., [23], [42], [47], [56] employ the term fuzzy logic in
a more restricted sense, interpreting a fuzzy logic as a multivalued logic
with nonfuzzy truth-values. A succinct discussion of fuzzy logics and their
relation to probability logics may be found in papers by B.R. Gaines [58],
[59], [60].



The rationale for the use of linguistic truth-values in FL is the follow

ing. If p is a fuzzy proposition such as "Frances is very attractive," it

would be inconsistent to attach a precise numerical truth-value to p, say

0.935, because the meaning of very attractive is not sharply defined. Thus,

to be consistent, it would be logical to associate a fuzzy truth-value with

p, that is, a fuzzy subset of [0,1] rather than a point in this interval.

But, if we allowed any fuzzy subset of [0,1] to be a truth-value of FL,

then the truth-value set of FL would be much too rich and much too difficult

to manipulate. Thus, what suggests itself is the idea of allowing only a

countable structured collection of fuzzy subsets of [0,1] to be used as

the truth-values of FL. In this way, we trade a continuum of simple truth-

values of Lai n for a countable -- and actually, in most cases, a small --

collection of more complex truth-values of FL and gain a significant

advantage in the process.

As will be seen in Sec. 6, the linguistic truth-values of FL do not

form a closed system under the operations of conjunction, disjunction and

implication. Thus, if the truth-values of p and q are, say, more or

less true and not very true and not very false, then the truth-value of

the conjunction "p and q" will not be, in general, a linguistic truth-

value in the truth-value set of FL. Consequently, the use of linguistic

truth-values in FL necessitates a linguistic approximation to fuzzy subsets

of [0,1] by the linguistic truth-values of FL. The same applies, more

generally, to the linguistic values for variables, relations and probabilities

that might occur in fuzzy propositions, with the consequence that the

inference processes in FL are, for the most part, approximate rather than

exact. For example, as was stated earlier, the exact consequence of the

premises "X is a small number," and "X and Y are approximately equal" is

"Y is small °approximately equal," where ° denotes the operation of
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composition. A linguistic approximation to the fuzzy set small oapproximately

equal might be taken to be more or less small, in which case the conclusion

"Y is more or less small" becomes an approximate consequence of the premises

in question.

In what follows, we shall begin our exposition of fuzzy logic with the

introduction of the concept of a fuzzy restriction, by which is meant a fuzzy

relation which acts as an elastic constraint on the values that may be assigned

to a variable. In this capacity, a fuzzy restriction plays a basic role in

FL which is somewhat similar to — and yet distinct from — that of a predi

cate in multivalued logic.

With the concept of a fuzzy restriction as a point of departure, the

truth-value of a fuzzy proposition p may be defined as the degree of consis

tency of p with a reference proposition r. This, in turn, makes it pos

sible to develop valuation rules for expressing the truth-value of a compo

site proposition in terms of the truth-values of its constitutents. However,

in FL, unlike the traditional logics, these rules are derived from translation

rules which relate the fuzzy restriction associated with a composite fuzzy

proposition to those associated with its constituents.

Translation and valuation rules in FL are divided into four categories

depending on the form of the fuzzy propositions to which they apply. Thus,

rules of Type I apply to propositions of the general form "X is mF," where

X is the name of an object or a variable, F is a fuzzy subset of a universe

of discourse and m is a modifier such as not, very, more or less, quite,

extremely, etc. Examples of propositions of this form are: "X is a very

small number," and "Ruth is highly intelligent."

Rules of Type II apply to composite propositions of the form

3As will be seen later, the effect of the modifier more or less on its
operand may be characterized by a kernel function which represents the
result of acting with more or less on a singleton.



"(X is F)*(Y is G)," or, more generally, "X is in relation- R to Y," where

R is a fuzzy relation and * is a binary connective such as and, or,

if"-then'", etc. (In FL, the conjunction and disjunction are allowed to be

interactive in the sense defined in Sec. 5.) Typical examples of such propo

sitions are: "X is small and Y is very large," "X is much larger than Y,"

and "X and Y are approximately equal."

Rules of Type III apply to quantified fuzzy propositions of the form

"QX are F," where Q is a fuzzy quantifier such as most, many, several, few,

etc., as in "Most Swedes are tall." As for rules of Type IV, they apply to

qualified fuzzy propositions of the general form "X is F is t," where t

is a linguistic truth-value. Examples of such propositions are: "Sally is

very attractive is very true," and "Most Swedes are tall is more or less true."

The basic rule of inference in fuzzy logic is the compositional rule

of inference which may be represented as

X is F

X is in relation G to Y

Y is LA(F°G)

where F and G are, respectively, unary and binary fuzzy relations, F<>G

is their composition and LA(F°G) is a linguistic approximation to the unary

fuzzy relation F<»G. As was stated earlier, in consequence of the use of

linguistic approximation, the inference processes in fuzzy logic are, for

the most part, approximate rather than exact.

Although fuzzy logic represents a significant departure from the conven

tional approaches to the formalization of human reasoning, it constitutes —

so far at least — an extension rather than a total abandonment of the

currently held views on meaning, truth and inference [79]-[108]. It should

be stressed that, at this juncture, fuzzy logic is still in its infancy.

r^A*
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Thus, our exposition of FL in the present paper should be viewed merely as a

step toward the development of a logical system which may serve as a realistic

model for human reasoning as well as a basis for a better understanding of

the potentialities and limitations of machine intelligence.

2. The Concept of a Fuzzy Restriction

The concept of a fuzzy restriction [32] plays a central role in fuzzy logic,

providing a basis for the characterization of the meaning as well as the

truth-value of composite propositions. In what follows, we shall outline

some of the basic properties of such restrictions with a view to making use

of these properties in later sections for the definition of linguistic

truth-values and the formulation of rules of approximate inference from

fuzzy premises.

Let X be a variable which takes values in a universe of discourse

U = {u}. Informally, a fuzzy restriction is an elastic constraint on the

values that may be assigned to X, expressed by a proposition of the form

"X is F," where F is a fuzzy subset of U. For example, if X is a

variable named Temperature and F is a fuzzy subset of the real line

labeled high, then the fuzzy proposition "Temperature is high" may be

interpreted as a fuzzy restriction on the values of Temperature.

If the fuzzy set high is characterized by its membership function

p • U + [0,1], which associates with each temperature, u, its grade

of membership, yhigh(u), in the fuzzy set high, then 1-uhigh(u) repre
sents the degree to which the elastic constraint expressed by "Temperature

is high" must be stretched to accomodate the assignment of u to X. For

example, if PniqnO00°) =°-9> tnen we sha11 write



Temperature = 100°: 0.9 (2.1)

to indicate that the assignment of 100° to Temperature is compatible to the

degree 0.9 with the constraint "Temperature is high," or, equivalently, that

the constraint in question must be stretched to the degree 0.1 to accomodate

the assignment of 100° to Temperature.

In more general terms, a variable, X, which takes values in U = {u}

is a fuzzy variable if the restriction on the values that may be assigned

4
to X is a fuzzy subset of U. In relation to X, then, a fuzzy subset

F of U is a fuzzy restriction if it serves as an elastic constraint on

the values of X in the sense that the assignment equation for X has

the form

X= u: uF(u) (2.2)

where pF(u), the grade of membership of u in F, represents the

compatibility of u with the fuzzy restriction F.

To express that F is a fuzzy restriction on the values of X, we

write

Rx(u) = F (2.3)

where Rx(u) denotes a fuzzy restriction on the elements of U which is
5

associated with the variable X. Thus, the assignment equation (2.2) may

be said to imply — or translate into — the assignment equation (2.3). To

distinguish (2.3) from (2.2), the latter will be referred to as a relational

assignment equation.

In some contexts it is convenient to regard u as a variable ranging over
U rather than as a particular element of U. In such cases, u will be
referred to as a base variable for X.

5
For convenience, Rx(u) will usually be abbreviated to Rx or R(u) or
R(X), with the understanding that R(u) and R(X) are labels of a fuzzy
set rather than functions of u and X, respectively.



In general, a fuzzy proposition of the form "X is F" translates not

into

R(X) = F (2.4)

but into

R(A(X)) = F (2.5)

where A is an implied attribute of X. For example, the proposition

"Betty is young" translates into the relational assignment equation

R(Age(Betty)) = young (2.6)

where Age is an attribute of Betty which is implied by young; Age(Betty)

is a fuzzy variable; and young is a fuzzy subset of the real line defined

by, say,

liyoung(u)> 1- S(u;20,30,40) (2.7)

where the S-function, S(u;20,30,40), is expressed by (see A17)

S(u;20,30,40) = 0 for u < 20
2

=2(^jp) for 20 <u<30
=1-2(^) for 30 <u<40
=1 for u > 40

(2.8)

In this definition of young, the age u = 30 is a crossover point in the

sense that yyoung(30) =0.5. For u=25, we have uyQung(25) =0.875,
and hence "Betty is young" implies

Age(Betty) = 25: 0.875 (2.9)

In the foregoing discussion, we have restricted our attention to the

case where X is a unary fuzzy variable with a base variable u ranging

over a single universe of discourse U. In the more general case where X
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is an n-ary variable, X = (X,,...,X ), each of the n components of X

is a fuzzy variable, X., i = l,...,n, whose base variable, u., ranges

over a universe of discourse U.. In this case, a fuzzy restriction on the

values of X is an n-ary fuzzy relation, F, in the product space

U, x ... xU , and the assignment equations (2.3) and (2.2) take the form

Rx(ur...,un) =F (2.10)

and

(Xv...,Xn) =(ur...,un): yF(ur...,un) (2.11)

respectively. As an illustration, if X, and X« are real numbers, then the

proposition "X-. is much larger than X^" translates into the relational assign

ment equation

R(XrXj =much larger (2.12)

2
where much larger is a fuzzy relation in R whose membership function may

be defined as, say,

ymuch larger^! 'u2) =° for ul ±u2

V»l 2-1 (2'13)

Correspondingly, for u, = 2 and u« = 16 we deduce

(XrX2) = (2,16): 0.66 (2.14)

An important concept that relates to n-ary fuzzy restrictions is that

of noninteraction. Specifically, the components of an n-ary fuzzy variable

are said to be noninteractive if and only if

R(Xr...,Xn) =R(X1)x... xR(Xn) (2.15)

where R(X.) denotes the projection of R(X, ,...,X ) on U. and x denotes
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the cartesian product. Equivalently, X.j,...,Xn are noninteractive if and

only if the n-ary assignment equation

(Xr...,Xn) =(ur....un): uR(Xi xn){uV—un) (2J6)

may be decomposed into n unary assignment equations

Xl =V ^(X^V

Xn =un: ^(X^n*
(2.17)

What is implied by (2.15) is that, if X1,...,Xn are noninteractive,

then the assignment of values to any subset of the X^ has no effect on the

fuzzy restrictions which apply to the remaining variables. For example, if

X, and X2 are noninteractive, then the assignment of a value, say u-j,

to X, does nqt affect the fuzzy restriction on the values of X2. As we

shall see in later sections, this property of noninteractive variables plays

a basic role in the definition of logical connectives.

In the foregoing discussion of the concept of a fuzzy restriction, we

have limited our attention to the translation of atomic fuzzy propositions

of the form "X is F." In Sec. 4, we shall consider the more general problem

The membership function of the projection of R(X.|,...SX ) on u\ is
defined by

yR(Xl)(«i) ^"P^rix, xn),ui V
where the supremum is taken over u,,...,u , excluding u... (See A58.)

If F,,...,F are fuzzy subsets of U1,...,Un> respectively, then
the membership function of the cartesian product F1 x ... x Fn is given by

^x...xF <ul un> -^(u^-v-Pp (un)
In i n

where yF is the membership function of F. and - stands for the infix

form of min.

7A more detailed discussion of this aspect of noninteraction may be found in
[2].
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of translation of composite propositions which are formed from atomic propo

sitions through the use of logical connectives such as and, or, if/••then/"

and fuzzy quantifiers such as most, many, few , etc. As a preliminary, in

the following section we shall define the concept of a linguistic variable

and apply it to the characterization of the truth-values of fuzzy logic.

3. Linguistic Variables and Truth-Values in Fuzzy Logic

As was pointed out in the Introduction, one of the important charac

teristics of fuzzy logic, FL, is that its truth-values are not points or

sets but fuzzy subsets of the unit interval which are characterized by

linguistic labels such as true, very true, not very true, etc.

To make the meaning of such truth-values more precise, we shall draw

on the concept of a linguistic variable — a concept which plays a basic

role in approximate reasoning and which, as will be seen in the sequel,

bears a close relation to the concept of a fuzzy restriction.

Essentially, a linguistic variable, X, is a nonfuzzy variable which

ranges over a collection, T(X), of structured fuzzy variables X-j ,X2,Xg,...

with each fuzzy variable in T(X) carrying a linguistic label, X^ which

characterizes the fuzzy restriction which is associated with X..

As an illustration, Age is a linguistic variable if its values are

assumed to be the fuzzy variables labeled young, not young, very young,

not very young, etc., rather than the numbers 0,1,2,3,... . The meaning

of a linguistic value of Age, say very young, is identified with the fuzzy

restriction which is associated with the fuzzy variable labeled very young.

Thus, if the base variable for Age (i.e., numerical age) is assumed to range

overthe universe U = {0,1,...,100}, then the linguistic values of Age may

be interpreted as the labels of fuzzy subsets of U.
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More generally, a linguistic variable is characterized by a quintuple

(X,T(X),U,G,M), where X is the name of the variable, e.g., Age; T(X)

is the term-set of X, that is, the collection of its linguistic values,

e.g., T(X) = {young, not young, very young, not very young,...}; U is a

universe of discourse, e.g., in the case of Age, the set {0,1,2,...,100};

G is a syntactic rule which generates the terms in T(X); and M is a

semantic rule which associates with each term, X., in T(X) its meaning,

M(X.), where M(X.) is a fuzzy subset of U which serves as a fuzzy

restriction on the values of the fuzzy variable X..

A key idea behind the concept of a linguistic variable is that the

fuzzy restriction associated with each X. may be deduced from the fuzzy

restrictions associated with the so-called primary terms in T(X). In

effect, these terms play the role of units which, upon calibration, make

it possible to compute the meaning of the composite (i.e., non-primary)

terms in T(X) from the knowledge of the meaning of primary terms.

As an illustration, we shall consider an example in which U = [0,»)

and the term-set of X is of the form

T(X) = {small, not small, very small, very (not small),

not very small, very very small, ...} (3.1)

in which small is the primary term.

The terms in T(X) may be generated by a context-free grammar

G=(VT,VN,S,P) in which the set of terminals, V-p comprises ( , ),

the primary term small and the linguistic modifiers very and not; the

nonterminals are denoted by S, A and B, and the production system is

given by:
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S - A

S -> not A

A -v B

B-very_B (3'2)
B - (S)

B -* small

Thus, a typical derivation yields

S + not A + not B -»• not very B + not very very B -*- not very very small .

(3.3)

In this sense, the syntactic rule associated with X may be viewed as the

process of generating the elements of T(X) by a succession of substitu

tions involving the productions in G.

As for the semantic rule, we shall assume for simplicity that if uA

is the membership function of A then the membership functions of not A

and very A are given respectively by

"not A"1: "A (3-4)
and

yyenA= (vA)2 * (3'5)
Thus, (3.5) signifies that the modifier very has the effect of squaring the

o

membership function of its operand.

Suppose that the meaning of small is defined by the membership function

y small
(u) = (l +fO.lu)2)"1 , u>0 . (3.6)

Then the meaning of very small is given by

8A more detailed discussion of the effect of linguistic modifiers (hedges)
may be found in [51], [52], [53], [54], [55] and [56].
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"ver^sMll^1^0-1")2)"2 <3'7>
while the meanings of not very small and very (not small) are expressed

respectively by

y + n =1 - (1 +(0.1u)2)"2 (3.8)Mnot very small • \ \ / / \ /

and

"^(notsnaii)^1^1^0-1"^"1)2- <3-9>
In this way, we can readily compute the expression for the membership func

tion of any term in T(X) from the knowledge of the membership function

of the primary term smal1.

In summary, a linguistic variable X may be viewed, in effect, as a

micro-language whose sentences are the linguistic values of X, with the

meaning of each sentence represented as a fuzzy restriction on the values

of a base variable, u, in a universe of discourse, U. The syntax and

semantics of this language are, respectively, the syntactic and semantic

rules associated with X.

In applying the concept of a linguistic variable to fuzzy logic, we

9
assume that Truth is a linguistic variable with a term-set of the form

T(Truth) = {true, false, not true, very true, not very true,

yejry^ (not true), not very true and not very false, ...}

(3.10)

in which the primary term is true.

In the case of FL, the universe of discourse, V, associated with

Truth is assumed to be the unit interval [0,1], and the logical operations

More generally, the truth-values in T(Truth) could include, in addition
to very, such linguistic modifiers (hedges) as quite, more or less, essen
tially, etc. As in the case of very, the meaning of these and other modi
fiers may be defined — as a first approximation — in terms of a set of
standardized operations on the fuzzy sets which represent their operands.
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on the linguistic truth-values are fuzzy extensions — in the sense defined

in Sec. 6 — of the corresponding operations in Lukasiewcz's logic L -j h

[109]. Thus, L , . serves as a basic logic for FL, with the linguistic

truth-values of FL being fuzzy subsets of the truth-value set of La-|epn •

So far, we have not addressed ourselves to a basic issue, namely, what

is the significance of associating a numerical or linguistic truth-value

with a fuzzy proposition? What does it mean, for example, to assert that

"X is small is 0.8 true" or "Gail is highly intelligent is very true?"

Informally, we shall adopt the view that a truth-value, numerical or

linguistic, represents the degree of consistency of p with a reference

proposition r. Thus, in symbols

v(p) 4 C(R(p),R(r)) (3.11)

where v(p) denotes the truth-value of p; R(p) and R(r) represent,

respectively, the restrictions associated with p and r; and C is a

consistency function which maps ordered pairs of restrictions into points

in [0,1] or fuzzy subsets of [0,1] and thereby defines the degree of

consistency of p with r.

In general, r may be, like p, a fuzzy proposition. In the sequel,

however, we shall take a more restricted point of view. Specifically, we

shall assume that, if (a) p is a fuzzy proposition of the form

p £ X is F (3.12)

which translates into

R(A(X)) = F (3.13)

where A(X) is an implied attribute of X, and (b) v(p) is a numerical

The symbol ^ is used here and elsewhere in this paper to denote "is
defined to be," or "denotes."
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truth-value in [0,1], then the reference proposition r is a nonfuzzy

proposition of the form

r 4 X is u (3.14)

where u is an element of U which represents a reference value of the

variable A(X). Under these assumptions, then, the numerical truth-value

of p is defined by

v(p) £ t = C(F,u) (3.15)

APF(u)

where yF(u) is the grade of membership of u in F. In effect, (3.15)

implies that the truth-value of p is equated, by definition, to the grade

of membership of u in F, where u is a reference value of the variable

A(X). As an illustration, consider the proposition p 4 Ilka is tall,

where tall is defined by

ytall(u) =S(u;160;170;180) . (3.16)

Then, if Ilka is, in fact, 172 cm tall and r is taken to be

r 4 Ilka is 172 cm tall (3.17)

we have

v(Ilka is tall) = t = S(172;160;170;180) (3.18)

= 0.68

which thus represents the numerical truth-value of the fuzzy proposition

p 4 Ilka is tall.

We are now in a position to extend the notion of a numerical truth-value

^What we rule out here is the possibility that the degree of consistency of
two fuzzy propositions be a numerical truth-value. This case is more com
plex than that discussed in the present paper.
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to fuzzy truth-values by interpreting a linguistic truth-value, t, as the

degree of consistency of p with a fuzzy reference proposition r. Thus,

if r is of the form

rAXisG (3.19)

where G is a fuzzy subset of U, then a fuzzy truth-value, t, may be

associated formally with p by the expression

t =yF(6) (3.20)

12
where yc, as in (3.15), represents the membership function of F.

r

To make (3.20) meaningful, it is necessary to extend the domain of

definition of yp from U to F(U), where F(U) is the set of fuzzy

subsets of U. This can be done by using the extension principle (A70),

which is a basic rule for extending the definition of a function defined

on a space U to F(U). Specifically, in application to (3.20), let G

be represented symbolically in the "integral" form (see A8)

G = uG(u)/u (3.21)

where the integral sign denotes the union of fuzzy singletons y6(u)/u,

with yG(u)/u signifying that the compatibility of u with G (or,
equivalently, the grade of membership of u in G) is yG(u). Then, on

invoking the extension principle and treating yf as a function from U

to [0,1], we obtain

uF(G) = yr(u)/yF(u) (3.22)
[0,1] G F

It should be noted that this interpretation of a fuzzy truth-value is
contingent on the assumptions made in (3.15). Hence, a different set of
assumptions concerning the consistency function C might lead to a
different interpretation of t.
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which means that yF(G) is the union of fuzzy singletons y6(u)/yF(u) in

[0,1].

When we have to make explicit that an expression, E, has to be

evaluated by the use of the extension principle, we shall enclose E in

angular brackets. With this understanding, then, a linguistic truth-value,

t, may be expressed as

t =<yF(G)> =f yr(u)/yF(u) . (3.23)
F J[0,l]b h

Adopting the interpretation of t which is defined by (3.23), let

y :V -• [0,1] denote the membership function of t. Then, the meaning of

x as a fuzzy subset of V may be expressed as

rl
T = y (v)/v (3.24)

0T

where v e V = [0,1] is the base variable for the fuzzy variable t, and

the integral sign, as in (3.21), denotes the union of fuzzy singletons

y (v)/v, with y (v)/v signifying that the compatibility of the numerical

truth-value v with the linguistic truth-value t is yT(v).

If the support of t, that is, the set of points in V at which

y (v) f 0, is a finite subset {v-,,...,vn} of V, and y. is the compa

tibility of v. with t, i=l,...,n, then t may be expressed as

t =y1/v1 +-• +un/vn (3-25)

or more simply as the linear form

x =y,v, +••• +Unvn (3.26)

when no confusion between yi and v.. in aterm of the form ujVj can

arise. It should be noted that in (3.25) and (3.26) the plus sign - like
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the integral sign in (3.24) — should be interpreted as the union rather

than the arithmetic sum.

As an illustration of (3.24), if the membership function of true is

assumed to be expressed as an S-function (see A17)

ytrue(v) =S(v;0.5,0.75,1) (3.27)

then the meaning of true is the fuzzy subset of V expressed as

true =fS(v;0.5,0.75,l)/v . (3.28)

If V is assumed to be the finite set {0,0.1,0.2,...,1}, then true

may be defined as a fuzzy subset of V by, say,

true = 0.3/0.6 + 0.5/0.7 + 0.7/0.8 + 0.9/0.9 + 1/1 . (3.29)

In this expression, a term such 0.7/0.8 signifies that the compati

bility of the numerical truth-value 0.8 with the linguistic truth-value

true is 0.7. It is important to note that the definition of true in (3.28)

and (3.29) is entirely subjective as well as local in nature.

On occasion, we shall find it convenient to relate to a linguistic

truth-value t its dual, D(x), which is defined by

yD(x)(v) =yT(l-v) , v e [0,1] . (3.30)

or, equivalently,

D(t) = 1-t (3.31)

where for simplicity we have suppressed the angular brackets in the right-

hand member of (3.31). Thus, if true, for example, is defined by (3.29),

then
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D(true) = 0.3/0.4 + 0.5/0.3 + 0.7/0.2 + 0.9/0.1 + 1/0

and D(true) will be assumed to be the meaning of false, i.e.,

false * D(true) (3.32)

and conversely

true = D(false) . (3.33)

As shown in [ ], the linguistic truth-values in T(Truth) can be

generated by a context-free grammar whose production system is given by

S -* A C + D

S + SorA C + E

A •»• B D •*- very D

A + A.andB E -» very E (3.34)

B -*• C D + true

B + riot C E + false

C+(S)

In this grammar, S, A, B, C, D, and E are nonterminals; and true, false,

very, not, and, or, (, ) are terminals. Thus, a typical derivation yields

S + A -*• A and B + B and B -»• not C and B + not E and B

•+ not very E and B -*- not very false and B -> not very false and not C

-*- not very false and not D -»- not very false and not very D

•» not very false and not very true (3.35)

If the syntactic rule for generating the elements of T(Truth) is

expressed as a context-free grammar, then the corresponding semantic rule

may be conveniently expressed by a system of productions and relations in

which each production in G is associated with a relation between the fuzzy
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13subsets representing the meaning of the terminals and nonterminals. For

example, the production A •*• A and B induces the relation

AL = AR n BR (3.36)

where A., AR, and BR represent the meaning of A and B as fuzzy sub

sets of [0,1] (the subscripts L and R serve to differentiate between

the symbols on the left- and right-hand sides of a production), and n

denotes the intersection. Thus, in effect, (3.36) defines the meaning of

the connective and.

Similarly, the production B -»• not C induces the relation

BL " CR (3.37)

where CR denotes the complement of the fuzzy set CR (see A32), while

D -*• very D induces

DL =(DR)2 (3.38)

which implies that the membership function of D. is related to that of

DR by

x= (V "
(3.39)

With this understanding, the dual system corresponding to (3.29) may

be written as

(3.40)S -• A SL = AR
S •* S or A SL = SR U AR

A + B AL = BR
A -»- A and B AL = AR n BR

13TL,
This technique is related to Knuth's method of synthesized attributes
[1], [no].



B -> not C

C -• D

D ->• very D

E -»• very E

D -• true

E -* false
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= CR

= CR
= S„

= D,

= ER
=(DR)2

"(ER)2
= true

= false

where u denotes the union.

To employ this dual system to compute the meaning of a term, t,

generated by G, it is necessary, in principle, to construct a syntax tree

for t. Then, by advancing from the leaves of the tree to its root and

successively computing the meaning of each node by the use of (3.40), we

eventually arrive at the expression for the membership function of t in

terms of the membership function of the primary term true.

In practice, however, the linguistic values of Truth that one would

commonly employ to characterize the truth-value of a fuzzy proposition,

e.g., "Barbara is very intelligent," are likely to be sufficiently simple to

14
make it possible to compute their meaning by inspection. For example,

TO

2
not very true = (true )2x,

2 2
not very(not very true) = (((true )') )'

2
true and not very true = true n (true )'

2 2
not very true and not very false = (true )' n (false )'

(3.41)

(3.42)

(3.43)

(3.44)

It should be noted that in (3,41)-(3.44) true plays the role of a label
of a fuzzy set in the left-hand member and that of the set itself in the
right-hand member.
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where ' denotes the complement and, in consequence of (3.32),

false = 1 - true (3.45)

with (3.45) implying that the membership function of false is related to

that of true by

Wv> • *w(1-v) • v e [0,1] • (3-46)

Note that false / not true, since

not true = true' (3.47)

while false = 1 - true. The reason for defining the meaning of false by

(3.45) rather than by equating false to not true will become clear in

Sec. 6.

In the following two sections, we shall turn our attention to a pro

blem that occupies a central place in fuzzy logic, namely, that of trans

lating a fuzzy proposition into one or more relational assignment equations.

Then, from the rules governing such translations, we shall be able to derive

a set of valuation rules for computing the truth-values of composite fuzzy

propositions.

4. Translation Rules for Fuzzy Propositions - Types I and II

As was stated in the Introduction, one of the basic problems in fuzzy

logic is that of developing a set of rules for translating a given fuzzy

proposition into a system of relational assignment equations.

In this section, we shall address ourselves to some of the simpler

aspects of this problem, focusing our attention on what will be referred to

as translation rules of Types I and II. In Sec. 5, we shall consider
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translation rules of Types III and IV, which apply to more complex proposi

tions containing, respectively, quantifiers and truth-values. Implicit in

all of these rules 1s Frege's principle [$9], [112] that the meaning of a

composite proposition is a function of the meanings of its constituents.

Translation Rules of Type I

Translation rules of this type apply to fuzzy propositions of the form

p 4 X is mF, where F is a fuzzy subset of U = {u}, m is a modifier

such as not, very, more or less, slightly, somewhat, etc., and either X

or A(X) — where A is an implied attribute of X — is a fuzzy variable

which takes values in U.

Translation rules of Type I may be subsumed under a general rule which,

for convenience, will be referred to as the modifier rule. In essence,

this rule asserts that the translation of a fuzzy proposition of the form

p 4 X is mF is expressed by

X is mF —* R(A(X)) = mF (4.1)

where m is interpreted as an operator which transforms the fuzzy set F

into the fuzzy set mF.

In particular, if m 4 not, then the rule of negation asserts that

the translation of p 4 X is not F is expressed by

X is not F —> X is F' —• R(A(X)) = F' (4.2)

where F' is the complement of F, i.e.,

PFi(u) =1-yp(u) , ueU . (4.3)

For example, if
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yyoung(u) =1-S(u;20,30,40) (4.4)

then p ^ John is not young translates into

R(Age(John)) = young' (4.5)

where, in the notation of (3.21),

young' =
CD

S(u;20,30,40)/u . (4.6)
0

In general, m may be viewed as a restriction modifier which acts in

a specified way on its operand. For example, the modifier very may be

assumed to act — to a first approximation ~ as a concentrator which has

the effect of squaring the membership function of its operand [51]. Corres

pondingly, the rule of concentration asserts that the translation of the

fuzzy proposition p = X is very F is expressed by

Xis verv_ F— Xis F2 — R(A(X)) =F2 (4.7)

where

2 f , /..xx2
very F = F = (yF(u))Vu (4.8)

and A(X) is an implied attribute of X.

As an illustration, on applying (4.7), we find that "Sherry is very

young" translates into

R(Age(Sherry)) =young2 (4.9)

where

young2 =f(l -S(u;20,30,40))2/u . (4.10)
J0

Similarly, on combining (4.2) with (4.7), we find that "Sherry is not very

very young" translates into
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(young )' = I
0
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R(Age(Sherry)) =(young4)' (4.11)

(young4)' =f(l -(1 -S(u;20,30,40))4)/u . (4.12)

The effect of the modifier more or less is less susceptible to simple

approximation than that of very. In some contexts, more or less acts as a

dilator, playing a role inverse to that of very. Thus, to a first approxi

mation, we may assume that, in such contexts, more or less may be defined by

more or less F = r/F (4.13)

where

>^ =((yF(u))1/2/u .
u

Based on this definition of more or less, the rule of dilation asserts

that

X is more or less. F -+ X is ^F -* R(A(X)) = /F (4.14)

where A(X) is an implied attribute of X. For example, "Doris is more

or less young" translates into

R(Age(Doris)) =^ourig =f(l -S(u;20,30,40))1/2/u (4.15)
J°

while "Doris is more or less (not very young)" translates into

R(Age(Doris)) =((young2)')1/2 . (4.16)

In other contexts, more or less acts as a fuzzifier whose effect may

be approximated by

more or less F
'u
=|yF(u)K(u) (4.17)
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where K(u) is a specified fuzzy subset of U which depends on u as a

parameter, yF(u)K(u) is a fuzzy set whose membership function is the pro

duct of yc(u) and the membership function of K(u), and denotes the
p JU

union of the fuzzy sets yF(u)K(u), ue U. When more or less is defined

as a fuzzifier by (4.17), the fuzzy set K(u) in the right-hand member of

(4.17) is referred to as the kernel of the fuzzifier. Note that (4.17)

implies that K(u) may be interpreted as the result of acting with more or

less on the singleton {u} [51].

As an illustration, suppose that

U = 1+2 +3+4 (4.18)

and that a fuzzy subset of U labeled small is defined by

small = 1/1 + 0.6/2 + 0.2/3 . (4.19)

Furthermore, assume that the kernel of more or less is given by

K(l) = 1/1 + 0.9/2

K(2) = 1/2 + 0.9/3 (4.20)

K(3) = 1/3 + 0.8/4

Then, on substituting (4.19) and (4.20) in (4.17), we obtain

more or less small = K(l) + 0.6 K(2) + 0.2 K(3) (4.21)

= 1/1 + 0.9/2 + 0.6/2 + 0.54/3

+ 0.2/3 + 0.16/4

= 1/1 + 0.9/2 + 0.54/3 + 0.16/4

whereas, had we used (4.14), we would have

more or less small = 1/1 + 0.77/2 + 0.45/3 . (4.22)
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When more or less is interpreted as a fuzzifier, the corresponding

modifier rule will be referred to as the rule of fuzzification. In symbols,

the statement of this rule reads:

Xis more or less F-+ R(A(X)) =f yF(u)K(u) (4.23)
Ju r

where K(u) is the kernel of more or less and A(X) is an implied attri

bute of X. For example, the application of this rule to the proposition

"X is more or less small," in which small and more or less are defined by

(4.19) and (4.20), yields

R(X) = more or less small (4.24)

= 1/1 + 0.9/2 +0.54/3+0.16/4 . .

By comparison, the application of the rule of dilation would yield

R(X) = 1/1 + 0.77/2 + 0.45/3 . (4.25)

In most practical applications, the difference between (4.24) and (4.25)

would not be considered to be of significance.

Proceeding in a similar fashion, one can formulate, in principle, other

concrete versions of the modifier rule for modifiers such as slightly, quite,

rather, etc. In general, the definition of the effects of such modifiers

presents many non-trivial problems which, at this stage of the development

of the theory of fuzzy sets, are still largely unexplored [51]-[56].

Translation Rules of Type II

Translation rules of this type apply to composite fuzzy propositions

which are generated from atomic fuzzy propositions of the form "X is F"

through the use of various kinds of binary connectives such as the conjunction,
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and, the disjunction, or, the conditional if...then..., etc.

More specifically, let U = {u} and V = {v} be two possibly different

universes of discourse, and let F and G be fuzzy subsets of U and V,

respectively.

Consider the atomic propositions "X is F" and "Y is G," and let q

be their conjunction "X is F and Y is G." Then, the rule of noninteractive

conjunctive composition or, for short, the rule of conjunctive composition

asserts that the translation of q is expressed by

X is F and Y is G -> (X,Y) is FxG -> R(A(X),B(Y)) = F*G (4.26)

where A(X) and B(Y) are implied attributes of X and Y, respectively;

R(A(X),B(Y)) is a fuzzy restriction on the values of the binary fuzzy

variable (A(X),B(Y)); and FxG is the cartesian product of F and B.

Thus, under this rule, the fuzzy proposition "Keith is tall and Adrienne is

young" translates into

R(Height(Keith)),Age(Adrienne)) = tall xyoung (4.27)

where tall and young are fuzzy subsets of the real line.

To clarify the reason for qualifying the term "conjunction" with the

adjective "noninteractive," it is convenient to rewrite (4.26) in the equi

valent form

X is F and Y is G — R(A(X),B(Y)) = F n G (4.28)

where F and § are the cylindrical extensions (see A59) of F and G,

respectively, and FnS is their intersection. In this form, the rule in

question places in evidence the 1-1 correspondence between the noninteractive

conjunction of fuzzy propositions, on the one hand, and the intersection of

fuzzy cylindrical extensions, on the other.
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The rationale for identifying "noninteraction" with set intersection

15
is provided by the following lemma.

Lemma. Let M = {y}, N = {v}, and let c be a mapping from MxN to

the unit interval [0,1]. Then, under the following conditions on c:

(a) c is continuous in both arguments

(b) c is monotone non-decreasing in both arguments

(c) c(y,0) = c(0,v) = 0 for all y, v in [0,1]

(d) c(y,y) = y for all y in [0,1]

(e) For all y in [0,1], there do not exist a, $ e [0,1] such

that a > y, B < y (or a < y and 3 > y) and c(a,3) = c(y,y)

c must necessarily be of the form

c = min(y,v) = y~v . (4.29)

Note that condition (e) signifies that an increase in the first argument of

c cannot be compensated by, or traded for, a decrease in the second argu

ment of c, or vice-versa.

Proof. The proof is immediate. Let a > y and assume that c(a,y) > c(y,y)

= y. Now, c(a,0) = 0 by (c) and hence from (a) it follows that there

exists a $, 0 < 3 < y, such that c(a,3) = y. Since this contradicts

(e), it follows that c(a,y) = y for a > y and hence that c(ct,y) = min(a,y)

Q.E.D.

The main point of this lemma is that noncompensation implies and is

implied by the form of dependence of c on y and v which is expressed

by (4.29). Now, the intersection of F and 6 is defined by

A thorough discussion of the rationale for the definitions of n and u
for fuzzy sets may be found in [24].
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ypng(u,v) =yF(u)~yg(v) (4.30)

and hence what we have called noninteractive conjunction — or simply

conjunction — corresponds to noncompensation (in the sense of (e)) of

the membership functions yF and yg which are associated with the operands

of and.

To differentiate between noninteractive and interactive conjunction,

the latter will be denoted by and*. With this understanding, the rule of

interactive conjunction, in its general form, may be expressed as

X is F and* Y is G -> R(A(X),B(Y)) = F®G (4.31)

where ® is a binary operation which maps F and G into a subset of

UxV and thus provides a definition of and* in a particular context.

A simple example of an interactive conjunction is provided by the

translation rule

X is F and* Y is G-> R(A(X),B(Y)) = FG (4.32)

where

>G " MFMG *Vcr. = Wr • <4'33)

Note that in this case, an increase in the grade of membership in F can

be compensated for by a decrease in the grade of membership in G, and

vice-versa.

It should be noted that while noninteractive conjunction is defined

uniquely by (4.26), interactive conjunction is strongly application-depen

dent and has no universally valid definition. Thus, (4.33) constitutes but

one of many ways in which interactive conjunction may be defined. In

general, one would expect a definition of interactive conjunction to satisfy

the conditions (a), (b), (c), and a weaker form of (d), namely, c(y,y) <y,
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but not (e).

The rules governing the translation of disjunctive propositions are

dual of those of (4.26) and (4.31). Thus, the rule of noninteractive

disjunctive composition — or simply the rule of disjunctive composition

asserts that

X is F or Y is G -*• R(A(X),B(Y)) = F+6 (4.34)

where F+ G denotes the union of the cylindrical extensions of F and G.

Correspondingly, the rule of interactive disjunction reads

X is F or* Y is G — R(A(X),B(Y)) = F®G (4.35)

where ® is an operation on F, G which defines or*, with the understand

ing that the conditions on or* are the same as on and*, except that 0 in

(a) is replaced by 1.

Turning to conditional fuzzy propositions of the form "If X is F then

Y is G," the translation rule for such propositions, which will be referred

16
to as the rule of conditional composition may be expressed as

If X is F then Y is G — R(A(X),B(Y)) = F' © 5 (4.36)

where $ denotes the bounded sum and F' is the complement of the

cylindrical extension of F.

As an illustration, assume that tall and young are defined by

It is tacitly understood that the rule in question is noninteractive in
nature. In the form defined by (4.36), it is consistent with the defini
tion of implication in L , . logic. (See [1 ].)

The bounded sum of F and G is defined by yFeG =1*(up+Ug). where +
denotes the arithmetic sum. (See also A30.)
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S(u;160,170,180)/u
U

(1 -S(v;20,30,40))/v

(4.37)

(4.38)

where U and V may be taken to be the real line and the height is

assumed to be measured in centimeters. Then, the fuzzy proposition "If

Keith is tall then Adrienne is young" translates into

R(Height(Keith),Age(Adrienne)) = tall' e young (4.39)

or, more explicitly,

R(Height(Keith),Age(Adrienne)) =
UxV

(lMl>ytal1(u)+yyounq(v)))/(u,v)

(1 -(1 -S(u;160,170,180)
UxV

+ 1 -S(v;20,30,40)))/(u,v)

(4.40)

If the conditional fuzzy proposition "If X is F then Y is G else Y

is H" is interpreted as the conjunction of the propositions "If X is F

then Y is G" and "If X is not F then Y is H," then by using in combination

the rule of negation (4.2), the rule of conjuntive composition (4.26), and

the rule of conditional composition (4.36), the translation of the proposi

tion in question is found to be expressed by

If X is F then Y is G else Y is H — R(A(X),B(Y)) = (F'©G)n(F©fl)

(4.41)

As a simple illustration, assume that U = V = 1+2 +3 +4,
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F = small = 1/1 + 0.6/2 + 0.2/3 (4.42)

G = large = 0.2/2 + 0.6/3 + 1/4 (4.43)

and H = very large = 0.02/2 + 0.36/3 + 1/4 . (4.44)

Then

F' = 0.4/2 + 0.8/3 + 1/4 (4.45)

F' = 0.4/((2,l) +(2,2)+(2,3)+(2,4)) (4.46)

+ 0.8/((3,l) + (3,2) + (3,3) + (3,4))

+ l/((4,l) + (4,2) + (4,3) + (4,4))

G = 0.2/((l,2)+ (2,2)+(3,2)+(4,2)) (4.47)

+ 0.6/((l,3)+ (2,3)+ (3,3)+ (4,3))

+ 1/(0,4)+ (2,4)+ (3,4)+ (4,4))

F'©G = 0.2/(1,2) + 0.6/(1,3) + 1/(1,4) (4.48)

+ 0.4/(2,1) + 0.6/(2,2) + 1/(2,3) + 1/(2,4)

+ 0.8/(3,1) + 1/(3,2) + 1/(3,3) + 1/(3,4)

+ 1/(4,1) + 1/(4,2) + 1/(4,3) + 1/(4,4)

F©H = 1/0,1) + 1/0,2) +1/0,3) + 1/(1,4) (4.49)

+ 0.6/(2,1) + 0.64/(2,2) + 0.96/(2,3) + 1/(2,4)

. + 0.2/(3,1) + 0.24/(3,2) + 0.56/(3,3) + 1/(3,4)

+ 0.04/(4,2) + 0.36/(4,3) + 1/(4,4)

and hence the translation of "If X is small then Y is large else Y is very

large" becomes
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R(X,Y) = 0.2/(1,2) + 0.6/(1,3) + 1/(1,4) (4.50)

+ 0.4/(2,1) + 0.6/(2,2) + 0.96/(2,3) + 1/(2,4)

+ 0.2/(3,1) + 0.24/(3,2) + 0.56/(3,3) + 1/(3,4)

+ 0.04/(4,2) + 0.36/(4,3) + 1/(4,4)

As in the case of the preceding example, translation rules may be used

in combination to yield the meaning of composite fuzzy propositions which

contain modifiers, conjunctions, disjunctions and implications. For example,

if X, Y and Z are associated with the universes of discourse U, V and

W, respectively, then using (4.7), (4.26) and (4.36) in combination, we find

X is very small and (if Y is small then Z is very large) (4.51)

-> R(X,Y,Z) = small x (small1eTarge*)

2
where small and large are cylindrical extensions in VxW of small and

2
large , respectively.

In addition to the rules discussed above, we shall regard as a rule of

Type II the relational rule

X is in relation F to Y — R(A(X),B(Y)) = F (4.52)

or, equivalently,

X and Y are F — R(A(X),B(Y)) = F (4.53)

where F is a fuzzy relation in UxV. For example, "Naomi is much taller

than Maria" translates into

R(Height(Naomi),Height(Maria)) = much taller, (4.54)

2
where much taller is a fuzzy relation in R defined by, say,

much taller =

R

S(u-v;0,5,10)/(u,v) . (4.55)
2
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Similarly, the fuzzy proposition "X and Y are approximately equal"

translates into

R(X,Y) = approximately equal

2
where approximately equal is a fuzzy relation in R defined by, say,

approximately equal = (l +lTlVVlu.v) . (4.56)
2

R^

The rules and the examples given in the preceding discussion are

intended merely to illustrate some of the basic ideas behind the characteri

zation of the meaning of composite propositions by relational assignment

equations. We proceed next to the somewhat more involved issues relating

to the treatment of fuzzy quantification and truth-functional modification.

5. Translation Rules for Fuzzy Propositions - Types III and IV

As was stated earlier, translation rules of Type III apply to fuzzy

propositions of the general form "QX are F," where Q is a fuzzy quanti

fier such as most, some, few, many, very many, not many, etc.; and F is

a fuzzy subset of a universe of discourse U = {u}. Typical examples of

propositions of this type are: "Most Swedes are tall," "Not many Italians

are blond," "Some X's are large," etc.

Basically, what we are dealing with in cases of this type is not a

single fuzzy proposition such as "X is F," but a fuzzy proposition concern

ing a collection of fuzzy or nonfuzzy propositions. More specifically,

consider the proposition "Most Swedes are tall," and let S,,...,SN be a

population of Swedes, with y., i = 1,.,.,N, representing the grade of

membership of S. in the fuzzy set tall.
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Now, if F is a fuzzy subset of a finite universe of discourse

U = {u,,...,u }, then the cardinality (or the power) of F is expressed

by [22], [2]

|F| ^y1 +---+yN (5.1)

where y. is the grade of membership of y. in F and + is the arith-
1 o

metic sum. Using (5.1), the proportion of Swedes who are tall may be

expressed as

rtall
V'^N (5.2)

and thus the proposition "Most Swedes are tall" translates into

y, + •••+ yM
R(J R ^) =most (5.3)

where most is a fuzzy subset of the unit interval defined by, say,

ymncf = S(0.5,0.75,1) . (5.4)
most

Stated in more general terms, the rule of quantification asserts that

the translation of "QX are F" is given by

ui + *'' + ^M
QX are F— RH jj -) =Q (5.5)

or

QX are F->• R(y] +••• +yN) =Q (5.6)

depending, respectively, on whether Q represents a fuzzy proportion (e.g.,

most) or a fuzzy number (e.g., several). Thus, in (5.5) Q is a fuzzy

subset of the unit interval, while in (5.6) Q is a fuzzy subset of the

In some instances it may be necessary to modify (5.1) by introducing a
cutoff such that the y-j below the cutoff are excluded from the right-
hand member of (5.1).
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integers {0,1,2,...}.

It is important to note that the relational assignment equations (5.5)

and (5.6) define a fuzzy restriction not in U but in the N-cube [0,1] .

It is this restriction, then, that constitutes the meaning of the fuzzy

proposition "QX are F." As a simple illustration, let N = 4 and y, = 0.8,

y2 =0.6, y3 =1 and y^ =0.4. Then r.all =0.7 and, if most is defined

by (5.4), ymoS|-(0-7) =0.65. Thus, the grade of membership of the point

(0.8,0.6,1,0.4) in the fuzzy restriction associated with the proposition

"Most Swedes are tall" is 0.65.

Another point that should be noted is that the quantifier some, in the

sense used in classical logic, may be viewed as the complement of none,

where none is a subset of [0,1] (or {0,1,...,}) defined by

Thus.,

y«««o(u) = 1 f°r u = 0
none

= 0 elsewhere

some = none'

= not none

(5.7)

(5.8)

The dual (see (3.30)) of none is al1, with the membership function of all

expressed by

yall(u) =1 for u =1 . (5.9)

= 0 elsewhere

Thus,

D(none) = aji (5.10)

and hence

some = not none (5.11)

= D(not all)
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In everyday discourse, however, some is usually used not in the nonfuzzy

sense of (5.11), but in a fuzzy sense which may be approximated as

some = not none and not many (5.12)

or, alternatively, as

some = D(most and not all) . (5.13)

Note that this interpretation of some as a fuzzy subset of [0,1] differs

substantially from the nonfuzzy definition expressed by (5.11).

When N is large, it is advantageous in many cases to use a limiting

form of (5.5) as N -*• «. Specifically, with reference to (5.1), let p(u)du

denote the proportion of Swedes whose height is in the interval [u,u+du].

Then, the proportion of Swedes who are tall is given by

where y. ,,(u) denotes the grade of membership of a Swede whose height

is u in the fuzzy subset of U labeled tall. This implies that

i= |„p(u)vWu)du (5-14)

Most Swedes are tall —*- R( p(u)ytall(u)du) =most (5.15)

and, more generally, that the translation of "QX are F" is given by

QX are F-* R(f p(u)yF(u)du) =Q (5.16)
Ju *"

where p(u)du is the proportion of values of an implied attribute A(X)

which fall in the interval [u,u+du].

As an illustration, suppose that tall and most are defined as fuzzy

subsets of U = [0,200] and V = [0,1], respectively, by

y tall
= S(160;170;180) (5.17)
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and

ymost = 5(0.5,0.75,1) . (5.18)

Then, the compatibility of a distribution p with the restriction induced

by the fuzzy proposition p ^ Most Swedes are tall is given by

f200
un(p) = S( p(u)S(u,160;170,180)du;0.5,0.75,1) . (5.19)

Through this equation, the proposition in question defines a fuzzy set in

the space of distributions {p} in U, with the membership function of

the set in question expressed by (5.19). This fuzzy set, then, may be

viewed as a representation of the meaning of p.

Turning to translation rules of Type IV, let p be a fuzzy proposition

and let p* be a fuzzy proposition which is derived from p by truth-

functional modification, that is,

p* § p is T (5.20)

where t is a linguistic truth-value. As an illustration, if p 4 Andrea

is young, then p* might be

p* ^ Andrea is young is very true . (5.21)

Similarly, if p = X and Y are approximately equal, then p* might be

p* 4 X and Y are approximately equal is more or less true . (5.22)

For concreteness, we shall focus our attention on fuzzy propositions

of the form p ^ X is F, where F is a fuzzy subset of U = {u}. Let t,

t e [0,1], be a numerical truth-value of p. If we assume, as stated in

Sec. 3, that t may be interpreted as the degree of consistency of the
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reference nonfuzzy proposition "X is u" with the fuzzy proposition "X is F,"

then

t=uF(u) (5.23)

and hence

-1u - y"'(t) (5.24)

-1 ,where yF is afunction (or, more generally, arelation) which is inverse

to yp. As an illustration, if

F=young =f(1 -S(u;20,30,40))/u (5.25)
in

and t = 0.5, then

-1

= 30 years .

u=y~1(0.5) (5.26)

Thus, "Andrea is young is 0.5 true" translates into "Andrea is 30 years old,"

and, more generally, "X is F is t" translates into

Xis yF](t) . (5.27)

To extend (5.27) to linguistic truth-values, we may employ the exten

sion principle in a manner similar to that of Sec. 3. Specifically, if g

is a mapping from U to V and F is a fuzzy subset of U, then g(F)

is given by

g(F) i <g(F)> (5.28)

k f uF(u)/g(u)

where the angular brackets signify that <g(F)> is to be evaluated by the



43

19
use of the extension principle. As a simple illustration, if

U = 0 + 0.1 + 0.2 + ••• +0.9+1 (5.29)

and

F = 0.6/0.8 + 0.8/0.9 + 1/1 (5.30)

then for

g(u) = 1-u (5.31)

we have

1 - (0.6/0.8 +0.8/0.9 +1/1) = 0.6/0.2 + 0.8/0.1 + 1/0 (5.32)

while for

g(u) =u2 (5.33)

we obtain

(0.6/0.8 +0.8/0.9 +1/1)2 =0.6/0.64 +0.8/0.81 +1/1 . (5.34)

Equivalently, by regarding g as a binary relation from U to V

and F as a unary fuzzy relation in U, g(F) may be expressed as the

composition of F and U, that is (see A60)

<g(F)> = goF . (5.35)

In particular, if the mapping g: U •> V is 1-1, then (5.35) implies

(through (5.28)) that

ygoF(v) -uF(u) (5.36)

where v = g(u) is the image of u.

The angular brackets may be suppressed whenever it is clear from the con
text that the evaluation is to be performed via the extension principle.
If it is necessary to stipulate that the extension principle is not to be
used, brackets of the form \ } may be used for this purpose.
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By applying these relations to (5.24), the rule of truth-functional

modification may be expressed as the translation rule (of Type IV)

p* = X is F is x -• q £ X is F* (5.37)

where F is a fuzzy subset of U, t is a linguistic truth-value and F*

is a fuzzy subset of U which is related to F and t by

F* =<yF](x)> =yF]oT (5.38)

-1where yF is the inverse of the membership function of F and ° is the

operation of composition. In particular, if yF is a 1-1 mapping from U

to [0,1], then

v(u) =\Mu)) (5*39)

where y is the membership function of t.
T

On combining (5.37) with (5.38), the rule of truth-functional modifi

cation may be expressed as

XisFisi- R(A(X)) =yj^ox (5.40)

where A(X) is an implied attribute of X.

As a simple illustration, assume that U = 1+2 +3+4 and consider

the fuzzy proposition

p* = X is small is very true (5.41)

where small is defined by

small = 1/1 + 0.8/2 + 0.4/3 (5.42)

and

true = 0.2/0.6 + 0.5/0.8 + 0.8/0.9 + 1/1 . (5.43)



45

From (5.43) and (4.8 ), it follows that

very true = 0.04/0.6 + 0.25/0.8 + 0.64/0.9 + 1/1 (5.44)

and hence by (5.39) the translation of (5.41) is given by

R(X) = 1/1 + 0.25/2 (5.45)

which is approximately equivalent to

R(X) = very very small (5.46)

if

very very small = 1/1 + 0.4/2 + 0.03/3 (5.47)

is regarded as a linguistic approximation to the right-hand member of (5.45),

It is instructive to consider also a continuous version of this example

Assuming that U = [0,») and

and

small =[0°(l +(^)2)"1/u (5.48)

true =f (1+160-v)2)"1^ (5.49)
J0

yery_true =f (1 +16(l-v)2)"2/v , (5.50)
Jn

we obtain from (5.39) and (5.40) the translation

X is small is very true (5.51)

^R(X) =(0O(l+16(l +(l +(|)2)-1)-2)/u .

By way of comparison, u = 4 is compatible to the degree 0.6 with "X is small"

and to the degree 0.2 with "X is small is very true."
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An important conclusion that may be drawn from the rule of truth-func

tional modification is that the qualification of a fuzzy proposition p

with a linguistic truth-value x has the effect of transforming p* into

an unqualified fuzzy proposition q, with the fuzzy restriction associated

with q related to that of p by (5.37). In this way, a qualified propo

sition such as "X is small is very true" may be approximated to by an unqua

lified proposition such as "X is very very small," and, more generally,

pH is F is t may be replaced by q 4 X is F*.

It is important to recognize, however, that the rule of truth-functional

modification rests in an essential way on the assumption that a numerical

truth-value in a fuzzy proposition of the form p* = X is F is t serves as

a measure of consistency of the nonfuzzy proposition r A X is u with the

fuzzy proposition p 4 X is F. If this assumption is not valid, it might

still be possible to assert that a qualified fuzzy proposition of the form

p* 4 X is F is x is equivalent to an unqualified fuzzy proposition of the

form q 4 X is F*. However, the dependence of F* on F and x might

not be correctly expressed by (5.38), since it is affected by the form of

the reference proposition, r, as well as the criterion employed to define

the consistency of p with r.

This concludes our discussion of translation rules of Types I, II, III

and IV. As was stated earlier, these rules may be used in combination to

yield translations of more complex composite fuzzy propositions, e.g.,

(If X is large is true and Y is small is very true then it is more or less

true that most Z's are small) is very true. In general, the translations

of such propositions assume the form of a system of relational assignment

equations which, in graphical form, may be represented as a semantic network

or a conceptual dependency graph [113]-[118].
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6. Truth-Values of Composite Propositions

The translation rules stated in Sees. 4 and 5 provide a means of deter

mining the restriction associated with a composite proposition from the

knowledge of the restrictions associated with its constituents. In an

analogous fashion, the truth valuation rules given in this section provide

a means of computing the truth-value of a composite proposition from the

knowledge of the truth-values of its constitutents.

As will be seen in the sequel, the rules for truth valuation may be

inferred from the corresponding translations rules of Types I, II, III and

IV. In what follows, we shall describe the basic idea behind this method

and illustrate it by several examples.

Let p be a fuzzy proposition of the form "X is F" and let t = v(p)

be its numerical truth-value in V = [0,1]. We assume that F is a fuzzy

subset of a universe of discourse U = {u}, and that A(X), an implied

attribute of X, is a fuzzy variable which takes values in U, with F

representing a fuzzy restriction on the values of A(X).

As was stated in Sec. 3, a proposition of the form "X is F is t true,"

e.g., "Paule is tall is 0.8 true" means that the grade of membership of

Paule in the class of tall women is 0.8, or, equivalently, that

ytall(Height(Paule)) =0,8 (6.1)

where ytal-i is the membership function of the fuzzy subset tall of the

real line.

Now, if the truth-value of the proposition "Paule is tall" is 0.8, then

what is the truth-value of the proposition "Paule is very tall?" If we

assume that the effect of the modifier very is defined by (4.8), then it

follows from the concentration rule (4.7) that the grade of membership of

Height(Paule) in very tall — and hence the truth-value of the proposition
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p = Paule is very tall -- is given by

v(Paule is very tall) =0.82 (6.2)

and, more generally,

v(Paule is very tall) =(v(Paule is tall))2 (6.3)

=t2

where v(p) stands for the truth-value of p. Thus, the rule for computing

the numerical truth-value of a fuzzy proposition of the form "X is very F"

from the knowledge of the numerical truth-value of the proposition "X is F,"

may be expressed as

X is Fist true => X is very F is t true (6.4)

where t is the numerical truth-value of the fuzzy proposition "X is F."

Now, having this rule for numerical truth-values, we can readily extend

it to linguistic truth-values by the application of the extension principle,

as we have done in Sees. 3 and 5. Thus, for such values (6.4) becomes

X is F is x =» X is very F is <x > (6.5)

2
where the angular brackets indicate that the evaluation of <x > is to be

performed by the use of the extension principle.

In more specific terms, this means that, if

v(X is F) = x

0

— i

rl
= uT(u)/v , v e V , (6.6)

where y is the membership function of the linguistic truth-value x,

then
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Then, by (6.7)
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2
v(X is very F) = <x > (6.7)

0T

As a simple illustration, suppose that V = 0 + 0.1 + ••• + ! and

v(Paule is tall) = very true (6.8)

true = 0.6/0.8 + 0.9/0.9 + 1/1 (6.9)

y»/v2 .

very true = true (6.10)

= 0.36/0.8 + 0.81/0.9 + 1/1 .

2
v(Paule is very tall) = <(very true) > (6.11)

=<(0.36/0.8 +0.81/0.9 +l/l)2>

= 0.36/0.64 + 0.81/0.81 + 1/1

and, if true is taken to be a rough linguistic approximation to the right-

hand member of (6.11), i.e.,

true = 0.6/0.8 + 0.9/0.9 + 1/1 (6.12)

= LA (0.36/0.8+ 0.81/0.9+.1/1) ,

then we can infer from (6.11) that

v(Paule is very tall) s true . (6.13)

More generally, let q be a fuzzy proposition of the form q ^ X is mF

where m is a modifier whose effect on F is described by the equation

umF(u) =g(uF(u)) , u e U (6.14)
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where g is a mapping from [0,1] to [0,1]. Then, from the foregoing

discussion it follows that

X is F is x => X is mF is <g(x)> (6.15)

where x is the linguistic truth-value of p^ X is F, and

rl
<g(T)> = yT(v)/g(v) (6.16)

JO T

where y is the membership function of x. By analogy with (4.1), the

rule expressed by (6.15) will be referred to as the modifier rule for truth

valuation.

In particular, for the case where m £ not, (6.15) becomes

X is F is x => X is not F is D(x) (6.17)

where

D(T) = <i-T> (6.18)

is the dual of x (see (3.30)). For example, if t = true, then

D(true) = <1 -true>

= false

and hence

X is F is true •» X is not F is false (6.19)

where

y* n (v) = y* O-v) , v e V . (6.20)
false; Mtruev '

By analogy with (4.2), the rule expressed by (6.17) will be referred to as

the rule of negation for truth valuation. It should be observed that the

application of the rule of truth-functional modification to the left-hand

member of the (6.17) — and, more generally, (6.15) — yields the same
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restriction as its application to the right-hand member.

Turning to rules of Type II, consider the composite proposition

p £ X is Fand Y is G, and assume that the numerical truth-values of the

constituent propositions are

v(X is F) = s (6.21)

and

v(X is G) = t . (6.22)

Now, from the rule of conjunctive composition (4.26), it follows that

p translates into

R(A(X),B(Y)) = FxG (6.23)

and consequently

v(X is F and Y is G) = grade of membership of (A(X),B(Y)) in FxG

»yF(A(X))Mi6(B(Y)) (6.24)

by the definition of FxG (A56).

On the other hand, we have (by (3.15))

v(X is F) =uF(A(X)) (6.25)

v(Y is G) =yG(B(Y)) (6.26)

and hence

v(X is F and Y is G) = v(X is F) -»v(Y is G) (6.27)

= s -1

or, equivalently,

(X is F is s true, Y is G is t true) => (X is F and Y is G) is s-t true

(6.28)
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As in the case of (6.15), we observe that

-l/.x . n/vx _ ..-1Xis Fis strue -> Xis Up'(s) -+ A(X) =y~'(s) (6.29)

Yis Gis ttrue — Yis y'^t) — B(Y) =y^(t) (6.30)

(X is Fand Y is G) is s-t true — (A(X),B(Y)) evFx6(s-t) . (6.31)

Thus, in this instance we obtain the inclusion relation

(y-^shy^t)) ey^ls^t) (6.32)

20
rather than equality, as in (6.15).

To extend (6.28) to linguistic truth-values, we can invoke the exten

sion principle, as we have done in the case of the modifier rule (4.1). In

this way, we are led to the rule of conjunction for truth valuation, which

asserts that

v(X is F and Y is G) = <v(X is F) - v(Y is G)> (6.33)

where the angular brackets signify that the evaluation is to be performed

by the use of extension principle. Thus, if

v(X is F) = a (6.34)

and

v(X is G) = x (6.35)

where a and x are linguistic truth-values with membership functions

y and y , respectively, then (6.33) may be restated as

(X is Fis a, Y is G is x) =* (X is Fand Y is G) is <a-x> (6.36)

20This touches upon the issues of referential transparency and extension-
ality in fuzzy logic which are not as yet well understood.
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<a^x> = yju) ~y(v)/u^ v , u, v e [0,1] .
JQ

(6.37)

In a similar fashion, the rule of disjunction for truth evaluation is

found to be expressed by

(X is F is a, Y is G is x) => (X is F or Y is G) is <a-x> (6.38)

where

rl
<a v x> = ya(u) -yT(v)/u-v (6.39)

while the rule of implication reads

(X is F is a, Y is G is x) ** (If X is F then Y is G) is «l-a>©x>

(6.40)

21
where © denotes the bounded sum (see A30) and

<(l-a)ex> =
A

yQ(u) -yT(v)/l - (1-u+v) . (6.41)

As an illustration, assume that

a 4 true = 0.6/0.8 + 0.9/0.9 + 1/1 (6.42)

x £ not true « 1/(0 +0.1 +••• +0.7) + 0.4/0.8 + 0.1/0.9 . (6.43)

Then

<a-x> = 1/(0 +0.1 + ••• +0.7) + 0.4/0.8 + 0.1/0.9 (6.44)

= not true

As shown in [ 1 ], this expression for if...then... may be derived alter
natively by applying the extension principle to the definition of impli
cation in Lukasiewicz's L ^ . logic.



54

<a- x> = true (6.45)

and

«l-g>8x> = <false ® not true> (6.46)

= 1/(0 +0.1 + ••• +0.7) + 0.9/0.8 + 0.6/0.9 (6.47)

s not very very very true (6.48)

where the right-hand member of (6.48) is a linguistic approximation to the

right-hand member of (6.47).

Proceeding in a similar fashion, we can develop valuation rules for

composite propositions of more complex types than those considered in the

previous discussion. We shall not pursue this subject further in the pre

sent paper.

7. Rules of Inference in Fuzzy Logic

Stated informally, the rules of inference in fuzzy logic constitute a

collection of propositions -- some of which are precise and some are not --

which serve to provide a means of computing the fuzzy restriction associated

with a variable (X.|,...,X ) from tne knowledge of the fuzzy restrictions

associated with some other variables Y,,...,Y .

A typical example of an inference process in fuzzy logic is the follow

ing. Consider the fuzzy propositions

p 4 X is small (7.1)

and

q ^ X and Y are approximately equal (7.2)

where U = V = l+2 + 3 +4 and small and approximately equal are defined by

small = 1/1 + 0.6/2 + 0.2/3
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and

approximately equal = 1/(0 ,1) +(2,2) +(3,3) +(4,4)) (7.4)

+ 0.5/((l,2) +(2,l) + (2,3) + (3,2)

+ (3,4)+ (4,3)) .

By using (2.4) and (4.53), the translations of these propositions are found

to be

R(X) = small (7.5)

and

R(X,Y) = approximately equal . (7.6)

Now, let us replace p by its cylindrical extension, p, which reads

p = X is small and Y is unrestricted (7.7)

and form the conjunctive composition of p and q, i.e.,

p and q = (X is small and Y is unrestricted) and (7.8)

(X ana' Y are approximately equal)

which by (4.28) translates into

pand q A R*(X,Y) = (small xU) n (approximately equal) (7.9)

implying that the membership function of the restriction defined by (7.9)

is given by

yR*(u,v) =Psma11(u) -Approximately equal (u,v) . (7.10)

From the restriction R*(X,Y) defined by (7.10), we can infer the

fuzzy restriction associated with Y by projecting R*(X,Y) on the universe

of discourse associated with X, that is
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R(Y) = Proj R*(X,Y) on U (7.11)

which, by the definition of projection (see (A58), (A60)) is equivalent to

R(Y) = R(X)oR(X,Y)

= small oapproximately equal

(7.12)

where the right-hand member denotes the composition of the unary fuzzy rela

tion small with the binary fuzzy relation approximately equal. Expressed

in terms of membership functions of R(Y), small and approximately equal,

(7.12) reads

Wv) =Vu(psmall(u) ^approximately egual(u'v)) (7J3)

where V denotes the supremum over u e U.

To compute yDm from (7.13), it is convenient to represent the
lR(Y)

22right-hand member of (7.13) as the max-min product of the relation matrices

of small and approximately equal. In this way, we obtain

[1 0.6 0.2 0]o

1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.5

0 0 0.5 1

= [1 0.6 0.5 0.2] (7.14)

which implies that

R(Y) = 1/1 + 0.6/2 + 0.5/3 + 0.2/4 (7.15)

To approximate to the right-hand member of (7.15) by a linguistic value

of Y, we note that if more or less is defined as a fuzzifier (see (4.17))

wi th

22In this product, the operations of + and product are replaced by
and ~, respectively.
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K(l) = 1/1 + 0.7/2 (7.16)

K(2) = 1/2 + 0.7/3

K(3) = 1/3 + 0.7/4

K(4) = 1/4

then more or less small becomes

more or less small = 1/1 + 0.7/2 + 0.42/3 + 0.14/4 (7.17)

which is a reasonably close approximation to (7.15) in the sense that

more or less small = LAQ/1+0.6/2 +0.5/3 +0.2/4) . (7.18)

In this way, then, from the fuzzy propositions p ^ X is small and

q 4 X and Y are approximately equal we can infer exactly the fuzzy

proposition

Y is 1/1 + 0.6/2 + 0.5/3 + 0.2/4 (7.19)

and approximately

Y is more or less small . (7.20)

The essential features of the procedure which we have employed in the

above example may be summarized as follows.

Let p and q be fuzzy propositions of the form

p * X is F (7.21)

q £ X is in relation G to Y (7.22)

where F is a fuzzy subset of U and G is a fuzzy relation in UxV.

Then, from p and q we can infer exactly

r £ Y is FoG (7.23)
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and approximately

r JY is LA(FoG) (7.24)

where o is the operation of composition and LA stands for "linguistic

23
approximation." We shall refer to this rule as the compositional rule

of inference [7], [1], [ 2]. It should be noted that this rule is an

instance of a semantic rule in the sense that r depends on the meaning

of F and G through the composition FoG.

A special but important case of the compositional rule of inference

results when G is a function from U to V, with q having the form

q A Y is g(X) . (7.25)

In this case, the composition of F and G yields

FoG = <g(F)> (7.26)

where the angular brackets signify that <g(F)> is to be evaluated by the

use of the extension principle. Thus, the rule of inference which applies

to this case may be expressed as

p 4 X is F (7.27)

q H is g(X)

r £ Y is <g(F)>

24
and we shall refer to it as the transformational rule of inference.

As a simple illustration of (7.27), suppose that U = V = 0 +1+2 +3+---,

F 4 small £ yo + 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (7.28)

23Exposition of a least squares approach to linguistic approximation may be
found in [53].

24The transformational rule of inference is closely related to the rule for
computing the membership function of a set induced by a mapping [3].
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and g is the operation of squaring. Then,

<small2> =1/0 + 1/1 +0.8/4 +0.6/9 +0.4/16 +0.2/25 (7.29)

and, we have

p 4 X is small

q Ay is X2
r A Y is 1/0 +1/1 +0.8/4 +0.6/9 +0.4/16 +0.2/25

Another important special case of (7.23) is the rule of compositional

modus ponens. Specifically, for the case where q is of the form

q A if x is F then Y is G (7.30)

the translation rule of conditional composition (4.36) asserts that

If X is G then Y is H-» (A(X),B(Y)) = S' © fl (7.31)

where G' is the cylindrical extension of the complement of G, H is the

cylindrical extension of H, © is the bounded sum, and A(X) and B(Y)

are the implied attributes of X and Y, respectively.

On applying (7.31) to the case where q is of the form (7.30), we

obtain the rule of compositional modus ponens, which reads

pA X is F • (7.32)

q A if x is G then Y is H

r A Y is Fo (G'©R)

or, as a linguistic approximation,

r £ Y is LA(Fo(g-efl)) . (7.33)

As a simple example which does not involve linguistic values, assume
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that U = V = l+2 + 3 + 4 and

Then

and

F = 0.2/2 + 0.6/3 + 1/4

G = 0.6/2 + 1/3 + 0.5/4

H = 1/2 + 0.6/3 + 0.2/4

1111

0.4 1 1 0.6
G' © fi =

0 1 0.6 0.6

0.5 1 1 0.7

Fo(G'©R) = [0 0.2 0.6 l]o

= [0.5 1 1 0.7]

1111

0.4 1 1 0.6

0 1 0.6 0.6

0.5 1 1 0.7

from which we can infer that

Y is 0.5/1 + 1/2 + 1/3 + 0.7/4 .

(7.34)

(7.35)

(7.36)

(7.37)

(7.38)

(7.39)

As should be expected, the compositional rule of modus ponens reduces

to the conventional rule of modus ponens when F is nonfuzzy and F = G.

Thus, under these assumptions it can readily be verified that

Fo(F'©G) = G . (7.40)

When F is fuzzy, however, (7.40) does not hold true, except as an approxi

mation. The explanation for this phenomenon [32] is that the implicit part

of q, namely, "If X is not F then Y is unrestricted" overlaps the explicit
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part, "If X is F then Y is H" resulting in an "interference" term which

vanishes when F is nonfuzzy.

Underlying the rules of inference which we have, formulated in the

foregoing discussion is a basic principle — to which we shall refer as the

projection principle — which asserts that if R(X-|,...iXn). is a fuzzy

restriction associated with an n-ary fuzzy variable (X1,...,Xn) which

takes values in U,x--«xUn> then the restriction on (X. ,...,X. ),
in 'Ik

where (i-,,...,ik) is asubsequence of the index sequence (1,2,...,n),
is given by the projection of R(X,,...,X ) on U. x...xU. , where

i n j-j Jm

(j-,,...»j ) is the sequence complementary to (i-j,...,ik) (e.g., if n=5
and (iri2) =(1,3), then (JrJ2,J3) =(2,4,5)). Thus,

R(X, ,...,X. )=Proj R(X,,...,Xn) on U. *'••• xU. (7.41)
'1 'k Jl m

which implies that

^R(X, ,...,X. )(ui '-•'ui.) =V(Ui ,...,u. )^R(X1,...,Xn)(ur--un) •
^ \ ' K Jl Jm • n

(7.42)

The rationale for the projection principle is that, by virtue of

(7.42), the projection of R(X,,...,X) on U. x---xu. yields the
1 n Jl Jm

maximal (i.e., largest) restriction which is consistent with R(Xj,...,Xn).

Thus, by employing the projection principle, we are, in effect, finding

the largest restriction on the variables of interest which is consistent

with the restrictions on the variables which enter into the premises.

We shall conclude our discussion of inference rules in fuzzy logic

with an example of semantic inference from a quantified fuzzy proposition.

Specifically, let us consider the fuzzy proposition

p^ Most Swedes are tall (7.43)
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which by ( 5.3 ) translates into

^1 + •** +^MR(- R -) =most (7.44)

where y., i = 1,...,N, is the grade of membership of S. in the fuzzy

set tall.

Now, suppose that we wish to find the answer to the question "How many

Swedes are very tall?" To this end, we note that if yi is the grade of

membership of S. in tall, then the grade of membership of S.. in very tall

is y.. Consequently, the numerical proportion of Swedes who are very tall

is given by

y, + ••• + yM
r = _] _N (7 45)
rvery tall N . U* D;

The relational assignment equation (7.44) defines a fuzzy set D in

[0,1] whose membership function is expressed by

y, + •••+ yN

^D(yl •' •''V =ymost( N ) * (7'46)

On the other hand, (7.45) defines a mapping from [0,1] to [0,1] which

induces a fuzzy set Py tall in [0,1], with P standing for Proportion.

By the transformational rule of inference (7.27), the membership func

tion of Pverv tall may be expressed as

VW tall* "max W ^T"") (7-47)
y-j»...»yN

with the relation (7.45), i.e.,

u-, + •••+uN
r.very tall N

playing the role of a constraint. Thus, the determination of Pvery ta]i

(7.48)
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reduces to the solution of a nonlinear program expressed by (7.47) and (7.45)

It is apparent by inspection that the maximizing values of y1,...,yN

are given by

"1 •- =VU - /ryerZ tall (?'49)

and hence that

Vrver,y tall) ° V>st(/rvery tafP (7-50)

which is equivalent to

pver^ tail* <—2" (7-51)
where the angular brackets indicate that <most > is to be evaluated by

25
the use of the extension principle.

To summarize, from

p A Most Swedes are tall (7.52)

we can infer that

where

q 4 <Most> Swedes are very tall (7.53)

•1

<Most2> = 0w<v)/v2 • (7-54)

Thus, if Most is defined by, say,

ymost(v) =S(v;0.5,0.75,1) , v e [0,1] (7.55)

25For numerical values of ry tall and most it can readily be shown
that most2 <rw^M «.„,, <mpstj Extending these inequalities to fuzzy

— very ta 11 2
sets leads to the expression r „tal^ = (_> o<most >) n (< omost)

.2.where > ©(most*") denotes the composition of the nonfuzzy binary rela
tion > with the unary fuzzy relation <most/>. Since most c <most^>,
this result is consistent with (7.51).
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where the S-function is expressed by (A17), then

y 2(v) =S(i/v;0.5,0.75,1) . (7.56)
most

In a similar fashion, from the premise "Most Swedes are tall," we can

obtain answers to such questions as "How many Swedes are very very tall?",

"How many Swedes are not very tall?" and, more generally, "How many Swedes

are m tall?" where m is a modifier. As is typical of inference processes

in fuzzy logic, the answers to such questions are fuzzy restrictions rather

than points in or subsets of U. In this lies one of the basic differences

between inference in fuzzy logic, which is inherently approximate in nature,

and the traditional deductive processes in mathematics and its applications.

8. Concluding Remarks

Our exposition of fuzzy logic in the present paper has touched upon

only a few of the many basic issues which arise in relation to this — as

yet largely unexplored — conceptual model of human reasoning and perception.

Clearly, the problems, the aims and the concerns of fuzzy logic are

substantially different from those which animate the traditional logical

systems. Thus, axiomatization, decidability, completeness, consistency,

proof procedures and other issues which occupy the center of the stage in

such systems are, at best, of peripheral importance in fuzzy logic. In

part, these differences stem from the use of linguistic variables in fuzzy

logic but, more fundamentally, they reflect the fact that, in fuzzy logic,

the conception of truth is local rather than universal and fuzzy rather

than precise.
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Appendix

Fuzzy Sets — Notation, Terminology and Basic Properties

The symbols U,V,W,..., with or without subscripts, are generally

used to denote specific universes of discourse, which may be arbitrary

collections of objects, concepts or mathematical constructs. For example,

U may denote the set of all real numbers; the set of all residents in a

city; the set of all sentences in a book; the set of all colors that can

be perceived by the human eye, etc.

Conventionally, if A is a fuzzy subset of U whose elements are

u,,...,u , then A is expressed as

A={ur...,un) . (Al)

For our purposes, however, it is more convenient to express A as

A = u, + ••• +u (A2)
In

or

A = I u. (A3)
1-1

with the understanding that, for all i, j,

and

u. + u. = u. + u. (A4)

u. + u. = u. . (A5)
ill

As an extension of this notation, a finite fuzzy subset of U is

expressed as

or, equivalently, as

F = ii,u, + •• • +y u (A6)
HI Mn n

F=Vul +*"+yn/un (A7)
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where the y., i = l,...,n, represent the grades of membership of the u.

in F. Unless stated to the contrary, the y. are assumed to lie in the

interval [0,1], with 0 and 1 denoting no membership and fuVI_ member

ship, respectively.

Consistent with the representation of a finite fuzzy set as a linear

form in the u., an arbitrary fuzzy subset of U may be expressed in the

form of an integral

F=fyF(u)/u (A8)
JU r

in which yp: U^ [0,1] is the membership or, equivalently, the compa-

tibility function of F; and the integral denotes the union (defined
JU

by (A28)) of fuzzy singletons yF(u)/u over the universe of discourse U.

The points in U at which yp(u) >0 constitute the support of F.

The points at which yp(u) =0.5 are the crossover points of F.

Example A9. Assume

U = a+ b+c+ d . (A10)

Then, we may have

A = a + b + d (All)

and

F = 0.3a + 0.9b + d (A12)

as nonfuzzy and fuzzy subsets of U, respectively.

If

U = 0 + 0.1 + 0.2 + ••• + 1 (A13)

then a fuzzy subset of U would be expressed as, say,

F = 0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1 . (A14)
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If U = [0,1], then F might be expressed as

Jo 1+u^
(A15)

which means that F is a fuzzy subset of the unit interval [0,1] whose

membership function is defined by

yp(u) = 1

1 +u
2 •

(A16)

In many cases, it is convenient to express the membership function of

a fuzzy subset of the real line in terms of a standard function whose para

meters may be adjusted to fit a specified membership function in an approxi•

mate fashion. Two such functions are defined below.

S(u;a,B,y) = 0
. r "\ 2

= 2
u-a

hr-aj
f ^

5 1 - 2
u-y

[y-aj

= 1

for u <_ a

for a < u £ B

for B < u <_ y

for u > y

tt(u;B,y) =S(u;y-B,y-|»y) for. u<y

(A17)

(A18)

=1-S(u;Y,Y+f»Y+B) for u>y•

In S(u;a,B,Y)s the parameter B, B=̂ , is the crossover point.
In tt(u;B,y). B is the bandwidth, that is the separation between the

crossover points of tt, while y is the point at which tt is unity.

In some cases, the assumption that yp is a mapping from U to

[0,1] may be too restrictive, and it may be desirable to allow \i^ to

take values in a lattice or, more particularly, in a Boolean algebra. For

most purposes, however, it is sufficient to deal with the first two of the
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following hierarchy of fuzzy sets.

Definition A19. A fuzzy subset, F, of U is of type 1 if its membership

function, yp, is a mapping from U to [0,1]; and F is of type n,

n = 2,3,..., if yp is a mapping from U to the set of fuzzy subsets of

type n-1. For simplicity, it will always be understood that F is of

type 1 if it is not specified to be of a higher type.

Example A20. Suppose that U is the set of all nonnegative integers and

F is a fuzzy subset of U labeled small integers. Then F is of type 1

if the grade of membership of a generic element u in F is a number in

the interval [0,1], e.g.,

"-11 integers^ -(l^)2)'1 • «- 0.1.2.... . <«!)

On the other hand, F is of type 2 if for each u in U, yp(u) is a

fuzzy subset of [0,1] of type 1, e.g., for u = 10,

Hsmall integersv ' —

where low is a fuzzy subset of [0,1] whose membership function is defined

by, say,

ylQW(v) =1-S(v;0,0.25,0.5) , ve[0,1] (A23)

which implies that

•1

low = (1 -S(v;0,0.25,0.5))/v . (A24)
0

If F is a fuzzy subset of U, then its g-level-set, F , is a

nonfuzzy subset of U defined by
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Fa =(u| yp(u) >a} (A25)

for 0 < a < 1.

If U is a linear vector space, the F is convex if and only if for

all X e [0,1] and all u,, u« in U,

yp(Xu1 +(l-y)u2) >minfypfu^.ypfug)) (A26)

In terms of the level-sets of F, F is convex if and only if the F are
a

26
convex for all a e (0,1].

The relation of containment for fuzzy subsets F and 6 of U is

defined by

FCG o yp(u) <uG(u) , ueU . (A27)

Thus, F is a fuzzy subset of 6 if (A27) holds for all u in U.

Operations on Fuzzy Sets

If F and G are fuzzy subsets of U, their union, FUG,

intersection, FOG, bounded-sum, F © G, and bounded-difference, F e G,

are fuzzy subsets of U defined by

F U G A PF(u) vyG(u)/u (A28)

F n G A Up(u) -uG(u)/u (A29)

F 0 G § 1- (yp(u)+u6(u))/u (A30)

F0G A| Qv (yp(u)-yG(u))/u (A3!)

26This definition of convexity can readily be extended to fuzzy sets of
type 2 by applying the extension principle (see (A70)) to (A26).
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where - and * denote max and min, respectively. The complement of F

is defined by

r

F' =
JU

or, equivalently,

(l-yp(u))/u

F1 =U9F.

It can readily be shown that F and G satisfy the identities

(F n G)' = F' U G'

(F U 6)' = F' n G'

(F e G)' = F' 0G

(Fee)' = F' e g

and that F satisfies the resolution identity

F = aF
a

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)

(A38)

where F is the a-level-set of F; aF is a set whose membership func-
a fl a

tion is y p = ayp , and
a a JO

denotes the union of the aF, with

a e (0,1].

Although it is traditional to use the symbol u to denote the union

of nonfuzzy sets, in the case of fuzzy sets it is advantageous to use the

symbol + in place of u where no confusion with the arithmetic sum can

result. This convention is employed in the following example, which is

intended to illustrate (A28), (A29), (A30), (A31) and (A32).
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Example A39. For U defined by (A10) and F and G expressed by

F = 0.4a + 0.9b + d (A40)

G = 0.6a + 0.5b (A41)

we have

F + G = 0.6a + 0.9b + d (A42)

F HG = 0.4a + 0.5b (A43)

F0G = a + b + d (A44)

F © G = 0.4b + d (A45)

F' = 0.6a + 0.1b + c (A46)

The linguistic connectives and (conjunction) and or (disjunction) are

identified with n and +, respectively. Thus,

F and G A f n G (A47)

and

F or G A F + G . (A48)

As defined by (A47) and (A48), and and or are implied to be noninter

active in the sense that there is no "trade-off" between their operands.

When this is not the case, and and or are denoted by and* and or* respec

tively, and are defined in a way that reflects the nature of the trade-off.

For example, we may have

Fand* GAJyp(u)yG(u)/u (A49)

For* GAJ(yp(u)+uG(u)-yp(u)yG(u))/u (A50)

whose + denotes the arithmetic sum. In general, the interactive versions

of and and or do not possess the simplifying properties of the connectives
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defined by (A47) and (A48), e.g., associativity, distributivity, etc

a
If a is a real number, then F is defined by

Fa 4 (yp(n))a/u . (A51)

For example, for the fuzzy set defined by (A40), we have

?c = 0.16a + 0.81b + d (A52)

and

F1/2 = 0.63a + 0.95b + d (A53)

These operations may be used to approximate, very roughly, the effect of

the linguistic modifiers very and more or less. Thus,

very F 4 F' (A54)

and

ArV2more or less F § F (A55)

If F,,...,F are fuzzy subsets of U,,...,U , then the cartesian

product of F,,... ,F is a fuzzy subset of U, * •'•• •* U defined by

Flx...xFn = (yp (u-j) yp (un))/(ur...,un)

U1x.'.xun
(A56)

As an illustration, for the fuzzy sets defined by (A40) and (A41), we have

FxG = (0.4a +0.9b + d) x (0.6a + 0.5b)

= 0.4/(a,a) + 0.4/(a,b) + 0.6/(b,a)

+ 0.5/(b,b) + 0.6/(d,a) + 0.5/(d,b)

which is a fuzzy subset of (a +b+c+d) x(a +b+c+ d).

(A57)
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Fuzzy Relations

An n-ary fuzzy relation R in U, * ••• xu\ is a fuzzy subset of

1X*"XU. The projection of R on U. x-.-xU. , where (i,,...,i.)
in i i l», IK

is a subsequence of (l,...,n), is a relation in U. x--«xU. defined by

U

Proj RonU x...xu AJv ^ |U ^ #, «„)
I K J-i J^

U. x...xu.

nl \

(A58)

where (j1,.. .,jj is the sequence complementary to (i-|,...,i*k) (e.g.,

if n = 6 then (1,3,6) is complementary to (2,4,5)), and V
u• ,•.•,u.
Ji J^

denotes the supremum over U. x-.-xU. .
Jl J£

If R is a fuzzy subset of U. ,...,U. , then its cylindrical exten-
M \

sion in U, x...xU is a fuzzy subset of U, x • • • x Un defined by
in in

R = jyR(U. ,...,U. )/(ur...,un) . (A59)

U1X"A
In terms of their cylindrical extensions, the composition of two

binary relations R and S (in U^U2 and U2xU3, respectively) is

expressed by

Rb S =Proj RHS on U1 *u"3 (A60)

where R and S are the cylindrical extensions of R and S in

U,xU2xU3. Similarly, if R is a binary relation in U^U^ and S is

a unary relation in Up, their composition is given by

RoS =Proj RHS on U1 . (A61)
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Example A62. Let R be defined by the right-hand member of (A57) and

S = 0.4a + b + 0.8d .

Then

Proj Ron U-j (A a+b+c+d) =0.4a +0.6b +0.6d

and

Ro S = 0.4a + 0.5b + 0.5d .

The Extension Principle

Let g be a mapping from U to V. Thus,

v = g(u)

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F =Vl +..-+Vn

or, more generally,

F = yp(u)/u .

By the extension principle, the image of F under g is given by

or, more generally,

g(F) =u^d^) + ••• +ung(un)

g(F) = yP(u)/g(u) .
u h

(A63)

(A64)

(A65)

(A66)

(A67)

(A68)

(A69)

(A70)

Similarly, if g is a mapping from UxV to W, and F and G are

fuzzy subsets of U and V, respectively, then

g(F,G) = (yp(u) -u6(v))/g(u,v) (A71)
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Example A72. Assume that g is the operation of squaring. Then, for the

set defined by (A14), we have

g(0.3/0.5+ 0.6/0.7+ 0.8/0.9+ 1/1) (A73)

= 0.3/0.25 + 0.6/0.49 + 0.8/0.81 + 1/1 .

Similarly, for the binary operation - (4 max), we have

(0.9/0.1+0.2/0.5 +1/1) - (0.3/0.2 +0.8/0.6) (A74)

= 0.3/0.2 + 0.2/0.5 +.0.8/1 + 0.8/0.6 + 0.2/0.6 .

It should be noted that the operation of squaring in (A73) is different

from that of (A51) and (A52).
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