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COMPLETE STABILITY OF AUTONOMOUS NONLINEAR NETWORKS1*
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ABSTRACT

Several sufficient conditions are presented which guarantee that an

autonomous nonlinear reciprocal network is completely stable in the sense

that all trajectories of the network tend to an equilibrium state and hence

no oscillation or other exotic mode of spurious behavior is possible.

Stability criteria are derived with the help of the concept of the

generalized inverse of a matrix for both complete and non-complete networks.

The results on non-complete networks depend crucially on the introduction

of a pseudo-potential function called pseudo-hybrid content and on the

imposition of a local solvability condition. Most cf the hypotheses are

algorithmic in the sense that either explicit bounds are provided for

computation purposes, or equivalent topological tests are given for checking

the non-quantitative conditions.

Most results presented are applicable to networks containing multi-

port and multi-terminal elements which are represented by coupled two-

terminal elements. Examples are given which demonstrate that some of our

results on complete stability are the best possible that can be obtained

for the class of networks under consideration.
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I. INTRODUCTION

This paper is concerned with the problem of complete stability for

autonomous nonlinear reciprocal networks. Given a dynamic network ^Al

described by an autonomous system of differential equations z = f(z), where

f: ]Rn -> IR , a point z <= IR is called an equilibrium state of the net

work if f(z*) = 0. Practical networks containing locally active elements

often have more than one equilibrium states. By complete stability [1,2], we

mean the property that any trajectory z(t), t G [0, °°) of the network

eventually settles down to one of the equilibrium states, i.e., lim z(t) = z*

for some z* which depends on the initial state zQ. Obviously a network

will never oscillate or display other exotic modes of dynamic operations—

such as almost periodic spurious oscillations—if it is completely stable.

Complete stability is one of the most important considerations in the

design of dynamic nonlinear networks. It is well known that practical net

works can suddenly burst into undesirable oscillations even though it is

not expected to do so in the original design. A clear understanding of

the mechanisms which "provoke" instability and oscillation is therefore

essential in any serious analysis and design of nonlinear electronic cir

cuits.

This paper is essentially an extension of the classic results due to

Brayton and Moser [1]. In section II we shall make use of the concept of

the generalized inverse of a matrix to derive a sufficient condition which

guarantees complete stability for a class of networks more general than

that discussed in [1]. The use of the generalized matrix inverse not only

shows that a topological condition (B be of maximal rank) required
~**2 32

by Brayton and Moser is unnecessary, but it also shows that the associated
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stability bound is the best possible that can be obtained. In particular,

while Brayton and Moser shows that their complete stability bound for a complete

iterated ladder network is the best possible as the number of ladder sec-

tions "n" tends to infinity, we are able to demonstrate the same result using

a non-complete finite network containing only eight elements (Fig. 2). The

entire section II is devoted to the so called complete n-ports. Given anetwork

^\|, an associated n-port N is created if we extract all energy-storage

elements, i.e., inductors and capacitors, and consider them as loads con

nected across external ports. A capacitor gives rise to a voltage port

and an inductor gives rise to a current port. The n-port N is said to be

topologically complete if given any branch in lA/> either the branch voltage

or the branch current can be determined by the port variables (i.e., volt

ages across the voltage ports and currents through the current ports)

directly from KCL and KVL without invoking any element constitutive

relations. For complete n-ports, a mixed potential function called hybrid

content can be defined explicitly in terms of the fundamental loop matrix

and the element characteristics. We then apply Liapounov's direct method

[2] to a modified form of the hybrid content to ensure the complete sta

bility of the network. In section III, we extend the'result to n-ports

which are not necessarily complete. Our results in this section depend

crucially on the introduction of the concepts of local solvability and

pseudo-potential functions [3]. The local solvability condition is es

sentially an application of the local "implicit function theorem" which

^ guarantees that all trajectories are uniquely defined for all time t >_ t .

This condition is weaker than that usually invoked for guaranteeing the

existence of a global state equations. Consequently, our state equations

need not be defined globally. Nevertheless, our condition guarantees that
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the state equation exists in an open neighborhood of each point in TRn and

that the trajectories can be continued indefinitely in forward time and

can be interpreted therefore as a smooth "flow" on a "differentiable

manifold" [4]. The concept of a pseudo-potential function allows a non-

complete n-port to be expressed as the pseudo-gradient of a pseudo-hybrid

content t3] to be defined explicitly in terms of topological matrices and

the elements' constitutive relations. This pseudo-hybrid content allows

us to formulate the state equation in a form analogous to that obtained

for a complete network. Using several identities1 derived in [3], we were

able to derive a complete stability criteria for non-complete networks.

Most of the results in this paper are stated first for networks con

taining uncoupled two-terminal elements for simplicity. After it is

obvious that the method of proof remains applicable in the more general

case, they are then extended to allow couplings among various elements.

In this paper, a two-terminal resistor is characterized by either

i = i(v), - « < v < °°, orv = v(i), -°° < i < «>, where v and i are the

branch voltage and current of the resistor,respectively, and v and 1 are

continuous functions. In case the resistor is characterized by i = i(v)

(resp., v = v(i)), it is said to be voltage controlled (v.c.) (resp.,

1

These identities depend on a rather remarkable topological property
for resistive nonlinear networks which permit the differentiation operation
to commute with the composition operation in the sense that

9f(x,y) 9f(x,h(x))
8x Y=h(x) 3*

It is easily seen that this commutative property is not valid for arbitrary
functions. Its validity here rests on the additional constraints imposed
by KVL and KCL.
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current controled (c.c.)).

Let R be a c.c. resistor, define the quantity G(i) = I v(x)dx as
a A* J°

the content [5] of R and the quantity G (i ) = I v(-x)dx as the conjugate
Jo

content of R, where i* = - i. Notice that dG/di = dG"/di = v(i) .

Similarly, let R be a v.c. resistor, then the co-content [5] and the
.v

conjugate co-content of R are defined by G(v) = I i(y)dy and G (v )

= I i(-y)dy, with v = - v, respectively. Again, dG/dv = dG /dv = i(v).
Jo

Without loss of generality, multi-terminal or multi-port resistors

will be treated as coupled two-terminal resistors. This will allow our

representing these elements in the form of a graph made up of two-terminal

branches and hence standard results from network topology remain applicable.

We assume that each multi-terminal or multi-port resistor is either voltage-

controlled or current-controlled. Independent sources are considered as

two-terminal resistors. In particular, a voltage source is considered as

a c.c. resistor having a well-defined content function and a current

source is considered as a v.c. resistor having a well-defined co-content

function.

ive m-port is said to be reciprocal if the line integral

5R

1 -^~R^d?R exists* It: is wel1 known that such integral exists if, and only
JO

if, the Jacobian matrix Dh(z )/8z_, is symmetric. In the special case where

R is v.c, the above integral is called the co-content of the multi-terminal

resistor or multi-port R and is denoted by G(v ). Similarly,
i -R

G

and R is c.c..

A f*~R
(iR) = 1 M^'diR is called the content of R when the integral exists

->



The conjugate content and co-content of R is defined in the same way

as that for ordinary resistors.

For convenience, the symbols G, G, G*, G*, H, Q and^LJ are all
reserved for scalar functions in this paper. Vectors are denoted

by lower case bold-face letters while matrices are denoted by capital

bold-face letters. We use il •II to denote the norm of either a vector or a

matrix while we use |s| to denote the cardinality of a set S. In general,

any convenient norm can be chosen. Finally we use-p(A) and^\|(A) to

denote, respectively, the range space and the null space of a matrix A.

II. COMPLETE STABILITY OF COMPLETE NETWORKS

In this section we shall present a fairly general sufficient condition

which ensures complete stability for complete networks [1,3]. The extension

to the more general noncomplete networks will be given in the next

section.

2.1 The n-port Formulation.

Let _/v be a network containing capacitors, inductors, two-terminal

resistors and independent sources. For simplicity, let us first assume

that the resistors are uncoupled. Let U-, be a subtree made up of "com

posite" branches each of which consists of a capacitor and all v.c. re

sistors (possibly none) connected in parallel with it and let oC^ be a

subcotree made up of composite branches each of which consists of an

inductor and all c.c. resistors (possibly none) connected in series with

it. The composite branches are shown in Fig. 1. If we extract all elements in

J-. and Us9 and consider them as loads connected across an n-port N, then we say N

is complete if there is a subtree J„ made up of c.c. resistors such that

^J = £}.. U QJ7 form a tree ofi^My and if all remaining elements are v.c. re-
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sistors forming closed loops exclusively with branches in J . Lf we de

note these v.c. resistors by the subcotree ©o, , then <^£ = g_, U ^^ Is the

cotree associated with £J. It follows from the completeness of the n-port

N that the fundamental loops associated with branches in 5^ contain branches

from O, only, i.e., v +B V =0, where v and v denote the branch

voltage of the elements in <i and w, > respectively, and B denotes an

1 x ~*A
appropriate submatrix of the following fundamental loop matrix B:

B =

0 1.

1

B^ C)
~Vl ^2

1

B 3 w
2 1 2 2

-jL

where the upper right-hand corner submatrix is alway: a zero matrix. If we let

i » v , i , and v denote the current and voltage vectors for elements
~£ 4, -3 ~0

j j j j
in ^t,. and O ., respectively, then we can write:

J J

KCL: - C — v
- dt ~

13 i ° (-3 v )+i /v |-B i (1)
111 111 ir 212

KVL: - L — i
~ dt ~£ v M + B

2 2 2 2 2
(e. - „ v ° (B' J ) + B (2)

where C=c(v Jand L=Lji jdenote the incremental capacitance and
1 2 *

* Ainductance matrix, respectively. Letting i = - i , we define the
•C "si.

/ * v ' 2 2hybrid content Hiv ,i ) of the complete n-port by

22 2

-7-
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where 6 Yy )= £. Mv,) (resp., G^ (v \ = £ G.(v.)) denotes

the sum of the co-contents of all v.c. resistors in &C (resp., Jji) » a

* /*xA EG* (i*) (resp., G* (.1* )= £ G*(i*)) denotes the
2 2 J *2 * 2 3 2 _Psum of the conjugate contents of all c.c. resistors in 3b (resp., «jf?).

The symbol "©" denotes the composition operation; for example,

CI (v J= G ° /-B v ). Observe that the first four terms in (3) are
ii i x i i i

potential functions associated with the resistors, whereas the last term

does not involve any constitutive relations.

Now consider the general case where the resistors are coupled to each

other. The hybrid content Hiy ,i J is well-defined so long as the

couplings are reciprocal; i.e., each internal resistive m-port is reciprocal.

For example, assume the resistors in <£ U J are coupled to each other.

Instead of summing separately the co-contents of the individual resistors in oO

and CL, respectively, the term G °(-B v )+G (v )in the definiti
. * v 1 11111

of H/v ,i ) in (3) will be replaced by a single co-content function
1 2

G (v ) = E G./v ,v \
*lWc,l i J N 1 r

1 1"1 lS Tco-content of an m-port whose branches are in 3L u v^. The grouping of

the content and co-content functions depends on the actual coupling among

the resistors.

In contrast to the content and co-content functions in H, the term

j l B v is independent of the branch characteristics and is purely

2 2 11 . .
topological. This term has an important physical meaning: Partitioning

the network ^\| =̂ V), u^\l2 where^! contains all branches in CL1 u<JX and
^\| contains all branches in ^2 Uj^ the term i^ B Y^ is then

? 2 11
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equal to the instantaneous power delivered from^\|_ to li_ [6,7]. See

Appendix A-l for a rigorous proof.

as follows [3]:

Using the preceding explicit definition for the hybrid content

i \ . the state equations of any complete network can be expressed

V

~C7
d l

dt

i

C"1 v

-1 .*
L 1

av
H/v ,i \

L */

(4)

Observe that the "complete" resistive n-port N is described by the

gradient of the hybrid content H. The matrices c(v ) and lA* ) in
r/\ ] 2(.4; are assumed throughout this paper to be symmetric and positive definite

Ideal transformers located in 3& or C7 of a complete network may

also be included in this formulation [6,7]. Since the characteristic of

an ideal transformer introduces an algebraic relation among the network
#

variables v or i , each transformer reduces the number of network
^1 2

variables by one. Furthermore, since transformers are nonenergic [8],

no extra terms will be introduced into the definition of H. A discussion

on the inclusion of ideal transformers on a complete network is given in

Appendix A-2.

Remark. Given a network, since the capacitive and the inductive branches

are fixed, it is relatively easy to check when it is non-complete. For a

complete n-port, KVL and KCL yield

Comparing (4) with the Brayton-Moser state equation, we see that our
hybrid content is identical to the mixed potential of Brayton and Mos
[1].

er
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v + B v = 0 and i - BT i =0.
"*i "Vi A " A ~<?2 ~*2 "

Therefore, any branch which forms a loop with branches in U- (the capaci

tive branches) must be v.c. and must be assigned to &L . Hence, our first

step is to check each branch which forms a loop with %J . If there is at

least one such bran h which is not v.c, the n-port is non-complete. Sup

pose now that all such branches are v.c, and have been assigned to c?£, .

We then check the remaining branches other than those in ^o9. These are

resistors which should be assigned to U«. Each of them must form a cut

set with^£? and hence must be c.c. Again, the n-port is non-complete if

there is at least one such branch which is not c.c.

2.2 Criteria for Completely Stable Networks

Let us now derive some complete stability criteria for the network

described by (4) with the help of the following well-known theorem:

Theorem 1. Complete Stability Criteria [2]

Consider the system

where f: ]Rn -> IRn is continuous. This system is completely stable if

there exists a scalar function V(z): ]Rn -• H having continuous first

partial derivatives and satisfying the following properties:

(i) the trajectory derivative V(t) < 0 for any initial state except at

the equilibrium states.

(ii) all solutions are bounded.

-10-



Applying Theorem 1, we are now ready to derive the following suffi

cient condition for complete stability.

Theorem 2. Let^Vlbe a complete network containing two-terminal uncoupled

istors described by (3) and (4). Then^\|is completely stable ifres

the following conditions are satisfied:

(i) All elements in C79 are linear and positive resistors, i.e.,

v = p i where R is a constant, diagonal and positive definite matrix.

2 2 2 2

(ii) All elements in series with the inductors in dL^ are constant voltage

sources , i.e., v = E (see Fig. 1). Furthermore, E
*2 2 2

«(b )
*232

where -P (3 \ denotes the range space of a

(iii) V(*£a)c <*(*„).
2 1 2 2/

2 2

A T' T

(iv) Let R = B„ R 3"^ and R = the generalized inverse of R,
-si z "j ~.£ a

2 2 2 2 2

as defined in Appendix A-3,then

i i 2
llKll2 £ 2 IL Z R1 B^ C

2 1

< 1 - 6 for son'- 6 > 0

where IIkII denotes any convenient norm of the matrix K.

(v) All solutions of (4) are bounded.

Proof. See Appendix A-3.

Condition (ii) requires that any element in series with an inductor
must be either a short circuit or an independent voltage source.
Moreover, there must exist a vector v such that ^ y = p

"0 "if 3 -J •£ '
2 2 2 2 2

Observe that a short circuit or an independent voltage source is a legitimate
element for c2f2 because each can be considered as a special case of a current-
controlled resistor.

-11-



Remarks:

1. Theorem 2 is an extension of the result in [1] in that instead of re

quiring the rows of B to be linearly independent, we onlv require that

^P(B )C ^(B ). In the special case where the rows of B
"V"*2V W2V A32

are linearly independent, then condition (iii) and the condition

I „-l

h e<%:,.)
2 2 2

obtain the result in [1].

are a lways satisfied. In this case R = R and we

2. In Theorem 2, as well as in several subsequent theorems, we require

that all solutions of the network be bounded. This hypothesis is satisfied

by most networks of practical interest and can be ensured by rather mild

conditions, see, for example [9-10].

3. The condition E e-k? (B I is also rather weak. In fact, net-
~JL \ d 3 /

2 2 2

works which do not obey this condition can usually be transformed into

equivalent networks which do. For example, suppose "e" is a constant

voltage source connected in series with a resistor R , and suppose our

topological algorithm for partitioning 0 - <J U J requires that R be

assigned to CJ0 and that the voltage source e be assigned to £L . Applying

the v-shift theorem, the voltage source e can be shifted in series with

the remaining branches of the fundamental cut set associated with R ,

thereby creating a source vector e . Since the n-port is complete,

T ^?1 = B i the remaining branches in this cut set consists of branches
~a ~J 2 ~£

2 • 2 2 2

/ / rti . rp

in <£n only . Since i_ = ( B ) i where ( B I is the k th

k X2J27k *2 ; SJ27k
T

row of B , it follows that e „
•*2sr2 ~*2 \ ~ly<J?)k J S *•[ t.232)

A specific example illustrating this transformation property is given
in Example 1 after Lemma 1.
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We
have demonstrated therefore that voltage sources in series with resistors

in £J are actually allowed in so far as conditions (i) and (ii) are con

cerned.

4. It is important to ensure that either the rows of B are linearly

independent, or, if they are not, that Q(b )c ^fe ). The following
lemma provides a simple topological algorithm for checking either one of

these two conditions.

Lemma 1. Let ^/\j be a connected network which has been partitioned into

oL-i> <3.9, v-Z-i» and sJ j in accordance with the preceding rules.

(i) Leti^A) be the sub-network obtained by shrinking (short-circuiting)

all branches except those belonging to ^9« Let b' and n' be the number

of branches and nodes in oM > respectively, so that ^AJ has b' - nf +1

independent loops. Then the rows of B are linearly independent if, and
2 2

only if, b1 - nf +1 = \ctL~\, where |<X9| denotes the original number of

branches in «y£9* Equivalently, let^vJ be the sub-network obtained by

shrinking all branches in (J. U J£ Then the ruw^. of 3 are linearly
wl *~1 ~£ 3

independent if, and only if, \Jv contains no loop formed exclusively of

branches belonging to oC9«

(ii) t-^fMB ) C^f^te j if, and only if, upon open-circuiting the
2. 1 2J2

branches in ^ and \J , the current i =0 identically, i.e., branches
. n ~J1
ln Kj i are not contained in any loop in the reduced network.

Proof. (i) It can be shown by a straightforward though somewhat tedious

procedure that the rows of the submatrix B span all loops of the reduced

Ij' .,?2 2
graph ^v in the sense that each loop inJ\j is a linear combination of

-13-



rows of B .It follows from basic graph theory that B must contain

at least b' - n' + 1 linearly independent rows. Now suppose all rows

of B are linearly independent, then since each row of B designates
"X 3 ^oJn

2 2 1 2 2
one loop in^VI , there are exactly \X | linearly independent loops in

^Al' and hence \£ |=b1 - n' + 1. Conversely, suppose b' - n1 +1= |^2I-

Then all rows of B must be linearly independent.

Now, let us prove the equivalent statement. Let b" and n be the
11 11"

number of branches and nodes inJVI , respectively, so that J\l has

b" - n" +1= \jt Ilinearly independent loops. SupposelAI contains no

loop formed exclusively of <£2 branches. Then, shrinking each d2 branch

will reduce b" as well as n" by 1, and hence bf = b" - |£2I and

n' =n" - |;£J. Consequently, b' -n' +1=(b"-|^2|) - (n"-|^2|) +1

=b" -n" +1= |al9|- Since ^A) reduces to Jli upon shrinking all branches
in £ , it follows from the first part of this lemma that the rows of •/

3 are linearly independent. Now, conversely, suppose the rows of
2 2 ll"B are linearly independent. We claim thatJV) contains no loop formed

exclusively of <£2branches. Suppose not. Then, shrinking each ;£2
branch will reduce b" but not necessarily n" by 1. In particular, let

u k b denote £n branches which formed a loop exclusively by
V V * P 2

themselves. Let us first shrink all branches in this loop except b^ and

b0. In this step, b" and n" both decrease by 1 for each short-circuited
p

branch. However, since the remaining two branches b^ and b& now formed a

loop and hence shared a common pair of nodes, it follows that if we

shrink also these two branches, then b" decreases by 2but n" decreases ^

by only 1. Hence, we have b' =b" - |^2| and n' > n" - \£ 21 . Consequently,

b» -n' +1<(b"-|jC2|) "(n"-|^2|) +1=b" -n" +1=|*2|. But then
the first part of the Lemma would imply that the rows of B are linearly

2 2

dependent; and we obtain again a contradiction.

-14-



(ii) Write KCL as follows

-B
T

Vi
-B1 1

2 1 1 1

^A \*2

X

= 0,

0232

Now to prove sufficiency, suppose <£ (b, )̂C^{\a)' ThiS ***1±e*
that JU(?^ )DJi(^ )̂' We wish t0 pl

2W1' 2W2'
>rove that i =0 whenever

-a
1

branches in ^ and ^2 are open-circuited. Since i =0, the second
rn ^

equation in (5) implies that - B i =0. This means that
2 2 2

(5)

T
i +1 = 0-BT i =0. Thus the first equation in (5) becomes -B^ ^ l + l^

^2ai ~^2 ~ illl
But i =0 and hence i =0 identically. IL reuiains to pruYe

necessity.

Suppose i =0 identically after we have open-circuited all branches

in
e existsdY and J2 butJU(b^ )"^ ^(?3 t)* ThiS imPlies that ther

i ^ 0 such that
~*2

T - T
B i = 0 but B i t 0
~i232 ~x2 " "rf2o1 ~*2

Substituting these relations into the first equation in (5), we obtain

B i =i t 0, acontradiction. Hence oM(B )D ^(B- q J
2*^1 2 ~ "" ~ ~2 1 2 2

2 * / \nd hence <£(g ) C <£>(b, ) .
*23,

5. It can be easily shown that if the matrix R is non-singular, then

condition (v) can be replaced by the growth condition

-15-



:. V

*231 A
+ n v + G ° /-B a v^ \ -> «s as

ai -^i i

V

given in [1]. This condition is sufficient to guarantee that

H (x) ^ * as Hxl ' h, •%)
In the case where R is singular, however, this property cannot be guaranteed

by the preceding growth condition. Nevertheless, from a practical point of

view, condition (v) is preferable because it is usually satisfied for most

networks containing eventually-passive elements [10].

Example 1. Consider the circuit shown in Fig. 2(a). Assume that the

capacitor and the three inductors are linear with C > 0 and L. > 0, j = 1,

2, 3. Assume also that resistors R and Rfi are linear and positive. Since

the voltage source E is not in series with inductors, let us apply the

v-shift theorem to the independent source E and obtain the equivalent

circuit shown in Fig. 2(b). Pick £7 ={CllR^}, 02 =(R5»R6h «^x = <t>
(the empty set), and ^ = {L -E, L2, L -E}. Labelling the branches in

the order o6 , 0 and U , we obtain the following fundamental loop

matrix:

B =

&

Therefore,

0

-1

1

1 1

0 1

1

a, a.
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£ 3^2J2

1 1

0 1

1 0

and

2U\

As an illustration of the application of Lemma l(i), we observe that

there is a loop made up exclusively of branches belonging to £0 in the

reduced network _A)' and hence we can conclude that the rows of B - are
2 2

not linearly independent. This conclusion is easily verified from the

above matrix. Observe that even though the rows of B are not linearly

*2J2

independent, we have nonetheless ^(^y 3 )C \^y n/ Tnis conclusion

follows immediately from Lemma l(ii). By hypotheses, R = diag(R ,R )

"72
is a positive-definite and diagonal matrix. Moreover,

v1 = E = E[l o i]T e<R(3
2 2 2 2

where the "prime" denotes voltage across the voltage source

(i), (ii) and (iii) of Theorem 2 are satisfied.

Consider next

R^B R- 3T
" di\ A A°2

R5 + R6

Hence conditions

We can compute R once R_ and R, are given. Then, for a fixed value of
DO

9

C, an upper bound for the L.'s can be found by requiring HkII < 1 to ensure

complete stability. As a numerical example, let Rc = R, = R = 1 Mil; L. = L,
j 6 i

i = 1, 2, 3 and E = 0. Furthermore, let i. (•) be defined as in Fig. 2(c). i-e.,
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r~ Gv4 > lv4l < 2

VV = < Cv4 " 2G' v4 1 l
Gv. + 2G, v. < - 1

v- 4 4 —

where we assume that the value of G is such that RG = 1-e, 0 <• t

I
Using the definition for R in Appendix A-3, we obtain

RX=^
9*10

2 11

15-4

1-4 5

and K =

10

9 'c 19

Letting IIKII < 1, we obtain L < 10 C.

To see how conservative this bound is, let us derive the condition

which allows an oscillation within the range of the negative resistance.

Hence, let us suppose the circuit oscillates with an amplitude of v, less

than 1. In this case i, = - Gv, is linear. The characteristic polynomial

of the linear circuit is given by

p(s) = Ls[L2Cs3 + (4RLC - L2G)s2 + (3R2C + L- 4RGL)s + (3R - 3R2G)]

The zero s = 0 corresponds to dc current flowing around the loop of in

ductors. We now find conditions on L such that p(s) has a pair of imagi

nary zeros. Applying the Routh Criterion and using our assumption RG = 1-e,

we found that when L = RC/G, p(s) = 0 has a pair of imaginary roots

+ j
3eR

4RLC-L G

. Hence, this network is not completely stable when

Here we define the norm of the vector K= [k k2 k3] by M = max |k. j-
To obtain the sharpest estimate, it is desiraDle to choose this L -norm

whenever K is a vector because it gives the smallest value of all L -norms.

-18-
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1 9

L > RC/G = 10 (l-e)C. Since e > 0 can be chosen arbitrarily small in

magnitude, this bound can be made arbitrarily close to the upper bound

1 9

L = 10 C for complete stability. Hence the bound derived earlier for

this example is the best possible that can be obtained.

Interchanging the roles of capacitors and inductors, we can easily

state the dual version of Theorem 2:

Theorem 21 Let o\l be a complete network containing two-terminal uncoupled

resistors described by (3) and (4). Thenc^Jis completely stable if

the following conditions are satisfied:

(i) All elements in §L are linear and positive resistors, i.e.,

i = G V where 0 is constant, diagonal and positive definite matrix

A A A A
(ii) All elements in parallel with the capacitors ia C7-, are constant

current sources, i.e., i' = I (see Fig. 1). Furthermore,

1 ~ai

(iv)

then

ii~ ii2

*8»)•
11

A riT .1 A
Let G =

*131 ^1 "^1*1
and G = the generalized inverse of G,

2 I T
C G B L

" i. a -
2 1

III 2
2

< 1 - 6 for some 6 > 0,

where IISII denotes any convenient norm of the matrix S.

(v) All solutions of (4) are bounded.

Brayton and Moser have demonstrated that their bound approaches the best that
can be obtained in the 1imiting case of an inTinite network [1].
However, their results can not be applied to this example because the
matrix R is singular which in turn is due to the fact that the rows of the
matrix B . are not linearly independent.

~*2J2
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Let us now generalize Theorem 2 to allow coupling:

Theorem 3. Let J[\ be a complete network described by (3) and (4), where

the resistors in 0n> or the resistors in ^ U C7 ,may be coupled to

each other within each set, so long as the coupling remain reciprocal.

Then ^Al is completely stable under the same conditions as in Theorem 2

provided all resisi ors in 02 are linear and described by v =R i„>•J2 -o2 -q
where R is symmetric and positive definite.

J2

Proof. The proof follows similarly, mutatis mutaudis»from that given

for Theorem 2.

Remark: A dual generalized version of Theorem 2' can obviously be stated.

III. COMPLETE STABILITY OF NON-COMPLETE NETWORKS.

In general, the capacitor voltages and inductor currents do not form

a complete set of variables for most networks, i.e., the n-port N obtained

by extracting all capacitors and inductors as external ports is not complete,

The network equations will then take the following form:

dt
25 = ^ (x, y_)

f2(?> Y) = 9>
n + n n

with [x(t ), y(t )] = [x , y ], where f : IR

n + n n

fo:mX y-^IRy,n +n =n. By a trajectory through (x , y ) of the
~i x y '— "

above system we mean a function [x(t), y(t)], t >_ tQ which satisfies Eq. (6)

and that [x(tQ) ,y(tQ)] = [xq, yj. Similarly, by an equilibrium sta^te we

mean a point [x, y] <= lRn on the trajectory such that l^ (x, y) = 0.

-20-
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Eq. (6) defines a differential-algebraic system. It is important to notice

that the "initial state" [x , y ] £ IR is generally not arbitrary. A
-o ~o

vector [x , y ] £ JR which satisfies KCL, KVL and all the branch charac-
~o *o

teristics is henceforth called a feasible state. Obviously, any valid

initial state must be feasible. The following special case of Eq. (6) is

of particular importance.

Definition 1. A system described by (6) is said to be locally solvable

if, given any feasible state [x, y] £ IR , (6b) is solvable for y in terms

of x in a neighborhood B = B x B of [x, y] . That is, there exists a
~ x y -

n n

continuously differentiable function s: B C ]R x •* b C ]R y such that
x y

y = s(x) for all [x, y] E B.

Locally solvable systems are defined by "implicit" differential

equations with initial states restricted by a set of algebraic equations

in (6b) [4]. For locally solvable networks, the state equation can be

written in the form

dx

drT= ?X(X> f<x>)
n n

over a neighborhood B C ]R x about each point x^ffi x where local

solvability holds. Moreover, the locus of y(t) about the corresponding
n

neighborhood B C IR y is given by

at= ~ir~ ^l(x> ?(x))

n + n

Hence for locally solvable systems, the trajectory (x(t) , y(t)) in IR x y
n + n

is uniquely defined through each point (x, y) G IR x y. If we define a
n + n

scalar function V(x, y): ]R y + JR , then the trajectory derivative

defined by

-21-



9V(x,y) 3V(x,y)
v(t) = —^ - x + —^r^ y =

ax 3y

3V(x,y) 3V(x,y) 3s(x)

3x By 3x
f^lx ,s(x)j

is also well defined for all time t > t . Hence the same proof for the
— o r

Complete Stability Criteria in Theorem 1 can be used to prove the following

result:

Theorem 1'. Generalized Complete Stability Criteria

The locally solvable implicit differential-algebraic equation (6)

is completely stable in the sense that all trajectories tend to an equilib-
n + n ,
xv i

rium state if there exists a scalar function V(x,y): IR -»• K. having

continuous first partial derivatives and satisfying the following properties;

(i) the trajectory derivative V(t) < 0 for any feasible initial state

except at the equilibrium states.

(ii) all solutions are bounded.

Remark.

Condition (ii) of Theorem 1' can be replaced by the following

sufficient condition:

V(x, y) -»- » as II (x, y) 0-* °°

3.1 Complete Stability of RC or RL Networks.

Before we deal with the most general case, let us consider networks

which contain only one kind of energy storage elements, i.e., either

capacitors or inductors. Let eA) be a reciprocal network containing

7The function s(x) may of course have to be updated from time to time by one
which is valid~over the appropriate neighborhood of points along the trajectory
This is because s(x) is only a local coordinate system [4].
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capacitors, v.c. resistors and constant current sources. (This implies
that any constant voltage source must be connected via aplier-type entry in

series with some v.c. resistor and considered as part of acomposite

v.c. resistor). If the capacitors do not form loops, then one can always

pick atree J=0y U02 "here J1 consists of capacitors only. LetiZ?
be the cotree corresponding to J. If we label the tree branches before

the links, we obtain the following fundamental cut set equations:

0 Q

'Vi ~°A A*

i 1 Q

•^1 'Vl *32<

-1

~3

= 0

where i is the current vector flowing out of the positive "erminals of

the capacitors. Now, let us extract the branches in J as external ports
and define the pseudo-co-content Q of the n-port Nas [3]

9(V \)' 6(V \) Iv = Q V

= G Q

lwhere v ^ m1 and y ^ IR

the resistors in

the above definition of *J that

3 \
<£ UJ may be coupled to each other. It follows from

Q(Y,.0-9
a^

\ and f 1[9* ^• -t

1 = 1«

-23-
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t-^— Q h , v ) = i + q i = o.

Since vj consists of capacitors only, i =-C(v j/dv /at); h

1- v =- C'^V ) -r-?— Q/V ,V \,dt -^ - -^ 3v V^ ~32)

ence

(7)

9(Y ,Y )=0. (8)
3v <3 V~j ~J
~72 Ul Jl

-1As usual, C (v ) is assumed to be symmetric and positive definite.

For the most general case, a trajectory may not exist corresponding

nl+n2
£ IR . Moreover ,to an arbitrary feasible initial pointfv , v 1

IA Al
even if a trajectory through jv , v j exists, it may not be unique.

L ai "J2J0
If the system is locally solvable, however, a unique trajectory always

exists for any feasible initial point |Y ,v •
L Ji a2-J0

Lemma 2. The n-port N is locally solvable if the matrix

M£ri— i (v )+ Q- 3Ya -a2\-oJ ~o2t
2

[v \\

L47 ^(V}
n +n2

is nonsingular for all Iv j v I^ 1

QT

Proof. It follows from the implicit function theorem that the implicit

algebraic equation (8) is locally solvable if 3 Q / 3v is nonsingular.

By direct calculation, we obtain M = 3 y/3
'3V3
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Let us now consider the complete stability of capacitive n-ports

Theorem 4. Consider the non-complete nonlinear RC network JJ described by
;tric and positive definite. Then ^\JC(v )iis symmel(7) and (8), where C^

is rompletelv stable if the following conditions are satisfied:
(i) Equation (8) is locally solvable for v^ as afunction of v,

2

(ii) all solutions are bounded.

Proof. Since N is
locally solvable, it is described by a set of implicit

differential equations. Choosing Q(v ,V^ )as the scalar function
3} ~2

in Theorem 1', it suffices to show that Q(v^ ,v^ j<0 for
r vie m"1 2, except at the equilibrium points at which it vanishes
L-3,* -a2J
Now, applying (7) and (8) and recalling that C(y-j >Is positive-definxte,

we obtain

9-[VYaJ
3V. 9(v*J

3v 9(

1 2

^1 "V

h 3̂ 9(Vy"0 ~0o
1 2

all

i

J

--[^(v^r^Mt^vwi13v

-a.

Notice that the equality holds only when 3Q (Y-j 'Y-, )/b^
i.e., at equilibrium points.

3V = 0

-25-



Let us now consider a Corollary whose hypotheses can be easily

verified:

Corollary 1. A non-complete nonlinear RC network ^K\ is completely stable

if the following conditions are satisfied:

(i) All non-monotonic resistors are connected in parallel with the

capacitors and are possibly coupled among themselves only.

(ii) All other resistors are strictly increasing,

(iii) All solutions are bounded.

Proof. Consider each parallel combination of a capacitor and a non

monotonic resistor as a composite branch and extract it across an external

port. Let the remaining n-port N be described by

-L

1 3V„
°l A

°'(V \)

97v , v ) =o
'Y- ~ ^ -32-

as was defined in (7) and (8). Observe that we have added a "prime" to

Q in order to distinguish it from the overall resistive n-port which
include the non-monotonic resistors. Hence Q(v^ , v^ J= tj N^ , Y^ j +G^v J
where g(v ) is the co-content of the non-monotonic resistors across the
capacitors! Equations (7) and (8) now assume the form

dc- y.. --^- Q(Ya.YJa)
~dt A d-ax

•26-



3_
3V

J? * - -29(VVt%'\)
where the second equation involves only strictly-increasing resistors.

Hence the matrix M in Lemma 2 is nonsingular and the network is locally

solvable. It follows from Theorem 4 that the network is completely stable.

a

Remark.

The concept of local solvability is introduced to ensure the existence

of unique trajectories for all times. If this condition is not satisfied,

a trajectory may not be defined beyond some finite time. To see this

consider the simple circuit shown in Fig. 3(a). Let C = 1 F , R = - 1 ft

1/3 ~"7and let R~ be defined by i = v_ . Choosing {C, R_} as yj , we obtain

the equations:

vi = v

v2 - v2 + v = 0.

Observe that this circuit is not locally solvable at v = + 1//J. Indeed,

the condition of Lemma 2 is violated at the^e two points. To investigate

what happens when a trajectory reaches these points, we plot the second

3
equation V- = v - v« in Fig. 3(b). Observe that since v > 0 in the upper

half plane and V- < 0 in the lower half plane, the trajectory in the vicinity

of points A and B must converge toward these points in finite time t*.

Consequently an impasse occurs whenever a trajectory arrives at either A

or B and the solution no longer exists for t > t*. To overcome this dilemma,

one could either modify the circuit model by introducing a parasitic in-
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ductor in series with the resistor R , thereby increasing the order of

the state equation [11], or one could postulate a jump hypothesis [12]

and obtain a discontinuous oscillation. In either case, the circuit

oscillates and is therefore not completely stable.

A dual of Theorem 4 can be easily formulated when inductors are the

only energy storage elements. In particular, let oM be a network containing

inductors, c.c. resistors and constant voltage sources. Assume the

inductors do not form cut sets among themselves. Let £^ be the set of

inductor brnaches and let £ =^ U/2 be acotree. Denote the

corresponding tree by 0. Then the pseudo-content (j(i ,i^ J of the
Xe(l 2

n-port N obtained by extracting all cotree branches as external current

ports is defined by [3]

/fl
BT

-*.

V ' V

/

where B = [B, 1] is the fundamental loop matrix of o\). We will state the

dual theorem without proof:

Theorem 5. The non-complete nonlinear RL network ^Vl described above is

completely stable if the following conditions are satisfied:

(i) The incremental inductance matrix W*, )is symmetric and positive
definite.

(ii) The network is locally solvable for i as a function of i .

(iii) All solutions are bounded.
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Remark. In Theorem 4 and 5 we assume there are no loops of capacitors and no

cut sets of inductors, respectively. In case these conditions are not

satisfied, techniques are available for eliminating any such loops or cut

sets. See [9] for details.

3.2 Complete Stability of RLC Networks.

Let us now consider networks which contain both capacitors and inductors.

For simplicity, assume first that the resistors are uncoupled, and that

there are neither capacitor loops nor inductor cut sets. Let us first

assign all capacitive branches (i.e. composite branches of capacitors with

v.c. resistors in parallel) to a subtree \J and all inductive branches

(i.e. composite branches of inductors with c.c. resistors in series) to a

subcotree<^9. To complete the tree, we add as many v.c. resistors as tree

branches, forming another subtree 02' '^ie remaining subset of v.c. resistors

which cannot be included in the tree (because they formed loops with branches

in. O-i and U2) must be assigned as elements of the cotree JL and will be

denoted by od • Let us next fill up the tree with c.c. resistors and denote

them by \J so that J = J, U >J U J Whatever branches that have not yet

been assigned are necessarily c.c. resitors which we denote by dC~. Clearly

<?C = oC. U JO U X«. To summarize, vJ, = {capacitive composite tree branches),

\J2 = fv«c tree branches), 0^ = {c.c. tree branches),*^, = {v.c. cotree

branches). oL = {inductive composite co-tree branches) and X„ = {c.c.

cotree branches). The fundamental loop matrix B is then given by:
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^.i A~

11

1

ol, 2 vJ i

3 3

B

1 1

B

A3x

B

^3J1

J2 03

B

12

2 2

?<3
3 2

1 3

B
"t 3

2 3

B

3J3

Upon defining the pseudo-hybrid content j-jj by [3]

*.

914(v , i* , v , i* ) =G - (_B^ v - B v ) +G* (i* )
111 122

+ G (v ) + G* o/b^ „ i* + B^ i* ) + G (v ) + G* /i* \

+ i*To(B v + B v ) + i*To/B v + B^ ^ v \
V"*2V*i 2 2 2 3 3 1 1 3 2 2

we obtain the following system of differential-algebraic equations for the

network cJV):

»v~o
xtt

i(ii)2 2 d^
3i

3V
~2

-9&= 0and-^-9J= 0
3i*

(9)

As will be shown latter, the resistors in ^1 U ^2 U^1 and those in

0„ respectively, are allowed to be coupled to each other. In this case,

the partial sum & + 6 + 6, in ;-jr) will be replaced by
cr. x *

A */ 1 2 \%u3 u* - g(y3 >Ya .Y^ )
1 2 1

v = _B V -B V

-*1 "Vl "Jl "V2 ~J2
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Theorem 6. Let ;_AJ be a non-complete nonlinear RLC network containing

uncoupled two-terminal resistors described by (9), where the incremental

capacitance matrix c(v )and the incremental inductance matrix L^i* j
1 . 2

are assumed to be symmetric (not necessarily diagonal) and positive

definite. Then^\l is completely stable if the following conditions are

satisfied:

(i) There exists atree J =C^ U32 uJ3as defined above ,where C/j
consists of linear resistors which may be coupled to each other; i.e., let

v = R i , where R is a symmetric and positive definite constant matrix,
~0 "3"0 3

3 3 3 3

(ii) All elements in <£, and all elements in series with the inductors in

£ are constant voltage sources, i.e. Y,
2 a

= E and V - E

more,
E

3 ->

r b

V "V3
B

**3*3J

(iii) B = 0 and B = 0.
~*2°2 " ~*3a2

(iv)

<B

B

A'l

B

3 1

(v) Let

c<£

B

~*2J3

B

R^

B
*. 3

2 3

B

3 3 -J

\

1/

T T
B B

~V3 "V3

and let

R1 = the generalized inverse of R as defined in Appendix A-3.

-31-

Further

Partition R



as follow:

s1-
?ii

?22

ere R is of dimension \^2\ x \ZL 2\ > thenwh

IIkII2 ^ IIl 2 R* B C- -11 -^71 -
< 1 - 6, for some 6 > 0.

(vi) The system is locally solvable and all solutions are. bounded

Proof. See Appendix A-4.

Example 2. Consider the circuit shown in Fig. 4(a), where R„, R,, and R

are v.c. resistors. Since R.. is linear, shift E by v-shift theorem as in

Fig. 4(b). Let Zl1 ={C-R5h J2 =<R3>' 33='R23\f so that
J = J U vJ U ^ is a tree. The associated cotree &>• = o£ U o£ U ^C

12 3 a

is partitioned as follow: ^ ={R4}, ^2 =(L-E^ and <^3 ={E2}'
The fundamental loop matrix B is given by:

B =

A ^ ^3 A A A
1 -1 1 0 0

1 0 0 -1 1

1 -1 0 1 0

It is easily verified that conditions (i) to (v) in Theorem 6 are satisfied

Elements in {•} are written in the order of their branch numbers, thus
R is numbered prior to R^
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Hence, the circuit is completely stable if the system

is locally solvable and if all solutions are bounded. Notice that

in this case B = 0 and condition (v) is automatically satisfied by

default.

To illustrate the significance of condition (v), consider the next

example.

Example 3. Consider the network shown in Fig. 4(c), where R^, R^, and

R are non-monotonic v.c. resistors. Following the tree selection algorithm

described earlier, we choose -J, = {C^^^R^), O2 = ^R3^ and ^3 = {Rx»R2^

so that 3 = ^7-, u 0? u C3 formed atree. Partition the associated

cotree ^ =i U£ 3U^ with ^ ={R4), i2 ={Lj-E.I^} and ^3 =4>•
The fundamental loop matrix B is given by

*1 °^2 ^1 ^2 ^3
100-1 01 00

JL

010 0-10-11

001 1-10 10 }
Observe that conditions (i), (ii), and (iii) of Theorem 6 are satisfied

by inspection. Similarly, condition (iv) is also satisfied upon application

of the following Lemma 3. To check condition (v) the following calculations

are needed:

R =

-1 1

-1 0

_ I _ -1 1_
£ 11 - ~ R,R

1"2

1
—^

-1 R1+R2 Rl

1 0 Rl_

•Rl Rl+R2
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K =

R1R2

~R1C1 Ll

1/2-1/2

0

1/2-1/2
2"2 L2(R1+R2)L2,"C1^"' -R„l;' C

By requiring each element in K to be less than 1/2 in magnitude so that

ilKll < 1, we obtain the following upper bounds for the two inductors L± and

L9 in order for condition (v) to hold:

Ll <\ R2C1

mln\4 R1C2' i> V^+R^lJ

It follows from Theorem 6 that if the above parameter relations are

satisfied, then the network of Fig. 4(c) is completely stable provided

condition (vi) is also satisfied. Observe that condition (vi) is satisfied

by most networks of practical interest and can be checked using the results
in [3]. It is condition (v), however, which is of main practical importance

because it furnishes aquantitative upper bound on the values of the linear

inductors in terms of the values of the linear capacitors and resistors.

In case the resistors in 3XV A" dV or th°Se in ^3' a" ""^ "
each other, we obtain the following direct extension of Theorem 6.

Theorem 7. Let J| be anon-complete nonlinear RLC network as described above

The linear resistors in Jj may be coupled to each other provided R is
symmetric. The nonlinear resistors in 3%^^^ ™ay be coupled to
each other so long the coupling is reciprocal. Then J\ is co»pletelZ_stSble

if all conditions in Theorem 6 are satisfied.

Remarks.

L. Dual versions of Theorems 6 and 7 can be obtained by following the same
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procedure used in driving Theorem 2' upon interchanging the roles of

capacitors and inductors.

2. Conditions on the topology of the network NwAJ similar to those in Lemma 1

which ensure that (iv) is true can be obtained in a similar fashion:

Lemma 3. Let u\\ be a connected network which has been partitioned into

*C.9 i2> jC~, 0-, C72, and C7 in accordance with the preceding' rules.

(i) Let ^AJ be the sub-network obtained by shrinking (short-circuiting)

all branches except those belonging to 3y Let D' and n' be tne number

of branches and nodes in ;_Al ; respectively, so that ^AJ has b' - n1 +1

independent loops. Then the rows of V3
L 3 3_

are linearly independent

if, and only if, b' -n' +1= \£2\ +|^3|, where \£ 2\ and \£ 3I denote
the original number of branches in JL 2 and ;£_, respectively. Equivalently,

let^A) be the subnetwork obtained by shrinking all branches in

J U J U / . Then the rows of ^273
B

L 3*\

are linearly independent if,

and only if,_A) contains no loop formed exclusively of branches belonging

to d~2 u £y

(ii)

15

-\

~c£2d ^ w "^•2^3

-^3^1- / V\}Al
if, and only if, upon

^1

*3,
open-circuiting all branches in £c. and J„, the current

-35-
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identically, i.e., branches in J and 02 are not contained in any loop

in the reduced network.

Proof. The proof is quite similar to that of Lemma 1 and is therefore

omitted.

IV. CONCLUDING REMARKS

A remark concerning the relationship between this paper and a recent

paper by Chua and Green is in order: While Theorems 6 and 7 of [10] also

deal with complete stability, our results in this paper are much more

general in the sense that the networks considered in [10] are essentially

restricted to two-element kind RC or RL networks having global state

equations. In this paper we deal with RLC networks and their state equa-
n

tions need only exist locally through each point in IR .

It is important to observe that the local solvability hypothesis
n n
x y

guarantees a unique trajectory through each point (x, y) G IR * IR
n

but not necessarily through each point xe JR x. In fact, for a locally

solvable network which can not be described by a global state equation,
n

r* yeach point xGIR X may correspond to several points <va>vb»''"'YV C m '

each of which satisfying the implicit algebraic equation. From the computer-

simulation point of view [13], this situation is equivalent to the existence

of multiple dc solutions when the capacitors are replaced by dc voltage

sources and the inductors are replaced by dc current sources. In this

case, the point y, which the internal equation solution algorithm—usually

a modified Newton-Raphson method—converged .to will be selected by the

computer. The local solvability hypothesis will then guarantee that

the numerical integration process can proceed without ever reaching an
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"impasse point" of the sort exemplified in Fig. 4. In other words, the

local solvability hypothesis is the weakest requirement that one needs to

ensure that a given network may be meaningfully simulated on a computer

regardless of the initial condition.

Each of the complete stability results presented in the preceding

sections requires several conditions to be satisfied. Most of these con

ditions are topological in nature and are directly verifiable. The con

dition involving the norm of a matrix, however, is quantitative in nature

and has to be calculated for each specific network. This quantitative

condition is the one which gives rise to anupper bound on the value of the

inductor parameters (resp., capacitor parameters) as a function of the

capacitor (resp., inductor) and resistor parameters, and are therefore

extremely useful.

Notwithstanding the complexities of the hypotheses of the theorems some

of them are in fact the best possible that can be obtained for the class

of networks under consideration. One should recognize that complete

stability is a very strong qualitative property not possessed by many

practical networks. Consequently any theorem which guarantees complete

stability must necessarily impose rather severe conditions. The subtle

problem here is to ensure that the conditions are no more severe than are

necessary. For otherwise, a theorem on complete stability may turn out to

be just a theorem on global asymptotic stability where the severity of the

hypothesis forces the network to have only one equilibrium state [10] .

When we talk about complete stability in this paper, however, we are

primarily concerned with the more interesting cases where the network can

possess multiple equilibrium states.
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Finally we remark that our results in this paper is restricted ex

clusively to networks containing reciprocal elements. Generalization of

these results to non-reciprocal dynamic networks having" more than one

equilibrium states remain an outstanding open problem.
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APPENDICES

T
A-l.. Physical Interpretation of 1* B v

2 2 1 1

Consider the network oM shown in Fig. 5(a), where ^M1 =^^ U 'j^ and

.^\\ k £ U Z)0. Partition the set of nodes of oM into three subsets S^t
S and S ,where S is the set of all nodes in (JU which are not also nodes

of oM »so is the set of a11 nodes inoM2 which are not also nodes of (Jv^,
and S is the set of all nodes which are common to botho\l-, and^JVL^ Tne

reduced incidence matrix A of o\) is of the form

A

JL.

I* (S1>
1

0

lVV

** (S2>
2

^ (S3>
2

A

^a <si>

A (S3)

Aa (S2>
2

4 |"A A A A 1
2

(A-l)

where A (Sn) is the part of A which is connected to the nodes in S.,

etc. Notice that since oM can be torn into two separate parts by removing

all nodes in S ,we have A (S^) = 0, A (S^ = 0, A (S£) = 0 and
*2 2 1

A (Sj = 0.

Denoting the node voltages of lAI with respect to an arbitrary datum

node in either S, or S„ by v and the part of v associated with the nodes
1 2 -n ~n

in S„ by v (S^) , the instantaneous power W delivered fron^^,, tooM, is
3 ~n 3 2 1

given by
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W=iT(S3) vn(S3) (A-2)

where i(S„) is the "net-current" vector flowing from<J\L to^ through

the corresponding nodes in S . This current vector can be visualized as

follow. Let us split each node in.S into two "half-nodes" connected by

a short circuit as shown in Fig. 5(b). The net-current vector i(S3) is

defined as the currents flowing from the "primed" nodes to the "double

primed" nodes. We now make the following two observations:

Observation 1.

The net-current vector i(Sj is given explicitly by

i(S3) -A (S3) 4 i^ <A-3)
ul 2 1 2

where ^ is defined in Sec. 2.1 (A and B are written with respect to

2 1
the same branch labellings).

a T
Proof. Let us consider first the matrix T = 3 A (S3) . Consider

2 l/ 1 \a typical row, say the £-th row of 3 , written B ). This row

designates a path consisting of branches in JJ1 which is part of the funda

mental loop associated with branch Zin£ r Call this path p£. Travers

ing p in the direction of branch A, we can classify the nodes encountered

which are also in S into three categories: (i) the starting node ng G S3

at which we enter ^ fromeAf^ (ii) the final node nf G s3 at which we
leave JU and enter J^ again. (iii) an intermediate node nm G S3 which is

neither the starting node nor the final node but is only being passed

through. (traversing through this node would bring us back intocAJp.

Observe that while n and n. are unique, there may be more than one inter-
s I
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mediate nodes.

To clarify the general statements to be made in the following proof,

consider the network shown in Fig. 5(c) along with its partitioned network

in Fig. 5(d) relative to the choice of U = {C^C^C.^}, \J = {R2>,

JL ={R }, and Jt2 ={\>\}- Observe thatJl^ =i*1*c1>c2*C3) *̂ 2 =
{L,L2,R2J, and hence S± ={n^, S2 ={n^, and S3 ={n^.i^} where r^
denotes node © . The two paths J^ and *2 corresponding to the two funda

mental loops associated with links L1 and L2 are given respectively by

h = {LV V Cl' n5» C2' V C3S V V V and *2 ={L2> V C3» V
R n }. The portions of these paths which correspond to B are
2' 4 *2^

given respectively by P-jfB^ 3 ) = i^y ci» n5» C2* n2' C3' n3* and
P IB ) = {n0, C_, n }. Hence the starting node of px is n^ its final
2\V2ai/ 2 3 3
node is n ,while n G S3 is an intermediate node.

Before we discuss the meaning of each row of T, let us also consider

the matrix AT (Sj. Each column of A (S ) corresponds to one node in

S and the nonzero components in that column (either 1 or -1) represent

the branches in 0 -. which are incident with the node. The sign convention

is the usual one: + 1 for branches incident from ^leaving) the node and

- 1 for branches incident t£ (entering) the node.

Let us now consider the path associated with (B j ,i.e., p£.

Let b el be the branch in p connected to the starting node n . Then
si ^

we have (h ) =+1and (p? (S )) =+1,respectively, where

s

/B \ denotes the U, b ) component of the matrix B , etc..

In this case,/B ) . (A1 (Sj) = 1. Similarly, let bf be
KVl.b8 ^1 'Vs

the branch in pn connected to the final node n . We then have (B J
1 t v Vi/i,,bf
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and (AT (S0)) =+1respectively. In this case , (B )\~31 3>brnf VW-,bf

(AT (S )) =-1. Finally, let b' G C^ and b^ G 7Jl be the branches
~31 f'nf

in o such that we pass b1, n , b" in that order in the traversal of the
v% m m m

path, where n G S, belongs to category (iii) defined above. In this case,
1 ' m 3

we have:

[B \ =+1and [AT (Sj) =+ 1,respectively, and
\%V£ b' """ Ji 3 b',n2 1 ^'^m x m m

(m

A (Sj) = + 1,respectively.
—,-,'ib" °i 3/b",n ~2 1 x-*1^ 1 m m

/B \ -(aT (Sj) + (l3 ) . (£ (S ))

Similarly, all product terms of the form (B ) . (A (Sj)
W^/^b V 31 J/b,n

n G s other than those mentioned above are equal to zero. Hence the

elements in the 2.-th row of T=(B ) Aj (S^ are given by
d2^l t ~3\

Jl,n. £, (^A^kn,

= (h )n u •(A (S,)\. n = 1,

= - 1,
kf

and T£ =0 for all n6 p£, n^ ng, nf, n^.

Thus, each row of T has only two nonzero elements + 1 and - 1.
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The + 1 corresponds to the starting node n and the - 1 corresponds to the

final node nf. For example, referring to our earlier network shown in

Fig. 5(d), we have

B

~iA

cl C2 C3 ci C2 C3
—

1 -1 1 Li
» A (SJ -

A 3

1 0 0

0 0 1 L2 0 1 1

0 0 -1

T =3 AT (S )=
^2J1 Jl

_nl n2 n3
1 0 -l'

0 1-1

+• corresponds to p.

corresponds to p„

, and

T
Referring to Figs. 5(b) and (d), we observe that ea^h element of T i

corresponding to each node n Gs can be interpreted as the current flowing

in the short-circuit branch from right to left. Hence, in general,

i(SJ = TTi =A (SJ BT 1 is equal to the net-current
*2 ^ ^Vj *2

vector flowing from cAL into (Jv). through the commoi. nodes in S . This

concludes our proof of observation 1.

T
Let us now proceed to prove that w = i B v« • Observe that

V2 Xpi -3l

since A (S») = 0, we can write
-n 2

T

2

B v = i B /A v\
*23\ Jl 2 *2J\X Jl

%xS:sw+-^vw] (A-4)

where v (S,) and v (S„) denotes the subvectors of v corresponding to nodes
-n 1 ~n 3 ~n
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in S- and S_, respectively. We now pause to prove the following:

Observation 2.

M =B AT (S,) =0 (A-5)
~jC n ""] i
*2Ji Ji

Proof. Consider the (£, n, ) element

(M). _ = Z
~ A,nk bG\(\a)^ (S^-.

"bl^(V>-b(V8l),v
where I G ^£ , n G S . Using the same interpretation for elements of

3 A (S ) given in our earlier proof of Observation 1, we note that
~d. 3 -3 3
the product [B . ) , (A (S.,)) , is nonzero only if branch b is

\~i J,/A,b V3 1 /nk,b
211 r-both in the path p and incident with node n . Since n t s., n is an

interior node of p.. Therefore, there must be another branch b' G p

which is also incident with n. . Furthermore, (B )„ ,1 (A (Si)) it
k ^2^1 ^1 k

is of opposite sign as (b )n, •(a (Sj) ,. This proves M = 0.
\^a/£»b \~J, 1 /n ,b-.,3/*"° \"3X wnk,

Finally, substituting (A-5) into (A-4) and making use of (A-3), we

obtain

iT B V =iT B^ •All (SJv(SJ =iT(S )v (S )=W. (A-6)
-*. ~£ T *"7 ~X- "X 3 -3 3 ~n 3 5 n J
2 2J1 ^1 2 2 1 1

it

Noting now that i = - i , we conclude that the topological term

S 2 2 / X \
i M v , in the hybrid content H(V , i )can be interpreted
v2 x^2o1 -jj ^ "v
as the instantaneous power delivered from(Jvl intovJ\L tnrou8n tne common

nodes in S . n
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A-2. Complete Network with Ideal Transformers

Suppose lA) is a complete network and has been partitioned into ct^t

£ , jf ,and C/2 as described in Sec. II. Let NT be an ideal 2-port

transformer as shown in Fig. 6(a) and let this transformer be represented

as two coupled 2-terminal elements as shown in Fig. 6(b) with the coupling

relationship given by

Vl = kv2* ±2 = ~ kil (A~7)

where k is the transformer turns-ratio. Notice that an ideal transformer

is neither v.c. nor c.c. However, since i-,v1 + i«v_ = 0, it is nonenergic

[8 ]. Now suppose each of the two windings of the transformer is added

across an arbitrary pair of nodes belonging to branches in «J . Then the

two corresponding branches must be added to the original graph, each of

which forms a loop exclusively with branches in \J.. In other words, the

augmented network remains complete with the number of branches in ^C9 in

creased by two. Now observe that the equivalent transformer representa

tion in Fig. 6(b) can be replaced by two independent current sources as

shown in Fig. 6(c) with the additional constraint v. = k v„ between the

terminal voltages v.. and v«. Since the co-content of each independent

Ckcurrent source is simply equal to I ^-l^v, ~ *-i,vv» tne total co-content

of the two current sources add up to zero in view of the nonenergic property

of the transformer. The same argument can be used to show that when there

are more than one transformer, or when the transformers have more than two

ports, the total co-content of each transformer is zero. In other words,

so long as all ports of the ideal n-port transformers can be augmented with
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the branches in^ , the overall network remains complete and the hybrid

J,
content H(v , i ' ) defined by (3) in Sec. II remains invariant. A

v-j, ~xj
dual property of course also holds when all ports can be augmented with

the branches in J <,.

The invariance of the hybrid content makes use of only the current

relation of the ideal transformers. The voltage relation has not been

used so far and must therefore be considered as another independent equation.

Now since,by construction, all elements in X-, must necessarily form

loops with elements in J , each voltage relation introduces a linear

constraint among the voltage state variables V = y . This constraint
ai c

is analogous to the presence of a loop of capacitors and can therefore be

used to eliminate one of the "n" state variables [9]. The presence of an

ideal 2-port transformer with both windings in d.. therefore leads to a

reduced order state equation. The interesting question to pose at this

point is whether this can still be expressed in terms of the gradient of

a new potential function, and if so, whether any qualitative property of

the original network is preserved. The answer turns out to be yes in both

cases. To derive this property, let us assume for simplicity that only

capacitors (no inductors) are present and that there is only one ideal

2-port transformer to be augmented in oL . The same property can be proved

to hold in the general case but the notations becomes rather unwieldy.

Let n be the number of tree (capacitor) voltages of oM, with the tree

voltages v' = [v ,v , • • •, v ]G ]Rn. The presence of the transformer

will eliminate one tree branch voltage, say v . To be specific, assume

the branch associated with v forms a loop with the second port of
n "—

the transformer so that the.voltage relationship v =kv2 leads to a linear
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constraint v = a y = k
T
b , 1 , wViere v = [v ,v2> 'Vn-1] iS

the reduced set of independent variables alluded to earlier, and where

a, b are column vectors consisting of l's and O's. Now, let us replace

the branches of the transformer by two independent current sources as shown

in Fig. 6(c) along with the constraint v = kv2« The co-content function

P(v v ,v ) of the augmented network is then given by
1' 2' n

P(vr v2, ,vn) ='i[aTy] +(-ki)|bTv +vl +G(v') (A-8)

where G(v') is the co-content function of JU with the transformer removed

The state equation of<J\) is given by

C v1 = -
3P

3vf
(A-9)

where C' is an nxn, symmetric, and positive'definite matrix with.the additional

constraint a^y -k[bTy +vj. 'Let us next eliminate vr and obtain anew
—— ' IT T
co-content function from (A-8). Now, since vr = ^ (a - kb )v, we can

write v! =
'"in-l v and (A-9) becomes

1 T . T

C

^ i~n-l

IT ,T
k^ "6

v = -
3P

3v»

Pre-multiplying both sides of (A-10) by [1^, £ § ~fel» we obtain

1

^n-rh-W
•n-1

1 T
- b'

*--[in-l'h-5]
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We now prove that [ln_r £a-bJ~r is equal to
3G(v)

~3v

G = G(v!) fl T .Tl

Observe that

[in-r h - *] fr - [ln_r ^a- b]

3G

3v
+ (*«-*)

3G 3G _,_ 3G
+

3v

3v 3v 3v 3v
n n

3G(v,v )
n

v =
n

3v

1 T ,T
r a -b
k ~ ~

3G(y)

~Tv

la - kib + -r—
3v

- ki +
3G

3v
n —>

Therefore the new state equation of qJ\) is given by

3G(v)
C v = -

3v

where G(v) is the new co-content function and

1 .
-n-1

where

(A-ll)

(A-13)

C=[l ., f a-big1
[ n-1 k - ~J ~

is an (n-1) x (n-1), symmetric, and
1 T UT
k^ "t

positive definite matrix. Hence we have proved that the reduced-order

state equation can be expressed in terms of the gradient of a potential

function G(v), and that the new capacitance matrix C remains a positive-

definite matrix so long as the original matrix C' is positive definite.

It follows that the various qualitative properties described in [9-10] are

preserved in the augmented network.
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A-3. Proof of Theorem 2.

t T
Let us define R first. Since R = B R B is symmetric

"*2J2 J2 *2J2
and at least positive semidefinite, there exists an orthogonal matrix S

such' that

0 i T
2 1

xi§

R = S sT =
1 ~ m ~

= F F

m

*0

L

\ T
x2 sm
m -

where X > 0 are the eigenvalues of R, and S is the k th column of S. If

R is nonsingular, m = n, otherwise m < n. The generalized inverse R of

R is then defined as:

-2

RX-F

0

-2

m _J

T T -2 T
F = F(F F) F

Notice that in this case R is symmetric and positive semidefinite.

Furthermore, for any x G ^jJ(R) ,R R x = R R x = x, as it should.

We are now ready to prove the theorem. Under conditions (i) and (ii),

the hybrid content H of ^Al is given by:

T
+ i* ?

2 **2
X.~3S~3J 2 ~* •
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A T
whprp R = B R Bwhere R ^ ^

2 2 2 2 2

Define H as follows

H /V
a -«*:

XAH+MJ-) TR1^) (A-15)

In order to prtve complete stability, we only need to show that

-7- H <_ 0 along any trajectory of (4), with the equality holding only

at equilibrium states. Using (A-15) and (4), we obtain

d u* _ -T

2 9lv di^ d±v
1 A *2 \

A ^

m • rp • *rPT*

-v Cv + i* Li* - i* LR Ri*

A 'A A ~A ~*2 " •^

+ i*1 IiTB v - i* RR Li* + vrt B^ R Li*
-*2 " ^1 ^1 ^2 " "*2 ~51 ^2J1 ""^

It follows from (2) and hypotheses (ii) and (iii) that Li* ^H?(R).
X

Hence i* LR Rl* = i*J Ll •= l* RR La* and we obtain
2 2 2 2 2 2

_1_ H* = vT Cv" + i*T Li* - 2v£ B^ ^ R1!,!*
Jl wl 2 2 12 1 2

and

2 . 9 •
C v -KLM«
~ ~J - - -<,

1 2

> 0 for all

+ (l-llKlI2) l 2 i*

-SL- h* = 0 only when v =0 and i* = 0,
1 2
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It follows from (A-17), (A-18) and condition (v) that the network is

completely stable.

A-4. Proof of Theorem 6.

The proof is quite similar to that of Theorem 2. Constructing R in

the same way as in Appendix A-3, we obtain the following expression for T?r} »

^-%{A) +A(v~j) +bx '{%
l' 1 2 2

j A
11 1

+ i* F + i* F - —

2 2 3 3

+
[~-*T

, 1*

2 *3J

r^ "^

B
*5

2 1

B

"V,

Definerjj' as follow:

v

~X 5 i<af

r—^

2

R
i*

~*3

n^ • s •v 5) *^+
3£ J3£'
L3i 3i" .

-X -£
2 3

R

We only need to prove that

B. v \

£U

3i*

gvl-j

3i
"X.

L.

V*M a. 0 along any trajectory, with equality holding only at

equilibrium states. First, notice that

-s-fJJ =B v + B . v +
~xa ~j -x 3 ~a ~x

2 11 2 3 3 2^
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ir7U= B
3i*

v + B v + E
-i 3-3 -xa -j

3 1 1 2 3 3

It follows from (ii) and (iv) that ~2 6Cg(R) .

Differentiating next-^f with respect to time, we obtain

*

3i

9i*=^l+ ^ MB?
.* .*

3^ »^
2 3

.*

3i

The function 7fj can be obtained from (9):

v^ C v + i*1 L i*
~*1 ~ ^1 S ' **2

The second term of cjW is equal to:
r

^2 3

A

V.L

"X J
2 1

3J1

— —*«V

•

i«
-rf

2
•

V R #

-J, i*
1

S

J-s

Now, since 3^/31* = 0 and tiTU/dl* = L 1* , we have
"*3 " ~*2 ~ ~*2
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5 tJJ

(A-24)

(A-25)



~i

n

£3£ m
B

3i B

<?.

Making use of (A-22), we obtain

S£ M
3i 31

2 3

RJR
i

2 "2 1 1

3i* 3i*
2 3

*

~6

= <S±M. i# (since 37^/31* =0 along the trajectory)
3i' "<

~X

. rp

- l* L i*

2 2

(A-2 6)

(A-27)

Finally, following the same procedure as in the derivation of (A-17) and

(A-18), we obtain

F&*= -v C v - i* L i* + 21* L R 3 v
~3 - -3 ~X " -X * 11 X.j. 3,

1 1

< 0 along any trajectory

* — ^,= 0 only if v =0 and i*

A ~x;

2 1 1

(A-28)

It follows from (A-31) and condition (vi) that the network is completely

stable.
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FIGURE CAPTIONS

Fig. 1 (a) A typical composite branch in J . The resistor R is the

parallel combination of all v.c. resistors connected across

the capacitor. Note the current into R is denoted by ±A

(b) A typical composite branch in &Ln. The resistor R is the

series combination of all c.c. resistors connected in series

with the inductor. Note the voltage across R^ is denoted by v^.

Fig. 2 (a) The circuit for Example 1.

(b) Equivalent circuit obtained by applying the v-shift theorem.

(c) The v. - i, curve for v.c. resistor R,.
4 4 4

Fig. 3 (a) A simple RC circuit.

(b) Graphical illustration of impasse points A and B and the

discontinuous oscillation resulting from invoking the jump

postulate.

Fig. 4 (a) The circuit for Example 2.

(b) The same circuit of (a) with the voltage source E shifted

in series with the remaining branches in the cut set.

(c) The circuit for Example 3.

Fig. 5 The partition of network eAI into^ U(_A)2> where L}i1 - &1 u 73\

and(JV)2 =Ji2 u J2?
Fig. 6 An ideal 2-port transformer and its various equivalent representations
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Fig. 2
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positive constants.

E, =E2=E

nonlinear resistors

R I »R2 »L1» *"2 ? 1» 2

positive constants.

R3 , R4 , R5 *. v.c.

nonlinear resistors.



Set of nodes

in this part

(a)

i(S3)

(b)

Set of nodes

in this part

= S2

2 **2

Fig. 5
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Fig. 6.

-62-

v, =kv2

io = -kii

v, = kv.


	Copyright notice 1976
	ERL-596

