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ABSTRACT

This paper presents a new closed form analytical formula for representing

n-dimensional surfaces and scalar functions of n variables which are piecewise-

linear over each cross section obtained by freezing any combination of n-1 of

the n coordinates. This new section-wise piecewise-linear representation can

be easily programmed with efficient computer storage. It is a global representa

tion in the sense that a single formula is used to compute for f(x,,x«,...,x )
1 z n

for all values of (x.,x«,...,x ). Since this representation is expressed in

closed analytic form, it allows standard mathematical operations and manipula

tions to be carried out in theoretical studies. In particular, it led to the

possibility of deriving explicit closed form expressions for system parameters

and design formulas. Examples are given which illustrate the potential applica

tions of this representation in the modeling and analysis of nonlinear devices,

circuits and systems.
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INTRODUCTION

Piecewise-linear approximation of one or more cross sections of nonlinear

multi-dimensional characteristics and surfaces has been widely used in many fields

of science [1-6] and Engineering [7-14]. The main motivation for its wide usage

lies in the possibility for taking advantage of well-established linear tech

niques of analysis over each region where the characteristic is linear. Another

reason for resorting to piecewise-linear approximations is that no computationally

efficient techniques are currently available for approximating functions of

several variables [15]. Although more efficient n-dimensional generalizations of

the promising spline function approach [16] may someday be developed, its use

will tend to complement rather than compete with piecewise-linear approximations.

There are three major disadvantages in current piecewise-linear approxima

tion techniques: First, the lack of an explicit analytical representation pre

cludes the possibility of carrying out any analytical studies involving piecewise-

linear functions. This has restricted current piecewise-linear applications to

either numerical calculations [17] or graphical analysis [12]. The second draw

back is the need to store an immense amount of data for high-dimensional func

tions in order that the linear equations over each region in the n-dimensional

space 1R may be retrieved for computation purposes. The third drawback is the

high overhead cost usually involved in programming and bookkeeping operations

and manipulations involving piecewise-linear functions.

Our objective in this paper is to present an explicit analytical repre-

sentation for multi-dimensional functions f(x,,x«,...,x ) which is piecewise-
— 1 L n

linear over each cross-section in 1R defined by holding any n-1 coordinates

fixed. ,We call this a section-wise piecewise-linear representation to emphasize

the fact that while our representation agrees with the conventional piecewise-

linear representation for functions of one variable (n=l), it is not a piecewise-

linear representation when n >1. On the contrary, our canonical representation

for n > 2 is at least quadratic in the sense that it contains all product term

combinations such as x. ,x x,,x x^x^,.. .,x x^... xn» In fact, our representa
tion is somewhat reminiscent of the tensor product approach usually used for

approximating functions of n-variables [15]. However, our representation has

the important advantage that all coefficients can be efficiently computed.

Moreover, since our representation is expressed in analytic form, it is a

global representation requiring simple programming efforts while allowing
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efficient data storage and retrieval. But above all, our closed form representa

tion allows standard mathematical operations and manipulations to be performed on

equations involving section-wise piecewise-linear representations. In particular,
explicit coefficients, parameters, and design formulas for many practical problems

can now be derived in closed form.

The following material is divided into two parts. Part I presents the closed

form canonical formulas for representing any section-wise piecewise-linear func

tions while Part II presents some properties and applications of these representa

tions. In particular, canonical representations are given for piecewise-linear

functions of a single variable with finite jump discontinuities in Section I-A,

and that for functions of two variables in Section I-B. Further generalizations

are given in Section I-C for multivalued functions, and in Section I-D for

functions of n variables. Since all these canonical representations are based

on the closed form equation given in Section I-A for piecewise-linear functions

of a single variable, some properties of this fundamental representations which

are particularly relevant to the modeling and analysis of nonlinear devices [18],

circuits [17], and systems [19] are presented in Section II-A. Finally, three

application of our "section-wise piecewise-linear" representations are given in

Section II-B to illustrate their potential applications.

PART I; CANONICAL REPRESENTATIONS

A. A Canonical Piecewise-Linear Representation for Single-Valued Functions with

Finite Jump Discontinuities

A typical piecewise-linear function with finite jump discontinuities is

shown in Fig. 1. We will always label the segments consecutively from "0" (left

most segment) through "n" (rightmost segment) and let "m " denote the slope of

segment j. Corresponding to the n+1 segments, partition the x-axis into n+1 inter

vals IQ = (—.Xjh I± - (x1,x2],..., In_x = (xn_1,xn], and Iq = (\>M)> as shown
in Fig. 1(b). If we let segment k be represented by an "affine" equation

f(x) =ak+Bkx^f|lk, Kk<x<xk+1 (1)

then we can define the following associated extension operatort

k k
X <
i\

fll, = 1- j.0 (2)k+6fex, x > xfc

Graphically, f11, is simply a two-segment piecewise-linear function where the
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left segment coincides with the x-axis over (-»,x. ] and the right segment is

obtained by extending segment k of the piecewise-linear.function f(x) over

(Xj^,*). Using this notation, we can develop the following algorithm which gives
the value of f(x) over each interval I, :

Piecewise-Linear Function Evaluation Algorithm

Let f(x) be a piecewise-linear function with n+1 segments.

Step It Set f°(x) =aQ +3Qx, xG(-«,«,) (3)
Set f°|l0 ^f°(x), x€I0 (4)
Set k = 1.

Step 2; Compute
">A —>Affc(x) =f|lk- fk_1IIk (5)

where f |l, denotes the extension operator applied to the function f (•) as
defined in (2).

Step 3: Set

fk(x) £fk-1(x) +Afk(x), xe(-«,«,) (6)
Step 4: If k < n, set k = k + 1 and go to step 2.

Otherwise, stop.

After n iterations, the preceding algorithm generates n+1 functions f (x),

f (x),..., f (x) for all x € (-<», <»). It is easy to see by geometrical construction

that the value of f(x) over any interval I. is simply given by

f(x) =fk(x), *e\ <7>

Observe that (5) and (7) imply

T? J0' x-*k•k(x) = <
U + -Ux-x,), X >

Afu(x) = i . * • (8)

•xk)'x>xk

where

Yfc ^f&£) -f(x^) (9)

denotes the amount of jump in f(x) at x = x, , and

6, = slope of Af (x) for x > x, (10)

Observe from (8) that Af, (x) can be expressed in analytic form using only the
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absolute-value function |-| and the sign function sgn(»); namely,

^3-1«k{l«kl +<~k>} +2̂ ^(x-^)} (ID
It follows from (6) and the observation Affc(x) =0whenever x <\ that the
following general expression is valid for any x G (-«>,«):

f(x) = fn(x)
.n-1= f" "(x) + Afn(x)

=[fn'2(x) +Afn-1(x)] +Afn(x)

=fU(x) + £ Af^x) (12)

n=l

Substituting (3) and (11) into (12) and combining terms, we obtain the following

canonical representation:

f(x) = aQ + axx + £{bjx-
i=i ^j

x | + c sgn(x-x )> (13)

where the coefficients aQ, a-, b ,and c. are functions of the parameters aQ, BQ,
6 , and y defined earlier in (3), (9), and (10). We are now ready to present

the main result in this paper which provides an explicit closed form formula for

determining these coefficients directly:

Main Theorem: Canonical Piecewise-Linear Representation

Any single-valued piecewise-linear function with at most n finite jump dis

continuities at the n breakpoints x- < x„ < ... < x can be represented uniquely
1 z n „

by (13), where the coefficients are given explicitly by:

al = 2(W

b. = -^-(m.-rn j), j = l,2,...,n

0, if f(•) is continuous at the breakpoint x - x{0, if f(«) is cont

\ [fCxJ) -f(x-)],
j

We define

L-x, x _< 0

otherwise

and sgn(x)
A f X» x >°

l-l, x <0
"Recall m. denotes the slope of segment j.
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Proof: The canonical expression for f(x) has already been shown to be given by

(13). It suffices therefore for us to derive (14)-(17). For all x $ x., j = 1,

2,...,n, (13) implies that

n

ff(x) - a + £b sgn(x-x.) (18)
j-1 J J

The slope m of segment j of f(x) can be evaluated directly from (18); namely,

n

*n = ai * 5>, (19)"b =ai - EN-,=1 J
n

mi= ai +bi" E bj

X - *i + Ebi - £ N
j=l J j=k+l J

n

(20)

j=2

k

(21)

j=l J

It follows from (19) and (22) that a, = -r(mA+m ), which is (14). Similarly,
j. z u n

letting kpj and j-1, respectively, in (21), and subtracting the resulting equations,

we obtain (15). Finally, (16) follows from (9) and (11), while (17) follows

from (13). *

Example 1.

Consider the piecewise-linear function f(x) in Fig. 2 with breakpoints at

x- = -4, x„ = -2, x^ = 0, and x, = 2. The slopes are given by mQ = 1, m^ • 1,
m„ = -1, m3 =^ and mA = 2« Substituting these data into (14)-(17), we obtain
ax =|, bx -0, b2 =-1, b3 =b4 =|; cx =|, c2 =c3 =0, C/, =1, and aQ «-1.
Substituting these coefficients into (13), we obtain

f(x) =-1 +|x+\ sgn(x+4) -|x+2| +|(|x|+|x-2|)+ sgn(x-2) (23) •

B. A Canonical Piecewise-Linear Representation for a Family of Single-Valued

Functions with Jump Discontinuities

The dc characteristic curves of 3-terminal devices, such as transistors, FET's,

etc., are generally modeled by a set of input characteristics and a set of output

characteristics, respectively [12, 17]. Each set is usually measured by a curve

tracer [20] and, for large-signal applications, the characteristics can often be

approximated realistically by a family of piecewise-linear curves

y = f(x,p) (24)
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where p denotes a parametric variable. For example, the collector characteris

tics of a transistor would assume the form I = f(V ,1 ), where Ic and VCE
denote the collector current and the collector-to-emitter voltage, respectively.

In this case, the base current I_ is the parametric variable. Our objective in
B

this section is to show that (24) can also be represented by a canonical form

similar to that of (13).

Let

piecewise-linear curves having finite jump discontinuities. Without loss of

generality, we can assume each piecewise-linear curve f(x,p.) has n breakpoints

x1(p.) < x„(p.) <... <x (p.), and n+1 segments with slopes mn(P.i)» mi (Pj) »• ••»

m (Pj)» respectively. Such a curve can obviously be represented by (13). Now

if we let p assume the N values assigned to the given curves in <x, we can

represent each curve in J" exactly by the following section-wise piecewise-linear

canonical representation:

y =Jy =f(x,p): p-p,p ,...,p d̂enote afamily of single-valued

f(x,p) = aQ(p) + ax(p)x +Ejbj (P)•|x-Xj (p)|+Cj (p)sgn(x-Xj(p)U

where aft(»), a-(«), b (•)» and c (•) are given respectively by

ax(p) =| m0(p) +mn(p)J

b.(p)=f

cj(p) -rl|[f(xj(p),p)- f(x^(p),p)],
aQ(p) =f(0,p) -f)|bj(p)-|xj(p)| -̂ (p) sgn(Xj(p))J

m.(p) - m (p)

0, if f(x,p) is continuous at the breakpoint x = x.(p)

otherwise

(25)

(26)

(27)

(28)

(29)

Observe that (25) is completely specified by at most 3n+2 functions of a single

variable p; namely, aQ(p), a^p), b (p), c (p), and x (p), j = l,2,...,n, where
n is the number of breakpoints in each curve in J. Moreover, if all curves in

cr are continuous, then c (p) = 0 and only 2n+2 functions are needed. These

functions may be represented by any convenient interpolation scheme, such as

Lagrange or Hermite polynomial [21], or by any convenient analytical formula such

as the piecewise-linear representation given in (13). Since the interpolation

formulas are chosen such that a^p ), b (p±), c.(p.), x (p.) and aQ(p.) are equal exactly
to those computed from the given data via (26)-(29), it is clear that (25) gives

an exact model of all piecewise-linear curves given in the family Xj. For those
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values of p+ p± such that p±-1 <p<p±, (25) would yield apiecewise-linear
curve which lies between the two given curves y = f(x,p -) and y » f(x,p ).

In other words, (25) is a global representation which automatically interpolates
among the given family of curves to generate other intermediate curves. Since

the maximum number "3n+2" of "model functions" needed to specify (25) depends
only on the number "n" of breakpoints per curve, and not on the number of

curves given in J-, it is clear that not only does (25) provide us with a single
global and exact analytical representation for (3f9 but it also results in a
rather significant amount of data compression. Indeed, the larger the number "N"

of curves given in (j-, the more saving in computer storage space would result
assuming that the 3n+2 model functions have been efficiently represented. Finally,

we remark that the basic idea behind the section-wise piecewise-linear representa

tion (25) is similar to that given in [22].

Example 2.

Consider the anode-to-cathode .dc characteristic curves of a typical silicon-

controlled rectifier (SCR) as shown in Fig. 3(a) and its 5-segment piecewise-

linear appproximation as shown in Fig. 3(b). In this case, ^ =Jv = f(I ,1 ):
1 I A A g

I = 0,5,10,15,20V, where the gate current I is the parametric variable.

Observe that n=4 since each curve has 4 breakpoints, and N=5 since 7f has 5

curves corresponding to 5 values of I . Since all curves in Fig. 3(b) are

continuous, c.(I ) = 0 and we can model the given family of curves exactly by

VA =f(IA,Ig) =a0(Ig) +al(Ig)IA +Vy-ll^yl +b2(Ig).

|IA-I2(Ig)|+b3(Ig)•|IA-I3(lg)|+bA(Ig)•|WIg)| (30)

where L^I ), I2(I ), I3U ), and I*(I ) denote the 4 breakpoint locations for each
value of I = 0,5,10,15,20, as shown in Figs. S(c)-(f), Observe that for simplicity,

the 4 breakpoints in Figs. 3(c)-(f) are connected by straight line segments, thereby
allowing each breakpoint function 1.(1 ) to be represented by (13). On many

occasions of practical interest, however, the shape of these curves may match

other well-known functions—such as exponentials or hyperbolic functions— in

which case, it would be advantageous to choose these functions instead. Additional

data reduction is often achieved by a clever choice of such functions. For

example, an exponential function would require only 3 parameters for complete

characterization, whereas a 4-segment continuous piecewise-linear representation

via (13) would require 10 parameters.
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Since n=4 and since c (I ) = 0, (30) requires only 2n+2 = 10 model functions;

namely, aQ(Ig), a1(Ig), bj(I*) and I.(Ig), j-1,2,3,4. The functions aQ(.),
a (•), and b.(.) are determined from (26), (27), and (29) and are shown in Figs.
3(g)-(l). Again, for complete generality, we represent these functions by piece
wise-linear curves so that they can in turn be represented by (13). A more care

ful analysis with specific devices would often suggest the use of other well-
known functions requiring fewer numbers of parameters. Observe also that further

simplification may be achieved by approximating each curve in Fig. 3(a) by 3
segments rather than 4. In this case, n=2 and only 6 model functions would be

needed to completely specify the model.

A comparison between the canaonical representation for functions of a

single variable given by (13) with that of the canonical representation for

functions of two variables given by (25) reveals a rather significant difference;

namely, whereas (13) represents truly a one-dimensional piecewise-linear function,

(25) does not represent a two-dimensional piecewise-linear function. In fact,

if the model functions aQ(0, a^.), b (•), c.(.), and x..(«) are represented
by polynomials, the (25) represents a piecewise-linear curve only for fixed

value of the parameter p. In other words, (25) can be said to be a sectionwise

piecewise-linear representation. The overall function is, however, nonlinear

since (25), when expanded, contains such quadratic terms as xp.

C. A Canonical Piecewise-Linear Representation for Multivalued Relations

The representations given in the preceding section are valid only for single-

valued functions. Our objective in this section is to present yet another

canonical representation for an important class of multivalued piecewise-linear

curves; namely, the class of parametrizable, or unicursal curves. It is shown

in [12] that any unicursal curve g(x,y) = 0 can be represented by two single-

valued functions of a common parametric variable p; namely, x • x(p) and y • y(p)

For example, an ideal diode characterized by the multivalued curve shown in Fig.

4(a) can be represented analytically by

l-f(|p| +p) <31&)
v=f(|p|-p) (31b)

Equation (31) represents a simple multivalued relation and could have been

derived by inspection. For more complicated curves, such as the one shown in

Fig. 4(b), an explicit canonical representation would 'be^extremely useful. To
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derive this representation, choose any convenient but arbitrary breakpoint, say

(x ,y ) and label it as the parametric origin Q. Corresponding to any point P

on the curve, assign a value p whose magnitude is equal to the total length of

the curve measured from the origin Q to the point P. Since the curve is uni

cursal by assumption, we can assign an arbitrary orientation (denoted by arrow

heads in Fig. 4(b)) to the curve and define p > 0 at P whenever point P is

traced from Q in the same direction as the assigned orientation. Otherwise,

define p < 0 at P.

To derive an explicit representation, it is convenient to choose an ar

bitrary, point (xn,y0) on the leftmost segment, and another point (x +1>y +1) on

the rightmost segment. If we let &, denote the length of the line segment

between the two breakpoints (x, ,y.) and (x, -,y, _), then

\ - K+rV2 +(yk+rV2]2'k =°'1'2- •',n (32)
and the distance p, , i.e., total length, from the origin Q at breakpoint

(x ,y ) to any other breakpoint (x, ,y, ) is given by
q q — i i k k.

r k-i
£ l , if k > q
J=q j

K'{ q-1
- £ I , if k < q

4=1, JL j=k

where k = l,2,...,n. Equation (33) provides us with the exact coordinates for

the breakpoints of the parametric representations x = x(p) and y = y(p) of
X V

g(x,y) = 0. Hence, if we define the slopes m, and mf for segment k of x(p) and

y(p) respectively by

n£ = (\+1'\^^ ka 0,1,2,...,n (34a)

*£ " ^k+l^k^V k" °»i»2»---»n <34b>

then the canonical representations x = x(p) and y - y(p) for any unicursal
3

piecewise-linear curve are given as follows:

x(p) = ax + ax P+EbX|p-p, I (35a)
U j=l 3 J

_

It is easy to see that x • x(p) and y = y(p) are continuous functions even though
the given multivalued curve may contain vertical segments. This means that c B0
in (13). 3

(33)
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where

and

x _ 1/ x x. (36a)
al " 2(W

bx =̂ -m^) ,j=l,2,...,n (37a)
n (38b)aX = x - Tbx|p0 Xq jti J"' J

n

(35b)y(p) =a* +a* P+Ebjlp-Pjl

»

1 2 0 n

tf-^J ).,i-l,2,....n (37b)

where

n

a£ = y - 5>*|p.| (38b)

Example 3

Consider the unicursal v-i curve shown in Fig. 5(a). This curve has 11

breakpoints. For the two additional points on the leftmost and rightmost seg

ments needed to compute the slope of these two segments, let us choose the points

located at (-4,3) and (5,3) (labelled as point 0 and 12 on the curve). If we

choose the breakpoint 5 at (-2,-1) as the origin Q, and apply the canonical

representations given by (35-38), we would obtain

v(p) =a^ +a^p +£b][|p-pj| (39a)
where

a^ =-11.73, a^[ =0.38; b^ =0.51, b* =0.71, b^ =-0.19, b^ =-0.51,
b^ =0.71, b^ =-0.08, b^ =-0.78, bg =0.73, b^ =0.22, b^Q =0.45, and
b^. =0.22.
11 11

and i(p) =a +a p+J>*|p-pu ± j=1 j 3
(39b)

where

a* =-13.59, a* =-0.03, b* =0.83, b* =0, b* =-0.83, b* «0.83, b* «0,

b* =-0.77 ,b* =0.42, bg =-0.45, b* =0.67, b*Q =0.27, and b^ =-0.05.
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The breakpoints for both v(p) and i(p) are of course identical and are located

as follow:

9± =-10.23, P2 =-7.41, P3 * -4.58, p^ =-1.41, p5 = 0, p$ =4.24, p? « 7.85,

P8 = 9.85, P9 = 12.08, P1Q = 14.3, and pu = 17.32.

The curves corresponding to (39a) and (39b) are plotted as shown in Fig. 5(b) and

(c), respectively. A comparison of these two curves with its associated multi

valued curve shown in Fig. 5(a) would verify the validity of the canonical

representations (35a) and (35b).

D. A Canonical Sectionwise-Piecewise-Linear Representation for Continuous

Functions of Several Variables

Our objective in this section is to generalize the basic approach presented

in Section II-B and develop a canonical representation for continuous functions

y = f(x-,x2,...,xn) of n variables. We assume a priori that a sufficient number
of data points has been taken such that the function can be realistically

approximated by a piecewise-linear function of a single variable along every cross-

section obtained by freezing any combination of (n-1) of the n coordinates.

Consider first the case n«3 and suppose that the values of f(x-,x0,x~) are
q 1 2. J

given at a set of N data points (x^ x2i*x3k^ i»^»k = 1»2,...,N. By assump
tion, the function f(Kri>x2i9K3\t) ^^ tbe second and third coordinates fixed
at x« = x„. and x^ = x^, is a piecewise-linear continuous function of a single

variable x- and can therefore be represented by (13); namely,

N-2

f(Xi,x2j,x3k) -a0(x2j,x3k) +a1(x2j,x3k) +gV^j'.^lV^il (40)
where the coefficients aQ, a. and b are determined via (17), (14) and (15),
respectively. Notice that these coefficients will change for a different choice

of (x«.»x.,) and hence can be considered as functions of the two variables x„

and x,, whose values at any data point (x ,x«.) can be computed from (17), (14)

and (15). Since an(x ,x«), a-(x_,x ), and b (x_,xq) are now functions of two
instead of the original three variables, they can be represented in turn by the

canonical representation (25). It follows from the preceding algorithm that

4
The upper index of summation in (40) is N-2, rather than N because the left

most and the rightmost data points are needed to compute for the slope of the
two end segments, and hence only N-2 data points are available as breakpoints.
We are implicitly assuming as always that the two leftmost (resp., rightmost)
data points lie on a straight line extending to -°° (resp., +»).
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any continuous function f(x^.x^ of three variables having apiecewise-linear
cross section can be represented by the following canonical form

N-2

f(xrx2,x3) =aQ(x2,x3) +a1(x2,x3)x1 + Ebj(x2»x3} lXl"Xlil
where

(41)

N-2 a,

t0(x2,x3) -a0°(x3) +a1°(x3)x2 +E^)'wl (42)

N-2 a.

t1(x2,x3) =aQ1(x3) +a11(x3)x2 +E^x,) IVX2i (43)

N-2 b

b.(x2,x3) aQj(x3) +aij(x3)x2 +E^^VlV^il (44)

where the double superscripts attached to the coefficients aQ(x3), a^x^), and
b.(x.-) are used to identify the associated model function. Observe that the

model functions in (42)-(44) are now all functions of a single variable xq, and

hence can in turn be represented by (13).

The generalization of the preceding algorithm to continuous functions of any

number "n" of variables is now obvious. We first freeze all (n-1) coordinates

x2,x,...,x and write

f(xr X2' x3,. ..,xn) = aQ(x2

N-2

,x3, • • • ,x ) +
n

a.. vXn,x.,•• .,x )x
n l

+

&
(x2, x3, ...,xn) lxrxijl (45)

where aQ(x2,x3>...,x ), a (x2,x ,...,x ), and b (x ,x3»...,xn) are functions of
n-1 variables, which is one less than the original number of variables. The same

algorithm can be applied repeatedly to these model functions, where the number

of variables is reduced by one after each iteration. The algorithm must clearly

terminate when all model functions have been reduced to functions of a single

variable, which in turn are represented by (13). The following example

illustrates the steps involved in this algorithm.

Example 4.

Suppose the function to be represented is given by

We specify the function f(x.,x ,x ) here by an equation in order to check the
validity of our canonical representation for this example. In practice, this
function is usually available only as a table of values of f(«) measured at a
set of data points.
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f(xrx2,x3) -(l+x1+|x1-l|)(l+x2+|x2-l|)(l+x3+|x3-l|)' (4.6)

For simplicity, let us choose the set S of data points to be uniformly distributed

on the cubical lattice as shown in Fig. 6(a); namely,

S={(x1:L»x2j'x3k): i»^'k =1»2»3| , xiix2j'x3k G{0»1»2}
3

Here N-3 and we have a total of N .= 27 data points where the value of f is

assumed to be specified. For this example, the value of f at each of these 27

data points is simply obtained by direct substitution of (x-.jX.,^ J into (46).

In practice, these values must either be measured from the surface representing

f(x.,x„,x.), or must be computed in accordance with some algorithm germane to

the problem on hand. Since N=3 and N-2=l in this case, the canonical repre

sentation (41) assumes the form

f(x1,x2,x3) =aQ(x2,x3) +a1(x2,x3)x1 +b^x^x^ Ix^l] (48)

Observe that for each cross section x« = x« and x- =» X-, , f(x. »x24»x3ir^ *s a
continuous piecewise-linear function representing a 2-segment curve sharing a

common breakpoint. Our next task is to determine the coefficients aQ(x2.»x3.),
a-(x ,x~, ) and b-(x„.>x3, ) for each combination of the indices j,k = 1,2,3.
Since the procedures for determining these coefficients are identical in each

case, we will show the detailed calculation for only one case; namely, the

cross section corresponding to j=l, k=l:

Cross section 1: x« = x2= 0, x« = xg- = 0

It follows from (48) that

f(X;L,0,0) = f(*1^x2l»x31) =a0(0,0) + ai(°»°>xi +^(0,0)1x^11

To determine the coefficients aQ(0,0), a (0,0), and b1(0,0), we need the values
of f(x.,x2,x ) at the three points (x1;L,0,0), (x12>0,0), and (x13»0,0); namely,
f(xn,0,0) = f(0,0,0) = 8, f(x12,0,0) = £(190,0) = 8, and f(x13,0,0) « f(2,0,0)
= 16 (these values are computed directly from (46) in this example). Since

f(x-,0,0) is piecewise-linear, by assumption, these three values of f(*,0,0)

determined uniquely a piecewise-linear curve as shown in Fig. 6(b). Observe

that the first two data points (0,8) and (1,8) are used to obtain the slope

m =0 for segment 0, whereas the last two data points (1,8) and (2,16) are used

to obtain the slope m..=8 for segment 1. With m^O, m =1, and the breakpoint

-14-
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location x=l now known, a (0,0), b1(0,0), and aQ(0,0) can be computed from (14),
(15), and (17); namely, ajL(0,0) »|(0+8) =4, 1^(0,0') =|(8-0) =4, and aQ(0,0) -
f(0,0,0) - (4)(1) = 4.

Repeating the above procedure to each of the remaining cross sections, the

corresponding coefficients can be computed and the result is summarized in Table 1:

Table 1. Calculated Coefficients for Different Cross Sections

Cross Section

x2 = X2i' x3 = X3k

aQ(x2,x3) a* (x2,x_j b1(x2,x3)

1 *2 = o, x3 = 0 aQ(0,0) = 4 a1(0,0) = 4 b1(0,0) = 4

2 x2 = 0, x3 = 1 aQ(0,l) = 4 a.^0,1) = 4 b^Cl) = 4

3 x2 = 0, x3 = 2 aQ(0,2) = 8 a.^0,8) = 8 b1(0,2) = 8

4 x2 = l, x3 = 0 aQ(l,0) - 4 a^l.0) = 4 bjU.0) - 4

5 x2 = 1, x3-l a0(l,l) = 4 a1(l,l) = 4 b1(l,l) - 4

6 x2 = l, x3 = 2 aQ(l,2) = 8 ax(l,2) = 8 b1(l,2) = 8

7 x2 = 2, x3 = 0 aQ(2,0) = 8 ax(2,0) - 8 b1(2,0) = 8

8 x2 = 2, X3-I aQ(2,l) = 8 a1(2,l) 0 8 b.^2,1) = 8

9 x2 = 2, x3 = 2 aQ(2,2) = 16 ax(2,2) = 16 bx(2,2) - 16

Our final task is to model a_(x2,x-), a.(x_,x(,), and b-(x2,x_) via (25)

which now assume the form:

a^ a

aQ(x2,x3) =aQ0(x3) +a1°(x3)x2 +l^0^) |x2-l|
ai, . . ai, , . aia1(x2,x3) = aQ (x3) + ax (x3)x2 + bl (x3)|x2-l|

bl bl blb1(x2,x3) = aQ (x3) + a1 (x3)x2 + b1 (x3)|x2-l|

(49)

(50)

(51)

An inspection of Table 1 shows that for this example, the values assumed by these

three functions are identical at the specified data points and hence we only have

to determine one of them, say aQ(x2»x ). The values assumed by this function are
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plotted in Fig. 6(c). By assumption, an(«,x~, ) is a piecewise-linear function
on each cross section x~ - x~, , k = 1,2,3. This assumption allows us to pass

straight-line segments through the data points as shown in Fig. 6(c), for the

three cross sections x. = x-- =0, x« = x_. « 1, and x. » x - = 2. Hence, the

an a, aQ
data needed to determine anu(x«, ), a (x«. ), and b. (x-, ) for each value of

x^, are either available or can be calculated from the data given in Table 1.

Applying the canonical representation (13) once more to each of these cross

sections, we obtain

a

a0°(x3) =1+x3 + |x3-l| (52)

ai°(x3) =1+x3 +|x3-l| (53)

bxU(x3) =1+x3 + |x3-l| (54)

Substituting (52-(54) into (50), we obtain

aQ(x2,x3) =1+x3 +|x3-l| +(l+x3+|x3-l|)x2 +(l+x3+|x3-l|)|x2-l| (55)

Simplifying (55) and making use of our earlier observation that a0(»), a-(«)>

and b-(«) are identical for this example, we obtain

a0
(x2,x3) =ai(x2,x3) =b1(x2,x3) =^l+x3+|x3-l|.^l+x2+|x2-l|) (56)

Substituting (56) into (48), we obtain

f(Xl,x2,x3) =a0(x2,x3)(l+x1+|x1-l|^ =(l+x^lx^ll^l+x^lx^lj^l+x^lx^ll)
(57)

Observe that (57) is identical to the original function given in (46), thereby

verifying the validity of our algorithm. If we. expand (57), we see that

f(x-,x_,x ) contains in addition to linear and product terms involving the

absolute-value functions |x--l|, |x-l|, and |x-l|, also such quadratic terms

as xx %xixo» X9XV and x-x x_. Hence f(x_,x2,x-) is definitely not a piece
wise-linear function of 3 variables, but rather a nonlinear function involving

all possible products of the terms 1, x_,x2, x«, |x-x-|, |x-x2|, and |x-x,J.
This observation is very significant because it shows that our canonical

representation (45) for functions of n variables is much more general than

conventional piecewise-linear functions and in fact resembles the widely used
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multivariate approximation techniques involving tensor product terms [15]• How

ever, our representation appears to be computationally much more efficient.

II. PROPERTIES AND APPLICATIONS

A. Properties and Manipulations of Piecewise-Linear Functions

The canonical piecewise-linear representation (13) has been shown in Part I

to be the fundamental building block from which all section-wise piecewise-linear

representations for functions of several variables are based. It is desirable

therefore that we uncover as many properties as possible with respect to the

constraints on the coefficients aQ, a-, b., and c . To simplify our notations

and derivations, unless otherwise stated, we will assume the function is con

tinuous so that c =0 and (13) reduces to the form:

n

f(x) « a + ax + £b,|x-x | (58)
j=l J a

Property 1. If the breakpoints of f(x) are such that 0 < x. < x0 ... < x , then
12 n

aQ =\[f (0) +i<xn) - rn^J (59)

Proof. Substituting x«0 in (58) and solving for afl, we obtain

a0 =f(0) - £b x

=f(0) - |(m1-m0)x1 - |(m2-m1)x2 - j(vVx3 " " " 2(Wl)xn
- | f(0) +f[f (0) +moXl +nx (x2-Xl) +••. +Vl(V^) ]"\ V„
- |[f(0) +f(xn) - Vn] -

Property 2. A continuous piecewise-linear function f(x) is monotone-increasing

(resp., strictly monotone-increasing) if, and only if,

k n

a, + Sb " £ b >l 0 (resp., > 0) for all k = 0,l,2,...,n (60)
1 j=l 3 j=k+l J

Proof. f(x) is monotone-inecreasing (resp., strictly monotone-increasing) if,

and only if, for all x t xfc, k » 0,1,2,...,n, ff(x) >_ 0 (resp., > 0). Differen
tiating (58), we obtain (60). *

It can be easily shown that (60) represents a system of (n+1) independent

linear inequalities. These inequalities define a convex polyhedron (polytope)

GCW where the coefficients a^b^b^ ... ,b must lie. Hence any piecewise-
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linear function with at least one coefficient lying outside of ft cannot be

monotone increasing. If f(•) represents a v-i curve, then (60) becomes the

criterion for local passivity.

Property 3. If a continuous piecewise-linear function has monotone-increasing

slopes (resp., monotone-decreasing slopes) in the sense that 0 _< mn < m. <...

< m (resp., m_ > m, > ... > m > 0), then
n 0 1 n —

(1) ax > 0
(2) b > 0 (resp., b < 0) for all j = l,2,...,n.

(3) if f(0) - 0, then aQ <_ 0 (resp., aQ >_ 0)
Proof. (1) and (2) follow immediately from (60), while (3) follows from (58).

One important reason for seeking an explicit analytical representation of

functions is to allow the possibility of carrying out mathematical operations

and equation manipulations on the functions for analytical studies. The next

two properties provide explicit formulas for performing two common mathematical

operations; namely, finding the inverse f (•) of f(x) and finding composition

fog between two functions f(x) and g(y).

Property 4. Let

n

y«f(x) =aQ + a1 x + Vh^x-x^

be a continuous and strictly-increasing piecewise-linear function and let its

inverse be given by

x=f_1(y) =aQ +ay + £D,|y-y,| (61)
j=l J J

then the coefficients in (61) can be computed as follow:

WMsbi)2J (62)
=-y[(a1+Ebj-j|+ibJ)2-bq,k =X,2,...,n (63)

0- f_1(0) - EfjIfC*,)! (64)

\ =

a

Proof. See Appendix A.

Remark. Property 4 can be generalized to allow finite jump discontinuities in

f(x). In this case, as is commonly done in electronic circuit literature, the

two points at each jump discontinuity are connected by a vertical segment and
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f(x) becomes a multivalued function. The inverse f (x), however, is a well-

defined single-valued function because the inverse of a vertical segment

becomes a horizontal segment. To be more specific, suppose f(x) is continuous
- - + +except at breakpoint x,, where yfc = f(xfc) and yfc = f(x^). Then

y=f(x) =aQ +ajX + £b.j lx"x.j I+\ sgn(x-xk)

and the inverse function is given by

. n j. j.

x=f"x(y) =an + aiy + £b ly-y |+\|y-y^| +\ly-yj <66>
J^k
icients £L and B., j ^ k in (66) can be computed

from the same formulas given in (62) and (63), and that

k--iAai+%h* -5bJ (67)

io '̂̂ -lL^I^I+S-ly-l+bXl} (69)
j#

Property 5.

Let y = f(x) be any piecewise-linear curve and let x = g(z) be any strictly-

monotone increasing piecewise-linear curve, then their composition y = fog(z) °

f(g(z)) - h(z) is also a piecewise-linear curve and the coefficients character
izing h(z) can be computed explicitly from those characterizing f(x) and g(z).

In particular, if

nf
y=f(x) =aQ +axx + £jb. |x-x |+c sgn(x-x )i

(65)

(70)

=g(z) - ag +a^z +WbS|z-Zj| +c| sgn(z-zj)j (71)

then the composition function f°g(») is given explicitly by:

y = h(z) = an + a.a

n_ n n- . n

f . f " — - r-R ' - - ° r ' - *

«♦£*[&{**$*[•*** &*(&})]
+

n n_
iEbf (ai +X>* sgn(Zj-z*)) |z-Zj |
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n- n

j

n n

Ccj(ai +Ebf sgn(Zj-z*) Jsgn(z-zj*5
»£ - n

ili{bi[ao -xi+ aizi*+ jlft'1v*1 -c" a^r*Jj\
Isgn(z-z*]+ c* ysgn(z-z*) (72)

where z* is the unique solution of g(z) - x = 0, i = l,2,...,nf.
Proof. See Appendix B.

The preceding properties are particularly useful in deriving algebraically

both the DP (driving-point) and TC (transfer characteristics) plots of resis

tive nonlinear networks. Indeed, much of the graphical procedures used for

deriving DP and TC plots in [12] can now be replaced by algebraic manipulations,

as the next example demonstrates.

Example 5.

Consider the nonlinear voltage divider circuit shown in Fig. 7(a) where the

nonlinear resistors R_ and R. are characterized by the piecewise-linear curves

shown in Figs. 7(c) and (d), respectively. The problem is to derive the

v0-vs.-v TC plot.

Applying KVL and KCL, we obtain

vi - vi+ vo • f(il> + vo (73)

^i-S-^V (74)

Substituting (74) into (73), we obtain

vi = f°8(v0) + vQ - F(vQ) (75)

Now applying (13) to the v-i curves shown in Figs. 7(c) and (d), we obtain

vx -f(±1) -2±± -fl^+ll +|sgn^-l) +fl^-21 (76a)

i2 =g(v2) --2 +|v2 -||v2+2|+sgn(v2+2) +f(|v2|-|v2-l|+|V3') (76b)

-20-



Since g(») is strictly monotone-increasing, the composition f©g(vQ) is well
defined. Hence substituting the corresponding coefficients defining f(i^ and
g(v ) from (76a) and (76b) into (72) and simplifying the resulting expression,

we obtain

v± AF(v0) =-4 +4vQ -f|vQ+2| +2sgn(v0+2) +f|vQ| +±sgn(v0 -\)

-iMI+flv3! (77)
Since the coefficients in (77) satisfy (60) with the strict inequality sign, it

follows from Property 2 that the function F(») is strictly monotone-increasing

and therefore has a well-defined inverse v = F~ (v ), which is precisely the
-1

TC plot being sought. Hence, it remains to apply Property 4 to compute F (•)•

Observe that since F(») in (77) contains a discontinuity at vQ = y, we must

make use of (66) rather than (64) in computing for F (•)• After some routine

calculation and simplification, we obtain:

'o - F-1<V • if+ -e \ - ?iVi+ flV3i - iM - ?ivt-fi+ £i*±-fI

+TjlVl "^IV8l 4T<V (78)
This TC plot is plotted as shown in Fig. 7(b) and can be easily verified by the

graphical technique described in [12] to be the correct solution.

B. Some Applications of Canonical Piecewise-Linear Representations

In addition to the many obvious applications to approximation and computa

tion in device, circuit, and system modeling, the canonical piecewise-linear

representation is also useful in carrying out any mathematical analysis of a

circuit or system where the final results in explicit analytical form are

desired. Due to space limitation, only three such applications will be presented.

Application 1. Deriving Describing Functions in Explicit Form

The describing function technique has been widely used for analyzing non

linear circuits and systems subject to an input of the form x(t) = A. + A. cos wt.

The system normally has a memoryless nonlinearity y = f(x) as well as some

component—such as a low-pass filter—which reduces the harmonic components of

y(t) to negligible values. Under this assumption, we can write

y(t) = DQ + Dx cos wt (79)
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where the Fourier coefficients

•2tt
i c

D0(A0,A1)=S TH J fCAQ+^cos^d* (80)
'0

and

i r2ir
WV " "S~ J f (Aq+A^os^cos^ d<|> (81)

are called the describing functions because they depend on both Aft and A . Now
if f(x) is piecewise-linear, i.e.,

f(x) =aQ +axx +£ (bj |x-Xj |+Cj sgn(x-x )) (82)
,6then the following explicit formulas for DQ(«) and D (•) can be derived (see

Appendix C):

VVV- -o+ •A*l)|{(bj<V>j>*j)(»'"'(^1)-f)*'>/»l-<''J-V!}<M>

Application 2. Deriving Fourier Coefficients in Explicit Form

In the analysis of many communication circuits, an input signal x(t) -

AQ + A. cos ait is often applied to a memoryless nbnlinearity y = f(x) to
obtain a periodic output [14]

00

y(t) = a + £a cos ^ (85)
U k=l k

having only cosine components. The problem is to derive the Fourier coefficients

a0,ctl'***,ak'* *' *n a ^orm tbat would provide some insight on the effect of the
nonlinearities on the magnitude of these coefficients. A useful technique for

doing this is given in [14] for several simple piecewise-linear curves. Since

these curves are described graphically, the Fourier coefficients associated with

each curve have to be derived on an ad hoc basis. Such tedious repetitions could

be obviated by deriving a single formula with the help of our canonical piecewise-

linear representation.

6
Without loss of generality, we assume that A > |A -x |, for all j « 1,2,...,n.
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For simplicity, assume the piecewise-linear curve is continuous and can

therefore be represented by

y=f(x) -•0 +alX +j?1bjl"j (86)

The output time function due to the input x(t) = AQ + A± cos tot is therefore
given by

n

(87)y(t) =aQ +a1(A()+A1cos wt) + E^IAq +A^os tot -x^|

Let us first observe that if AQ -Xj >A± (resp., AQ -Xj <-A^ in (87), then
IA + A, cos tot 1- x. I= An+ A- cos tot - x. (resp., -(An+A-cos u>t-x.)), which
1 0 1 3 0 1 3 I Iis a cosine wave with a dc component. On the other hand, if IAq-x^I < A1 for
some j, then |AQ + A-cos tot -x |is no longer sinusoidal. However, this wave
form can always be decomposed intotwo wave-trains made up of sine-wave tips

as shown in Fig. 8. Observe that the two wave-trains are uniquely identified

by a single parameter

e A2* A2coa-M-J-ai . (88)•&£)•
called the conduction angle, where 0 < <J> < *. Since Fourier coefficients of
"sine-wave tip" wave-trains such as those shown in Figs. 8(b) and (c) and

parameterized by the conduction angle 2<i> have been derived and are widely
available either in tabular or graphical form [14], it is but logical to

express the Fourier coefficients of y(t) in terms of the Fourier coefficients
of these "sine-wave tip" wave-trains. To derive this relationship, rewrite

y(t) as follow:

y(t) = an + a.(An+A cos tot) + £ b (Aq+A^os tot-x±)
U,L A -x >A

A0 i- 1

E bk(A0+AlCos tot-3^) + £ d^Aq+AjCos tot-x^ (89)
V¥"Ai IVxjl<Ai

where the subscripts i, j, and k are understood to sum over all those components

in (87) corresponding to the three cases AQ - x± >. A^ AQ - x^ _< -A^ and
|AQ-x. |<A ,respectively. Now the last term in (89) can be written as
follows:
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|A +A cos tot-x | = £{p.0cos £tot + q..cos £(tot+ir)}
J £=0 J ^

£ (P^+q^cosJltot + 2 (P*o-<i40)c°s Jttot
Jl,even £,odd ^ ^

(90)

where p and q. denote the &th harmonic cosine Fourier coefficient of that

sine-wave tip wave-train having a conduction angle equal to 2$., and 2(ir-<|> ),

respectively. Substituting (90) into (89) and collecting terms together, we

obtain the following explicit formula:

*.^5...... [i^iV1*1'*'1''] cos £tot

cos £tot
(91)

Example 6. Consider a memory device whose TC plot is shown in Fig. 9(a).

Applying (13), we obtain the following piecewise-linear representation:

vQ =T(v±) =-|+i{v± +|v±+4| -|v±+2| +-4|vJ -3|v±-l| +|v±-3| +|v±-5|}
(92)

The output waveform vQ(t) due to the input v.(t) = 1 + 4cos tot shown in Fig.
9(b) is obtained graphically and shown in Fig. 9(c). The Fourier coefficients

of v«(t) could of course be obtained by any efficient computer techniques.

However, such a standard approach would not yield any qualitative information

on the effect of the magnitude A. relative to the dc bias An and the breakpoint
locations. To apply (91), we first observe that the condition |AQ-x, |<A- is
satisfied for this example only at the four breakpoints v. =» -2,0,1, and 3.

The corresponding conduction angles are therefore given by 2<(>0 « 4.84, 2<L = 3.64,

2<t>, = tt, and 2$~ = T1* radians, respectively. The corresponding Fourier

coefficients for p. and q.n for the first five harmonics are then read off
JJI j£

from the graph on p. 94 of [14] and tabulated as follows:
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pi*
i=0 1 2 3 4 5

V
&=o 1 2 3 4 5

P2* 2.94 3.71 0.238 -0.196 0.126 -0.056 qu 0.15 0.28 0.24 0.18 0.12 0.06

P3£
1.80 2.45 0.80 -0.185 -0.09 0.09 q3* 0.81 1.32 0.75 0.21 -0.096 -0.096

P4* 1.32 1.92 0.88 0 -0.176 0 q4a 1.32 1.92 0.88 0 -0.176 0

P5£ 0.44 0.75 0.55 0.29 0.056 -0.056 q5A 2.4 3.0 0.54 -0.30 0.048 0.048

Substituting the parameters from (92) and the preceding table into (91) and

simplifying, we obtain

y(t) = 1.3175 + 0.7225 cos tut + 0.383 cos 2ojt - 0.1535 cos 3wt

+ 0.0425 cos 4wt + 0.189 cos 5iut *

The last two applications have been computational in nature. To demonstrate

the usefulness of (13) for theoretical studies, our final example derives a new

theorem on the existence and uniqueness of solutions.

Application 3. Deriving a new theorem on Existence and Uniqueness of Solution

The equilibrium equations for a large class of resistive nonlinear networks

assumes the form [17]

HIW1 paa 9abl |>
U UJ (93)

where i = g(y ) and v, - f(i, ) denote the constitutive relations of nonlinear
~a - a "*d ~ ~b

voltage-controlled and current-controlled resistors, respectively, and where

H., and s. denote respectively the hybrid matrix and source vector of the linear

n-port obtained by extracting all nonlinear resistors of the network. Now if

we assume that all nonlinear resistors are uncoupled and characterized by a continuous

piecewise-linear curve, then each component of g(y ) and f(i, ) can be represented

by (13) and (93) can be rewritten as follows:

'01
r a 0 ... 0

P(x) 4
l02 +{ l12

1%J <. lm.

hll h12**hlml

h21 h22"h2m

h n h n..h
l. mi mz mm
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?iblj iv•x«
n

Eb2jj^i 2J; •X2j
n *

x-
m •Xmj

?2

8
m
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We are now ready to state the following theorem:

Existence and Uniqueness Theorem

Any resistive nonlinear network characterized by (94) has a unique solution

if, and only if, the matrix

m£

T ^1an+b£ 0
.. T 32

a12+^.

a- +b e
lm ~m~

where bfc =[b^b^...b^]1 and ek

hllh12 lm

h21h22 2m
(95)

hmlhm2 nrni

[11... e -1...-1] (where e is located

at the j,th row) is non-singular for all J-,*^'* **»im ran8in8 from 1 to n, and
for all e e [-1,1].

Proof. See Appendix D.

The point we wish to make with this example is that without resorting

to the canonical representation (13), it would have been impossible to derive

such an explicit necessary and sufficient condition as (95).

CONCLUDING REMARKS

The section-wise piecewise-linear representations presented in the pre

ceding sections seem to be- ideally suited for modeling nonlinear devices,

circuits, and systems. The closed form canonical representations for f(x)

are global in the sense that they are valid for all values of x G IR . The

coefficients characterizing these representations can be calculated efficiently

and the amount of computer storage space is minimal in the sense that only the

characterizing coefficients need be stored. Since the canonical representa

tions contain tensor-like product terms, they appear to be at least as accurate

as the widely used multivariate approximation method employing tensor products

[15]. However, the coefficients in our representations can be identified

much more efficiently. Moreover, unlike other approximation methods, the

"section-wise piecewise-linear" representations can allow finite jump dis

continuities—a unique feature that should be useful for analyzing many

circuit and control systems containing devices characterized by discontinuities

characteristics such as zener diodes, relay, etc.
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APPENDIX

A. Proof of Property 4.

Let m, and m. be the slopes of f(«) and f" (•) corresponding to thedl and m,

• 0,1,...,n. Then

(A.l)

interval I. for k = 0,1,...,n. Then

1

*k
"k •i+ EN - E »,1 j-i 3 j-k+i ]

=I/_L +i\ = !i (A.2)
1 2\% 'J 2/f.\2

6k =2^ - m^J

2| k n k-1 n

«! + 5>« " E b, ai + 2>4 " Eb,
^ j=l •> j=k+l J j=l J j=k J

bk for k = 0,1,...,n (A.3)

("i+eV E bjf .V1 j-i3 j-k+i3/ >£

Finally, from (61), we obtain

«0-f"1(0)--.gbJ|f(xJ)| -

B. Proof of Property 5

Substituting (71) for x in (70), we obtain

f < "ffog(z) = aQ + a
f

^(z) + £|bi|g(z)-xi| +c± aga(g(z)-x±)>
nf

xg(z) +£|b.jVg(z)-x:i) +Cifsgn/gW-xJ
nf

f ^ "= a +a

ao +aifo +•?«+£(bflz"zjI +cj8 s^'^)}
K j=l

n-, n

fiflf-O +alZ+ £ (bJ8|2"Zj I+Cj8 •«»(«j))- *i] +4}sgn(g(z)-xi)
J'

(B.l)
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Since the function g(«) is strictly increasing by assumption, we can write

sgn/g(z)-x±\ »sgn(z-z*) (B.2)

where z$ is the solution of g(z) - x. = 0.

From (B.l) and (B.2) we obtain
n n

foh(z) =a* +a*a|j +a^z +Va^|z-Zj | +£aicj sgn(z-Zj)
nf nf

+2{bi<ao"xi) +^jsgn(z-z*) +Ebiaf2 sgn(z-z*)
nf ng nf r% ^+2>i Eb^z-ZjIsgnCa-z*) +EME[c? sgn(z-zj)lsgn(z-z*)l (B.3)

The three piecewise-linear functions z sgn(z-z.), |z-z,|sgn(z-z£) and
sgn(z-z )sgn(z-z*) in (B.3) can be rewritten as follows:

z sgh(z-z ) = |z-z*| + z* sgn(z-z*) (B.4)

|z-z |sgn(z-z*) = -z. + z"+• sgn(z.-z*)|z-z. |- sgn(z.-z*)|z-z*|

+ |z -z* |sgn(z-z*) (B.5)

and

sgn(z-z.)sgn(z-z*) = 1 + sgn(z.-z*)sgn(z-z.) - sgn(z.-z*)sgn(z-z*) (B.6)

Hence (72) follows from (B.3)-(B.6). *

C. Derivation of Describing Functions Dn(An,AJ and D,.(An,A..).
Substituting (82) for f(-) in (80), we obtain

Do -h f\*o+ Vo+ aiAicos *+ Elyvv'Wicos ♦)
Yaq-x +A1 cos 4>Ud(j)

L°+ ^ |i{^27r^(vxj)+cj+bjAicos *)d*
- 2J ^bj(A0-xj)+cj+bjA1 cos <|>)d<f>l (CI)

0

* sgnl

= aQ + a^A,
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where <|>. =cos" (^A )> $4 £(0»*)

The angle $ is well-defined since |A0~x.| <A- by assumption.
•J J

Now observe that

£ X"(WVVj4! cos *)d*= WV +cj (c-2)
and

/2tt-<|>. 2it-<|>

J(bj(A0-x.)+cj+bjA1 cos *)d* - i[(bj(A0-xj)+c.)+ +bjAl sin*]
*j 3

=i[([bj(A0-xj)+cj)(21r -2^+bjA1(sin(21r-(j>;))-sin ^)]

"\{[WV +cj} "C08_1(^)]- bj/Ai-<Vxj>2} (c-3)
It follows from (C.1)-(C3) that

do =ao+ Vo+\ Efyvv+ cj] h8"1!^1) -f]+bj4<v?) <83>
Next substituting (82) for f(•) in (81), we obtain

di •itx I {ao+ aiAo+ aiAicos *+ J^vvy+ cj+ bjAicos *]
• sgn(A0-x,+A- cos <J>) V cos <j> d<j>

-^{aiv+ gtav -2 J (bj(vxj)+cj+bjAicos *),cos **♦]}

• ai+ £{bj -ir([(bj w^j)'10 ♦]" *j +Yi f cos2*d*)}J"1 i <P. <J>j

=«! +.EJbj -^[(*jC*o-*j>.+c>-2 •*» *j> +-V^2' "2*j "Sin 2*j)]}
-^EJb^^hcvx^.cJyC^T

2b

+ ^H^)-"^/^f]} • «>
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D.- Proof of Existence and Uniqueness Theorem

The proof follows from a theorem by Fujisawa and Kuh on homeomorphism

[23|], namely,

"p(x) is a homeomorphism of mm onto itself if, and only if, for any
unit vector a and for any x e 3R , there exists one and only one nonzero

vector 8 = |(ot,x) such that p(x+v3) « p(x) +vafor all sufficiently small
positive v."

It follows from (94) that
r

O
au0 . . hllh12 B* ' ,hlm

P(x+v§) - P(x) = \>J

V^

0 a
12

a
lm hmlhm2 ' •• -hmnj

j?1bij(lxi+VBrxijl - lxrxijl)
j?1b2j(lX2+v8?-2Jl - IVx2jl)
n *

Y)b ,{|x W-tx ,1 - |x -x A)JT^ mj V m m mj' ' m mj'/

J

(D.l)

Observe that 1*^3^1 -l^-x^l =v3fcSkj (xfc,3fc), where S^Cx^) is a
piecewise-linear function as shown in Fig. A-1. So long as v > 0 is suf

ficiently small such that both x, , and x,, - v3, belong to the same segment

for all j= 1,2,...,n, then the term jSfcj (| V^lT^jH V*kjI}"
^EA-jVVV becomes

3 Z-l n
v\ ZX.+eV- £ b ,.ee [-1,1] (D.2)

whenever x, belongs to the interval between x, and x^ - v3,. Hence if we
ik A T th

let eJ = (11 ... £-1 ... -1) where e is located at the jk position,

then (D.2) can be rewritten as v3,b,eJ , where jk=£. Combining (D.l) and (D.2),
k~k

Hi
we obtain

P(x+v3) - p(x) =v

all°«
0 a.

12

0 . . . :a
InJ

11 -hlmT|
*21 •*• b2m U+v

h _ ... h .
- ml mm-'-'
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Now in order for one, and only one, nonzero vector 3 to exist such that

p(x+v§) - p(x) = va for all sufficiently small v > 0, (95) must be non-

singular for all unit vectors aand for all xG H™. Now if 3fc =0 for some
x and a, then we can find another x with the same x, and another a such that

3^0. Hence it is necessary that the matrix M in (95) be nonsingular for

all j,,j„,...,i ranging from 1 to n and for all e E [-1,1]. If this con-
J1,J2 Jm m

dition is satisfied, then for all unit vectors a and for alx61, there

exists a unique 3 and hence (94) has a unique solution. *
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FIGURE CAPTIONS

Fig. 1 A typical piecewise-linear curve with finite jump discontinuities

and the intervals I. = (x.,x.,,] where the function is linear.
j J j+l

Fig. 2 A Piecewise-linear curve with two finite jump discontinuities

(Example 1).

Fig. 3 The dc characteristics of a typcial SCR in shown in (a) and modeled

by the family of piecewise-linear curves shown in (b). The (2n+2)

model functions are shown in (c) through (1).

Fig. 4 A simple multivalued "ideal diode" v-i curve is shown in (a) while

a more complex unicursal multivalued curve is shown in (b), along

with an arbitrarily chosen breakpoint Q(x£»y/:) as the parametric

origin and an arbitrarily chosen orientation as indicated by arrow

heads on the curve.

Fig. 5" The unicursal multivalued piecewise-linear curve in (a) for Example

3 is represented by two single-valued piecewise-linear curves

v=v(p) and iai(p) shown respectively in (b) and (c).

Fig. 6 The points shown in the cubical lattice in (a) are chosen as the

set S of data points for the function defined by (46) of Example

4. The piecewise-linear curve f(x-,0,0) shown in (b) gives the

values of the function f(.,x.,x2) over the cross-section x-=0,
x2=0. The model function aQ(x2,x^) shown in (c) has one less
variable and is piecewise-linear along the cross sections x =0,1,

and 2.

Fig. 7 The two resistors in the nonlinear voltage divider in (a) are

characterized by the piecewise-linear curve shown in (c) and (d).

The vQ-vs.-vi TC plot given by (78) is shown in (b).
Fig. 8 The periodic waveform p(t) = |AQ+A cos tot-x. |shown in (a) can

always be decomposed into the two wave-trains p, (t) and p9(t) shown

respectively in (b) and (c). Each wave-train is uniquely specified

by its conduction angle 0. = 2<f> -2cos" ( ^ }•
Fig. 9 The output waveform vQ(t) shown in (c) is obtained by a graphical

composition between the v -vs.-v. TC plot shown in (a) with the

input waveform v.(t) = 1 + 4 cos cat shown in (b). The unit-slope

line in (d) is used for graphical construction.

Fig. A-1 The graphs for sk-(xk»3k) f°r Bk > 0 in (a) and 3 < 0 in (b).
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