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Abstract

It is proved that under some very general conditions the "true"
present value of a share will follow a "random walk'" rule. Given the
dividend policy of a firm, the differential equation for the evolution
of the "true price" is derived and it is shown that the "true price"
function is the potential corresponding to the dividend policy function.
Also for capital markets where several different stocks are traded an
intertemporal pricing model is discussed and conditions under which
"mean~-variance" efficient stocks are optimal for all the participants
in the market are derived. The vertical market models thét result from
these conditions are examined and differential equations for ''rational

prices for options are obtained therefrom.
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Introduction

The purpose of this dissertation is to apply some recent developments
in the Theory of Stochastic Procosses to dynamical-system models arising
in the theory of "intrinsic" or "rational" prices, and in the theory of
Capital Markets. In particular, we shall make heavy use of the
martingale calculus, whose origin was the Ito calculus but whose recent
development due to Kunita-Watanabe, Meyer and others have made ig a natural
tool in the study of stochastic systems. Application of the theory of
martingales to economic problems is particularly appfopriate, since the
very nature of martingales gives a prominent role to the evolution of the
information pattern, and such forms are necessary in many stochastic systems
in economics.

Much of the recent literature on finance has emphasized the
dynamical nature of the underlying models. That is not surprising since
the main concern of the capital theory is to find the best allocation
for a given amount of resource at any given time. There is also little
doubt that because of the large number of uncertain factors involved,
risk analysis plays an important role for a successful investment policy.
The dissertation consists of five chapters and a Preliminary chapter.

In the preliminary part , we shall present a brief exposition of
the mathematical material which is used in the remainder of the
dissertation. Special attention will be given to martingales and Markov
processes. The first of these processes plays a natural role whenever
one's information is evolving in time. The martingale Calculus provides
a powerful tool for the development of a dynamical theory for some
important aspects of stochastic processes. The Markov process is

important because it is used to develop a state-space model analogons to



the deterministic case. In chaptér 1, an economic interpretation for
stochaétically dominant stocks and their relative volatilities will be
given for the dynamic case. In chaptef 2, the Fundamentalist's true
price model is examined. Under, very general conditions it is
demonstrated that the "true prices" will have "random walk" fluctuétions.
Also for the normal growth model the optimal dividend policy to maximize
the "true price" is obtained.

The case where the information is generated by a Markovian state
variable is discussed in chapter 3. A differential equation for the
evalation of the '"true price" is derived. It is shown that the price is
the r-potential corresponding to the dividend policy function where r
is the discount rate prevailing in the market. The potentiél kernel is
the Laplace transform of the probability transition function for the
Markov state variable. Also the "true price" operator is shown to be
the Laplacé transform of the differential generator corresponding to
the state process. This operator, also called the resolvant operator
satisfies the resolvant equation, which gives the changes in
the true prices due to a change in the discount rate. When one coﬁsiders
the fact that prices cannot be;ome negative, this shows that "true
prices" are monotonously decreasing functions of the discount rate. It
also explicitely gives the amount of changes in the "true price" if the
rate of discounting is changed.

The results are further generalized for the case of futures prices
as well as the case of stochastic discount rates. Finally, the effect
of various transfofmations of the Markov state process is examined and
the equivalence of a termination of the process with discounting is

shown, suggesting an interpretation for discounting the future incomes.



In the next chapter, a vertical market model which excludes the
possibility of arbitrage is derived and applied to obtain a set of
differential equations for the "rational prices" for options and
warrants.

In the final chapter we examine market models where there are
alternative opportunities for investment. ' The conventional mean-variance
portfolio selection model is generalized for the dynamical case. .Itis shown,
however, that when there are uncertainties concerning the future changes of
market opportunities the mean-variance model is no longer valid and that
investors would be willing to choose their portfolio so as to smooth the
future variation in their consumption process. Therefore, the behaviour of
the investors in a random and dynamic environment cannot be characterized by
adding the effects of uncertainty introduced in the static problem to the
consumption sﬁoothing that gives the best allocation of consumption in the
dynamic-deterministic problem. The best portfolio is seen to be a combination
of a minimum~-risk portfolio, a portfolio that will give the best expected
returns, and m other portfolies that will give higher returns when future
opportunities for investment become less favorable. Thus investors will always
choose a portion of their portfolio so as tominimize the variation in their
consumption due to uncertainties concerning future market conditiomns.

These "insurance" portfolies are shown to be independent of the investors'
information and/or probability beliefs. Also it is shown that as a
consequence of the desire of the investors to minimize the investment
risk the rates of return will satisfy a market equation that will exclude

the possibility of arbitrage in the sense described in Chapter 4.



Chapter 0
Mathematical Preliminaries

0.1. Definitions and Interpretations

Uncertainty prevails in capital markets because of the complexity
of determining how various stock and commodity prices respond to the
different events that occur daily. The introduction of uncertainty into
the analysis of capital markets was first done in the pioneering work
of Louis Bachelier [3] which anticipated later .developments in the
theory of Probability and Stochastic Processes. The subject has now
become of much interest to statisticians and probability theorists
because of the greater availability of data concerning price fluctuations
and other economic vériables, and the fact that an ability to predict
future price changes has an obvious speculative interest.

We begin with a discussion of the mathematical preliminaries.
Firstly, one should model the information pattern for the participants
in the market. Thus ones information is usually represented by a family
Lj*of events; i.e. subsets of a universal (certain) event © in the
sense that the occurance of an event A is known if and only if A 6134.
Since the informétion concerning a countable number of events enables one
to also know whether their conjunction orfdisjunctionis true or not we
“can axiomize that a o-algebra (information pattern):g* is a family of
subsets of 9, including Q itself, that is closed under countable Boolean
operations. (9£J4) will then be called a measurable space, and one could
assign prior probability measures concerning the likelihood of occurrence
of the events constituting the o-~algebra. Such measures should assign
probability one to the certain event @ and should be additive for mutually

exclusive events i.e. we should have

P(Q) =1 (0.1)



P(g An) = §P(An) if A, N Aj = 0 whenever 1 # j (0.2)

Th.e triple (Q,ul, P) will be called a pfobability space if the corresponding
axioms are satisfied.

If (Q”J4) and (E,Sg) are two measurable‘spacei and £ is a function
mapping into E then f is said to be a measurable function or a random

variable if and only if for any A € 8 we have

1) e A

Now if there is a probability measure P defined on (Q,u‘b then a

random variable will induce another measure P' on (E,e) so that
P'(A) = P(£ 1(a)) (0.3)

Alternatively a random variable can be viewed as mapping the measure on

(9>u4) into a measure on (E,e) by Eq. (1.3) hereafter, sometimes

abbreviated as

p' = pr L (0.4)

Now a collection of events (i.e. subsets of Q) will generate an information-
o-algebra if we augment all the other events that can be obtained from
them by a countable number of Boolean operations. Thus the o-algebra
generated by a family ud(' of subsets of @ is the smallest o-algebra

? ]
containing \A and will be shown as o(u'( ). Similarly observing a



function with a measurable range will generate a o-algebra, namely the
o-algebra generated by all the inverse images [271.
The expected value of a random variable given its probability law is

the integral

E[£] =5 fw) P(dw) = I e P£ L (de) €0.5)
Q E

i.e. to calculate the expected value of a random variable one can either
integrate over the domain the function with respect to the corresponding
measure or one can integrate the values of the function over the range
of the function with respect to the induced measure. The probability
interpretation of the mathematical expectation is the ensamble average
of the values that the random variable can assume and in that sense it
is what one can expect "in the average" for the value of the random
variable.

To incorporate the dynémics lét us define an increasing family of
o-algebras to be the indexed family Q}; of events such that we have
;;; ZDQJ; whenever t

the information at any time. (;;; represents ones information at time

nv

s. Clearly, this corresponds to "not forgeting"

t).

Also a stochastic process is an indexed family of random variable
Xt such that for each t Xt is measurable. Again, one can imagine a
bigger o-algebra generated by the cylinder sets St(A) = {Xt € A} for
some t and some A ng4 and thus view the process as a measurable mapping
into this bigger space [49].
| In practice the set of ail time functions is usually too big and

moreover, by a combination of observation measurement and intuitive

~2



judgement, one starts from a compatible family of finite dimensional

probability distributions

P[X <x

t 1’ Tt, =72

1
and is free to construct the probability space. Details are given in
[{49]. Two different stochastic processes’that have the same finite
dimensional distributions are said to be equivalent.

It can be proved that any stochastic process has a separable
equivalent [27]. If it is also continuous in probability i.e. for ¢ > 0

1lim ([XS-XtI €) = 0 and satisfies the Kolmogorov condition

s*t

nv

a < Ch1+B

x| g

E| 0.6)

Xem”
for strictly positive constants o, B, c, then it is measurable

and every sample function (of t) is uniformly continuous [49]. These
conditions involve only the finite dimensional distributions.

We shall be mainly interested in two class of processes: namely
martingales and Markov processes,which will be described in the
subsequent sections. For now, let us proceed to define the conditional
expectation, which will be required to study the evolution of factors
determined by changing information.

If 4 and M, are two different measures on (9*34) then there exisﬁs

[49] a random variable A and a measure M such that
MZ(A) = IA AMl(dw) + u(a) (0.7)

for A E{JA.

If p = 0 then M, and M

1 o are said to be absolutely continuous and A



will then be called the Radon-Nikodym derivative of M2 with respect to
Mio
' -
If :_)4 is a sub-oc-algebra of LA and 1 A denotes the indicator

|\
function that assumes the value one for the points belonging to A € LA
and zero otherwise then the Radon-Nikodym derivative of the indefinite
integrals E[I A X] with respect to the restriction

]
of the probability measure on )1( is (almost surely) a random variable

] i 1
called the conditional expectation of X given _A and denoted by A = E|X[J¥ 1.

]
It is characterized by the properties of being measurable with respect to ()4
and having the smoothing property

I X(w) P(dw) = fA(w) P (dw) (0.8)
A A

for all A € ;)4' where P* is the restriction of P on udc'.

From what was discussed above it is clear that if ome's information
is given by ¢ _)‘l' then A is a "smoother" version of X in the semse that it
is adapted to the inform;ation u’t’ and over any "known" event A it has the
same average as X. Of course ;}4' can be generated by a collection of
sets or functions. For the latter case, the conditional expectation can

also be denoted as E[X|f].

o)



0.2. Markov Processes

A stochastic process Xt is said to be Markovian if its future is
conditionally independent of its past given its present. That is, the
probability law for the future evolution of the process given the past
and present values of the process depends only on the present.

If ones information is generated by observing a Markov process,
then the knowledge of fhe present value suffices in determining the
probability measure concerning the likelihood of the future events and

thus is analogous with the state variable for the deterministic case.

Definition 2.1. Let ?}; be an increasing family of o-algebras. A
nonnegative random variable T is called a stopping time if the

events {T < t} are always adapted to (measurable with respect to) gjl.
Thus at time t the information contained in Q}; would enable one to
determine whether or not T has "stopped," i.e. {T < t}.

Now if (QJZ,T) is a stopping time and p is a measure defined on the
state space (range of Xt) then one can define a Markov process Xt on the
interval (0,T) such that u is the induced measure at time zero.

If;xz is the og-algebra generated by XS, s > t then the Markov

condition is stated as follows:
¥ = 0.9
E(Z| 3,1 E[let] (0.9)

where Z is any@)(:-measurable random variable. The»general theory for
Markov processes has been of interest for a very long time. There are
many references e.g. [12.14]. One main result is its close connection
with the potential theory which we shall see when we analyse the
fundamentalist's "true prices." Rigourous analysis may be found iﬁ

[14,8].
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One special Markov process is the Brownian Motion, a natural
phenomenon the existaﬁce of which was known in 1827. The theory was
later developed by Bachelier, Wiener, and others. A Markov process
defined on nonnegative times is a Brownian Motion if it is Gaussiam, i.e.

every linear combination of the form °1Xt is a Gaussian random
i i '
2
X
2
L e 20 and if we have

variable with density f(n) =

N

g

EXth = min(t,s) (0.10)

Usually, a separable version is chosen, and it will then be sample

continuous [12].
Also one important class of Markov processes are the (Ito) diffusion

processes: let Xt be a sample continuous Markov process with

= 14ip L -
m(X,,t) = lim & E[X_  -X [X ] (0.11)
AY0
2 = 1 -x )2
o”(X,,t) = lim + E[(X_,,-X,) lxt] (0.12)

AYO
then under some general conditions [49] Xt can be represented as the unique

solution to the stochastic differential equation

dXt = m(Xt,t) dt + O(xt’t)dwt (0.13)

where Wt is a Brownian Motion Process. Stochastic integrals and
differential equations will be discussed in the next section. The
fuﬁctions m and o can be applied to obtain the differential generator [50]
as well as the equations for transition probability functions [12]. The

main application of Eq. (0.13) however is to generalize the deterministic



state equations of the form

Fri f(xt’t)' (0.14)
Using the celebrated Ito differentiation rule, one can use Eq. ©.13)

for formulating solutions to problems concerning stochastic control of

a system [10,13,25,47].
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0.3. Martingales

It can be easily demonstrated that for a Brownian Motion Process

the following is always true.
s{W£|§;ﬁs} =Wy for tzs (0.15)

where‘;}hs is the G;algebra generated by observing W up to the time s.
An important class ofvprocesses resultsfrom a generalization of
this property of Brownian Motions. Let ?3; be an increasing family of
o—-algebras and let Xt be a process adapted to ;;;. Hereafter unless
otherwise stated we shall be mainly concerned with sample continuous
processes for which we have a better developed analytic theory. Let us
define dX# as -the forward difference xt+dt-xt’ (Thus we shall so

following the stochastic calculus convention due to Ito). Now Xt is

said to be an<E;£-martingale if

elax |T]} =0 (0.16)

which is equivalent to

e{X [Tf 1= X, for t3s (0.17)

nv

Martingales occur naturally whenever one considers conditional
expectations with respect to evolving information (increasing family of

o-algebras). In particular, a process Yt of the form
Y, = e(R|TS} (0.18)

where R is a random variable and g}l is an increasing family of g -algebras
can easily shown to be a martinglae [45]. Perhaps the importance of

martingale theory stems from the fact that it provides us with the
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powerful analytic tool of the martingale calculus. Unless otherwise
stated, difficulties increasing family of information ¢ is always

assumed to be continuous in the sense that

F, = 0 G, ©(0.19)
s>t
TF o= oV T (0.20)
s<t
Now let Xt be a general stochastic process and define Bt and it by:
dB,_ = e{dxtht} . (0.21)
X_= e{xtlgt} (0.22)

Then Mt = ﬁt-Bt is a Martingale adapted to Q;L. When Bt is of bounded
variation ﬁt is the sum of a martingale and a process of bounded variation

adapted to ﬁ:r

o We shall call processes that admit such decompositions

semi-martingales. In particular if ?1; is the o-algebra generated

by it then we have ﬁt = Xt and then martingale term Mt given by
aM_ = dx_ - eldx [Ty} (0.23)

represents the new information contained in dXt and is

innovations process for xt.

2

Also if one considers the decomposition of the process Xt = Mt

where Mt is a second order Q}l martingale the predictable part is

nondecreasing and nonnegative and we have

_ 2
e{Bt} = e{Xt-Xo} = e{(Mt—Mo) } (0.24)
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aB_ = efax |} = el(an,)?1F,} | (0.25)

Definition 3.1. This process denoted by B = (M’M)t is called the
quadratic variation of the martingale process Mt'

An-important result is that the quadratic variation does not depend
on the family of 0-algebras ;;; and can be constructed by computing the
following limit (described in [47,48].

( - ( ) (n),,2 0.26
M,M)t = Lim 2 [M(ty0))-M(t;™)] (0.26)
n>® Vv

where the sequence of partitions (tg) refines to zero as n goes to
infinity.

I1f Nt and Mt are two g;; martingales then the co-variation process

is defined as
1
(N =7 [ MEN, M) - (M-N,M-N) ] (0.27)

One important result of (0.26) is that if we consider two different
decompositions of a semi-martingale Xt relative to two families of o-algebras;
then the martingale terms will have the same quadratic variations. Also it
turns out that the quadratic variation of a semi-martingale is equal to

that of its martingale term in a decomposition of the process, i.e. if

X = Bt+Mt‘where dBt is adapted to %;;, Bt is of bounded variation, and

t
Mt is an QJ; martingale, then

(“))-x(t\f“))]2 = (W, (0.28)

(x,x)t = lim 2 [X(tv+1

n->oo
Now we are equipped to study the stochastic calculus. If'Mt is a sample

continuous §3; martingale and Qt is a process adapted to‘?¥£ such that



15

T ‘
s <I>i d(M,M>t < o with probability 1 , (0.29)
0
T
then the stochastic integral j @tht is defined by the following
0
limit [48].

T
s @t th lim Z‘p (n) [\i (D.) (0.30)

0 e v t

t(n)]
Y

However, in light of the recent theory of stochastic integral developed by
Kunita-Watanabe [24], stochdstic integrals are considered as transformations

of local martingales. If we define a sequence of stopping time

T, = min{t: IMtI > n} (0.31)

then Mt is said to be an ;3; local martingale if the stepped process

Mmin(t,rn) is an T;; martingale.

Definition 3.2. Given a local martingale and a process @t satisfying
t

2.29) Zt = j <I>SdMs is another ?}; local martingale defined uniquely
0

by

t
(z,Y) =j o dly ,M)
t 0 s s

for every local %;l martingale Yt'
t

Similarly, an integral of the type Io @des is defined for local
semi-martingales to be another local semi-martingale composed of a
Stieltjes integralsz ¢Sst (the predictable term) and a stochastic
integral.j ¢des defined as above. Now we can interpret a stochastic
differentigl gquation to be a differential equality in the sense

that when integrated the two sides will be equal.
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An important result is the stochastic differentiation rule. If
X is a local semi-martingale then the differential of any

function of Xt is given by

dE(X,,t) = £, (X,t) dt + zi: £,(X_,t) dX;, + Zi: fj: £y (X0 c1<xi,xj)t

where (0 33)
f,(xt)=3_f et - 22¢
e at i1 T ax ax
: i°%y
_ of
fi(x,t) = oa.

i

This equation shows clearly how a function of a stochastic process'

changes not only because of the changes of that variable, but also

because of the uncertainty concerning its future fluctuation.

An active area of research in the theory of Martingales is the
conditions under which a process can be represented by the stochastic

An important representation result on martingales is that if ¥ Xt is an
increasing family of o-algebras generated by a (local) semi-martingale
Xt’ and if the mértingale term in thegqitdecomposition is a Brownian
Motion (for this it suffices that (X,X)t = t) [48] then every‘?I*t local
semi-martingale can be represented by a predictable term and an integral

involving Xt i.e. if we have

= B+ ' ' | .
X, = BM, (0.34)

,‘N‘
where Bt is of bounded variation, dBt and Mt are t}Xt measurable, and

(M,M)t = t, then every'E;kt local semi-martingale Ve has the following

representation

' t
Y-V, = At go o _dM_ (0.35)

—?
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where At is again the predictable part given by

dA_ = e{d¥ [Thy,}

Finally, an important application of the martingale theory is in studying

absolutely continuous changes 'of ﬁxeasure. Consider a o-algebra q and-

mutually absolutely continuous probability measures P and PO. Let A be the

Random-Nikodym derivative of P with respect to P.,. If ?;F is generated

0
by Xt then A is a function of past values of Xt. Let ’Jt be an increasing

information pattern and let us define

A, =efA|FD (0.37)

Clearly, At is a martingale under the probability measure PO’ and so is the

process Mt defined by

dA

-t
Me =7, | (0.38)

or in its integrated form

- 1
A = exp(Mt > (M,M)t)

t (0.39)

Now if 2 ¢ is a local martingale under P then it can be proved that
ZtAt and thus X = Z, + <Z’M)t: are local martingale under P, [48].

Therefore, under that measure we would have

eofdz S} = —az, ), (0.40)

If the family CJ’t is generated by a Brownian Motion process, or a local semi-

martingale that can be decomposed into a Brownian Motion process, and a process
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of bounded variation, then Mt can be represented as a stochastic integral
of that process and so can be the predict#ble part of any local martingale
under one measure [48].

Many of the results s;ated above can be generalized to the case of
martingale procésses that are not sample continuous. However, the details

are more complex and we will not consider them here.
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Chapter 1

Market Analysis Under Uncertainty

1.1. Volatility of Investment Returns

An uncertain investment for a fixed period .is usually characterized by
a random variable R called the investment return, which shows the amount
of money one gets at the end of the period for each dollar of
jnvestment. In the dynamical case, the investment opportunity can
similarly be characterized by its return process. If the amount Wt is
invested at time zero, the value one can get at each time t is the random
variable Wt that depends on the information known at time t.

Let us define the return Rt to be a stochastic process adapted to

the increasing information pattern‘?_}‘t and given by the following

equation
th
th = ﬁ—t—' (1.1)

The following theorem provides us with a definition of absolute volatility

of the return process at any time:

Proposition (1.1): 1f {xt,Q};} is a sample continuous second order
martingale and if there exists a nonnegative measurable process wt

adapted to Q;l such that for t > S.

2 t
e(x, X 1T} = ss elv, [T} at | (1.2)

and if the set {y = 0} has zero d pdt measure (the product of the
probability and the Legesgue measure) then there exists a Brownian

Motion M. adapted tOCE;t such that we have

_ 4 1/2
dx, = v~ A, (1.3)
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with probability one. With the hypothesis that ¢ vanishes almost nowhere
(1.3) is still valid with the a&junction of a Brownian motion to the
probability space [47].

Clearly the derivativeof the quadratic variation with respect ta
Lebesgue measure satisfies (1.2) [47]. The condition that (X,X)t
be almost surely continuous with respect to the Lebesgue measure is
stringent and also hard to verify. One can extend the theorem for local
martingalé for right continuous completed family §}; with replacing some

other F measure instead of the Lebesgue measure to get [47].

dX_ = ¢, dMF(t) (1.4)

For the return process Rt this theorem can be applied to the martingale
term in its decomposition with respect to E};. We will always assume
that the return process Rt is.continuous and a (local) semi-martingale
relative to %};. This is true if<?1; is generated by the past values
of Rt. The implication of this last assumption is that ones information
is such that the predictable term of future returns is always of

bounded variation.

Since we know that the quadratic variation of a process does not
depend on one'sinformation.g;;, this representation theorem suggests that
we should take.the following process to be a measure of volatility of the

investment at any time t.
d 1/2
¢t [dt (»R,R)t] (1.5)

where the derivative is taken with respect to the Legesgue measure.

Because one could write

d R = d R, + ¢tht (1.6)
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~ )
t { tl( t} ( )

¢t can be interpreted at the change in the return process in addition
to its expected change due to a unit change in the sample outcome of the
(unpredictable) Brownian Motion process. (The derivative of the Brownian
Motion process is sometimes cailed white noise because its spectral
density function is flat. If the process (R,R)t is not absolutely
continuous with respect to Lebesgue measure one can consider its
derivative with resﬁect to some other F measure. It is perhaps more
convenient to consider the square of (1.5 ) as a generalized function to
avoid technical difficulties.

It is clear that the more volatile an investment opportunity is the

more changes one could expect in an infinitesimal time, because we have
= 2 )2
&R,R), = e{(dR ~dR ) |9’t} (1.8)

Thus the volatility is roughly equivalent to the (conditional) standard
deviation of the infinitesimal return th given the information %;i.

We shall shortly see how this variable can be a measure of risk for the
investors, however, a relative or "systematic" volatility is widely
considered to be more insightful than the absolute measure thus defined.
Consider a return process Rt and an index Xt both of which are (local)
semi-martingales with respect to the information %};. The index could
be any economic process such as the rate of return on another investment
opportunity. Both Rt and Xt can be decomposed into their predictable

and risky terms with respect to the information %};.

¢
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R =R +M (1.9)
xt = Xt + n, | (1.10)

Suppose we want to approximate Mt with a stochastic integral
of n, given by
t
N, = S Bsdns + Mo (1.11)
0
such that the error process e = Mt-Nt is "orthogonal" to N, in the

following sense.
d(e,n)t = d(M,n)t - Btd(n’“)c =0 (1.12)

The coefficient Bt will be called the volatility of the return process
Rt with respect to the index Xt. It can be determined from Eq. (1.12)
to be

d( M,n>t &« R,X)t
t'dnm% 'dLX%

B (1.13)

which shows that it only depends on the processes Rt’ Xt and does not

depend on the information pattern 9};.

3
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1.2. Stochastic Dominance

The purpose of this section is to extend the stochastic dominance
concept as defined in [21,35,36] to the dynamical case. Let U(W) denote
the utility function for a wealth level W. We assume that all investors
are maximizers of expected utility in the sense of Von Neumann-Morgenstern
[11,17] and that their utility functions are comncave and increasing. This
means that the investors are risk-averse in the sense of Arrow-Pratt
[1,43], and they prefer more wealth to less wealth.

Here we are addressing the question as to whether an investment
can be regarded as being superior to another one for all such investors.
The question as to whether to invest and how much will be considered in

later chapters. First, let W ¢ and W

1 ¢ denote respectively the wealth

2
processes associated with the first and second investment opportunities,

and let R ¢ and R

1 ¢ be the corresponding return processes. From the

2
increasing property of the utility function we conclude that the first

investment opportunity is superior to the second one if the following

is true for all t

awy, z dW, a.s. (1.14)

which is equivalent to (considering (1.1.1)

dR, > dR, a.s. (1:15)

However, these are only necessary conditions based on the increasing
property of u. 1If now we consider the charge in the expected utility

of wealth at each time given the information %}f at that time

e{du(Wt)IQB;} = u'(wt) s{dngg};} +-% u"(wt) d(w,w)t (1.16)
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where u' and u" stand for the first and second derivatives of the

utility function and we have .

IV
o

u'(wt) > (1.17)

A
o

u"(wt) < (1.18)

[}

we can see from (1.16)that among the investments with the same expecte&
change inone's wealth the one with the least quadratic variation

dominates the others. Using (1.1) once more and taking notice of

=L
d(R,R)t,— ¥ d(w,w)t (1.19)

t

we can state the equivalent statement that among the investment oppportunities
with the same expected rate of return (given the informaﬁion at that tinie)
e{th|gt},the one with the least quadratic variation term & R’R)t
dominates the others. |

From the above discussion it is apparentthat in investing: one seeks
to minimize the volatility of his investment returns at any time. Any
risk averse investor would demand higher expected rate of return for
a stock of higher volatility, the rate éf compensation, which is to be

considered as the price of risk is equal to

1 U"(W )

- E'ETTGZT for wealth process and (1.20)
1 uw'w)

- 5 ——— for the rate of return (1.21)
2 w.u (wt) ‘

0
process. ese terms are the respective measures of absolute and relative
s o
- @
risk aversionsof the investor [1,43] i.e. the more risk-averse investors
(sometimes céll"éd conservative investors) would demand higher expected

rate of return for the volatility of their stock.

“y
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Chapter f

A Random Wallk Theory of Fundamentalists' "Intrinsic Price"
i

2.1. Preliminariés

The professional stock market analysts are w%dely [9] catagorized
according to which one of the following two main schools they belong to.

On the one hand there are the "fundamentalists,' who believe that a
share must have;a "true" value, which depends on the performance of
the corporation and thus strive to find the relationships between prices
and such external factors that lie behind price changes as earnings and
dividends paid by various companies; so that by getting the necessary
information concerning the prospects for‘profits in different industries
and individual firms, and using this information in the "fundamental"
equations they could detect the trends in future price changes and make
a profit from that knowledge.

The "technicians," on the other hand, argue that since the stock
markets are nothing but speculative exchange markets the price of a
share is what someone is willing to pay for it. Accordingly they study
the past history of the price fluctuations in order to predict future
prices.

However, empirical studiés'showed that [9,37] the price fluctuations
obeyed a "Random Walk" rule and could hardly be told from independent
random numbers, which seemed to negate any economic law governing these
price changes. Although in its extreme position the random walk theory
suggests that past history of prices has nopredictive value for future
changes, the possibility that observing some external economic processes
might help one infer something about future prices is in no way precluded.
Some of the recent works [19,26,38,39] have shown that the fundamentalist's

pricing mechanisms and the random walk theories are not only not
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irreconcilable but in fact, imply each other. A starting point is Fisher's
present discounted value rule, [17] which defines the "true" value of
a stock as the discounted sum of its future dividend payments. For a

4

constant discount rate. r we have

_ [ ~r(s-t) E '
A St e T a, (2.1)

where D_ is the cumulative dividends paid up to time t.
Even for the deterministic case the "true value" will change as a

function of time due to changes in future dividend payment.

Simple differentiationof ( 2.1) yields

th + th = th dt . (2.2)
or if we define the pseudo-return by

dR_ = (dV, +dD ) /V, | (2.3)

then ( 2.2) implies that this must be equal to the interest (discount)

rate.
dR, - rdt = 0 (2.4)

Therefore, one cannot changé the pseudo-return by changing the dividend

payments, because the "true value" will also change accordingly. Similar

results can be obtained for the futures prices, i.e. prices for contracts

for transactions that should be carried out at future date. If we have

v, = expl-r(T-t)] Cy (2.5)
=

where CT is the cash to be received as a result of the transaction at

K
[

time"T and V{, the price of the contract, is the present value of C.. We
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then have
th/Vt rdt 0

Thus we conclude that in the deterministic case the rate of return

for the "true" present value is equal to the interest rate and does not
depend on the present value of other economic factors. This is to be
expected for otherwise an arbitrage possibility [17] tending to readjust
prices to their "true" value levels would exist. Next, we want to find
a stochastic generalization to ( 2.4) and ( 2.6) for the case where

future cash flows are not known with certainty.
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2.2. The Random Walk Theorem

It is widely assumed [39] that the market capitalizes a stock at
the mathematical expectation of its present value. That is, if we
model the information at each time as an increasing family of o-algebras
{Q}l} then the "true" or "intrinsic" price of a stock is the conditional

expectation of the sum of its discounted future dividend payments given

by
P_= e{st e-r(s-t) st[%;;} 2.7

where the discount rate r is the sum of the (risk-free) interest rate
and a positive term due to security risk, and the dividend payments Dt
are assumed to be E}; (local) semi=martinglaes so that the integral ( 2.7)
can be defined.

In a similar manner the "true" futures price for a share or a

commodity is given by:
T _ _(.~r(T-t), < (2.8)
P efe PTli};}

where PT is the price at time T.

For security prices the increasing property of the {§§1} implies
T _ ® -r(s-t) -
P, e{sT e an_|F.} (2.9)

We shall shortly develop a model for the evolution of the information
o-algebras {?3;}.' However, even without a dynamical model for Q}; we
can derive a version of random walk model [20] for the "true" prices

by simply differentiating (2.7), (2.8), and (2.9), and using the

increasing property of the {%};} and the identity
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efdx A} = elax | A} (2.10)

where it = e{xtkj43 andLJQtis the appropriate family of o-algebras. In

so doing, we obtain

eld P +d0D |Tf} = rPdt (2.11)
T 1 = ool S

e{d P |, } = rPdt (2.12)
T -r(T-t) _

eld P, + e dDT|§?1} =0 (2.13)

where dh denotes differentiation with respect to h. Therefore, we conclude
that the true prices suitably discounted, normalized, and corrected for
the dividend payments (rates of "excess" returns) are uncorrelated with

the past information in the sense of martingales. That is, we have

(dPt+th)/P£-rdt = aM, (2.14)

T, T _
dP, /P -rdt = dN, , (2.15)

where M and N are ;;l martingales.

Thus the fundamentalist's interpretation of the random walk
hypothesis is that all the information is being discounted in the present
"true price" and has no value in estimating the excess returns due to

future price changes, for we have

e{thlgyi} =0 (2.16)
Cefan |TF 1 =0 (2.17)

Neither can one profit by buying futures contract with the right delivery

date, for (2.13) shows that the change in the price of the futures due
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to a change in the closing data is equal to the discounted present value
of the dividends that are expected to be paid at that time.

The following dilemma has been posed by Granger in [19]. Suppose
that everyone belie#es in the fundamentalist's pricing mechanism and
acts accordingly. But the actual market price Pmt is'only an estimate
of the‘"true value." If Pmt satisfies the same dynaﬁics as the
fundamentalist's intrinsic value, then for positive discount rate r > 0

the error Bt in (2.11) and (2.12) will satisfy the equation [26]
'det = ret dt + dEt (2.18)

where &t is an‘E;;‘martingale with e{dgtlggi} = 0. Equation (2.18) is
an unstable equation and any initial error causes Ietl t:; ®©,

A possible resolution of the dilemma is as follows. Since there is
a nonzero error the market will attempt to not only predict the future
dividend payments, but also estimate the probability law at each time.
The question of achieving an asymptotically stable error when the system

has to be continuously identified has been studied [2], even though the

answers are only partially known.
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2.3. An Optimal Dividend Policy for Normal Growth Model

It can be argued with some cogency that the investors of a given
company share the common goal of maximizing the "true present value"
or the "intrinsic price" of the shares [17]. Therefore, the dividend
policy should be so chosen as to maximize P the current "true price"
of the share.»vHere, we examipe such a policy for the normal growth model.

Let Xt denote the book value at time t. Then

dxt + th = (earnings in dt) (2.19)
and let the modelvfor earnings be

(earpings in dt) = Xt[adt+bdnt] (2.20)

where n, is a standard Wiener process. Denoting the dividend rate as

th and assuming that it is measurable with respect to %};,we get:
dxt + th‘= Xt[adt+bdnt] (2.21)

Clearly, a is the rate of return on invested capital while b is the
level of risk.

Suppose the firm is scheduled to be liquidatéd at T. Then the
present value might reasonably be taken to be the expected cumulative
dividend payments plus the liquidation value both discounted to the

present i.e.
N TEap + T Vx| T 2.22
¢ e[jt e Ds e (T) el : (2.22)

Using (2.21) and (2.22) we get

: T-t
Pt = xt + (a-r) e; jo e-rsxt+sds|§;;] (2.23)
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Observe:

(a) 1If a = r then Pt
(b) If a < r then Pt g Xt" The .optimal policy, if it is a feasible one,
is to liquidate at once.

(¢) If a > r write (2.21) using the Ito lemma as:

»)
d 2n X(t) = ;(% dx(t) - %b—%-;—il‘)- dt
~ X°(t)
dp '
= a dt + bdn(t) - % bdt - ;(%) (2.24)
so that
2n X(t+s) - &n X(t) = as + b[n(t+s)-n(t)] - % bzs
J't'l's dD‘t ( ,
- T 2.25
t ~x'r .
or
as+b[n(t+s)-n(t)]- % b2s (2.26)
X(t+s8) < X(t)e
It follows that
E[X(e4+9) [TF, ] < X(t)e?® (2.27)
ana from (2.23) one could write for a constant T
P(t) < x(ryel@® O | (2.28)

with equality attained by setting dD(s) = 0, t <8 < T, i.e., the optiﬁﬁl

policy is to pay no dividend.

In short, the optimal policy for the normal growth model is a rather
obvious one, viz., for a > r pay no dividend, for a < r liquidate at

once, for a = r it matters not what dividend‘policy is pursued.

Xt and the dividend poliéy is a matter of indifference.
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That the dividend policy‘is a matter of indifference with respect
to the "true" price in all cases when there exists a risk-free opportunity
ffof lending or borrowing wi;h an interesting rate equal to'r has already
been discussedrby Miller and Modigliani [17], because if the optimal
dividend policy is D: one can always pay that amount by combining any
other inidend policy Dt with the difference It = D: - Dt borrowed at
an interest equal to the discouﬁt rate. The present value of the stream

. *
I is equal to the difference of the "true" prices corresponding to Dt

and Dt respectively.

]

e{st e-r(s-t)dIslggi} e{ft ejr(s't)dD:lg;;} - eﬁgt e-r(s-t)stlg;;}

Even when one cannot borrow or lend money in the market, companies can
achieve an equivalent financing by issuing new shares and selling them at

their "true" preseﬁt price.
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Chapter 3

A Quantitative Theory of the Fundamentalist's Price

L3

3.1. Price as a Resolvent Functioh

Let us now assume that the information <.—}"t is generated by a
vector valued Markov process Xt which might be interpfeted» as the

state of the company at time t. Let the expected divide_nd payments at

time interval (t;t+dt) be given by £ (xt). Let us also. assume for simplicity

that the proéess Xt is time-homogenuous i.e. if we define the operator

S
H, by
8
H £(x) = elf(xg) X, = %} | (3.1)
t

for bounded and continuous £ thengé: will only depend on s-t (and we
shall hereafter .denote it -isg:‘s-t)' Extension to arbitrary Markov
processes, can easily be.accomplished by argumenting the state variable

with the time variable. Now since we have [49]

(340 < 0zl | | (3.2)

CJJt is a contraction mapping and is therefore continuous.

Also because of the increasing property of {g;:} we have the

semigroup property:

= ' 3.3
WHere =HH, ‘ (3.3)
And, from definition

1inCH £ = £ ' | (3.4)
£40
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(3.3) and (3.4) imply that(a:}t must be of the form
H, = exp(cD - (3.5)
dY
where the differential generator c’. is given by

Lt = 1n £ F 50 (3.6)
£40

wherever such limit exists and CQQ is bounded..

Sincegdt is the operator for the expected future value of a
function the interpretation for the operator cgf is the expected rate of
change of value of that function. |

Now (3.7 ) becomes

F_(x) = Io TN £(x) as (3.7)

where Pt = Fr(xt) is the "true" price corresponding to the discount rate
r. Thus the "true price" operator is the well known resolvent of the
semigroup C':H.i.e. it is the Laplace transform ofg& operating on the

expected incremental dividend payment policy £.
F(x) =R_£x) = (I e Has) £x) (3.8)
r r 0 s ‘

It can be proved [49] that %{,’Fr exists and thus Fr is the unique solution

to the following equation:
rF () - LF_x) = £x) | (3.9)

which is equivalent of the random walk Eq. (2.11). It leads to the
interesting observation that the dividend payments should be equal to

the interest minus the expected rate of change for the "true price."
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Example 3.1.1.

As mentioned earlier the decision criteria on the Aividend policy
of a company often is to maximize the current "true price" of its |
shares. We assume that the choice of the dividend policy will affect
the dynamics of the information process. Let us dendte the differential
generator corresponding to dividend policy £(:) by gff and let the
discount rate be £(.). The optimal dividend policy will then satisfy
the following optimality condition.

sup{f F-ep+} = 0. . (3.10)
u .

for some function F, which will be the optimal "true price" function.
The optimization is to be carried out for all f£(-) satisfying the

constraints of the problem.

Example 3.1.2.

Let Xt be a diffusion process satisfying the following stochastic

differential equation

= ' 3.11
dx, m(gt)dc + N(Xt) dnt ( )

where N, is an §;; measurable Wiener-Bachelier process (vector of Brownian
Motions). The operator 22 in this case will coincide with the differential

operator given by
. ' C 42 :
Lo = n(x 7 e + 3 eV (0 7 8 M@ (3.12)

ﬁhich means the capital change in the "true price" is the sumof a
term due to trends in the information process and a risk-related

correction term implying that there is a cost to the uncertainties about
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the future states that should be compansated by either a dividend payments
or .an expected change in the future "true price."

Solving (3.9 ) we can derive the fc;mula for the "true" price
explicitely, as a function of the state, and although knowledge of
the present state can not help to estimate future excess returns the

quadratic variation will be given by

d2,p), = [ P01 NN @ [ Felat o, (3.13)

so that unless this function is independent of X (which e.g. is the
case for the lognormal model) the present state does help in estimating
the risk level.

Equations similar to (3.9) can be derived for futures prices.

Thus we have

3"5 F‘;(x) - &?F‘r‘(x) - rF*t‘(x) A (3.14)
Fg(x) = F(x) ~ (3.15)

vhere F:(x) is the futures price given by

F(x) = e{e'th(xh)lxo = g} | (3.16)

and the interpretation is as one approaches the closing time the futures
prices will change because of the changes in the information process and
because there is less interest to be discounted and at the end it should

be equal to the "true" spot price. In operator rotation we have
) = e I-Dhpy _ €T-Dn “H e (3.17)

where f is the dividend policy, and I is the identity operator.
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3.2. -Derivation of a Kernel Function

Now suppose that the information process has a transition function

given by
P, (x,4) = Pr[X_€ Alx0 = x] - (3.18)
Since we have

H 0 - [rman £ o (3.19)

we can rewrite (3.7 ) as
F_(x) = ff(y) K_(x,dy) | (3.20)

where

Kr(x,dy) = j'Ae-rtPt(x,dy) ' (3.21)
0

i.e. K?(x,dy) is the price per each dollar dividenf payment poliéy for
the ngighbourhood of the state y when the economy is at state x. Therefore,
the "true price" is the potential corresponding to the dividend policy
distribution (in the state space) f£(:) with the Kernel Kr(-,-) being the
Laplace transform of the transition function which has obvious economic
interpretation. Interesting problems arise when the process Xt is
defined only in a region G with smooth boundary . Differeﬁt sets of
boundary conditions for (3.9) correspond to different behavior of the
process on‘the‘boﬁndaryf' In general the only possible types of behavior
are stopping, disappearance, reflection, diffusion along the boundary,
and their combination‘which means linear combination of the corresponding
boundary conditions. There is no general theory for the case of random

domains. (See e.g. [42] for a discussion of boundary conditions. Also



[14] gives the solutions for the one-dimensional diffusion processes).

Example 3.2.1.  Consider the n-dimensional Wiemer process which

transition probability given by

- i S N -
’Pt(x,P)-I o exp( - ot lx yﬂ ) dy (3.22)

The differential generator for this process is such to be the Laplace

operator [14] given by

. n 32
Pexy =L v%em =1 3, 25 (3.23)
2 2 2
i=] 9x
i
for n > 2 the corresponding Green's function is given by
' ' 1 n 2-n
K_(X,dy) = ——75 I'G; = 1) ly-x1""" ay (3.24)
o (2“)n/2 2

Example 3.2.2.

Now let Xt be a one-dimensional Brownian motion in [0,*). The

corresponding Kernel will be of the form
Kr(x,&y) = {A(y) exp(-VZr x) 1(x-y) + [B(y) exp(-V7% x) +c(y) exp (V2r x)]
‘1) + D) exp(-V2r ®) S}y (3.25)

where 1(.) and &(-) are the unit step function and Dirac S~function
respectively A, B, C, D depend on the behavior of the process at the
left boundary.

Finally, for the future prices given by (3.16) we have

0 = (R, F) (3.26)

or if F(*) is the "true" price given by (3.7)
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P =[x | |
LB =K (x,dy) £(y) o R 27 ) I
I N :
where Kr is given by:. .

G (3.28)

*,I)
0. s+h

Kl;(x,l') = s

Yielding thé same potential interpretation as stated before.
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3.3. Price as a Function of.the Discount Rate

The "true price" given by (2.7 ) and derived in (3.7 ) for the
Markovian state proves case is a function of the capitalization rate r.
To see the dependence we notice that the prices for different discount

rates satisfy the following resolvent equation [9,14]:

- - - ,
CQaf Ryt + (a-8) CQfDBf =0 (3.29)

which when coupled with the fact that because of limited liability

prices are nonnegative tells us that prices are decreasing for increasing
discount rates. This is consistent with the observation that during
inflation times prices go down. Moreover, (3.29) explicitely gives us
the change ip pfices due to a change in the discount rate. In operator

notation we have

d D2 | |
Eq:'r“CQr | (3.30)

or using (3,21) we have

= 5 = - [ iy F0) - (3.31)

This observation gives us an often useful method for evoluating a project
with its expected future cash flow given by a function f(Xt). The rule
of thuﬁb is to look for this so called internal rate of retufn, which is

the rate for which we have
Cprf -1=0 (3.32)

where I is the required investment.
The investment should be chosen if the internal rate of return

is higher than the interest rate prevailing in the market. However, for the
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case where £ is not always nonnegative (e.g. future investments are required
under certain conditions) there may not be a unique intefnallfate éf |
return, or if one wants to compare two different investment opportunities
the-one‘with the highest internal rate of return is not necessarily the
best opportunity. A modified rule is to use the féllowing algorithm in
order to choosefrom among different investment opportunities [17]:

(i) Find the internal rate of return for each candidate. Reject
those with internal rates of return less than the market rate r.

(ii) Choose the alternative with fhe highest internal rate of return
provisiénaily as the defender.

(iii) Take the alternative with the second (if any) highest internal
rate of return as chalienger. Compute the rate of return of the
challenger overvthe defénder; i.e. the rate of return on the difference
of the two. If this is greater than r accept the challenger, otherwise,
accept the defender. Repeat this step for all the alternatives.

This algorithm will work if the internal rate of returnms computed

at each stop 1is unique.
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3.4. Stochastic Rate for.Discounting

The constant discounting model given by Eqs. (‘2-7) and ( 2-8) can
be criticized on grounds that the observable interest rate varies with
time. Furthermore, it can be argued that future rates for discounting
are random beéause they cannot be known given the current information.
A more general model therefore, is to assume an instantanuous rate for
discounting to be a stochastic process r, measurable with respect to
?31. The exponential form of discounting is because of the requirement

that it be consistent. That is, if the "present value" of a cash flow

Pt at time XT is

T_ T o (O 3.33
D, e{kt.PTlf};} (3.33)

then one should be able to arrive at this value by first considering
the "true" value of PT discounted to some time s (t<s<T) and then discounting

it again to the bresent time t.
T o e{k® efkF c 3.34
p, = elky elk P |TF ) (3.34)

Using the increasing property of %}L and comparing (3.33) with (3.34)
one can conclude that in order to be consistent the discdunting functional

k should satisfy the semigroup property given by

K o= 5k (3.35)
t S

Therefore, under some regularity conditions the infinitesimal discounting

functional k§+dt will be given by
k:+dt = exp(r,dt) (3.36)

for some process ri, which will be called the rate of discounting at time t..
@
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Equations (2.7 ), (2.8 ), and (2.9) thus become

o s A ; . K
P_= e{{t exp(-jtrudu). stlgft-} | (3.37)
T T L .
Pt = g{exp(~ It rsds) PTIgt} | ~ i (3.38)
Pl = ¢ °°ex (- j-s r du).dD |g} | (3.39)
t T P . Tu w).dd_ [T, |

differentiating (3.37) and (3_.38) we get

: _ - » o 3.40)
(dtPt-l-d Dt)/Pt r, dt th (
a pY/pt - r dt = N, (3.41)

tt t

where Mt and Nt are qt martingales with

. ' e : ‘
efam, [} = elan |Tf ) = 0 (3.42)

again indicating that the present information has no value in predicting
the excess returns due to future changes in the "true" prices. For the

Markovian state-space case we have

e t o .
F(x) = e{j exP(-j k(xs)ds) f(xt)dtl,x0 =x} (3.43)
0 0

where k(x) is the discount rate corresponding to the state x and f and
F are the dividend and "true" price functions respectively. Then the

celebrated Kac's theorem yields [14].

DLFx) - kx) Fx) = ~F(x) (3.44)

which has the same interpretation as (3.9 ) and may be solved explicitely

to give the true prvice function F(x).
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Finally, one can again, determine explicitely the change in the

“true price" due to any change in the discounting method k(.). Let
CIQR ( )f be the "true" price corresponding to the discount function k. (.)
i L ]

and dividend function f. One can write

Cle(‘)f -ka(.)f + (kl-kz)CQﬁ (.)Cka(.)f =0 (3.45)

i.e. for a change 6k(.) of the discount rate we have the price change

'F given by

§F(x) = - 6k(x)v.CQk(.)F(x) ~ (3.46)
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3.5. Random Stopping

Suppose nbw that the dividend. process is only defined in the [o,T]
interval, i.e. the share will produce an (uncertain) $tream of future
dividend payments up to a (random) stopping time T after which a
bankrupt, a default, a decision to sell the stock, or some other unaccounted
for event would stop the cash flow‘and éield a final price PT price,
which is a random variable adapted to‘{}é. Equation (3.37) now becomes

T s : :

e ” SFI; exp (- St r,du) . dbg + PTIQJ%} (3.47)
Letting

Prit <T <t + dtlgt] = £ dt (3.48)

where Et is the conditions probability of stopping and-is measurable with

respect to Q;;, we have
- = (3°49)
(dPt+th)/Pt rtdt Etdt + th :

where Mt isAan ?Ji martingale.. i.e. the conditional expectation of the
excess return is equal to the conditional probability of stopping. The
quadratic variation of Mt will in general deﬁend on the evolution of

?};. For the case where Q}; is generated by a Markovian state process
Xt let us consider the subprocess obtained by terminating Xt at a

random stopping time T. Let E(x) be the conditional probability of
termination corresponding to the state x i.e. the conditional probability

of the event {T > t} is given by [14]

t
pr(r > t|F,) = exn(- jo £(x_)ds) (3.50)
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Then it can be shown that the differential generator %& corresponding

cP

to the "killed" process is given by [14]

Qf = E:ff - g.f (3.51)

where gﬁ is the generator for the original Markov process Xt.

Combining (3:51) with (3.44) one concludes that the "true price"
corresponding to the discounting function k(-) is equal to tﬁe true price
of the same cash flow with no discounting, but with a rahaom termination

corresponding to the termination density [14] k(.).

Wl t T
e{Io exp(-j'ok(xs)ds) f(Xt)dtIXO = x} = e{so f(xs)dS|Xo = x} (3.52)

where T is given by (3.50) with &(-) replaced by k(.).

Thus we once more conclude that the conditional expectation of excess
returns should éompensate for the conditional probability of termination.

It is often the case that . the process Xt is confined to a
regiong(with a smooth boundary 89<. Then, in order to know the process
we should know its differential generator and in particular,» the way it
behaves on the boundary. The possibilities are stopping, disappearance,
reflection, or diffusion along the boundary, as well as their various
linear comb:lnatioﬁs. To each type of behaviour, there corresponds a
boundary condition associated with differential equations involving the
generator such as ( 3.9) and (3.44) see [49] for a discussion of boundary
conditions and the criterion that determines whether the region is
closed or open or whether the boundary is of "regular" or "exit" type.
Also it turns out that the potential kernmel given by (3.20) and (3.21) has
a singular term on the boundary, which is again the Laplace transform

of the transition probability in the boundary, and is given by
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F.(y) =L§((y) K.(x,dy) +fo(y) G_(x,dy) (3.53)

K (x,T) = 'Ioe'rtpt(x,r) o (3.54)
_ ® reg

G (x,8) = Io e P (n,4) (3.55)

where the singular term arises because of stopping or diffusion along
the boundary. In cases where the process terminates when it hits the
boundarylfa( the differential generator is again given by (3.51) where

E£(x) is the density associated with the hitting time T and is given by

Pr(X € 9.(, 0<sg2 tht]' = exp(- :E(xs)ds) . | (3.56)
where CX is the interior of 9(
A general theory of Markov processes with random domains has not yet
been constructed [14]. However, the theory of additive functional
provides us with the means of interpreting the above observations and
find its link to the (generalized) Brownian Motionm.

Example 3.5.1. Let X, satisfy the linear model given by

dXt = Axtdt + Bdnt (3.57)

where A and ‘B are nxn matrices and nt is an n-dimensional Wiener process.

Let the dividend payments be given by
th = Cxtdt (3.58)

where C is an n-dimensional row vector. Considering the limited liability
of prices we have

T
V(x) = e{so $™%ap_|%) = x} (3.59)
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where T is the first time X = 0 (i.e. 9( = ]R_:il and the boundary behavior

is stopping) and [49]

. V(0) = 0. (3.60)

Solving the "true" price Eq. (3.9)

2
(Ax)'%y-+-];tr B'd—VB-rV=Cx (3.61)
x 2 dx2 ‘

subject to the boundary condition (3.60), we get

V(x) = C(rI-A) 1x - (3.62)

i.e. the "true" price will be given by
-1
Pt = C(r1-A) Xt ‘ (3.63)

which is similar to what Granger [19] obtained for the discrete time
model.

For future contracts given by ( 2.5) the dynamics of the process
given by ( 2.6) will not be changed if the expiration T is a random
stopping time. Tﬁus for simplicity let us consider the case with Markov
state space where the stopping time is the first occurance of an event and

there is no discounting i.e.

$(x) = elF(Xp [X) = x} (3.64)
where T is the first exit time of G then we. havé [14]

Pox)

$(x)

0 forx€¢G (3.65)

F(x) for x € 3G (3.66)

which is called the Dirichlet Problem).



50
Yet another way to apply the theory of the terminated subprocess
to the case of "true" futures prices is that of the contingent contracts
i.e. contracts that should be transacted upon at a certain time conditional

on the non-occur nce of an event, i.e.

F (x) =€ {F(x;) Ind (T>h) |X0=x} (3.67)

where 1Ind(.) is the indicator function and T is the first exit time of G.

Again we have

: :
% F, (x) = th(x) for x €6 (3.68)
FO(X) = F(x) (3.69)
F(x) =0 for x € 3G , (3.70)

Other boundary conditions will correspond to the various agreements
(other than non-transacting) in the case when the boundary of G has been

reached (the "taboo" event has happened) before the contract date.
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3.6. The Effect of.Time-Change.and Changes of Probability Measure or Price

We have already seen that a random termination of the dividend
process has ;he‘same effect as higher discount rate woul& have on the
"true" prices, and for Markov processes, its effect can be summerized
in the transformed differential generator given by (3.51). Anbther
possible transformation is a random change in the time variablé. It can

“be shown [44] that martingales are Brownian Motions whose time has been
changed randomly with the quadratic variation of the processes. In
other words let M, be an integrable local martingale and (M,M)t be its
quadratic variation let Bt be an independent Brownian Motion and let -

us define a random time change given by the below equation.

T

. ;inf{sl(M,M)s > t} if this is finite (3.71)

T = otherwise
and let Xt be defined by

X, = My AT, < (3.72)
X, =M, + Bt—( M,M)w otherwise

then X, is a Brownian Motion [44].

This observation e.g. might explain why when the price fluctuations
almost seem to be a Brownian Motion.and one changes the time dimension
into a "move" dimension [9] (i.e. each new time unit is when the prices
-have changed % x) then the picture changes and the new process is no
longer a'BrOWnian Motion. When we have a Markovian State process é random

time change characterized by



52

T

t .
S V(X )ds = t (3.73)
o B *

where V(x) is a positive function, will transform the differential

generator [14] according to

Pt x) = Tl P x) 3.74)

A Markov process is called a generalized Brownian Motion [14] if it can
be obtained from the Weiner process by a construction of a subprocess

and a random time change. The construction of the subprocess, or random
killing as we have seen is assoclated with an additive function ¢su such
that if T is the termination time then conditional probability of stopping

is given by
Pr[T > tlg}é] = exp(-¢0t) (3.75)

And the random time change corresponds to another additive function

¢su such that if T, is the new time we have [14]
Y, =t  (3.76)

Since we know that each additive function corresponds to a measure such

that
£ au 3.77
- °Ss?ﬂi () du (3.77)
S a (X ) d | (3.78)
L . s &y ¢

where-é% denotes density with respect to the Lebesgue measure. Each

generalized Brownian Motion is thus characterized by two measures; the
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"killing measure" p determines when the process is terminated and the
"speed measure" v determines the random time change. The differential

generator of a generalized Brownian Motion is then given by

_ 1y dVy02, _ du
£ 2 @/ dl)v f av £ (3.79)

where V2 is the Laplacian operator. Finally, let us consider a change
in state spacé. For simplicity let us consider the case where the

differential generator is identical to the second order operator given by

d
£+ b, (x) 7 £ - c(Nf (3.80)
n i axi _

Ys - Z aij(X)

9X. 90X,
i,] i3
Now let us change the state x into another state X where the transformation

to the new coordinate system is twice continuously differentiable then

the new differential generator is given by [14]

. 2
- 3 ~ 3 -
%Bf= Z a .(x)—-—-f+2:b (x) — £ - c(x) £ (3.81)
i3 ij axiaxj‘ 1 i Bxi
where we have
- 9%, 93X
- i i
a.. =2, a,—=— (3.82)
ij 8 (T3] Bxa BxB
- 2~
Ix 9Tx,
~ i 1 < i
B, =2b 5ty 2 2 (3.83)
i o (18xa 2 «.B aB axaaxs
c =c (3.84)

Let us consider the economic interpretation of the transformation mentioned
above. Regarding (3.51) we observe that there is no difference in the
"true price" of a terminated process with that of a non—terminated process

that has been discounted by an amount equal to the conditional
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probability of termination, because if one considers (3.44) then one can
conclude that they both satisfy the same differential equation. Therefore,
we conclude that one discounts future streams of income in anticipation
of a termination in the stream due to unexpected events that have not
been incorporated. On the other hand, a random time change will change‘
the quadratic variation of the process and unless one is indifferent
towards risk, there should be a reverse relationship between a "speed":
rate and the discount rate. But, (3.79) does not give an indication of
what the relation should be. Our conjecture is that since under very
general conditions [14] Markov processes can be obtained from the Wiener
process by‘successively carrying out a rgndom termination, a random time
change, and a transformation of the coordinates, and since the term due
to termination in the differential generator is invariant under the
transformation of coordinates (Eq. (3.84Iu-the‘discount rate from (3.79
should be the density of the killing measure of the process with respect
to the speed measure . In general the discount increases

with increasing termination probability and with increasing quadratic
variation, implying risk aversion on the part of participants in the

market.
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A Markov Theory of Options

Let us consider markets where by a proper composition of his
portfolio one can eliminate all the uncertainties concerning the
immediate future return of his investment. Mathematically, this means that
one can find such a combination of investment opportunities such that the
total incremental return on his wealth is méasurable with respect to the
information that he has at the time. For example, let us consider the case
where the inf&rmétion is generated by an N dimensional Markov process.
Now consider N+1 different assets, none of which can be obtained from a
combination of the other N. Let the return (adjusted for dividend payments
if necessary) of each of these assets be given by

2

zN: 3R N ZN: RN D
map(E Mk A,
1) "\ & 3% ) e 1?_;:1 & \ox ax ) S e X’ |

k=1

where i stands for the asset i and th is the k-th component of Xt, and

(M .5
axk . axk

x=Xt
2 2

( 0 Ri ) } 9 Ri
\exax, /% dx,

x=X
t
The second term in (4.1 ) is E}; measurable, and one can find a
combination of the N assets with @y being the preportion for the
asset i such that the uncertainty is eliminated

N+1 1%: ZN: aR, Nz+:1 .
Y a.dR, = a, == dx, + Y @.dC,(x ) .
i Tt ety Tk i

where Ci(Xt) ié the correction term and is given by (4.1). This can be

done if one choses the o, such that

i
N1 R,
3 a; 3===0 for k = 1,2,...,N (4.3)
i=1 T
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If now a new investment opportunity is introduced in the market, one can
again combine this with N of the existing assets in such a way that the
risk is eliminated. Unless the resulting risk-free rates of returns turn
out to be equal, there is a clear arbitrage possibility and one could make
infinite amount of profit by selling short the resulting portfolio with

the lower rate . of return and buying long the one with the higher return
rate. The riskless opportunity for profit will force the rates to resettle
into an equal risk-free rate. Therefore, the return on the new investment’

will be determined by the rates of returns for the N+l assets.

Example 4.1.1.

Let the information process be a one-dimensional diffusion process

given by

dXt = m(Xt) dt + O(Xt)dB; | (4.4)

where Bt is aone-dimensional Wiener process. Let us assume that there is

a market portfolio whose rate of return is given by

dRmt'= om(Xt)dt + Bm(xt)dBt (4.5)

Now consider a share with incremental dividend payments f£(x) and a "true"
price F(x) corresponding to the state x. The dividend-adjusted rate of

return is equal to

 Praxp+ey F'(X.)

t
dt + F(xt)

dR

st F(Xt) O'(Xt)dBt (4.6)

Finally, let us assume that there is a risk-free rate of borrowing or
lending equal to r(Xt). Let us now consider a combined portfolio composed

of wi(xt) dollars of share, wz(xt) dollars invested on the market portfolio,
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and w1+w2 dollars borrowgd with the rate r(Xt) to finance the investment.

The total return will be given by

: F+f F'o

dR_ = [w) (55— - 1) +w,(q )] dt + (v 7+ w,B)dB (4.7)
if one choses vy and v, such that
-gF' :

then he can get an arbitrarily high return with zero investment and

zero risk, a clear arbitrage, unless we have

)H(x) _ _ 9(x)F'(x)
F(X) r(x) = B(X)F(X) (Otm(x)-r(x)) (4'9)

- We thus have a rational discounting rate that excludes arbitrage where the
rate of excess return on each portfolio is related to that of a market
portfolio and the higher the risk level, the more return one should

expect in compensation.

Example 4.1.2.

One field of application of the random walk theory of the stpck
prices is the determination of the "true" prices of such derivative assets
as puts, calls, warrants and convertibles. It is usually assumed [30,37]
that the underlying security prices are Markov processes and thus the
"true" prices of the otpioﬁs are functions of security prices. One
problem is that since the options are more volatile the discount rate
should be higher than that of the unlevered securities. Using the above
example, however, one can obtain the discount rate that would exclude
arbitrage possibilities when there exists a risk-free rate for lending

or borrowing money in the market. Let Xt be the price of the security
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and let thevdifferential generator SQ be given by
2

E,Q—la ® &5+ bx )i- e (x) (4.10)
dx

Now let f(x,t) be the "true" price of the option when the security
price is x and let r(x) be the risk-free rate corresponding to that

price. From (4.9) we have
s+ 2 /8- = /D@1 n (4.11)
or after rearranging terms we get the following differential equation

2
a2 TL 4 v L - [rereEIE +32 = 0 (4.12)

dx

subject to the proper initial condition [6,30]. One important result of
the above analysis is that the "true" prices for options are independent
of the drift factor b(x). Thus twodifferent investors with different
beliefs on the rate of return of the security might agree on the "true"
option price. Now let us go back t6 the general case where a portfolio
return is given by (4.2) and we have

N+l

i}_“i ai(X) =1 (4.13)

each set of ai, i=1,2,...,N+1 characterizes a portfolio and the one

obtained by solVing (4.3) together with (4.13) will be called the

risk-free portfolio and its return rate will be denoted as dR By a

ot’
process similar to the Gram=Schmidt [41] one can construct N different
portfolios whose rates of returns, denoted by dﬁk, k=1,2,...,N, will

be uncorrelated in the sense that
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~ ~

d(Rk,Rz)t =0 for k # & : (4.14)

To do this let

d'th = det
&R, ,R )
- 228y £ =
R, =- -
1°71't
and in general
. ) k-1 d(R.k,R )t
dR, =dR - ——— (dR, _-dR, ) (4.16)
e ™ e =1 aRy Ry M e |

then the obtained portfolios will satisfy (4.14).' Now we can prove that
any other investment opportunity should be linearly related té these

"basis" portfolios so as to exclude an pbssibility of hedging. Suppose
for an opportunity whose rate of return is given by th one can find a ‘

portfolio combining the N "basis" and the risk-free portfolios such that

one has
N 9R,
oo, L2 1,2,...,N : ‘ (4.17)
i‘;-?) i Bxk axk
N
206 =1 (4.18)

i=0
where ei is the proportion invested in the i-th portfolio. Clearly,
one can sell short the combined portfolio and invest on the new opportunity
with the proceeds with a risk-free rate of profit equal to
N

W (dR - ¥ eidfzi) - (4.19)
0 1=0

unless one has
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N . .
dR = 1§0 eidiii (4.20)

where the 8,, i = 0,...,N are solutions to (4.17) and (4.18). To find

i’
N
the solutions, we observe that dR - Z 8 idf{j_ should be orthogonal to
i=0
the dR, thus:
& R,f{i )t ,
ei=—~——;-— for 1 =1,2,...,N (4.21)
d¢ R, Ry >t
and we have
N R,f{i )t .
dR = 3, (dR,~dR ) + dR (4.22)
i1 «k k) L ° °
i*7i'e
d(R,R, )
The terms ———— in the above equations are the volatilities of the
Ry, Ry D

process R relative to the Ri'
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Chapter 5

The Dynamic Capital Asset Pricing Model

5.1. Preliminaries

It has long been held that a satisfactory theory for analyzing
stock price fluctuations must take into account the interdependence of
the future price processes. When more than one investment
opportunities are available, a possibility of diversification exists. That
is,one can choose a portfolio of different stocks in such a way that
when the price of one of the individual stocks is expected to go up the
price of another will go down and thus hedge against the risks involved
It has also been conjectured that since many people's investment goals are
to maximize the expectation of a risk-averse concave increasing utility
function in the sense of Von Newmann-Morgenstern, [34] they would prefer a
portfolio with more expected rate of return and less risk to onewith less
expected rate of return and greater risk. To pursue this line of argument one
needs a normative model for the degree of a portfolio. Among different such
models[29,40] the so-called mean variance analysis, where the variance of the return
of an asset is considefed as a measure of the risk associated with that
asset, has by far been the most popular because it deals with such
empirically observable variable, as the first two moments of a random
variable rather than Von Newmann-Morgenstern type utility functions and
corresponding subjective probability distributions. The capital asset
pricing model [23,42], which is based on this assumption has received
considerable attention in the financial literature because it can be easily

applied to such areas as portfolio selection and capital investment decisions,

in addition to providing a theoretical foundation to diagonal market
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models and theorems on the separation of investment and financing decisioms
[46].

The mean-variance model, on the other hand, has been criticized on
both theoretical and empirical grounds in recent years [7,18,22]. This
model is true only if either the return variables are assumed to belong
to a two parameter class (e.g., jointly normal) [17], or if the utility
function is assumed quadratic. Both assumptions lead to gravely
unrealistic implications [16].

Perhaps an even morelimportant shortcoming of this model is its static
nature, since the allocation of the resources in time is so important
that it is said that the capital theory is the theory of time. There
have been some recent attempts to extend the theory for the dynamic
case [4.17,31,33]. ‘Again, the known information at each time can be
modelled as an increasing family of o-algebras ;}1.‘ Let us assume that
there are N opportunities for investment the rate of return for each of
which, duely adjusted for dividend payments if necessary, is a prdcess
Rit adapted to %};. Thus if at time t the amount m. is invested in
the i~th opportunity at time t+dt one should get the amount mithit for
that investment. Therefore, if eit is the proportion of the wealth at
time t that is being invested in i-th opportunity(and if . is the
proportion of ones wealth. that is being consumed at that time, then the
wealth equation will be given by

N

= - 5.1
/W, i};leitdnit c dt (5.1)

where we have
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N
2, 6, =1 (5.2)
i=1

"and the return processes are assumed to be (local) semi martingales
with respect to the informatioﬂ ;Hi so that the integrals could be
defined. |
Given the initial wealth (5.1) could be integrated and we will have
t

t N N
1
W =W expl[- g c ds] expl 2: 6 dR - = E E 6, 8. d(R,,R,?
t o 0o S 0 £1 is 2 im1 j=1 is'js” 1’ i s

Therefore, the wealth at each time will be determined by the past
" consumption and the past selection of onds portfolio,:and the effects of

these can be separated. The consumption process is given by:

Q
]

t t N 1 X N
N Wo-ct exp[- § csds] exp[§ ( ZeistiS -3 Z Z 0 6 d R Rj )S)]
- 20 0 i=1 i=1 j=1
We shall assume that the individends in the market have
“"atomistic' influence in the sense that they do not believe that they
can change the laws governing the return processes by changing their

consumption and investment policies, in other words, the QJZ measurable

processes will not depend on the strategies eit, ct.



64

5.2. Generalized Mean-Variance Models

Let us now consider only the investment decision. It is often the
case that consumption is not the concern of the investor. Instead he
acts so as to maximize the expected value of some increasing concave
utility function for the wealth at each instance.

As we saw in section 1.2, the best strategy for such An investor
ié to choose among portfolios with the same rate of a-posteriori:
expected return the one with the least quadratic variation term.

Since the rate of overall return on ones portfolio is given by

N
R, = 12=:1 0, AR, (5.5)
>
6, =1 (5.6)
=1 it
one has to minimize the quadratic variation term
&R ,R ) = 9,6, dR,,R,) (5.7)
I R = L L
subject to (5.6) and for a given expected rate of return
N
e{dnptlgt} = 12=:1 6, eldr, |} (5.8)

Let us denote the portfolio with the minimum quadratic variation with

the subscript 0 (i.e. dROt stands for the rate of return for this
portfolio). The corresponding ratios {901t} will be obtained by
differentiating Eq. (5.7) subject to the condition (5.6). Using Lagrange
multiplier technique, one gets the following condition for the rate of

return for the minimum risk portfolio
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d(Ro,Ri)t = d(RO,R())t (5.9)
Thus, it has the pfoperty that every other portfolio has a volatility equal
to that of the minimum-risk portfolio, and furthermore, it dées not
depend on the individual's information or subjective probability beliefs.
If the determinant whose element are the a-posteriori covariances
d(Ri,Rj)t has a rank lewer than N, then the minimum-risk portfolio at
that time will have zero quadratic variation one can construct
an instantaneously risk-free portfolio. However, in general RO is too
conservative a portfolio, and depending on ones measure of risk aversion
as shown in 1.2 one would choose a portfolio with greater risk in return
for higher expected value of the conditional rate of return. We shall
examine later implications of this model and the volatilty of the measure
of risk involved in the investment. An imp&rtant result mentioned
in 1.1 is that the volatility factors do not depend on the information
pattern E}l nor does it change when the subjective beliefs concerning the
underlying probabilities are changed as long as the probability measures
_are absolutely continuous with respect to one another.

Before pursuing the discussion or the results that one can get from

this model, let us consider the case where the consumption given by
C_=cW (5.10)

is the main éoncern of the investor. If we differentiate (5.10) we get
dC_ = c dW _+ W.dc + a c,W)t (5.11)

The last term is measurable with respect to ?}t the information at

time t. However, the second term is not necessarily adapted to Q}l,
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and the possible variations of the consumption, therefore, constitute

a further source Qf risk besides the volatility of the investment returns.
One would then exéeét the investors to diversify their portfolio not

only to minimize the variations on their portfolio returns but also so

as to hedge against changes in their consumption ratios. In the next
section we shéll examine a model due to Merton [28,31] concerning the

investment and consumption strategies.
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5.3. Stochastic Control Model

Let us now consider the model presented in 5.1 in more detail.
We assume for simplicity that there are N+l investment opportunities
the last one of which is the minimum-risk asset denoted by the
subscript 0. We also assume that the dynamics of the return processes

i.e. s{dRitIQJ;{, and d(Ri,Rj)t for i, = 1,...,N are generated by a

Markovian state Xt’ the evolution of which does not depend on the
investment or consumption strategies of individual investors acting in
the market.

Consider an individual whose wealth is given by (5.3)

We assume that the augumented vector process (ét) is also a Markov process.
' t

If at time t the individual would invest eit i= 1,...,N proportion of

his wealth in the i-th opportunity and e =1 - 2 8i¢ in the minimum-
i=1
risk portfolio, then his wealth equation will be given by:

dwtlw 124 0, (dRit—dROt) + dRot - c,dt (5.12)

and the quadratic variation of the wealth process will be:

d(ww) }1_% N
w2 -

Z 8, 90, it (d(Ri,Rj )t - d(Ro,RO)t) + d(Ro,Ro)t (5.13)
t

1 it
Now if one wants to maximize his expected utility of consumption given by

T
U= j A(Csys) ds + B(WT,T) (5.14)
0 :

then one can use the dynamic programming technique by defining

T : ;
V(x,w,t) = S{S A(Cs,s)ds + B(WT,T)|Xt = x, Wt = yw} (5.15)
t
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and for the optimal policy one wouyld have

elav, |Tf,} = sup{(-—) e{dw ST+ ): ( ) {dxktr}f}
k=1

2 M
+(-g-‘t-’) +32.(ag) d(ww)+ Z( )dka>
' t ow c . k—l
L }% % 2%V wx x ) - AC } (5.16)
+ 5 (—) 44X ,X - A(C_,t)dt} = 0. 5.16
2 =1 = Bxkaxl xk tt t

After replacing for e{dwi|§31} and d(w,w>t from Eqs. (5.12) and (5.13)

and considering

-4

d(xk,w)t = wt[£Zi eit(d(Ri,xk)t - d(RO’xk)t) + d(Ro,xk)t]

could differentiate (5.16) with respect to the 6, to get the regular

solution for the investment strategies:

2

2 3%V 3V
(v o =) [26 (ARRD, = KRGRDDT (v 5;): le{dr, ~dR, |X }]
t
P )
+ (w ) [&R,,Xx, ) - &R ,X > ] =0. (5.18)
& Y ax 1% 0¥kt >

t

Or if we define the excess return processes as

\ = - = .
dRit dRit dROt i=1l,..,N (5.19)

from which we obtain

« R' R.,")t = d(Ri,Rj)t - d(RO,RO)t . (5.20)
d(R' xk) = d(Ri xk> d(R xk) | (5.21)

we will have the following equation for the optimal investment policy
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N (3Vv/3w)

- t
Y 6, &R!I,R!Y =-————— ef{dR} [ X}
F=TRE LI R (waZV/awz)t it! T
m 82V/8Xk8w
- (P . A, L
2z (wazvlaw?' ) d(Ri’xk)t (5.22)

t

Now if m << N, (5.22) will give an efficient policy set for the selection
of ones portfolio. That is, no matter what an individual's utility
function is, his optimal portfolio will be a combination of m+2 "mutual
fund" portfolios consisting of the following, minimum-risk portfolio cor-
responds to the solution for the homogeneous equation, the growth-optimal
portfolio corresponds to the first right-hand side term and has the property
that almost certainly it would result higher terminal wealth than any
other decision rule [22,32], and finally m portfolios corfesponding to
the m right-hand side terms of (5.22) can be used to hedge against
unfavorable changes in investment opportuﬁities. Thus one not only must
"smooth" the consumption in the sense of maintaining its level against
the changes in one's income, but he also has to smooth the consumption

A by keeping its variability (risk)at a minimum through time. The function
V(w,x) is the conditional expectation of one'sutility and is therefore

2
the implied utility of ones wealth at time t. The factor - @ﬁiSQE&LO

av/ew 7
is the relative risk aversion factor for the implied utility and we can
see from (5.22) that the more risk-averse individuals would choose less
risky portfolios. Now if we differentiate (5.16) with respect to the

other decision variable, namely the consumption we get another

condition for the regular optima

v, _
(—,c)-‘;)t = A'(C,,t) 5.23)
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where

4 -
LR
A ac A(Ct,t) (5.24)

Further differentiation of (2.23) and application of the implicit

function theorem yields [28],

2,2 : :
wo<V/ow", _ ,wiC/dw CA" (C,t)

" av/aw ) =) ¢ A'(C,t) ) (5.2

t t t
2
9 V/ax, aw aC/3 '
Kk X

) = D) - (5.26)
) aC/aw 7 . .

It can be seen from (5.25) that whenever A is an increasing concave
function repfesenting non-satiable risk-averse utility for consumption,
the left-hand side factor, i.e. the relative risk-aversion for the
implied'utility of wealth,will bevpositive [28]. One can also see from
Eq. (5.23) that V is an increasing fﬁnction of the wealth (since %% is

always positive).
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5.4. Separation Properties and Market Models

As mentioned in the last section (5.22) represents a generalized separation
of decisions, whicix canbe as follows: under the stated conditions there would
e#ist m2 "mutual funds" the proportion of each fund's portfolio invested
in the individual N+l assets are purely "technological" i.e. do not
depend on investors' utilities such that no matter what one's consumption
policy ;s he will be indifferent between choosing portfolios from among
the original N+1 investment opportunities or a combination of the mt2
"mutual funds,'" and that the investors' demands on the funds as given
by (5.25) and (5.26) depends on their utilities and consumption policies, but
require no knowledge of the N+l investment opportunities or the proportions
held by the funds.

Now if the changes in the investment opportunities are "uncorrelated"

with their rates of returnms, i.e.,
d(xk’Ri)t =0 1i=1,2,...,N k=1,...,m (5.22)

then there would be no need for the m portfolios used to hedge against
unfavorable changes in the investment opportunities and therefore the
consumption and investment decisions can be completely separated and no
matter what one's consumption policy is his investment portfolios will
consist of two "mutual funds." Notice that (5.22) in this case results
in the same bptimal investment policy that was outlined in section (5.2).
One chooses his portfolio so that it has the minimum quadratic variation

among the possible portfolios having the same expected rate of return.

One has thus to solve the following quadratic programming problem:



N N
1 'Rt 1.2
minimize 5 [2; 2; eitejt d(Ri,R.j)t + d(RO,RO t] =3 5. dt (5.28)
i=1 j=1
.
subject to: ei e{dR' |§;:} + E{dROtI‘; } = M, dt (5.29)
i=1

(If either the conditional mean or the quadratic variation is not
absolutely continuous(with respect to the Lebesgue measure)then the
differentiation can be done with respect to some other measure [47])
Using the Lagrange multiplier technique one could see that the optimal
policy would be such that one's portfolio will consist of the two
"mutual funds" given by (5.22), and the optimal mean and variance

will have a hyparbolic trajectory in the Mt-St plane [29]. These
portfolios are thus the proper generalization:of the mean-variance
efficient portfolios forthe dynamical case.

It can easily be seen that every combination of two mean-variance
efficient portfolios is itself mean-variance efficient and as éne's
risk-aversion factor changes the efficient frontier is spanned. If
we denote the rate of return for any one of the efficient portfolio as
dRet it will have the property that the expected rate of return for any
of the other N investment opportunities will be linearly related to its

"correlation with the efficient portfolio in the following sense

e{dRét[§31} e{dR' [%})}

1 [] = [] ] i = l’z,noo,N (5030)
d(Rp,Re)t d(Ri,Re)t |
where we have
N .
drR}, = 2. 0, (dR}, ' (5.31)

i=1

dR'

? 6* drR!
et & Tit it
S i=1



Fig. 5.1.
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and * denotes the efficient portfolio. Furthermore, each of the
efficient portfolios can be the parameter for a market mbdel. To each
one of these portfolios there corresponds another portfolio belonging to

the efficient frontier which has an expected rate of return lower
than that of the minimum-risk portfolio, and a zero correlation
with the efficient portfolio, That is, if we denote the second portfolio

by the subscript z we have
& Re,Rz>t =0 (5.33)

Now every other efficient portfolio is composed of the following

combination of the two portfolios
dR = BS dR__ + (1~8%) dR - (5.34)
t t et t zt : ' :

where we have

e i R,Ré)t
o TR, -39

For the non-efficient portfolios we will have the same model described
by (5.34), but the zero-beta portfolio in this case is not one of the
efficient frontier. However, for every portfolio in the market the

following model will be true:
= g€ g _a®y | ~
e{dRptICJ»’t} = 85, e{dRetlgt} + (1-85)) elar_ |5} (5.36)

The B factors in the Egqs. (5.34) through (5.36) are the volatilities
of the portfolios with the respect to the efficient portfolio.
Finally, let us consider the case where the minimum-risk portfolio

has zero quadratic variation (conditionally risk-free portfolio). This
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Chapter 6

Summary of Conclusion and Discussion

6.1. Summary
The following have been concluded here

1. If the rate of return process dR t is an €}1 local semi-martingale

i
where ?31 is an increasing family of o-algebras representing the
information at time t, then its relative volatity with respect to another
local-semi-martingale process Xt is given by
&«Rr,,X)

By = T (6.1)

it X,X N
Bit gives the fluctuations of the rate of return process due to that

of Xt in the sense that it minimizes the quadratic variation of the

"error" process €, given by

dEt ='dRit - Bitdxt. (6.2)

2. 1If the "true price" of a futures contract is the conditional

expectation of its discounted present value

T _ -r(T-t) ~
P, = cfe PTIQJZ} (6.3)

then its rate of return in addition to the interest rate r is a (local)

martingale process.

dp

t =3

= rdt + dg (6.4)
P t

[ ]

efag |TF,} = o. (6.5)
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3. 1If the dividend payments for a share is a local %}; semi-martingale
and if its "true price" is the conditional expectation of the sum of

discounted future dividend payments given by
? -r(s-t)
P =e{s e " Yap |TF ) ©(6.6)
t t s t

then Pt is another local semi-martingale with respect to %}; and we have

dPt+th

Py

- rdt = dg, | (6.7)
where gt is again a 1ocal.%}; martingale
efdg |7} = o. (6.8)
t t ‘
4. 1If %}i is generated by a time-homogeneous Markov process Xt with

a given differential generator Sf, and if tﬁe dividend policy is

characterized by the function £(.) given by
£(x,) = e{dd_|x} (6.9)

then the "true price" will be characterized by another function F(.),
which is obtained by operating the resolvent operator of the Markov

process<12r on the dividend policy function
= =('
P, = F(x) =R _£x) (6.10)
5. The true price function Fis the solution to the following equation

gF(x) - rF(x) = -f(x) (6.11)
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6. Viewed in terms of the state space, the "true price" function is the

potential corresponding to the dividend policy £(*)

F(x) = IG(x,dy).f(y) (6.12)

The Green's kernel G is the Laplace transform of the probability

transition function for the process Xt

(-4

G(x,T) =j e TP x,T) (6.13)
0

where

= (S = .
P G,T) P[X, I‘|x0 x] (6.14)
7. One can use the resolvent equation

R, - Ry + @BYRR, =0 (6.15)

to explicitly get the rate of change of the "true price" due to a change
in the discount rate r.

L F @ =-RF (6.16)

1

- J'Fr (y) 6,.(x,dy)

Considering the limited liability of stock prices,one can conclude that

"true prices" are monotonously decreasing functions of the discount rate.

8. Similar results are obtained when the discount rate is a stochastic
process adapted to %};. For example, if the instantaneous rate of

discounting is a given function r(.) so that the "true price'" is

-3

t
F(x) = e{j exp(—j r(X )ds) f(Xt)dtIX0 = x} (6.17)
0 o °
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then using Kac's theorem the "true price" function will be the solution
to

Prx) - c@FE) = -£(x) (6.18)

9. If instead of the Markov process xt one considers a subprocess
defined only on [0,T], where the conditional probability of termination
is given by the function £(C) then the differential generator corresponding

to the "killéd" subprocess ££ will be given by

Drx) = Lre-£x) Fx ©(6.19)

Therefore the termination probability is not distinguished from the

discount rate when one considers the "true price" equation (6.18).

10. When there are more than one investment opportunities, in order
to exclude the possibility of arbitrage one should be able to express
the rate of return on each investment in terms of N "orthogonal

processes Skt and the risk-free rate of return as:

N
dR, = 1§'1 By 95 + dRot (6.20)
where
&R,S, ), -
Bre = &s,,5) (6.21)

kKt
N is the dimension of the information process xt and dRot’ the rate of

return on the risk-free portfolio is adapted to %}; and therefore

predictable at each time.

11. One application of the result stated in 10 is
to find the "true price" of various options issued on a stock. If the

stock price is assumed to be aterminated Markov diffusion process Xt whose
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differential generator is given by .
1 a? d
= E-a(x)-;;i + b(x) % c(x) (6.22)

then the "true price price" of the option F(-) that would exclude the
possibility of arbitrage is a solution to the following differential

equation

2
'@ 25+ 1@ L - (ramreeir + L = .
9x

where r(x) is the risk-free rate of return.

_1_

12. If ones wealth is given in terms of ones investment return th as

dWt
1% t
t
and if one acts to maximize a concave, increasing instantaneous utility
of ones present wealth then at each time t cone should choose among all

investments with the same expected rate of return e{thlg};} the

one with the least quadratic variation process d(R,R)t.

13. If one can choose a portfolio of N investment opportunities each
characterized by its rate of return dRit then at each time ones portfolio

is given by the following quadratic programming problem [45]:

N N
minimize: . Y 0:685c KRisRSD (6.25)
i=1 j=1 ,
N
subject to: 2: eit =1 (6.26)
i=1
2 0, cldr, [TF} =5 at (6.27)

i=1

where eit is the ratio invested in the i-th opportunity.
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This will give an efficient portfolio for every St'

14. 1If, in addition, ome's ratio of consumption is denoted as ct,,and
e{dRitlgyl}, d(Ri,Rj)t are generated by a Markov process X_ whose

evolution is not dependent on the investment or consumption strategies,

then the wealth equation will be given by

EHE = f% 0, drR, - c_dt (6.28)
wooo oy it i e
One can find a minimum-risk protfolio with ratevof return dROt so
that one's portfolio is a comﬁination of the first N-1 opportunities for
investment and the minimum-risk portfolio. Let‘et be an N-1 dimensional
vector representing this combination and suppose that one wants to maximize
the expected value of a concave increasing utility for consumption.

Then, the optimal portfolio is given by

N-1 . -
' M = 1 '
jZ=:l 05 KRR}, = A cldr] [X }+ 1§1 A, RIX D (6.29)

' = -
where m is the dimension of Xt dRir dRit dRot and Art 2 0 ¥t.
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6.2, Discussion

The volatility of the rate of return on an investment as defined
in 1 is different from the conventional definition in that B is now
time-dependent. Moreover, the future values of B are random. At each
time however, the volatility is known given the information £

If the increasing famility of o—algebras<Eyt representing the
information is changed or if there is an absolutely cqntinuous change
in the probability measure the value of B will remain unchanged.
Therefore, the volatility is a property of the investment opportunity
and not of one's information and/or subjective probability measures.

The results pertaining to the random walk theory of true prices
is equivalent to the statement that if the market prices are the
conditional expectation of the "true'"values then the incoming information
are being used in the estimation of the "true prices" and therefore, should
have no value in predicting the rate of return in excess of the discount
rate. Similar results are obtained in the discrete time framework by
Granger [19], and Samuelson [38,39]. The model presented here is general
and has no restriction on the dividend process or the information fields
other than requiring Dt to be a local semi-martingale, so that the '"true
price" integral is well defined.

When %;; is generated by observing the present value of a state
vector X, Eq. (6.11) explicitely gives the "true price" function. The
potential interpretation given by (6.12) reflect the fact that shares
have value because if their potential dividend payments. The kernel
is the Laplace transform of the probability transition func¢tion and is
dependent on the discount rate but not the dividend policy.

The resolvent equation has the important implication that "true
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prices" are monotonic functions of the discount rate, and Eq. (6,15)
yields explicitly the changes in "true prices” due to changes in the
discount rate.

A very interesting result is the equivalence of a termination in
the information process Xt with the rate of discounting, suggesting
that one discounts the future for the possibility of a catastrophic
termination of the system.

If the possibility for making arbitrage profit is to Be excluded
then the rate of return on each share should be given by the "market
equation- (6.20). The application on "rational option prices' has been known
[37] for log-normal processes. Again a surprising resulﬁ is that with
the assumptions made in 4, option prices will not depend on the
expected rate of return b(x) of the underlying security prices, which
is hard to identity because it depends on %"t as well as on the probability
measure. The initial conditions will depend on vhow the option has been
written.

The results on the portfolio selection problem also have importaht
implications. The generalized mean -variance analysis gives the proper
dynamical generalizationi of the one-period case under the assumptions of
normalrgturns or quadratic utility functions [16]. If
all the participants in the market act accordingly, then the
expected rate of return on each investment would be linearly related to
its relative volatility with the market rate of return. The interpretation
is that one is compensated for taking the risk and investing in the
market to the exteni: that he is willing to undertake the market risk.

Sincevo;atility of investments does not depend on the information or

- on absolutely continuous changes in probability, this gives a
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feedback rule that determines the expected rate of return on each
portfolio in terms of their volatilities and the minimum-risk portfolio.

When one considers utilities for consumption, a more general result
due to Merton [18] is outlined in 5.4. The optimal portfolio now is
a combination of the generalized mean-variance efficient portfolio and
m portfolio that are used to hedge against unfavorable changes in the
future investment opportunities.

The surprising new result is that the m insurance portfolios are
"objective" in the sense that they, again, do not depend on one'sinformation
or probability beliefs. Thus as long as everybody agreeson the
"impossibility" of events they will also agree on the combination of the
m "insurance" portfolios.

The result remains true if one drops the additivity assumption
on the utility functions. Also the optimal portfolio does not change
if one anticipates a random termination of the process Xt'

It would be interesting to extend the model when the sample-continuity
assumption is dropped. Recent results [48] indicate that one can use
the martingale calculus to generalize the above results to cases where
the rate of return processes may have discontinuities. However, such a

generalization hasnot been attempted here.
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