
 

 

 

 

 

 

 

 

 

Copyright © 1976, by the author(s). 

All rights reserved. 

 

Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 

for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 

lists, requires prior specific permission. 



AN APPLICATION OF THE THEORY OF COMPUTATIONAL COMPLEXITY

TO THE STUDY OF INDUCTIVE INFERENCE

by

Dana Angluin

Memorandum No. ERL-M586

17 March 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



TABLE OF CONTENTS

Page

CHAPTER 1 INTRODUCTORY

1.1 Introduction and the Basic Definition 1

1.2 Size of Descriptions in Different Representations,
An Example 2

CHAPTER 2 FINDING A SMALLEST DETERMINISTIC AUTOMATON
COMPATIBLE WITH GIVEN DATA

2.1 Introduction and Example 8

2.2 Definitions, Notation . 9

2.3 The Complexity of Finding Good-Guesses 11

2.4 Uniform-Complete Samples in Polynomial Time ... . 12

2.5 A Further Extension of the Uniform-Complete Case
Which is NP-hard 20

CHAPTER 3 FINDING A SMALLEST REGULAR EXPRESSION COMPATIBLE
WITH GIVEN DATA

3.1 Introduction and Example 32

3.2 Definitions, Notation, Conventions 33

3.3 Some Efficiently-Inferrable Classes 37

3.4 Some Classes Which are Hard-to-infer 44

3.5 Inference of "Most Likely" Expressions 57

CHAPTER 4 SUMMARY AND ACKNOWLEDGMENTS .''. . 65

APPENDIX 67

REFERENCES 73



AN APPLICATION OF THE THEORY OF COMPUTATIONAL COMPLEXITY

TO THE STUDY OF INDUCTIVE INFERENCE

Ph.D. in Dana Angluin Electrical Engineering
Engineering Science and Computer Sciences

H/t*~C fcfc
Professor M. Blum

Chairman of Committee

ABSTRACT

We study the computational tractability of finding a deterministic

finite automaton with a minimum number of states or a regular expres

sion of minimum length compatible with given positive and negative

samples of an unknown finite-state language. Some restrictions of

these problems are shown to be efficiently solvable, others not.

Given a sample consisting of a finite set of strings in and a

finite set of strings out of an unknown finite-state language, we

define a "good guess" to be a smallest finite-state description which

is. compatible with the given information. (What language is guessed

will in general depend on the descriptive system chosen for the

guesses.)

Mark Gold [1974] has shown that finding a deterministic automaton

with the minimum number of states compatible with an arbitrary sample

is an NP-hard problem; that is, there will be no polynomial time

algorithm for the problem if P f NP. We consider the problem

restricted to "uniform-complete" samples — samples which for some

k >_ 1 contain all input strings of length <_ k and no others — and

demonstrate a simple algorithm to find a smallest compatible deter

ministic automaton in polynomial time for such samples. Then we show
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that for any e > 0, permitting 0(ne) st rings in an otherwise

uniform-complete sample of total length n makes the problem again

NP-hard. The construction given also shows that the problem remains

NP-hard when restricted to "finite-language" or "definite" automata.

We also consider finding a regular expression of minimum length

compatible with an arbitrary sample. We show that this problem is

NP-hard in general, as are some variants using restricted sets of

operators. We exhibit some still more restricted, syntactically-

given sets of regular expressions in which minimum compatible expres

sions may be found in polynomial time for arbitrary samples. Finally,

we define a "most likely" expression compatible with an arbitrary

sample, and show that finding such an expression from given data is

also an NP-hard problem.



CHAPTER 1

Introductory

1.1 Introduction and the Basic Definition

The work presented herein is a contribution to the study of "induc

tive inference", which is the process of constructing a general rule

or hypothesis from a finite number of examples. This process has been

of interest to philosophers and mathematicians since at least the

time of Aristotle. The development in this century of the theory of

computability permits the formulation and solution of some formerly

inaccessible problems in inductive inference; see Gold [1967] and Blum

& Blum [1975]. Some other papers in inductive inference are listed in

the bibliography of this.dissertation.

The particular focus of this work is the inference of a descrip

tion of a finite-state language from a sample consisting of a finite

set.of positive examples and a finite set of negative examples. As an

example, suppose that Lc {0,1}* is a finite-state language which is

unknown to us. If we are given the following sample of L:

in L not in L

100 000

1010101 1101

1000 10001

1 0

101 1010

we might guess that L consists of all strings which begin with "1",

followed either by zero or more repetitions of "0" or by zero or more,

repetitions of "01", in other words, that L is described by the

regular expression: 1(0* V(01)*) .
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If we are given another sample, containing further examples of

strings in L and not in L, v/e might find that our guess is incor

rect. However, we can never conclude from any finite sample that our

guess is a correct identification of L. Even so, we might want to

define the notion of a "reasonable" or "good" guess for a given sample.

One possible definition, answering to the demand for economy of

description, is:

The Basic Definition: Given a sample S consisting of a pair of

finite sets of strings, S = <S..,Sn>, a good-guess for S is a

smallest finite-state description D such that the language L denoted

by D contains all of the strings in S, and excludes all of the

strings in SQ.

Clearly, v/e have to specify what we mean by a "finite-state description"

and a "smallest" such in order for this definition to make sense.

The remaining section of this chapter presents an example showing

that the languages inferred under this definition will in general

depend upon the system of description chosen. Chapters 2 and 3 are

devoted to a study of the computational tractability of finding good-

guesses in classes of deterministic finite automata and regular expres

sions, respectively. Each chapter was written to be readable apart

from the others; therefore some (hopefully not much) of the introduc

tory material in each chapter is repeated in other chapters.

1.2 Size of Descriptions in Different Representations, An Example

There are a number of different formalisms available for denoting

finite-state languages: deterministic, nondeterministic, or two-way

automata, and regular expressions, among others. Meyer and Fischer



.^ V

,[1971] discuss "economy of description" in different systems of repre

sentation for finite-state languages, and present a number of examples

of languages for which smallest representations are of greatly dis

parate sizes in two different formalisms. These results tend to sug

gest (correctly) that the system of description chosen will affect'

what languages are denoted by good-guesses for a given sample.

We will give one example illustrating this phenomenon, for deter

ministic and nondeterministic. finite automata. First, some definitions:
c

Definition: Let X be a finite set. |X| will denote the

cardinality of X. If X is nonempty, X* will denote the set of

all finite strings of elements of X, and u«v will denote the con

catenation of two elements u, v e X*. A will denote the null string
* +

in X . X will denote the set of all non-null strings in X*.

Definition: Fix two nonempty finite sets, X and Y, the input
i —

and output alphabets, respectively. A nondeterministic finite

-automaton, M, will be a quadruple <Q,6,A,I> where Q is a nonempty

finite set, the set of states of M, I c Q is nonempty (the set of

initial states of M), 6 is a map from QxX into the set of all

subsets of Q, and A is a map from QxX into Y, We extend 6

to a map 6 from QxX* into the set of all subsets of Q as

follows:

8(q,A) = {q} for all q eQ

6(q,u-a) = u '6(q',a) for all q e Q, a 6 X, u e X* .
q'e6(q,u)

Definition: If M is a nondeterministic finite automaton and

the output alphabet Y is the set {0,1}, then we define the language



accepted by M, denoted L(M), by

L(M) = {seX+| s=t«a for some teX* and aeX,

and A(q,a) =1 for some q e u 8(q',t)} .
q'el

Definition: If M is a nondeterministic finite automaton, then

M will be called deterministic if and only if |I| = 1, and

16(q,a)| <_ 1 for every q e Q and a e X. (Sometimes deterministic

is taken to require |5(q,a)| =1, so this definition is a bit non

standard.)

Definition: If M is a nondeterministic finite automaton, the

size of M, denoted size(M), will be the cardinality of its state-

set, i.e., |Q|.

We v/ill now present a sample which distinguishes good-guesses in

the class of all nondeterministic finite automata from good-guesses in

the class of deterministic finite automata. Fix X = {0,1,a} and

Y = {0,1}. Let S =<S,,SQ> where S, and SQ are given as follows:

sl ll_
0 1

11 a

10a 10

al la

aa 100

laO 101

laa all

We will say that a nondeterministic finite automaton M is compatible

with S provided that S} c L(M) and SQcx*-L(M).



Proposition 1: If M is any deterministic finite automaton of

minimum size which is compatible with S, and N is any nondeter

ministic finite automaton of minimum size which is compatible v/ith S,

then

L(M) /.L(N) .

Proof: Let M and N be deterministic and nondeterministic

(respectively) automata of minimum size which are compatible with S.

We will show that aO e L(M) and aO £ L(N)> and conclude that

L(H)/L(N).

1. size(M) < 4. To see this, note that

M,

start

0,1,a/1

is a deterministic finite automaton which is compatible with S, so

the minimum size of any deterministic finite automaton compatible with

S does not exceed 4 states,

2. size(M) > 4, Let M=<Q,6,A,{qQ}>, If 6(qQ,s) is non

empty, we will denote the unique state that it contains by [s], for

each s e X*. Since 0,11,10a,al must all be in L(M), we know that

the sets 6(q0,A), 6(qQ,l), 6(qQ,10), and 6(qQ,a) are nonempty. We

have then the following information about A(q,x):

q

[A]

[1]

[10]

[a]

0 1 a

1 0 0

0 1 0

0 0 1

? 1 1



which shows that the four states [A], [1], [iO], [a] are indeed dis

tinct states of M, so size(M) > 4.

3. aO e L(M). 6(qQ,la) must be nonempty, since laO e L(M).

But we must have A([la],0) = 1 and A([la],a) =1, so [la] t [A],

[1], [10]. By #1 and #2, size(M) = 4, and therefore [la] = [a].

But then A([a],0) = A([la],0) =1, so aO e L(M), as claimed.

4. size(N) < 3. Consider the machine

N0 = 0/1CQ KJJ a/1

start

which is a nondeterministic finite automaton compatible with S. Thus

the minimum size of a nondeterministic automaton which is compatible

with S is at most 3 states.

5. size(N) > 3. Let N = <Q,6,A,I>. The set of initial states,

I, may contain more than one element, but it must contain at least

one state, say qA, such that A(qA,0) = 1, because 06 L(N). Since

l,a £L(N), we must also have A(qA,l) =0 and A(q ,a) =0. Simi

larly, there must be a state, say q,, in u 6(q,l) such that
qeiX(q1,1) =1, because 11 eL(N), Also, Afq^O) =A(q.,,a) =0

because 10,1a £L(N). Finally, there must be a state, say q1Q, in

U 6(q,10) such that A(q1Q,a) =1, and A(q]0,0) =A(q1Q,l) =0.
We summarize this information in a table for A(q,x):

x 0 1

^A 1 0 0

'"l 0 1 0

q10 0 0 1



and conclude that the states qA> q], and q1Q are distinct states
of N, so size(N) > 3, as claimed.

6. aO £ L(N). By #4 and f/5, the only states in N are the

states qA, q], and q]Q. Since 1, at L(N), q], q1Q £ I, so I

must be the singleton {qj. Because q, e u 6(q,l), we must have
~ qe I

ql 6 ^a'1^ Now assume contrary to #6 that aO e L(N). This

implies that qA e6(qA,a). But if qA e6(qA>a), then q] e6(qA,al),

so all e L(M), contradicting the fact that N is compatible v/ith

the sample S, and all e SQ. Thus we conclude that aO $ L(N), as
claimed.

Since aO e L(M), and aO $ t(t), we have L(M) + L(N). D

Discussion

It is not difficult to see that any nondeterministic automaton,

M, with 2 states is equivalent to some deterministic finite automaton

with at most 3 states under the given definition of deterministic auto

maton. Thus, there will be no example of the phenomenon exhibited in

Proposition 1 in which N contains only 2 states.

It would perhaps be of interest to study in more detail the

effects of different systems of representation on the inferences made

according to the Basic Definition. The remainder of the present work

however is devoted to investigating the computational difficulty of

finding such inferences for regular languages in tv/o particular systems

of representation: deterministic finite automata, and regular expres

sions. Related results concerning the difficulty of finding minimum-

sized representations for Boolean functions compatible v/ith given data

may be found in Angluin [1976],



CHAPTER 2

Finding a Smallest Deterministic Automaton Compatible with Given Data

2.1 Introduction and Example

In this chapter v/e are concerned with the problem of inferring a

deterministic finite-state machine from a given sample of its behaviour.

For example, given that:

Example 1: on input: 00010000

M's response: 00001111

on input: 1000001000

M's response: 0111111000

we might guess that M is the machine:

start

Without a bound on the number of states in M, we can never be

certain of identifying M correctly. One "reasonable" strategy would

be to guess a machine with the minimum number of states which is con

sistent with the given sample; this ansv/ers to the notion of "economy

of description". This strategy also leads to a correct inference "in

the limit". That is, if we are presented with successively larger

samples of the. behaviour of an unknown machine, guaranteed to contain

its response for every possible input string eventually, and we con

sistently guess a smallest machine in agreement v/ith the given sample,

we will eventually hit on the smallest machine equivalent to the

unknown machine, having eliminated all candidates of the same size or

smaller as inconsistent with the sample. (Work on inference in the



limit may be found in Gold [1967], Feldman [1972], and Blum & Blum

[1975].) Other strategies also give correct inference in the limit,

for example, Gold's polynomial time "padding" method (Gold [1974]),

In this chapter, we will investigate the computational problem of

finding a smallest deterministic machine in agreement with given data.

2.2 Definitions, Notation

Definition: Let X be a finite set. |X| will denote the car

dinality of X. If X is nonempty, then X* will denote the set of .

all finite strings of elements of X. A v/ill denote the null string

in X*. X+ will denote the set X*-{A}. If s, t e X*, then s*t

or simply st will denote the concatenation of s and t, and |s|

v/ill denote the length of s.

We fix U and V, nonempty finite sets of symbols, the input

and output alphabets, respectively.

Definition: A sample-function will be any function from a finite

nonempty subset of U into V.

Definition: A sample-function f will be called prefix-closed

if for e^ery u in the domain of f, if v is a nonnull prefix of

u, then v is in the domain of f.

We will consider only prefix-closed sample-functions in the remain

der of this chapter.

Definition: A sample S will be any finite nonempty subset of

U+xV such that

1. |u| = |v| for every pair <u,v> e S

2, there exists a sample-function f such that for any



<alV"ak,blb2,MVeS (k*.1* ara2,...,ak e U and
b-j »b2>.. . ,b. e V) v/e have

f(a]a2**'aj) = bi for a11 i=l,2,...,k.

The unique smallest such f will be called the sample-function pre

sented by S.

Example 2: S] = {<0101,0011>,<010011,001110>}

is a sample presenting the sample-function:

f-, = {<0,0>,<01,0>,<010,1>,<0101,1>,<0100,1>,<01001,1>,<010011,0>}

while

S2 = {<010,111>,<0111,1000>}

is not a sample, since no function f can have both f(01) =1 and

f(01) = 0.

It is clear that a finite subset of U+xV can be tested to

determine whether it is a sample in polynomial time.

Definition: A machine will be a fully-specified, deterministic,

Mealy-model finite automaton with input alphabet U, output alphabet

V, and a unique start-state. If M is a machine, and u 6 U+, we

denote by [u]M> or just [u], the state that M is in after being

started in its start-state and given the input u. If s is any state

of M, M(s,u) will denote the output string produced by M when

started in state s and given input u. M'(s,u) will denote the

last symbol of M(s,u). M(u) and M'(u) will be used as abbrevia

tions for M([A],u) and M'([A],u) respectively.

10



Definition: A machine M is consistent with, or agrees with, a

sample S if and only if M'(u) = f(u) for every u in the domain

of f, where f is the sample-function presented by S.

Definition: If S is a sample, a good-guess for S will be any

machine M with the minimum possible number of states v/hich is con

sistent with S.

The machine of Example 1 is a good-guess for the sample given

there, and any other good-guess for that sample must be equivalent to

it. In general, however, there will be inequivalent good-guesses for

a given sample.

2.3 The Complexity of Finding Good-Guesses

Gold [1974] has shov/n that finding a good-guess from a given

sample is a computationally infeasible problem in general (provided

P f NP). (We assume familiarity with the definitions and results

concerning deterministic and non-deterministic polynomial-time-bounded

computations, as developed in Cook [1971] and Karp [1972].) That is:

Theorem 1 (Gold): The problem of deciding* for a given sample S

(which may be taken to be prefix-complete) and positive integer k,

whether there exists a machine v/ith < k states which is consistent

with S, is NP-complete, provided |U|, |V| ^2.

This may be interpreted as saying that enumerative techniques for

finding a good-guess from a given sample are essentially the best we

can expect at present, and no algorithm for the problem will work uni

formly in polynomial time if P f NP. From a practical point of view,

we might hope to find reasonable restrictions on the type of machine



to be inferred, or on the sample, which would permit us to find good-

guesses more efficiently. In the case that the sample specifies an

output for every input string of length < k and no others, for some

k >. 1, v/e will see that there is a simple algorithm for finding a

good-guess in polynomial time. We will then consider the effects of

relaxing this condition on the sample.

2.4 Uniform-Complete Samples in Polynomial Time

In this section, we consider a rather strong condition on the

sample, and show that good-guesses may be found in polynomial time for

samples v/hich satisfy this condition.

Definition: A sample S will be called k-uniform-complete if and

only if the sample-function it presents is defined for precisely the
k +set U = {u| ueU and |u|£k} for some integer k > 1.

Thus a k-uniform-complete sample specifies input/output behaviour

for all input strings of length < k and no others, and consequently

v/ill be of size 0(k|U|k).

Example 3: SQ = {<00,01>,<01,00>,<10,11>,<11,10>}

is a 2-uniform-complete sample, if U = {0,1}.

Is

We may construct a partially-specified "tree machine" of |U| -1

states in agreement with a k-uniform-complete sample, by assigning a

state for every string of length < k.

12



Example 3 (continued): For SQ we get the partially-specified

machine

We might arbitrarily assign the unspecified transitions in the tree

machine for S and find the minimal equivalent to the resulting fully,

specified machine, e.g.,

Example 3 (continued):
0/1, 1/0

M,

start

(M, is minimal because M, ([A],00) = 01, M, ([0],00) = 10, and

M1([1],00) = 11.)

This procedure will not in general produce a good-guess for the

sample S, as may be seen from the fact that M« is also in agreement

with the SQ of Example 3, where

Example 3 (continued):

M,
0/1, 1/1^-^1/0

start



However, there is an algorithm which is not too much more sophis

ticated than this which will always find a good.guess for a k-uniform-

complete sample in polynomial time. It is a procedure v/hich is called

"contraction of a finite tree" by Trahktenbrot and Barzdin [1973],

pp. 98-99, where it is given without proof.

The idea of this procedure is to start v/ith a state-set Q,

initially = {A}, and to v/ork breadth-first from the root to the leaves

of the tree machine for S, adding a new state to Q only if it can

be distinguished from all of the states currently in Q by informal

tion contained in the sample, and otherwise, identifying it with any

state in Q from which it is indistinguishable by information contained

in the sample. V/e will specify this algorithm and prove that it works.

Suppose we are given S, a k-uniform-complete sample for some

k > 1, Let f denote the sample-function presented by S. For each

u e Uku{A}, we let

Ru ={<z,f(uz)>| zeUk~|u|} .

(So if |u| = k, then R = 0.) The set R represents the subtree

of the tree machine for S v/hich is rooted at the state [u].

Example 4:

start

14



k
Definition: If s, t e U u{A} then we say that s can be

merged to Jt if and only if R CR

Thus R c Rt means that the subtree rooted at [s] is found

ded i

Example 4,

embedded in the subtree rooted at [t], for example RQ0 c R in

The following algorithm calculates a state-set Q c U u{A}.

During execution, the set L contains those strings in Uku{A}

which remain to be processed. The set T contains a record of iden

tifications made: <s,t> e T means that the state s is identified

with the state t.

Algorithm A:

begin

Q<- {A}; L«- Uk; T«- 0;
while L f 0 do

begin

s <- least(L);

M«- {u| ueQ and s can be merged to u};
if M = 0 then

begin

remove s from L and add it to Q;

end .

else

begi n

t *• anyelement(M);

T<-Tu{<s,t>};

remove s and all of its extensions from L;

end

end

end.

where the function "least" selects the lexically smallest of a finite



nonempty set of strings, and "anyelement" simply returns one element

of a finite nonempty set.

We give an example of the execution of Algorithm A.

Example 5: Consider the 2-uniform-complete sample given by

After initialization, v/e have:

Q = {A}, L = {0,1,00,01,10,11}, T = 0 .

The first time through the "while" loop, state 0 is identified with

state A e Q, giving values:

Q = {A}, L = {1,10,11}, T = {<0,A>} .

The next time through, the state 1 is found to be distinguishable from

A e Q, and is added to the state-set:

Q = {A,l}, L = {10,11}, T = {<0,A>} .

In the third execution of the loop, 10 is found to be indistinguish

able from both A and 1, and so is identified with either, say A:

Q = {A,l}, L = {11}, T = {<0,A>,<10,A>} .

In the final execution of the loop, 11 is identified with either A

or 1, say A, resulting in final values:

16



Q = {A,lh L = 0, T = {<0,A>,<10,A>,<11,A>} .

When Algorithm Aterminates, v/e have for each u e Uku{A} one

of the three following possibilities:

i) u e Q, every prefix of u is also in Q, and u cannot

be merged to v for any v e Q such that v < u (in the lexical

ordering of strings);

ii) every proper prefix of u is in Q, but u itself is not

in Q, and there is a unique v e Q such that u was identified

v/ith v, i.e., <u,v> 6 T;

iii) some proper prefix of u is not in Q, and u was there

fore removed from L as an extension of a string in class (ii).

(In particular, if u e Q, then |u| < k-1, because if |u| = k,

then Ru = 0 and u can be merged to Ae Q, so conditions (i)-(iii)

guarantee that u $ Q.)

We use the output set Q as the state-set of a machine M

defined as follows: let ueQ and a e U. Then |u|<k-l, so

u*a e U . Thus we may define the output of M for state u and

input a to be f(u«a). If u*a e Q, then we simply define the next

state of M for state u and input a to be the state u«a. Other

wise, u-a is a string of type (ii) above (because u 6 Q and a e U),

and there is a unique v e Q such that <u*a,v> e T. In this case,

we define the next state of M in state u with input a to be the

state v. A will be the start-state of M.

Example 5 (continued): Applying this procedure to the final

values

Q = {A,l}, L = 0, T = {<0,A>,<10,A>,<11,A>}



v/e obtain the machine:

0,1/1

start

Theorem 2: The machine M thus defined is a machine with the

minimum possible number of states which is consistent with the input

sample S.

Proof: (Recall from the definitions, p. 10, that [u]M denotes

the state M reached from the start-state on input u, and M'(u)

denotes the last symbol of output produced by M on input u. [uL

v/ill be written simply [u] in what follows.)

It is clear from the definition of M that [u] = u for all

strings u e Q. To show that M is consistent with S, we must show

that M'(u) = f(u) for all ueUk. If aeU, then M'(a) = f(a),

by definition of M. Now suppose that M'(v) = f(v) for all strings

v which precede some string u e U , with |u| >_ 2. Then u = wa

for some a e U.

If w e Q, then

M"(u) = M'([w],a)

= M'(w,a)

= f(wa)

- f(u) .

If w £ Q, then u = z«b»t where z is the longest prefix of u

which is in Q, b e U, and t e U . Then z»b is a string of type

(ii), so there is a unique v e Q such that <z«b,v> e T. By the

definition of M, we have [z*b] = v. Hence

18



M'(u) = M'(z-b«t)

=M'([z.b],t)

= M'(v,t)

= M'(vt)

= f(vt)

because v < z-b, so vt < z»b»t = u, so our inductive assumption

applies to vt. Since <z«b,v> e T, we know that z«b can be merged

to v, so Rz#b c Ry. But <t,f(z-b«t)> e Rz#b, so we must have

f(vt) = f(z-b-t) = f(u). Thus, M'(u) = f(u).

Hence in either case we get M'(u) = f(u), so by induction we may

conclude that this holds for every u e Uk, i.e., that M is consis
tent with S.

To see that M has the minimum possible number of states among

all machines consistent with S, we let N be any machine which is

consistent v/ith S. Let u, v e Q with u f v. Assume without loss

of generality that u < v. Then from observation (i) above, we know

that v cannot be merged to u, i.e., that R £ R . Thus there is

some element of Ry, say <t,f(vt)>, with 1 <. t <k- |v|, which

is not an element of Ru# Since u <v, |u|<|v|, so l<t<k-|u|

Therefore, <t,f(u*t)> e Ru, so v/e conclude that f(vt) i f(u-t)..,

But since N is consistent v/ith S, we have N'(vt) = f(vt) and

N'(u-t) =f(u-t). Hence, the states [u]jN and [v]N are distinguish
able by the experiment t, that is, [u]N t [v]N> Since u and v
were arbitrary distinct elements of Q, we conclude that N has at

least |Q| states, at least as many as the machine M. •



Since the set L in Algorithm A is initially set to Uk, and

each iteration of the "while" loop removes at least one element from

L, it is not too difficult to see that the algorithm can be imple

mented to run in time polynomial in the size of the k-uniform-complete

sample S.

An Extension of A: If S is a sample which would be k-uniform-

complete v/ith the addition of at most dk strings to the domain of

its sample-function, then v/e could execute Algorithm A for each possi

ble v/ay of extending S to be k-uniform-complete and output a smallest

among all the resulting machines; this would obviously be a good-guess

for the sample S. For a fixed constant d, the number of possibilities

we must try out is |V| , which is polynomial in the size of S,

provided |U| >^ 2 so that the whole procedure would run in time poly

nomial in the size of S. We have

Theorem 3: For any d ^ 0, we may find good-guesses in polynomial

k
time for all samples S which are defined exactly on U less at

most d-log(|U |) strings,

2.5 A Further Extension of the Uniform-Complete Case Which is NP-Hard

This section is devoted primarily to a construction to demonstrate:

Theorem 4: For any e > 0, the problem of finding a good-guess

k k efor any sample S which is defined on U less at most |U |

strings for some k > 1, is NP-hard, provided |U|, |V| > 2.

This is to be contrasted with Theorem 3, which says that if the

number of unspecified strings is bounded by d*log(|U |) for some d,

then the problem may be solved in polynomial time. What happens in the
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gap between d• log(|U |) and |U |e is an open problem.

The reason that Gold's construction for the proof of Theorem 1

does not suffice to prove Theorem 4 is that he translates a proposi-

tional formula $ of m clauses and n variables into a sample con

taining input strings of length k > max {m,n}. To make such a sample

"nearly" k-uniform-complete in the sense of the theorem would make it

k
of size at least c»2 for some constant c, which would not be

polynomial in the size of $, as required for the NP-reduction. Thus

the primary purpose of this new construction is to keep the strings of

the sample to length 0(log k); the "e" may then be achieved by a

standard sort of padding. The construction will also allow us to con

clude that finding good-guesses is NP-hard even if v/e restrict the

problem to "finite-language" or to "definite" machines [see p. 30].

A Class of Machines: We first define a particular set of incom

pletely-specified machines. The definitions will be given pictorially:

Tn = O

k+1
for all k > 0

Rn = 0

lk+l for all k > 0



and for all k ^ 1, M. is the partially-specified machine:

start-
state

"sink",
state

Thus, for example, M2 is the partially-specified machine:

start*

state \ O/l/'

<Xg/0, 1/1

^^0/0, 1/1
0J/1

7i, 1/1

P/0, 1/1
.0,1/1

P/0, 1/1

^x>in<Xon9 V1

0/1, 1/1 o/o,

0/1, 1/1

"sink"
state
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Mk will have 22k+1 +2k+1 -2 states. We define the level of a
state i in M. to be the "distance" of state i from the start-

state:

level(i)= min {9,\ 3u(|u| = I and [u] = i)}

The start-state will be at level 0 and the sink-state at level 4k+l,

The only unspecified transitions and outputs of M. are the 0-transi-

tions and 0-outputs from states at levels k and 2k.

We choose a set Q. of strings to represent the states of M..

For each state i in M. , r(i) is taken to be the "southern route"

from the start-state to i, i.e.,

r(i) = max {u| |u| = level(i) and [u] = i} ,

where the maximum is taken in the lexical ordering of strings (with

0 < 1). Then

Qj, = {r(i)| i is a state of M.}

We note several facts that can be proved regarding M. :

1. If u6Qk then Mk(u.l4k+2-M) =l4k+1-0.
2. If u6Qk and |u| <2k then Mk(u-14k+1~2•u'-0,u')

4k+l-1u I r r= 1 ' '"U , where u denotes the reverse of the string u.

3. If i is any state at level %> 2k then r(i) v/ill be

of the form u«lm where |u|=4k +l-Jt and m= 4k +l-2|u|.

The first fact allows us to distinguish two states at different

levels of Mk; the latter two allow us to distinguish between tv/o

states at the same level. We use these ideas to construct a sample:



let

E^ ={e| e=u-l k+2"lul for some ueQ. , or
e=u«l4k+1"2lu'.olul for some ueQk with |u|<2k}

and

Sk ={<e,Mk(e)>| eeEk}

Claim: If M is any machine v/hich is consistent with the sample

Sk, then [u]^ f [v]M whenever u, v6 Q, and u f v.

i ?k+l k+1
(Thus in particular, M must have at least 2 +2 -2 distinct

states.)

Proof: Let u, v e Qk v/ith u i v. Denote [u]M and [v]„ by

[u] and [v] simply. Since M is consistent with S. , we must have

M([uLl4k+2-|u|)=14k+l-|u|#0 9

M([v],l4k+2-lvl)=l4k+1-lvI.O .

Thus if |u| f |v|, say |u| <|v|, then we have M([u],l4k+2"lvl)
=i4k+2-lvl, so [u] f [v]. If |u| =|v|, then if |u| <2k, v/e
have

M([u],l4k+1-2lul.olul) =l4k+1"2l"ul.ur
M([v],l4k+1-2IUUIU1) =14k+l-2ju|.vr

so again [u] f [v]. in the last case, |u| = |v| > 2k, we have by

Fact 3 above that

u =ur*lm and v =v^l"1 ,

where |u11 = |v11 =4k +1- |u|, and m=4k +1- 2ju11. Thus
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M([u],0 ^) =u\
and . .

M([v],0 ])=v\ ,

so we conclude in this final case that [u] f [v] once again. D

Encoding a SATISFIABILITY Problem Using S.

We now show how to augment the sample S. to "represent" a pro-

positional formula. Let tj) be a propositional formula in conjunctive

normal form (a conjunction of a set of clauses, each of which is a

disjunction of some literals), for example 4> = (A V BVC)(AV D)(B v Cv D)

We may without loss of generality assume that each clause of 4> con

tains only positive or only negative occurrences of variables. (If .

not, we may use the fact that (pVq)r is satisfiable if and only if

(pVX)(qvX)r is satisfiable, provided that X is a variable that

does not occur in p, q, or r, to transform the problem to meet

this condition.)

If m and n are the numbers of clauses and variables in <(>,

respectively, we fix k= pog(max{m,n})l +1» so that 2k"] >m, n.
Let

C = {the first m binary strings of length k-1}

V = {the first n binary strings of length k-1}

and put these into one-to-one correspondence with the clauses and

variables of <+>, respectively, so that we can talk about clause c

and variables v for c e C and veV,

We use some of the 0-outputs from states of Mk at level 2k to

encode the variable/clause incidence relation in <j>:
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A] ={<lulv/0,r*<5>| u,we{0,l}*, |u| =|w|=k-l, and 6=1 if and

only if ueV, weC, and variable u appears

in clause w of <f>, else 6 = 0}

Then we constrain the 0-transitions from states [Oc] for c e C as

fol1ows:

A2 ={<0c013k+2,l4k+20>| ceC}

A3 ={<0c013k0,l4k+2>| ceC}

A4 ={<0c01c0,l2k+2>| ceC}
k+1A5 = {<0c00,l 6>| ceC and 6=0 if clause c contains only nega

tive occurrences of variables, 6 = 1 if clause

c contains only positive occurrences of

variables}

We set S* =SkuA1UA2uA3uA4UA5. It is not too difficult to see
that Sk is a sample, that it presents a well-defined sample-function.

Claim: There exists a machine of 2 ' +2 -2 states in

agreement v/ith the sample Sk if and only if the formula 4> is

satisfiable.

Proof: (=») Suppose M is a machine of 22k+1 +2k+1 -2 states
*

which is consistent with S.. Then, in particular, M is consistent

2k+l k+1with Sk, so M must contain exactly 2 +2 -2 states, namely

{[u]J ueQk}. We will denote [ul. by [u] simply, in what follows.

For each v e V, let t(v) = M([lv],0), the 0-output of M in the

state [lv]. We v/ill show that t is an assignment of truth-values

to the variables of <J> v/hich will satisfy <J». Let c e C, then

26



M([0c0],l3k+2) =l3k+10 from agreement with A2 ,
M([0c0],l3k0) =l3k+1 -from agreement with A, .

Taken together, these imply that [OcO] must be a state in the lower

half of the kth level of M. , that is, that [OcO] = [lu] for some

u e {0,1}* v/ith |u| = k- 1. Then

M([lu],lcO) = M([0c0],lc0)

=lk+1 from A4 .

But by A-j, this implies that u is a variable which appears in

clause c. Finally, by Ac

(0 if c contains only negative occurrences of
M([0c0],0) =j variables

(1 if c contains only positive occurrences of
variables

and t(u) = M([lu],0) = M([0c0],0), so the assignment of the value

t(u) to variable u makes clause c true, Since c was arbitrary,

the assignment t makes all the clauses of $ true, i.e., satisfies

(<=) Conversely, suppose that <f> is satisfiable. We choose an

assignment t: V •*• {0,1} which satisfies 4>, and for each clause

c e C, we pick a variable v e V v/hich appears in clause c and

v/hich makes clause c true under the assignment t. (That is,

t(v) =0 if c contains only negative occurrences of variables,

1 otherwise.) We now specify the missing outputs and transitions of

Mk in such a way that the resulting machine is consistent with S*

and has no more states than M, .
k

1. The 0-output from state [0c], where c e C, will be "1";

the 0-transition will be to state [lv], where v e V was the



variable picked to make clause c true under the assignment t.

2. The 0-output from the state [lv] where v e V will be

t(v).

3. The 0-output from state [Ixly] will be "1" provided x e V,

y e C, and variable x appears in clause y of ({>, "0" otherwise,

for all x, y e {0,1}* such that |x| = \y\ = k-1.

4. The rest of the missing transitions and outputs in M. may

be specified in any v/ay within M. . We note that in particular they

may be chosen so that the resulting machine is a "finite-language"

machine, that is, outputs "1" for only a finite number of possible

input strings.

We call the machine that results from this procedure M. ; we

must see that it is consistent v/ith Sf, Mk is an extension of Mk,

and thus is consistent with S. . Consistency v/ith A,, is by direct

construction in item #3 above. Let c be any element of C. Then

* k+1Mk(0c0) =1 and [OcO] = [lv], where v is the variable chosen

to make clause c true under assignment t. This easily gives agree

ment with A2, A3, A4. Finally, M*([0c0],0) =M*([lv],0) =t(v),
and v was chosen so that t(v) v/ould agree with the sense of

clause c. D

Analysis

Since k = 0(log|(J>|), and the longest strings in sf are of

length 4k+ 3, we can easily see that Sk will be of size polynomial

in |$|. It is also not difficult to see that s£ can be constructed

from 0 in time polynomial in |<j>|. Thus v/e have given a polynomial-

time reduction of SATISFIABILITY to the problem of finding good-guesses

for the samples Sk($), and we conclude that the latter problem is

28



NP-hard, since SATISFIABILITY is complete in NP (Cook [1971]).

All that remains to complete the proof of Theorem 3 is to achieve

the "e"; this is done by "padding" the sample Sj* to bury the effect

of the at most 2 strings used in specifying <{>, One v/ay to do

this is to add a preamble of length p to Mk, thus:

p states

, * »

start ' I 0/1 • • • Vp/i
0/1

0/1

Each of the additional p states may be distinguished from the sink-

state of Mk by its output under input "0", and from all the other

states of Mk by its output under input "1". They may be distin

guished from each other by their behaviour under the string lp .

We construct:

B] ={<s,Pk(s)>| |s|<p+4k+3 and S/Mpt for all te{0,l}+}
B2 ={<lps,0pt>| for all <s,t>eS*}

and define Sk = B, uB2. s£* will be a sample containing input
strings of maximum length p+4k+3, with at most 2 of them unspe

cified. We will have: <J> is satisfiable if and only if there is a

machine with p+2 k+1 +2 ' -2 states in agreement with S**. Given

e, 0 < e < 1, we choose p = f(4k+4)/e] . Then the domain of S**

will be Up+4k+3 less at most rUp+4k+3~|6 strings, as required for
Theorem 3.



Restrictions on the Type of Machines

Definition: A machine M is a finite-language machine if and

only if its output alphabet is {0,1} and it gives the output "1" for

only a finite number of input strings.

Definition: A machine M is definite if and only if there exists

an integer k > 0 and a function f mapping the set of input strings

of length k to the output alphabet such that for any input string u

of length > k, M*(u) = f(v), where v is the suffix of u of

length k.

Note that a finite-language machine is necessarily definite. In

the proof above, v/e observe that if <f> is unsatisfiable, then

there will be no machine of < 22k+1 +2k+1 - 2 states in agreement with
Sk, but if (j> is satisfiable, then the machine constructed from a

satisfying instance for <j> may be taken to be finite-language, and

hence definite. Thus:

Corollary: The problem of finding a smallest finite-language (or

definite) machine consistent with a given sample is NP-hard.

Notes

1. In the special case that the output alphabet is {0,1} and

we interpret the underlying machine as a finite-state acceptor, we

might wish to present a k-uniform-complete sample as

S-j = {precisely those strings of length < k which are accepted} ,

u

i.e., the subset of U which is accepted by the machine. S, may be

of size polynomial rather than exponential in k for particular
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families of machines. For this case, Algorithm A can be modified to

run in time polynomial in the size of S-, rather than in the size of

k
U as follows: Initialize L to the set of all nonnull prefixes of

+ i
strings in S,. For all s, t 6 L, we consider T = {u eU | sueS,}

and say that s can be merged to t if and only if |s| >^ |t| and

Ts is identical to T. for strings of length 5.k- |s|. In the speci

fication of the machine M we may be compelled to introduce a "dead

state" to guarantee that the machine is completely specified, but

otherwise the construction carries over in a straightforward fashion.

This modification of A may be of some practical interest.
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CHAPTER 3

Finding a Smallest Regular Expression Compatible with Given Data

3.1 Introduction

In this paper we consider the problem of "guessing" a regular

expression to describe an unknown finite-state language, on the basis

of a few examples of strings in the language and a few examples of

strings not in the language. For example, given:

in L not in L

011100 inn

1111110111 001111

111 11000

000111111 010

v/e might guess that the language L was described by the expression

(0 V 111)*.

Without additional kinds of information about L (for example,

an upper bound on the length of an expression describing L), we can

never be certain we have correctly identified L. However* we might

still want to find a "reasonable" or "good" guess in this situation.

We v/ill define a "good guess" to be a regular expression of minimum

length which is consistent with the given sample. This definition

corresponds to a demand for succinctness in a scientific theory of

given data; it also leads to a correct inference in the limit, in the

sense defined by Mark Gold [1967].

For inference, regular expressions are interesting for tv/o possi

bly related reasons. In simple cases, regular expressions correspond

somev/hat with natural language descriptions of inferences from samples

of finite-state languages. Also, the strings composing a regular

32



expression (using the operators V, •, *) appear as substrings of the

positive strings of the samples. Both of these may provide insight

into efficient constructive approaches to the inference of regular

expressions. The "substrings" property is exploited in the classes of

expressions constructed in Section 3.3.

One way to compute a shortest regular expression compatible with

given data is to enumerate all regular expressions in order of size

and test them for compatibility with the sample. This potentially

exponential-time algorithm is the best we currently possess for find

ing shortest compatible expressions. Moreover, Theorem 2, in Section

3.4, will show that there is no polynomial-time algorithm for finding

a shortest compatible expression for arbitrary given data (if P j4 NP).

This result motivates a search for computationally more tractable

special cases of the problem of finding "good guesses" from given data.

Ideally, we would like to characterize those features of the sample or

of the expressions to be inferred which permit efficient inference.

Perhaps such features would include formal correlates of our intui

tions of "transparency" or "clues" or "structure" in the samples or

expressions.

Tov/ard this end, we present the beginnings of a study of the

"inferrability" of various restricted classes of regular expressions,

from arbitrary given data.

3.2 Definitions, Notation, Conventions

Definition: Z v/ill be a finite nonempty set, the alphabet. A

will denote the null string, Z+ the set of all non-null strings over

the alphabet E, and Z* = £+u{A}. If s, t e Z*, the concatenation

of s and t will be written st. If A, B c I* then



AB = {s| s =tu for some teA and u e B}

and v/e define An as follows:

A0 = {A}

A1+1 = A1A for i > 0 .

Definition: The set of regular expressions over Z will be the

smallest set of strings E such that

1. Z c E

2. A, (J> e € where A, <£ are distinct symbols which are not

in Z.

3. Whenever E, F e E then

(E-F) 6 E

(E V F) e E

(E)* e E where the symbols (,),•, V, * are

not in Z.

The set of regular expressions over Z will be denoted <Z,V,»,*>.

The subset of <Z,V,^,*> consisting of strings which do not contain

the symbol V will be denoted <Z,«,*>; similarly for the other

operators.

Definition: If E is a regular expression, v/e define the

language of E, denoted L(E), inductively, as follows:

1. L(a) = {a} for all a e Z

2. L(A) = {A}; L(0) = 0 (the null set)

3. L((E-F)) = L(E)L(F); L((E V F)) - L(E)UL(F);

L((E)*) = Z(L(E))1
i=0

With respect to the language denoted, concatenation ("•") is
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associative, and union ("V") is associative and commutative. We will

freely omit unnecessary parentheses and the concatenation symbol ("•")

from regular expressions.

Definition: If E is a regular expression, its length, denoted

|E|, is defined as follows:

1. |a| = 1 for a e Z

2. |A| = 1 and |0| = 1

3. |(E-F) | = |E| + |Fj; |(E V V)| « |E| + |F| +1; |(E)*| = |E|+1

Note that parentheses and the concatenation symbol do not count

towards the length of an expression, so that the length of any expres

sion is simply the number of symbols from ZU{A,0,V,*} used in it.

This definition is mostly for convenience in the proofs to follow; the

results could be proved under different definitions of length.

Examples: Let Z = {0,1}.

L((0 V 1)*1) = {all strings of.O's and l's v/hich end in a 1}

|((0 V 1)(0 V 1))*00| = 9

L((0)*) = {A}

L(((OO)*0) = 0

|(0000)*| = 5

Definition: A sample S over Z will be an ordered pair

S=^rV* where V S0 are finite subsets of Z* and S, nsQ =0.
S1 will be called the positive part of S, and SQ the negative

part of S.



Definition: A regular expression E is consistent (or compa

tible) with, asample" S=<S, ,SQ> if and only if S, c L(E) and

SQnL(E) = 0, that is, if and only if E generates all the strings

in the positive part of S and none of the strings in the negative

part of S.

Example: The sample presented in Example 1 is S = <{011100,

1111110111,111,000111111},{11111,001111,11000,010}>. The expression

(0 V 111)* is compatible with this sample, the expressions 0* and

(0 V 1)* are not compatible with it.

Definition: If S is a sample and E is a set of regular

expressions, then a regular expression E will be called a good-guess

from E for S^ ifc,and only if

1. E e E;

2. E is compatible with S;

3. for every F e E, if F is compatible with S, then

|E|.£|F|.

If E is the set of all regular expressions, then we will simply say

that E is a good-guess for S^.

Definition: If E is a set of regular expressions, then E

v/ill be called efficiently-inferrable if and only if there exists an

algorithm A such that

1. A runs in polynomial time;

2. for every sample S,

E v/here E is a good-guess from E for S,
AfO ) if ar|y expressions from E are compatible
m2>; ~ I with S

"NONE" otherwise
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Remark 1: If E and E' are efficiently-inferrable, then so is

EUE'. (We simply run both algorithms and take a smallest answer, if

any.)

Definition: If E is a set of regular expressions, then E will

be called hard-to-infer if and only if P ^ NP implies that E is

not efficiently-inferrable.

(Note that efficiently-inferrable and hard-to-infer would simply be

complements of each other if v/e could prove P f NP.)

Conventions: We assume straightforward encodings of strings,

expressions, sets, integers as inputs and outputs of programs. We

also assume familiarity with the definitions and results concerning

sets recognizable in deterministic polynomial time (P) and nondeter

ministic polynomial time (NP), and the notions of NP-complete and

NP-hard problems, as developed in Cook [1971] and Karp [1972].

3.3 Some Efficiently-Inferrable Classes

In this section we present some classes of regular expressions

from which good-guesses may be found in polynomial time for arbitrary

samples. We start with an example:

Let Z = {0,1}.

Let E = {E| E=(xVy)* for some x,yeZ*}. If we are given the

sample S = <S,,SQ>:

!l fo
11001 on

10000 1000

we proceed to enumerate all substrings of the strings in the positive



part of the sample:

W = {A,0,1,00,01,10,11,000,001,100,110,0000,1000,1001,1100,10000,1101}

and for each pair <r,s> e WxW, we form the expression (rVs)* e E

and test it for compatibility v/ith S. A shortest regular expression

found in this way v/hich is compatible with S is (1 V00)*. It is

easy to see that for any (xVy)* e E which is compatible v/ith S,

both x and y must appear as substrings of the positive strings of

S, so that (1V00)* will in fact be a shortest expression from E

which is compatible v/ith S, i.e., a good-guess from E for S.

The idea of this example may be formalized as follows:

Definition: Let x,,x?,x3,.,. be an infinite sequence of new

symbols. A regular form in k_ variables will be any regular expres

sion over the alphabet zu{x,,x«,,.. ,x.}.

Definition: If k ^0 is an integer, then a k-substitution will

be any function f: {x,,x2»...,x. } •*• Z*u{0}. For any set A of

symbols disjoint from the x.'s, we will implicitly consider f

extended to map (Au{x1 ,x2,... ,xk})* to (ZUAu{0})* by f(a) = a

for any a e A, and f(st) = f(s)f(t), for all strings s and t.

Definition: If F is a regular form in k variables, then a

regular expression E is a substitution-instance of F if and only

if there exists a k-substitution f such that E is the result of

replacing in F every occurrence of x. by f(x.) for i = l,2,...,k,

i.e., E = f(F).
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Definition: If F is a regular form, then the set of regular

expressions denoted by F, which will be denoted E(F) and called a

regular form class, is defined:

E(F) = {E| E is a substitution-instance of F}

Examples:

F = (x.j Vx2) is a regular form in tv/o variables,

f: x1 •* 00, x2 + Oil is a 2-substitutidn,

E = (00V011)* = f(F) is a substitution-instance of F.

Let F be a regular form in k variables. We give an algorithm,

AF, for finding good-guesses from E(F) for an arbitrary sample S.

Algorithm Af:

input: S = <Sn,SQ>, a sample
output: C, a set of expressions compatible with the sample S

begin

C«- 0;

W•*• {s| s is a substring of some string from S..};
for each k-tuple <s} ,s2,... ,sk> e (Wu{0})k do

begin

let f be the k-substitution x. + s. for i = l,2,...,k;
E^f(F);

if E is compatible with S, then C «- CU{E};
end

end.

Claim: When Ap halts,

i) C will be a subset of the set of all expressions from E(F)
which are compatible with S.

ii) If any expression from E(F) is compatible with S, then C

will contain a smallest such.



Proof: An expression E is only added to C if it is a substi

tution-instance of F and is compatible v/ith S, so (i) clearly holds.

To prove (ii), suppose that E e E(F) is compatible with S. Since

E e E(F), E = f(F) for some k-substitution f. For each

i = l,2,...,k, if f(x.) is a substring of some string from S-j,

then f(x.) will be placed in W, and so will appear in the i

coordinate of (Wu{0})k. Otherv/ise, v/e need to show that we could

map x. to 0 and still have an expression compatible v/ith S.

So, we let g(x.) = f(x.) for j t i, and g(x.) = 0. We claim
j «

that g(F) will be compatible with S. Since |g(F)| _< |f(F)|, by

iterating this procedure v/e will eventually arrive at an expression in

C which has length not exceeding the length of E = f(F), v/hich will

prove condition (ii). We will need:

Definition: If A is any set of strings, define

r(A) = {s| seA and s does not contain the symbol 0}

CO oo

Note that r(AB) = r(A)r(B) and r( uA.) = u r(A.).
i=l ' i=l '

Lemma: L(f(F)) = r(f(L(F))) for any regular form F in k

variables, and any k-substitution f.

This result is not too difficult to prove by induction on regular

forms. It says simply that if we remove the strings containing 0

from f(L(F)), the result will be precisely L(f(F)). It does not

hold if the language of regular expressions is expanded to contain the

"not" operator h), where L(-£) = Z*-L(E).
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Now, to see that g(F) is compatible with S, v/e note that if

s e L(g(F)), then s e r(g(L(F))), so s = g(s) for some s e L(F),

and g(s) does not contain 0. Then f(s) = g(s), so s e r(f(L(F))),

so s e L(f(F)). Conversely, if s e L(f(F)), and f(x.) is not a

substring of s, then s e r(f(L(F))), so s = f(s) for some

s e L(F), and f(s) does not contain 0. Also, s cannot contain

x.., otherv/ise s = f(s) v/ould contain f(x.) as a substring, so

g(s) = f(s). Thus, s 6 r(g(L(F))), so s e L(g(F))t Since f(F) is

compatible with S, and no string from S] contains f(x.) as a

substring (by hypothesis), g(F) is compatible v/ith S. D

Thus, for each i = l,2,...,k we define

s a substring of some string from S,•(V-i^ if f(xi} 1
( 0 otherwise .

Then f(F) e C, and |f'(F) |< |f(F) |, so if E(F) contains any

expressions compatible with S, then C will contain a shortest such'.

•

To see that the Algorithm Ap will run in time polynomial in the

length of the input, S, we note that if n is the total length of

S, then the number of substrings of strings in S], that is, |W|,

will not exceed Kn for some constant K. Thus, at most (Kn2 +l)k

expressions f(F) are tested for compatibility with S. The member

ship question: "s e L(E)?" may be answered in time polynomial in the

lengths of s and E (Aho, Hopcroft, and Ullman [1974]), so the

whole procedure will run in time bounded by some polynomial in n, as

claimed, (Note that k appears in the exponent of n in the analysis

of Ap; it is critical that the number of strings involved in defining



the set of expressions is fixed.) Thus:

Theorem 1: If F is a regular form, then v/e may find good-

guesses from E(F) for arbitrary samples in polynomial time, that is,

E(F) is efficiently-inferrable.

Corollary 1.1: Theorem 1 and Remark 1 (Section 3.2) show that

finite unions of regular form classes are efficiently-inferrable.

However, there are efficiently-inferrable sets of regular expres

sions which are not finite unions of regular form classes, for example:

E = {E| E=(x*y*)m for some x,yeZ* and m>_l}

Given a sample S of total length n, the maximum length of any

string appearing in S is Kn for some constant K. We enumerate

<s, ,s2> e WxW, where W is the set of all substrings of strings

from the positive part of the sample, and substitute x-*s,, y+ s2
Kn

into each of the regular forms: x*y*,x*y*x*y*,...,(x*y*). Each of

the resulting Kn expressions is tested for compatibility with S.

If any expression from E is compatible v/ith S, then thi.s procedure

will find a good-guess from E for S, since for all x, y e Z* and

integers p< q, v/e have L((x*y*)P) c L((x*y*)q) and if |s| < p

and s e L((x*y*)q) then s e L((x*y*)P).

In contrast to the preceding two results, if we define the class:

V= {E| there exist u,v,w,xeZ* such that E=E,E2"-Ek for

k>l where each E. is either (u)*v or w(x)*}

then V will be hard-to-infer, as we shall show in Section 3,4.

some
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For each of the efficiently-inferrable classes of regular expres

sions considered so far, there is some fixed bound to the number of

distinct strings composing any expression in the class. To see that

this condition is not necessary to efficient-inferrability, consider

the following modification to add "finite patching" to the basic

algorithm Ap:

When an expression E is tested for compatibility with the input

sample S, if it happens that E is incompatible with S only

because it fails to generate some strings, say s1,s2,..,,s , from
S.j, the positive part of the sample, then we construct the expression:

E' = EV s1 V s2 V ••• V s.

and add it to the set C of expressions compatible with S. Then C

will no longer necessarily be a subset of E(F), but this procedure

will find a good-guess for S from the following augmented class:

E'(F) ={E'| E' =EVs] Vs2V .•• Vsr for some r>0, some EeE(F),
and some s.. ,s9,... ,s eZ*}

\ l r

E'(F) will thus be efficiently-inferrable, though there is no bound

to the number of strings composing expressions in the class E'(F),

Discussion

The fragmentary positive results of this section present some

sets of regular expressions which are efficiently-inferrable. The

basic technique is a kind of "cutting and pasting" of the positive

part of the sample -- the forms that prescribe the "pasting" are all

unfortunately rather independent of the sample, in the examples pre

sented. It would be nice to have further techniques for constructing



efficiently-inferrable sets of regular expressions.

In the next section, we will see that the set of all regular

expressions, as well as some restricted subsets of it, are hard-to-

infer.

3.4. Some Classes Which are Hard-To-Infer

In this section we will present some sets of regular expressions

which are hard-to-infer. The first set considered will be the set of

all regular expressions: <Z,V,-,*>, |z| >_2.

Theorem 2: Let E = <{0,1},V,«,*>. Then E is hard-to-infer.

In particular, the problem of finding a smallest regular expression

compatible with an arbitrary sample is NP-hard.

Proof: The proof is a polynomial-time reduction of a known NP-

complete problem, the SATISFIABILITY of propositional formulas in con

junctive normal form [Cook, 1971] to the problem of finding a good-

guess for an arbitrary sample. So, suppose we are given a proposi

tional formula <J> in conjunctive normal form, e.g., § - (X, VX3VX4)

(X2VJL)(X-j VX2VXJ, v/ith clauses numbered 1 through mand variables

numbered 1 through n. We consider a sample S($) = <S-j,SQ> as follows:

1. Let q = (111000)n. Specify q e S-j. (This is the only
string that will be in the positive part of the sample; we have given

it the name q for later reference.)

2. For every substring s of q, say q = rst, if s con

tains both O's and Ts then specify rsst e SQ.

3. For each j = l,2,...,n specify (lllOOO^^lOOllOOO)"^
e SQ.
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4. For i = l,2,...,m and j = l,2,...,n let

111000 if variable j does not appear in clause i

F(i»j) =«(m0 if variable j occurs positively in clause i
1000 if variable j occurs negatively in clause i

and specify F(i,1)F(i,2)-.-F(i,n) 6 SQ.

Claim: $ is satisfiable if and only if there is a regular

expression of length < 5n which is compatible with S(«J>).

P™£i: H Suppose § is satisfiable. Let A: {1,2,... ,n} +

{0,1} be an assignment of truth values to the variables of <J> which

satisfies 4>. For each j = l,2,...,n let

(1)*000 if A(j) = 1
E(j

A(j) = 0

(O)*000 if

(111(0)* if

and E = E-jE^-E^ Then |E| = 5n. To see that E is compatible

v/ith S(o) note:

T. q e L(E)

2'. If q = rst and s contains both 0's and l's then

rsst U(O*0*)n) but L(E) CL((l*0*)n), so rsst^L(E).

3'. (m000)j"110(111000)n"j \ L(E) because 10 § L(E.) for
each j = 1,2,...,n.

4'. Suppose to the contrary that for some i between 1 and m we

have F(i,l)F(i,2)---F(i,n) e L(E). Then for each j, if variable j

occurs positively in clause i, then F(i,j) = 1110, so we must have

E(j) = 111(0)*, and therefore A(j) = 0. Similarly, if variable j

occurs negatively in clause i, we conclude that A(j) = 1. Hence

the assignment A falsifies clause i and therefore cannot satisfy



4>, contradicting our choice of A.

(<=) Conversely, suppose that there is some expression of length

< 5n v/hich is compatible with S($). We will show that it must have

essentially the form of the expression E constructed above, derive

from this an assignment of truth-values, and show that this assignment

must satisfy <*>.

Let E be a shortest regular expression which is compatible with

S(<>). Then by hypothesis, |E| < 5n. We use the associativity of

concatenation to rewrite E as ^ = ^i^o'^k for some k— ^*

where each F. is not itself a concatenation. Since q e L(E), we

may write q = ^-[^0"'% wnere Qj 6 L(F.) for i = l,2,...,k. What

possibilities do we have for F.?

1. F. = 0. This is impossible, because otherwise L(E) = 0,

and q £ 0.

2. F. = A. This is also impossible, because either k > 1, in

which case dropping F. from E produces a shorter expression which

is still compatible with S($), contradicting our choice of E as

shortest such, or k = 1, in v/hich case E = A, contradicting the

requirement that q e L(E).

3. F. = (G. VH.) for some expressions G. and H.. This is
ill r i i

likewise impossible, for q. e L(F.) => q. e L(G.) or q. 6 L(H.)»

and if q. e L(G.), then replacing F. by G. in E will produce a

shorter expression which is still compatible with S(<>), contradicting

our choice of E; similarly if q. e L(H.).

The only remaining possibilities for each F. are

(i) F. =0 or F. = 1

or (ii) F. = (F.)* for some expression F.,
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In either case, we know that q. cannot contain both O's and l's; this

is clear for case (i), and in case (ii) we will have q1q2*--q?-•-q.
e L(E), so qi cannot contain both O's and l's by condition #2 of
S{*).

Thus we may re-associate the concatenations in E and claim that

EEGlHlG2H2'"GnHn where 1]1 6 L(Gi) and 000 6L(H.) for
j = 1,2,...,n. Since E is a shortest expression compatible with

S(<j,), v/e know that |G..|, |H..| < 3 for j = l,2,...,n, for otherwise

we could produce a shorter compatible expression by replacing G. by

111 in E (or H. by 000). An enumeration of the expressions of

length < 2 shows that the only expression of length < 2 which gener

ates the string 111 is (1)*, and similarly for 000.

But we cannot have both G. = (1)* and H. = (0)* for any j,
j ' j

by condition #3 of S(cj>), so |G.H,| > 5 for j = 1,2,.., ,n. The
si \J

only possible way to attain |E| = 5n is to have for each j between
JL,

1 and n either G. = (1) or H. = (0)* but not both. We now define
j j

an assignment A:

n if g « (D*
A(j)=J J

(0 if H. = (0)* .

To see that A satisfies $, assume to the contrary that A

falsifies clause i for some i between 1 and m. Then for each

j = l,2,...,n, if variable j occurs positively in clause i, v/e

must have A(j) = 0. Thus H. = (0)*, so 1110 e L(G.H.). Similarly,
j J J

if variable j occurs negatively in clause i, then A(j) = 1, so

1000 e L(G.H.). In any case, 111000 e L(G.H-), so we have F(i,j)
j j j j

eL(Gj.Hj) for each j, and F(i ,l)F(i ,2)••«F(i ,n) eL(E), contra

dicting condition ?4 of S(o). Hence A must satisfy (}>, and v/e



conclude that 0 is satisfiable.

Clearly, S(^) may be constructed from <j> in polynomial time,

so Theorem 2 is proved, D

In the proof of Theorem 2 above, if (j> is unsatisfiable, then

there will be no expression of length <_ 5n which is compatible with

S($), but if <J> is satisfiable, then some expression from the set

E = {El E=E,E0"-E where each E, is either (1)*000 or
n ' I l n l

111(0)*}

ill be of length = 5n and will be compatible with S(<f>). Thus we getwi

Corollary 2.1: If E is any set of regular expression such that

E c E for all n > 1, then finding a good-guess from E for an

arbitrary sample is an NP-hard problem.

Corollary 2.2: The set V constructed in Section 3.3 is hard-

to-infer.

Corollary 2.3: The set <{0,!},«,*> of regular expressions over

{0,1} involving only the operators • and * (optionally: of star-

height £ 1) is hard-to-infer.

Corollary 2.3 suggests that we consider the set <{0,1},«,V> of

expressions over {0,1} involving only the operators • and V, all

of whose members denote finite sets of strings. We have

Theorem 3: The set <{0,1},«,V> is hard-to-infer.

Proof: The proof of this theorem is rather lengthy and will be

given in outline only. The proof is by a polynomial-time reduction of
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the SATISFIABILITY of propositional formulas in conjunctive normal

form to the problem of finding good-guesses from <{0,1},»,V> for

arbitrary samples.

Lemma 3.1: For the sample T = <T, ,Tn> given by

J_ 10.
1000 0001

1010 0011

1100 0101

1110 0111

1101

0100

the only expressions E such that |E| < 15 and L(E) CL((0V1)4)

are (up to associativity of V and • and commutativity of V):

a) E] = 1(1 v.0)(l V0)(1 V0) V0100 ,

and b) EQ = (1 V0)(1 V0)(1 V0)0 V1101 .

The proof of this lemma is a long and painstaking case-analysis,

see Appendix. Note that L(E,) f UEQ)> in particular,

1111 e L(E1)-L(EQ) and 0000 e L^V-L^). This provides the
basic binary choice for the reduction.

U =

Lemma 3.2: For any k > 58, if we specify the sample

<UV,U0>:

1000

1010

1. (1000-lk)j j]]™
1101
0100 j

0001

0011

0101
0111

2. (1000.iV }0101

lk-(1000-lk)n"J*1 e U} for j =0,l,...,n-l

lk-(1000-lk)n"J"1 6UQ for j=0,l,...,n-l



3. Whenever x = rst and y = r's't' are (possibly equal)

strings from #1 above and |s| f |s'|, then v/e specify rs't e UQ.

Then the only expressions of length < (15 + k)n which are compa

tible v/ith U are (up to associativity of • and V, and commuta-

tivity of V):

k k k1/ = {E E = F1»1 'F^'l -"F •! where each F. is either E, or En
I c n i 10

from Lemma 3.1}

Proof: Let E be an expression of minimum length which is com

patible with U. We will show that |E| = (15 + k)n and E is equi

valent to some element of I/. It is possible to argue that all of the

sub-expressions of E are "essential", that is, if F is a sub-expres

sion of E, then there exists a string s 6 U, such that s = tuv

and u e L(F). Then it can be argued that condition #3 of U will

force L(E) c L((0Vl)'4+k)n). Now we rewrite E as an unassociated
concatenation EEG]G2'"Gr where r>l and each G. is not

itself a concatenation. Clearly, for each i, L(G.) = {A} is impos

sible, and L(G..) must contain strings of only one length. The only

possibilities for G. are G. = 1 and G. = (H.VK.) for some
• .1 ill

expressions H1 and ^, Since for each i, L(G.) must contain

strings of only one length, G. "covers" the same positions in each

s e Ur We represent all (4+k)n positions in the strings of U,

pictorially:

'WWV/ f\A/W\, fVAAAAr • • • "l/VWX.

where the wavy lines represent positions which may be either 0 or 1

depending on which s e U, we examine, and the straight lines represent
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positions which contain l's in every s e U,. The positions indicated

by straight lines will be called "invariant positions".

We v/ill argue that if G. = (H.VK.), then G. does not cover
j 1 N i i' i

any of the invariant positions. We have essentially two possibilities:

1. One end of the positions covered by G. is an "invariant

position", e.g.,

<\AATJ\, <WW0 AAAA/V-- • • • 'WVW

G.
1

In this case we argue that we may rewrite H. = H!*l and K. = K!«l,

where |H1| < |H.| and |K!| < |K.|, and thus replace Gi in E by

(H! VK!)-1 to get a shorter expression which is compatible with U,

contradicting our choice of E as of minimum length. The argument in

case the leftmost position covered by G. is invariant is similar.

2. G. includes one or more whole groups of invariant positions,

but neither end-position in G. is invariant:

rW\AA< ^VAAAA^ ^AAAA; • • • • .- f\AAAA>-

V 3 '

So suppose that G. includes m such groups of invariant positions,

where m > 1, Then v/e argue that each of H. and K. must be of

length > km, so that a|G.| > 2nk. But in this case, we may replace

Gi in E by the expression G] =L1*lk»(M*lk)m"1-N., where L. is
the disjunction of all those strings appearing in the interval I (see

picture above) in all of the strings s e U,, N. is the disjunction

of all those strings appearing in interval J in all of the strings

seUr and M = (lOOOVlOlOv 1100 V1110 V1101 V0100), But then



|G!| <mk+(m+l)29 (since |L.|, |M|, \tt.\ < 29), so |G.| > |G.!|

because m> 1, k > 58. Thus, replacing G. in E by G! produces

a shorter expression compatible with U, a contradiction.

So we conclude that if G. = (H.VKj, then no invariant posi

tions are covered by G.. Thus v/e may reassociate the concatenations

and claim that

E= F,*lk-F9-lk"-F «lk
12 n

where each F. is an expression of minimum length such that
j

i) L(F.) CL((0V1)4)

ii) F. is compatible with the sample T of Lemma 3.1.

Now v/e apply Lemma 3.1 to conclude that each F. must be (up to
j

associativity and commutativity) either E-, = 1(1 V0)(1 V0)(1 VO) V0100

or EQ = (1 V0)(1 V0)(1 V0)0V1101, as claimed. •

The sample . U of Lemma 3.2 gives us n independent binary

choices; adding more conditions to encode a SATISFIABILITY problem is

relatively easy. Let <j> be a propositional formula in conjunctive

normal form with clauses numbered 1 through m and variables numbered

1 through n. Let

[1000 if variable j does not occur in clause i
F(i,j) =̂ 0000 if variable j occurs positively in clause i

1111 if variable j occurs negatively in clause i

To the conditions =1-3 of the sample U of Lemma 3.2 v/e add the

condition

4. For each i = l,2,,..,m, specify

F(i,lHk-F(i,2Hk-..F(i,n).lk e U
0
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Call the augmented sample S(q) = <S,,Sn>.

Claim: <> is satisfiable if and only if there exists an expres-

sionof length (15 + k)n v/hich is consistent with S((J>).

Proof: (=>) if $ is satisfiable, choose A: {l,2,.,.,n} -*• {0,1}

to be an assignment of truth-values which satisfies $. Then for each

j = 1,2,...,n, let

|(1(1 V0)(1 V0)(1 V0) V0100) if A(j) =1
j ((0 vo)(i vo)(i vo)ovnoi) if a(j) = o

and let

E=G^-l^G^I^^G -lk
I l n

Clearly, E is consistent with conditions #1-3 of Lemma 3.2 and

|E| = (15 + k)n. To see that E is consistent with condition #4

(above), assume to the contrary that for some i betv/een 1 and m v/e

have:

F(i,l)-lk.F(i,2Hk —F(i,nHk 6 L(E) .

If variable j occurs positively in clause i, then F(i,j) = 0000,

so v/e must have G. = (1 V0)(1 vO)(l V0)0V 1101 and thus A(j) = 0,

Similarly, if variable j occurs negatively in clause i, then

A(j) = 1. Hence the assignment A falsifies clause i, contradict

ing our choice of A.

(<=) Assume that there is an expression of length <_ (15 + k)n

which is compatible with S($). Then in particular, such an expression

must be consistent v/ith the conditions of Lemma 3.2, so it must be (up

to associativity and commutativity) be of the form

G,.lk.G90k...G -lk
id n



where each G. is either E, = 1(1V0)(1V 0)(1V0)V 0100 or
vl '

EQ = (1 V0)(1 V0)(1 V0)0V1101, Define

(1 if G. = E,
A(j) ={ J ]

(0 if Gj = EQ

for j = l,2,..,,n. To see that this assignment satisfies <J>, assume

to the contrary that there is some clause i of <j> which is falsified

by A. Then for each variable j, 1000 e L(G.), Also, if j occurs

positively in clause i, A(j) = 0, so 0000 e L(G.). Similarly, if

variable j occurs negatively in clause i, then 1111 e L(G.).
\)

Thus, F(i,j) e L(G.) for j = l,2,...,n, so
j

F(i,l).lk.F(i,2Mk.-.F(i,nMk e L(E) ,

contradicting condition #4.

The sample S(<}>) can be constructed from cj> in polynomial time,

so we conclude that the set <{0,1},»,V> is hard-to-infer. •

Let n :> 1 and k :> 58, and

En = {El E=G,-lk«G0«lk---G -lk where each G, is either
n ' 1 2 n j

(1(1 V0)(1 V0)(1 VO) V0100) or

((l vo)(i vo)(i vo)ovnoi)} .

Then an examination of the proof of Theorem 3 yields:

Corollary 3.1: If E is any set of regular expressions such

that E ce for all n >^ 1, then E is hard-to-infer.

The last result of this section is related to the class <{1},V,*>,

but it is a little different in character from the preceding two
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theorems; the reduction given is not difficult.

Theorem 4: Let

E={E| E=(1 1)*V(1 2)*V ••• v(1 k)* where kand x^,...^
are positive integers} .

Then it is NP-hard to find an expression from E with a minimum number

of disjuncts (not minimum total length) compatible with an arbitrary

sample.

Proof: The proof is by a reduction of the SET COVERING problem

to the problem in question.

SET COVERING: Given an Pn matrix M of O's and l's, and an

integer k >^ 1, to decide whether there is a collection C of k or

fewer of the columns of M such that every row of M has a 1 in com

mon with some column from C. (C is called a cover of M.)

In [Karp (1972)], it is shown that SET COVERING is NP-complete;

examination of the reduction given therein shows that the problem

remains NP-complete even if we restrict the input M to contain exact

ly tv/o 1 's per row.

Let M be an pn matrix of O's and l's with exactly two l's

per row. We enumerate the first n prime numbers: p,,p?,...,p ,

and define

ri =pa(i)xPb(i) •

v/here a(i) and b(i) are the column-numbers of the two l's in row i,

for i = 1,2,...,m.

We specify a sample, S(M) = <S,,SQ> by:

1. 1 1 e S, for i = 1,2,...,m



2. 1 e SQ

Claim: There is a cover of M by k or fewer of its columns if

and only if there is an expression E e E v/ith k or fewer disjuncts

which is compatible v/ith S(M).

Proof: (=>) Suppose C={j-j ,J2»... ,Jk} is a cover of M. We

let

E=(lXl)*v(lX2)*V--.V(lXk)*

where x = p. for s = l,2,...,k. Then E e E and has k disjuncts
s Js

Clearly, 1 $ L(E). Also, for any i = 1,2,..,,m, row i has a 1 in

common with some column j e C. Thus, p. |r., so x |r. and
r. s Js 1 b

1-1 e L(E). Thus E is compatible with S(M).

(<=) Suppose that there is some expression from E with k or

fewer disjuncts v/hich is consistent with S(M). Let E be such an

expression, where

' E= (1 ])*V(1 2)*v-.V(l k)* .

Since 1 $ L(E), x > 1 for s = l,2,...,k. Let

C = {j| l.<.j<.n and p. is the least prime divisor of x for some

S, 1£S£k}

Then C contains k or fewer elements. To see that C is a cover
r.

of M, let i be given, 1 < i <_ m. Since 1 e L(E), we must have

xs'ri for some s» 1£s< k. But rj = Pa(i) xPb(i)» and xs >^
so the least prime dividing x must be either Pa(^) or Pb(i)» so

either a(i) or b(i) is in C. Hence row i has a 1 in common with

some column from C, so C is a cover of M.
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The construction of S(M) from M may be done in polynomial

time, so Theorem 4 is proved. D

3.5 Inference of "Most Likely" Expressions

In this section we briefly consider the computational tractability

of an alternative definition of a good guess for a given sample. This

new definition follows the approach of Horning in his study of the

inference of stochastic grammars [Horning (1969)]. We choose a func

tion P which assigns a probability, P(E), to each regular expres

sion E, and a probability, P(TjE), of obtaining a particular set

of strings T from a particular expression E. Then, for a given

sample S=<S1,SQ>, we seek an expression which is compatible with

S and is "most likely" to have generated S], i.e., v/hich maximizes
P(E|S1). Since

,, , P(E)P(SJE)
P(E'S1) = P(S ) (Bayes' rule)

and PfS-j) is fixed by S, it is sufficient to find an expression

which maximizes P(E)P(SJE).

The model that we choose to establish the distributions is fairly

simple, for the convenience of the proofs to follow, but again the

general approach will probably work under some variation in the defini

tions. We assume that symbols are drawn with equal probability from

the set {0,l,v,(,),*,A,$} until a "$" is encountered. If the string

drawn, up to the "$", is a legal, fully-parenthesized regular expres

sion, say E (concatenation being indicated by juxtaposition), then

we begin randomly generating strings in the language of E, as follows:

v/e trace through E constructing a string, and whenever we have a



choice (FVG) as a subexpression of E, v/e choose to trace either

F or G, each v/ith probability 1/2. Whenever we encounter -(F)* as

a subexpression of E, we choose either to skip F or to trace it

(each with probability 1/2), and if we choose to trace F, then we

return to the beginning of (F)* (if and) when we finish tracing F.

If and when v/e finish generating one string in L(E) in this way, v/e

begin again generating another, and so on, ad infinitum. (Rules for

calculating P(S,|E) will be given below.)

We define random variables E,s, ,s"2,s~3,.., as follows:

the expression E drawn in the event described above, if any

otherwise ,r u

4-U

string generated from E in the event described above,(the i
;. = < if
1 U ot

s,. = { if any
•therwise .

Then P(E) will stand for P(E =E), and will be (l/8)n+1 if E is

a string from {0,1,v,(,),*,A}* of length n which is a legal, fully-

parenthesized regular expression. P(S,|E) will stand for

P(s, =s, &s2 =Sp;& •• •&s. =s.| E=E), where S-, = <s, ,s2>... ,s.>.

(In this section we consider samples consisting of pairs of ordered

finite sequences of strings, allowing multiple occurrences of strings.)

P(s|E) will note P(i,=s| E=E), for any string se {0,1}*.
t1

Clearly, P(S,|E)= nP(s.|E), and we may calculate P(s|E)
1 i=l 1

inductively as follows:

1. if a = 0, 1, A, (E)°:

1 if L(a) = {si
P(s|a) = "

itherwise .(0 o-
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2. concatenation:

P(s|EF) = I P(Sl|E)P(s2|F)
s = s,s2

3. union:

P(s|(EVF)) =ip(s|E) +\ P(s|F)

4. star:

P(s|(E)*) = I (l/2i+1)P(s|(E)i)
i=0

Example:

P((0V1)(01)*1) = d)12
•8

p(poion|(ovi)(oi)*i) =p(o|(ovi))p(oi'oi|(oi)*)p(i|i)

=(i)(l)3l

=(I)4

Definition: If S-, is a set of strings, s is a string, and

E is a regular expression we define

L(E,SJ = P(E)P(SJE)
and ' '

L(E,s) = P(E)P(s|E) .

If L(E,s) > L(F,s) then v/e say that E is a more likely explanation

of s than F; similarly for sets of strings.

Example: Let m >_ 1 be an integer. Then

/L(02m,02m) =(^)2m+1(l) =

L((0m)*,02m) =(l)m+4(l)3 = (l)3n,+15 .
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Thus, for m > 5, (0 )* is a more likely explanation of the string

02m than the expression 02m.

This choice, between (0m)* and 0 , will be used instead of

that between (0)* and 000 in the proof of Theorem 2 to yield:

Theorem 5: The problem of finding a most likely explanation of

an arbitrary sample S, that is, of finding an expression E which

is compatible with S and maximizes L(E,S,), is NP-hard.

Proof: First we need:

Definition: If E is a regular expression, let

|the 1

(o ot

east positive integer k such that 1 e L(E), if any
f(E) = ;

(therwise

(so, for example, f(l(lV0)*l) = 2.)

1 f(E}+lLemma 5.1: For every regular expression E, P(E) < (g) »

that is, E must contain at least f(E) symbols, and if

P(E) = (l)f(E)+\ then v/e must have E= (l)f(E).

This lemma is not difficult to prove by induction on regular

expressions as they are defined for this section.

Now v/e fix n >_ 1 and k ^ 5, and specify a sample S = <S, ,SQ>

as follows:

1. q=(lV)neS1
2. If q = rst and s contains both O's and l's, then

rsst e Sq.
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3. •(l2k02k)jlr0s(l2k02k)n"j"1 eSQ for all j=0,l,...,n-l
and 1 < r,s < 2k except <r,s> = <2k,2k>, <2k,k>, <k,2k>.

Then:

Lemma 5.2: The only expressions E which are compatible v/ith S

and v/hich have LfE^) >(l)(3k+4)n+1 are from the set

V={E| E=E1E2--.En where each E. is either (lk)*02k or l2k(0k)*}

(up to associativity of concatenation).

Proof: Let E be an expression which maximizes L(E,S..) and

which is compatible with S. We will show that L(E,Sj =(L(3k+4)n+l

and E can be put in the form of some expression from 1/ by reasso-

ciating concatenations. Let E = F,F0-"F for some r > 1, where
l l r — '

each F.. is not itself a concatenation, and q= q,q2-"q where

each q. e L(F.), Then for each F. we have:

1. F/ = A is impossible, for E f A because q e L(E), and

then dropping F. from E would produce an expression strictly more

likely for S1 than E, contradicting our choice of E.

2. F^ = (G^H^). To see that this is impossible, let E' be

E with Fi replaced by Gi and E" be E v/ith F. replaced by

H..

Then P(q|E) =(l)(P(q|E') +P(q|E")). Thus either P(q|E')
>P(q)E) or P(q|E") > P(q|E). But if P(q|E') > P(q|E), then since

E' is a strictly shorter expression than E, P(E') > P(E), so

KE'.S^ = L(E',q) > L(E,q) = L(E,S-,), and E' will be compatible

v/ith S, v/hich contradicts our choice of E. The case of P(q|E")

> P(q|E) is similar.



Thus we conclude that F. = 0, 1, or (G.) for some expression

G., and in any case, q. must contain only O's or only l's for each

i = l,2,...,r, by condition 2 of the sample S and compatibility of

E v/ith S. Further, if q = rst v/here s contains both O's and l's,

we have

P(HF1F2.--F._1)P(s|Fi)P(t|F.+r-.Fr) =0

for all i =l,2,...,r. If not, then in particular, r e L^F^-'F.^),

s e L(F.), and t e L(F.+1*"F ) and Fi must be (G^*, so
rsst e L(E), contradicting condition 2 of the sample S,

Thus we may reassociate the concatenations in E:

EEKlhK2L2--KnLn

where l2k e L(K.) and 02k e L(L.) for j =1,2 n, and also

P(q|E) = n P(l2k|K.)P(02k|LnO
0=1 J J

so

(*) (^""^(E.q) = n L(K,,l2k)L(L,,02k)
8' x *" try j

Then from condition 3 of the sample S, we argue that for each

j = 1,2,...,n, either

1. l2k is the smallest nonnull string of l's in L(K.), so

that P(K.) < d)2k+1 by Lemma 5.1,
J — o

or 2. 02k is the smallest nonnull string of O's in L(L.), so

that P(L,) <(i)2k+1, similarly.
Further, if l2k is not the smallest nonnull string of l's in

L(K.), then by condition 3 of S, lk must be, and v/e will argue
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that K, must be (lk)*.
o

V/e know that K. = F F +, •••F. for some positive integers s <_ t,

where each F is either 1 or (G ) . If F =1 for all u
u N u u

2k k
between s and t, then K. cannot generate both 1 and 1 , so

v/e know that F = (G )* for at least one u between s and t.

Then v/e may argue that the smallest nonnull string of Ts generated by

G must be lk, so either G =lk, or P(G )< (^)k+2, by
u u u — 8

Lemma 5.1. In the latter case, P(K.) < (o) > because G is of
j — 8 u

length >^ k+1, and K. is at least 3 symbols longer than G , But
j **

P(l2k|K.) < 1, because both lk and l2k are in L(K.), by hypo

thesis, so L(K.,l2k) < (l)k+5 = JL((lk)*,l2k), which in combination
J o

v/ith equality (*) contradicts our choice of E as maximizing L(E,q).

2k 1 k+5Thus the only way to attain L(K.,1 ) = («•) is by choosing
J o

K. = (1 ) ; similarly for L., Hence the only maximum likelihood

possibilities are:

K.L. = (lk)*02k or l2k(0k)*

for j = 1,2,...,n, v/hich proves Lemma 5.2.

Lemma 5.2 gives us the requisite n independent binary choices;

encoding a SATISFIABILITY problem is then possible by a straightforward

modification of the proof of Theorem 2. This concludes the proof of

Theorem 5. •

Discussion

One of the primary motivations for Homing's study of "most likely"

inference is that it allows correct inference in the limit v/ith proba

bility 1 from positive information only, in contrast to the non-proba

bilistic case, in which negative information is required for correct



inference in the limit in general. The construction given above makes

very heavy use of the negative part of the sample S to constrain the

form of expressions compatible with it. The tractability of finding

a most likely expression from positive information only therefore

remains an open problem. Perhaps some efficient constructive tech

niques can be found in this case; the problem seems v/orthy of further

study.
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CHAPTER 4

Summary, Acknov/1 edgments

Summary

We have presented an investigation of the computational tracta-

bility of finding a "smallest" description compatible with a given

sample of a finite-state language.

In Chapter 1 v/e explain the relation of this problem to the study

of inductive inference. We also briefly consider the effects of the

choice of descriptive systems upon the inference made from a given

sample; an example is presented in v/hich the language inferred from a

sample depends on v/hether the description is to be given as a deter

ministic finite-state acceptor or a nondeterministic finite-state

acceptor.

In Chapter 2 we consider the problem of finding a deterministic

finite-state machine with a minimum number of states v/hich is compa

tible with a given sample of behaviour. Mark Gold has shown this pro

blem to be NP-hard for arbitrary samples. Vie restrict the samples to

be "uniform-complete" (that is, to contain every input string of length

<_ some k, and no others), and demonstrate a simple algorithm to find

a smallest compatible machine in polynomial time. We show that relax-

ing this restriction to allow 0(n ) unspecified strings in a sample

of size n makes the problem NP-hard. We also show that the problem

remains NP-hard when restricted to "finite-language" or "definite"

automata.

In Chapter 3 we consider the problem of finding a shortest regu

lar expression (using the operators {V,»,*}) compatible with arbi

trary (positive and negative) samples of finite-state languages. The



general problem is shown to be NP-hard, as are the problems restricted

to just the operators {•,*} and just the operators {«,V}, Some

restricted, syntactically-given classes of regular expressions are

exhibited in which shortest compatible expressions may be found for

arbitrary samples in polynomial time. Finally, we consider a defini

tion of a "most likely" expression compatible v/ith an arbitrary sample,

and show that the problem of finding such a "most likely" compatible

expression from given data is NP-hard in general. We also suggest

reasons why further v/ork on this probabilistic kind of inference seems

justified.
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APPENDIX

We present the substance of the case-argument for Lemma 3.1 of

Section 3.4.

Definition: A regular expression E e <{0,1},« ,V,*> v/ill be

called k-minimum-uniform-language, hereafter written k-mul, if and

only if k > 1 is an integer and

1. 0 f L(E) c {0,l}k

and 2. E is a shortest regular expression denoting L(E).

Lemma Al: If E is k-mul then either

1. E = 0

or 2. E = 1

or 3. E = (FVG) where F and G are k-mul

or 4. E = (F»G) v/here F is i-mul and G is j-mul, and i+j = k

Consequently, E cannot contain 0, A, or *.

Lemma A2: If E is k-mul, then to each occurrence of 0 (or 1)

in E we may assign a unique position i, 1 < i < k, such that this

occurrence of 0 (or 1) is used only to generate a 0 (or 1) at

position i in the strings of L(E).

Lemma A3: If E is k-mul, then the number of "V"s in E must

be at least flog2 |L(E)|]

Defini tion: If S = {s, ,s2,.., ,s } c {0,1} for some k, m>_ 1,

then define V(S) to be the number of positions in v/hich both O's and

l's appear in strings of S, that is:

V(S) = |{i| 3x,y, l£x,y£k such that position i of s is a 0
and position i of s is a 1}|
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Lemma A4: If E is k-mul and S=(s^.Sg,. ,.,s }£L(E), then

we have the following bound on the length of E:

|E| > p092ml +k +V(S) .

To see this, note that pOQoH ^s tne minl'mum number of "V"s

required in E (by Lemma A3), k is the minimum number of O's and

Vs required in E to cover all the positions in strings of L(E),

and V(S) is the minimum number of additional O's and l's required

to cover the "variant" positions of L(E),

Lemma A5: If E is 4-mul and 1101, 0100 e L(E) and 0101 £

L(E), then E f F«G for all expressions F and G.

Proof: Suppose to the contrary that E = F»G for some expres

sions F and G. The by Lemma Al, F is i-mul and G is j-mul

where i,j >_ 1 and i+j =4. We have three cases:

1. F is 1-mul and G is 3-muT. Since 0100 e L(E) = L(F»G),

v/e must have 0 e L(F). Since 1101 e L(E) = L(F«G),. 101 e L(G).

Thus 0101 e L(F«G) = L(E), contradicting the hypothesis that

0101 £ L(E).

2. F is 2-mul and G is 2-mul. Similarly.

3. F is 3-mul and G is 1-mul. Similarly. D
*

Lemma 3.1 (from Section 3.4). If E is a regular expression of

minimum length such that

1. L(E) C {0,1}4

and 2. E is compatible v/ith the sample T = <T, ,TQ> where
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Ll Zo
1000 0001

1010 0011

1100 0101

1110 0111

1101

0100

(that is, T^LjE) and TQfU(E) =0) then E must be (up to asso
ciativity of v and • and commutativity of v) one of the two

expressions:

a) E1 = 1(1 V0)(1 V0)(1V0)V0100

b) EQ = (1 V0)(1 V0)(1 V0)0V1101

Proof: Observe that E is 4-mul. Also, since E, and E0
satisfy conditions 1 and 2 above, E must be at least as short as

they are, i.e., |E| < 15. Clearly E /* 0,1 and, by Lemma A5,

E f F-G for any expressions F and G. By Lemma Al the remaining

possibility is E = (FVG). By associativity, we may write

E= F1 VF2V ••• VFm, for some m> 2, where each F. is 4-mul and

is not itself a union of tv/o expressions.

By Lemma A4, |F.| > 4 for i = l,2,...,m. Thus if m> 4,

then |E| > 19, contradicting our choice of E. In the case of

m= 3, if we are to have |E| < 15, we must have 4 < |F.| < 5 for

i =1,2,3. By Lemma A4, this implies that |L(F.)| = 1 for i = 1,2,3

v/hich in turn implies that |L(E)| =3, contradicting the requirement

that T1 c L(E). Hence we conclude that we must have m= 2, so

E= F] VF2 ,

where F1 and F2 are 4-mul and not themselves unions.



Clearly, F, and F? must both be concatenations (by Lemma Al),

and 0101 £ L(F,), 0101 £ L(F2), so we cannot have both 1101 and

0100 in either L(F,) or L(F2) (by Lemma A5), but they must both

be in L(E), so we assume without loss of generality that

1101 e L(Fn) and 0100 6 L(F£)

Now we consider the possibilities for how the strings of T,

can be generated by the two expressions F, and Fp, For each possi

bility, the minimum lengths of F, and F2 are calculated according

to Lemma A4; the possibilities are tabulated below in Table A. This

shov/s that the only way we can have |E| < 15 is in cases #1 and #16.

V/e must still argue that this is attainable only by expressions equi

valent to E, and EQ. Take case #1: we must have |F, | =10 and

1101, 1000, 1010, 1100, 1110 e L(Fn). We write Fn =VV'^m'

2 <_ m < 4, where each G. is not itself a concatenation. If G,

is 2-mul or 3-mul, then we can argue that there will be at least two

occurrences of 0 or 1 to cover position 1 in L(F,), which, with

arguments from Lemma A4 will imply that |F, | _> 11, a contradiction.

Thus, G, must be 1-mul, and in particular must be = 1. So,

Ft = 1«G0»*»G . We consider cases:
I l m

1..^. m = 2, so G„ is 3-mul, and is not a concatenation, by

hypotheses. So G2 = (H, VH2), where each of H, and H« are 3-mul.

We have'-tti, 000, 010, 100, 110*6 L(Gj, Cases (without loss of

generality):

a. at least one of these is in L(H,) and at least the

other four are in L(H2). Thus |H, | >^ 3 and since any four of the

five strings 101, 000, 010, 100, 110 differ in at least two posi

tions, by Lemma A4 we have |HJ >^ 7, so [GJ j> 11, and |F, | >_ 12,

70



TABLE A

KF^ contains at least \F}\ > l(F2) contains at least |F?| > |E| >

1. 1101,1000,1010,1100,1110 10 0100

2. 1101,1010,1100,1110 9 0100,1000

3. 1101,1000,1100,1110 9 0100,1010

4. 1101,1000,1010,1110 9 0100,1100

5. 1101,1000,1010,1100 9 0100,1110

6. 1101,1100,1110 8 0100,1000,1010

7. 1101,1010,1110 9 0100,1000,1100

8. 1101,1010,1100 9 0100,1000,1110

9. 1101,1000,1110 9 0100,1010,1100

10. 1101,1000,1100 8 0100,1010,1110

11. 1101,1000,1010 9 0100,1100,1110

12. 1101,1000 7 0100,1010,1100,1110

13. 1101,1010 8 .0100,1000,1100,1110

14. 1101,1100 6 0100,1000,1010,1110

15. 1101,1110 7 0100,1000,1010,1100

16- 1101 4 0100,1000,1010,1100,1110

i'2'~ l*-i

4 15

7 17

8 18

6 16

7 17

9 18

8 18

9 19

9 19

9 18

8 18

9 17

9 18

9 16

9 17

10 15



a contradiction.

b. at least two of the five strings is in L(H,) and at

least the other three are in LfHJ. Since any two of the five strings

liffer in at least one place, |H-j| > 5. And similarly |H2| >5
G0| > 11, and |F, I > 12, a contradiction.

V - 1' -

so

2. m = 3, so we have the two cases:

a. G2 is 2-mul and G3 is 1-mul. Thus, 0, 1eL(G3),

so |G3| >3. And 00, 01, 10, 11 eL(G2), where G2 =(HjVHg).
Still further cases:

i. L(H ) contains one of 00, 01, 10, 11 and L(H2)

contains the other three. Thus |H,| > 2, and |H2| > 6, so

|GJ > 9, and |F, | > 13, a contradiction.

ii. L(Hj contains two of 00, 01, 10, 11 and L(H2)

contains the other two. Thus |H 4, |HJ >49 G2| > 9, and

F,| > 13, .a contradiction.

b. G9 is 1-mul and G„ is 2-mul. Thus, 0, 1 e L(Gj,

00, 01, 10 e L(G3), and G3=(H]VH2). So |G2| >3. Without loss
of generality, L(H-,) must contain one of 00, 01, 10 and L(H2)

the other two. Thus |h\| > 2 and |H2| > 4, so |G3| > 7, and

|FJ ill, a contradiction.

Hence, we may conclude that m= 4, so F^ = !"G2#G3*G4» wnere

0, 1 e L(G.) and G. is 1-mul, for i = 2,3,4. Hence, we must have

G. = (Ovl) for i = 2,3,4. Thus we have

E = !•(! V0)(1 V0)(1 V0) V0100

as claimed. The case of alternative fl6 in the table implying that

E = 1101 V (1 V0)(1 V0)(1 V0)0 is argued in a parallel fashion, to

conclude the proof of Lemma 3.1 (Section 3.4). •
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