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I. The aim of this short paper is to eludicate once more the rule of

punctuation signs in a theory of grammar. Moreover the notions of

fuzzy category and fuzzy punctuation are introduced to render the

power of grammars based on punctuation signs more explicit.

1) The reader not acquainted with such grammars should consult
"Sprachrekonstruktionssysteme" ("Language Reconstruction
Systems") Ballmer (1974), the Dissertation of the author.

II. A punctuation based grammar (PBG) is a grammar which characterizes the

grammatical strings of morphemes (or words) with help of certain of these

morphemes, called punctuation signs (or less colorfully: secondary mor

phemes) . Punctuation signs determine sentence patterns, they are—syn

tactically—sentence patterns. As a clear case consider the following

sentence:

(1) ELIZABETHA KNOWS PAULO.

The sentence pattern of this sentence is N* V tf , if only the primary

words are taken into account. If all words are considered the sentence

pattern is N* V t* 0 . The whole object is a sentence, i.e. of category S.

Hence, in categorial grammar, the category of the punctuation sign is

rfWNtfNS. Hence we have:

(2)

ELIZABETHA

The sentence pattern determined by punctuations are seen to be rich enough

to account for every possible succession of categories. Every such succes

sion can be singled out. Take the general case of n categories A,,...,A .
1 n

The categories A \A>2\...\A. \S account for every possible case, if

(J1#«-»rj) are taken to be permutations of (l,...,n). The lexicon should



contain exactly those punctuations with sentence patterns appropriate for

the language, of course.

Ha. The essential question for a grammar is to determine the categories of

the primary morphemes (words).

The most trivial grammar is that which has the finestgrid of categories:

Every word (or even better, every disambiguated word) constitutes its own

category. The lexicon contains beside these primary words also the punc

tuation signs, which then determine every possible sentence of the lan

guage by simply providing a slot for every single sentence of that language.

There is no guarantee that this lexicon is finite, nor does such a lexicon

allow for any "generalizations." It is, moreover, virtual, in the sense

that it is not explicitly statable in simple terms. Its advantage is its

correctness and completeness, if only virtual. As an example of an analysis

in such a grammar take the following:

(3)

{ ELIZABETHA}

ELIZABETHA

{ KNOWS}

KNOWS

{ PAULO} {PAULO}\{ KNOWS}\{ ELIZABETHA} \S

PAULO o

Call this grammar G^, • It has possibly infinitely many rules (punctua

tion signs), one for each sentence of the language. It is very simple, it

assigns to each sentence a similar (namely rightbranching) structure, it is,

in principle, very easily described. Though simple, it is only of

marginal theoretical interest.

lib. Another (very) uninteresting grammar is GQ which has no category besides

S. No restrictions on the succession of the morphemes (words) are statable.

More interesting grammars lie between G^ and G0. A grammar type, which

we could call classical, makes use of finitely many sharp categories. The

term sharp is meant to express that for each morpheme (word) of the lan

guage it is either fully true or completely false that it belongs to a



definite category.

III. A moment's reflection—a reflection which could have been performed and

widely accepted years ago—shows that classical grammars are bound to fail.

The tiny differences of language force one to subdivide categories further

and further in order to account especially for degrees of

grammaticality. Thus the program to stick to few finitely many categories

cannot be siiccessful in that framework.

2
In deviation from the concept of sharp categories, one could introduce

2) Cf. Ross (1972), Ross (1973).

fuzzy categories. The hope for few, finitely many basic categories is

then again justified. For this reason we shall try to work this proposal

out in somewhat more detail. The approach based on punctuation signs

coding sentence patterns lends itself most easily to this objective.

As far as I can see Ross's analysis does not yet provide for a conclusive

argument that grammatical categories are fuzzy, or squishy in his own

words. In his example he subdivides the alleged continuum between, say,

the sentences and nounphrases into approximately eight segments. But nothing

prevents the view that there are just about eight sharp categories.

What could it mean that there is an underlying continuum. The observation

that the samplesentencesconsidered vary their degree of grammaticality

accounts not even for the fact that the category of sentences is fuzzy:

There is only a small finite number of categories in play.

3) As it appears we have to distinguish strictly, at least concep
tually, between the degree to which a sequence of morphemes (or
words) is grammatical and the degree to which that sequence is
a sentence or an other category. A possible way to look at these
things is to say that an expression is assigned a function from
categories to real numbers between 0 and 1 characterizing the
degree to which the expression belongs to that category.



CATEGORIES

The maximum value of the function for all categories is taken to
be the (overall) grammaticality of the expression. The value for
the argument C is taken to be the C-grammaticality. Linguists
are predominantly interested in S-grammaticality. Observe that we
distinguish between the context independent notion of grammati
cality and the context dependent notion of acceptability.

Ill a. A proper way to prove that there is a (quasi) continuum of categories

to show that iterative alterations of categories can be made, and

that every arbitrary degree of category can be approximated.

It suffices to show that this is the case for at least one category,

however.

Before we discuss this purely syntactic issue, let us look at a semantic

example of fuzziness where approximation of degrees of truth, say,

seems to be possible with linguistic means. Consider the following

sequence:

(4) true

nearly true but not quite true

more true than nearly true but less than not quite true

more than more true than nearly true but less than less than
not quite true

This procedure of defining a degree of truth reminds somewhat of the

Dedekind cut procedure, in fact it is a nonmetrical generalization

thereof. Dedekind cuts are one representation of the reals, i.e.

the continuum. We thus arrived at linguistically determining a

continuum of truthvalues, when passing to the limit.

Ill b. Now let us consider the case of the continuum of categories. Three

examples are of interest to us in that respect:



1. Ross (1973) gives the following sequence of sentencest

4THREE J-HATE SPAM.(5a) THEY ALL

?NINE

*729

In extension to these we could speculate

(5b) THEY ALL- *ZERO

•ONE

BOTH

TWO

THREE

SEVEN

EIGHT

?NINE

??TEN

???ELEVEN

(N-8)-?
N...

This allows us to simply inherit the continuum of numbers into the continuum
of

of the category/sentences, if we can assume that the degrees of grammaticality

depend homeomorphically on the numbers.

2. Again, Ross (1973) gives the following sequence of sentences:

(6)a. THAT NOT EVERYONE WILL REFUSE OUR OFFER IS EXPECTED.

b. ? FOR NOT EVERYONE TO REFUSE OUR OFFER IS EXPECTED.

c. ? UNDER WHAT CIRCUMSTANCES NOT EVERYONE WILL REFUSE OUR OFFER

IS THE SUBJECT OF A HEATED DEBATE.

d. ?? NOT EVERYONE REFUSING OUR OFFER WAS EXPECTED.

e. ?* NOT EVERYONE'S REFUSING OUR OFFER WAS EXPECTED.

f. ** NOT EVERYONE'S REFUSING OF OUR OFFER WAS A SURPRISE.

g. ** NOT EVERYONE'S REFUSAL OF OUR OFFER WAS A SURPRISE.



As we stated above this series does not tell us anything about the

fuzziness of categories or of their degrees of grammaticality. All that

is demonstrated by such exemplaric tableaus of different degrees of gramma

ticality is that at least seven (in our case!) sentential and/or nounphrase

categories are in play.

In order to demonstrate the existence of a continuum of categories we

have to provide for a set of sentences whose degrees of grammaticality is

dense in the interval [0,1] (or some subinterval) and argue that it is

methodologically meaningful to take the completion of that set! As is

known the completion of a dense set is a continuum.

My claim is that starting from one of the sentences of Ross's list, say

(6.e) we could get a set of sentences whose degrees of grammaticality is

dense in some subinterval of [0,1]. The idea is to systematically weaken and

strengthen the NOT occurring in all these sentences (6).

(7)1. NOT

2. NOT QUITE BUT NEARLY NOT

3. LESS THAN NOT QUITE BUT MORE THAN NEARLY NOT

The fact is now that such series of expressions fill in the different de

grees of grammaticality between

(8a) * EVERYONE'S REFUSING OUR OFFER WAS EXPECTED,

and

(8b)?* NOT EVERYONE'S REFUSING OUR OFFER WAS EXPECTED.

3. Heavy noun phrase constructions provide a further argument for the

continuum of categories. It is of a slightly other sort: the grammaticality

of certain sentences depends on the length of certain K* s. The length of

If s is a discrete entity. Nevertheless it is reasonable to postulate an

underlying continuum, because of a simplicity argument. ( Another way to



connect these facts with the existence of a continuum would be the

following. That (heavy) N*s are discrete is an abstraction. Remembering

that sounds are underlying we could try to establish a connection with the

grammaticality of the sentences in question and the duration of uttering

these I*Ps. Then the continuum of time inherits the continuum of degrees

of grammaticality. In fact, if you test a couple of examples you find con

vincing evidence that grammaticality is strongly correlated with the duration

of speech.)

To support the claim based on the heavy N> construction let us consider

the following sequence of sentences:

(9) *I FOUND DISGRACEFUL RON.

??*I FOUND DISGRACEFUL RON LYING.

?*I FOUND DISGRACEFUL RON LYING TO US.

??I FOUND DISGRACEFUL RON LYING TO US LIKE THAT.

%?I FOUND DISGRACEFUL RON LYING TO US LIKE THAT AGAIN.

?I FOUND DISGRACEFUL RON LYING TO US LIKE THAT AGAIN AND AGAIN.

IV. we have now demonstrated, and as I hope persuasively enough, that we need

continuous grammatical categories. This being so, every theory of grammar

based on the assumption that there are few, finitely many categories is

bound to fail. Of course we hope that there are few basic categories—or

at least a number of basic categories which is finitely characterizable—

and that the rest is accounted for by taking different degrees of these

basic categories. This is in fact what we assume henceforth until the con

trary is demonstrated.

IV a. Grammatical categories C are taken to be functions from the set of morpheme-

sequences (wordsequences) to the interval [0,1], the degrees of grammaticality

of these wordsequences as basic categories:

*WORDSEQUENCES
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Classically, grammatical categories are characteristic functions, i.e. they

take only the values 0 and 1. No (nontrivial) continuous categories are

expressible that way. Moreover in the classical case the basic categories

are thought to be disjoint, e.g. no V is an N*. This, of course, is a mere

theoretical constraint, because it can be obtained by appropriate renaming

of the categories. An example of a classical category would be:

[0,1]
1 •

•^-WORDSEQUENCES

There are one-morpheme sequences, two-morpheme sequences, . . . , n-morpheme

sequences. N* , V, ADJ, ADV are categories which are truer of shorter mor

pheme sequences, S is a category which is, in general, truer of longer

sequences. But this is, of course, only a tendency. This tendency, however,

is true also for fuzzy categories. If we arrange wordsequences according to

their length, the following are two typical functions:

[0,1]
1

[0,l]f S

•> MORPHEMESEQUENCES

MORPHEMESEQUENCES

As is seen there is a continuum of possible functions from roorphemesequences

to the interval [0,1], i.e. a continuum of possible categories.

IV b. Another picture of the fuzziness of categories arises, if specific morpheme-

sequences are considered and the question asked to what degree is it a

given category, included fuzzy categories. As such a morphemesequence is

a function from the set of categories to the interval [0,1].

Take as rough examples:



(10)
1 -

THEY/

•f CATEGORIES

N»

1'
KICK

tf

JL -> CATEGORIES

it
THEY KICK.

N»
> CATEGORIES

The problem is now to determine the category of the punctuation sign 0 !

Before we do that, let us point out that categories may be considered as

special morpheme (word) sequences, e.g., N* , V and S are the following

functions•

(11) AP

-> CATEGORIES

W

* V
1

tt
-> CATEGORIES

* s

r*
-> CATEGORIES

As a matter of fact the converse is also true. Morpheme (word) sequences

are special categories, as the following function graph suggests:

A
(12)

^ THEY KICK^

•> MORPHEME SEQUENCES
THEY KICK.
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The functions represented in (11) and (12) are called 6-functions. Their

value is 0 for every argument except one, where their value is 1. Let us

denote the 6-function which is 1 at the argument C and 0 elsewhere 6 .

Hence

1 X = C

(13) «C(X) = 4
0 X f C

V. Considerations for the Appropriate Categories of Punctuation

In order to find out about the category of punctuations let us consider,

as an example, a two-word sentence, consisting of a propositional ex

pression and a full-stop, e.g.

(11) IT-RAINS. (English dialect of philosophers and logicians).

?IT-SNOWS.

??IT-HAILS.

Because the different propositional expressions are sentences to more or

less degrees, the following are reasonable approximations to their category

functions, where SR stands for the category sentence radical.

(12)
1"

IT-RAINS

CATEGORIES

IT-SNOWS

A CATEGORIES

SR

IT-HAILS

A CATEGORIES

SR
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Let these category functions of IT-RAINS, IT-SNOWS, IT-HAILS be abbre

viated by C_, C , C respectively. The category function for an ideal
Am 4+ <J

sentence is a delta function at the argument of S, i.e. a function which

is zero everywhere, with the exception of S, where it is 1.

1"

CATEGORIES

How can we state the fact that a perfect sentence radical gives rise to a

perfect sentence and a crummy sentence radical gives rise to a crummy

sentence only?

The basic idea is to shift the category functions of the sentence radical

of, say, IT-SNOWS on top of the category function of the perfect sentence

and compare the two category functions appropriately:

(13)
!"•

* C '

CATEGORIES

In (13) three category functions are represented simultaneously:C^, the

shifted C ,which is called C ', and S .The comparison of C1' and S should
result in a function C ' which is as broad as C.' and which is as high as

S 1

V
In fact C ' should be equal to C', because the filter category func

tion is a perfect sentence, i.e. no fuzziness is contributed from it. In

other words the full stop itself does not, in this case, add to the

fuzziness of grammaticality. If it would, a case which is illustrated by

the following figure,

(14)

CATEGORIES

would arise. The category function C ' is then both depressed and broadened
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by the amalgamating the function C and C1'•

Our problem of finding the effect of a possibly fuzzy punctuation on the

possibly fuzzily categorized words it accepts from the left can be formu

lated as follows:

1. How is the shifting of the category functions of the words (morphemes)

formulated formally?

2. How are the amalgamation of the category function of the words (morphemes)

and the filter category function of the punctuation formulated formally?

3. How is one to proceed when dealing with more complex sentence patterns?

A short reflection shows that the amalgamation cannot be a simple logical

conjunction, which would be simply taking the minimum value of the two

functions at every argument category. In (14), C and C^' are to be amal
gamated to C '. In contrast to the amalgamation of 6g with Cg, where the

full height of C ' is kept for C ' (cf. (13)), an additional depression
JL o

occurs in the case (14), which originates from C . C represents thereby

the fuzziness stemming from the punctuation. In case (14) the conjunction

of C_ and C.• is equal to Ce, and no additional depression occurs. Hence
5 1 S

the inadequacy is apparent.

Fuzzy Logic and Manyvalued Logic

What has to be done is what Zadeh (1972) calls support fuzzification. In

order to introduce his idea let us very briefly summarize how fuzzy sets

are represented as scalar products or more generally integrals, and some

essentials of fuzzy logic. For this reason we present the following

translational characterization and interpretation for the logical language

Lr.rTr,„* The function of the degree of truthfulness u is hereby a function
FUZZ

from propositions and worlds to values Ja,i (or a) of the interval [0,1].
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(15) h(rctn ,i) =(y(V,i) = o >

y(r7Tn,i) = 9
J ff, i

y(r-»a* ,i) = (l-y(V,i))

y(W,i) e min(u(V,i),y(rB\i))

y(W,i) = max(y(^c^,i),y(^i3, ,i))

y( W ,i) h i$((y(V,i) <_ y(V ,i) +$=1) /s (y (V ,i)<y( V,i)+j=0))
yrnt^,...,^)1,!) =5n,ri,...^,i

This translational interpretation h is two-valued. hCVfi) is true just

in case the degree y(ra* ,i) truthfulness of ra*1 in i has a determinate

value o, which may depend on roT and if and which is denoted therefore

Ja,i. That this is no more circular than any other modeltheoretic truth-

condition consider the following example:

h(rTrAir.r ,i) =(y(rirAir^ ,i) = 9 .)
12 l 2 "*ir.ATr ,1

s(min(y(rir",1,i)ry(frl ,i)) = 9 A#rr .)l 2 JTt^ait ,i

=fmin(e .rP .) = 9 .\

This states that h(rir.Air,7 ,i) is true just in case min (P .,* .) =12 Jir ,i jtt2,i
p_ _ ., a sensible result. The translational interpretation h can beJTTjAlT- ,1
given a multivalue flavor, however: h(r<F ,i) is true to the degree a iff

litVii) = a. This is what we shall do henceforth. We therefore identify

fuzzy logic with a special kind of multivalued logic!

A translational characterization of a logical language L corresponding

to L is the following: h in this case maps expressions and world in

the whole interval [0,1]. This is not anymore an intepretation by trans

lation in predicate calculus. As we have seen for l . a two valued
is FUZZ'

interpretation is conceivable in principle, but/as I take it, less in

tuitive and slightly redundant.

(16) h(V ,i) Ejff ± e[0,l]
h(ria ,i) = l'- hCV ,i)
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h(raA3n ,i) = min(h(V ,i),h( V ,i))

h(rav3"',i) = max(h(ran,i),h(r3"',i))

h( ra+fT ,i) = n$ ((h(rcf ,i)<_h( V ,i)-»-$=l) A(h( r3" ,i)<h( rcT ,i)+P=0))
h(Pn(jr- , ...,r 7,1) = P.-. ^ .

fll «n ^'Ifl'""'^'1

Our main interest is now to have a handy way to represent the functions

p . and p-w As is seen the world index i occurs parallel
3 ' . .ft'""JTn'1to individuals ^V. in the following treatment no special treatment of

that index will be given, because all that is said for individuals applies

as a special case to it.

Thus we are left with the problem of finding a handy way to represent a

a-valued function p whose values have the form $11, v*.,..., jp . The standard

way to do this is, of course, to use X-calculus. Hence P, in the case

described, is

(17) A)r,...A

^"rn$n'ri rn
This is an adequate way to represent a fuzzy relation. In the special

case of one individual argument only/this reduces to

(17») X
Hit,

Because P„ for specific individuals, say y* ,y-,..., takes a value between

0 and 1, (17') is an appropriate way to represent a fuzzy set. To sim

plify matters, let us omit the function symbol y , because it occurs

invariantly in all the formulas in question now! Then (17) and (17')

read respectively:

(18) ^i'"^Xn[^l,m"rfn} ^ ~ n°tation)
(18') Arlt(y)

As is seen, no overt syntactical distinction exists between fuzzy and

non-fuzzy relations or sets? This is a very nice fact, because it allows
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us to take nonfuzzy logics and look at them as fuzzy ones. It is just

a matter of interpretation. The first and the last clause of (16) can

be changed appropriately:

(16*) h(TT,i) = tr(i) e[0,l]

hOK^,...,^),!) =nffa/-'"^1) e[0,l]

If the (relational) predicate II is marked for the number of places of

its arguments, the following equivalence, which reflects extensionality,

may be introduced:

(19) Ay ..•Afn nI1(y1,...Tn) =IIn (intensive notation)

and especially

(19') AyJI (f) = II (intensive notation)

Let us come back to the representation (18') of a fuzzy set. (18') is a

very succinct way to present the fuzzy set in question. We cannot read

off explicitly to what degree a special individual occurs in the set, however.

An explicit way to do this would be to say, v^ is to degree a^ in II, y2 is

to degree a~ in II, and so on, or formally:

(20) A^IIy ={0^^l'a2^2'a3^3'••"* (extensive notation)

If the a are just 0 or 1, the explicit form of a non-fuzzy set would
v classical

stand on the right hand side of (20). There is a small difference to/sets,

however, in that the non-occurring individuals are listed also in this

representation, namely with a coefficient 0. As a matter of fact 0- equals

IIv-., a- equals IIr and so forth. Hence the following equation holds:

(21) AvJIv* ={<n,v-^>f1t^-$X2^T2' ••••^ (extensive notation)

We have used the bracket notation <n,y > instead of simple juxtaposition
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just because of reasons of perspicuity.

Anotational variant (which we shall dub J-representation) for the two
representations of (fuzzy) sets in (20/21) are the following:

(22a) XyHjp *£:< Z II (y) for a discrete universum U of individuals

J II (y) dy for a discrete or continuous Universum U
of individuals

(22b) {airi,a2r2,...} *, a^ +a^ + ...

{<n'lTi>^i'--- } *>: <n'ir?ri +<tu<r2\ "*"•••

This notational variant will be made use of very much from now on. For

several reasons which will become clear subsequently, the view of A-

abstraction as integration (or sum) has a formidable intuitive appeal.

Both for the implicit and explicit representation of (fuzzy) it will prove

useful to change the notational conventions. Many consequences cannot

be pursued in this paper, however, the topic of which is to provide for fuzzy

grammatical categories after all. A more thorough study will be under

taken elsewhere.

The change in notational conventions can easily be generalized to relational

(fuzzy) predicates. Multiple integration and summation will occur then.

The right hand side of (20) can be rewritten as

(23) {a^M ay2}u{ ay }o...

A comparison with (24)

(24) alVl + a2h + a3ft + ...

shows that the yv in (24) correspond to singletons in (23) and that the
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plus operations correspond to unions and hence to taking the maximum!

A singleton {y} is represented as ltjf.

Representation (22b) allows us to introduce the notion of support-

fuzzification (or s-fuzzification (Zadeh, 1972)). At the base of these

approaches is the process of individual fuzzification which transforms a

singleton l«y into a fuzzy set y which may be concentrated around y or

which may be shifted away from y. To place in evidence the dependency of

£of v-, £ will be written as K(f). The (fuzzy) set K will be referred

to as the kernel of the fuzzification. We introduce the following special

types of kernels):

M M

(25b> V W 1

(25c) IM: I (y)

L L I =M forlf=L
(25a) V W 1 *M for*wL

=M for y=M
*M for v-«M

• • •

=M for v=M

=0 for vm

shifter (shifts from L to M)

squeezer (deformator)

5-kernel

f =M for^=L

' (25d) IM: IMW(=0for^L '-""«
Fuzzification II of a set II is now easily defined:

(26) n = o^ift) + a2K()"2) + •" if n = aiVl + a2lf2 +
n=jn^)dK(^) if n=Jn(y)d^

Two easy examples are the following:

(27a) U = Tl + y2 + r3 +U
n = 0.8-^ + 0.6-y2

K(yx) = i-jfi + o.4T2

K(r2) - 1t2 + 0-4 Ti+ °-4 'h

(U = universe of individuals)

JI_= 0.8-(l'v> + 0.4«y) + 0.6(1-^ + 0.4 >Yi + °'4 'Y^
= 0.8-jp + 0.32-y + 0.6-^ + 0.24*^ + 0.24*^

= 0.8-^ + 0.6^2 + °-24T3
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(27b) U = ri + t2 + r3
n = o.&ri + 0.6y2 + 0.4-^3

K,(yi} ml't2

K'<1T3) U°'tl

£ = 0.8(1- jp2) + 0.6(l*r3) + 0.4(0'^)
= 0.8.r2 + 0.6y3

K' in the second example is a shifter. It shifts the set II by one indi

vidual to the right. We have now an idea how s-fuzzification can be

formalized, in the J-representation. The reader should make sure that

fuzzification in the A-representation is much more clumsier.

Calculus, A-calculus, and Punctuation

Our aim is, as we stated above, to provide for a solution for (1) how to

shift category functions, (2) how to amalgamate category functions of words

with those of punctuations, and (3) how to proceed for more complex sentence

patterns. In order to do this we shall need a little more technical means,

which are immediately related to the J-representation of fuzzy sets. We

follow hereby somewhat more the notational conventions of calculus. In

stead of predicate letters we use function symbols, and we use rx , ry1 ,

rz as variables.

We shall list some obvious equations:

(28): 1=Jl(y)dy (1-function)
0 = J0(y)dy (0-function)

c = fc(y)dy (c-constant function)

f =Jf(y)dy (arbitrary function f)

not f=1-Jf(y)dy =J(l(y)-f(y))dy (negation)
fand g= Jmin(f (y) ,g(y))dy = J(f (y)Ag(y) )dy a f-g (conjunction)
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f ££ 9 = Jmax(f (y),g(y))dy = j(f (y)vg(y) )dy = f +g (disjunction)
f implies g=JmaxU-f (y) ,g(y) )dy =J(f (y)-».g(y) )dy (classical

implication)
»

fo g = Jf(y)-g(y)dy (multiplication)
f © g = J(f(y) + g(y) - f(y)-g(y))dy (addition)

f * 9 =JY f(x)g(y)dxdy (exterior multiplication)
$L =J<TL(y)dy EdL (S -function)

<fLOg e JSL(y)g(y)dy =g(L)
J^L(y)dK(y) =dK(L)
K =JdK(y) (kernel of function)

KM =JdKM^) (shifter)
KL =idKL(y) (squeezer)
f • K =Jf(y)dK(y) (combination of a function and a kernel)

(jf(y)dy »JdK(y) =Jf(y)dK(y))
<5M = 6 #K (convolution, or expectation-product)

(6M " dM =dK^(L) " K(y)dKM(y) =6L * KM
(6_ * 6.) • KL£' = & . ( «L, • KLL') (iterated
LL M L l* M n a. • \t ll convolution)

[(5L * «L-» * Rl£ " (JK,y) «L'(Z)dydz) . K '̂
-IT«i.<y> • sv !z)dyd2 *// ^ (y'z)
=JJ«L(y) • avw • dK^L' (y,z)
=K(y)J V<z>d '̂ (y,«)
- ^6L(y)dKl '̂ (y-L'> -J«L(y)«^(y) =«L- ^

k£ -Ja^(y) -J^'COd^' (y,z) =v . k '̂)
hence the result; moreover the following is true:

(6L*V> *< =SL*^ =KM
dj =1 (d-J, inverses of each other) : ^J f(y) dy =f(x)
[If(y)dy](z) = f(z) (conversion/extraversion)

f(x) = f(y) d£ (substitution)
dx

~ f = f(x) (differentiation = application)

<|jf -^Jf(y)«y-dff(y) f*-f(x»



Convolution, generalized to arbitrary functions, allows us to formulate

functions which carry a fuzzy argument to a fuzzy value. Kernels

represent fuzzy functions of this most general sort. We have thus

arrived at a reconstruction of a fully fuzzified A-calculus.

It is now clear how the fuzzy categories of a categorial (or phrase

going to be
structure) grammar with punctuation signs are/fuzzified; instead of the

general case let us give an example with two words (morphemes) and one

punctuation sign. Let the corresponding categories be C , C , and F

(F can be taken to be C.\C \S):

(29) Cx + C2 + F > F (C^,^)

If these categories would be classical categories, i.e. non-fuzzy categories,

then the corresponding category functions would be simply S-functions,

and the kernel corresponding to F would be a 6-kernel:

C C C C

(30) 'W1*12) —-* \ *v • is12
There are equivalent formulations because of:

c c c c

(31) <5c *6C )oisX 2 =6C *<6C •Ig1 2)=JJ«C (Y)<SC (z)dIglC2(y,z)
1 2. \ *• x. £

This is as it should be. But (30) can be easily generalized. Instead

of 6-functions and 6-kernels simply take general functions and shifters.

Hence for fuzzy categories C , C-, and F (30) reads

C1C2 C1C2(32) (f,g,Ksx ) »<f * g) • Kg

We assigned hereby the words with alleged categories C , C (their) cate

gory functions f, g. According to

cic2 cic2 rr cic2(33) (f * g) • K = f• (g • Kgx )=J] f(y)g(z)dKg (y,z)

we are able to calculate the outcoming category, if the words and the

punctuation sign are concatenated.

The general case is easily given by expressions such as

C C ClC2C3SC6
(34) (f1*f2*f3*((f4*f5) •Kg ) * f6) • Ks
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As is seen from (34), punctuation signs can occur at different places of

a sentence. They can be embedded. Other punctuations than such with a

target category S are conceivable, of course.

Remarks:

1. For a A-at calculus right and left integrals have to be distinguished:

f,]. Hence the following equations have to be distinguished:

[Jf(y)dy](z) »f(z)
(z)[]f(y)dy] =f(z)

Correspondingly right and left differentiation has to be distinguished.

2. The space of categories should be topologically structured or even more

it should be locally parametrized. Otherwise the generalization from the

classical 6 case to the fuzzy f case is not valid.
Xj Xj

3. The treatment presented here allows to account in a straightforward

manner for sentences such as:

(35) "IT THE AS" IS NOT GRAMMATICAL.

The reason is simply that the negation of grammaticality is easily statable.

The combination of an ungrammatical sentence with ...IS NOT GRAMMATICAL,

is grammatical. Thus the kernel corresponding to ...IS NOT GRAMMATICAL

is (1-K***). A more adequate treatment should combine grammatical and

semantical statements, however, because a grammatical sentence filled

in for ... does not render the whole sentence ungrammatical but simply

false!

h. This stage of a fuzzification of the A-calculus is not the ultimate one.

A totally satisfying stage is only reached, when a preferably complete

axiomatization relative to appropriate rules of interference is given.

Moreover, it should he aimed at providing for a metamathematical treatment

which is of the same kind as the system studied, i.e. there should be

provided for a fully fuzzified metamathematical foundation of fuzzy logic

and fuzzy A-calculus.
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