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Abstract

It is proved that under some very general conditions the "true"

present value of a share will follow a "random walk" rule. Given the

dividend policy of a firm, the differential equation for the evolution

of the "true price" is derived and it is shown that the "true price"

function is the potential corresponding to the dividend policy function.

Also for capital markets where several different stocks are traded an

intertemporal pricing model is discussed and conditions under which

"mean-variance" efficient stocks are optimal for all the participants

in the market are derived. The vertical market models that result from

these conditions are examined and differential equations for "rational"

prices for options are obtained therefrom.
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Introduction

The purpose of this dissertation is to apply some recent developments

in the Theory of Stochastic Procosses to dynamical-system models arising

in the theory of "intrinsic" or "rational" prices, and in the theory of

Capital Markets. In particular, we shall make heavy use of the

martingale calculus, whose origin was the Ito calculus but whose recent

development due to Kunita-Watanabe, Meyer and others have made it a natural

tool in the study of stochastic systems. Application of the theory of

martingales to economic problems is particularly appropriate, since the

very nature of martingales gives a prominent role to the evolution of the

information pattern, and such formsare necessary in many stochastic systems

in economics.

Much of the recent literature on finance has emphasized the

dynamical nature of the underlying models. That is not surprising since

the main concern of the capital theory is to find the best allocation

for a given amount of resource at any given time. There is also little

doubt that because of the large number of uncertain factors involved,

risk analysis plays an important role for a successful investment policy.

The dissertation consists of five chapters and a Preliminary chapter.

In the preliminary part , we shall present a brief exposition of

the mathematical material which is used in the remainder of the

dissertation. Special attention will be given to martingales and Markov

processes. The first of these processes plays a natural role whenever

one's information is evolving in time. The martingale Calculus provides

a powerful tool for the development of a dynamical theory for some

important aspects of stochastic processes. The Markov process is

important because it is used to develop a state-space model analogons to



the deterministic case. In chapter 1, an economic interpretation for

stochastically dominant stocks and their relative volatilities will be

given for the dynamic case. In chapter 2, the Fundamentalist's true

price model is examined. Under, very general conditions it is

demonstrated that the "true prices" will have "random walk" fluctuations.

Also for the normal growth model the optimal dividend policy to maximize

the "true price" is obtained.

The case where the information is generated by a Markovian state

variable is discussed in chapter 3. A differential equation for the

evalation of the "true price" is derived. It is shown that the price is

the r-potential corresponding to the dividend policy function where r

is the discount rate prevailing in the market. The potential kernel is

the Laplace transform of the probability transition function for the

Markov state variable. Also the "true price" operator is shown to be

the Laplace transform of the differential generator corresponding to

the state process. This operator, also called the resolvant operator

satisfies the resolvant equation, which gives the changes in

the true prices due to a change in the discount rate. When one considers

the fact that prices cannot become negative, this shows that "true

prices" are monotonously decreasing functions of the discount rate. It

also explicitely gives the amount of changes in the "true price" if the

rate of discounting is changed.

The results are further generalized for the case of futures prices

as well as the case of stochastic discount rates. Finally, the effect

of various transformations of the Markov state process is examined and

the equivalence of a termination of the process with discounting is

shown, suggesting an interpretation for discounting the future incomes.



In the next chapter, a vertical market model which excludes the

possibility of arbitrage is derived and applied to obtain a set of

differential equations for the "rational prices" for options and

warrants.

In the final chapter we examine market models where there are

alternative opportunities for investment. The conventional mean-variance

portfolio selection model is generalized for the dynamical case. It is shown,

however, that when there are uncertainties concerningthe future changes of

market opportunities the mean-variance model is no longer valid and that

investors would be willing to choose their portfolio so as to smooth the

future variation in their consumption process. Therefore, the behaviour of

the investors in a random and dynamic environment cannot be characterized by

adding the effects of uncertainty introduced in the static problem to the

consumption smoothing that gives the best allocation of consumption in the

dynamic-deterministic problem. The best portfolio is seen to be a combination

of a minimum-risk portfolio, a portfolio that will give thebest expected

returns, and m other portfolies that will give higher returns when future

opportunities forinvestment become less favorable. Thus investors will always

choose a portion of their portfolio soastominimize the variation intheir

consumption due to uncertainties concerning future market conditions.

These "insurance" portfolies are shown to be independent of the investors1

information and/or probability beliefs. Also it is shown that as a

consequence of the desire of the investors to minimize the investment

risk the rates of return will satisfy a market equation that will exclude

the possibility of arbitrage in the sense described in Chapter 4.



Chapter 0

Mathematical Preliminaries

0.1. Definitions and Interpretations

Uncertainty prevails in capital markets because of the complexity

of determining how various stock and commodity prices respond to the

different events that occur daily. The introduction of uncertainty into

the analysis of capital markets was first done in the pioneering work

of Louis Bachelier [3] which anticipated later developments in the

theory of Probability and Stochastic Processes. The subject has now

become of much interest to statisticians and probability theorists

because of the greater availability of data concerning price fluctuations

and other economic variables, and the fact that an ability to predict

future price changes has an obvious speculative interest.

We begin with a discussion of the mathematical preliminaries.

Firstly, one should model the information pattern for the participants

in the market. Thus ones information is usually represented by a family

lA of events; i.e. subsets of a universal (certain) event ft in the

sense that the occurance of an event A is known if and only if A ^Jx»

Since the information concerning a countable number of events enables one

to also know whether their conjunction or disjunction is true or not we

can axiomize that a a-algebra (information pattern) \Jx is a family of

subsets of ft, including ft itself, that is closed under countable Boolean

operations. (&tjnd will then be called a measurable space, and one could

assign prior probability measures concerning the likelihood of occurrence

of the events constituting the o-algebra. Such measures should assign

probability one to the certain event ft and should be additive for mutually

exclusive events i.e. we should have

P(ft) = 1 (0.1)



P(n V =£ P(V if Ai ° Ai =° whenever i£j (0.2)

The triple (ft>(^, P) will be called a probability space if the corresponding

axioms are satisfied.

If (ft,^r) and (E,£) are two measurable spaces and f is a function

mapping into E then f is said to be a measurable function or a random

variable if and only if for any A £ o we have

f-1(A) e-A

Now if there is a probability measure P defined on (ftofe then a

random variable will induce another measure P1 on (E,£) so that

P»(A) = P(f"1(A)) (0.3)

Alternatively a random variable can be viewed as mapping the measure on

(&ju4) into a measure on (E,£) by Eq. (1.3) hereafter, sometimes

abbreviated as

P' = Pf"1 (0.4)

Now a collection of events (i.e. subsets of ft) will generate an information-

a-algebra if we augment all the other events that can be obtained from

them by a countable number of Boolean operations. Thus the a-algebra

generated by a family (_A of subsets of ft is the smallest a-algebra

containing 'J\ and will be shown as a(c^A ). Similarly observing a



function with a measurable range will generate a a-algebra, namely the

a-algebra generated by all the inverse images [27].

The expected value of a random variable given its probability law is

the integral

E[f] =ff(w) P(du)) = f ePf~1(de) (0.5)

i.e. to calculate the expected value of a random variable one can either

integrate over the domain the function with respect to the corresponding

measure or one can integrate the values of the function over the range

of the function with respect to the induced measure. The probability

interpretation of the mathematical expectation is the ensamble average

of the values that the random variable can assume and in that sense it

is what one can expect "in the average" for the value of the random

variable.

To incorporate the dynamics let us define an increasing family of

a-algebras to be the indexed family *£f of events such that we have

rf D^ whenever t > s. Clearly, this corresponds to "not forgeting"
L S ~*

the information at any time. (tJC represents ones information at time

t).

Also a stochastic process is an indexed family of random variable

X such that for each t X is measurable. Again, one can imagine a

bigger a-algebra generated by the cylinder sets St(A) = {Xfc £ A} for

some t and some A £^A and thus view the process as a measurable mapping

into this bigger space [49].

In practice the set of all time functions is usually too big and

moreover, by a combination of observation measurement and intuitive



judgement, one starts from a compatible family of finite dimensional

probability distributions

p[xtl 5xl> xt ^x2 xt 2xn]
12 n

and is free to construct the probability space. Details are given in

[49]. Two different stochastic processes that have the same finite

dimensional distributions are said to be equivalent.

It can be proved that any stochastic process has a separable

equivalent [27]. If it is also continuous in probability i.e. for e > 0

lim (|X -X I > e) = 0 and satisfies the Kolmogorov condition
1 s t =

s+t

E|X -xT<Ch1+3 (0.6)
1 t+h t1 =

for strictly positive constants a, 0, c, then it is measurable

and every sample function (of t) is uniformly continuous [49]. These

conditions involve only the finite dimensional distributions.

We shall be mainly interested in two class of processes: namely

martingales and Markov processes,which will be described in the

subsequent sections. For now, let us proceed to define the conditional

expectation, which will be required to study the evolution of factors

determined by changing information.

If M.. and M« are two different measures on (ftor) then there exists

[49 ] a random variable A and a measure y such that

M2(A) =J AM1(do)) +u(A) (0-7)

for A G^A

If \i = 0 then M and M? are said to be absolutely continuous and A
J. ^



will then be called the Radon-Nikodym derivative of M2 with respect to

M,.

If tjt is asub-a-algebra of uA and IA denotes the indicator

function that assumes the value one for the points belonging to Ae ,Jk
and zero otherwise then the Radon-Nikodym derivative of the indefinite

integrals E[IA X] with respect to the restriction

of the probability measure on A is (almost surely) a random variable

called the conditional expectation of X given j4 and denoted by A=e|x|^A ].

It is characterized by the properties of being measurable with respect to Jk

and having the smoothing property

fx(aj) P(doj) = AW P*(du>) (0.8)

for all A€ -Jk where P is the restriction of P on -J\ .

From what was discussed above it is clear that if one's information

is given by <Jt then A is a "smoother" version of X in the sense that it

is adapted to the information 'Jl and over any "known" event Ait has the
same average as X. Of course A can be generated by a collection of

sets or functions. For the latter case, the conditional expectation can

also be denoted as E[x|f].



0.2. Markov Processes

A stochastic process X is said to be Markovian if its future is

conditionally independent of its past given its present. That is, the

probability law for the future evolution of the process given the past

and present values of the process depends only on the present.

If ones information is generated by observing a Markov process,

then the knowledge of the present value suffices in determining the

probability measure concerning the likelihood of the future events and

thus is analogous with the state variable for the deterministic case.

Definition 2.1. Let 9JL be an increasing family of a-algebras. A

nonnegative random variable T is called a stopping time if the

events {T < t} are always adapted to (measurable with respect to) <ft.

Thus at time t the information contained in tjT. would enable one to

determine whether or not T has "stopped," i.e. {T < t}.

Now if (9T »T) is a stopping time and p is a measure defined on the

state space (range of X ) then one can define a Markov process Xfc on the

interval (0,T) such that y is the induced measure at time zero.

If9£*" is the a-algebra generated by X ,s > t then the Markov
t s

condition is stated as follows:

E[zig;] =E[z|xt] (°-9>

where Z is any 9(+-measurable random variable. The general theory for

Markov processes has been of interest for a very long time. There are

many references e.g. [12.14]. One main result is its close connection

with the potential theory which we shall see when we analyse the

fundamentalist's "true prices." Rigourous analysis may be found in

[14,8].
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One special Markov process is the Brownian Motion, a natural

phenomenon the existance of which was known in 1827. The theory was

later developed by Bachelier, Wiener, and others. A Markov process

defined on nonnegative times is a Brownian Motion if it is Gaussian, i.e.

every linear combination of the form a X is a Gaussian random± 1 t±

2
x

1 2a2
variable with density f(n) » e and if we have

fix a

EX X - min(t.s) (0.10)
t 3

Usually, a separable version is chosen, and it will then be sample

continuous [12].

Also one important class of Markov processes are the (Ito) diffusion

processes: let X be a sample continuous Markov process with

m(Xt,t) =lim j E[Xt+A-Xt|Xt] (0.11)
A+0

a2(Xt,t) =lim ±E[(Xt+A-Xt)2|Xt] (0.12)
A+0

then under some general conditions [49] X can be represented as the unique

solution to the stochastic differential equation

dXfc = m(Xt,t) dt + a(Xt,t)dWt (0.13)

where W is a Brownian Motion Process. Stochastic integrals and

differential equations will be discussed in the next section. The

functions m and a can be applied to obtain the differential generator [50]

as well as the equations for transition probability functions [12]. The

main application of Eq. (0.13) however is to generalize the deterministic
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state equations of the form

£xt =f(xt,t) (0.14)

Using the celebrated Ito differentiation rule, one can use Eq. (0.13)

for formulating solutions to problems concerning stochastic control of

a system [10,13,25,47].
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0.3. Martingales

It can be easily demonstrated that for a Brownian Motion Process

the following is always true.

e{Wt|9Jws} = Wg for t>s (0.15)

where YtTT« is the a-algebra generated by observing W up to the time s.
WS

An important class of processes resultsfrom a generalization of

this property of Brownian Motions. Let 7> be an increasing family of

a-algebras and let X be a process adapted to ifr* Hereafter unless

otherwise stated we shall be mainly concerned with sample continuous

processes for which we have a better developed analytic theory. Let us

define dXfc as the forward difference X_, -X . (Thus we shall so
t t+at t

following the stochastic calculus convention due to Ito). Now X is

said to be an tjT-martingale if

e{dXj9t} =0 (0.16)

which is equivalent to

e{xJQP }= X for t > s (0.17)
t1 l7s s =

Martingales occur naturally whenever one considers conditional

expectations with respect to evolving information (increasing family of

a-algebras). In particular, a process Y of the form

Yt =e{R|£ft> (0.18)

where R is a random variable and 91 is an increasing family of a-algebras

can easily shown to be a martinglae [45]. Perhaps the importance of

martingale theory stems from the fact that it provides us with the
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powerful analytic tool of the martingale calculus. Unless otherwise

stated, difficulties increasing family of information is always

assumed to be continuous in the sense that

V+t= n vfs (0.19)
s>t

9F - o< u 9T ) (0.20)
fc s<t S

Now let X be a general stochastic process and define B and X by:

dBt = e{dXt|T5f.} (0.21)

Xt = e{Xt|9;} (0.22)

Then M =X-B is aMartingale adapted to ^ . When Bfc is of bounded

variation X is the sum of a martingale and a process of bounded variation

adapted to y-f- . We shall call processes that admit such decompositions

semi-martingales. In particular if Y?t is the a-algebra generated
by X then we have X = X and then martingale term M given by

t t t t

dMfc =dXt -^dxj^} (0,23)

represents the new information contained in dX and is

innovations process for Xt.
2

Also if one considers the decomposition of the process X - Mfc

where M is a second order Q martingale the predictable part is

nondecreasing and nonnegative and we have

e(Bt} =e{Xt-XQ} =e{(Mt-M0)2} (0.24)
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dBt =e{dxtiqrt} =E{(dMt)2ig.;} (0-25)

Definition 3.1. This process denoted by Bfc =* <M,M>fc is called the

quadratic variation of the martingale process M.

An important result is that the quadratic variation does not depend

on the family of a-algebras xJ and can be constructed by computing the

following limit (described in [47,48].

<M,M>=ii»Z[«(t<:>)-M(t<n>)]2 (o-26)

where the sequence of partitions (t ) refines to zero as n goes to

infinity.

If N and M are two *r£ martingales then the co-variation process

is defined as

<M,N>t =j [<M+N,M+N>t -<M-N,M-N>t] (0.27)

One important result of (0.26) is that if we consider two different

decompositions of a semi-martingale Xt relative to two families of a-algebras,

then the martingale terms will have the same quadratic variations. Also it

turns out that the quadratic variation of a semi-martingale is equal to

that of its martingale term in a decomposition of the process, i.e. if

X = B -m where dB is adapted to ^, B. is of bounded variation, and
t t t t t c

M is an iT martingale, then

<Z,Z> -11> £[X(tv(^)-X(tv(n))]2=(M,M>t (0.28)
n-*»

Now we are equipped to study the stochastic calculus. If Mt is a sample

continuous 9T martingale and $ is a process adapted to 7T such that
t t *-
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!$2d<M,M> <» with probability 1 (0.29)
0 t t

fT
then the stochastic integral I $ dM. is defined by the following

Jo
limit [48].

Tf * dM =llmZ*(n)[M(n)-M ] (0-30)
•JO n-*° v t t t

However, in light of the recent theory of stochastic integral developed by

Kunita-Watanabe [24], stochastic integrals are considered as transformations

of local martingales. If we define a sequence of stopping time

x = min{t: |mJ > n} (°-31)
n ' t' =

then M is said to be an \+ local martingale if the stepped process

M . , v is an yJL martingale.
min(t,x ) t

n

Definition 3.2. Given a local martingale and a process $t satisfying

(2.29) Z =f $dM is another 'xf local martingale defined uniquely

by

<Z,Y>t =f $gd<Y,M>s

for every local \£ martingale Y .
c ft

Similarly, an integral of the type I $gdXs is defined for local

semi-martingales to be another local semi-martingale composed of a
rt

Stieltjes integral! $ dB (the predictable term) and a stochastic
ft Jo S s

integral I $ dM defined as above. Now we can interpret a stochastic
J0 s s

differential equation to be a differential equality in the sense

that when integrated the two sides will be equal.
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An important result is the stochastic differentiation rule. If

X is a local semi-martingale then the differential of any

function of X is given by

df(Xt,t) =ffc(Xt,t) dt + 2 fi(Xt,t) dXit +EI f±j(Xt,t) d<X±,Xj>t
where (0.33)

2

fJ(x,t) =3f
i^' ' 3x.

l

This equation shows clearly how a function of a stochastic process

changes not only because of the changes of that variable, but also

because of the uncertainty concerning its future fluctuation.

An active area of research in the theory of Martingales is the

conditions under which a process can be represented by the stochastic

An important representation result on martingales is that if ^x is an

increasing family of a-algebras generated by a (local) semi-martingale

X,and if the martingale term in the95^. decomposition is aBrownian
Motion (for this it suffices that <X,X>t =t) [48] then every 9?Xt local
semi-martingale can be represented by a predictable term and an integral

involving Xfc i.e. if we have

X =B+Mt <°-34)

where B is of bounded variation, dBt and Mfc are tlxt measurable, and

<M,M> = t, then every tT local semi-martingale y has the following
t Xt t

representation

it

$ dM (0.35)
0 s s
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where A is again the predictable part given by

dAt =e(dYtig:xt}

Finally, an important application of the martingale theory is in studying

absolutely continuous changes of measure. Consider a a-algebra ij- and

mutually absolutely continuous probability measures P and P . Let A be the

Random-Nikodym derivative of P with respect to P . If <J is generated

by X then A is a function of past values of X . Let yT be an increasing

information pattern and let us define

At"^IS^ (0-37)

Clearly, A is a martingale under the probability measure P^, and so is the

process M defined by

dAt
dMt'A~~ (0.38)

or in its integrated form

At =exp(Mt-i<M,M>t) (0-39)

Now if Z is a local martingale under P then it can be proved that

Z A and thus X = Z + <Z,M> are local martingale under pQ [48].

Therefore, under that measure we would have

e0{dZt|9t} =-d<Z,M>t (0.40)

If the family \j is generated by a Brownian Motion process, or a local semi-

martingale that can be decomposed into a Brownian Motion process, and a process
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of bounded variation, then M can be represented as a stochastic integral

of that process and so can be the predictable part of any local martingale

under one measure [48].

Many of the results stated above can be generalized to the case of

martingale processes that are not sample continuous. However, the details

are more complex and we will not consider them here.
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Chapter 1

Market Analysis Under Uncertainty

1.1. vnltttilitv of Tr^i-ment Returns

^z£^^^« — -lly characterized by
.random variable .called the Invest return, which shows Che amount

investment, in the dynamical case, the investment opportunity can
snarly he characterized by its return process. If the amount Wfc is

variable VT that depends on the information fcnown at time t.
Let us define the return R, to he astochastic process adapted to

th. increasing information pattern^ and given hy the following
equation

dw (i-D

dRt =wf
j+u * Aafinitlon of absolute volatilityThe following theorem provides us with adefinitxon

of the return process at any time:

Proposition (1.1): * ^t* iS *"** C°ntinU°US """ "^
martingale and if there exists anonnegative measurable process *t
adapted to 9J. such that for t>s.

eUXt-Xs)2|gs} -£«t*tl98) dt U-2)
and if the set •(* =0) has zero dPdt measure (the product of the
probability and the Legesgue measure) then there exists aBrownian
Motion Mt adapted to <3t -<* that we haVC

1/2 (1-3)dXt =^ dMt
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with probability one. With the hypothesis that i|> vanishes almost nowhere

(1.3) is still valid with the adjunction of a Brownian motion to the

probability space [47].

Clearly the derivativeof the quadratic variation with respect to

Lebesgue measure satisfies (1.2) [47]. The condition that (X,X>t

be almost surely continuous with respect to the Lebesgue measure is

stringent and also hard to verify. One can extend the theorem for local

martingale for right continuous completed family ^ with replacing some

other F measure instead of the Lebesgue measure to get [47].

dXt=*tdMF(t) (1'4)

For the return process R this theorem can be applied to the martingale

term in its decomposition with respect to 9ffc. We will always assume

that the return process R is continuous and a (local) semi-martingale

relative to ^J . This is true if ^ is generated by the past values
of R . The implication of this last assumption is that ones information

is such that the predictable term of future returns is always of

bounded variation.

Since we know that the quadratic variation of a process does not

depend on one's information 9^. this representation theorem suggests that

we should take the following process to be a measure of volatility of the

investment at any time t.

* -[A(R,R> ]l/2 (1.5)
vt dt * tJ

where the derivative is taken with respect to the Legesgue measure.

Because one could write

dRr =dRt +4>tdMt (i-6)
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where

<j> can be interpreted at the change in the return process in addition

to its expected change due to a unit change in the sample outcome of the

(unpredictable) Brownian Motion process. (The derivative of the Brownian

Motion process is sometimes called white noise because its spectral

density function is fiat. If the process <R>R>t is not absolutely

continuous with respect to Lebesgue measure one can consider its

derivative with respect to some other F measure. It is perhaps more

convenient to consider the square of (1.5 ) as a generalized function to

avoid technical difficulties.

It is clear that the more volatile an investment opportunity is the

more changes one could expect in an infinitesimal time, because we have

d<R,R>t =e{(dRt-dRt)2|(3rt} (1-8)

Thus the volatility is roughly equivalent to the (conditional) standard

deviation of the infinitesimal return dRt given the information J^.

We shall shortly see how this variable can be a measure of risk for the

investors, however, a relative or "systematic" volatility is widely

considered to be more insightful than the absolute measure thus defined.

Consider a return process R and an index Xfc both of which are (local)

semi-martingales with respect to the information \$ . The index could

be any economic process such as the rate of return on another investment

opportunity. Both R and X can be decomposed into their predictable

and risky terms with respect to the information C7t-
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R^ = R + M (1.9)
t t t

xt - xt + nt (i-io)

Suppose we want to approximate M with a stochastic integral

of n given by

30dn + M (1.11)
MS s o

such that the error process e^ = M -N. is "orthogonal" to n in the
t t t c

following sense.

d<e,n> - d<M,n> - Bjtfn.n),. = 0 (1.12)
t t t t

The coefficient 3 will be called the volatility of the return process

R with respect to the index X . It can be determined from Eq. (1.12)

to be

d<M,n>t d<R,X>t
5t =d<n,n>t =d<X,X>t3. =^7—rf =^T^ (1.13)

which shows that it only depends on the processes R , Xfc and does not

depend on the information pattern rj .
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1.2. Stochastic Dominance

The purpose of this section is to extend the stochastic dominance

concept as defined in [21,35,36] to the dynamical case. Let U(W) denote

the utility function for a wealth level W. We assume that all investors

are maximizers of expected utility in the sense of Von Neumann-Morgenstern

[11,17] and that their utility functions are concave and increasing. This

means that the investors are risk-averse in the sense of Arrow-Pratt

[1,43], and they prefer more wealth to less wealth.

Here we are addressing the question as to whether an investment

can be regarded as being superior to another one for all such investors.

The question as to whether to invest and how much will be considered in

later chapters. First, let W and W2 denote respectively the wealth

processes associated with the first and second investment opportunities,

and let R1 and R? be the corresponding return processes. From the

increasing property of the utility function we conclude that the first

investment opportunity is superior to the second one if the following

is true for all t

dWlt =dW2t a#S' (1*1A)

which is equivalent to (considering (1.1.1)

dR >dR2t a.s. (1.15)

However, these are only necessary conditions based on the increasing

property of u. If now we consider the charge in the expected utility

of wealth at each time given the information 'XJ at that time

e{du(Wt)|^t} =u'(wt) eCdwN,^} +|u"(wt) d<w,w>t (1.16)
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where uf and u" stand for the first and second derivatives of the

utility function and we have

u'(wt) > 0 ' (1.17)

u"(wt) <0 b (1.18)

we can see from (1.16)that among the investments with the same expected

change inone's wealth the one with the least quadratic variation

dominates the others. Using (1.1) once more and taking notice of

d<R,R> =~d<w,w> (1.19)

wt

we can state the equivalent statement that among the investment oppportunitles

with the same expected rate of return (given theinformation at that time)

e{dR |yF },the one with the least quadratic variation term d(R,R)

dominates the others.

From the above discussion it is apparent that in investing- one seeks

to minimize the volatility of his investment returns at any time. Any

risk averse investor would demand higher expected rate of return for

a stock of higher volatility, the rate of compensation, which is to be

considered as the price of risk is equal to

x u"(wt)
- -z —r-.—r- for wealth process and (1.20)2 uT(wt)

x u"(wt)
- tt ri—r for the rate of return (1.21)2 wtuf(wt)

process. These terms are the respective measures of absolute and relative

risk aversionsof the investor [1,43] i.e. the more risk-averse investors

(sometimes called conservative investors) would demand higher expected

rate of return for the volatility of their stock.
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Chapter i
A Random WaLk Theory of Fundamentalists1 "Intrinsic Price"

1

2.1. Preliminaries

The professional stock market analysts are widely [9] catagorized

according to which one of the following two main schools they belong to.

On the one hand there are the "fundamentalists," who believe that a

share must have a "true" value, which depends on the performance of

the corporation and thus strive to find the relationships between prices

and such external factors that lie behind price changes as earnings and

dividends paid by various companies; so that by getting the necessary

information concerning the prospects for profits in different industries

and individual firms, and using this information in the "fundamental"

equations they could detect the trends in future price changes and make

a profit from that knowledge.

The "technicians," on the other hand, argue that since the stock

markets are nothing but speculative exchange markets the price of a

share is what someone is willing to pay for it. Accordingly they study

the past history of the price fluctuations in order to predict future

prices.

However, empirical studies showed that [9,37] the price fluctuations

obeyed a "Random Walk" rule and could hardly be told from independent

random numbers, which seemed to negate any economic law governing these

price changes. Although in its extreme position the random walk theory

suggests that past history of prices has no predictive value for future

changes, the possibility that observing some external economic processes

might help one infer something about future prices is in no way precluded.

Some of the recent works [19,26,38,39] have shown that the fundamentalist's

pricing mechanisms and the random walk theories are not only not
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irreconcilable but in fact, imply each other. A starting point is Fisher's

present discounted value rule, [17] which defines the "true" value of

a stock as the discounted sum of its future dividend payments. For a

constant discount rate r we have

-r(s-t)

'. • j. •-' dD (2.1)
s

where D is the cumulative dividends paid up to time t.

Even for the deterministic case the "true value" will change as a

function of time due to changes in future dividend payment.

Simple differentiation of (2.1) yields

dV + dD = rV dt (2.2)
t t t

or if we define the pseudo-return by

dRt = (dVt+dDt)/Vt (2.3)

then (2.2) implies that this must be equal to the interest (discount)

rate.
»

dRfc -rdt =0 (2-A>

Therefore, one cannot change the pseudo-return by changing the dividend

payments, because the "true value" will also change accordingly. Similar

results can be obtained for the futures prices, i.e. prices for contracts

for transactions that should be carried out at future date. If we have

V* =exp[-r(T-t)] CT (2-5>

where C is the cash to be received as a result of the transaction at
..A.

time^T and VT, the price of the contract, is the present value of Qj,. We
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then have

dVt/Vt ~rdt =° (2*6)

Thus we conclude that in the deterministic case the rate of return

for the "true" present value is equal to the interest rate and does not

depend on the present value of other economic factors. This is to be

expected for otherwise an arbitrage possibility [17] tending to readjust

prices to their "true" value levels would exist. Next, we want to find

a stochastic generalization to (2.4) and (2.6) for the case where

future cash flows are not known with certainty.
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2.2. The Random Walk Theorem

It is widely assumed [39] that the market capitalizes a stock at

the mathematical expectation of its present value. That is, if we

model the information at each time as an increasing family of a-algebras

{£f } then the "true" or "intrinsic" price of a stock is the conditional

expectation of the sum of its discounted future dividend payments given

by

Pt =«{£ •-r(-t) dDs|gt} (2.7)
where the discount rate r is the sum of the (risk-free) interest rate

and a positive term due to security risk, and the dividend payments Dfc

are assumed to be ^J" (local) semi=martinglaes so that the integral (2.7)

can be defined.

In a similar manner the "true" futures price for a share or a

commodity is given by:

P* =,{.-r^t>pT|9:t> (2-8)

where PT is the price at time T.

For security prices the increasing property of the Vxft) implies

pi =e{j" .-r<"-t>dDjgt} (2.9)

We shall shortly develop a model for the evolution of the information

a-algebras {<rJ*}.. However, even without a dynamical model for <J"t we

can derive a version of random walk model [20] for the "true" prices

by simply differentiating (2.7), (2.8), and (2.9), and using the

increasing property of the ^x3^ and the identity
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e{dXt|LAt} =e{dXt!^t} (2.10)

where X = e{X \jx) and(^^is the appropriate family of a-algebras. In

so doing, we obtain

£{dtPt +Vt^t3" "rPtdt (2,11)

e{dtPtl<3t} =rPtdt (2,12)

e{dTP^ +e"r(T_t)dDT|(=Tt} =0 (2.13)

where d, denotes differentiation with respect to h. Therefore, we conclude

that the true prices suitably discounted, normalized, and corrected for

the dividend payments (rates of "excess" returns) are uncorrelated with

the past information in the sense of martingales. That is, we have

(dPt+dDt)/Pt-rdt o dMt (2.14)

dP*/P*-rdt =dNt (2.15)

where M and N are ^f martingales.

Thus the fundamentalist's interpretation of the random walk

hypothesis is that all the information is being discounted in the present

"true price" and has no value in estimating the excess returns due to

future price changes, for we have

e{dMt|gft} =0 (2.16)

6{dHt|<3ft> =0 (2.17)

Neither can one profit by buying futures contract with the right delivery

date, for (2.13) shows that the change in the price of the futures due
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to a change in the closing data is equal to the discounted present value

of the dividends that are expected to be paid at that time.

The following dilemma has been posed by Granger in [19]. Suppose

that everyone believes in the fundamentalist's pricing mechanism and

acts accordingly. But the actual market price P is only an estimate

of the "true value." If P ^ satisfies the same dynamics as the
mt

fundamentalist's intrinsic value, then for positive discount rate r > 0

the error 8 in (2.11) and (2.12) will satisfy the equation [26]

d9 = r9 dt + d£ (2.18)

where £ is an ^ martingale with e{d£ !<-¥ } = 0. Equation (2.18) is

an unstable equation and any initial error causes |8 | -*• °°.
t-*»

A possible resolution of the dilemma is as follows. Since there is

a nonzero error the market will attempt to not only predict the future

dividend payments, but also estimate the probability law at each time.

The question of achieving an asymptotically stable error when the system

has to be continuously identified has been studied [2], even though the

answers are only partially known.
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2.3. An Optimal Dividend Policy for Normal Growth Model

It can be argued with some cogency that the investors of a given

company share the common goal of maximizing the "true present value"

or the "intrinsic price" of the shares [17]. Therefore, the dividend

policy should be so chosen as to maximize P the current "true price"

of the share. Here, we examine such a policy for the normal growth model.

Let X denote the book value at time t. Then

dXt + dDt = (earnings in dt) (2.19)

and let the model for earnings be

(earnings in dt) = X [adt+bdn ] (2.20)

where n is a standard Wiener process. Denoting the dividend rate as

dD and assuming that it is measurable with respect to u^we get:

dXfc + dDt ••= Xt[adt+bdnt] (2.21)

Clearly, a is the rate of return on invested capital while b is the

level of risk.

Suppose the firm is scheduled to be liquidated at T. Then the

present value might reasonably be taken to be the expected cumulative

dividend payments plus the liquidation value both discounted to the

present i.e.

T

Pt =e[f e~r(S~t)dDs +e"Cr"t)X(T)|<9Tt]- (2.22)

Using (2.21) and (2.22) we get

fT-t
Pt =Xt +(a-r) e[ j ^X^l^l (2-23)
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Observe:

(a) If a = r then P = X and the dividend policy is a matter of indifference.

(b) If a < r then P < X.. The .optimal policy, if it is a feasible one,

is to liquidate at once.

(c) If a > r write (2.21) using the Ito lemma as:

d*n X(t) =Tr^r- dX(t) --| b^ (t) dtXltj i xz(t)

1 2 dDt= a dt + bdn(t) - ^ bzdt --7^ (2.24)
2 x(t)

so that

or

In X(t+s) -An X(t) =as +b[n(t+s)-n(t)] --| bs

t+s dD
T

X
T-r (2.25)

as+b[n(t+s)-n(t)]-~b2s (2.26)
X(t+s) _< X(t)e

It follows that

E[X(t+s)|9Jt] lX(t)eas (2.27)

and from (2.23) one could write for a constant T

P(t) <X(t)e(M)(T"t) (2.28)

with equality attained by setting dD(s) « 0, t <_ s £ T, i.e., the optimal

policy is to pay no dividend.

In short, the optimal policy for the normal growth model is a rather

obvious one, viz., for a > r pay no dividend, for a < r liquidate at

once, for a = r it matters not what dividend policy is pursued.
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That the dividend policy is amatter of indifference with respect

to the "true" price in all cases when there exists arisk-free opportunity
for lending or borrowing with an interesting rate equal to rhas already
been discussed by Miller and Modigliani [17], because if the optimal

' dividend policy is D* one can always pay that amount by combining any

< other dividend policy Dt with the difference It =D* -Dt borrowed at
an interest equal to the discount rate. The present value of the stream
I is equal to the difference of the "true" prices corresponding to Dt

and D respectively.

Jt t

. P* . P <2-29)
t t

Even when one cannot borrow or lend money in the market, companies can

achieve an equivalent financing by issuing new shares and selling them at

their "true" present price.



34

Chapter 3

A Quantitative Theory of the Fundamentalist's Price

*.

3.1. Price as a Resolvent Function

Let us now assume that the information SjF is generated by a

vector valued Markov process Xfc which might be interpreted as the

state of the company at time t. Let the expected dividend payments at

time interval (t,t+dt) be given by f(xt). Let us also assume for simplicity

that the process X is time-homogenuous i.e. if we define the operator

9£*

94 f(x) - e{f(xs)|Xt - x} (3-D
t

for bounded and continuous f then^® will only depend on s-t (and we

shall hereafter denote it is^U.). Extension to arbitrary Markov

processes, can easily be.accomplished by argumenting the state variable

with the time variable. Now since we have [49]

QM <Ofii (3-2)-/N't =

<^S is a contraction mapping and is therefore continuous.

Also because of the increasing property of VOt} we have the

semigroup property:

^t+s ^tr^s

And, from definition

llm^f - f
t+0 z

(3.4)
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(3.3 ) and (3.4 ) imply that^A must be of the form

tWt =exp(t^) (3.5)

where the differential generator JL is given by

Sff =* lim ^ <£Uf-f) (3.6)
^ . rs t t
t +0

vj>wherever such limit exists and <=!_ is bounded.

Sincey4 is the operator for the expected future value of a

function the interpretation for the operator 5gL is the expected rate of

change of value of that function.

Now (3.7) becomes

F„(x) -f e~rs3if(x) ds (3.7)
r J0 s

where P = F (x ) is the "true" price corresponding to the discount rate

r. Thus the "true price" operator is the well known resolvent of the

semigroup9W i.e. it is the Laplace transform of <3i operating on the

expected incremental dividend payment policy f.

F(x) =<£ f(x) =(| e~rsijWds) fW (3-8>r r . jQ s

It can be proved [49] that^F exists and thus F is the unique solution

to the following equation:

rFr(x) -2&?r(x) =f(x) (3.9)

which is equivalent of the random walk Eq. (2.11). It leads to the

interesting observation that the dividend payments should be equal to

the interest minus the expected rate of change for the "true price."
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Example 3.1.1.

As mentioned earlier the decision criteria on the dividend policy

of a company often is to maximize the current "true price" of its

shares. We assume that the choice of the dividend policy will affect

the dynamics of the information process. Let us denote the differential

generator corresponding to dividend policy f(-) by §L and let the

discount rate be £(•)• The optimal dividend policy will then satisfy

the following optimality condition.

sup{SU.F-CF+f} = 0. (3.10)
f r

for some function F, which will be the optimal "true price" function.

The optimization is to be carried out for all f(-) satisfying the

constraints of the problem.

Example 3.1.2.

Let X be a diffusion process satisfying the following stochastic

differential equation

dX„ = m(Xjdt + N(XJ dn (3.11)
r t t t

where n is an 93L measurable Wiener-Bachelier process (vector of Brownian

Motions). The operator 3l in this case will coincide with the differential

operator given by

2

ggg(x) =m(x) -£- g(x) +1 tr[N'(x) ^ g(x) N(x)] (3.12)
dx 2 ^2

which means the capital change in the "true price" is the sum of a

term due to trends in the information process and a risk-related

correction term implying that there is a cost to the uncertainties about
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the future states that should be compansated by either a dividend payments

or an expected change in the future "true price."

Solving (3.9 ) we can derive the formula for the "true" price

explicitely, as a function of the state, and although knowledge of

the present state can not help to estimate future excess returns the

quadratic variation will be given by

d<P,P>t -[£ F(x)]?N(x)N,(x)[^ F(x)]dt|x=x (3.13)

so that unless this function is independent of x (which e.g. is the

case for the lognormal model) the present state does help in estimating

the risk level.

Equations similar to (3.9) can be derived for futures prices.

Thus we have

~ F^(x) =g?F*(x) -rF^(x) (3.14)

F°(x) = F(x) (3.15)

where F (x) is the futures price given by

F^(x) =efe'^lx^ x> (3.16)

and the interpretation is as one approaches the closing time the futures

prices will change because of the changes in the information process and

because there is less interest to be discounted and at the end it should

be equal to the "true" spot price. In operator rotation we have

^(x)=e-(rI-^>hF(») =e-frI-^)h(rI-g)-1f(K) (3.17)

where f is the dividend policy, and I is the identity operator.



38

3.2. Derivation of a Kernel Function

Now suppose that the information process has a transition function

given by

Pt(x,A) = Pr[Xt eA|xQ - x] (3.18)

Since we have

<£fy.f(x) =Jpt(x,dy) f(y) (3.19)

we can rewrite (3.7 ) as

Fr(x) =ff(y) Kr(x,dy) (3.20)

where

J »

e"rtP.(x,dy) (3.21)
0

i.e. K (x,dy) is the price per each dollar divident payment policy for

the neighbourhood of the state y when the economy is at state x. Therefore,

the "true price" is the potential corresponding to the dividend policy

distribution (in the state space) f(«) with the Kernel K (•,.) being the

Laplace transform of the transition function which has obvious economic

interpretation. Interesting problems arise when the process X is

defined only in a region G with smooth boundary . Different sets of

boundary conditions for (3.9)correspond to different behavior of the

process on the boundary. In general the only possible types of behavior

are stopping, disappearance, reflection, diffusion along the boundary,

and their combination which means linear combination of the corresponding

boundary conditions. There is no general theory for the case of random

domains. (See e.g. [42] for a discussion of boundary conditions. Also
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[14] gives the solutions for the one-dimensional diffusion processes).

Example 3.2.1. Consider the n-dimensional Wiener process which

transition probability given by

Pt(x,r) =f—^ exp( -̂ llx-yll2) dy (3.22)

The differential generator for this process is such to be the Laplace

operator [14] given by

SPf(x) =!v2f(x)=l£; *-*. (3.23)
«• 3xi

for n > 2 the corresponding Green's function is given by

Ko<x>dy>= —^7/2 r<! - x> °y-x"2"n dy (3-24)
° (2TT)n/Z Z

Example 3.2.2.

Now let X be a one-dimensional Brownian motion in [O,00). The

corresponding Kernel will be of the form

K (x,dy) = {A(y) exp(-^rx) l(x-y) + [B(y) exp(-i^2r x) + c(y) exp (Sx)]

•l(y-x) + D(y) «p(-V2r x) <5(y)> dy (3.25)

where l(-) and 6(0 are the unit step function and Dirac $-function

respectively A, B, C, D depend on the behavior of the process at the

left boundary.

Finally, for the future prices given by (3.16) we have

F^(x) =fe"rhPh(x,dy) F(y) (3.26)

or if F(«) is the "true" price given by (3.7 )
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F*(x) o(>(x,dy) f(y) (3.27)

where K is given by:.

Kh(x,r)=re-^+»)ps+h(x,r) (3.28)

yielding the same potential interpretation as stated before.
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3.3. Price as a Function of.the Discount Rate

The "true price" given by (2.7) and derived in (3.7) for the

Markovian state proves easels a function of the capitalization rate r.

To see the dependence we notice that the prices for different discount

rates satisfy the following resolvent equation [9,14]:

^af "^3f +(a"6) ^cf^V "° (3-29)

which when coupled with the fact that because of limited liability

prices are nonnegative tells us that prices are decreasing for increasing

discount rates. This is consistent with the observation that during

inflation times prices go down. Moreover, (3.29 ) explicitely gives us

the change in prices due to a change in the discount rate. In operator

notation we have

£<£r =-^ (3.30)

or using (3.21) we have

_d
dr "r

Fr(x) =-fKr(x,dy) Fr(y) (3.31)

This observation gives us an often useful method for evoluating a project

with its expected future cash flow given by a function f(X ). The rule

of thumb is to look for this so called internal rate of return, which is

the rate for which we have

^f -1 =0 (3.32)

where I is the required investment.

The investment should be chosen if the internal rate of return

is higher than the interest rate prevailing in the market. However, for the
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case where f is not always nonnegative (e.g. future investments are required

under certain conditions) there may not be a unique internal rate of

return, or if one wants to compare two different investment opportunities

the one with the highest internal rate of return is not necessarily the

best opportunity. A modified rule is to use the following algorithm in

order to choose from among different investment opportunities [17]:

(i) Find the internal rate of return for each candidate. Reject

those with internal rates of return less than the market rate r.

(ii) Choose the alternative with the highest internal rate of return

provisionally as the defender.

(iii) Take the alternative with the second (if any) highest internal

rate of return as challenger. Compute the rate of return of the

challenger over the defender; i.e. the rate of return on the difference

of the two. If this is greater than r accept the challenger, otherwise,

accept the defender. Repeat this step for all the alternatives.

This algorithm will work if the internal rate of returns computed

at each stop is unique.
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3.4. Stochastic Rate for•Discounting

The constant discounting model given by Eqs. (2.7) and (2.8) can

be criticized on grounds that the observable interest rate varies with

time. Furthermore, it can be argued that future rates for discounting

are random because they cannot be known given the current information.

A mor.e general model therefore, is to assume an instantanuous rate for

discounting to be a stochastic process r measurable with respect to

(J . The exponential form of discounting is because of the requirement

that it be consistent. That is, if the "present value" of a cash flow

P at time Xt is

D* =E{k£.PT|gt} (3.33)

then one should be able to arrive at this value by first considering

the "true" value of P„, discounted to some time s (t<s<T) and then discounting

it again to the present time t.

P* - «{k- £{ATigfs}|gt} (3.34)

Using the increasing property of <jr and comparing (3.33) with (3.34)

one can conclude that in order to be consistent the discounting functional

k should satisfy the semigroup property given by

k* = k*kT (3-35)
t t s

Therefore, under some regularity conditions the infinitesimal discounting

t+dt
functional k will be given by

k*4** -exp(rtdt) (3.36)

for some process r., which will be called the rate of discounting at time t.
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Equations (2.7 ), (2.8 ), and (2.9 ) thus become

Pt =e{J exp(-j rudu). dDs|gFt} (3.37)

Pt =e{exp(-J rgds) PTl9t) (3.38)

Pt =e{JT«P'<- J rudu)-dDsl^t} (3'39)

differentiating (3.37) and (3.380 we get

(dtPt+d Dt)/Pt - rt dt = dMfc (3.40)

dtPt/Pt " rtdt = dNt (3'41)

where Mfc and Nfc are ^T martingales with

'•e(dMt|9't:} =e{dKt\<3t} =0 (3.42)

again indicating that the present information has no value in predicting

the excess returns due to future changes in the "true" prices. For the

Markovian state-space case we have

F(x) =e{f exp(-f k(Xg)ds) f(Xt)dt|.X0 «x} (3.43)

where k(x) is the discount rate corresponding to the state x and f and

F are the dividend and "true" price functions respectively. Then the

celebrated Kac's theorem yields [14],

S£f(x) - k(x) F(x) =-f(x) (3.44)

which has the same interpretation as (3.9 ) and may be solved explicitely

to give the true price function F(x).
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Finally, one can again, determine explicitely the change in the

"true price" due to any change in the discounting method k(-)» Let

CD , J be the "true" price corresponding to the discount function k.(.)
•Me^.) *
and dividend function f. One can write

^kl(.)f -%rf +<W\ (o^2(.)f - ° (3-45)
i.e. for a change 6k(.) of the discount rate we have the price change

F given by

<5F(x) =-6k(x) .(:Pk(#)F(x) (3.46)
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3.5. Random Stopping

Suppose now that the dividend, process is only defined in the [o,T]

interval, i.e. the share will produce an (uncertain) stream of future

dividend payments up to a (random) stopping time T after which a

bankrupt, a default, a decision to sell the stock, or some other unaccounted

for event would stop the cash flow and yield a final price PT price,

which is a random variable adapted to^m- Equation (3.37) now becomes

T s *Pt =e(J exp(- ( rudu) .dDg +t^J (3.47)

Letting

Pr[t <T<t+dt|9ft] =Ktdt (3,48)

where % is the conditions probability of stopping and is measurable with

respect to Q" ,we have

(dPt+dDt)/Pt -rtdt =Ctdt +dMt (3#49)

where M is an 9" martingale., i.e. the conditional expectation of the

excess return is equal to the conditional probability of stopping. The

quadratic variation of M will in general depend on the evolution of

^F . For the case where ty is generated by aMarkovian state process

X let us consider the subprocess obtained by terminating X at a
t u

random stopping time T. Let £&) be the conditional probability of

termination corresponding to the state x i.e. the conditional probability

of the event {T > t} is given by [14]

Jt

€(X)ds) (3.50)
0
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Then it can be shown that the differential generator yi corresponding

to the "killed" process is given by [14]

9Pf =S£f - 5-f (3.5D

where y. is the generator for the original Markov process X .

Combining (3.51) with (3.44) one concludes that the "true price"

corresponding to the discounting function k(«) is equal to the true price

of the same cash flow with no discounting, but with a random termination

corresponding to the termination density [14] k(.).

f°° I* fTe{J exp(-J k(Xg)ds) f(Xt)dt|XQ =x} =e{l f(Xg)ds|X0= x} (3.52)

where T is given by (3.50) with £(•) replaced by k(.).

Thus we once more conclude that the conditional expectation of excess

returns should compensate for the conditional probability of termination.

It is often the case that . the process X is confined to a

regiony(.with a smooth boundary 9>X.. Then, in order to know the process

we should know its differential generator and in particular, the way it

behaves on the boundary. The possibilities are stopping, disappearance,

reflection, or diffusion along the boundary, as well as their various

linear combinations. To each type of behaviour, there corresponds a

boundary condition associated with differential equations involving the

generator such as ( 3.9) and (3.44) see [49] for a discussion of boundary

conditions and the criterion that determines whether the region is

closed or open or whether the boundary is of "regular" or "exit" type.

Also it turns out that the potential kernel given by (3.20) and (3.21) bas

a singular term on the boundary, which is again the Laplace transform

of the transition probability in the boundary, and is given by
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Fr(y) -Jf/y) Kr(x,dy) +f f(y) Gr(x,dy) (3.53)

K(x,T) = f e'rtP.(x,r) (3.54)
r •'0

Gr(x,A) = e"rtP.(n,A) (3.55)
Jo ,

where the singular term arises because of stopping or diffusion along

the boundary. In cases where the process terminates when it hits the

boundary 2bX the differential generator is again given by (3.51) where

€(x) is the density associated with the hitting time T and is given by

Pr[Xe e% 0<s< tl^T ]• =exp(-f £(x )ds) (3.56)s - - t j0 s

where 9C is the interior of 9C.
A general theory of Markov processes with random domains has not yet

been constructed [14]. However, the theory of additive functional

provides us with the means of interpreting the above observations and

find its link to the (generalized) Brownian Motion.

Example 3.5.1. Let X satisfy the linear model given by

dX„ = AX dt + Bdri (3.57)
t t t

where A and B are nxn matrices and n is an n-dimensional Wiener process.

Let the dividend payments be given by

dD = CX dt (3.58)
t t

where C is an n-dimensional row vector. Considering the limited liability

of prices we have

T

V(x) =e{f e'^dDj^ -x} (3.59)
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where Tis the first time X=0(i.e.QC =1R_£ and the boundary behavior

is stopping) and [49]

V(0) = 0. (3.60)

Solving the "true" price Eq. (3.9 )

2

(Ax)l £ +2tr B? H B"rV =Cx (3.61)
dx

subject to the boundary condition (3.60), we get

V(x) =C(rl-A)"1x (3.62)

i.e. the "true" price will be given by

Pt «C{rl-k)~\ (3.63)

which is similar to what Granger [19] obtained for the discrete time

model.

For future contracts given by ( 2.5) the dynamics of the process

given by ( 2.6) will not be changed if the expiration T is a random

stopping time. Thus for simplicity let us consider the case with Markov

state space where the stopping time is the first occurance of an event and

there is no discounting i.e.

<Kx) = e{F(XT)|X() =x> (3.64)

where T is the first exit time of G then we have [14]

^2<j>(x) =0 for x€ G (3.65)

*(x) = F(x) for x e 9G (3.66)

which is called the Dirichlet Problem).
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Yet another way to apply the theory of the terminated subprocess

to the case of "true" futures prices is that of the contingent contracts

i.e. contracts that should be transacted upon at a certain time conditional

on the non-occur nee of an event, i.e.

Fh(x) =e{F(Xh)Ind(T>h)|X()=x} (3.67)

where Ind(.) is the indicator function and T is the first exit time of G.

Again we have

3^ Fh(x) -S2Fh(x) for xeG (3.68)

FQ(x) =F(x) (3.69)

F, (x) =0 for x G 3G (3.70)
h

Other boundary conditions will correspond to the various agreements

(other than non-transacting) in the case when the boundary of Ghas been

reached (the "taboo" event has happened) before the contract date.
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3.6. The Effect of. Time-Change,and Changes of Probability Measure or Price

We have already seen that a random termination of the dividend

process has the same effect as higher discount rate would have on the

"true" prices, and for Markov processes, its effect can be summerized

in the transformed differential generator given by (3.51). Another

possible transformation is a random change in the time variable. It can

be shown [44] that martingales are Brownian Motions whose time has been

changed randomly with the quadratic variation of the processes. In

other words let M be an integrable local martingale and (M^M) be its

quadratic variation let B be an independent Brownian Motion and let

us define a random time change given by the below equation.

T - inf{s|<M,M> > t} if this is finite (3.71)

X = oo otherwise

and let X^ be defined by
t

Xt = Hj, if Tt < « (3.72)

X_ = M .+ Bfc /., M\ otherwise
t » t-\M,M>

then X is a Brownian Motion [44].

This observation e.g. might explain why when the price fluctuations

almost seem to be a Brownian Motion and one changes the time dimension

into a "move" dimension [9] (i.e. each new time unit is when the prices

have changed % x) then the picture changes and the new process is no

longer a Brownian Motion. When we have a Markovian State process a random

time change characterized by
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ft\ V(X )ds = t (3.73)
•*o S

where V(x) is a positive function, will transform the differential

generator [14] according to

y>f(x)=^&(x) 3.74)

A Markov process is called a generalized Brownian Motion [14] if it can

be obtained from the Weiner process by a construction of a subprocess

and a random time change. The construction of the subprocess, or random

killing as we have seen is associated with an additive function <f> such
8U

that if T is the termination time then conditional probability of stopping

is given by

Pr[T >t|gjj =expH>ot) (3.75)

And the random time change corresponds to another additive function

\b such that if *r is the new time we have [14]
rsu t

* = t (3.76)Vt

Since we know that each additive function corresponds to a measure such

that

v-fs^r- (3-77)

*st=f&<vdu (3-78)
* s

where -77- denotes density with respect to the Lebesgue measure. Each
die-

generalized Brownian Motion is thus characterized by two measures; the
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"killing measure" ydetermines when the process is terminated and the

"speed measure" vdetermines the random time change. The differential

generator of a generalized Brownian Motion is then given by

f ai cl/£Vf _ifcf (3*79)f 2 C ' dJT dv

where V2 is the Laplacian operator. Finally, let us consider a change

in state space. For simplicity let us consider the case where the

differential generator is identical to the second order operator given by

*-i;v^^f +?biw^f"cW£ (3,80)i,j J ! 3 ± i

Now let us change the state x into another state iwhere the transformation

to the new coordinate system is twice continuously differentiable then

the new differential generator is given by [14]

&=g -^« *fef +5v*> ^f -"c(x) f (3"81)
where we have

3x. 3x,

a..
13 a,3

1

3x
a ^%

^2~

*"* a
a

3x.

a

IS
a,3

3a3

3 x.
l

\ 8Vxe

G = C

(3.82)

(3.83)

(3.84)

Let us consider the economic interpretation of the transformation mentioned

above. Regarding (3.51) we observe that there is no difference in the

"true price" of a terminated process with that of anon-terminated process

that has been discounted by an amount equal to the conditional
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probability of termination, because if one considers (3.44) then one can

conclude that they both satisfy the same differential equation. Therefore,

we conclude that one discounts future streams of income in anticipation

of a termination in the stream due to unexpected events that have not

been incorporated. On the other hand, a random time change will change

the quadratic variation of the process and unless one is indifferent

towards risk, there should be a reverse relationship between a "speed"

rate and the discount rate. But, (3.79) does not give an indication of

what the relation should be. Our conjecture is that since under very

general conditions [14] Markov processes can be obtained from the Wiener

process by successively carrying out a random termination, a random time

change, and a transformation of the coordinates, and since the term due

to termination in the differential generator is invariant under the

transformation of coordinates (Eq. (3.84))^ the discount rate from (3.7$

should be the density of the killing measure of the process with respect

to the speed measure . In general the discount increases

with increasing termination probability and with increasing quadratic

variation, implying risk aversion on the part of participants in the

market.
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A Markov Theory of Options

Let us consider markets where by a proper composition of his

portfolio one can eliminate all the uncertainties concerning the
immediate future return of his investment. Mathematically, this means that

one can find such a combination of investment opportunities such that the

total incremental return on his wealth is measurable with respect to the

information that he has at the time. For example, let us consider the case

where the information is generated by an Ndimensional Markov process.
Now consider N+l different assets, none of which can be obtained from a

combination of the other N. Let the return (adjusted for dividend payments
if necessary) of each of these assets be given by

dw i?i 4°*+k?i sMtd<Wt
where istands for the asset iand X^ is the k-th component of X ,and

lVt'3xk x=Xt

32R, \ 32R./dRi\ 9Ri

x=Xt

The second term in (4.1 )is 9^ measurable, and one can find a
combination of the N assets with a± being the preportion for the

asset i such that the uncertainty is eliminated

*tl N N 3R N+l

L «i«i -E £ «± ^ dxfc +Z «±dC±(x ) (4.2)

where C±(Xt) is the correction term and is given by (4.1). This can be

done if one Choses the a such that

N 1 3R±
.^"i^T30 for k= 1,2,...,N (4.3)
i=l Tc
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If now a new investment opportunity is introduced in the market, one can

again combine this with N of the existing assets in such a way that the

risk is eliminated. Unless the resulting risk-free rates of returns turn

out to be equal, there is a clear arbitrage possibility and one could make

infinite amount of profit by selling short the resulting portfolio with

the lower rate of return and buying long the one with the higher return

rate. The riskless opportunity for profit will force the rates to resettle

into an equal risk-free rate. Therefore, the return on the new investment

will be determined by the rates of returns for the N+l assets.

Example 4.1.1.

Let the information process be a one-dimensional diffusion process

given by

dXt = m(Xt) dt + a(Xt)dBt (4.4)

where B is a one-dimensional Wiener process. Let us assume that there is

a market portfolio whose rate of return is given by

dRmt =am(Vdt + 6m(VdBt (4'5)

Now consider a share with incremental dividend payments f(x) and a "true"

price F(x) corresponding to the state x. The dividend-adjusted rate of

return is equal to

§pF(Xt)+f(Xt) F'(Xt)
dRst= FOV dt+F(V a(Xt)dBt (4'6)

Finally, let us assume that there is a risk-free rate of borrowing or

lending equal to r(X ). Let us now consider a combined portfolio composed

of w-(X ) dollars of share, w?(X ) dollars invested on the market portfolio,



57

and w1+w2 dollars borrowed with the rate r(X ) to finance the investment.

The total return will be given by

dRt =[wl^F 'r) +w2(Vr)] dt +(wl ^ +w23)dBt (4-7)
if one choses w- and w« such that

-aF1

W2=lF~Wl <4-8>

then he can get an arbitrarily high return with zero investment and

zero risk, a clear arbitrage, unless we have

£fe(x)+f(x) ,v o(x)Ff(x) , /x , Xv ,, nx
°^ w xv / - r(x) = Q; ;,./V (a (x)-r(x)) (4.9)

F(x) 3(x)F(x) m

We thus have a rational discounting rate that excludes arbitrage where the

rate of excess return on each portfolio is related to that of a market

portfolio and the higher the risk level, the more return one should

expect in compensation.

Example 4.1.2.

One field of application of the random walk theory of the stock

prices Is the determination of the "true" prices of such derivative assets

as puts, calls, warrants and convertibles. It is usually assumed [30,37]

that the underlying security prices are Markov processes and thus the

"true" prices of the otpions are functions of security prices. One

problem is that since the options are more volatile the discount rate

should be higher than that of the unlevered securities. Using the above

example, however, one can obtain the discount rate that would exclude

arbitrage possibilities when there exists a risk-free rate for lending

or borrowing money in the market. Let X be the price of the security
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Sfand let the differential generator SL be given by

<£=| a2(x) i-j +b(x) ^ -c(x) (A.10)
dx

Now let f(s,t) be the "true" price of the option when the security

price is x and let r(x) be the risk-free rate corresponding to that

price. From (4.9) we have

(9?f +-~ f)/f - r - (fVf)(b-r) (4.11)

or after rearranging terms we get the following differential equation

\ a2(x) -2-| +r(x) || -[r(x)+c(x)]f +|£ -0 (4.12)
dx

subject to the proper initial condition [6,30]. One important result of

the above analysis is that the "true" prices for options are independent

of the drift factor b(x). Thus two different investors with different

beliefs on the rate of return of the security might agree on the "true"

option price. Now let us go back to the general case where a portfolio

return is given by (4.2) and we have

N+l

£ ot (x) = 1 (4.13)
i=l

each set of a , i = 1,2,...,N+l characterizes a portfolio and the one

obtained by solving (4.3) together with (4.13) will be called the

risk-free portfolio and its return rate will be denoted as dRfi . By a

process similar to the Gram-Schmidt [41] one can construct N different

portfolios whose rates of returns, denoted by dR,, k « 1,2,...,N, will

be uncorrelated in the sense that
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d<Rk'Vt =0 forMn

To do this let

dR-_ = dR,
It It

(4.14)

_ d<vyt,.
2t ' "oTI^T (dRlt-dV> +dR2t (4.15)

and in general

k-1 d<R.,R >

H* =dRkt - Z 7~-r wR,t-dIut)
*=1 d<R.,R„> *' "t (A.16)

then the obtained portfolios will satisfy (4.14). Now we can prove that
any other investment opportunity should be linearly related to these

"basis" portfolios so as to exclude an possibility of hedging. Suppose
for an opportunity whose rate of return is given by dRt one can find a'
portfolio combining the N"basis" and the risk-free portfolios such that
one has

V e i. = ilL u _ -, o
^ i 3x. ax, k-l,2,...,N (4.17)i=0 A oxk dxk

N

S 6i =1 (4.18)

where B± is the proportion invested in the i-th portfolio. Clearly,

one can sell short the combined portfolio and invest on the new opportunity

with the proceeds with a risk-free rate of profit equal to

N

0(dR-?n6idV (4.19)

unless one has
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N

dR = V e.dft. (4-20)
i=0 1

where the 8 , i = 0,...,N are solutions to (4.17) and (4.18). To find
N

the solutions, we observe that dR - 2 0-td^f snould De orthogonal to
i=0

the dR. thus:

d<R,R. >
e = L-L for i=i,2,...,N (4.21)

d<R±9R±\

and we have

N d<R,R. >
dR = £ — (dR.-dR ) + dR (4.22)

i=id(Ll> i ° °
i it

d<M±>
The terms in the above equations are the volatilities of the

d<Ri,Ri>t

process R relative to the R..
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Chapter 5

The Dynamic Capital Asset Pricing Model

5.1. Preliminaries

It has long been held that a satisfactory theory for analyzing

stock price fluctuations must take into account the interdependence of

the future price processes. When more than one investment

opportunities are available, a possibility of diversification exists. That

is,one can choose a portfolio of different stocks in such a way that

when the price of one of the individual stocks is expected to go up the

price of another will go down and thus hedge against the risks involved

It has also been conjectured that since many people's investment goals are

to maximize the expectation of a risk-averse concave increasing utility

function in the senseof VonNewmann-Morgenstern, [34] theywould prefer a

portfolio with more expected rate of return and less risk to one with less

expected rate of return and greater risk. To pursue this line ofargument one

needs a normative modelfor thedegree ofa portfolio. Among different such

models[29,40] the so-called mean variance analysis, where the variance of the return

of an asset is considered as a measure of the risk associated with that

asset, has by far been the most popular because it deals with such

empirically observable variable, as the first two moments of a random

variable rather than Von Newmann-Morgenstern type utility functions and

corresponding subjective probability distributions. The capital asset

pricing model [23,42], which is based on this assumption has received

considerable attention in the financial literature because it can be easily

applied to such areas as portfolio selection and capital investment decisions,

in addition to providing a theoretical foundation to diagonal market
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models and theorems on the separation of investment and financing decisions

[46].

The mean-variance model, on the other hand, has been criticized on

both theoretical and empirical grounds in recent years [7,18,22]. This

model is true only if either the return variables are assumed to belong

to a two parameter class (e.g., jointly normal) [17], or if the utility

function is assumed quadratic. Both assumptions lead to gravely

unrealistic implications [16].

Perhaps an even more important shortcoming of this model is its static

nature, since the allocation of the resources in time is so important

that it is said that the capital theory is the theory of time. There

have been some recent attempts to extend the theory for the dynamic

case [4.17,31,33]. Again, the known information at each time can be

modelled as an increasing family of a-algebras Xj• Let us assume that

there are N opportunities for investment the rate of return for each of

which, duely adjusted for dividend payments if necessary, is a process

R, adapted to T7 . Thus if at time t the amount m. is invested in
JLw t -il»

the i-th opportunity at time t+dt one should get the amount mitdRit for

that investment. Therefore, if 6. is the proportion of the wealth at

time t that is being invested in i-th opportunity and if c is the

proportion of ones wealth, that is being consumed at that time, then the

wealth equation will be given by

dwt/wt = Z eit<*it - ctdt (5.D
1=1

where we have
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N

T e. = l (5.2)
*—» It
i=l

and the return processes are assumed to be (local) semi martingales

with respect to the information 9J so that the integrals could be

defined.

Given the initial wealth (5.1) could be integrated and we will have

Wt =Wo exp[- £csds] exp[£( £e±s<i*is -\ £ge^G./R.,R. )
s

Therefore, the wealth at each time will be determined by the past

consumption and the past selection of one's portfolio, and the effects of

these can be separated. The consumption process is given by:

Ct =Wo-ct exp[- (*c8d.l exp[f\ his<*ls "\ f. £ e^WVa"
• •'O JU i—i l—l 3—J-

We shall assume that the individends in the market have

"atomistic" influence in the sense that they do not believe that they

can change the laws governing the return processes by changing their

consumption and investment policies, in other words, the <J measurable

processes will not depend on the strategies 6.t> c .
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5.2. Generalized Mean-Variance Models

Let us now consider only the investment decision. It is often the

case that consumption is not the concern of the investor. Instead he

acts so as to maximize the expected value of some increasing concave

utility function for the wealth at each instance.

As we saw in section 1.2, the best strategy for such an investor

is to choose among portfolios with the same rate of a-posteriori

expected return the one with the least quadratic variation term.

Since the rate of overall return on ones portfolio is given by

dRPt =£ eitdRit (5-5)

X>it =i (5.6)
i=l c

onehas to minimize the quadratic variation term

N N

d<R ,R > = y y 6, 0_ d<R,,R4> (5.7)Wt-SJ/itV^v^^

subject to (5.6) and for a given expected rate of return

N

i=l

etdVigt> =e eit etdRitigrt} (5.8)

Let us denote the portfolio with the minimum quadratic variation with

the subscript 0 (i.e. dRQ stands for the rate of return for this

portfolio). The corresponding ratios {e01t^ wlll be obtained by

differentiating Eq. (5.7) subject to the condition (5.6). Using Lagrange

multiplier technique, one gets the following condition for the rate of

return for the minimum risk portfolio
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^VVt-^Wt (5,9)
Thus, it has the property that every other portfolio has a volatility equal

to that of the minimum-risk portfolio, and furthermore, it does not

depend on the individual's information or subjective probability beliefs.

If the determinant whose element are the a-posteriori covariances

d<R.,R. ) has a rank lewer than N, then the minimum-risk portfolio at

that time will have zero quadratic variation one can construct

an instantaneously risk-free portfolio. However, in general RQ is too

conservative a portfolio, and depending on ones measure of risk aversion

as shown in 1.2 one would choose a portfolio with greater risk in return

for higher expected value of the conditional rate of return. We shall

examine later implications of this model and the volatilty of the measure

of risk involved in the investment. An important result mentioned

in 1.1 is that the volatility factors do not depend on the information

pattern QF nor does it change when the subjective beliefs concerning the

underlying probabilities are changed as long as the probability measures

are absolutely continuous with respect to one another.

Before pursuing the discussion or the results that one can get from

this model, let us consider the case where the consumption given by

C = c W (5.10)
t t t

is the main concern of the investor. If we differentiate (5.10) we get

dC =cdW +W dc + d<c,W>t (5.11)

The last term is measurable with respect to <J the information at

time t. However, the second term is not necessarily adapted to vj"t»
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and the possible variations of the consumption, therefore, constitute

a further source of risk besides the volatility of the investment returns,

One would then expect the investors to diversify their portfolio not

only to minimize the variations on their portfolio returns but also so

as to hedge against changes in their consumption ratios. In the next

section we shall examine a model due to Merton [28,31] concerning the

investment and consumption strategies.
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5.3. Stochastic Control Model

Let us now consider the model presented in 5.1 in more detail.

We assume for simplicity that there are N+l investment opportunities

the last one of which is the minimum-risk asset denoted by the

subscript 0. We also assume that the dynamics of the return processes

i.e. e{dR.JtT{, and d<R,,R. > for i,j = 1,...,N are generated by a
it • t l j. t

Markovian state X , the evolution of which does not depend on the

investment or consumption strategies of individual investors acting in

the market.

Consider an individual whose wealth is given by (5.3)

XWe assume that the augumented vector process (ut) is also a Markov process,
Wt

If at time t the individual would invest 9. , i = 1,...,N proportion of
N

his wealth in the i-th opportunity and e = 1 - E 0-?r in the minimum~
0 1=1 1U

risk portfolio, then his wealth equation will be given by:

dwt/wt =£ eit<dRit-dRot> +dV "ctdt (5-12)

and the quadratic variation of the wealth process will be:

d<W,W> N N
—T^ - E E B±tejt (d<R.,R.>t -d(R0,R()>t) +d<R(),R0>t (5. 13)

Now if one wants to maximize his expected utility of consumption given by

Jo
A(Cg,s) ds + B(WT,T) (5.14)

then one can use the dynamic programming technique by defining

fT
V(x,w,t) = e{l A(Cs,s)ds + B(WT,T)|Xt = x, Wt =w} (5.15)
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and for the optimal policy one would have

e{dVt|rit> =s«P«fw> «t«t|<3Ft}+ Z <|*> eCd^J^}
t k— 1 k

t 3w . k=l k fc

+i £ £ (3xi> d<Wt - A(cft)dtl • °- (5-16)
IC-"1 Jt~~l K i

After replacing for e{dW. 1^}and d<w,w>t from Eqs. (5.12) and (5.13)

and considering

d<xk,w>t =wt[E e.^dU.,*^ - ^VVt* +dU^g

could differentiate (5.16) with respect to the 6, to get the regular

solution for the investment strategies:

(w2-^|) [£ 6 (d< R±,R >t - d<Ro,R0>^]+ (wf) [e{dBlt-dB0t|Xt)]
3w j=l J J t

k-i *k t t

Or if we define the excess return processes as

dR't =dRit -dRQt 1-1 N (5-19)

from which we obtain

d<R^,Rpt =d(Ri,Rj>t- d(R0,R0)t (5-20)

d(Ri,Xk>t =d^.Vt " d<Rfl,Vt (5-21)

we will have the following equation for the optimal investment policy
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n (av/aw).

£ e. d(R'R;> = = r"e{dRitlxt}j=i 3t 4 J fc (wa2v/aw2)t it: fc
m a2v/ax, 3w

- £ ( 2 2> *Ri'Vt (5*22>k=l w3ZV/3wZ t X KC

Now if m « N,(5.22) will give an efficient policy set for the selection

of ones portfolio. That is, no matter what an individual's utility

function is, his optimal portfolio will be a combination of m+2 "mutual

fund" portfolios consisting of the following, minimum-risk portfolio cor

responds to the solution for the homogeneous equation, the growth-optimal

portfolio corresponds to the first right-hand side term and has the property

that almost certainly it would result higher terminal wealth than any

other decision rule [22,32], and finally m portfolios corresponding to

the m right-hand side terms of (5.22) can be used to hedge against

unfavorable changes in investment opportunities. Thus one not only must

"smooth" the consumption in the sense of maintaining its level against

the changes in one's income, but he also has to smooth the consumption

by keeping its variability (risk) at a minimum through time. The function

V(w,x) is the conditional expectation of one'sutility and is therefore
2 2

w3 V/3w vthe implied utility of ones wealth at time t. The factor - ( 3V/aw—)

is the relative risk aversion factor for the implied utility and we can

see from (5.22) that the more risk-averse individuals would choose less

risky portfolios. Now if we differentiate (5.16) with respect to the

other decision variable, namely the consumption we get another

condition for the regular optima

<^>t"A,{cft> 5-23)
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where

A'=^A(Ct,t) (5-24)

Further differentiation of (2.23) and application of the implicit

function theorem yields [28],

/wa2v/a_w2A .wac/awv , cA"(c,t)> (5.25)
"( av/aw }t " c c Y~ A'(c,t) \

cdh,^\ . (!^} (5.26)
(a2v/aw2) 9C/9w t

It can be seen from (5.25) that whenever A is an increasing concave

function representing non-satiable risk-averse utility for consumption,

the left-hand side factor, i.e. the relative risk-aversion for the

implied utility of wealth, will be positive [28]. One can also see from
av

Eq. (5.23) that V is an increasing function of the wealth (since -^ is

always positive).
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5.4. Separation Properties and Market Models

As mentioned in the last section (5.22) represents a generalized separation

of decisions, which can be as follows: under the stated conditions there would

exist m+2 "mutual funds" the proportion of each fund's portfolio invested

in the individual N+l assets are purely "technological" i.e. do not

depend on investors' utilities such that no matter what one's consumption

policy is he will be indifferent between choosing portfolios from among

the original N+l investment opportunities or a combination of the m+2

"mutual funds," and that the investors' demands on the funds as given

by (5.25) and (5.26) depends on their utilities and consumption policies, but

require no knowledge of the N+l investment opportunities or the proportions

held by the funds.

Now if the changes in the investment opportunities are "uncorrelated"

with their rates of returns, i.e.,

d<X,,R.> =0 i=l,2,...,N k = l,...,m (5.22)

then there would be no need for the m portfolios used to hedge against

unfavorable changes in the investment opportunities and therefore the

consumption and investment decisions can be completely separated and no

matter what one's consumption policy is his investment portfolios will

consist of two "mutual funds." Notice that (5.22) in this case results

in the same optimal investment policy that was outlined in section (5.2).

One chooses his portfolio so that it has the minimum quadratic variation

among the possible portfolios having the same expected rate of return.

One has thus to solve the following quadratic programming problem:
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N N , 2
minimize ~[£ £ 9^6^ d(R^,R^>t +d<R0,R0>t] =\ s^t (5.28)

N

subject to: £ 0±t e{dR|t|yft} +e{dR0tj^} =Mfcdt (5.29)

(If either the conditional mean or the quadratic variation is not

absolutely continuous(with respect to the Lebesgue measure)then the

differentiation can be done with respect to some other measure [47])

Using the Lagrange multiplier technique one could see that the optimal

policy would be such that one's portfolio will consist of the two

"mutual funds" given by (5.22), and the optimal mean and variance

will have a hyparbolic trajectory in the M -S plane [29]. These

portfolios are thus the proper generalization of the mean-variance

efficient portfolios forthe dynamical case.

It can easily be seen that every combination of two mean-variance

efficient portfolios is itself mean-variance efficient and as one's

risk-aversion factor changes the efficient frontier is spanned. If

we denote the rate of return for any one of the efficient portfolio as

dR it will have the property that the expected rate of return for any
et

of the other N investment opportunities will be linearly related to its

"correlation with the efficient portfolio in the following sense

e(dR» I9L) e{dR» 191)
E? ~,\ • j/^.V* i= l,2,...,N (5.30)
P

where we have

d<R',R'> ' d<R' R'>
pet let

dRPt - £ eit<dRit> (5-3i)
N £

dR' = Yj e--dR'
et r-* it it

i=l
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Fig. 5.1.
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and * denotes the efficient portfolio. Furthermore, each of the

efficient portfolios can be the parameter for a market model. To each

one of these portfolios there corresponds another portfolio belonging to

the efficient frontier which has an expected rate of return lower

than that of the minimum-risk portfolio, and a zero correlation

with the efficient portfolio. That is, if we denote the second portfolio

by the subscript z we have

d<R ,R > = 0 (5.33)
e z t

Nowevery other efficient portfolio is composed of the following

combination of the two portfolios

dR = e! dR ^+ (1-3*1) dRf (5.34)
t t et t zt

where we have

d<R,R >

e e t

For the non-efficient portfolios we will have the same model described

by (5.34), but the zero-beta portfolio in this case is not one of the

efficient frontier. However, for every portfolio in the market the

following model will be true:

E{dRptigt} -B;t e{dRet|9;} +(1-f^) eldR,^} (5-36)

The 6 factors in the Eqs. (5.34) through (5.36) are the volatilities

of the portfolios with the respect to the efficient portfolio.

Finally, let us consider the case where the minimum-risk portfolio

has zero quadratic variation (conditionally risk-free portfolio). This
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willhappenifonecanlendorborrowmoneywithnolimitationatan

interestratethatisadaptedtotheinformationattimet.Clearly,

therisk-freeassetwillhavezerocorrelationwithanyoftheefficient

portfolio.Thustheefficientfrontierisastraightlinegenerated

byonepointrepresentinganefficientportfolio,duelyleveredbythe

risk-freeasset.Equation(5.34),thereforewillbecome

dRt•etdRmt+<K>dRft(5-37)

wheredRistherateofreturnforthe(efficient)marketportfolio,
mt

Alsowecouldrewrite(5.36)as

e{dRptl^t}-dRft=̂^T[^dRmt|<3Ft>"dR£t](5.38) rmnt

Equations(5.37)and(5.38)givethefamiliarmarketmodelsdescribed

bythefollowingequations

dRpt"6ptdRet+(1-8pt>dRzt+dV(5'39)

dRit=dRft"SJx'dRmt"dRft'+dvit<5-A0) mmt

Whereuandv.are9"martingales"uncorrelated"withtheefficient
ptitt

portfoliointhefollowingsense:

d<V,R>=0(5.41)
pet

d<v.,R>=0(5.A2)
imt

Theimpliedmarketmodelhowever,doesnothavethe"independentnoise"

or"uncorrelatednoise"propertysincefortheoptimalportfolioselection

qwehave[15]:



N

i=l

*

8 i:V- dv.-;
It It

76

= i)y (5.43X



77

Chapter 6

Summary of Conclusion and Discussion

6.1. Summary

The following have been concluded here

1. If the rate of return process dR is an ij local semi-martingale

where 9j is an increasing family of a-algebras representing the

information at time t, then its relative volatity with respect to another

local-semi-martingale process X is given by

d<R ,X>
g = i * (6.1)
pit d(X,X>t

$. gives the fluctuations of the rate of return process due to that

of X in the sense that it minimizes the quadratic variation of the

"error" process e given by

de = dR._ - 8, dX . (6.2)
t it it t

2. If the "true price" of a futures contract is the conditional

expectation of its discounted present value

pT .e{e-r(T-t)pT|gt, (6.3)

then its rate of return in addition to the interest rate r is a (local)

martingale process.

T

dpi
-rr = rdt + dE (6.4)
pT

e{d£tl9't> =0. (6.5)
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3. If the dividend payments for a share is a local ^} semi-martingale

and if its "true price" is the conditional expectation of the sum of

discounted future dividend payments given by

00

Pt =e{J e"r(8"t)dD8|9t> (6.6)

then P is another local semi-martingale with respect to j\ and we have

dP +dD

—| -- rdt = dE (6.7)
t

where £. is again a local XJt martingale

e(dCt|9t> =0. (6.8)

4. If T[jrt is generated by a time-homogeneous Markov process X with

a given differential generator y., and if the dividend policy is

characterized by the function f(.) given by

f(Xt) =e{dDtlxt} (6.9)

then the "true price" will be characterized by another function F(.),

which is obtained by operating the resolvent operator of the Markov

process P̂ on the dividend policy function

Pt =F(Xt) =(:(2rf(Xt) (6.10)

5. The true price function F is the solution to the following equation

9?F(x) - rF(x) = -f(x) (6.11)
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6. Viewed in terms of the state space, the "true price" function is the

potential corresponding to the dividend policy f(*)

F(x) =|G(x,dy).f(y)

The Green's kernel G is the Laplace transform of the probability

transition function for the process X

G(x,T) = I e"rtp (x,r)
Jo

(6.12)

(6.13)

where

Pt(x,r) =p[xt er|xQ =x] (6-14>

7. One can use the resolvent equation

^a "% +(a_B)^B =° (6'15)

to explicitly get the rate of change of the "true price" due to a change

in the discount rate r.

4- F (x) = -^R F (x) (6.16)
drr rr

J'.= - IF (y) G (x,dy)
r

Considering the limited liability of stock prices, one can conclude that

"true prices" are monotonously decreasing functions of the discount rate,

8. Similar results are obtained when the discount rate is a stochastic

process adapted to 9 . For example, if the instantaneous rate of

discounting is a given function r(.) so that the "true price" is

(oo ft
exp(-| r(X )ds) f(X )dt|xQ = x> (6.17)

0 J0 S
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then using Kac's theorem the "true price" function will be the solution

to

^Pf(x) - r(x)F(x) = -f(x) (6.18)

9. If instead of the Markov process X one considers a subprocess

defined only on [0,T], where the conditional probability of termination

is given by the function £(•) then the differential generator corresponding

to the "killed" subprocess yj will be given by

<$F(x) =9?F(x)-€(x) F(x) (6.19)

Therefore the termination probability is not distinguished from the

discount rate when one considers the "true price" equation (6.18).

10. When there are more than one investment opportunities, in order

to exclude the possibility of arbitrage one should be able to express

the rate of return on each investment in terms of N "orthogonal"

processes S, and the risk-free rate of return as:

N

dR = 12 Bt«.dSl4. + dR„ (6.20)
t /-» kt kt 0t

k=l

where

d<R,S. >„
S k * (6.21)
pkt d<Sk,Sk>t

N is the dimension of the information process Xfc and dRQt, the rate of

return on the risk-free portfolio is adapted to 9t and therefore

predictable at each time.

11. One application of the result stated in 10 is

to find the "true price" of various options issued on a stock. If the

stock price is assumed to be aterminated Markov diffusion process Xfc whose
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differential generator is given by

Id2 d
= 2 a(x) — + b(x) — - c(x) (6.22)

then the "true price price" of the option F(-) that would exclude the

possibility of arbitrage is a solution to the following differential

equation

2

|a2(x) ^ +r(x) ||-[r(x)+c(x)]F +|| =0.
oX

where r(x) is the risk-free rate of return.

12. If ones wealth is given in terms of ones investment return dR as

dWfc
W~ = dRt (6.24)

and if one acts to maximize a concave, increasing instantaneous utility

of ones present wealth then at each time t cone should choose among all

investments with the same expected rate of return e{dR |9 } the

one with the least quadratic variation process d( R,R> .

13. If one can choose a portfolio of N investment opportunities each

characterized by its rate of return dR then at each tine ones portfolio

is given by the following quadratic programming problem [45]:

N N

minimize: £ £ 9 9 d< R ,R > (6.25)
i=l j=l 1C Jc i J t

N

subject to: £ e1-t. = 1 (6.26)
i=l 1€

N

Eeitc{dR.t|9t} =Stdt (6.27)

where 9it is the ratio invested in the i-th opportunity.
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This will give an efficient portfolio for every St-

14. If, in addition, one's ratio of consumption is denoted as ct».and

e{dR.t|9 5* d(R ,R.> are generated by aMarkov process Xfc whose

evolution is not dependent on the investment or consumption strategies,

then the wealth equation will be given by

dWfc N

if • £ 9it dRit" ctdt (6-28)
t 1=1

One can find a minimum-risk protfolio with rate of return dRQt so

that one's portfolio is a combination of the first N-1 opportunities for

investment and the minimum-risk portfolio. Let 9 be an N-1 dimensional

vector representing this combination and suppose that one wants to maximize

the expected value of a concave increasing utility for consumption.

Then, the optimal portfolio is given by

E 6it d< R- ,R' >=Arte{dRit |xt}+ £ A^ d<l^ (6.29)
3=1 J k=l

where m is the dimension of Xfc dR' = dR±t - dR and Art >0 Vt.
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6.2. Discussion

The volatility of the rate of return on an investment as defined

in 1 is different from the conventional definition in that $ is now

time-dependent. Moreover, the future values of 6 are random. At each

time however, the volatility is known given the information

If the increasing famility of a-algebras 9 representing the

information is changed or if there is an absolutely continuous change

in the probability measure the value of $ will remain unchanged.

Therefore, the volatility is a property of the investment opportunity

and not of one's information and/or subjective probability measures.

The results pertaining to the random walk theory of true prices

is equivalent to the statement that if the market prices are the

conditional expectation of the "true"values then the incoming information

are being used in the estimation of the "true prices" and therefore, should

have no value in predicting the rate of return in excess of the discount

rate. Similar results are obtained in the discrete time framework by

Granger [19], and Samuelson [38,39]. The model presented here is general

and has no restriction on the dividend process or the information fields

other than requiring D to be a local semi-martingale, so that the "true

price" integral is well defined.

When (J" is generated by observing the present value of a state

vector Xt Eq. (6.11) explicitely gives the "true price" function. The

potential interpretation given by (6.12) reflect the fact that shares

have value because if their potential dividend payments. The kernel

is the Laplace transform of the probability transition function and is

dependent on the discount rate but not the dividend policy.

The resolvent equation has the important implication that "true
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prices" are monotonic functions of the discount rate, and Eq. (6,15)

yields explicitly the changes in "true prices" due to changes in the

discount rate.

A very interesting result is the equivalence of a termination in

the information process X with the rate of discounting, suggesting

that one discounts the future for the possibility of a catastrophic

termination of the system.

If the possibility for making arbitrage profit is to be excluded

then the rate of return on each share should be given by the "market

equation (6.20). The application on "rational option prices" hasbeenknown

[37] for log-normal processes. Again a surprising result is that with

the assumptions made in 4, option prices will not depend on the

expected rate of return b(x) of the underlying security prices, which

is hard to identity because it depends on 9t as well as on the probability

measure. The initial conditions will depend on how the option has been

written.

The results on the portfolio selection problem also have important

implications. The generalized mean-variance analysis gives the proper

dynamical generalization of the one-period case under the assumptions of

normal returns or quadratic utility functions [16]. If

all the participants in the market act accordingly, then the

expected rate of return on each investment would be linearly related to

its relative volatility with the market rate of return. The interpretation

is that one is compensated for taking the risk and investing in the

market to the extent that he is willing to undertake the market risk.

Sincevolatility of investments does not depend on the information or

on absolutely continuous changes in probability , this gives a
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feedback rule that determines the expected rate of return on each

portfolio in terms of their volatilities and the minimum-risk portfolio.

When one considers utilities for consumption, a more general result

due to Merton [18] is outlined in 5.4. The optimal portfolio now is

a combination of the generalized mean-variance efficient portfolio and

m portfolio that are used to hedge against unfavorable changes in the

future investment opportunities.

The surprising new result is that the m insurance portfolios are

"objective" in the sense that they, again, do not depend on one'sinformation

or probability beliefs. Thus as long as everybody agreeson the

"impossibility" of events they will also agree on the combination of the

m "insurance" portfolios.

The result remains true if one drops the additivity assumption

on the utility functions. Also the optimal portfolio does not change

if one anticipates a random termination of the process X .

It would be interesting to extend the model when the sample-continuity

assumption is dropped. Recent results [48] indicate that one can use

the martingale calculus to generalize the above results to cases where

the rate of return processes may have discontinuities. However, such a

generalization hasnot been attempted here.
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