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ABSTRACT

Several sufficient conditions are presented which guarantee that an
autonomous nonlinear reciprocal network is completely stable in the sense
that all trajectories of the network tend to an equilibrium state and hence
no oscillation or other exotic mode of spurious behavior is possible.
Stability criteria are derived with the help of the concept of the

generalized inverse of a matrix for both complete and non-complete networks.

The results on non-complete networks depend crucially on the introduction

.of a pseudo—potential;function called pseudo-hybrid content and on the

imposition of a local solvability condition. Most ¢f the hypotheses are

algorithmic in the sense that either explicit bounds are provided for
computation purposes, or equivalent topological tests are given for checking
the non-quantitative conditions.

Most results presented are applicable to networks containing multi-
port and multi-terminal elements which are represented by coupled two-
terminal eleméﬁts.’ Examples are given which demonstrate that some of our
results on complete stability are the best possible that can be. obtained

for the class of networks under consideration.
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I. INTRODUCTION

This paper is concerned with the problem of complete stability for
autonomous nonlinear reciprocal networks. Given a dynamic network VA’

described by an autonomous system of differential equations Z = f(z), where

n n . * .
f: R" > R, a point z & R" is called an equilibrium state of the net-

~

work if g(g*) = 0. Practical networks containing locally active elements

often have more than one equilibrium states. By complete stability [1,2], we

mean the property that any trajectory z(t), t € [0, =) of the network
eventually settles down to one of the equilibriﬁm states, i.e., lim g(t) = z%
* >0
for some z which depends on the initial state Zg- Obviously a network
will never oscillate or display other exotic modes of dynamic operations--
such as almost periodic spurious oscillations--if it is completely stable.
Complete stability is one of the most important considerations in the
design of dynamic nonlinear networks. It is well known that practical net-
works can suddenly burst into undesirable oscillations even though it is
not expected to do so in the original design. A clear understanding of
the mechanisms which "provoke" instability and oscillation is therefore
essential in any serious analysis and design of nonlinear electronic cir-
cuits.
This paper is essentially an extension of the classic results due to

Brayton and Moser [1]. 1In section II we shall make use of the concept of

the generalized inverse of a matrix to derive a sufficient condition which

guarantees complete stability for a class of networks more general than
that discussed in [1]. The use of the generalized matrix inverse not only
shows that a topological condition (B be of maximal rank) required

"% 32
by Brayton and Moser is unnecessary, but it also shows that the associated



stability bound is the best possible that can be obtained. In particular,

while Brayton and Moser shows that their complete stability bound for a’complete
iterated ladder network is the best possible as the number of ladder sec-

tions "n" tends to infinity, we are able to demonstrate the same result using

a non-complete finite network containing only eight elements (Fig. 2). The

entire section II is devoted to the so called complete n-ports. Given a network
\jU, an associated n-port N is created if we extract all energy-storage
elements, i.e., inductors and capacitors, and consider them as loads con-
nected across external ports. A capacitor gives rise to a voltage port

and an inductor gives rise to a current port. The n-port N is said to be

topologically complete if given any branch in;,AL either the branch voltage

or the branch current can be determined by the port variables (i.e., volt-
ages across the voltage ports and currents through the current ports)
directly from KCL and KVL without invoking any element constitutive

relations. TFor complete n-ports, a mixed potential function called hybrid

content can be defined explicitly in terms of the fundamental loop matrix
and the element characteristics. We then apply Liapounov'sdirect method
[2] to a modified form of the hybrid content to ensure the complete sta-
bility of the network. 1In section iII, we cxtend the result to n-ports
which are not necessarily complete. Our results in this section depend

crucially on the introduction of the concepts of local solvability and

pseudo-potential functions [3]. The local solvability condition is es-

sentially an application of the local "implicit function theorem" which
guarantees that all trajectories are uniquely defined for all time t z.to.
This condition is weaker than that usually invoked for guaranteeing the
existence of a glbbal state equations. Consequently, our state equations

need not be defined globally. Nevertheless, our condition guarantees that



the state equation exists in an open neighborhood of each point in R" and
that the trajectories can be continued indefinitely in forward time and
can be interpreted therefore as a smooth "flow" on a "differentiable
manifold" [4]. The concept of a pseudo-potential function allows a non-

complete n-port to be expressed as the pseudo-gradient of a pseudo-hybrid

content [3] to be defined explicitly in terms of topological matrices and
the elements' cons.itutive relations. This pseudo-hybrid content allows
us to formulate the state equation in a form analogous to that obtained
for a complete neﬁwork. Using several identitiesl derived in [3], we were
able to derive a complete stability criteria for non-complete networks.
Most of the results in this paper are étated first for networks con-
taining uncoupled two-terminal elements for simplicity. After it is
obvious that the method of proof remains applicable in the more general
case, they are then extended to allow couplings among various elements.
In this paper, a two-terminal resistor is characterized by either
i=1i(v), ~®w<v <o, or v = v(i), == < i < =, where v and i are the
branch voltage and current of the resistor, respectively, and v and i are
continuous functions. In case the resistor is characterized by i = i)

(resp., v = v(1)), it is said to be voltage controlled (v.c.) (resp.,

1

These identities depend on a rather remarkable topological property
for resistive nonlinear networks which permit the differentiation operation
to commute with the composition operation in the sense that

2 (x,y) ot (x,0.(x)
R P T

It is easily seen that this commutative property is not valid for arbitrary
functions. Its validity here rests on the additional constraints imposed

by KVL and KCL.

&N



current controled (c.c.)).

Let R be a c.c. resistor, define the quanti?z G(i) £ Sl v(x)dx as
the content [5] of R and the quantity G*(i*) & 52 Q(-x)dx ag the conjugate
content of R, where i* & _ i. Notice that dG/di = dG*/di* = v(i).

Similarly, let R be a v.c. resistor, then the co-content [5] and the

v

J A 2 A

conjugate co-content of R are defined by G(v) = S i(y)dy and G*(v*)
V¥ 0 N

a S i(-y)dy, with v* 4 _ v, respectively. Again, dG/dv = dG*/dv* = i(v).
0

Without loss of generality, multi-terminal or multi-port resistors

will be treated as coupled two-terminal resistors. This will allow our
representing these elements in the form of a graph made up of two-terminal

branches and hence standard results from network topology remain applicable.

We assume that each multi-terminal or multi-port res‘stor is either voltage-
controlled or current-controlled. Independent sources are considered as
two-terminal resistors. In particular, a voltage source is considered as

a c.c. resistor having a well-defined content function and a current

source is considered as a v.c. resistor having a well-defined co-content

function.

ive m-port is said to be reciprocal if the line integral

z

~R
S b(gé)'dgé exists. It is well known that such integral exists if, and only
0

if, the Jacobian matrix Oh(zR)/azR is symmetric. In the special case where

R is v.c., the above integral is called the co-content of the multi-terminal

resistor or multi-port R and is denoted by é(vR). Similarly,
n M

5 (R |
G(}R) = S b(}é)'dgé is called the content of R when the integral exists
0

and R is c.c..




The conjugate content and co-content of R is defined in the same way

as that for ordinary resistors.

A

For convenience, the symbols G, G, G*, G*, H, (} andCy4 are all

reserved for scalar functions in this paper. Vectors are denoted

by lower case bold-face letters while matrices are denoted by capital
bold-face letters. We use l-ll to denote the norm of either a vector or a
matrix while we use |S| to denote the cardinality of a set S. In general,
any convenient norm can be chosen. Finally we usefqg(A) and;}U(A) to

denote, respectively, the range space and the null space of a matrix A.

II. COMPLETE STABILITY OF COMPLETE NETWORKS

In this section we shall present a fairly general sufficient condition
which ensures complete stability for complete networks [1,3]. The extension
to the more general noncomplete networks will be given in the next

section.

2.1 The n-port Formulation.

Let,J\‘be a nétwork containing capacitors, inductors, two-terminal
resi;tors and independent sources. For simplicity, let us first assume
that the resistors are uncoupled. Let :)1 be a subtree made up of "com-
posite' branches each of which consists of a capacitor and all v.é. re-
sistors (possibly none) connected in parallel with it and let 6{2 be a
subcotree made up of composite branches each of which consists of an
inductor and all c.c. resistors (possibly none) connected in series with
it. The composite branches are shown in Fig. 1. If weextract all elements in
Jl and i?_ and consider them as loads connected across an n-port N, then we say N
is complete if there is a gsubtree CIZ made up of c.c. resistors such that

:j== :Jl‘J sz form a tree Ofgju, and if all remaining elecments are v.c. re—

-6~



sistors forming closed loops exclusively with branches in C]l' If we de-
note these v.c. resistors by the subcotree«gﬁ , then ;£,= 551 U 5{} is the
cotree associated with Zj. It follows from the completeness of the n-port

N that the fundamental loops associated with branches in z£. contain branches

1
from ijl only, i.e., Y{ + B VU = 0, where %i and Vv denote the branch
: 2a. -
1 171 71 1 1
voltage of the elements in 5{1 and (71, respectively, and %i'ﬂ denotes an
171

appropriate submatrix of the following fundamental loop matrix B:

’__a‘/1 ;[2 31 32 2
L, 0 B,y 94 |Z
;L'1£1 2.L .iljl IIJZ 1

0 1
~L L ~LZ

B, 3,_|z
B 2%y £ . J . T {*2

251 2%2]

(Xl
1}

where the upper right-hand corner submatrix is alway: a zero matrix. If we let

i£ s Vi s iﬂ , and Vv denote the current and voltage vectors for elements

J J J h| :
in ;Zj and CJj, respectively, then we can write:
d r
K= S ¥ =_}§§3 “2 °(_§z ‘5 ) ~J(Vd)-:g:) y D
Ol 11 1 lJl 1 1 1 21 'tZ
KVL: - L d_ 1 = v n +B Nk .
T~ dt s g (%x ) = Yy, °© (? 3 ) +B v (2)
2 2 2 :2 32 32 xZ 32 °f2 i2 Jl Jl

where C = Q(ZJ ) and L 4 L(%i ) denote the incremental capacitance and

. . 3 . ’* 3 k]
inductance matrix, respectively. Letting i 4. i1 , we define the
2

* : 2
hybrid content H(Y:7 ’it ) of the complete n-port by
1 2 )

(3)




A A A -~
where G .(v ) = 2:, G.(v.) (resp., G (V ) a 2: G.(v )) denotes
:Cl i,l jeil J 3 71 "Jl j€31 J ]

the sum of the co-contents of all v.c. resistors in.;fl (resp., :]l), and

¥ ¥ A G* (i* ¥ . A
9, (ki ) = 2: j (1,) (resp., “D (13 ) = 2: Gf(if)) denotes the
2 2 3555 2 2" J€J

2
sum of the conlpgate contents of all c.c. resistors in ;f (resp., :} )

The symbol "o" denotes the composition operation; for example,

\V4 = (J:\‘ o _B v . . .
tl("xl) ‘il ( ~i131771) Observe that the first four terms in (3) are

potential functions associated with the résistors, whereas the last term

does not involve any constitutive relations.

Now consider the general case where the resistors are coupled to each

*

other. The hybrid content E{(Ya s ii
1 2
couplings are reciprocal; i.e., each internal resistive m-port is reciprocal.

) is well-defined so long as the

For example, assume the resistors in 5£l v :ji are coupled to each other.

Instead of summing separately the co-contents of the individual resistors in Gfl

~
~

and ;]l’ respectively, the term %

° (—B v ) + G (V ) in the definition
&L ”-‘f.lJl"Jl Jl -

*
of H(vb ,ix ) in (3) will be replaced by a single co-content function
R 1
G ( ) 2: G < ,V ) where each G, is the
2 1V I, L _—
v = v
~L *.f J ”J

1
co-content of an m-port whose branches are in ;fl U :Il’ The grouping of
the content and co-content functions depends on the actual coupling among

the resistors.

In contrast to the content and co-content functions in H, the term

E3N . -
iif Bi Va is independent of the branch characteristics and is purel
= g - P Y

2 21 1
topological. This term has an important physical meaning: Partitioning

the network _\l =\JM1 LKJUZ wherekJMl contains all branches iflaCl U le and
*T ;
| ; : . U J B Y% is tl
JUz contains all branches in‘;ﬁz 2 the term l't:0 szal ~31 is then

-8-



equal to the instantaneous power delivered from‘/Ul to\/\!2 [6,7]. See

Appendix A-1 for a rigorous proof.

Using the preceding explicit definition for the hybrid content

¥

H(V ,i{ ) , the state equations of any complete network can be expressed
1 2

as follows [3]:

i 7 (¢l 0 N ——ufv i ]
M S | ~ 3V B¢
d Gl 1 "9,
4. = (4)
) E LY b VA )
~L 2 L 1 N
— 2-4 L. -~ e ~'i

Observe that the "complete" resistive n-port N is described by the

Z
1 2

(4) are assumed throughout this paper to be symmetri- and positive definite.

*
gradient of the hybrid content H.2 The matrices Q(YJ ) and }(i ) in

Ideal transformers located in.;fl or Cjz of a complete network may
also be included in this formulation [6,7]. Since the characteristic of
an ideal transformer introduces an algebraic relation among the network

*

variables YJ, or i‘ » each transformer reduces the number of network
1 2

variables by one. Furthermore, since transformers are nonenergic [8],
‘no extra terms will be introduced into the definition of H. A discussion
on the inclusion of ideal transformers on a complete network is given in

Appendix A-2.

Remark. Given a network, since the capacitive and the inductive branches

are fixed, it is relatively easy to check when it is non-complete. For a

complete n-port, KVL. and KCL yield

2Comparing (4) with the Brayton-Moser state equation, we see that our
hybrid content is identical to the mixed potential of Brayton and Moser

[1].

-9-



!ﬂ + @i 5 v =0 and 1 - B i = 0.
1 lldl 2 272 2

Therefore, any branch which forms a loop with branches in :]l (the capaci-

tive branches) must be v.c. and must be assigned to Jf . Hence, our first

1

step is to check each branch which forms a loop with :71. ‘If there is at

least one such bran‘h which is not v.c., the n-port is non-complete. Sup-
pose now that all such branches are v.c., and have been assigned tocif;.
We then check the remaining branches other than those in ;fz. These are

resistors which should be assigned to :J Each of them must form a cut

2.
set widmgfz and hence must be c.c.. Again, the n-port is non-complete if

there is at least one such branch which is not c.c..

2.2 Criteria for Completely Stable Networks

Let us now derive some complete stability criteria for the network

described by (4) with the help of the following well-known theorem:

Theorem 1. Complete Stability Criteria [2]

Consider the system

: = £(2)

where f: B{n + R™ is continuous. This system is completely stable if
n 1 . . .

there exists a scalar function V(z): R -+ R~ having continuous first

partial derivatives and satisfying the following properties:

(i) the trajectory derivative V(t) < 0 for any initial state except at

the equilibrium states.

(ii)  all solutions are bounded.

=10~



Applying Theorem 1, we are now ready to derive the following suffi-

cient condition for complete stability.

Theorem 2. Lethjbe a complete network containing two-terminal uncoupled

resistors described by (3) and (4). ThenbAJis completely stable if

the following conditions are satisfied:

(i) All elements in CJZ are linear and positive resistors, i.e.,

v =R i where R_1is a constant, diagonal and positive definite matrix.
~02 ~J2 ~‘72 ~32

(ii) All elements in series with the inductors in &fz are constant voltage

sources3, ie., v =B (see Fig. 1). Furthermore, E_ € CJQ (B )
£, L, £, £,9,

where C'Q <3 ) denotes the range space of @i 7

‘fZJZ 22
@i R(24) Rty )

21 22
. A . LT

(iv) Let R=2z R 3 and BI = the generalized inverse of R,

i232 JZ £232
as defined in Appendix A-3, then

1 1|2

I T2

L~ R B ¢ 2 <1 -6 for som § > 0.
-~ -~ xzal ~

12 &

Ikl

where "g“ denotes any convenient norm of the matrix K.

(v) All solutions of (4) are bounded.

Proof. See Appendix A~3.

Condition (ii) requires that any element in series with an inductor
must be either a short circuit or an independent voltage source.
Moreover, there must exist a vector v such that % Yy =5 .

~Jd £33 -J "L
) ) 2 2 2 2 2
Observe that a short circuit or an independent voltage source is a legitimate

element for o€, because each can be considered as a special case of a current-
controlled resistor.

-11-




Remarks:

1. Theorem 2 is an extension of the result in [1] in that instead of re-

quiring the rows of 13 to be linearly independent,we onlv require that
2 '72
CI?(B ) C CI?@B ). In the special case where the rows of B
~ afzfs'l ~L 232 "%,3,

are linearly independent, then condition (iii) and the condition

1
Z € CI?O%i ) are always satisfied. In this case R =R 1 and we
) =

2
obtain the result in [1].

2. In Theorem 2, as well as in several subsequent theorems, we require
that all solutions of the network be bounded. This hypothesis is satisfied
by most networks of practical interest and can be ensured by rather mild

conditions, see, for example [9-10].

3. The condition E € 12 (E > is also rather weak. In fact, net-
aﬂz 12 32
works which do not obey this condition can usually be transformed into

equivalent networks which do. For example, suppose "eg is a constant

voltage source connected in series with a resistor R and suppose our

k’
topological algorithm for partitioning C] = <Jl U ;JZ requires that Rk be

assigned to ZJ. and that the voltage source es be assigned to éié. "Applying

2

the v-shift theorem, the voltage source e  can be shifted in series with

the remaining branches of the fundamental cut set associated with R ,

k
thereby creating a source vector ¢ . Since the n-port is complete,
p
i = BT i, the remaining branches in this cut set consists of branches
~J L3 L
2 22 2
1 r
in 12 on1y4. Since j:R = (@i ) i‘aﬁ where (E}; ) is the k th
T k 2927k 2 292k
T
row of B , it follows that ¢ = ( B ) Te € R .
Z,7, £, ~4,95/k s &£,7,

4
‘A specific example illustrating this transformation property is given
in Example 1 after Lemma 1.

-12~



We have demonstrated therefore that voltage sources in series with resistors

in :]2 are actually allowed in so far as conditions (i) and (ii) are con-

cerned.

4. 1t is important to ensure thateither the rows of B are linearly

D 22 .

independent, or, if they are not, thatiig(g )C ~k(@ ). The following
d531 £,

lemma provides a simple topological algorithm for checking either one of

these two conditions.

Lemma 1. Let v/\jbe a connected network which has been partitioned into

%fl, %fz, :71, and :]2 in accordance with the preceding rules.

1
(i) LetLjU be the sub-network obtained by shrinking (short-circuiting)

all branches except those belonging to J Let b' and n' be the number

9
1 ]
of branches and nodes in<,A[, respectively, so that:,A‘ has b' = n' + 1

independent loops. Then the rows of @fij are linearly independent if, and
272

only if, b' - n' +1 = [Jﬂzl, where |;i2| denotes the original number of

"
branches in.sz. Equivalently, 1et\JU be the sub-network obtained by

. 'shrinking all branches in CG_LJ;tl' Then the ruw: of 31 g are linearly
" 22
independent if, and only if, gAj contains no loop formed exclusively of

branches belonging to sz.

(ii) CQ(};%i 9 ) CCD(B! 9 ) if, and only if, upon open-circuiting the
2,1 272
branches in 661 and Cjz, the current 13 = 0 identically, i.e., branches

1
in le are not contained in any loop in the reduced network.

Proof. (i) It can be shown by a straightforward though somewhat tedious
procedure that the rows of the submatrix Bi g span all loops of the reduced

' ; 12 2
graph\dkl in the sense that each loop in\JA‘ is a linear combination of

-13-



rows of @x g It follows from basic graph theory that B must contain
22
at least b' - n' + 1 linearly independent rows. Now suppose all rows

of B are linearly independent, then since each row of B designates

1232 »J,

one loop in~J\r, there are exactly IJCZ| linearly independent loops in
~JM' and hence I;izl =b' - n' + 1. Conversely, suppose b' - n' +1 = [szl.
Then all rows of B g must be linearly independent.

Now, let us prosezthe equivalent statement. Let b" and n" be the
number of branches and nodes in\JU“, respectively, so that\)U" has
b" - n" + 1 = |8:2| linearly indepéndent loops. Supposeg}“n contains no
loop formed exclusively of aiz branches. Then, shrinking each ﬂfz branch
will reduce b" as well as n" by 1, and hence b' = b" - |J:2| and
n' =" - Igﬁzl. Consequently, b' - n' + 1 = (b”—|262t) - (n"—|iﬁ2|) +1
=b" -n" +1-= |;ﬂ2|. Since\JM" reduces to QAF upon shrinking all branches

in ;ﬁz, it follows from the first part of this lemma that the rows of

?i 7 are linearly independent. Now, conversely, suppose the rows of
2 2 "
§§x 7 are linearly independent. We claim that\)“ contains no loop formed

272
exclusively of J:z branches. Suppose not. Then, shrinking each 312

branch will reduce b'" but not necessarily n' by 1. In particular, let

b

b bp denote 352 branches which formed a loop exclusively by

8 LA

themselves. Let us first shrink all branches in this loop except ba and

a’

bg. 1In this step, b'" and n'" both decrease by 1 for each short-circuited
branch. However, since the remaining two branches ba and bB now formed a

loop and hence shared a common pair of nodes, it follows that if we

shrink also these two branches, then b' decreases by 2 but n'' decreases

by only 1. Hence, we have b' = b" - laizl and n' > n" - |;12[. Consequently,

b' - n' + 1< b"-|L,]) - (@"-|ZL,) +1=p" -n"+1= |Z,|. But then

the first part of the Lemma would imply that the rows of B 7 are linearly
22

dependent; and we obtain again a contradiction.

“14-



(ii) Write KCL as follows:

~ R
Bt '1?3 1 0 | Ty
aﬁljl ,J, 3,3, 1
llu i —_
Q -B 0 1 ~ = 0. (5)

- = ~ ~ 2
i

%
1

L™

Now to prove sufficiency, supposecp(ﬁd j> C TD(B ) This implies
’ 1 2

“£,.J
2
thatuU(ET ) DV\i (BT ) We wish to prove that 1 = 0 whenever
~‘{2’Jl ~d{232 Ul
branches in ,—Zl‘and JZ are open-circuited. Since ;3 = 0, the second
2
equation in (5) implies that - @3 q i = 0. This means that
22 xZ -
T . . . . _a* . +1  =o0.
-B i = 0. Thus the first equation 1in (5) becomes -3 i i 0
L3 L, T 29, 74 79
271 2
But i = 0 and hence 1 = Q0 identically. 1t reamains to piuve
~i ~3 ~
1 1
necessity.

Suppose 13 = 0 identically after we have open-circuited all branches

1
in 5{ and J but LN(BT ) 52 (_N(BT ) . This implies that there exists
1 2 A EXY

2

i # 0 such that
...12 ~
@i i =0 but B2 I #0
23, 4y 29 %

Substituting these relations into the first equation in (5), we obtain

L}EZU I,t = ij #0, a contradiction. HenceJl(Bz o ) - &N(Ej’i J )

| L, i 2"1 22
dh C (

an eno:eCQ(Bi 5 ) CQ 131272)

271

5. 1t can be easily shown that if the matrix R is non-singular, then

condition (v) can be replaced by the growth condition

-15-



P A R A P R
1231 31 gl Ul il '{171 Jl 31

given in [l1]. This condition is sufficient to guarantee that

~01 ~°z

H*(g) + o as Ixl a H(V , 1¥ )ﬂ > o,
2
In the case where R is singular, however, this property cannot be guaranteed
by the preceding growth condition. Nevertheless, from a practical point of

view, condition (v) is preferable because it is usually satisfied for most

networks containing eventually-passive elements [10].

Example 1. Consider the circuit shown in Fig. 2(a). Assume that the
capacitor and the three inductors are linear with C > 0 and Lj >0, j =1,
2, 3. Assume also that resistors R5 and R6 are linear and positive. Since
the voltage source E is not in series with inductors, let us apply the
v-shift theorem to the independent source E and obtain the equivalent
circuit shown in Fig. 2(b). Pick J, = (cIR,}, T, = (Ro,R}, L, =4

(the empty set), and ;fz = {Ll—E, L2, L3—E}. Labelling the branches in

the order‘gfz, le and :7;, we obtain the following fundamental loop

matrix:
1 o0 | 1 1
| |
| |
B = 1 -1} o 1
- t ]
| |
1l 1 1 1 0
e~
Therefore,

-16-



1 1
B ={ 0 1 and {ﬁ = [ -1
’:£232 .‘[231 .
S L

As an illustration of the application of Lemma 1(i), we observe that
there is a loop made up exclusively of branches belonging to &iz in the

reduced network J\]' and hence we can conclude that the rows of B'_(g are
22
not linearly independent. This conclusion is easily verified from the
above matrix. Observe that even though the rows of B are not linearly
6‘272
independent, we have nonetheless CI?C%I 3 ) C:Clééif 9 )0 This conclusion
272

follows immediately from Lemma 1(ii). By hypotheses, Bgr = diag(Rs,Re)

. 2
is a positive-definite and diagonal matrix. Moreover,

vo=E =ElL01) €R(:
4 %

17)'
2 2 2 2

where the '"prime' denotes voltage across the voltage source. Hence conditions

(i), (ii) and (iii) of Theorem 2 are satisfied.

Consider next

r‘RS tR, R 15_]
BéBataxv 5332 %6 Re O
272 2 272
R, 0 RS—‘

We can compute BI once R5 and R6 are given. Then, for a fixed value of

C, an upper bound for the Li's can be found by requiring "5"2 < 1 to ensure
complete stability. As a numerical example, let Rs = R6 4 R =1 Mi; Li = L,

i=1, 2, 3 and E = 0. Furthermore, let 14(-) be defined as in Fig. 2(c), i.e.,

-17-



- Gv4 s |v4| <1

4 = Cv, - 26, v, >1

GV4+2G, V4f._1

where we assume that the value of G is such that RG = 1-¢, 0 < ¢ < 1.

I
Using the definition for R~ in Appendix A-3, we obtain

— —
2 1 1 1] o .
2 -
RP=— |1 5 4|, ad k= =] c ?
9x10 10
1 -4 5 1
L _ |1

.5 we obtain L < 10%%c.

Letting Hg"z <1
To see how conservative this bound is, let us derive the condition

which allows an oscillation within the range of the negative resistance.

Hence, lgt us suppose the circuit oscillates with an amplitude of v, less

than 1. In this case 14 = - Gv4 is linear. The characteristic polynomial

of the linear circuit is given by

3

p(s) = Ls[L2Cs® + (4RLC - L2G)s + (3R°C + L - 4RGL)s + (3R — 3R2G)]

The zero s = 0 corresponds to dc current flowing around the loop of in-
ductors. We now find conditions on L such that p(s) has a pair of imagi-

nary zeros. Applying the Routh Criterion and using our assumption RG = 1l-¢,

we found that when L = RC/G, p(s) = 0 has a pair of imaginary roots

s =473 ——QEB—§~ Hence, this network is not completely stable when
4RLC-LG

° ' K, ka1 by gl = |

Here we define the norm of the vector K = [k1 Koy k3] by WKd = mgx |ki"

. . . M . @
- To obtain the sharpest estimate, it is desirable to checose this L -norm

whenever K is a vector because it gives the smallcst value of all LP-norms.

-18-



L > RC/G = lOlz(l—c)C. Since € > 0 can be chosen arbitrarily small in
magnitude, this bound can be made arbitrarily close to the upper bound
L = lOlZC for complete stability. Hence the bound derived earlier for

. 6
this example is the best possible that can be obtained.

Interchanging the roles of capacitors and inductors, we can easily

state the dual version of Theorem 2:

Theorem 2' LetL)U be a complete network containing two-terminal uncoupled

resistors described by (3) and (4). Theng}Uis completely stable if

the following conditions are satisfied:

(i) All elements in 5£1 are linear and positive resistors, i.e.,

=G v  where Qi is constant, diagonal and positive definite matrix.
1 1 1 1

(ii) All elements in parallel with the capacitors ina C71 are constant

current sources, i.e., 15 = IU (see Fig. 1). Furthermore,
1 1
I € JQégr ). .
Ol 131
’ T
ain) R(8) )< R(e .
P ZJ
271 11
(iv) Let G & BT a3 H and QI 4 the generalized inverse of G,
~£lgl ~£1 ‘1131
hen
‘ 1 L
"§H2 = |ic 2 QI EZ.G L 2l . 1 -6 for some § > O,

where lIsll denotes any convenient norm of the matrix S.

(v)  All solutions of (4) are bounded.

6Brayton and Moser have demonstrated that their bound approaches the best that
can be obtained in the limiting case of an infinite network [1].
However, their results can not be applied to this example because the
matrix R is singular which in turn is due to the fact that the rows of the
matrix ?i g are not linearly independent.

272
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Let us now generalize Theorem 2 to allow coupling:

Theorem 3. Let vf\|be a complete network described by (3) and (4), where
the resistors in :)2, or the resistors in ;{l v 271, may be coupled to
each other within each set, so long as the coupling remain reciprocal.

Then\JA|is completely stable under the same conditions as in Theorem 2

provided .all resisiors in CJZ are linear and described by v_ =R_ 1_,
3 374
where Rﬂ is symmetric and positive definite.

2

Proof. The proof follows similarly, mutatis mutaudis,from that given

for Theorem 2. ' ) H

Remark: A dual generalized version of Theorem 2' can obviously be stated.

III. COMPLETE STABILITY OF NON-COMPLETE NETWORKS.

In general, the capacitor voltages and inductor currents do not form
a complete set of variables for most networks, i.e., the n=port N obtained
by extracting all capacitors and inductors as external ports is not complete.

The network equations will then take the following form:

wEeh &Y (8e)
gz(?.{" =0 (6b)
n +n n
withv[§(t°), z(to)] = [go, zo], where glz ® ¥ Yo r * and
n +n n
§2: r ¥ Y o mr y, n_ + ny = n. By a trajectory through (gO, XO) of the

above system we mean a function [§(t), y(e)], ¢t Z.to which satisfies Eq. (6)

and that [x(to), y(to)] = [xo, yo]. Similarly, by an equilibrium state we

mean a point [x, y] € IR"™ on the trajectory such that fl (x, y) = 0.

-20-
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Eq. (6) defines a differential-algebraic system. It is important to notice
that the "initial state" [xo, yO] € R" is generally not arbitrary. A

vector [¥o’ zol € R" which satisfies KCL, KVL and all the branch charac-

teristics is henceforth called a feasible state. Obviously, any valid

initial state must be feasible. The following special case of Eq. (6) is

of particular importance.

Definition 1. A system described by (6) is said to be locally solvable

if, given any feasible state [x, y] € IRn, (6b) is solvable for y in terms

~

of x in a neighborhood B = Bx x By of [x, y]. That is, there exists a

n
continuously differentiable function s: Bx CrR *

-+ By c any such that
y = s(x) for all [§, g] € B.

Locally solvable systems are defined by "implicit" differential
equations with initial states restricted by a set of algebraic equations

in (6b) [4]. For locally solvable networks, the state equation can be

written in the form

7t = £ @)

n n
over a neighborhood Bx C R * about each point x € IR * where local

solvability holds. Moreover, the locus of y(t) about the corresponding

n
neighborhood By CR 7 is given by

dy
o = e i sw)

n +n
Hence for locally solvable systems, the trajectory (x(t), y(t)) in R X y

n +n

is uniquely defined through each point (x, y) €ER X

n +n
X

If we define a

scalar function V(x, Z): R > H{l, then the trajectory derivative

defined by
-21-~



V(x,y) V(x,y) WV (x,y) aV(x,y)  3s(x)
—_ s 4 — T § o= = i 5
ox X oy y 3x + 3y 3% f~l(}~( > 3(x)

-~

V(t) =

SN——

is also well defined for all time t 3_to.7 Hence the same proof for the

Complete Stability Criteria in Theorem 1 can be used to prove the following

result:

Theorem 1'. Generalized Complete Stability Criteria

The locally solvable implicit differential-algebraic equation (6)

is completely stable in the sense that all trajectories tend to an equilib-

n +n
X y

. . . . 1
rium state if there exists a scalar function V(x,y): TR -+ R having

continuous first partial derivatives and satisfying the following properties:

(1) the trajectory derivative Q(t) < 0 for any feasible initial state

except at the equilibrium states.
(ii) all solutions are bounded.

Remark.

Condition (ii) of Theorem 1' can be replaced by the following

sufficient condition:
V(x, y) »» as l(x, =

3.1 Complete Stability of RC or RL Networks.

Before we deal with the most general case, let us consider networks
which contain only one kind of energy storage elements, i.e., either

capacitors or inductors. Letg}“ be a reciprocal network containing

"The function s(x) may of course have to be updated from time to time by one
which is valid over the appropriate neighborhood of points along the trajectory.
This is because g(x) is only a local coordinate system [&4].



capacitors, v.c. resistors and constant current Sources. (This implies
that any constant voltage source must be connected via a plier-type entry in
series with some v.c. resistor and considered as part of a composite

v.c. resistor). If the capacitors do not form loops, then one can always
pick a tree J = Jl U Jz'where Jl consists of capacitors only. Leti
be the cotree corresponding to J . If we label the tree branches before

the links, we obtain the following fundamental cut set equations:

- 1( B
1 0, 9 =
3131 132 311 1
=0
0 1 Q 1
7,9, 9,9, "3,% J,
i
~&L
- -
where 1 is the current vector flowing out of the positive *erminals of

the capacitors. Now, let us extract the branches in J as external ports

and define the pseudo-co-content g of the n-port N as [3]

~ A ~
\% v = G{v , Vv
G(~Jl, ~32) (~1’ :]2) _'T
= Q v
-..i ~U
3
Al = 1
=G 9T v sV
~32 32
n n —
where v_ € ®RY and y_ € R 2, and QT 4 [QT , @T ] Notice that
. g A ¥ S

2
the resistors in gi UJZ may be coupled to each other. It follows from

the above definition of O that




X,
:!2

tl

Since Jl consists of capacitors only, i

—Q(YJ )(dya /lt,); hence:

1 1 1 >

d -1 3 -
-d_ v = - Q (Y ) 3 - Q V., V > 7
t 77, 3 Y:,l ( 9, 32)

.-
g (YUI’ %9

v ) = 2. (8)
~J

2

As usual, Q—l(v ) is assumed to be symmetric and positive definite.

For the most general case, a trajectory may not exist corresponding

n,+n

172
to an arbitrary feasible initial point[Y s V ] € R . Moreover,
1 2J0

*even if a trajectory through {Yg ’ Yg] exists, it may not be unique. v
1 2J0
If the system is locally solvable, however, a unique trajectory always

exists for any feasible initial point |V_ > V .
Jl 32 0

Lemma 2. The n-port N is locally solvable if the matrix

A D ) T

M= i Q iplvp) | Q

T av = (~ ) s [av ~ LML | 3

g %\ 3t (Vg 3,2
nl+n2
is nonsingular for all [Y » v } € R .
1 32
Proof. It follows from the implicit function theorem that the implicit ‘

algebraic equation (8) is locally sgolvable if 82 Q / ayg is nonsingular.

2 /2 2
By direct calculation, we obtain M = 9 g/)yg .

~24—



Let us now consider the complete stability of capacitive n-ports.

. . |

Theorem 4. Consider the non-complete nonlinear RC network u\‘ described by

- (7) and (8), where Q(\[g) is symmetric and positive definite. Then J\l

is completely stable if the following conditions are satisfied:

(i} Equation (8) is locally solvable for YU as a function of YG
2 1

(ii) all solutions are bounded.

Proof. Since N is locally solvable, it is described by a set of implicit

A

differential equations. Choosing Q (\_f s Y‘J ) as the scalar function
1 2

in Theorem 1', it suffices to show that Q(Y s V )< 0 for all
n,+n 31 Jz

172
[Y ) YJ ] €ER , except at the equilibrium points at which it vanishes.
. 31 2
q Now, applying (7) and (8) and recalling that Q(Yj ) is positive-definite,
1
we obtain ~ 7

3‘12 Q (le’ g )

; T .T 1
g=[”a’~a] )

N

1 2
BYZ g (Yal’ Yaz)
- 2 -
il Ygl 8';31 Q(Yal’ YJZ)

: - - [52 Q(YJ’YOZ)]Tg-l(Yal)[BYI; g(ygl,yjzﬂio.

LAY
~ 1
:]1

Notice that the equality holds only when 9 g (y Y ) dv_ =0,
3’ 3,/ I,
i.e., at equilibrium points. H

-25-



Let us now consider a Corollary whose hypotheses can be easily

verified:

Corollary 1. A non-complete nonlinear RC networkyvk‘is completely stable

if the following conditions are satisfied:
(i) All non-monotonic resistors are comnected in parallel with the

capacitors and are possibly coupled among themselves only.

(ii) " All other resistors are strictly increasing.

(iii) A1l solutions are bounded.

Proof. Consider each parallel combination of a capacitor and a non-

monotonic resistor as a composite branch and extract it across an external

port. Let the remaining n-port N be described by

* =3—\~3#G'<Ya""’3)

1 .2

(j( v )0

as was defined in (7) and (8). Observe that we have added a 'prime" to

~

(] in order to distinguish it from the overall resistive n—port which

include the non-monotonic resistors. Hence (BCV ) (5 v ) + G(v )
~31 JZZ ~32 ~31

where G(Y ) is the co-content of the non-monotonic resistors across the

1

capacitors. Equations (7) and (8) now assume the form

d ~ 3 - .
Cat Y5 T Ty Q(YJI’YJ>

~-26—-



where the second equation involves only strictly-increasing resistors.

Hence the matrix M in Lemma 2 is nonsingular and the network is locally

solvable. It follows from Theorem 4 that the network is completely stable.
o

Remark.
The concept of local solvability is introduced to ensure the existence
of unique trajectories for all times. If this condition is not satisfied,

a trajectory may not be defined beyond some finite time. To see this

1F, R2 = ~-1Q

Choosing {C, R,} as :71, we obtain

consider the simple circuit shown in Fig. 3(a). Let C

be defined by i, = vl/3.

and let R 3 3

3

the equations:

Observe that this circuit is not locally solvable at v, = iyl//g. Indeed,

2
the condition of Lemma 2 is violated at the.e two points. To investigate
what happens when a trajectory reaches these points, we plot the second

_ 3
equation Vi v, v,
half plane and v

in Fig. 3(b). Observe that since 61 > 0 in the upper

1< 0 in the lower half plane, the trajectory in the vicinity
of points A and B must converge toward these points in finite time t*.
Consequently an impasse occurs whenever a trajectory arrives at either A

or B and the solution no longer exists for t > t*. To overcome this dilemma,

one could either modify the circuit model by introducing a parasitic in-

27~



ductor in series with the resistor R3,

the state equation [11], or one could postulate a jump hypothesis [12]

thereby increasing the order of

and obtain a discontinuous oscillation. In either case, the circuit
oscillates and is therefore not completely stable.

A dual of Thebrem 4 can be easily formulated when inductors are the
only energy storage elements. In particular, letg)“ be a network containing

inductors, c.c. resistors and constant voltage sources. Assume the

inductors do not form cut sets among themselves. Let ;fl be the set of

inductor brnaches and let Jf = éfl U sz be a cotree. Denote the

corresponding tree by Cj. Then the pseudo-content (EQ%{ ,:££ ) of the
1 2
n-port N obtained by extracting all cotree branches as external current

ports is defined by [3]

¢
9(;1; ,i.)=G(1., ’ ’i..
il i% Jd ZE ‘tz
1 =§T££

where B = [E; %] is the fundamental loop matrix ongM. We will state the

dual theorem without proof:

Theorem 5. The non-complete nonlinear RL network\J\‘described above is

completely stable if the following conditions are satisfied:

(1) The incremental inductance matrix k(%iz) is symmetric and positive .

2

definite.

(i1) The network is locally solvable for as a function of 1

i
-, .

(1ii) All solutions are bounded.

~-28-



Remark. In Theorem 4 and 5 we assume there are no loops of capacitors and no

cut sets of inductors, respectively. 1In case these conditions are not
satisfied, techniques are available for eliminating any such loops or cut

sets. See [9] for details.

3.2 Complete Stability of RLC Networks.

Let us now consider networks which contain both capacitors and inductors.
For simplicity, assume first that the resistors are uncoupled, and that
there are neither capacitor loops nor inductor cut sets. Let us first
assign all capacitive branches (i.e. composite brancres of capacitors with
v.c. resistors in pérallel) to a subtree :)1 and all inductive branches
(i.e. composite branches of inductors with c.c. resistors in series) to a
subcotree<gcz. To complete the tree, we add as many v.c. resistorxs asg tree
branches, fofming‘another subtree :]2' The remaining subset of v.c. resistors
which cannot be included in the tree (because they formed loops with branches
inACjl and :jz) must be assigned as elements of the cotree.&f and will be

denoted by &{ Let us next fill up the tree with c.c. resistors and denote

1
them by 33 so that J = Jl U JZ U 33. Whatever branches that have not yet

been assigned are necessarily c.c. resitors which we denote by JC3. Clearly
56 = éfl U éf; U ;C3. To summarize, J

(72 = {v.c. tree branches}, {75 = {c.c. tree branches},dﬁl = {v.c. cotree

1= {capacitive composite tree branches},

branches}. Eﬁz = {inductive composite co-tree branches} and ;£3 = {c.c.

cotree branches}. The fundamental loop matrix B is then given by:

-29-



a8 -
' B B 0 F4
~ t ~ ~ ~ 1
€)% 4T, 23, 49,
]
12 — ]
~ - < < 2
£, ! 27, %9, %%,
£ L | B % S s
%3 4T 372 %3,
— J

Upon defining the pseudo-hybrid content T}} by [3]

Mo rov )86, (8, v -5, v )re (1)
( 12 2 af ;(1 -f'.'l Jl &'132 .72 3 A

T T
1*0( +B, v ) +1¥%B v, +B, . ¥ )
k. U (7 £232 32 13 ‘;[371 J1 ‘z332 32

we obtain the following system of differential-algebraic equations for the

network w:

Piy
<
N

[« N
& e
<
i
I
W
e

“\: - v
I I, ~J
1 9)
. d . d
L(l* ) - i¥ = H
“\mz,/ dt L, it
~T
2
9 CYf=0 and CH=0
oV 31* ~
~J
2 "2,

As will be shown latter, the resistors in Ul U Jz U il and those in

33 respectively, are allowed to be coupled to each other. In this case,

th rtial m G + G + 0 in(~ 3 will be replaced b
e partial su q q J"'_f . P y

~ Aé 1 2 1
Gy uguz - (Yd,yg,\z‘t)
1 2 1 1 2 1
v,=-B, v B _v
2 23 "3 7T, "]
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Theorem 6. Let;)“ be a non-complete nonlinear RLC network containing
uncoupled two-terminal resistors described by (9), where the incremental
capacitance matrix Q(Yg ) and the incremental inductance matrix L(E; )

1 2

are assumed to be symmetric (not necessarily diagonal) and positive

definite. Thennggis completely stable if the following conditions are

satisfied:
(i) There exists a tree :j = :71 U :jz v 213 as defined above, where :%

consists of linear resistors which may be coupled to each other; i.e., let

v, =R iJ , where RO is a symmetric and positive definite constant matrix.
3 3 3 3

(ii) All elements in 563 and all elements in series with the inductors in

5&2 are constant voltage sources, i.e. V' =E ~andv =E . Further-
£2 2 ¢3 ¢3
gt Bi
- “£.J
2 273
more, Et ECQ B
3 37,
(i4i) B, =0Qand B, _ =0.
252 32
(iv)
~ . ~ A
~£271 ~i233
R 1R
: B
i3dl £333
L - — J7°
(v) Let
—-
B
~ZL
A 233
Iiﬁ 3 3 233 333
— 3 3
and let

. I
RI & the generalized inverse of R as defined in Appendix A-3. Partition R

~
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as follow:
1 1
R R
I31 _ |~ ~12
I I
Rar Ry
where gil is of dimension |5f2| X lgfzi, then
1 _ Ly2
I uzé“ 2 gl B 2” ;
IS L 311 "2 g C <1 8§, for some & > 0.
21
(vi)  The system is locally solvable and all solutions are bounded.

Proof. See Appendix A-4.

Example 2. Consider the circuit shown in Fig. 4 (a), where R R, and R

K} 5
are v.c. resistors. Since Rl is linear, shift E by v-shift theorem as in
Fig. 4(b). Let jl = {C-Ry }, jz = {R3}, 33 = (R, Rz}8 so that

:] = :J; v CJZ U :33 is a tree. The associated cotree é{ = 6i1 U di; U 563

is partitioned as follow: 5fl = {RA}’ ;fz = {L-El} and 555 = {Ez}-

The fundamental loop matrix B is given by:

sﬂl af,’z sz g, g, d,
— | —
1 | -1 1 0 ﬂ sfl
b = 1 i: 0 0 -1 1\ &,
1) A 0 1 ol £
L g7

It is easily verified that conditions (i) to (v) in Theorem 6 are satisfied.

8Elements in {*} are written in the order of their branch numbers, thus

Rl is numbered prior to R2.
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Hence, the circuit is completely stable if the system
is locally solvable and if all solutions are bounded. Notice that

in this case B 5 = 0 and condition (v) is automatically satisfied by
12 1
default.

To illustrate the significance of condition (v), consider the next

example.

Example 3. Consider the network shown in Fig. 4(c), where R3, RA’ and

R. are non-monotonic v.c. resistors. Following the tree selection algorithm

5
described earlier, we choose :71 = {Cl,CZ-RS}, :72 = {R3} and :]3 = {Rl’Rz}

so that J = :71 v :jz‘J :73 formed a tree. Partition the associated
cotree L = &fl‘J L 3 U Jf3 with 5{1 = {R4}, sz = {Ll-E,LZ} and }{3 = ¢.
The fundamental loop matrix B is given by

il £2 C71 32 J3

- A /—&\j
100 -1 0 1 00 £

B=(0 1L 0 0 -1 0 -1 1

001 1 -10 10
C .

Observe that conditions (i), (ii), and (iii) of Theorem 6 are satisfied

by inspection. Similarly, condition (iv) is alsb satisfied upon application

of the following Lemma 3. To check condition (v) the following calculations

are needed:

. -1 1 |[Ry 1) r{lﬂzz R,
-1 0 Ryfi 1 of |’ R
IS SRS N N B S
Ryp~ R R.R ’
182 | -, R R,
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L -1/2,1/2
1 Ri1G

Ly

R;R
1Ry 1/2 -1/2
(R1+R2)L2 C

0

. 1/2 ~1/2
1 R)Ly Cy

By requiring each element in K to be less than 1/2 in magnitude so that
Ikl < 1, we obtain the following upper bounds for the two inductors L, and

L, in order for condition (v) to hold:

1.2
< =
Ly <5 ROy

2
R.R
1.2 1(_12
< ind— = | —-
L2 mln{4 R1C2, A (R1+R2)C1}

1t follows from Theorem 6 that if the above parameter relations are

satisfied, then the network of Fig. 4(c) is completely stable provided
condition (vi) is also satisfied. Observe that condition (vi) is satisfied
by most networks of practical interest and can be checked using the results
in [3]. It is condition (v), however, which is of main practical importance

because it furnishes a quantitative upper bound on the values of the linear

inductors in terms of the values of the linear capacitors and resistors.
In case the resistors in :%_LJ CE L’éia, or those in :JB’ are coupled to

each other, we obtain the following direct extension of Theorem 6.

Theorem 7. Let\JU be a non—éomplete nonlinear RLC network as described above.

The linear resistors in Cj3 may be coupled to each other provided BJ is
3

symmetric. The nonlinear resistors in :]l U :]2 L);El may be coupled to

each other so long the coupling is reciprocal. Then\JA!is completely stable

if all conditions in Theorem 6 are satisfied.

Remarks.

L. Dual versions of Theorems 6 and 7 can be obtained by iollowing the same
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procedure used in driving Theorem 2' upon interchanging the roles of

capacitors and inductors.

2. Conditions on the topology of the network\JU similar to those in Lemma 1

which ensure that (iv) is true can be obtained in a similar fashion:

Lemma 3. Let u\] be a connected network which has been partitioned into

éi s ;f s ;( s :7 s :7 , and :7 in accordance with the preceding rules.
1 2 3 1 2 3

A
(i) Let N be the sub-network obtained by shrinking (short-circuiting)
all branches except those belonging to :_]3. Let b' and n' be the number

] 1]
of branches and nodes in ;/\J ; respectively, so that ;/'\’ has b' - n' + 1

B
4,9

independent loops. Then the rows of are linearly independent
B :
. A7
. 33
if, and only if, b' - n' + 1 = |i2| + I;é3|, where l,le and l,’( 3| denote
the original number of branches in ;fz and 2C3, respectively. Equivalently,

1"
letN be the subnetwork obtained by shrinking all branches in

B
‘{273

Ca_LJ Cg v Jfl. Then the rows of are linearly independent if,

B
7{395
"
and only if,,AJ contains no loop formed exclusively of branches belonging

to .12 v 3(3.

CY

) 1}5(231 ]”31253

(Q CCD if, and only if, upon
B B
~"{331 ”1373 i
L, s J e
open-circuiting all branches in 1 and 3> the current =0

}:52
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identically, i.e., branches in le and :72 are not contained in any loop

in the reduced network.

Proof. The proof is quite similar to that of Lemma 1 and is therefore

omitted.

IV. CONCLUDING REMARKS

A remark concerning the relationship between this paper and a recent

paper by Chua and Green is in order: While Theorems 6 and 7 of [10] also

deal with complete stability, our results in this paper are much more
general in the sense that the networks considered in [10] are essentially

restricted to two-element kind RC or RL networks having global state

equations. In this paper we deal with RLC networks and their state equa-
tions need only exist locally through each point in r".

It is important to observe that the local solvability hypothesis
n n
guarantees a unique trajectory through each point (§, Z) €EmrR *x M y
n
but not necessarily through each point x € ®R *. 1In fact, for a locally

solvable network which can not be described by a global state equation,

each point x c IRnx may correspond to several points {za,zb,---,zm} Cc DRny,
each of which satisfying the implicit algebraic equation. From the computer-
simulation point of view [13], this situation is equivalent to the existence
of multiple dc solutions when the capacitors are replaced by dc voltage
sources and the inductors are replaced by dc current sources. In this

case, the point Y which the internal equation solution algorithm--usually

a modified Newton-Raphson method--converged .to will be selected by the

computer. The local solvability hypothesis will then guarantee that

the numerical integration process can proceed without ever reaching an
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"impasse point" of the sort exemplified in Fig. 4. In other words, the
local solvability hypothesis is the weakest requirement that one needs to
ensure that a given network may be meaningfully simulated on a computer
regardless of the initial condition.

Each of the complete stability results presented in the preceding
sections réquires several conditions to be satisfied. Most of these con-
ditions are topological in nature and are directly verifiable. The con-

dition involving the norm of a matrix, however, is quantitative in nature

and has to be calculated for each specific network. This quantitative
condition is the one which gives rise to anupper bound on the value of the
inductor parameters (resp., capacitor parameters) as a function of the
capacitor (resp., inductor) and resistor parameters, and are therefore
extremely useful.

Notwithstanding the complexities of the hypotheses of the theorems some

of them are in fact the best possible that can be obtained for the class

of networks under consideration. One should recognize that complete

stahility is a very strong qualitative property not possessed by many
practical networks. Consequently any theorem which guarantees complete
stability must necessarily impose rather severe conditions. The subtle
problem here is to ensure that the conditions are no more severe than are
necessary. For otherwise, a theorem on complete stability may turn out to

be just a theorem on global asymptotic stability where the severity of the

hypothesis forces the network to have only one equilibrium state [10].
When we talk about complete stability in this paper, however, we are

primarily concerned with the more interesting cases where the network can

possess multiple equilibrium states.
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Finally we remark that our results in this paper is restricted ex-
clusively to networks containing reciprocal elements. Generalization of

these results to non-reciprocal dynamic networks having more than one

equilibrium states remain an outstanding open problem.
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APPENDICES

%1
A-1. Physical Interpretation of i¥* B v
‘(2 i? ﬂ] JI

Consider the networkc,A‘shown in Fig. 5(a), where&)Ul = éil U :j; and
;JMZ & 5{2 U :jz. Partition the set of nodes ofgj“ into three subsets Sl,
S2 and S3ﬂmere81 is the set of all nodes ingjul which are not also nodes
ofL)Uz, 82 is the set of all nodes inL)UZ which are not also nodes ofgjul,
and S3 is the set of all nodes which are common to bothg)“l andg}Uz. The

reduced incidence matrix A of<,AIis of the form

€, Z, 9, J,
~ ~

A (S 0

1 1

A=10 A (S.) 0 (s S Y [A A A

= ~i 2 < ~ ) 2 = ~ ~ ~
AL (8,) A_(sy) (s.) (s.)| s (A-1)
~ 3 ~ ~ ~

L, Z3 3,3 g,"3’) 73

W—’ W-J ——— [\ )

A A A A

otl 12 9, 3?

where 60 (Sl) is the part of A which is connected to the nodes in Sl’
1 1

etc. Notice that sinceg}U can be torn into two separate parts by removing

i \ = = L
all nodes in S3, we have QZ(SI) o, Ag(sl) 0,

2 2 1

2) = 0 and

A (82) = 0.
J
Denoting the node voltages ofg)U with respect to an arbitrary datum
node in either S1 or 82 by vy and the part of v associatéd with the nodes

in S3 by Yn(S3), the instantaneous power W delivered fromg}Uz togj“l is

given by
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T
W=1i (83) yn(S3) (A=2)

wvhere 1(53) is the '"net-current'" vector flowing fromL)UZ toLle through
the corresponding nodes in 83. This current vector can be visualized as

follow. Let us split each node in S, into two "half-nodes" connected by

3
a short circuit as shown in Fig. 5 (b). The net-current vector 3(33) is
defined as the currents flowing from the "primed" nodes to the 'double

primed" nodes. We now make the following two observations:

.Observation 1.

The net-current vector ;(83) is given explicitly by

T
i(s,) =A_(S,) B i A~
1 271 2
where 3 is defined in Sec. 2.1 (A and B are written with respect to

the same branch labellings).

T
Proof. Let us consider first the matrix T 4 3 A
- - 699

written (B . Thics
5 (,x?jl)Q T'his row

(83). Consider

a typical row, say the £-th row of 3
X?JJ

designates a path consistiﬁg of branches in :}1 which is part of the funda-
mental 160p associated with branch £ jjh;fz' Call this path Py - Travers-

ing Py in the direction of branch &, we can classify the nodes encountered

which are also in S3 into three categories: (i) the starting node n € S3

at which we enter(,A&_fromLJUZ. (ii) the final node n

c .
£ 83 at which we

leaveadkh and enterg}“z again, (iii) an intermediate node no € S3 which is

neither the starting node nor the final node but is only being passed
through. (traversing through this node would bring us back intog}Ul).

Observe that while ng and n. are unique, there may be more than one inter-

f
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mediate nodes.
To clarify the general statements to be made in the following proof,

consider the network shown in Fig. 5(c) along with its partitioned network

2°73

in Fig. 5(d) relative to the choice of :jl = {Cl,C c.}, :j = {Rz},
2
ofl = {R}, and ‘,{2 = {L;,L,}. Observe thatJ\Jl = {Rl,cl,cz,c:i},dj2 =

{Ll,Lz,RzJ, and hence S1 = {ns}, 82 = {n4}, and S3 = {nl,nz,nB} where n,
denotes node @D . The two paths 21 and 22 corresponding to the two funda-

mental loops associated with links L1 and L2 are given respectively by
21 = {Ll, n;, Cl’ ng, CZ’ n,, C3, g, RZ’ nA} and £2 = {L2, n,s C3, ns,
RZ’ n4}. The portions of these paths which correspond to Bi 7 are
21
given respectively by Pl(Bdéﬂl) = {nl, Cl’ ng, Cys 1y, C3, n3} and
pz(gx . ) = {nz, C3, n3}. Hence the starting node of p; is ny, its final
271
node is s while n, € 83 is an intermediate node.
Before we discuss the meaning of each row of T, let us also consider

T

the matrix 42(83). Each column of 33(83) corresponds to one node in

83 and the nonzero components in that column (either 1 or -1) represent

the branches in :71 which are incident with the node. The sign convention
is the usual one: + 1 for branches incident from (leaving) the node and
~ 1 for branches incident to (entering) the node.

Let us now consider the path associated with (’B ) »l.e., py.
2¥1° %
Let bS € :jl be the branch in Py connected to the starting node n_. Then

T

we have (B ) =+ 1 and (A (S )) = + 1,respectively, where
1,9 - R -

271 b 1 bg2 Mg

(B ) denotes the (2, b ) component of the matrix B , etc..
~&,. 9./ %,b s £J
21 s T 2"1

In this case, (B ) . (QD (S3)) = 1. Similarly, let bg be

J
271" 4,b 1 bsng
the branch in P, connected to the final node ne. We then have (@d g )
271

Libe
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and (A?’; (83)) = + 1 respectively. In this case ,

(2, )
1 bpsng NN

E
(A'.[‘ (s )) = - 1. Finally, let b' € :J and b" € J. be the branches
- 3 bf,nf ? m 1 m 1
1

in Py such that we pass bt;l, nos btlr; in that order in the traversal of the

path, where no € S, belongs to category (iii) defined above. in this case,

3
we have:
B =+ l'and (AT =¥ -
(~,;( g) =+ 1l an ‘53 (S3) ’ + 1,respectively, and
]
2%1 Z,bm - Tl bm,nm
(51 U) =+ 1 and (A0 (83)) = + 1,respectively.
1" "
2%1 %,b : 1 b P
rere (2, ) (8] sp) v (B,.) (e 69),  -o
21 ,Q.,bn'] 1 bl‘\"l’nm 2:71 Q,b;; ‘31 b;';,nh
Similarly, all product terms of the form (@ ) . (Q.T (83)) R
251 Q,b 31 b,n
n € 83 other than those mentioned above are equal to zero. Hence the
elements in the 2—-th row of T = (5‘{ ) 1}; (S3) are given by
231 A 1
' 3 (5 Jo.b (g (s >)
JI,,nS bE 31 ,—(231 2,b \31 3 b,nS

|
=

- (@ngl)g,bs : (.1591(83))‘1) .

feng T (@:{251>“’bf . (631(53))bf’nf "

T T
T = (].3 ) ' (6 (s )) ' + (B ) n (A. (S)) " =0,
Q,nm 1251 .Q,bm :jl 3 bm’nm ~;{251 !L,bm gl 3 bm’nm
. _ . c )
and Tl,n 0 for all n Py» D # n_, N, 0

Thus, each row of T has only two nonzero elements + 1 and - 1.



The + 1 corresponds to the starting node n, and the - 1 corresponds to the
final node nf. For example, referring to our earlier network shown in

Fig. 5(d), we have

1 2 3 1 2 3
- 2
1 -1 1 Ll 1 0 0 ny
= , A_(53) = , and
2,7, 0 0 1)L, 3, 0 1 1|n,
0 0 -1 n
L M
n, 0, n,
1 0 -1 < corresponds to
A T _ 2 Py
T |
271 1 0 1 -1 + corresponds to Py
Referring to Figs. 5(b) and (d), we observe that ear'i element of ?ﬂi
2
corresponding to each node nk‘583 can be interpreted as the current flowing
in the short-circuit branch from right to left. Hence, in general,
. T T .
i) =T1i =A_(s,) B i is equal to the net-current
¥ T TR0 S s S
2 1 271 2
vector flowing from(,A& intoLJUl through the commoi. nodes in S3. This
concludes our proof of observation 1.
Let us now proceed to prove that w = iT B v Observe that
~°{2 iZJl ~Jl
since A (S.,) = 0, we can write
~3 2 =
1
T T T
i, B v =1i_ B (é\ Yn)
;/2 1231 ‘71 12 ;{231 gl ’
T T T (A-4)
=i B [A (5)v (8,) + A (S)V(S)]
= - ~ 17~n""1 ~ 3’~-n" "3
‘{2 12:11 U1 ‘32 .

where yn(Sl) and yn(S3) denotes the subvectors of y corresponding to nodes
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in S1 and S3, respectively. We now pause to prove the following:

Observation 2.

ulp AT (s =0 (A-5)
x,3, 9 1

Proof. Consider the (&, nk) element

AT

K bezjl(@xqu)l,b (*31(81))b,n.k

(g)l,n

beZ 9, (@xzal) 2,b (33 (Sl))nk,b

1

where £ € ;f > oy € Sl' Using the same interpretation for elements of
2

2 AT (83) given in our earlier proof of Observation 1, we note that

~ ~

21 1
the duct i i i
produc (Qgéﬂl)l’b (éﬂ (Sl))nk,b is nonzero only if branch b is

both in the path 17 and incident with node n Since n, € S n, is an

k’ k 1’ 'k
interior node of Py Therefore, there must be another branch b' € Py
nk,b'
This proves M = 0.

which is also incident with n, - Furthermore, <Bd;31)2’b‘ (63 (Sl))

is of opposite sign as (§Zfﬂ )l,b ) (éﬂi(sl))nk’b.

Finally, substituting (A-5) into (A-4) and making use of (A-3), we

obtain
T v =il B, AT (v (59 = 1Ty (5 = W (A-6)
‘2 5‘231 :71 2 271 1

Noting now that i* = - i , we conclude that the topological term

% dé 2 K
i %i v, in the hybrid content H(yg s 1 ) can be interprected
£ g7
2 271 4
as the instantaneous power delivered from(JUl inLo<UAE through the common
nodes in S,. 8
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A-2. Complete Network with Ideal Transformers

Suppose pAJis a complete network and has been partitioned into 0(1,
5{2’ :Tl’ and :12 as described in Sec. II. Let NT be an ideal 2-port
transformer as shown in Fig. 6(a) and let this transformer be represented
as two coupled 2-terminal elements as shown in Fig. 6(b) with the coupling

relationship given by

v, = kv i, = - ki (A-7)

where k is the transformer turns-ratio. Notice that an ideal transformer
is neither v.c. nor c.c. However, since ilvl + 12v2 = 0, it is nonenergic
[8]. Now suppose each of the two windings of the transformer is added
across an arbitrary pair of nodes belonging to branches in :%: Then the
two corresponding branches must be added to the original graph, each of
which forms a loop exclusively with branches in :jl' In other words, the
augmented network remains complete with the number of branches in 5{2 in-

creased by two. Now observe that the equivalent transformer representa-

tion in Fig. 6(b) can be replaced by two independent current sources as

shown in Fig. 6(¢) with the additional constraint v, = k v, between the

1 2
terminal voltages vy and Ve Since the co-content of each independent
v

k

current source is simply equal to.[
0

of the two current sources add up to zero in view of the nonenergic property

1kdvk = lkvk’ the total co-content

of the transformer. The same argument can be used to show that when there
are more than one transformer, or when the transformers have more than two
ports, the total co-content of each transformer is zero. In other words,

so long as all ports of the ideal n-port transformers can be augmented with
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the branches in 1’ the overall network remains complete and the hybrid
¥*
content H(y > L ) defined by (3) in Sec. II remains invariant. A
1 2
dual property of course also holds when all ports can be augmented with

the branches in :IZ.

The invariance of the hybrid content makes use of only the current

relation of the ideal transformers. The voltage relation has not been
used so far and must therefore be considered as another independent equation.
Now since,by construction, all elements in ;(l must necessarily form

loops with elements in :I each voltage relation introduces a linear

1)
constraint among the voltage state variables YJ =y This constraint

1
is analogous to the presence of a loop of capacitors and can therefore be

c

used to eliminate one of the '"n" state variables [9]. The presence of an

ideal 2-port transformer with both windings in.&flhtherefore leads to a

reduced order state equation. The interesting question to pose at this
point is whether this can still be expressed in terms of the gradient of

a new potential function, and if so, whether any qualitative property of
the original network is preserved. The answer gurns out to be yes in both
cases. To derive this property, let us assume for simplicity that only
capacitors (no inductors) ére present and that there is only one ideal
2-port transformer to be augmented in 5{1. The same property can be proved
to hold in the geﬁeral case but the notations becomes rather unwieldy.

Let n be the number of tree (capacitor) voltages Of(JAL with the tree
voltages v' = [vl, Vos t o ',vn] € R". The presence of the transformer
will eliminate one tree branch voltage, say v To be specific, assume
the branch associated with v forms a loop with the second port of

the transformer so that the. voltage relationship v1==kv2 leads to a linear
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. T T
constraint v, = a'v = k[@ , l] v , where v = [vl, v ] is

1 , ot v
n 2 n-1

the reduced set of independent variables alluded to earlier, and where

a, b are column vectors consisting of 1's and 0's. Now, let us replace

the branches of the transformer by two independent current sources as shown

in Fig. 6(c) along with the constraint vy = kVZ' The co-content function

P(vl, v -",vn) of the augmented network is then given by

2’
T [T 1. 4 |
P(vys Vps tooesvy) =ilaivl + (—kl)[lz v+ vn]+ G(v") (A-8)

where G(v') is the co-content function ongU with the transformer removed.

The state equation ofg)“ is given by

. oP
¢l = - (4-9)

where C' is an nxn, symmetric, and positive definite matrix with the additional

. T T . . .
constraint a"y = k[b'v + vn]. Let ug next eliminate vy and obtain a new

co—-content function from (A-8). Now, since Vo= %'(gT - kQT)Y, we can
ln-l
write Y' =l e e v and (A-9) becomes
l_éT _ bT
k., 4
%n—l
g! — e - o o~ - \2 = - _—-—g‘P’. . (A—lO)
l-aT B bT ~
k-. <

Pre-multiplying both sides of (A-10) by [ln-l’ % a --bl], we obtain
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1 oP
We now prove that [ln—l"E a - b]-jgr is equal to 5v where
~ ! A
G = G(v") [1 T T] (A-11)
v == a -b |v.
ntk ~ =~ J~
Observe that — )
ia - kib +
1 P 1 N -
[]~'n—l’ k&7 ‘3] v’ [ln—l’ k27 13] .
- ki + &
ov
- n ~

=_a_“g+(;a_b)ac _ 3G, 36 %V

v k ~ =/ v ov ov ov

3G(y,v )

1 T.T ~
R S
v T3y
Therefore the new state equation ong“ is given by
3G (v)
Cv=- 5y (A-13)

where G(Y) is the new co-content function and

A 1 ~n-1
c= [ln—l"E a - ~]Q' is an (n-1) x (n-1), symmetric, and

l-aT _ bT
k < ~

positive definite matrix. Hence we have proved that the reduced-order
state equation can be expressed in terms of the gradient of a potential
function G(v), and that the new capacitance matrix C remains a positive-
definite matrix so long as the original matrix C' is positive definite.

It follows that the various qualitative properties described in [9-10] are

preserved in the augmented network.
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A-3. Proof of Theorem 2.

Let us define RI first. Since R =B R BT is symmetric
i ) ."{2‘72 ~gz N’{ZJZ
and at least positive semidefinite, there exists an orthogonal matrix S
such’ that
(2 o (1 g
1 AZ s1
Az 1 1 _] 1o
T
R=§ . sT = |22 s, --- 22 sl | - =FF ,
~ - . ~ 1~ m ~-J .
A 1
m 7 mT
0 0 Am S
. L -

where Ak > 0 are the eigenvalues of R, and §k is the kth column of S. If

. . . . I
R is nonsingular, m = n, otherwise m < n. The generalized inverse R™ of

% is then defined as:

_
-2 ]
Al 0
RI=F | . P FEDTE
0 A2
- m _J

Notice that in this case gI is symmetric and positive semidefinite.
I I .
Furthermore, for any x €<12(3), RR" x=R Rx=x, as it should.

We are now ready to prove the theorem. Under conditions (i) and (ii),

the hybrid content H of\JA‘is given by:

I T A l T
H{v i*¥ ‘Y= G o(-B v + ¥ E +C (v Y-z i¥ R i%¥
~ >y = ~ ~ e < P ~ 2~ A
( 9 12) °(1 ( :tljl “71) '{2 ‘;fz 31( '71) iz ‘{2
T
.+ i¥ B v_ . A-14
AT ] (A-14)



I11

S L Y ' g
where R = R B .
=T g 2.
1232 32 2 2
%
Define H as follows:
A JH\ T T{ gH
H*(vg,i*)=ll+( *) B(“*)
~ - i ol
17 2 E)~;£ ~Z
2 2

(A-15)

In order to prcve complete stability, we only need to show that

* ‘
%E H < 0 along any trajectory of (4), with the equality holding only

at equilibrium states. Using (A-15) and (4), we obtain

d * . . T
SH o=yt 2oy ieT H+i( G RI( % H)
’ “3, %y RSN dt gi” ARTY
! 1 2 %% ~Z ~ZL
. 2 2 2
= -yt Qv+ A% Li¥ - iich [RIRi#*

:..T I . e T T s, . I :
+ i%¥" IR B v~ i%*" RRLi¥* + v B RLi¥
iz fi?. 31 J. ‘tz ';{2 51 123'1 .252

It follows from (2) and hypotheses (ii) and (iii) that L}i’ €

2

. . . % . .
Hence 1%#T [R'Ri* = i#T i = i%#T RRILi* and we obtain
L, e T T

2 2

v i i 29T BT mlix

- ——H = \'f
at ~g <~ ~L < ~y X =~
71 1 :cz 'fz 31 2‘71 'iz.
1 12 L2
2. 2 s 3 cen2 2 :
>HC “v - KL “ i¥ + (,1-II1\II L ©i¥

>0  for all [{rg.,;;]

and
9—-H* =0 only when v_ =0 and i¥ = Q.
dt ..~31 '&z? ot
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Rw.

(A-17)
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It follows from (A-17), (A-18) and conditiom (v) that the network is

completely stable.

A~4, Proof of Theorem 6.

» . I,
The proof is quite similar to that of Theorem 2. Constructing R in

the same way as in Appendix A-3, we obtain the following expression for ;}4:

H- éo.(yj) PO (vg) G o ( By g B g Yj?.)

T Ly T 1 7..T T
+ {%¥° F + ¥ - = * ¥
2 B T Er T2 [*1 s
2 3 3 2
- M
B
) 231
+ [i*T’ i%T] Yj ‘ (A-19)
%, x| p 1
8(3:71
\_ —
ey .
DeflneT;J as follow: .

ey 15 1)

T o~r |31
STH+ [E}ﬁ_ E—J—} RY %, (A-20)
J

-7 . # ~
1 2 2 3 o, g 5 3
2 3 ¥
oL,
3
_ -/
We only need to prove that
~ % '
T}J’ <0 along any trajectory, with equality holding only at

equilibrium states. First, notice that

9 '}
—_— T = v B v o+ 1 (A-21)
i . ~X g ~J £ ~J ~L

~:[2 2 1 273 2
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9
“—;-?}J= B
oi : ‘i J

~Z

v_ o+
~J
371 1
3

It follows from (ii) and (iv) that

R W

€ PE®).

*
Differentiating next"r}} with respect to time, we obtain

0* . < T T
FPe & | ER )
ai, o1, )
2 3
e

The

a,

(
V¥

ol
~Z
2

3£1i
"
3

—

function ;H can be obtained ‘rom (9):

cT 4 OT s
- v R B e ST i
1 ~J 2 3l 2 ~TJ 3
1 L 2
2
"y, oy, +ixrnis
1 Jl 2 '(2
The second term ofg:}*is equal to:
. 10
erJ ] rii
~ (T T N
21 2
) | 3K &H 2 R |y
9i , oi B ~ i
~ ~ -~ 1 . ,_x
;[2 Z, A’BJI 3
L B L JJ
Now, since a?}J/ai* = 0 and a?}J/ai* =1, i% , we have
~d% ) ~i; ) ~X;

_52_
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(A-23)
£}
-
R
3
(A-24)
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~ -
Bi 7
s B '
"H 3 I 271 . . T .
R v o =1i¥ 1L R B v A-26
. » g g~ 11 ~Z3 ~J ( )
a_l_ ol B 1 2 2 1 1
~Z ~xL ~ZL 7 )
, 2 3 31
o -
Making use of (A-22), we obtain
~— - r— b
o % .
ii’ ii,
E!T T ~ jg ~(T N
2 ~No ~e 2
a\l’% BI R s = O(g O« .
34 d Y a1, ai i %
1; lx ~ ~o %.-: Tz
‘ T .
_ o% * ., -~ . .
= — 1i* (since 37}3/81* = 0 along the trajectory)
2y T, L -
~L
2
= :.T
= 1% L% (A-27)
’ 2 2

(A-18), we obtain

?g* . * ¢ b . S
A=y o, -ir Lin void
1 1 2
<0 along any trajectory

It

0 only if V_ =0 and 1;

1 2

Finally, following the same procedure as in the derivation of (A-17) and

LR B v
11 "z£,g "9

1

=3 (A-28)

Tt follows from (A-31)and condition (vi) that the network is completely

' stable.
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FIGURE CAPTIONS

Fig. 1 (a) A typical composite branch in :71. The resisfor Rt is the
parallel combination of all v.c. resistors connected across
the capacitor. the the current into Rt is denoted by ié.

(b) A typical composite branch in ;fz. The resistor R2 is the
series combination of all c.c. resistors connected in series
with the inductor. Note the voltage across Rg is denoted by vé.

Fig. 2 (a) The circuit for Example 1.

(b) Equivalent circuit obtained by applying the v-sﬁift theorem.

(¢) The vy T 14 curve for v.c. resistor R4.

Fig. 3 (a) A simple RC circuit.

(b) Graphical illustration of impasse points A and B and the
discohtinuous oscillation resulting from invoking the jump
postulate,

Fig. 4 (a) The circuit for Example 2,

(b) The same circuit of (a) with the voltage source E shifted
in series with the remaining branches in the cut set.

(c) The circuit for Example 3.
Fig. 5 The partition of networngM intobAh‘kkJMZ, where;JMl = cfa v :71
andu”z = 0{2 U 72, .

An ideal 2-port transformer and its various equivalent representations.

(=)

Fig.
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(c)

Fig. 2.
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Fig. 4.
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R', R2 ’ L ) C:
positive constants.

E|=E2=E

R3,R4 ,R5 *V.C.
nonlinear resistors.

Rl ,R2,L',L2 'CI'CZ:

positive constants.

R3, R4 ’ R5 T V. C.
nonlinear resistors.



Set of nodes
in this part
éfﬂ

7,03,

Set of nodes
in this part
é 82

x2 UJZ

SN

d,Ud,

Fig. 5.




kel

(a)

Fig. 6.
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V| =kV2
iz =“ki'
vy =kv2
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