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ABSTRACT

We study the computational tractability of finding a deterministic
finite automaton with a minimum number of states or a regular expres-
sioniof minimum length compatible with given positive and negatﬁve
samples of an unknown finite-state language. Some restrictions of
thése problems are shown to be efficiently solvable, others not.

Given a sample consisting of a finite set of strings in and a
finite set of strings out of an unknown finite-state,]anguage, we
define a "good guess” to be a smallest finite-state descriptionvwhich
1s?compatib1e.with the given information. (What Tanguage is guessed .
will in general depend on the descriptive system chosen for the
guesses.)

Mark Gold [1974] has shown that finding a deterministic automaton -
with the minimum .number of states compatible with an arbitrary sampie
is an NP-hard problem; that is, there will be no polynomial timg
algorithm for the problem if P # NP. We consider the prob]em

restricted to "uniform-complete" samples -- samples which for some

k > 1 contain all input strings of length <k and no others -- and

demonstrate a sinple algorithm to find a smallest compatible deter-

ministic automaton in polynomial time for such samples. Then we show

/
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that for any € > 0, permitting 0(n€) st rings in an otherwise
uniform-complete sample of total length n makes the problem again
NP-hard. The construction given also shoﬁs that the problem remains
NP-hard when'festricted to "finite-language" or “defihite" automata.
We also consider finding a regular expression of minimum length
compatible with an arbitrary sample. We show that this problem is
NP-hard in general, as are some variants using restricted sets of
operators. We exhibit some still more restricted, syntaética]ly—
given sets of regular expressions in which minimum compatib]e‘expres-
sions may be found in polynomial time for arbitrary samples. Finally,
we define a "most 1ikely" expression compatible with an arbitrary
sample, and show that finding such an expression from given data is

also an NP-hard problem,



CHAPTER 1

Introductdry

1.1 Introduction and the Basic Definition

The work presented herein is a contribution to the study of "induc-
tive ihferenge", which is the process: of constructing a'general rule
or hypothesis from a finite number of examples, This process has been
of interest to-phi]osophers énd mathematicians since at least the
time of Aristotie. The development in this centufy of the theory of
cbmputabi]ity permits the formulation and solution of some formerly
inaccessible problems in inductive inference; see Gold [1967] and Blum
& Blum [1975]. Some other papers in inductive inference are listed in
the’bibliogrqphy of this. dissertation.

The particular focus of this work is the inference of a descrip-
tion of a'finite—state language from a sample consisting of a finite
set.of positive examples and a finite sei of negative examples. As an
example, suppose that L - {0,1}* is a finite-state 1anguage'which is

unknown to us. If we are given the following sample of L:

inl ‘not in L
100 000
1010101 - 1101
1000 10001
1 0
101 1010

we might guess that L consists of all strings which begin with "1",
followed eithef by zero or more repetitions of "0" or by zero or more.
repetitions of‘"Ol", in'other words, that L is described by the

regular expression: 1(0*\f(01)*) .



If we are given another sample, contaiﬁgﬁémfdrther examples of -
~strings in L and not in L, we might find that our guess is incor-
rect. However, we can never conclude from‘any finite sample that our
guess is a correct identification of L. Even so, we migﬁt want to
define the notion of a "reasonable” or "good" guess for a given sample,
One possible definition, answering to the demand for economy of

description, is:

The Basic Definition: Given a sample S consisting of a pair of

finite sets of strings, S = <S],SO>,' a good-gue§§_for S is a
smallest finite-state description D such that the language L denoted
by D contains all of the strings in S] and excludes all of the

strings in SO'

Clearly, we have td specify what we mean by a "finite-state de;cription"
and a "smallest" such in order for this definition to make sense.

The remaining section of this chapter presents an example showing
that the languages‘inferred under this definition will in general
depend upon the system of description chosen. Chapters 2 and 3 are
devoted to.a study of the computa;iona] tractabi]ity of finding good-
guesses in classes of deterministic fjnite automata and regular expres-
sions, respectively. Each chapter was written to be readable apart
from the others; therefore some (hopefully not much) of the introduc-

tory material in each chapter is fepeated in other chapters.

1.2 Size of Descriptions in Different Representations, An Example

There are a number of different formalisms available for denoting
finite-state 1ahguages: deterministic, nondeterministic, or two-way

automata, and regular expressions, among others. Meyer and Fischer
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[1971] d1scuss “economy of descr1ptlon" in dwfferent systems of repre-
. sentation: for finite-state languages, and’ present a number of examp]es
of languages for which sma11est representat1ons are of great]y dis-
parate sizes in two different forma]isms. These results tend to sug=
gest (correctly) that the system of descr1pt1on chosen will affect
what languages are denoted by good -guesses for a glven sample,

We w111 glve one example 11]ustrat1ng this phenomenon, for deter—.

m1n1st1c and nondeterm1n15t1c f1n1te automata First, some definitions:
- {

Definition; Let X be a finite set. [X| will denote the
cardina]ity'of X. If X is nonempty, X* will denote the set of
’afl finite-stringsvof e1ements of X, and u.v will denote the con-
catenation of two elements u, v e-X*. A w11] denote the null str1ng
in Xf. X+_7wi11 denote'the set of all non-nu]] strings in X*.

Definition: Fix two nonempty finite.sets, X and Y, the input

and output a]phabets, respect1ve1y A nondeterministic finite .

automaton, M will be a quadrup]e <Q,6,A, I> where Q 1is a nonempty
finite set, the set of states of M I €Q 1is nonempty (the set of

initial states of M), & is a map from QxX 1nto the set'of all

-subsets of ‘Q, and A is_a map from QxX dinto Y. We extend §
to a map § from QxX* into the set of all subsets of Q as-

fo]lows:

Ha) = ta) . forall qeQ

. 3(q,u'a)

U s(q',a)- fon all qeQ,aeX, ueX*
q' € &(q,u) : o

Definition: If M 1is a nondeterministic finite automaton and

the output alphabet Y- is.the set {0,1}, ‘then we define theilanguage

v



accepted by M, denoted L(M), by
L(M) = {sex+| s=tea for some teX* and a€X,
and A(g,a) =1 for some q € U 8&(q',t)}
- A q'el

Definition: If M 1is a nondeterministic finite automaton, then

M will be called deterministic if and only if |I| =1, and

|6(q,a)] <1 for every ge Q and a e X. (Sometimes deterministic

is taken to require |&8(q,a)| =1, so this definition is a bit non-

standard..)

Definition: If M is a nondeterministic finite automaton, the
size of M, denoted size(M), will be the cardinality of its state-

set, i.e., [Q].

We will now present a sample which distinguishes good-guesses in
the class of all nondeterministic finite automata from good-guesses in -
the class of deterministic finite automata. Fix X = {0,1,a} and

Y ={0,1}. Let S = <S],SO> where S] and -SO are given as follows:

3 S0
0 1

1 a
10a 10
al la
aa 100
1a0 101
laa all

We will say that a nondeterministic finite automaton M is compatible

with S provided that S, CL(M) and S, C X*-L(M).

1 0



Proposition 1: If M is any deterministic finite automaton of

minimum size which is compatible with S, and N is any nondeter-
ministic finite automaton of minimum size which is compatible with S,

then

L(M) # L(N) .

gtggjz Let M and N be deterministig and nondeterministic
(respectively) automata of minimum size which are compatible with S.
We will show that a0 e L(M) and a0 ¢ L(N), and conclude that
L(M) # L(N).

1. size(M) < 4. To see this, note that

is a deterministic finite automaton which is cbmpatib]e wjth S, so
the minimum size of any deterministic finite automaton compatible with
S does not exceed 4 states, ‘

2. size(M) >4, Let M= <Q,6,A,{q0}>. ‘If Vg(qo,s) is non-
empty, we will denote the unique state that it contains by [s], for
each s e X*. Since 0,11,10a,al must all be in L(M), we know that
the sets S(qO,A), S(qo,l), 3(q0,]0), and §(q0,a) are nonempty. We

have then the following information about Aq,x):

0 1
q\<____i

[A] |1 0 0

[1J-10 1 0
[0l o o 1

[a] ?2 1 1




which shows that the four states [A], [1], [10], [a] are‘inﬂqéd dis-
tinct states of M, so size(M) > 4. | '

3. a0 e L(M). 3(q0,1a) must be nonempty, since 1a0 € L(M).
But we must héve x([1al,0) =1 and A([1al,a) =1, so .[la] # [A],
[1], [10]. By #1Agnd #2, size(M) = 4, and therefore [la] = [a].
But then A([a],0) = A([1a],0) =1, so a0 e L(M), as c1éimed.

4. size(N) < 3. Consider the machine

. a/0 1/1 a/0
- /0 SN 0/0 ™ 0,1/0
NO = 0/1(;; 370 Q) -0 iyt

~_

' séart a/0

which is a nondeterministic finite automaton compatible with S. Thus
the minimum size of a nondeterministic automaton which is compatible
with S is at most 3 states., |

5. §ize(N5 > 3. Let N =<Q,6,A,I>., The set of initial states,

1, may contain more than one element, but it must contain at least

]

one state, say q,, such that A(qA,O) 1, because 0 e L(N), Since
1,a € L(N), we must a]so'have A(qA,]) =0 and A(qA,a) = 0. Simi-
larly, there must be a state, say 9> in :!IS(q,l) such that
A(q],l) =1, because 11 e L(N), Also, A(g],o) = A(q],a)'= 0

because 10,7a ¢ L(N). Finally, there must be a state; say Gygs in
v &(q,10) such that A(qlo,a) =1, and A(q]O,O) = A(qlo,l) = 0.

qel
lle summarize this information in a table for A(q,x):




and conclude that the states 9> > and 9o are distinct states
of N, so size(N) > 3, as claimed. |

- 6. a0 ¢ L(N). By #4 and #5, the only states in N are the
states q,, q;, and Gyp- Since 1, a ¢ L(N), 41> 949 ¢ I, so I
must be the singleton {qA}. Because 9 € U 8(q,1), we must have

R ' qel

qy € 6(qA,1). Now assume contrary to #6 that a0 e€ L(N). This
imp]igs that q, e S(qA,a). But if q, e S(qA,a), then q, e g(qA,al),
so all e L(M), contradicting the fact that N is compatible with
the sample S, and. all & Sb. Thus we conclude that a0 ¢ L(N), as

claimed.

Since a0 e L(M), and a0 & E(H), we have L(M) # L(N). O

.Discussion

It is not difficult to see that any nondeterministic automaton,

M, with 2 states is equivalent to some deterministic finite automaton
with at most 3 states under the given definition of deterministic auto-
maton. Thus, there will be no example of the phenomenon exhibited in |
Propositioh 1 in which N contains only 2 states.

It would perhaps be of interest to study in more- detail the
effects of different systems of representation on the infereﬁces made
according to the Basic Definition. The remainder of the present work
however is devoted to invéstigating the computational difficulty of
finding such inferences for regular languages in two particular systems’
of representation: deterministic finite automata, and regular expres-
sions. Re1ated results concerning the difficulty of finding minimum-
sized representations for Boo]eanlfunctions compatible with given data -

may be found in Angluin [1976],



CHAPTER 2

Finding a7SmalTest'Detefministic Automaton Compatible with Given Data

2.1 Introduction and Example

In this chapter we are concerned with the problem of inferring a
deterministic finite-state machine from a given sample of its behaviour.

For example, given that:

Example 1: on input: 00010000

M's response: 00001111
on input: 1000001000

M's response: 0111111000

we might guess that M 1is the machine:

1/0
0/0 “\\‘~_"//5:Z)0/1
start 1/1

Without a bound on the number of states in M, we can never be
certain of identifying M correctly. One "reasonable" strategy would
be to guess a machine with the minimum number of states which is con-
sistent with the given sample; this answers to the notion of "economy
of description". This strategy also leads to a correct inference "in
the Timit", That is, if we are presented with successively larger
samples of the: behaviour of an unknown machine, guaranteed to contain
its response for every possible input string eventually, and we con-
sistent]y guess a smallest machine .in agreement with the given sample,
we will eventually hit on the smallest machine equivalent to the
unknown machine, having eliminated all candidates of the same size or |

smaller as inconsistent with the sample. (Work on inference in the



1imit may be found in Gold [1967], Feldman [1972], and Blum & Blum

[1975].) Other strategies a]sb-give correct 1nfefence in the limit,

for examp]é, Gd]d's po]ynomia].time "padding” method (Gold [1974]).
-In this chapter, we will investigate the computational problem of

finding a smallest deterministic machine in agreement with given data.

2.2 Definitfpns, llotation
Definition: Let X be a finite set. |X| will denote the car-
- dinality of X. If X 1is nonempty, then X* will denote the set of
all finite strings of elements of X. A will denote the null string
in X*. X' will denote the set X*-{A}. If s, t e X*, then s-t
or simply st will denote the concatenation of s and t, and |s|

will denote the length of s.

Ne fix- U and V, nonempty finite sets of symbols, the input.

and output alphabets, respectively.

Definition: A sample-function will be any function from a finite

nonempty subset of U+, into V.

Definition: A sample-function f will be called prefix-closed
if for evéry u in the domain of f, if 'v is a nonnull prefix of

u, then v 1is in the domain ofl f.

We will consider only prefix-closed sample-functions in the remain-

der of this chapter.

Definition: A sample S will be any finite nonempty subset of

lf'xv such that
1. ful = |v] for every pair <u,v> € S

2, there exists a sample-function f such that for any



<a]a2°'-ak,b]b2"'bk> eS (k >1, a],az,...,akAe U and

b],bz,...,b

K € V) we have
f(a]az--'ai) =b; forall i=1,2,...,k.

The unique smallest such f will be called the sample-function pre-

sented by S.
Example 2: S, = {<0101,0011>,<010011,001110>}
is a sample presenting the sample-function:
f] = {<0,0>,<01,0>,<0]0,1>,<01OT,]>,<0100,]>,<O]OO1,]>,<01001],0>}

‘while

S, = {<010,111>,<0111,1000>}

is not a sample, since no function f can have both f(01) =1 and

f(01) = 0.

It is clear that a finite subset of U¥xV' can be tested to

determine whether it is a sample in polynomial time.

Definition: A machine will be a fu]]y-specified, deterministic,
Mealy-model finite autcmaton with input alphabet U, output alphabet
V, and a unique start-state. If M is a machine, and u e U+, we

denote by [u]m, or just [u], the state that M is in after being

started in its start-state and given the input u. If s is any state

of M, M(s,u) will denote the output string produced by M when
started in state s and given input u, M'(s,u) will denote the
last symbol of M(s,u). M(u) and M'(u) will be used as abbrevia-

tions for M([A],u) and M'([A),u) respectively.

10
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f Definition: A machine M ‘is c¢nsfstent with, or agrees with, a
sample S if and only if M'(u) = f(u) for every u in the domain

of f, where f is the sample-function prgsented by S.

Definition: If S is a sample, a good-guess for S will be any
machine M with the minimum possible number of states which is con-

sistent with S.

~ The machine of Example 1 is a good-guess for the sample given
there, and any other good-guess for that sample must be equivalent to
it. In general, however, there will be inequivalent good-guesses for

a given sample.

2.3 The Complexity of Finding Good-Guesses

Gold [1974] has shown that-finding a good-guess from a given
sample is a computationa11y infeasible problem in general (provided
P # NP). (We assume familiarity with the definitions and results |
concefning deterministic and non-deterministic polynomial-time-bounded

computations, as developed in Cook [1971] and Karp []972];) That is:

Theorem 1 (Gold): The problem of deciding, for a given sample S
(which may be taken to be prefix-complete) and positive integer k,A -
whether there exists a machine with < k states which is consistent

with S, is NP-complete, provided [u], V| > 2.

This may be interpreted as saying that enumeratfve techniques for
finding a good-guess from a given sample are essentially the best we
can expect at present, and no algorithm for the problem will work uni-
formly in po]ynomfal time if P # NP, Frbm a pracfica] point of view,

we might hope to find reasonable restrictions on the'type of machine
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to be inferred, or on the sample, which would permit us to find good-
guesses nore éfficieht]y. In the case that the sample specifies an
output for every ‘input string of length < k and no others, for some
k >1, we will see that there is a simp1e algorithm for finding a .
good-guess in polynomial time. We will then consider the effects of

relaxing this condition on the sample.

2.4 Uni form-Complete Samples in Polynomial Time

In this section, we consider a rather strong condition on the
sample, and show that good-guesses may be found in polynomial time for

samples which satisfy this condition.

Definition: A sample S will be called k-uniform-complete if and

only if the sample-function it presents is defined for precisely the

k

set U" = {ﬁltJeU+ and |u| <k} for some integer k > 1.

Thus a k-uniform-complete sample specifies input/output behaviour
for all input strings of length < k and no others, and consequently

will be of size 0(k[U|¥).
Example 3: Sy = {<00,01>,<01,00>,<10,11>,<11,105}

is a 2-uniforﬁecomp1ete sample, if U = {0,1}.

We may construct a partially-specified "tree machine" of |U|k-1
states in agreement with a k-uniform-complete sample, by assigning a

"state for every string of length < k.



Example 3 (continued): For S0 we get the partially-specified

machine

0/1 7

We might arbitrarily assign the ‘unspecified transitions in the tree
machine for S and find the minimal equivalent to the resulting fully-
specified machine, e.g.,

Example 3 (continued):
0/1, 1/0

(M] is minimal because M]([A],OO) = 01, M]([O],OO) = 10, and

M, ([11,00) =11.)

This procedure will not in general produce a good-guess for the
sample S, as may be seen from the fact that M2 is also in agreement

with the SO of Example 3, where

Example 3 (continued):

) _ 0/1,
M, "/Q 0/1,1/1’031/0

13
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Howevér, there is an algorithm which is not too much more sophis-
ticated than this which will always find a good.guess for a k-uniform-
complete sample in poTynomia] time. It is a procedure which is called
"contraction of a finite tree" by Trahktenbrot and Barzdfn [1973],
pp. 98-99, where it is given'withouf proof.

The idea of this procedure is to start with a state-set lQ,
initially = {A}, and to work breadth-first from the root to the leaves
of the,tree}machine for S, adding a new state to Q only if it can
be distinguished from all of the states currently in Q by informa-
tion contained in the sample, and otherwise, identifying ft with any
state in Q ffom which it is indistinguishable by information contained
in the sample. We will specify this algorithm and prove that it works,

Suppose we are given S, a k-uniform-complete sémp]e for some
k>1, Let' f denote the sample-function presented by S. For each

u e UkLJ{A}, we let
R, = {<z.fuz)>] zeu"luly

(So if lul'='k, then R = §.) The set R, represents the subtree

of the tree machine for S which is rooted at the state [u].

Example 4:

start




Definition: If s, t e UkLJ{A} then we say that s .can be

merged to t if and only if R g_Rt.

Thus RS §~Rt means thaf the subtree rooted at. [s] is found
embedded in the subtree rooted at [t], for example Ryp SRy in
Example 4,

The following algorithm calculates a state-set Q C K uay.

KUy

During execution, the set L contains those strings in U
which remain to be processed. The set T contains a record of iden-
tifications made: <s,t> € T means that the state s 1is identified

with the state t,

Algorithm A:

begin
Q< {A}; L« Uk; T « §;
while L # 9 do

begin

s « least(L);
M« {u] ueQ and s can be merged to u};
if M =9 then '
begin
remove s from L and add it to Q;
end '
else
begin
t « anyelement(M);
T« Tui<s,t>};
‘remove s and all of its extensions from L;
end
end
end.

where the function "least" selects the lexically smallest of a finite

15
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nonempty set of strings, and "anyelement" simply returns one element

of a finite nonempty set.
We give an example of the execution of Algorithm A,

Example 5: Consider the 2-uniform-complete sample given by

0/0
0/0 \\\14}

1/1 0/1
‘start | <:121

After initialization, we have:
Q = {A}, L =1{0,1,00,01,10,17}, T = 1]

The first time through the "while" loop, state 0 is identified with

state A e Q, giving values:
Q = {A}, L =1{1,10,11}, T = {<0,A>}

The next time through, the state 1 is found to be distinguishable from

A e Q, and is added to the state-set: .
Q = {A,1}, L ={10,1}, T ={<0,A>} .

In the third execution of the loop, 10 1is found to be indistinguish-

able from both A and 1, and so is identified with either, say A:

Q = {A,1}, L ={11}, T = {<0,A>,<10,A>}

In the final execution of the loop, 11 1is identified with either A

or 1, say A, resulting in final values:



Q=1{A1), L=9, T-={<0,A>,<10,A>,<11,A>}

When Algorithm A terminates, we have for each u e Uli{A} one
of the three following possibilities:

i) u e Q, every prefix of u is also in Q, and u cannot
be merged to v for any v € Q such that v < u (in the lexical
ordering of strings);

ii)  every proper prefix of u is in Q, but u itself is not
in Q, and there is a unique v € Q such that u was identified
with v, i.e., <u,v> e T;

iii)  some proper prefix of u 1is not in Q, and u Qas there-

fore removed from L as an extension of a string in class (ii).

(In particular, if u e Q, then lul < k-1, because ff lu] = k,
then Ru =f and u can be merged to A e Q, so conditions (i)-(iii)
guarantee that u ¢ Q.)

e use the output set Q as the state-set of a machine M
defined as follows: let ueQ and a e U, .Then [u] <k-1, so
u-a € Uk. Thus we may define the output of M for state u and
input a to be f(usa). If u-a € Q, then we simply define the next
state of M for state u and input a to be the state u-a. Other-
wise, wu-a 1is a string of type (ii) above (because u e Q and ae u),
and there is a unique v € Q such that <u-a,v> € T. In this caée,
we define the next state of M in state u with input a to be the

state v. A will be the start-state of M.

Example 5 (continued): Applying this procedure to the final

values

Q={A0}, L=p, T-={<0,A>,<10,A>,<11,A>}

17



vie obtain’the'machine:
i - 0,1/1

0/0 /_\

1/1

start

Theorem 2: The machine M thus defined is a machine with the
minimum possible number of states which is consistent with the input

sample S,

Proof: - (Recall from the definitions, p. 10, that [u]M denotes
the stateA M reached from the start-state on input u, and M'(u)
denotes the last symbol of output produced by M on input u. [u]M
will be written simply [u] 1in what follows.) |

It is clear from the definition of M that [u] = u for all

strings u € Q. To show that M 1is consistent with S, we must show |

that M'(u) = f(u) for all u e Uk. If aeU, then M'(a) = f(a),

by definition of M. WNow suppose that M'(v) = f(v) for all strings
v which precede some string u e Uk, with [u] > 2. Then u = w-a
for some a € U.

If we Q, then

M'(u) = M'([w],a)
M'(w,a)
f(wea)

f(u) .

If wéQ, then uf= z*b*t where z 1is the longest prefix of wu
which is in Q, be U, and t € U'. Then zeb is a string of type
(ii), so there is a unique v € Q such that <z<b,v> € T, By the

definition of .M, we have [z<b] = v. Hence



M'(zebet)
M ([z+b],t)
M'(v,t)

M'(u)

M'(v-t)
f(vet)

because v < z+b, so vet < z'bet = u, so0 our inductive assumption
applies to vet. Since <z-b,v> € T, we know that z-.b can bé merged
to v, so Rva g_Rv. But <t,f(z-bet)> e Rzib’ so we must have
f(vet) = f(z:bet) = f(u). Thus_ M'(u) = f(u).

Hence in either case we get M'(u) = f(u), so by induction we may

k

conclude that this holds for every u e U, i.e., that M 1is consis-

tent with S.

To see that M has the minimum possible number of states among
all méchines‘consistent with S, we 1et‘ N be any machine which is
consistent with S. Let u, ve Q with u # v. Assume without loss
of generality that u < v, Then from observation (i) above, we know
that ‘v cannot be merged to u, i.e., that Rv T Ru' Thus there is
some element of Ry» say <t f(vet)>, with 1<t <k-|v|, whigh
is not an element of Ry~ Since-u<v, Jul <|v|, so 1<t 5.k— lu].
Therefore, <t,f(u-t)> ¢ Ru, so we conclude that f(v?t) # F(u-t).,i‘
But since N is consistent with S, we have N'(vet) = f(v+t) and
N'(g-t) = f(u-t). Hence, the states [u]ﬁ and [v]N are distinguish-
able by the experiment t, that is, [u]N # [v]ﬁ. Since u and v
were arbitrary distinct elements of Q, we conclude that N has at

least |[Q] states, at least as many as the machine M. 0

1¢
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Since the set L in Algorithm A is initia]]y set to Uk, and

each iteration of the "while" loop removes at least one element from
L, itvis not too difficult to see that the algorithm can be imple-
mented to run in time polynomial in the size of the kfuniform-comp1efe

sample S.

An Extension of A: If S 1is a sample which would be k-uniform-

complete with the'qddition of at most dk strings to‘the domain of

its sample-function, then we could execute Algorithm A for each possi-
ble way of extending S to be k-uniform-complete and output a smallest
among all the resulting machines; this would obviously be a good-guess
for the sample S. For a fixed constant d, the number of possibilities
we must try out is |V|dk, which is polynomial in the size of S,
provided |U| > 2 so that the whole procedufe would run in time poly-

nomial in the size of S. Ve have

Theorem 3: For any d > 0, we may find good-guesses in polynomial

k

time for all samples S which are defined exactly on U~ less at

most d-]og(IUkI) strings,

2.5 A Further Extension of the Uniform-Complete Case Which is NP-Hard

This section is devoted primarily to a construction to demonstrate:

Theorem 4: For any € > 0, the prob]ém of finding a good-guess

for any sample S which is defined on Uk less at most 'IUkle

strings for some k > 1, is NP-hard, provided |U|, |V] > 2.

This is to be contrasted with Theorem 3, which says that if the
number of unspecified strings is bounded by d'log(lukl) for some d,

then the problem may be solved in polynomial time. What happens in the



gap between d-log(lUkl) and IUkIe is an open problem.

The reason that Gold's construction for the proof of Theorem 1
does not suffice to prove Theorem 4 js that he translates a proposi-
tional forrula ¢ of m clauses and n variables into a sampie con-
taining input strings of length k > max {m,n}, To make such a sample
“nearly" k-uniform-complete in the sense of the theorem would make it
of size at least c-2k for some constant c¢, which would not be
polynomial in the size of ¢, as required for the NP-reduction. Thus
the primary purpose of this new construction is to keep the strings of
the sample to length 0(log k); the "e" may then be achieved by a.
standard sort of padding. The construction will also allow Qs to con-
clude that finding good-guesses is NP-hard even if we restrict the

problem to "finite-language" or to “definite" machines [see p. 30].

A Class of Machines: We first define a particular set of incom-

pletely-specified machines. The definitions will be given pictofia]?y:

T, = O
0
0/1 k
3 ~J
Tk+1 = for all k >0
1N ]
\k
Ry = O
0/0, 1/1

for all k >0
0/1, /1

21



and for all k >1, M

Thus, for example, M2

k

is the partialiy-specified machine:

is the partially-specified machine:

VT>0L05n, i

22



2k+1 | k+1

My will have 2 +2° " -2 states. We define the level of a
state i in M to be the "distance" of state 1 from the start-

state:

level(i) = min {£] 3u(jul =2 and [u]=1)}

The start-state will be at level 0 and the sink-state at level 4k+1.

The only unspecified transitions and outputs of Mk are the O-transi-
tions and O-outputs from states at levels k and 2k. '

We choose a set Qk of strings to represent the states of Mk‘
For each state i in Mk, r(i) 1is taken to be the "southern route"

from the start-state to i, i.e.,
r(i) = max {u| |u| =1level(i) and [u]=1i} ,

where the maximum is taken in the lexical ordering of strings (with

0 <1). Then
Qk = {r(i)] i is a state of Mk}

We note several facts that can be proved regarding Mk:

1. If ueQ then Mk(u'14k+2'lu|) = 19K+,

2. If ueQ and |ul <2k then Mk(u-14k+‘-2|UI.0IUI)

= ]4k+l-|u|.ur’ where u" denotes the reverse of the string u.
3, If i s any state at level & > 2k then r(i) wi]i be
of the form u-1™ where |u] = 4k+;]- 2 and m = 4k+1-2]ul,

The first fact allows us to distinguish two-states at different

levels of Mk; the latter two allow us to distinguish between two

- states at the same level., We use these ideas to construct a sample:

23
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let

4k+2-u| for someIJer, or

By = fel e=us
e:»u.]4k+]'2|”l-0|”| for some ueQ, with lu] < 2k}
and
S, = {<e,M, (e)>] eeE}

Claim: If M 1is any machine which is consistent with the sample

|
Sk, then [u]M # [v]M whenever u, v € Qk and u # v.

2k+1 + 2k+1

(Thus in particular, M must have at least 2 -2 distinct

states.)

Proof: Let wu, v e Qk with u # v. Denote [u]M and [v]M by

[u]l and [v] simply. Since M 1is consistent with Sk, we must have

M([u]’]4k+2-|u|) - ]4k+]"IUI 0

L]

'M([v],14k+2"vl) - ]4k+'l-lv|.0

.

Thus if |ul # |vl, say |ul < [v], then we have M([u],1**Z"I¥1)
Gl N I W P I T lu| = |v|, then if |u| < 2k, we

have
M([u],]4k+]'2|“'-0lu|) - 14k+]'2[ul-ur
m(rv3 4k -2lulgluly o qakt-2lul, v
so again [u] # [Q]. In the last case, [u] = |v]| > 2k, we have by

Fact 3 above that.

—-— .m Om
u = u],] and v vy 1,

where |u;| = |v;| = 4k+1-]ul, and m = 4k+] - 2juy|. Thus

w)
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lu]-|‘ :

i ﬁ([u],O ) = uy
and
M([v],OIu]!) =y,

so we conclude in this final case that [ul # [v] once again, O

Encoding a SATISFIABILITY Problem Using Sk

We now show how to augment the sample Sk to "represent" a pro-
positional formula. Let & be a propositional formula in conjunctive
normal form (a conjunction of a set of clauses, each of which is a
disjunction of some literals), for example ¢ = (AVBVC)(AvD)(BvCvD).
We may without loss of generality assume that each clause of ¢ con- .

tains only positive or only negative occurrences of variables. (If

not, we may use the fact that (pvq)r is satisfiable if and only if
(pvX)(qvX)r is satisfiable, provided that X ds a variable that
does not occur in p, q, or r, to transform the problem to meet
this condition.)

If m and n are the numbers of clauses and variables in ¢,
respectively, we fix k = [Tog(max{m,n})] +1, so that ok-1 >m, n.
Let

C = {the first m binary strings of Tength k-1}

V = {the first n binary strings of iength k=1}

and put these into one-to-one correspondence with the clauses and
variables of ¢, respectively, so that we can talk about c]ause c
and variables v for ceC and v eV,

We use some of the 0-outputs from stateé of Mk at level 2k to

encode the variable/clause incidence relation in ¢:
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Ay = {<u1n0,1%Ke>| u,we (0,13%, Ju] = [w] =k-1, and 6=1 if and
only if ueV, weC, and variable u appears

in clause w of ¢, else & =0}

Then we constrain the O-transitions from states [0Oc] for c e C as

follows:

| A, = {<0c01%K*2 18K+ 205 ¢ g )
Ay = 1<0c01%%0,1%*2, c e )
Ay = 1<0c01¢0,1%K*%5| cec)

A5 = {<0c00,1k+15>|(:ec and § =0 if clause ¢ contains only nega-
tive occurrences of variables, §=1 if clause
c contains only positive occurrences of

variables}

We set S; = SkLJA]LJAZLJA3tJA4LJA5. It is not too difficult to see

that S: is a sample, that it presents a well-defined sample-function.

2k+1 | 2k+] -2 states in

Claim: There exists a machine of 2
agreement with the sample S: if and only if the formula ¢ s

satisfiable.

k+1 | Sk+1

Proof: (=) Suppose M 1is a machine of 22K+ L oKH 5 ctates

* . . .
which is consistent with Sk. Then, in particular, M 1is consistent

22k+]-+2k+1 -2 states, namely

with Sk’ so M must contain exactly
{[u]MI uest}. We will denote [u]M by [u] simply, in what follows,
For each v € V, let t(v) = M([1v],0), the O-output of M in the
state [1v]. We will show that t 1is an assignment of truth-values

to the variables of ¢ which will satisfy ¢. Let c e C, then
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3k+2) 3k+1

ﬁ([OcO],] = 1
- M([0c0],13K0) =1

0 from agreement with A2 R

3k+1 . from agreement with A3 .

Taken together, these imply that [0c0] must be a state in the Tower

half of the k" level of M, that is, that [0c0] = [1u] for some

k)
ue {0,1}* with |u] = k-1. Then

M([1u],1c0) = M([0c0],1c0)

]k+]

from A4 .

But by. A], this implies that u 1is a variable which appears in

clause c¢. Finally, by A5

0 if c¢ contains only negative occurrences of
M([0c0],0) ={ variables
’ 1 if ¢ contains only positive occurrences of
variables

and t(u) = M([Tu],0) = M([0c0],0), sb the assignment of the value
t(u) to variable u makes clause c true, Since c was arbitrary,
thé assighment t makes all the clauses of ¢ true, i.e., satisfies
.

‘(cd - Conversely, suppose that ¢ is satisfiable. We choose an
assighment t: V- {0,1} which satisfies ¢, and for each clause
c € C, we pick a variable v € V which appears in clause c¢ and
vhich ﬁakes clause c¢ true under the assignment t. (That is,
t(v) = 0 if c contains only negative occurrences of variables,
1 otherwise;) We now specify the missing outputs and transitions of
Mk in such a way that the resulting machine is consistent with S;
and has no more states than Mk.

1. The O-output from state [0c], where c € C, will be "1";

the O-transition will be to state [1v], where v € V was the



variable picked to make clause c¢ true under the assignment t.

2. The O-output from the state [1v] where V e V will be
t(v).

3. The 0O-output from state [1x1y] will be “]".provided xeV,
y € C, and variable X appears in clause y of ¢, "0" otherwise,
for all x, y e {0,1}* such that |x| = |y| = k-1.

4. The rest of the missing transitions and outputs in Mk may

be specified in any way within M We note that in particular they

k.
may be chosen so that the resulting machine is a "finite-language"

machine, that is, outputs "1" for only a finite number of possible

input strings.

We call the machine that results from this procedure M:; we

must see that it is consistent with S*, M*

. k' 'k
and thus is consistent with Sk. Consistency with A1 is by direct

is an extension of Mk,

construction in item #3 above. Let ¢ be any element of C. Then

His (0c0) = 1k

and [0c0] = [1v], where v is the variable chosen
to make clause c¢ true under assignment t. This easily gives agree-
ment with A,, Ag; A,. Finally, M ([0c0],0) =t ([1v1,0) = t(v),
and v was chosen so that t(v) would agree with the sehse of

clause c¢c. . ]

Analysis
Since k = 0(log|é|), and the longest strings in S, are of

length 4k +3, we can easily see that SE will be of size polynomial
in |¢|. It is also not difficult to see that S; can be constructed
from ¢ in time polynomial in |&|. Thus we have given a polynomial-
time reduction of SATISFIABILITY to the problem of finding good-guesses

for the samples SE(¢), and we conclude that the latter problem is

»



NP-hard, since SATISFIABILITY is complete in NP (Cook [1971]). .

A1l that remains to complete the proof of Theorem 3 is to achieve

the "e"; this is done by "padding" the sample SE to bury the effect

Pkt

of the at most strings used in specifying ¢, One way to do

this is to add a preamble of length p to Mk, thus:

p states
A

.
Pk /,3'1/‘007/—0’0‘170

l *
-start 7 L\‘ tiﬁ[l \_0/1
‘ 0/1

Each of the additional p states may be distinguished from the sink-

state of Mk by its output under input "0", and from all the other

states of M_ by its output under input "1". They may be distin-

k
guished from each other by their behaviour under the string 1p+].

We construct:

B, = {<s,Pk(s)>| |s| < p+4k+3 and s # 1Pt for all te{0,13")
B, = {<]ps,0pt>| for all <s,t>e$l’(‘}
and define SE* = By UB,. S;* will be a sample containing input

4k+4

strings.of maximum length p+4k+3, with at most 2 of them unspe-

cified. We will have: ¢ is satisfiable if and only if there is a

2k+1 | k+1

machine with p+2 +2 Given

-2 states in agreement with S:*.

*%k

k
will be Up+4k+3 less at most [Up+4k+é]e strings, as required for

e, 0<e<1, wechoose p = [(4k+4)/€]. Then the domain of S

Theorem 3.

29
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vRestrictions‘on'the Type of Machines

Definition: A machine M 1is a finite-language machine if and

only if its output alphabet is {0,1} and it gives the output "1" for

only a finite number of input strings,

Definition: A machine M is definite if and only if there exists
an integer k > 0 and a function f mapping the set of input strings |
of length k to the output a1phabet such that for any input string u
of 1eﬁgth‘3 k, M'(u) = f(v), where v is the suffix of u of
length k. ‘ o

Note that a finite-language machine is necessarily definite. In
the proof above, we observe that if ¢ is unsatisfiable, then

2K+, Hk+1

there will be no machine of < 2 -2 states in agreement with
SE’ but if ¢ s satisfiable, then the machine constructed from a
satisfying instance for ¢ may be taken to be finite-language, and

hence definite. Thus:

Corollary: The problem of finding a smallest finite-language (or

definite) machine consistent with a given sample is NP-hard.

Notes
1. In the special case that the output alphabet is {0,1} and
we interpret the underlying machine as a finite-state acceptor, we

might wish to present a k-uniform-complete sample as
S] = {preciseiy those strings of length < k which are accepted} ,

i.e., the subset of Uk which is accepted by the machine. S] may be

of size polynomial rather than exponential in k for particular



families of machines. For this‘case, Algorithm A can be modified to
run in time polynomiél in the size of S] rather than in the size of

gk

as follows: Initialize L to the set of all nonnull prefixes of
strings in S]. For all s, t e L, we consider Ts = {ueU+[ sueSi}

and say that s can be merged to t if and only if |s| > |t| and

Tg 1s identical to T, for strings of length < k- Is|. In the speci~

fication of the machine M we may be compelled to introduce a "dead
state" to guarantee that the machine is completely specified, but
otherwise the construction carries over in a straightforward fashion.

This modification of A may be of some practical interest,

3
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CHAPTER 3

Finding a Smallest Reqgular Expression Compatible vith Givén Data

3.1 Introduction

In this paper we consider the problem of “guessing" a regular
expression to describe an unknown finite-state language, on the basis
of a few examples of strings in the language and a few examples of

strings not in the language. For example, given:

in L not in L
011100 111
11111101 001111
m 11000
000111111 010

we might guess that the language L -was described by the expression
(0 v 111)*,

Without additional kinds of infofmation about L (for example,
an upper bound on the length of an expression describing L), we can
never be certain we have correctly identified L. However, we might
still want to find a "reasonable" or "good" guess in this situation.
We will define a "good guess" to be a regular expression of minimum
length which is consistent with the given sample. This definition
éorresponds to a demand for succinctness in a sciehtific theory of
given data; it also leads to a correct inference in the limit, in the
sense defined by Mark Gold [1967].

For inference, regular expressions are interesting for two possi-
bly related reasons. In simple cases, regular expressions correspond
somewhat with natural language descriptions of inferences from samples

of finite-state languages. Also, the strings composing a regular



expression (using the operators V, «, *) appear as substrings of the
positive strings of the samples. Both of these may provide insight
into efficient constructive approaches to the inference of regular
éxpreséions. The "substrings" property is exploited in the classes of
expressions constructed in Section 3.3. |

One way to compute a shortest regular expressidn compatib]é with
given data is to enumerate all regular expressions in order of size
and test them for compatibility with the sample. This potentially
exponential-time algorithm fs the best we currently possess for find-
ing shortest compatible expressions. Moreover, Theorem 2, in Section
3.4, will show that there is no polynomial-time algorithm for finding
a shortest compatible expression for arbitrary given data (if P # NP).

This result motivates a search for computationally more tractable
special cases of the problem of finding "good gﬁesses" from given data.
Ideally, we would like to characterize those features of the sample or
of the expressions to be inferred which permit efficient inference.
nghaps such features would include formal correlates of our intui-
tions of "transparency" or "clues" or "sfructure“ in the samples or
expressions.

Toward this end, we present the beginnings of a study of the
"inferrability" of various restricted classes of regular expressions,

from arbitrary given data.

3.2 Definitions, Notation, Conventions

Definition: I will be a finite nonempty set, the alphabet. A
will denote the null string, Z+ the set of all non-null strings'ovér
the alphabet 2, and I* = z'U{A}. If s, t e z*, the concatenation

of s and t will be written st. If A, BCzI* then
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AB = {s| s=tu for some teA and ueB}
and we define A" as follows:

A=
A - pTa for i >0 .

Definition: The set of regular expressions over I will be the
smallest set of strings E such that
1. TCE
2, 4, ¢ekE where A, ¢ are distinct symbols which are not
in Z.

3.' Whenever E, F € E then

(E<F) e E
(EVF)eE
(E)* e E where the symbols (, ), =, V, * are
not in Z.
The set of regular expressions over I wi11 be denoted <Z,V,+,*>.
The subset of <Z,Vv,+,*> consisting of strings which do not contain
the symbol Vv will be denoted <Z,,*>; similarly for the other

operators.

Definition: If E 1is a regular expression, we define the

language of E, denoted L(E), inductively, as follows:

1. L(a) = {a} forall aez

2, L(A) = {A}; L(p) =@ (the null set)

3. LUE-R) = LOL(F); L((E v F) = L(E) UL(F);
LUEM) = U (L(E)]

i=0
With respect to the language denoted, concatenation ("e") is

i}



associative, and union ("v") is associative and commutative. We wj]]
freely omit unneéessary parentheses and the concatenation symbol ("-")

from regular expressions.

Definition: If E 1is a regular expression, its length, denoted
|[E], is defined as follows:

1. Ja] =1 for aez

n
f—

2, |l =1 and |p|
3. J(EF)] = [E[+|F}5 J(EV V)] = [E|+]|F] +1; ](EY*| = |E| +1

Note that parentheses and the concatenation symbol do not count
towards the length of an expression, so that the length of any expres-
sion is simply the number of symbols from ZU{A,Q,V,*} ‘used in it:.
This definition is mostly for convenience in the proofs to follow; the

results could be proved under different definitions of length.
Examples: Let £ = {0,1},

L((0 v 1)*1) = {all strings of 0's and 1's which end”in al}
| ({0 v:-1)(0 v 1))*00| = 9

L(@)*) = {aA}

L(((00)*p) = ¢

| (0000)*| = 5

Definition: A sample S over I will be an ordered pair

S = <S],SO> where S], S0 are finite subsets of I* and S]r".S0 = p.

Sy will be called the positive part of S, and So the negative
part of S.
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Definition: A regular expression E 1is consistent (or compa-

tible) with a sample S = <S,,S,> if and only if S, S L(E) and
SOfWL(E) = @, that is, if and only if E generates all the strings
in the positive part of S and none of the strings in the negative

part of S.

Example: .The sample presented in Example 1 is S = <{011100,
1111110111,111,000111111},{11111,001111,11000,010}>. The expression
(0 v 111)* is compatible with this sample, the expressions 0* and

(0 v 1)* are not compatible with it.

Definition: If S 1is a sample and E 1is a set of regu]ar
‘expressions, then a regular expression E will.be called a good-guess
from E for S if.and only if

1. Eec€E;

2. E 1is compatible with S;

3. for every FeE, if F 1is compatible with S, then

|El < |F].

If E is the set of all regular expressions, then we will simply say

that E 1is a good-guess for S.

Definition: If E is a set of regular expressions, then E

will be called efficiently-inferrable if and only if there exists an

algorithm A such that
1. A runs in pdlynomia] time;
2. for every sample S,
E where E is a good-guess from E for S,

if any expressions from E are compatible
with S

"NONE" otherwise

| A(S) =



Remark 1: If E and E' are efficiently-inferrable, then so is

EUVE'. (We simply run both algorithms and take a smallest answer, if

any.)

Definition: If E 1is a set of regular expressions, then E will

be called hard-to-infer if and only if P # NP implies that E is

not efficiently-inferrable.

(Mote that efficiently-inferrable and hard-to-infer would simply be

complements of each other if we could prove P # NP.)

Conventions: We assume straightforward encodinés of strings,
expressions, sets, integers as inputs and outputs of programs. We
also assume familiarity with the definitions and results concerning
sets recognizable in deterministic polynomial time (P) and nondeter-
ministic polynomial time (NP), and the notions of NP-complete and

NP-hard problems, as developed in Cook [1971] and Karp [1972].

3.3 Sonme Efficiently-Inferrable Classes

In this section we present some classes of regular expressions
from which good-guesses may be found in polynomial time for arbitrary
samples. We start with an example:

Let I = {0,1}.

Let E = {E| E={(xVvy)* for some i,yez*}. If we are given the
sample 'S = <3]:50>=

S S

a2 0
11001 on
10000 1000

we procced to enumerate all substrings of the strings in the positive
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part of the sample:
W = {A,0,1,00,01,10,11,000,001,100,110,0000,1000,1001,1100,10000,1101}

and for each pair <r,s> e WxW, we form the expréssion (rvs)* e E
and test it for compatibility with S, A shortest regular expression
found in this way which is compatible with S is (1V00)*. It is
easy to see that for any (xVy)* € E which is compatible with S,
both x and y must appear as substrings of the positive strings of
S, so that (1v00)* will in fact be a shortest expression from E

which is compatible with S, i.e., a good-guess from E for S.
The idea of this example may be formalized as follows:

Definition: Let XqoXgsXgs e 0 be an infinite sequence of new

symbols. A regular form in k variables will be any regular expres-

sion over the alphabet ZLJ{x],xz,...,xk}.

Definition: 'If k >0 is an integer, then a k-substitution will

be any function f: {XT’XZ""’Xk} -> Z*tJ{@}. For any set A of
symbols disjoint from the xi‘s, we will implicitly consider f
extended to map (AlJ{x],xz,...,xk})* to (ZUAU{p}H)* by f(a) = a
for any a e A, and f(st) = f(s)f(t), for all strings s and t.

Definition: If F is a regular form in k variables, then a

regular expression E is a substitution-instance of F if and only

if there exists a k-substitution f such that E 1is the result of

replacing in F every occurrence of X5 by f(xi) for 1 =1,2,...,k,

i.e., E = f(F).



39

Definition: If F is a regular form, then the set of regular
expressions denoted by F, which will be denoted E(F) and called a

fegular form class, is defined:

E(F) = {E] E is a substitution-instance of F}

Examples:

F = (x]\/xz)* is a regular form in two variables.
f: Xy > 00, Xy + 011 s a 2-substitution,
= (00VO011)* = f(F) is a substitution-instance of F.

Let F be a regular form in k variables. We give an algorithm, -

AF’ for finding good-guesses from E(F) for an arbitrary sample S.

Algorithm Ac:

‘input: S = <S]’SO>’ a sample

output: C, a set of expressions compatible with the sample S
begin

C« 9

W< {s| s is a substring of some string from S };

for each k-tuple 5155550155, > € (NlJ{ﬂ}) do

begin
let f be the k-substitution Xjrs; for 1=1,2,..,,k;
E« f(F); '
if E is compatible with S, then C < CU{E};
end
end.

Claim: When A. halts,
i) C will be a subset of the set of all expressions from E(F)
which are compatible with S.
ii) If any expression from E(F) is compatible with S, then ¢

will contain a smallest such,



Proof: An expression E is only added to C if it is a substi-
tution-instance of - F and is compatible with S, so (i) clearly holds.
To prbve (ii), suppoée that E e E(F) is compatible with S. Since
E e E(F), E = f(F) for some k-substitution f. For each
i=1,2,....k, if f(x;) isa substring of some string from S],
then f(xi) will be placed in Y, and so will appear in the ith
coordinate of ‘(NLJ{Q})k. Otherwise, we need to show that we could '
map  X; to P and still have an expression compatible with S.

So, we let g(xj) = f(xj) for j#1i, and g(xi) = f. MHe claim
that g(F) will be compatible with S. Since |g(F)| < |[f(F)|, by
iterating this procedure we will eventually arrive at an expression in

C which has length not exceeding the length of E = f(F), which will

prove condition (ii). We will need:
Definition: If A is any set of strings, define

r(A) = {s| seA and s does not contain the symbol §}

r(A.).

Note that r(AB) = r(A)r(B) and r(-LHAi) = ;
'l:

wCs

1

Lemma: L(f(F)) = r(f(L(F))) for any regular form F in k

variables, and any k-substitution f.

This result is not too difficult to prove by induction on regular
form$. It says simply that if we remove the strings containing‘ p
from f(L(F)), the result will be precisely L(f(F)). It does not
hold if the Tanguage of regular expressions is expanded to contain the

"not" operator (-), where L(—E) = =¥ -L(E).
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Now, to see that g(F) is compatible with S, we note that if
s e L(g(F)), then s e r(g(L(F))), so s = g(§8) for some s e L(F),
and g(s) does not contain @. Then f(5) =‘g(§), so s e r(f(L(F))),
SO S € L(f(F)). Conversely, if s e L(f(F)), and f(xi) is not a
substring of s, then s e r(f(L(F))), so s = f(S) for some
S e L(F), and f(S) does not contain p. Also, § cannot contain
X3
g(8) = f(8). Thus, s e r(g(L(F))), so s e L(g(F)), Since f(F) is

otherwise s = f(5) would contain f(xi) as a substring, so

compatible with S, and no string from S] contains f(xi) as a

substring (by hypothesis), g(F) 1is compatible with S. 0O
Thus, for each i =1,2,...,k we define

f(xi) if f(xi) is a substring of some string from 5

f'(xi) =.{

@ otherwise .

Then f'(F) e C, and |[f'(F)| < |f(F)|, so if E(F) contains any |
expressions compatible with S, then C will contain a shortest such,

O

To see that the Algorithm AF will run in time polynomial in the
length of the input, S, we note that if n 1is the total length of
S, then the number of substrings of strings in Sy» that is, [W|,
will not exceed an for some constant K, Thus, at most (Kn2+1)k
expressions f(F) are tested for compatibility with S. The member-
ship question: “s e L(E)?" may be answered in time polynomial in the
lengths of s and E (Aho, Hopcroft, and Ullman [1974]), so the
whole procedure will run in tire bounded by some polynomial in n, as
claimed. (Note that k appears in the exponent of n in the analysis

of AF; it is critical that the number of strings involved in defining
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the set of expressions is fixed.) Thus:

Theorem 1: If F 1is a regular form, then we may find good- -
guesses from E(F) for arbitrary samples in polynomial time, that is,

E(F) is efficiently-inferrable.

Corollary 1.1: Theorem 1 and Remark 1 (Section 3.2) show that

finite unions of regular form classes are efficiently-inferrable.

However, there are efficiently-inferrable sets of regular expres-

sions which are not finite unions of regular form classes, for example:
E={E| E= (x*y*)™ for some x,yez* and m>1}

Given a sample S of total length n, the maximum length of any
string appearing in S 1is Kn for some constant K. We enumerate
<5155, € WxW, where W 1is the set of all substrings of strings
from the positive part of the sample, and substitute X>S1, ¥Y*S,
into each of the regular forms: x*y*,x*y*x*y*,...,(x*y*)Kn. Each of
the resulting Kn expressions is tested for compatibility with S.

If any expression from E 1is compatible with S, then this procedure
will find a good-guess from E for S, since for all x, y € £*¥ and
integers p < q, we have L({x*y*)P)cC L((x*y*)Y) and if |s| < p
and s e L{(x*y*)9) then s e L((x*y*)P).

In contrast to the preceding two results, if we define the class:

D = {E| there exist u,v,w,x € Z* such that E==E]E2-'-Ek for some

k>1 where each E; is either (u)*v or w(x)*}

then D will be hard-to-infer, as we shall show in Section 3,4.



For each of the efficiently-inferrable classes of regular expres-
sions considered so far, there is some fixed bound to the number of
distinct strings composing any expression in the class, To see that
this condition is not necessary to efficient-inferrability, consider
the following modification to add "finite patching" to the basic
algorithm AF:

When an expression E is tested for compatibility Qith the input
sample S, if it happens that E is incompatible with S only

because it fails to generate some strings, say 51’52""’St’ from

S], the positive part of the sample, then we construct the expression:

E'=EVs,Vs,V s+ Vs

1 Z t

and add it to the set C of expressions compatible with S. Then C
will no longer necessarily be a subset of E(F), but this procedure

will find a good-guess for S from the following augmented class:

E%F)={E|E'=EVﬁV52V~'Vﬂ,ﬁrsmmr30,umeEeHFL

*
and some S15S95+++5S,. €L } .

E'(F) will thus be efficiently-inferrable, though there is no bound

to the number of strings composing expressions in the class E'(F).

Discussion

The fragmentary positive results of this section pfesent some
sets of regular expressions which are efficiently-inferrable. The
basic technique is a kind of "cutting and pasting" of the positive
part of the sample -- the forms that prescribe the “pasting” are all
unfortunately rather independent of the sample, in the examples pre-

sented. It would be nice to have further techniques for constructing

43
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efficiently-inferrable sets of regular expressions,
In the next section, we will see that the set of all regular
expressions, as well as some restricted subsets of it, are hard-to-

infer.

3.4 Some Classes Which are Hard-To-Infer

In this section we will present some sets of regular expressions
which are hard-to-infer. The first set considered will be the set of

all regular expressions: <I,V,e,*>, |Z| > 2.

Theorem 2: Let E = <{0,1},V,-,*$.‘ Then E 1is hard-to-infer.
In particular, the problem of finding a smaliest regular expression

compatible with an arbitrary sample is NP-hard.

Proof: The proof is a polynomial-time reduction of a known NP~
complete problem, the SATISFIABILITY of propositional formulas in con-
junctive normal form [Cook, 1971] tc the problem of finding a good-
guess for an afbitrary sample. So, suppose we are given a proposi-
tional formula ¢ ’in conjunctive normal form, e.g., ¢= (X]\/X3\/X4)
(7(2V24)(7(1 VXZVX3), with clauses numbered 1 through m and variables
numbered 1 through n. We consider a sample S(¢) = <S{,SO> as follows:

1. let q=(111000)". Specify gq e S;. (This is the only
string that will be in the positive part of the sample; we have given
it the name’ q for later reference.)

2, For every substring s of gq, say q = rst, if s con-
tains both 0's and 1's then specify rsst é SO'

3. For each j = 1,2,...,n specify (111000)03"110(111000)"I

€ SO'
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4. For i=1,2,...,m and j =1,2,...,n let

111000 if variable j does not appear in c]auseii
F(i,j) =<1110 if variable j occurs positively in clause i
1000 if wvariable j occurs negatively in clause i

and specify F(i,1)F(i,2)---F(i,n) & So.

Claim: ¢ is satisfiable if and only if there is a regular

expression of length < 5n which is compatible with S(¢).

Proof: (=) Suppose ¢ is satisfiable. Let A: {1,2,.,.,n} »
{0,1} be an assignment of truth values to the variables of ¢ which

satisfies ¢, For each j =1,2,...,n 1let

n
-

(1)*000 if A(j)
E(§) = { :
111(0)* if A(j)

]
o

and E = EE,---E . Then |[E| = 5n. To see that E is compatible

2
with S(8) note:

1'. q € L(E)

2'. If q=rst and s contains both 0's and 1's then
rsst ¢ L((1*0%)™) but L(E)  L((1*0*)™), so rsst & L(E).

3'. (11100097 110(111000)"9 ¢ L(E) because 10 & L(Eji for
each j = 1,2,...,n, | ,

4', SUppose to the contrary that for some i between 1 and m we
have F(i,1)F(i,2)---F(i.n) € L(E)." Then for each j, if variable j
occurs positively in clause i, then F(i,j) = 1110, so we must have
E(3) = 111(0)*, and therefore A(j) = 0. Similarly, if variable j
occurs negatively in clause i, we conclude that A(j) = 1. Hénce

the assignment A falsifies clause i and therefore cannot satisfy
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¢, contradicting our choice of A.

(=) Convéfsely; suppose that there is some expression of length
ﬁ_Sn which is compatible with S(s). We will show that it must have
essentially thekform of the expression E constructed above, derive
from this an assignment of truth-values, and show that this assignment
must satisfy ¢. ‘

Let E be a shortest regular expression which is compatible with
S(¢). Then by hypothesis, |E| < 5n. We use the associativity of
concatenation to rewrite E as E = F]Fg"'Fk for some k > 1,
where each Fi is not itself a concatenation. Since q e L(E), we
may write q = SN PARRL where q; € L(Fi) for i= 1,2,...,k. What

possibilities do we have for Fi?

1. F,=@. This is impossible, because otherwise L(E) =9,
and q ¢ D.
2. F.=A. This is also impossible, because either k> 1, in

j 2
which case dropping Fi from E produces a shorter expression which
is still compatible with S(¢), contradicting our choice of E as
shortest sUch; or k=1, inwhich case E = A, contradicting the
requirement that q e L(E).

3. Fi‘= (Gi vlii) for some expressions Gi and Hi' This is
likewise impossible, for q. e L(Fi) = q;€ L(Gi) or g, e L(Hi),
and if q; € L(Gi), then replacing Fi by Gi in E will produce a
shorter expression which is still compatible with S(¢), contradicting
our choice of E; similarly if q, e L(Hi).

The only remaining possibilities for each Fi are

(i) Fi =0 or Fi = 1

”~n

or (ii) Fi = (?i)* for some expression F,,



In either case, we know that q; cannot contain both 0's and 1's; this
is clear for case (i), and in case (ii) we will have qiqz--oqf--.qk
e L(E), so q; cannot contain both 0's and 1's by condition #2 of
S(¢).

Thus we may re-associate fhe concatenations in E and claim that

E

6)H)BaHy G where 111 € L(G,) and 000 & L(H) for
J=12,...,n, Since E 1is a shortest expression compatible with
S(¢), we know that IGjI, lHjl <3 for j=1,2,...,n, for otherwise
we could produce a shorter compatible expression by replacing Gj by
1M1 in E (or Hj by 000). An enumeration of the expressions of
‘length < 2 shows that the only expression of length < 2 wvhich gener-
ates the string 111 is (1)*, and similarly for 000.

But we cannot have both Gj = (1)* and Hs = (0)* for any j,
by condition #3 of S(¢), so [6H,] 25 for j=1,2,...,n. The
only possible way to attain |E| = 5n s to have for each j between
1 and n éither Gj = (1)* or Hj = (0)* but not both. We now defﬁqe

an assignment A:

]

(1)*
(0)* ,

1 if AG.
A(5) { J

1}

0 if Hj

To see that A satisfies ¢, assume to the contrary that A
fa]sifies clause i vfor some i between 1 and m. Then for each
j=12,...,n, if variable j occurs positively in clause i, we
must have A(j) = 0. Thus Hi = (0)%, so 1110 L(6;H). Similarly,
if variable j occurs negatively in clause i, then A(j) =1, so
1000 € L(GjHj). In any case, 111000 e L(GjHj), so we have F(i,jf
€ L(GjHj) for each j, and F(i,l)F(i,Z)---F(i,n) € L(E), contra-

dicting condition #4 of S(¢). Hence A must satisfy ¢, and we -
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conclude that ¢ is satisfiable.
Clearly, S(z) may be constructed from ¢ in polynomial time,

so Theorem 2 is proved, O

In the proof of Theorem 2 above, if ¢ is unsatisfiable, then
there will be no expression of length < 5n which is compatible with

S(¢), but if ¢ is satisfiable, then some expression from the set

E, = {E| E=E,E,+-E_where each E, is either (1)*000 or
. *
111(0) 7}

will be of length = 5n and will be compatible with S(¢). Thus we get

Corollary 2.1: If E 1is any set of regular expression such that

En CE forall n>1, then finding a good-guess from E for an

arbitrary sample is an NP-hard problem.

Corollary 2.2: The set D constructed in Section 3.3 is hard-

to-infer.

Corollary 2.3: The set <{0,1},-,*> of regular expressions over

{0,1} involving only the operators « and * (optionally: of star-

height < 1) is hard-to-infer.

Corollary 2.3 suggests that we consider the set <{0,1},-,v> of
expressions over {0,1} involving only the operators + and V, all

of whose members denote finite sets of strings. We have
Theorem 3: The set <{0,1},+,v> is hard-to-infer,

'Proof: The proof of this theorem is rather lengthy and will be

given in outline only. The proof is by a polynomial-time reduction of



the SATISFIABILITY of propositional formulas in conjunctive normal
form to the problem of finding good-guesses from <{0,1},-,v> for

arbitrary samples.

Lemna 3.1: For the sample T = <T]’TO> given by

oo h
1000 0001
1010 0011
1100 0101
1110 01N
1101

0100

the only expressions E such that [E| <15 and L(E) CL((0V1)

are (up to associativity of v and + and cqmmutétivity of V):

I

a) E 1(1vo)(1vo)(1vo) v 0100 ,

1
0

and b) E (1vo)(1vo)(1vo)o v 1101 .

49

The pfoof of this lemma is a long and painétaking case-analysis,

see Appendix. Note that L(E]) # L(Eo), in particular,
111 € L(E])- L(EO) and 0000 ¢ L(EO)- L(E]). This provides the

basic binary choice for the reduction.

Lemma 3.2: For any k > 58, if we specify the sample
U= <U],U0>:
1000
{1010 _
1. (1000-1%)9 {11003 1K, (1000.1%)-3-1 ¢ v, for j

1101
0100

0001
2. (1000-1%)J 100111 1% (1000-1%)"-3-1 ¢ U, for i

0,1,...

0,1,...

,n=1,

,n-=1.
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3. Whenever x = rst and y = r's't' are (possibly equal)
strings from #1 above and Is| # |s'|, then we specify rs't e UO‘

Then'the only expressions of length < (15+k)n which are compa-
tible with U are (up to associativity of « and Vv, and commuta-

tivity of V):

]-]k-FZ.Ik-'-Fn-1k where each Fi is either E] or EO

from Lemma 3.1}

v={E] E=F

Proof: Let E be an exbression of minimum length which is com-
patible with. U. We will show that |E| = (15+k)n and E is equi-
valent to some element of V. It is possible to argue that all of the
sub-expressions of E are "essential", that is, if F is a sub-expres-
sion of E, then there exists a string s ¢ U] such that s = tuv
and u e L(F). Then it can be argued that condition #3 of U will
force L(E) C L((OV])(4+k)"). Now we rewrite E as -an unassociated
concatenation E = G]GZ"'Gr where r > 1 and éach Gi is not
itself a concatenation. Clearly, for each i, L(Gi) = {A} 1is impos-
sible, and L(Gi) must contain strings of only one length. The only
possibilities for G; are G, =1 and 6 = (H;VK.) for some
expressions Hi and Ki.' Since for each 1, L(Gi) 'must contain

strings of on]quhe length, G. "covers" the same positions in each

i
S € U]. We represent all (4+k)n positions in the strings of U]

pictorially:
NN ANV ANV see AN
N — N it I\l N — N~ —
4 k 4 k ces 4 k

where the wavy lines represent positions which may be either 0 or 1

gepending on which s € U.l we examine, and the straight lines represent



positions which contain 1's in every s € U]. The positions indiéated
by straight lines will be called "invariant positions”.
We will argue that if G, = (Hi\/Ki)’ then Gi does not cover
any of the invariant positions. We have essentially two possibilities:
1. One end of the positions covered by Gi is an "invariant

position", e.g.,

AN N NNV e VW Ve 0 0 0 NV

In this case we arque that we may rewrite Hi = H%-] and Ki = K%-],
where IH%l < |H1| and |K%l < IKiI, and thus replace G; in E by
(H%\/K%)~] to get a shorter expression which is compatible with U,
contradicting our choice of E as of minimum length. The argument in
case the leftmost position covered by Gi is invariant is similar.

2. Gi inc]udes one or more whole groups of invariant positions,

but neither end-position in Gi is invariant:

I J
o —
NV APAN ANV —————  eve ANV
\ _J
[

So suppose that Gi includes m such groups of invariant positions,
where m > 1, Then we érgue that each of Hy and K; must be of
length > km, so that ,IGil > 2mk. But in this case, we may replace

G, in E by the expression G; = Liolk‘(Molk)m']-Ni, where L. fis
the disjunction of all those strings appearing in the interval I (see

picture above) in all of the strings s € U], N. 1is the disjunction

i
of all those strings appearing in interval J in all of the strings

S € U], and M= (1000Vv 1070V 1100v 1110V 1101 v 0100), But then

51
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63 < mk+ (m1)29 (since L., I, IN;| < 29), so [6;] > |&]
because m > 1, k > 58, Thus, replacing ‘Gi in E by G% produces
a shorter expression compatible with U, -a contradiction.

So we conclude that if Gi = (Hi\/Kk), then no invariant posi-
tions are covered by Gi' Thus we may reassociate the concatenations

and claim that

.k gk

_ k...
E = FpelC R e 15 eF

1 2

where each Fj is an expression of minimum length such that

i) L(Fy) S L(ov)*)

i) Fj is compatible with the sample T of Lemma 3.1.

Now we apply Lemma 3.1 to conclude that each Fj must be (up to
associativity and commutativity) either E] =1(1v0)(1v0)(1v0)Vv0100
or EO = (1vo)(1v0)(1v0)OV1II0l, as claimed. O

The sample U of Lemma 3.2 gives us n indebendent binary
choices; adding more conditions to encode a SATISFIABILITY problem is
relatively easy. Let ¢ be a propositional formula in conjunctive
normal form with clauses numbered 1 thkough m and variables numbered

1 through n. Let

1000 if wvariable j does not occur in clause i
F(i,j) =<0000 if variable j occurs positively in clause i
11111 if variable .j occurs negatively in clause i

To the conditions #1-3 of the sample U of Lemma 3.2 we add the
conditibn

4, For each i =1,2,...,m, spécify

Fi,0-15F (L2 kR R e gy
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Call the augmented sample S(¢) = <S]’SO>‘

Claim: ¢ 1is satisfiable if and only if there exists an expres-

sionof length (15+k)n which is consistent with S(¢).

Proof: (=) If ¢ 1is satisfiable, choose A: {1,2,...,n} + {0,1}
to be an assignment of truth-values which satisfies ¢. Then for each

j=],2,.-.,n, let

H
pu—}

{(1(1 vOo)(1v0)(1v0o)vo100) if A(j)

G. .
Jo(ivo)(ivo)(1vo)oviiol) if A(j)

[}
o

and let

= L] k. . k-oo [} k
E = G] 1 GZ 1 Gn 1

Clearly, E 1is consistent with conditions #1-3 of Lemma 3.2 and
[E] = (15+k)n. To see that E 1is consistent with condition #4
(above), assume to the contrary that for some i between 1 and m we
have: |

F(i,1)%F(i,2) % F(in) 1 e L(E)

If variable j occurs positively in clause 1, then F(i,j) = 0000,
so we must have G, = (1v0)(1v0)(1v0)Ov1101 and thus A(j) = 0.
Similarly, if variable j occurs negatively in clause i, then

A(j) = 1. Hence the assignment A falsifies clause i, contradict-
ing our choice of A.

(«) Assume that there is an expression of length < (15+k)n
which is compatible with S(¢). Then in particular, such an expression
must be cdnsistent with the conditions of Lemma 3,2, so it must be (up
to associativity and commutativity) be of the form

G,.1¥

k k
] OGZQ] o..GnO]
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where each GJ. is either E] = 1(1vo)(1vO0)(1vOo)vOlio0 or

E0 = (1vo)(1vo)(1vo)ov1101, Define

1 if G, =E
A(3) { 3
_ 0 if Gj E0

for j =1,2,...,n., To see that this assignment satisfies ¢, assuine
to the contrary that there is some clause 1 of ¢ which is falsified
by A. Then for each variable j, 1000 e L(Gj). Also, if j occurs
positively in clause i, A(j) =0, so 0000 e L(Gj). Similarly, if
variable Jj occurs negatively in clause i, then 1111 € L(Gj).

Thus, F(i,j) € L(GJ) for j=1,2,...,n, SO
F(i,1)1%F(3,2)- 1% -F(i,n) -1 e L(E)

~ contradicting condition #4.
The sample S(¢) can be constructed from ¢ in polynomial time,

so we conclude that the set <{0,1},-,v> 1is hard-to-infer. 0

Let n>1 and k > 58, and

l]k

E, = {E] E=G G -1k-'-Gn~1k where each Gj is either

1 2
(1(1vo)(1vo)(1vo)vol00) or

((1 vo)(1vo)(1vo)ov1iol)}
Then an examination of the proof of Theorem 3 yie]dé:

Corollary 3.1: If E is any set of regular expressions such

that En CE forall n>1, then E 1is hard-to-infer.

The last result of this section is related to the class <{1},V,*>,

but it is a little different in character from the preceding two



theorems; the reduction given is not difficult.
Theogph 4: Let

X X X '
E={E] E=(1 ])*v(] 2)*v .-+ v (1 k)* where k and XysXoseresXy

are positive integers}

Then it is NP-hard to find an expression from E with a minimum number
of disjuncts (not minimum total length) compatible with an arbitrary

sample.

Proof: The proof is by a reduction of the SET COVERING problem
to the probliem in question.

SET COVERING: Given an mxn matrix M of 0's and 1's, and an
integer k > 1, to decide whether there is a collection C of k or
fewer of the columns of M such that every row of M has avl in com-
mon with some column from C. (C is called a cover of M.)

In [Karp (1972)], it is shown that SET COVERING is NP-complete;
examination of the reduction giveﬁ therein shows that the problem
remains NP-complete even if we restrict the inbut M to contain exact-
ly two 1's per row.

Let M be an mxn matrix of 0's and 1's With exactly two 1's
per row. We enumerate the first n prime numbers: PysPosersPps
and define

i % Pa(i) *Po(i) o
‘where a(i) and b(i) are the column-numbers of the two 1's in row i,
for 1 =1,2,...,m. | |

We specify a sample, S(M) = <S],SO> by:

r.
1. l’es] for i =1,2,...,m

95
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2. 1 e S0

Claim: There is a cover of M by k 'or fewer of its columns if
and only if there is an expression E e E with k or fewer disjuncts

which is compatible with S(M).

Proof: (=) Suppose C = {j1’j2”"’jk} is a cover of M. Ve
let '
X X , X
E=(1 D% (1 *veeev (1K)

where Xg =.pj for s =1,2,...,k. Then E€ E and has k disjuncts.
s
Clearly, 1 ¢ L(E). Also, forany i =1,2,...,my row i has al in
common with some column j_e C. Thus, p, |r,, so x_|r. and
v s igh i - Tshi
1.1 e L(E). Thus E 1is compatible with S(M).
(<) Suppose that there is some expression from E with k or
fewer disjuncts which is consistent with S(M). Let E be such an

expression, where
X X X
E=(1 W)*v(1 *v-v(l ¥
Since 1 ¢ L(E), xg > 1 for s =1,2,....k. Let

c = {j] 1_gj:gr|and pj is the least prime divisor of Xg for sone

s, 1<s<k}

Then C contains k or fewer elements. To see that C is a cover
. r.
of M, let i be given, 1 <i<m Since 1 Te L(E), we must have

X |rs

IT for some s, 1<s<k. But r;, = Pa(i) *Pb(i) and x> 1,

1

so the least prime dividing x_ must be either pa(i) or pb(i)’ o)

s
either a(i) or b(i) s in C. Hence row i has a 1 in common with

some column from C, so C 1is a cover of M.



The construction of S(M) from M may be done in polynomial

time, so Theorem 4 is proved. O

3.5 Inference of "Most Likely" Expressions

In this section we briefly consider the computational tractability
~ of an alternative definition of a good guess for a given sample. This
new definition follows the approach of Horning in his study of the
inference of stochastic grammars [Horning (1969)]. We chbose a func-
tion P which assigns a probability, P(E), to each regular expres-
sion E, and a probability, P(T|E), of obtaining a particular set
of strings T from a particular eXpression E. Then, for a given
sample S = <S]’SO>’ we seek an expression which is compatible with
S and is "most 1ikely" to have generated S], i.e,, which maximizes
P(E[S;). Since

P(E|S,) = P(E)P(S]lg) (Bayes' rule)
1 __—?TgTY——'

and P(S]) is fixed by S, it is sufficient to find an expression
which maximizes P(E)P(S]IE). _

The modé] that we choose to establish the distributions is fairly
simple, for the convenience of the proofs to fb]]ow, but again the
general approach will probably work under some- variation in the defini-
tions. We assume that symbols are drawn with equal probability from
the set {0,1,v,(,),*,4,$} until a "$" is encountered. If the string
drawn, up to the "$", is a legal, fully-parenthesized regular expres-
sion, say E (concatenation being indicated by juxtaposition), then
ve begin randomly generating strings in the language of E, as follows:

we trace through E constructing a string, and whenever we have a
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_choice (FVvG) as a subexpression of E, we choose to trace either

F or G, each with probability 1/2. Whenever we ehcounter (F)* as
a subexpression of E, we choose either to skip F or to trace it
(eath with probabi]ity 1/2), and if we choose to'trace F, then we
return to the beginning of (F)* (if and) when we finish tracing F.
If and when we finish generating one string in L(E) 1in this way, we
begin again generating another, and so on, ad infinitum. (Rules for
calculating P(Sle) will be given below.)

We define random variables E,E],§2,§3,... as follows:

_ {the expressicn E drawn in the event described above, if any
E...

# otherwise ,

_ the ith‘string generated from E in the event described above,
$; T if any :
# otherwise .

Then P(E) will stand for P(E=E), and will be (1/8)n+1 if E is
a string from {0,1,v,(,),*,§}* of length n which is a legal, fully-
parenthesized regular expression. P(S]IE) will stand for
P(§1=S]&§2=32&"'&§t=5t| E=E), where S] = <Si’52”"’st>’

(In this section we consider samples consisting of pairs of ordered
finite sequences of strings, allowing multiple occurﬁences of strings.)
P(s]E) will.note P(E] =s| E=E), for any string s e {0,1}*.
Clearly, P(S]IE) = iIE]P(S].IE), and we may calculate P(s|E)
inductively as follows:

1. if a=0,1,4, ()%

1 if L(a) = {s}

0 otherwise .

P(s|a) ={
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2. concatenation:

P(s|EF) = ) P(s]IE)P(sle)
5 =55,

3. union:

P(S|(EVF)) = & P(s|E) + 5 P(s|F)

4. star:
P(s|(E)*) = ,cfo(uz"*HP(sl(E)")‘

it

Example:

PUOVI(ON™) = ()12
P(001017](0V 1)(01)*1) = P(0}(0V 1))P(0101](01)*)P(1]1)

= (P
- ()

Definition: If S; fis a set of strings, s is a string, and

E is a regular expression we define

L(E,S;) = P(E)P(S, |E)
P(E)P(s|E)

and

H

L(E,s)

If L(E,s) > L(F,s) then we say that E is a more likely explanation

of s than F; similarly for sets of strings.
Example: Let m > 1 be an integer. Then

L(OZm,OZm) - (1§)Zm+l(]) - (]2_)6m+3

(1)m+4(1)3 - (103m+]5

* 2
L((0™M*,0°M = (™5 2

n

2
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-Thus, for m> 5, (Om)* is a more likely explanation of the string

02m than the expression Ozm.

This choice, between (Om)* and 02m’ will be used instead of

that between (0)* and 000 in the proof of Theorem 2 to yield:

Theorem 5: The problem of finding a most 1ikely explanation of
an arbitrary sample S, that is, of finding an expression E which

is compatible with S and maximizes L(E,S]), is NP-hard.
Proof: - First we need:

Definition: If E 1is a regular eXpression, let

k

() {the least positive integer k such that 1" e L(E), if any
f(E) =

0 otherwise

(so, for example, f(1(1v0)*1) = 2.)

Lemma 5.1: 'For every regular expression E, P(E) 5_(%)f(5)+],

that is, E must contain at least f(E) symbols, and if

P(E) = (%)f(E)+], then we must have E = (1)f(E)

This lémma is not difficult to prove by induction on regular

expressions as they are defined for this section.

Now we fix n>1 and k > 5, and specify a sample S = <S],SO>

as fo]]ows-

1. q={1 2k Zk)

2. If q=rst and s contains both 0's and 1's, then

rsst € SO.



3. -(1%K0ZK) IS (1ZKe2Kyn=3-1 o gor a1l 5 = 0.1,....n-1

0
and 1< r,s <2 except <r,s> = <2k,2k>, <2k,k>, <k,2k>,

Then:

Lemma 5.2: The only expressions E which are compatible with S

and which have L(E,Sl) > (%)(3k+4)"+1 are from the set

V={E] E=E

1o+ +E, where each E; is either (1%)%0% or 12K (0%)%)

(up to associativity of concatenation).

Proof: Let E be an expression which maximizes L(E,S]) and_
which is compatible with S. We will show that L(E,S]) = (%°(3k+4)n+1
and E can be put in the form of some expression from V by reasso-

‘ciating concatenations. Let E = F]F2-~vFr for some r > 1, where

each Fi is not itself a concatenation, and q = 99, "4, where

each q; € L(Fi)‘ Then for each Fi we have:
1. Fi‘= A is impossible, for E # A because qe L(E), and

then dropping Fi from E would produce an expression strictly more
Tikely for S] than E, contradicting our choice of E.

2. F.

i

E with Fi replaced by Gi and E" be E with Fi fep]aced by

i

(Givrg). To see that this is impossible, let E' be

Hi'

Then P(q|E) = (%)(P(qIE’)*'P(Q|E")). Thus either P(q|E')
> P(ql€) or P(q|E") > P(q|E). But if P(q|E') > P(q|E), then since
E' s a strictly shorter expression than E, P(E') > P(E), so
L(E’,S]) = L(E',q) > L(E,q) = L(E,S7), and E' will be compatible
with S, ‘which contradicts our choice of E. The case of P(q|E")

> P(q|E) is similar.

61
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Thus we conclude that Fi =0, 1, or (Gi)* for some expression

Gi’ and in any case, ay must contain only O's or only 1's for each

i=1,2,...,ry by conditibn 2 of the sample S and compatibility of
E with S. Further, if q = rst where s contains both 0's and 1's,
we have

P(r|FyFyr-F. )P(s|FL)P(LIFy 0o F ) = 0

i+1

for al1 i =1,2,...,r. If not, then in particular, r e<L(F1F2--~Fi.]),

sel(F,), and telL(F,,"~*F) and F, must be (Gi)*, S0

j+]
rsst € L(E), contradicting condition 2 of the sample S,

Thus we may reassociate the concatenations in E:

E 2 KyLyKoloe oKLy

where 12k € L(Kj) and 0Zk € L(Lj) for j=1,2,...,n, and also
noo.2 2k
P(qlE) = [ P(I°7|K,)P(0°"|Ly)
3=1 J J
SO
; ] | _
(*) @2"TL(E0) = 1Lk 1P (5,07

Then from condition 3 of the sample S, we argue that for each

j=1,2,...,n, either

1. 12k is the smallest nonnull string of 1's in L(Kj), )

1y2k+1
that P(K;) < (g)

or 2. 02k

by Lemma 5.1,

js the smallest nonnull string of O's in L(Lj), o)

that P(Lj) 5_(%)2k+], similarly.

2k is not the smallest nonnull string of 1's in

k

Further, if 1

L(Kj), thenfby condition 3 of S, 1 must be, and we will argue



that Kj must be (1k)*.

We know that Kj = FSFSﬂ-nFt for some positive integers s < t,
where each F = 1is either 1 or (Gu)*. If F,=1 forall u

2k k

between s and t, then K, cannot generate both 1 and 17, so

J
we know that F = (Gu)* for at least one u between s and t.

Then we may argue that the smallest nonnull string of 1's generated by
k 1.k+2
] §) ’

Gu must be lk, so either Gu , or P(Gu) < | by

1.k+5 .
§) , because G, fis of
length > k+1, and Kj is at least 3 symbols longer than Gu’ But

k 2k

Lemma 5.1. In the latter case, P(Kj) < |

P(]Zlej) <1, because both 1" and 1 are 1in L(Kj), by hypo-
thesis, SO L(Kj,12k) < (%)k+5 = L((]k)*,]Zk), which in combination
with equality (*) contradicts our choice of E as maximizing L(E,q).
Thus the only way to attain L(Kj,IZk) = (%Jk+5 is by choosing

Kj = (lk)*; similarly for Lj. Hence the only maximum 1ikelihood
possibilities are:

Kt = (%y*2k o 12k(ok)*

for j = 1,2,...,n, which proves Lemma 5.2.

. Lemma 5.2 gives us the requisite n independent binary choices;
encoding a SATISFIABILITY problem is then possible by a straightforward
modification of the proof of Theorem 2. This concludes the proof of

Theorem 5. O

Discussion

One of the primary motivations for Horning's study of "most likely"
inference is that it allows correct inference in the limit with proba-

bility 1 from positive information only, in contrast to the non-proba-'!

bilistic case, in which negative information is required for correct
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inference in the limit in general. The construction given above makes
very hesvy use of the negative part of the sample S to constrain the
form of expressions compatible with it. The tractability of finding

a most likely expression from positive information only therefore '
remains an open problem. Perhaps some efficient constructive tech-
niques can be found in this case; the problem seems Qorthy of further

study.
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CHAPTER 4

Summary, Acknowledaments

Summary

We have presented an investigation of the computational tracta-
bility of finding a "smallest" description compatible with a given
sample of a finite-state language.

In Chapter 1 we explain the relation of thi§ problem to the study
~ of inductive inference. We also briefly consider the effects of the
choice of descriptive systems upon the inference made from a given
sample; an example is presented in which the language inferred from a
sample depends on whether the description ié to be given as a deter-
minfstic finite-state acceptor or a nondeterministic finite-state"
'acceptor.

In Chépter 2 we consider the problem of.finding a deterministic
finite-state machine With a minimum number of states which is compa-
tible with a given sample of behaviour. Mark Gold has shown this pro-
blem to be NWP-hard for arbitrary samples. Welrestrict the samples to
be "uniform-complete" (that is, to contain every input string of length
< some k, and no others), and demonstrate a simple algorithm to find
a smallest compatible machine in polynomial time. We show that relax-
ing this restriction to allow O(ne)- unspecified strings in a sample
of size n makes the problem ﬂP-hard. We also show that the problem
remains NP-hard when restricted to "finite-]anguage" or "definite"
automata.

In Chapter 3 we consider the problem of finding a shortest requ-
lar expression (using the operators {v,-,*}) compatible with arbi-

trary (positive and negative) samples of finite-state languages. The
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general probTem is shown to be NP-hard, as are the problems restricted
to just the operators {*,*} and just the operators {-,v}., Some
restricted, syntactically-given classes of regular expressions aré
exhibited in which shortest compatible expressions may be found for
arbitrary samples in polynomial time. Finally, we consider a defini-
tion of a "most.likely" expression compatible with an arbitrary saﬁple,
and show that the problem of finding such a "most likely" compatible
expression from given data is NP-hard in general, We also suggest
reasons why further work on this probabilistic kind of inference seems

justified.
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APPENDIX

We present the substance of the case-argument for Lemma 3.1 of

Section 3.4.

-Definition: A regular expression E e <{0,1},+,V,*> will be

called k-minimum-uniform-language, hereafter written k-mul, if and
only if k> 1 1is an integer and
1. P #L(E) C (0,1

and 2. E is a shortest regular expression denoting L(E).

Lemma Al: If E s k-mul then either

1. E=0
or 2. E=1
or 3. E=(FVG) where F and G are k-mul
or 4. E = (F-G) where F is i-mul and G 1is j-mul, and i+j = k.

~Consequently, E cannot contain @, A, or *,

Lemma A2: If E dis k-mul, then to each occurrence of 0 (or 1)
in E we may assign a unique position i, 1< i <k, 'such-that this
occurrence of 0 (or 1) is used only to generate a 0 (or 1) at

position i in the strings of L(E).

Lemma A3: If E is k-mul, then the number of "V"s in E must

be at least [iogz IL(E)|]

Definition: If S = {s},5,,...,5 } C {0,1}* for some k, m>1,
then define V(S) to be the number of positions in which both 0's and
1's appear in strings of S, that is:

V(s) = [{i] 3x,y, 1<x,y<k such that position i of s, isao0
and position i of Sy is a 1}
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Lemma A4: If E s k-mul and S = {s7,55,...,5} C L(E), then

we have the following bound on the length of E:
IE] > Mogym] +k+V(s) .

To see this, note that r1og2m1 is the minimum number of "Vv"s
required ih E (by Lemma A3), k is the minimum number of 0's and
1's required in E to cover all the positions in strings of L(E),
and V(S) 1is the minimum number of additional 0's and 1's required

to cover the "variant" positions of L(E).

Lemma A5: If E s 4-mul and 1101, 0100 e L(E) and 0101 &
L(E), then E # F+G for all expressions F and G.

Proof: Suppose to the contrary that E = F-G for some expres-
sions F and G. The by Lemma Al, F is i-mul and G is j-mul
where 1,5 >1 and i+j =4, We have three cases: |

1. F dis 1-mul and G dis 3-mul. Since 0100 e L(E) = L(F+G),
we must have 0 e L(F). Since 1101 e L(E) = L(F+G),. 101 ¢ L(G).
Thus 0101 € L(F-G) = L(E), contradicting the hypothesis that
0101 ¢ L(E). |

2. F i§ 2-mul and G is 2-mul. Similarly.

3. F 1is 3-mul and G is 1-mul. Similar]y. O

Lerma 3.1 (from Section 3.4). If E 1is a regular expression of
minimum length such that

1. L) cf0,1)?
and 2. E 1is compatible with the sample T = <T],T0> where



AR
1000 0001
1010 0011
1100 0101
1110 0111
1101

0100

(that is, T] CL(E) and TO!WL(E) = @) then E must be (up to asso-
ciétivity of vV and + and commutativity of V) one of the two
expressions:

a) E, = 1(Tvo)(1vo)(1vo)voioo
(Tvo)(1vo)(1vo)oviiol

G-

i

b) K,

Proof: Observe that E is 4-mul. Also, since E] and E0
satisfy conditions 1 and 2 above, E must be at least as short as
they are, i.e., |E| <15. Clearly E # 0,1 and, by Lemma A5,

E# F-G for any expressions F and G. By Lemma Al the remdinihg
possibility is E = (FVG). By associativity, we may write

E = F] vV F2 Vieeoy Fm, for some m > 2, where each F1. is 4-mul and
is not itself a union of two expressions.

By Lemma A4, |F.| >4 for i=1,2,...,m. Thus if m > 4,

then |E|_3;19, contradicting our choice of E. In the case of

m=3, if we are to have |E| < 15, we must have 4 5-|Fi| <5 for
i=1,2,3. By Lemma A4, this implies that IL(Fi)l =1 for i=1,2,3
which in turn implies that |[L(E)| = 3, contradicting the requirement

that T] C L(E). Hence we conclude that we must have m = 2, so

E=FVF,

~ where F] and F2 are 4-mul and not'themselves'unions.



Clearly, Fj and F2 must both be concatenations (by Lemma Al),
and 0101 ¢ L(F]), 0101 ¢ L(Fz), so we cannot have both 1101 and
0100 in either L(F]) or‘ L(Fz) (by Lemma A5), but they must both

be in L(E), so we assume without loss of generality that
1101 e L(F]) and - 0100 & L(F2) .

Now we consider the possibilities for how the strings-of T]
can be generqted'by the two expressions F] and Fé. For each possi-
bility, the minimum lengths of F] and F2 are calculated according
to Lemma A4; the possibilities are tabulated below in Table A. This
shows that the only way we can have |E| 5_15 is in cases #1 and #16.
We must still argue that this is attainable only by expressions equi-
valent to E,- and E,. Take case #1: we must have [Fyl =10 and

1101, 1000, 1010, 1100, 1110 € L(F]). Ve write F]AE G, G

. 2...Gm,
2 <mc< 4, where each Gi is not itself a concatenation. If G]

is 2-mul or 3-mu1, then we can argue that there will be at least two
occurrences of 0 or 1 to cover position 1 in L(F]), which, with
arguments from Lemma A4 will imply that IF]| > 11, a contradiction.
Thus, G] must be 1-mul, and in particular must be_= 1. So,

F] = 1~62~--Gm. We consider cases:

cax M =2, so 62 is 3-mul, and is not a concatenation, by

So G, = (H;VH,), where each of H, and H, are 3-mul.

“101, 000, 010, 100, 110 s L(G,). Cases (without loss of

generality):

a. at least one of these is in L(H]) and at least the
other four are in L(Hz). Thus |H]| > 3 and since any four of the
five strings 101, 000, 010, 100, 110 differ in at least two posi-

tians, by Lemma A4 we have [H,| >7, so |G,| > 11, and [F | >12,
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TABLE A

L(F,) contains at Teast [Fy 1> L(F,) contains at Teast IF, 1> [El >

1101,1000,1010,1100,1110 10 0100 4 15
1101,1010,1100,1110 9 0100,1000 7.7
1101,1000,1100,1110 9 0100,1010 8 18
1101,1000,1010,1110 9 0100,1100 6 16
1101,1000,1010,1100 9 0100,1110 77
1101,1100,1110 8 0100,1000,1010 9 18
1101,1010,1110 9 0100,1000,1100 8§ 18
1101,1010,1100 9 0100,1000,1110 9 19
1101,1000,1110 9 0100,1010,1100 9 19
1101,1000,1100 8 0100,1010,1110 9 18
1101,1000,1010 9 0100,1100,1110 8 18
1101,1000 7 0100,1010,1100,1110 9 17
1101,1010 8 - 0100,1000,1100,1110 9 18
1101,1100 6 0100,1000,1010,1110 9 16
1101,1110 7 0100,1000,1010,1100 9 17
1101 4 0100,1000,1010,1100,1110 10 15



a contradiction.
b, at least two of the five strings is in L(H]) and at

least the other three are in L(HZ)'

differ in at least one place, IH]| > 5. And similarly |H2| > 5, 50

‘GZ! > and }F][ > 12, a contradiction.

2. m =3, so we have the two cases:

a. G, 1is 2-mul and 63 Jeol=mul. s Thus. 0, 1 @ L(G3),

2
SO lG3| 5.3 And 0001105700 € L(Gz), where G, = (H]\JHZ).
SE1l 1l Flipther cases:

1. L(H]) contains one of 00, 01, 10, 11 and L(H2)
contains the other three. Thus iH]I > 2, and |H2| %64 S0
[G2] > 9, and [Fll > 13, a contradiction.

i L(H1) contains two of 00, 01, 10, 11 and L(Hz)
contains the other two. Thus [H]I 24, |H2| > 4, {62| > 9, and
[F1] > 13, .a contradiction.

b. G, is 1-mul and G3 15 2emut.Thus, 205 1 & L(G2),

2

00, ‘01, T0 & L(E and G, = (H

3)’ 3 1
of generality, L(H]) must contain one of 00, 01, 10 and L(H2)

VH,). So |G,] > 3. MWithout loss

the other two. Thus |H]| > 2 and |H2] >4,  so [G3] =07 Sand
]F]] > 11, a contradiction.

Hence, we may conclude that m =4, so F] = I-GZ-G3-64, where
0, 1 € L(Gi) and G, ISETSmIL, Sfor s 1 = 2. 0nh Hence, we must have

G,

; (Ov1) for i =2,3,4, Thus we have

i

E=1-(1v0)(1v0)(1vO0)Vv0100

as claimed. The case of alternative #16 in the table implying that
E=1101v(1v0)(1v0)(1v0)0 is argued in a parallel fashion, to

conclude the proof of Lemma 3.1 (Section 3.4). O

Since any two of the five strings

Fi
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