

Copyright © 1976, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

SUB-OPTIMUM SOLUTION OF THE BACK-BOARD ORDERING

WITH CHANNEL CAPACITY CONSTRAINT

by

S. Goto, I. Cederbaum, and B. S. Ting

Memorandum No. ERL-M598

19 July 1976

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Sub-Optimum Solution of the Back-Board Ordering

with Channel Capacity Constraint

by

S. Goto, I. Cederbaum and B.S. Ting

Research sponsored by the National Science Foundation Grant ENG74-06651-A01,

t
S. Goto is with Electronics Research Laboratories and Electrical Engineer
ing and Computer Sciences, University of California, Berkeley, California
94720, currently on leave from Central Research Laboratories, Nippon
Electric Company, Ltd., Kawasaki, Japan
tt

I. Cederbaum is with Technion - Israel Institute of Technology, Haifa,
Israel.

ttt
B.S. Ting is with Electronics Research Laboratories and Electrical

Engineering and Computer Sciences, University of California, Berkeley,
California 94720.

ABSTRACT

The problem dealt with in this paper is the optimum ordering of

boards on a linear backplane, which minimizes the maximum number of

inter-board connections in a large system. First, an approximation

algorithm is proposed, which produces a feasible solution whose cost

is not more than (1 + e) times the cost of an optimum solution. The

algorithm is essentially a branch-and-bound method based on Dijkstra

algorithm or the uniform cost method, saving computation time and memory

space. Secondly, a quick and straight-forward algorithm is proposed which

finds some locally optimum solution very fast and provides a useful in

formation preceding the approximation algorithm. Several experimental

results are shown to evaluate the efficiency of the algorithms.

1-

I. INTRODUCTION

In the design of a large scale electronic system, there appears, at

one of the design stages, the need for preparing the wiring lists. The

important problem to be solved in connection with this is the proper

placement of all the boards which carry the circuit components such as

semiconductor chips and together form the main part of the entire system.

Some criteria and several algorithms have already been proposed

for solving this placement problem. One of the commonly used criteria is

the minimization of the total length of interconnecting links. Application

of this criterion may lead to minimizing signal propagation delay. Another

important criterion is the minimization of the area of the backplane on

which all the boards are to be located. Suppose that the boards are spaced

along a straight line. The interconnections on the backplane are normally

layed by printing circuit techniques which prescribes some minimum distance

to be maintained between the wires. Since the boards are spaced along a

straight line, total area on the backplane depends on the maximum number

of interconnections in any between-the-boards interval.

The problem dealt with in this paper is the proper ordering of boards

so that the maximum number of interconnecting wires be minimized.

Topics of this kind have been discussed at some extent in the

literature. Unfortunately from the computational complexity point

of view, optimum linear ordering of boards for achieving the minimization

of the maximum density of interconnections appears to be polynomial complete

f91in the sense of Cook and Karp. In this paper we have adopted the recently

developed new strategies dealing with hard computational problem. °J~'- ••

The main results of the paper are two algorithms.

•2-

First, an approximation algorithm is proposed, which produces a

feasible solution whose cost is not more than (1 + e) times the cost of

an optimum solution. The algorithm is essentially a branch-and-bound

method based on Dijkstra algorithm or the uniform cost method.

The price which has to be paid for choosing a smaller e is in increasing

computation time and memory space. The proper choice of e turns out to

be an important tool in the hands of an experienced designer. Some

experimental results are shown to indicate the relation between the value

of £ and the solution or the computation time.

Secondly, a rather quick and straight-forward algorithm is proposed

which finds some locally optimum solution. This constructive algorithm is

quite efficient in the sense that it can compute some locally optimum

solution very fast. Furthermore, it provides a useful information

preceding the approximation algorithm. It might be noted that in applying

this algorithm to over 100 cases, chosen randomly, the difference of the

result obtained and the real optimum was never more than 35% and it was

within 25% in almost all cases.

The paper is organized as follows: in Section II some preliminary

remarks and definitions are given. In Section III, the approximation

algorithm is presented. In Section IV, the constructive algorithm is

proposed and the local optimality of its solution is discussed. In

addition, the complexity of computation is evaluated. In Section V,

several emperical results are described and in Section VI, some concluding

remarks are given.

II. Preliminaries

Let B = {b , b?, •••, b } be the set of all the boards and

-3-

S - {s_, s«, •••, s } be the set of all the signal nets common to at

least two of the boards. Suppose that the boards of B are arranged in some

order, say

0 = (b , b , ..., b) (1)
a a/ a0 a

n1 ~2

or simply

°a = (V V ""' ar? (2)

along a straight line as shown in Fig. 1. Let S(P) C s be the set of

signal nets associated with the set of boards P={b ,b , •••, b }
a .' a„ a
12 p

and let oi(a- , a. , •••, a) denote the number of common signal nets between

the subset P and all the remaining boards B - P. Thus,

u(av a2, .••, ap) = |S(P) nS(B-P)| (3)

Win respect to an order 0 in Eq. (1), u)(a , a«, •••, a) presents

the number of interconnections which have to be wired between the board

b of P and the board b ,, of B-P. In the sequel we shall refer to the
P P+l

number of interconnections in any between-the-boards interval as: density

of connections, or simply: density. For the board ordering 0 in Eq. (1),

the maximum density D(0) is defined as

D(0) = Max a)(a1 , a?, •••, a) (4)
a i=l,2,--.,n-l

and we shall look for such an ordering of boards in which this maximum

density is minimum.

To have better insight into this problem, we may apply an auxiliary

directed, cycle-free graph, called a state-space graph G = (V, A) proposed

-4-

in [4] . The vertices v. £ V of this graph correspond to all the 2 subsets

B;i=0, 1, •••, 2n-l of the set B, including the empty set $ and B

itself. Let v and v e V be the vertices corresponding to (j> and B, and
s t

let them be referred to as the start and the goal vertex, respectively.

Avertex vk representing Bfc with Bk ={ba> b^, •••, b^} properly

included in B, will be joined by an arc a^ to any of the vertices

corresponding to the subsets B£ =Bfc U{b^ with bA eB-Bk being one of

the boards missing in B . Such a vertex v£ is said to be a successor of

v and v a parent of v„. The start vertex v has no parents and the goal
k k •*• & s

n — l

vertex v no successors. The overall number of arcs in G is n*2 . To

each vertex v representing Bfc with Bfc = {ba> b^, ♦••, b^} we assign a

weight C(v.), called the cost of v, , defined as in Eq. (3), by
k k

C(vk) = w(a, 3, •••, X)

= |S(B)n S(B-Bk)| (5)

with

C(v) = 0 (6>
s

C(vt) =0 (7)

It has been shown in [4] that the problem of minimizing the overall

length of interconnections between the boards turns out to be equivalent

to finding the shortest directed path from vg to v on the weighted graph

G, when the sum of the costs of all the vertices along a path is interpretted

as its length.

By using the same cost assignment it may be readily shown that the

problem of minimizing the maximum density of interconnections, reduces to

-5-

finding a directed path from v to v on G, such that the maximum vertex

cost on the path is minimum. Such a directed path will be referred to as

min-max path.

Example 1: Take a system of n=5 boards and m=10 signal nets defined

by the following board-to-signal net incidence matrix A = {a..}:

A =

1 2 3 4 5 6 7 8 9 10"

1 1 1 0 0 1 1 0 0 0 1

2 1 1 1 0 0 0 1 1 1 0

3 1 1 1 1 1 1 0 0 0 0

4 1 1 1 1 0 0 1 1 1 1

5 0 0 1 0 0 0 1 0 1 0

(8)

Here, a.. = 1 if the signal net j is associated with the board i and

a.. = 0 otherwise. For simplicity we refer to a board or a signal net by

their subscripts "i" or "j", respectively. In the corresponding graph

5 4
G (Fig. 2) there are 2 = 32 vertices and 5*2 =80 arcs.

The path P = (v , v., v,, v1£, v0., v.) in G, for instance, represent!
± s l d id zd t

the board-ordering 0. = (1,2,3,4,5) and the maximum density for this

ordering is given by

0(0^ = Max(5,9,8,3)

= 9 (9)

A min-max path PM in this graph is : P-. = (v , v., v_, v.., V2D> vt^'

the corresponding order being 0M = (1,3,4,2,5) and the maximum density

D(0M) = Max(5,5,6,3)

= 6

-6-

(10)

III. An approximation algorithm

Construction of the whole state-space graph G in advance and finding

an optimum path via min-max algorithm calls for computational effort and

memory space bounded by an exponential function of the number of boards.

Normally, we could be satisfied if we get a solution which falls not too

far from the optimum.

Thus, it seems reasonable to look for a procedure which could produce a

satisfactory approximation to the optimum within an acceptable amount of

storage space and computation time.

Our aim shall be in devising such a procedure to achieve an e-optimum

solution - i.e., a feasible solution, whose cost is within a factor of

(1 + e) times from the minimum. By relaxing the requirement of finding the

optimum solution (without, however, giving up the possibility of reaching

this optimum) we expect to be able to reduce the amount of search and to

expand only a portion of the graph G.

The Dijkstra algorithm and the uniform-cost method proposed in

[15] exemplify techniques which might be helpful in reducing the volume of

the required search. "• •" The breadth-first search method characterizing the

Dijkstra algorithm proceeds along contours of equal number of arcs, whereas

the uniform-cost method progresses along contours of equal cost.

The following algorithm presents an application of such an approach

to the problem of board-ordering.

A-algorithm

STEP 1: Put the start vertex v on a list called TEMPORARY. Set g(v) = 0
s s

STEP 2: If TEMPORARY is empty, exit with failure; otherwise continue.

-7-

STEP 3: Find that vertex on TEMPORARY whose g(-) is smallest and call this

vertex u.

STEP 4: Among the vertices in TEMPORARY, find the set Q of all those

vertices v. such that
1

g(u) <_ g(v±) 1 (1 + e)g(u) .

Among the vertices in Q, find a vertex which is closest to the goal

vertex v and if there are more than one such vertices, choose the

one whose g(») is the smallest. Call this vertex v and remove it

from TEMPORARY and put it on a list called PERMANENT.

STEP 5: If v is the goal vertex v , exit with the solution path obtained

by tracing back through pointers; otherwise continue.

STEP 6: Expand vertex v , generating all of its successors.

0 For each successor v. not on PERMANENT, compute C(v) and calculate

a(y±) by

a(v±) = max{g(vQ), C(vi)} .

If the vertex v is on TEMPORARY, compute g(v±) by

g(v±) = min{a(v±), g(v±)};

otherwise set

g(v±) = a(v±)

and put these successors on TEMPORARY. Provide pointers back to

v. from v , if
l o

-8-

g(v±) =-a(v±).

\D For each successor v on PERMANENT, no operation is performed.

STEP 7: Go to STEP 2.

Theorem 1

The cost of solution obtained by A-algorithm does not exceed (1 + z)

times the cost of the optimum solution.

<Proof >

Call g (v.) the cost of the min-max path from v to v, e V.
i si

For the vertex u chosen in STEP 3,

8(u) =g*(u) <_ g*(vt)

holds. Moreover, according to STEP 4,

g(vQ) <_ (1 + e)g(u) .

Thus, in each step of the algorithm, we have

g<v0) 1 (1 +e)g*(vt)

and since this holds for every v , including when v = v , it follows that
o o t

g(vt) <(1 +e)g*(vt) .
Q.E.D.

Note 1

After executing A-algorithm, consider the vertex on TEMPORARY, whose

g(«) is smallest. Call this vertex u? and set C - g(u'). The cost of

the optimum solution cannot be less than C> thus C presents a lower bound

•9-

on the minimum cost of the problem, which normally is larger than the lower
g(vt)

bound given by •=———.

[131A-algorithm is based essentially on branch-and-bound techniques .

Therefore, in the worst case, the whole graph G may have to be constructed.

However, by taking advantage of the e-approximation and uniform-cost

search, we may frequently avoid this situation.

Example 2: Apply A-algorithm with e = 0.2 to the problem defined in

Example 1. The subgraph of the graph G in Fig. 2 searched in this case is

given in Fig. 3. Only 15 arcs and 16 vertices are searched in Fig. 3 as

compared to 80 arcs and 32 vertices in G of Fig. 2.

After the whole sequence of the seven steps has been executed for the

first two times, there are 2 vertices v and v on the list PERMANENT and
s j

8vertices-vx, v2> v3> v^, vg, v^, v^ and v15 on the list TEMPORARY.

When executing once more STEP 3, the vertex v with g(v) = 5 is chosen as

u. This calls, in STEP 4, to consider as candidates for v the vertices
o

{v1,v2,v3,v12>, whose costs are within the close interval [5,6] prescribed

by g(u) = 5 and the value e = 0.2. Now when the tie between those four

vertices has to be resolved, the vertex vn0 will be chosen as v since it
±z o

is closer to v than any of the other candidates. From the vertex v„, the
u 24

path continues to the goal vertex v through v , since between two possible

candidates v2g and v3Q, g(v3Q) is smaller than g(v2g).

The near-optimum ordering is thus (5,2,4,3,1) and the maximum density

is equal to 6 (which in this case is the min-max achievable, though the

lower bound c in this case is g(v) = 5).

As is clear from the above discussions and Example 2, the key factor in

finding an acceptable solution within reasonable memory space M and compu-

-10-

tation time T is the proper choice of e. These three factors are interrelated

to each other. For a smaller value of e, the computation time T and memory

space M will have to be larger than that for a larger e. On the other

hand, in order to get a solution with less computation time and memory

space, we have to accept a larger e. Therefore, a compromise has to be

made between the goodness of a solution and computation time or memory

space.

IV. A constructive algorithm

In this section a rather quick and straight-forward algorithm is

proposed which finds some locally optimum ordering of the boards. An

important feature of the algorithm is that it is able to give an upper

bound n on the relative difference between the solution provided by the

algorithm and the real optimum. With this information in hand, two ways

are open to the designer. He may accept the solution, if n , in his

judgement, is not too big, or alternatively he may use the information

gained in this algorithm for estimating properly the value of the parameter

£ which then may be successfully applied to A-algorithm.

The algorithm presented here is based on depth-first-search techniques.

It expands a small part of the state-space graph G and yields a locally

optimum solution within a limited search.

C-algorithm

STEP 1: Put the start vertex v on a list called CLOSE and set g(v) = 0
s —_——. g

Expand vertex v , generating all of its successors. For each
s

successor v., compute C(v.) and find the vertex whose C(*) is

minimum. Call this vertex v and put it on CLOSE and put the

remaining vertices on a list called OPEN.

-11-

Provide pointer back from v to v .
os

STEP 2: Find the vertex in OPEN whose C(«) is minimum and call this

vertex z. Let y = C(z) and clear the list OPEN.

STEP 3: Expand vertex v , generating all of its successors. For

each successor v., compute C(v.) and calculate

g(v±) = max{g(vQ), C(v±)} .

Put these successors on OPEN.

STEP 4: Find a vertex among the vertices on OPEN whose g(') is minimum.

Call this vertex u, remove it from OPEN and put it on CLOSE.

Provide pointer back from u to v .
o

STEP 5: If u is the goal vertex v , exit with the solution path obtained

by tracing back through pointers; otherwise clear the list OPEN,

set vq = u and go to STEP 3.

Notice that in STEP 2, the vertex z is found for which the cost

function C(z) = co(z) is the second minimum among the set (C(v.)} =

{w(v)}; i = 1, 2, ..., n of cost functions related to successors of v .
1 s

In STEP 3, for each successor v. of v representing B, with B, =
i o r & k k

{b >b , •••, b }, the cost of v is u>(a-, ct0, ••♦, a. , i) where i

is one of the n-k boards missing in B . The operation g(v.) =
k i

max{g(vo), C(v±)} provides then the cost of the board-ordering (a ,a ,

•••, a, , i) for each of the n-k successors of v .
k. o

In STEP 4, the board corresponding to the minimum cost is chosen.

STEP 3 and STEP 4 are iterated (n-2) times.

The main difference between C-algorithm and A-algorithm lies in the

-12-

fact that the list OPEN in C-algorithm contains, at the step k of computation,

just n-k successors of the vertex v chosen at the (k-l)st step. The list

TEMPORARY in A-algorithm contains in addition to the successors of v as

well all those vertices which have been searched in the previous steps,

but not yet on the list PERMANENT.

The solution path obtained by tracing back through pointers is repre

sented by a sequence of vertices in G which corresponds to some board-

ordering 0 = (a., a0, ••*, a -, a).
"a 12 n-1* n

We intend to show that the solution corresponding to an ordering given

by C-algorithm is locally optimum in the sense that it cannot be improved

by some minor changes in the ordering 0 .

In order to define these changes let us consider a board b , occupy-
ak

ing position k, 1 £ k <_ n in 0 . Move all the boards between I and k-1

to the right by one place and put the board b in position I (1 <_ £ < k).
ak

Such a reordering may be visualized if we partition the sequence 0 into

four (or three if k=n or &=1) parts.

°a =(V V ""' VljV °W '•'• ak-l|otkl°W ••"• V
(ID

by means of the indicated vertical lines and transpose the second and

third part without changing the mutual ordering of the elements within

any parts. The result will be

0a = (V a2, ..-, VlKK' °£+l' •"> "k-lK-fl "•• °n}
(12)

This operation may be written down in a symbolic form:

0 = T(k,£)0 , 1 < £ < k < n (13)
a a — —

•13-

The relation Eq. (11), (12) and (13) provide a formal definition of the

operation T(k,£) performed on the ordering 0 . We have the following

theorem.

Theorem 2

The solution corresponding to an ordering 0 obtained by performing

C-algorithm cannot be improved by applying any operation of the type

T(k,£) for 1 <_)l < k < n.

(Proof >

The maximum density for the ordering 0 is given by Eq. (3) ,

D(0) = Max Ma,, o9> •••, a.)} . (14)
1=1,2,...,n-l

Consider an interchange operation T(k,£) of the type above with 1 <_ £ < k < n

and let the new ordering be called 0 = T(k,£) 0 . It is evident that the
a a

members of the set {10(0^, a2, •••, a)} for i = 1, 2, ••♦, £-1 and

i = k+1, k+2, •••, n remain unchanged.

For £ <_ i < k, the density in the interval between the ith board and

(i+l)st board in the new ordering will be

= uKo^, a2, •••, a^v ct£, •••, a±_v ak) . (15)

However in C-algorithm at iteration i when v representing (a-, a9, •••,

a ., a.) has been put on CLOSE in STEP 4. This implies that

w(ax, a2, •••, a±-;L, a±) 1 wCc^, a^ ••-, a ,afc) . (16)

This shows that for £ <_ i < k and indeed for any i; 1 < i < n, the density

-14-

for the new ordering 0 cannot be less than for 0 and thus
a a

D(0) < D(0). (17)
a — a

Q.E.D,

An interesting property of C-algorithm is that the number u as

defined in STEP 2 of the algorithm provides a lower bound on the optimum

solution. This remark can be formulated in the following theorem.

Theorem 3

Let the ordering corresponding to the real optimum solution be 0 =

(a, 3, Y» *••> ^» v). Then, we have

y 1 D(oM) . (18)

(Proof >

0(0^) = Max{o)(a,e,-.X) >
Xe{a,B,« •,v}

so we have

0(0^) >. u)(a)

D^j) ^ai(a,3, •••,<!>)

= oj(v) .

However, y is the second minimum in {u)(a) ,u)($), •••, oj(v)}. So for any

choice of one vertex out of {v , v0, **•, v } in C-algorithm, we have
CL p V

p <_ Max{o)(v), co(v)}

Hence, we have

y < D(0) .
- M

-15-

Q.E.D,

Of course D(0) cannot be less than the cost of the optimum solution,

thus:

^ iD(V -D(V • (19)

This shows that C-algorithm provides an estimation on the accuracy of the

solution and e defined by

D(0) - y

£ — (20)

presents an upper bound on the relative difference between the solution

D(0) and the optimum solution of the problem.

It should be noted that a solution given by A-algorithm cannot be

improved by specifying any e >_ e'. Thus, the knowledge of e', as given

by Eq. (20) provides a useful information for designers. If, according

to his judgement, e exceeds the tolerance in which he is willing to accept,

he can have the option of applying A-algorithm with sharper tolerance

based on the e value given in C-algorithm.

Note 2

C-algorithm is equivalent to A-algorithm in the case where e = «.

Note 3

The total length of between-the-board connections for a given ordering

0 is defined as
a

n-1

L(°a) S2^U(V V ""' "i* ' <21>
i=l

The arguments used in the proof of Theorem 2 shows that

-16-

L(0) <L(0) (22)
a — a

for 0 = T(k,£)0 (1 < £ < k < n) .
a a — —

Thus, C-algorithm provides a locally optimum solution not only in solving

the problem of min-max density, but also in minimization of the total

length of interconnections.

Now, let us consider the complexity of computation. In performing

C-algorithm for the case corresponding to n boards and m signal nets,

we may assume that the data structure is such that for each board the signal

nets connected to it are directly retrievable and for each signal net

the boards carrying it may also be directly retrieved. Let 6 and a be

the maximum number of signal nets per board and the maximum number of

boards per signal net, respectively.

The computation proceeds sequencially. When STEP 3 is performed

during the k-th iteration, we have to find the (n-k) numbers, namely

o)(a1, a2, •••, ak, i), i e{{1,2,"".n} - {o^, a2» *•*, a }}

and it can be decomposed into the form:

o)(a1, «2, •••, ak, i) = a)(a1} a2> •••, afc) + w(i)
(23)

+ (DjU) - 2w2(i)

where w1 (i) presents the number of signal nets common to the board b^

to the set of boards {b , b , •••, b } and also to some of the re-
12 k

maining boards forming the set B - {b , b , •••, b } - {b }. w7(i)
1 2 \

is equal to the number of signal nets common to the board b and only to

the set of boards {b , b , ••*, b }.
al a2 ak

-17-

Therefore, the calculation in Eq. (23) can take advantage of the

knowledge of u)(a.., a_, •••, a,) and u)(i) from the previous iterations.

It requires 06 comparisons and (6 + 3) additions and 1 multiplication.

There are (n-k) successors of vertex v representing {cc., a9, •••, a, }
O 1 d. K.

and STEP 3 is iterated (n-2) times, thus for n, a, 6 >> 1, we need approx-

12 12imately —06 n comparisons and y 6 n additions in total.

To execute STEP 4, we compare (n-k) numbers related to (n-k) successors

of vertex v representing {a-, a9, •••, a, }. This step is iterated (n-2)

1 2
times, thus we need approximately — n comparisons for n >> 1.

It follows from the above discussion that the complexity of computation

2
for C-algorithm applied to a system of n boards is in the order of 0(n).

V. Experimental results

In order to check and compare the results of both algorithms in real

problems and to learn the influence of different parameters on the be

havior of the algorithms or to get some interrelation between the accuracy

and the computation time, a series of experiments has been designed. The

program was written in FORTRAN and run on CDC 6400.

The experiments have been divided in three parts. Referring to n

and m as to the number of boards and signal nets respectively, the boards to

signal nets incidence matrix A = (n*m) has been produced by generating a random

(0,1) sequence of m*n elements with occurrence of ones and zeros being

3:7. This sequence has been then partitioned in n rows of m elements

each in the A matrix.

(i) In the experiments of the first part, n and m have been set equal to

13 and 52. Ten different incidence matrices A.; i=l, 2, •••, 10 have

been produced and to each of them C-algorithm and A-algorithm

•18-

with e = 2, 1, 0.7, 0.5, 0.3, 0.2, 0.7, 0) have been applied. For each

A. we then have:

C
1) the cost of the solution by C-algorithm D (0) and by A-algorithm

A
as a function of e: D (0 , e)

C A2) the computation times for each algorithm, T and Ti (0^, e)

3) the lower boundsy. and C.(e) on the optimum solution resulting from

C-algorithm and A-algorithm respectively.

The values DA(0 ,0) obtained for e = 0 present the real optimum values,
i a

Comparing D? (0)with D^ (0 ,0), we obtain the relative difference tt ±of

DC (0) from the real optimum. When applying these algorithms, the results
i a

of this group of experience have been summarized by taking the mean for

each of the parameters D^ (0 ,e), T^(e), C±, D±, T± and u± over the ten

cases i = 1, 2, ••.,10.

For C-algorithm the mean values are

D^O) = 38
a

f0 =0.3 sec

"y" = 11.5

and the upper bound on the relative difference e* in Eq. 20 is given by

e = 2.3 .

For A-algorithm the values of the mean-parameters as functions of e

have been plotted in Fig. 4.

From the graph in Fig. 4 we can see that the mean cost of the solution

D(0 , e) increases almost linearly with respect to e. The computation

time T(£) increases sharply when e- is approaching 0 and appears to be

proportional to —. The ratio of the computation times for e = 0.3 and e = 0
c-£

-19-

^ is 1 : 11 and of the times used by C-algorithm and A-algorithm with e = 0

is 1 : 23. It might be noted that if the solution within e = 0.3 would

be acceptable, the computation time would be about half of that for the

optimum solution. Actually, the solution is obtained with a cost differing

only by 3% from the optimum solution.

(ii) The aim of the second group of experiments was to investigate the

statistical distribution of the relative difference of the solution

obtained by C-algorithm. To this end a large number of experiments have

been performed during which n and m have been held at the same values

n = 13 and m = 52. One hundred cases of the incidence matrix A have been

produced. For each of these cases C-algorithm and A-algorithm with e = 0

have been applied and relative difference ir of the solution received by

C-algorithm from the real optimum has been calculated. In Fig. 5 the

percentile curve with percentage difference (it x 100%) not exceeding y is

plotted against the percentage y.

The interesting feature is that the solution by C-algorithm has been

in all the experiments within 35% from the optimum solution. The worst

solution was 35% from the optimum and occurred only once out of 100

trials whereas the optimum solution was obtained 5 times. We have obtained

the solution within 20% from the optimum 70 times out of 100 trials and

within 25% in almost all cases. Therefore, C-algorithm could be considered

to be quite efficient in obtaining a solution which is not too far from the

optimum.

(iii) The third group of experiments was arranged in order to explore the

influence of the number of boards on the process of computation. To this

end C-algorithm and A-algorithm have been performed with e = 2, 1 and 0.

-20-

The number of boards have been changed through the values: n = 5, 8, 10,

12, 13, 15 and the computation time T was obtained. For each pair of the

parameters n and e, five incident matrices A have been generated. The

mean value of those Tfs have been computed for each set of such five

experiments corresponding to a constant pair of n and e.

The graph in Fig. 6 shows the mean computation time against the number

2
of boards. The computation time appears nearly to be proportional to n

2 2 8 12in C-algorithm and ton ' , n and n in A-algorithm corresponding to

£ = 2, 1 and 0, respectively. From the practical point of view, it seems

quite infeasible to apply A-algorithm to large scale problems with e <_ 1.

On the other hand the results obtained by C-algorithm look quite promising

when applied to large scale problems.

VI Concluding remarks

In the paper an attempt has been made to provide a quick and non-

expensive solution to a problem which has a great importance with the growing

application of modern printing circuit board layout techniques and LSI

problems. The problem is the optimum linear ordering of boards, which

minimizes the maximum number of inter-the-board connections in a large

system, containing a large number of boards.

Two algorithms proposed may be actually looked upon as forming an

integrated master design approach.

The design procedure may be envisaged to start with the simple

C-algorithm, requiring just 0(n) computational effort and being able to

define its own performance with respect to the optimum achievable.

If this performance falls short of the design requirements, the more heavy

A-algorithm with a limited a-priori cost increase can then be applied.

•21-

The heuristic method based on a constructive algorithm and an

approximation algorithm proposed here may provide a promising feature in

attacking hard NP-complete problems.

A number of problems remain open for further investigation.

First, the computational complexity of A-algorithm as function of

the cost increase e is to be defined. With respect to C-algorithm the

important question remains open, whether the cost increase incurred in

applying this simple procedure can be proved not to exceed some well

defined limit.

The problem of memory space can be combined with computational com

plexity by observing that both these: space and time requirements of the

algorithm are proportional to the number of vertices of the graph searched

in the algorithm. This shows that an algoritlim which would incorporate

a limit on the number of searched vertices, would, by the same token,

require less time for its execution.

-22-

Acknowledgements

The authors are greatly indebted to E. S. Kuh for his helpful

discussions and encouragement.

-23-

References

[1] L. Steinberg: The back board wiring problem: a placement algorithm.

SIAM Rev., vol. 3, pp. 37-50, (1961-1).

[2] R.A. Rutman: An algorithm for placement of interconnected elements

based on minimum wire length, Proc. SJCC. pp. 477-491, 1964.

[3] M. Hanan and J.M. Kurtzberg: A review of the placement and quadratic

assignment problems, Design Automation of Digital Systems: Theory and

Techniques, edited by M. Breuer, Prentice-Hall (1971).

[4] I. Cederbaum: Optimal backboard ordering through the shortest path

algorithm. IEEE Trans, on Circuits and Systems, vol. CAS-27, pp. 626-

632, (1974-9).

[5] A. Sangiovanni-Vincentelli and M. Santomauro: A heuristic guided

algorithm for optimal backboard ordering, 13th Annual Allerton

Conference on Circuit and System Theory (1975-10)

[6] H.C. So: Some theoretical results on the routing of multilayer

printed wiring boards, Proc. IEEE International Symp. on Circuits and

Systems, pp. 296-303 (1974).

[7] E.S. Kuh and E,S. Ting: The backboard wiring problem: some results

on single-row routing, Proc. IEEE International Symp. on Circuits

and Systems (1975).

[8] H. Kawanishi, S. Goto, T. Oyamada, H. Kato and K. Kani: A Routing

method of building block LSI, 7th Asilomar Conference on Circuits.

Systems and Computers (1973-11).

[9] R.M. Karp; Reducibility among combinatorial problems, in Complexity

of Computer Computations. (R.E. Miller and J.W. Thatcher, Eds.),

Plenum Press, New York (1972).

•24-

[10] D.S. Johnson: Approximation algorithms for combinatorial problems,

Symposium on new directions and recent results in algorithms and

complexity. (1976-4).

[11] R.M. Karp: Probabilistic analysis of heuristic search method, ibid

[12] 0. Ohtsuki: Heuristic algorithms for large-scale combinatorial

problems, Journal of the Institute of Electronics and Communication

Engineerings of Japan, Vol. 58, No. 4 (1975-4) (in Japanese)

[13] E.L. Lawler and D.E. Wood: Branch and bound methods, A survey,

Operations Research, vol. 14, Number 4, pp. 699-719 (1966-7).

[14] E.W. Dijkstra: A note on two problems in connection with graphs,

Numerishe Mathematik. 1, p. 269 (1959).

[15] N. Nilsson: Problem solving methods in artificial intelligence,

McGraw Hill Co., (1971).

-25-

CAPTIONS

Fig. 1 Ordering of n boards along a line.

Fig. 2 State-space graph G.

The numbers inside the circles show the costs assigned to the

vertices.

Fig. 3 The subgraph searched for e = 0.2

The numbers with double lines show the maximum values along the

paths from the starting vertex v to the corresponding vertices.

Fig. 4 Computation time and cost of solution by A-algorithm

Fig. 5 Percentile curve for the percentage difference of solution by

C-algorithm.

Fig. 6 Computation time with respect to the number of boards.

Table 1. List of vertices for state-space graph G of Figure 2.

-26-

TABLE 1

v - {*} .
s

Vl " {1}' V2 = {2>' v3= {3}' v4 = {4}> v5 = {5} •'

v6 = {1,2}, v? = {1,3}, vg = {1,4}, v9 = {1,5}, v1Q = {2,3},

vu = {2,4}, v12 = {2,5}, v13 = {3,4}, vu = {3,5}, .v15 = {4,5}

v16 = {1'2'3}' vi7 = ^1>2,4}, vlg = {1,2,5}, v19 = {1,3,4},

v2Q = {1,3,5}, v21 = {1,4,5}, v22 = {2,3,4}, v23 = {2,3,5},

v24 = {2,4,5}, v25 = {3,4,5} .

v26 = tl,2,-3,4}, v27 = {1,2,3,5}, v28 = {1,2,4,5},

v29 = {1,3,4,5}, v3Q = {2,3,4,5} .

vfc = {1,2,3,4,5} .

b

O—

Uq2 Ufl3

Fig. 1

an-l
O—

Fig. 2

Fig. 3

6.0-

0.0
0.0

computation time
solution

ower bound

0 2.0

Fig. 4

-40

30

-20

3.0

O

o
IT)

O

o

»

c

o
u

0_

0 0 20 30 40

Percentage difference of the solution (%) "•

Fig. 5

lO.O-i

S 5.0
o

o>

to

E

a.

E
o
o

1.0-

0. T—I—I—r

0

€ = 0)

€ = I

€ = 2

C - algorithm

f A - algorithm
—X—

t r t—i—r

50

number of boards

Fig. 6

00

	Copyright notice 1976
	ERL-598

