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FUZZY SETS AND THEIR APPLICATION

TO PATTERN CLASSIFICATION AND CLUSTER ANALYSIS

L.A. Zadeh*

Abstract

Most of the realistic problems in pattern classification and cluster

analysis do not lend themselves to a precise mathematical formulation. For

this reason, the theory of fuzzy sets and, in particular, the linguistic

approach may provide a more natural setting for the formulation and solution

of problems in pattern recognition than the conventional approaches based on

classical set theory, probability theory and two-valued logic.

In the present paper, the problem of pattern classification is formu

lated as that of converting an opaque fuzzy recognition algorithm acting on

a collection of objects into a transparent fuzzy recognition algorithm

defined on an associated space of mathematical objects. A fuzzy subset of

the space of objects (or mathematical objects) is assumed to be characterized

by a relational tableau in which the entries are, in general, linguistic

rather than numerical. A translation rule for relational tableaus is

described and an approach to the interpolation of such tableaus is outlined.

The problem of cluster analysis is formulated as a conjunction of two

subproblems. Problem a is that of converting an opaque recognition algorithm

which defines a fuzzy similarity relation on a collection of pairs of objects

into a transparent recognition algorithm defined on an associated space of

pairs of mathematical objects; and Problem b is that of deducing from the

fuzzy similarity relation a collection of fuzzy subsets (clusters) of
*
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mathematical objects which possess what is termed the property of fuzzy

affinity. Such clusters may be obtained by applying a Dunn-Bezdek type of

clustering algorithm to a fuzzy level-set of the fuzzy similarity relation.
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*
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1. Introduction

The development of the theory of fuzzy sets in the early sixties drew

much of its initial inspiration from problems relating to pattern classifi

cation — especially the analysis of proximity relations and the separation

of subsets of R by hyperplanes. In a more fundamental way, however, the

intimate connection between the theory of fuzzy sets and pattern classifi

cation rests on the fact that most real-world classes are fuzzy in nature --

in the sense that the transition from membership to nonmembership in such

classes is gradual rather than abrupt. Thus, given an object x and a

class F, the real question in most cases is not whether x is or is not

a member of F, but the degree to which x belongs to F or, equivalently,

the grade of membership of x in F.

There is, however, still another and as yet little explored connection

between the theory of fuzzy sets and pattern classification. What we have

in mind is the possibility of applying fuzzy logic and the so-called linguis

tic approach [l]-[4] to the definition of the basic concepts in pattern

analysis as well as to the formulation of fuzzy algorithms for pattern

recognition. The principal motivation for this approach is that most of

the practical problems in pattern classification do not lend themselves to

a precise mathematical formulation, with the consequence that the less

precise methods based on the linguistic approach may well prove to be better

matched to the imprecision which is intrinsic in such problems.
* —— — ——
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Although the literature of the theory of fuzzy sets contains a substan

tial number of papers dealing with various aspects of pattern classification,

we do not, as yet, have a unified theory of pattern classification based on

the theory of fuzzy sets. It is reasonable to assume that such a theory

will eventually be developed, but its construction is likely to be a long-

drawn task because it will require a complete reworking of the conceptual

structure of the theory of pattern classification and radical changes in

our formulation and implementation of pattern recognition algorithms.

In this perspective, the limited objective of the present paper is to

outline a conceptual framework for pattern classification and cluster analysis

based on the theory of fuzzy sets, and draw attention to some of the signi

ficant contributions by other investigators in which concrete pattern reco-

nition and cluster analysis algorithms are described. For convenience of

the reader, a brief exposition of the relevant aspects of the theory of

fuzzy sets is presented in the Appendix.

2. Pattern Classification in a Fuzzy-Set-Theoretic Framework

To place the application of the theory of fuzzy sets to pattern classi

fication in a proper perspective, we shall begin with informal definitions

of some of the basic terms which we shall employ in later analysis.

To begin with, it will be necessary for our purposes to differentiate

between an object which is pointed to (or labeled) by a pointer (identifier)

p> and a mathematical object, x, which may be characterized precisely by

specifying the values of a finite (or, more generally, a countable) set of

parameters. For example, in the proposition "Susan is \/ery intelligent,"

Susan is a pointer to a person named Susan. The person in question, however,

Some of the representative papers bearing on the application of fuzzy sets
to pattern classification and cluster analysis are listed in the bibliography,
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is not a mathematical object until a set of measurement procedures {M,,...,M }

is defined such that the application of {M,,...,M } -to the object p (or,

more precisely, the object pointed to by p) yields an n-tuple of constants

(x,,...,x ) which represent the attribute-values (or feature-values) of

the object in question. The n-tuple x ^ (x,,...,x ), then, characterizes

2
a mathematical object associated with p, expressed symbolically as

x 4 M(p) (2.1)

where M=(M1,...,Mn). For example, M,, NL, M3, M. could be, respectively,

the procedures for measuring the height, weight and temperature, and deter

mining the sex of the object in question. In this case, a 4-tuple of the

form (5'7", 125, 98.6, F) would be a mathematical object associated with

the person named Susan.

An important point that needs to be noted is that there are many —

indeed an infinity — of mathematical objects that may be associated with p.

In the first place, different combinations of attributes may be measured.

And second, different mathematical objects result when the precision of

measurement — or, equivalently, the resolution level — of an attribute

is varied. Thus, to associate a mathematical object x with an object p

it is necessary to specify, explicitly or implicitly, the resolution levels

of the attributes of p. Usually this is done implicitly rather than

explicitly, which is the reason why the concept of a resolution level --

although important in principle — does not play an overt role in pattern

recognition.

Let U be a universe of objects, let U be the universe of asso

ciated mathematical objects, and let F be a fuzzy subset of U° (or U).
p _———__________________________________

The symbol _> stands for "denotes" or "is equal to by definition."
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There are three distinct ways in which F may be characterized:

(a) Listing. If the support3 of F is afinite set, then F may be

defined by a listing of its elements together with their respective grades

of membership in F. For example, if U° is the set of persons pointed to

by the labels John, Luise, Sarah and David, and F is the fuzzy subset

labeled tall, then F may be characterized as the collection of ordered

pairs {(John, 0.9), (Luise, 0.8), (David, 0.7) and (Sarah, 0.8)}, which

may be expressed more conveniently as the linear form (see A2)

tall = 0.9 John + 0.8 Luise +0.7 David + 0.8 Sarah (2.2)

where + denotes the union rather than the arithmetic sum.

(b) Recognition algorithm. Such an algorithm, when applied to an

object p, yields the grade of membership of p in F. For example, if

someone were to point to Luise and ask "What is the degree to which Luise

is tall?" then a recognition algorithm applied to the object Luise would

yield the answer 0.8.

(c) Generation algorithm. In this case, an algorithm generates those

elements of U° which belong to the support of F and associates with

each such element its grade of membership in F. As a simple illustration,

the recurrence relation

n n-l n-d

with xQ = 0, x, = 1 may be viewed as a nonfuzzy generation algorithm which
A

defines the set of Fibonacci numbers {1,2,3,5,8,13,...}. As an example

of a generation algorithm which defines a fuzzy set, let U be the set of

The support of a fuzzy set F is the set of elements of the universe of
discourse whose grades of membership in F are positive.

Many examples of nonfuzzy pattern generation algorithms may be found in
the books by U. Grenander [5] and K.S. Fu [6].
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strings over a finite alphabet, say {a,b}, and let G be a fuzzy context-

free grammar whose production system is given by

s__!, bA B_0d. b

S__!> aB A_M+ bsA (2.4)

A_o^a B_o^aSB

in which S, A, B are nonterminals and the number above a production indi

cates its "strength." The fuzzy language, L(G), generated by this grammar

may be defined as follows. Let x be a terminal string derived from S

by a sequence of substitutions in which the left-hand side of a production

in G is replaced by its right-hand side member, e.g.,

sJL_U bA -^ bbSA ---^ bbSa --^ bbaBa --^ bbaba (2.5)

The strength of the derivation chain from S to x is defined to be the

minimum of the strengths of constitutent productions in the chain, e.g.,

in the case of (2.5), the strength of the chain is 0.8-0.3-0.2-0.6-0.4

.= 0.2 (where - is the infix symbol for min). The grade of membership

of x in L(G) is then defined as the strength of the strongest leftmost

derivation chain from S to x [7]. In the case of x = bbaba, there

is just one leftmost derivation, namely,

s____> bA JL1+ bbsA ____§+ bbaBA ____L bbabA JL_+ bbaba (2.6)

whose strength is 0.2. Consequently, the grade of membership of the string

x _> bbaba in the fuzzy set L(G) is 0.2. In this way, one can associate

a grade of membership in L(G) with every string that may be generated by

G, and thus the production system (2.4) together with the rule for computing

In leftmost derivation, the leftmost nonterminal is replaced by the right-
hand member of the corresponding production.
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the grade of membership of any string in U in L(G), constitutes a

generation algorithm which characterizes the fuzzy subset, L(G), of U.

Opaque vs. Transparent Algorithms

For the purposes of our analysis, it is necessary to differentiate

between recognition algorithms which are opaque and those which are trans

parent. Informally, by an opaque recognition algorithm we mean an algorithm

whose description is not known. For example, the user of a hand calculator

may not know the algorithm which is employed in the calculator to perform

exponentiation. Or, a person may not be able to articulate the algorithm

which he/she uses to assign a grade of membership to a painting in the

fuzzy set of beautiful paintings.

As its designation implies, a recognition algorithm is transparent if

its description is known. For example, a parsing algorithm which parses

a string generated by a context-free grammar and thereby yields the grade

of membership of the string in the fuzzy language generated by the grammar

would be classified as a transparent algorithm.

Pattern Classification

Within the framework of the theory of fuzzy sets, the problem of

pattern classification may be viewed — in its essential form -- as that

of conversion of an opaque recognition algorithm into a transparent recogni

tion algorithm. More specifically, let U° be a universe of objects and

let R be an opaque recognition algorithm which defines a fuzzy subset

F of U°. Then, pattern classification — or, equivalently, pattern

recognition -- may be defined as the process of converting an opaque recog

nition algorithm R into a transparent recognition algorithm R. .

We assume for simplicity that only one fuzzy subset of U is defined by
Rpn. More generally, there may be a number of such subsets, say F-j,...,F..,
with R yielding the grade of membership of p in each of these subsets.
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As an illustration of this formulation, consider the following typical

problem. Suppose that U° is the universe of handwritten letters and that

when a letter, p, is presented to a person, P, that person --by employ

ing an opaque recognition algorithm R — can specify the grade of

membership, y-(p), of p in, say, the fuzzy set, F, of handwritten A's.

Thus, in symbols,

yF(p) =Rop(p) , for p in U° . (2.7)

Usually, P is presented with a finite set of sample letters

p,,...,p , so that the result of application of R to p, ,...,p is a
i m rr op 1 rm

set of ordered pairs {(p1 ,y-(p.|)),... ,(p ,y-(p ))} which in the notation

of fuzzy sets may be expressed as the linear form

SF = ypCp^P-, + ••• +Vpm)pm (2*8)

where S- stands for a fuzzy set of samples from F, and a term of the

form y_.(p..)p.., i= l,...,m, signifies that yF(p.) is the grade of

membership of p. in F.

If, based on the knowledge of S-, we could convert the opaque recog

nition algorithm R into a transparent recognition algorithm R. , then

given any p we could deduce yF(p) by applying R. to p. Equivalently,

we may view this as the process of interpolation of the membership function

of F from the knowledge of the values which it takes at the points

p.|,...,p . It should be remarked that this is the way in which the problem

of pattern classification was defined in [8], but the present formulation

based on the conversion of R to R. appears to be more natural.

An important implicit assumption in pattern classification is that

the recognition process must be automatic, in the sense that it must be

performed by a machine rather than a human. This requires that the
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transparent recognition algorithm R. act on a mathematical object, M(p),

rather than on p itself, since an object must be well-defined in order

to be capable of manipulation by a machine.

In more concrete terms, let U° be a universe of objects and let M

be a measurement procedure which associates with each object p in U° a

mathematical object M(p) in U. Let F be a fuzzy subset of U° which

is defined by an opaque recognition algorithm R in the sense that

PF(P) =R (P) , pell0.
op

Denote by R. a transparent recognition algorithm which acting on the

mathematical object M(p) yields y-(p). Then, the problem of automatic

(or machine) pattern recognition may be expressed in symbols as that of

determining M and R, such that

PF(P) =Rop(P) (2.9)

Rtr(M(p)) =RQp(p) , peU° . (2.10)

Thus, the problem of automatic pattern recognition involves two distinct

subproblems: (a) conversion of the object p into a mathematical object

M(<p); and (b) conversion of the opaque recognition algorithm R which

acts on p's into a transparent recognition algorithm which acts on M(p)'s.

Of these, problem (a) is by far the more difficult. In the conventional

nonfuzzy approach to pattern classification, it is closely related to the

problem of feature analysis — a problem which falls into the least well-

defined and least well-developed area in pattern recognition [35]-[46].

It is important to observe that, from a practical point of view, it is

desirable that (i) M(p) be defined by a small number of attributes, and

(ii) that the measurement of these attributes be relatively simple. With
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these added considerations, then, the problem of pattern classification may

be reformulated in the following terms.

Given an opaque recognition algorithm R which defines a fuzzy subset

of objects p in U°.

Problem I. Specify a preferably small set of preferably simple

measurement procedures which convert an object p in U°

into a mathematical object M(p) = {M.(p),...,M (p)} in u

Problem II. Convert R into a transparent recognition algorithm

Rtr which acts on M(p) and yields the grade of member

ship of p in F as defined by R .
•'op

In the above formulation, the problem of pattern classification is not

mathematically well-defined. In part, this is due to the fact that, as

pointed out earlier, the notion of an object does not admit of precise

definition and hence the functions M,,...,M cannot be regarded as func

tions in the accepted mathematical sense. In addition, since the desired

equality

Rtr(M(p)) =RQp(p) , peU° (2.11)

cannot be realized precisely, the problem of pattern classification does

not admit of exact solution. Furthermore, an added source of imprecision

in pattern classification problems relates to the difficulty of assessing

the goodness of a transparent recognition algorithm which may be offered as

a solution to a given problem.

The main thrust of the above comments is that the problem of pattern

classification is intrinsically incapable of precise mathematical formula

tion. For this reason, the conceptual structure of the theory of fuzzy sets

may well provide a more natural setting for the formulation and approximate

solution of problems in pattern classification than the more traditional
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approaches based on classical set theory, probability theory and two-valued

logic [35]-[46].

3. The Linguistic Approach to Pattern Classification

Most of the conventional approaches to pattern recognition are based

on the tacit assumption that the mapping from the object space U° to the

feature space U has the property that if two mathematical objects M(p) are

"close" to one another in terms of some metric defined on U, then p and q

are likely to be in the same class in U°. When F is a fuzzy set, this

assumption may be expressed more concretely but not very precisely as the

property of y-continuity of M, namely: If p and q are objects in U°

and for almost all p and q M(p) is close to M(q) in terms of a metric

defined on U, then the grade of membership of p in F, yF(p), is close

to that of q, yF(q).

The importance of y-continuity derives from the fact that it provides

a basis for reducing Problem II to the interpolation of a "well-behaved" (i.e.,

smooth, slowly-varying) membership function. More significantly for our

purposes, it makes it possible to employ the linguistic approach for describ

ing the dependence of yF on the linguistic values of the attributes of an

object.
«

More specifically, suppose that M(p) has n components

x-j 4Mj(p),...,x &M (p), with x.., i= l,...,n, taking values in U..

Let yF(p) denote the grade of membership of p in F. We assume that

the dependence of y-.(p) on x, ,...,x is expressible as an (n+l)-ary

fuzzy relation R in U^-'-xU^v, where V _> [0,1]. In what follows,

R will be referred to as the relational tableau defining y-(p).
7 — •
This assumption is implicit in perceptron-type approaches and is related to
the notion of compactness in the potential function method of Aizerman,
Braverman and Rozonoer [9]-[12].
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An essential assumption which motivates the linguistic approach is that

our perception of the dependence of y_(p) on x.j,...,x is generally not

sufficiently precise or well-defined to enable us to tabulate y-(p) as a

function of the numerical values of x,,...,x . As a coarser and hence

less precise characterization of this dependence, we allow the tabulated

values of x-,..,,xn 'and y-(p) to be linguistic rather than numerical,

employing the techniques of the linguistic approach to enable us to inter

polate R for the untabulated values of x,,...,x .
1 n

To be more specific, it is helpful to assume, as in [86], that a lin

guistic value of x.., i = l,...,n, is an answer to the question Q.:

"What is the value of x..?" and that the corresponding linguistic value

of yp(p) is the answer to the question Q: "If the answers to Q',...,Q

are r-j,...,^, respectively, then what is the value of y-(p)?" A purpose

of this interpretation of the values of x1s...,x ,y-(p) is to express the

recognition algorithm Rtr as a branching questionnaire, that is, a ques

tionnaire in which the questions are asked sequentially, with the question

asked at stage j depending on the answers to the previous questions. The

conversion of a relational tableau to a branching questionnaire is discussed

in greater detail in [86].

Typically, the entries in a relational tableau are of the form shown

in Table 1, in which the rows correspond to different objects, with the

entry under Q.. representing a linguistic value of x. for a particular

object. (For simplicity, we shall speak interchangeably of the values of

xi and 0^..) The questions Q19...,Qn will be referred to as the consti

tuent questions of R (or Q).
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true

very true

not very true

borderline

not true

true or not very true

- 12 -

"2 % Q

small wide high

very small not wide very high

medium NA not very high

very large not wide low

not very small not very wide more or less low

small not very wide very low

Table 1. A relational tableau defining the dependence
of Q on Q-, Q2, Q_.

In this table, the entries in the column labeled Q. constitute a

subset of the term-set of Qi (see A66), that is, the possible linguistic

values that may be assigned to Qr For example, the term-set of Q, might

be: {true, very true, not very true, borderline, very (not true), not true,

not borderline, very very true, ...}. The elements of the term-set of Q.
xi

are assumed to be generated by a context-free grammar. For instance, the

elements of the term-set of Q1 can be generated by the grammar

S + A

S + S or A

A - B

A + A and B

B -v C

B ->- not C

C -»• D

C -> E

D -• very D

E -> very E

D -*• true

E •*• borderline

(3.1)

in which S, A, B, C, D, E are nonterminals and "or," "and," "not," "very,"

"true" and "borderline" are terminals. Using the production system of this

grammar, the linguistic value "true or not very true" may be derived from

S by the chain of substitutions

S + S or A -> A or A -> B or A -*» C or A •* D or A - true or A -• (3.2)

true or B -• true or not C •* true or not D -• true or not very D -*»

true or not very true
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The linguistic values of Q. play the role of labels of fuzzy subsets

of a universe of discourse which is associated with Q.. For example, in

the case of Q1 the universe U-j is the unit interval [0,1], and "true"

is a fuzzy subset of U, whose membership function might be defined in

terms of the S-function (see A17) by

utrue(v) = S(v;0.6,0.75,0.9) , ve [0,1] (3.3)

where S(v;a,3sy) is an S-shaped function which vanishes to the left of a,

is unity to the right of y and takes the value 0.5 at 8=^p-. Simi

larly, the membership function of the fuzzy subset labeled "borderline" may

be defined in terms of the ir-function (see A18) by

borderlines =*(v;0.3.0.5) (3.4)

where tt(v;$,y) is a bell-shaped function whose bandwidth is $ and which

achieves the value -1 at y.

By the use of a semantic technique which is described in [2], it is

possible to compute in a relatively straightforward fashion the membership

function of the fuzzy set which plays the role of the meaning of a linguistic

value in the term-set of Q.. For example, the membership functions of

"not true," "very true," "not very true" and "true or not very true" are

related to that of "true" by the equations (in which the argument v is

suppressed for simplicity)

ynot true = ] " ytrue ^3*5^

yvery true = Wrue5 (3*6)

l'not very true " " ^ltrue' '3*7'

p

ytrue or not very true " ytruev ^ "^ytrue^ ' \J«»)
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2
where (vtrue) denotes the square of the membership function of true and v

stands for the infix form of max.

A fuzzy set (or fuzzy sets) in terms of which the meaning of all other

linguistic values in the term-set of Q. may be computed is termed a

primary fuzzy set (or sets). Thus, in the case of Q, the primary fuzzy

set is labeled "true;" in the case of Q2 the primary fuzzy sets are "small,"

"medium" and "large;" and in the case of Q the primary fuzzy sets are

"high" and "medium," with "low" defined in terms of "high" by

how^ •W1"^ ' V6[°'1] • (3-9)

In effect, a primary fuzzy set plays a role akin to that of a unit whose

meaning is context-dependent and hence must be defined a priori. The impor

tant point is that once the meaning of the primary terms is specified, the

meaning of non-primary terms in the term-set of each Q. may be computed

by the application of the semantic rule which is associated with that Q..

The entry NA in Q3 stands for "not applicable." What this means

is that if the answer to Q1 is, say, "not very true" and the answer to

Q2 is "medium," then Q3 is not applicable to the object corresponding

to the third row in the table. As a simple illustration of non-applica

bility, if the answer to the question "Is p a prime number?" is "true,"

then the question "What is the largest divisor of p other than 1?" is

not applicable to p.

In the representation of R in the form of a relational tableau, it

is helpful to divide the constituent questions into two categories:

attributional and classificational. As its name implies, an attributional

question is one which asks for the value of an attribute of p, e.g., CL

and Q3 in Table 1 are attributional questions. A classificational ques

tion, on the other hand, relates to the degree to which a specified property
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is possessed by the object in question. Thus, the answer to a classifica

tional question is either a truth-value, as in Q,, or the grade of member

ship, as in Q. In both cases, the universe of discourse associated with

a classificational question is assumed to be the interval [0,1]. Generally,

we shall assume that "high" is equivalent to "true;" "medium" to "borderline;"

and "low" to "false," where, by analogy with (3.9), "false" is defined by

"false**) " ^true(1-v) ' ve [0'1] • (3'10)

As an illustration of the above approach, assume that we wish to
o

characterize the concept of an oval contour, with U being the space of

curved, smooth, simply-connected and non-self-intersecting contours in a

g
plane. To simplify the example, we assume that the constituent questions

are limited to the following.

Classificational: Q, _> Does p have an axis of symmetry?

Classificational: Q« ^ Does p have a second axis of symmetry?

Classificational: Q3 _> Are the two axes of symmetry orthogonal?

Classificational: Q- 4 Does p have more than two axes of symmetry?

Attributional: Q5 ^ What is the ratio of the lengths of the major

and minor axes?

Classificational: Q6 4 Is p convex?

For simplicity, the answers to the classificational questions are

allowed to be only true, borderline and false, abbreviated to t, b and

f, respectively, with the membership functions of t, b and f expressed

in terms of the S and it functions by (3.3), (3.4) and
_

For purposes of this example, by oval we mean a shape resembling that of
an egg.

9 o
Note that the point of departure in this example is U rather than U
because we assume that a contour is a mathematical object.

It should be understood that "true" and'false" in the present context do not
have the same meaning as they do in classical logic. Rather, as in fuzzy
logic [3],Htrue"in the sense of (3.3) means "approximately true," and
likewise for "False."
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uf(v) =ut(l-v) (3.11)

= 1 - S(v;0.1,0.25,0.4) .

Similarly, the term-set for Q- is assumed to be

T(Q5) = {about 1, about 1.5, about 2, about 2.5,

about 3, about 4, about 5, > about 5}

where about a, a = 2,...,5, is defined by (with the arguments of it and

S suppressed for simplicity)

about a = ir(0.4,a) (3.12)

and

about 1=1- S(l ,0.2,0.4) . (3.13)

The answer to Q- is assumed to be provided by a subquestionnaire

with an unspecified number of classificational constituent questions

^61s^62*— wnicn are intended to check on whether the slope of the tangent

to the contour is a monotone function of the distance traversed along the

contour by an observer. Thus, if an observer begins to traverse the contour

in, say, the counterclockwise direction starting at a point an, and

al"**sam are re9ularly spaced points on the contour, with a +, = aQ,

then Q6i would be the question

Q61 _> Is the slope of the tangent at a., greater than that at a._,,

i = l,2,...,m+l?

The answer to Qg is assumed to be true if and only if the answers

to all of the constituent questions Qg-nQg?"-- are true-

In terms of the constituent questions defined above, the relational

tableau characterizing an oval object may be expressed in a form such as
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shown in Table 2, For simplicity, only a few of the possible combinations

of answers to these questions are exhibited in the table (NA stands for

not applicable).

*i \ % *4 % "6 Q

t t t f about 1 t b

t t t f about 1.5 t t

f f t f about 1 t f

t f NA f about 1 t f

t b NA f about 1 t b

t b NA f about 1.5 t b

Table 2. Relational tableau characterizing an oval object

The first row in this table signifies that if the answer to Q, is t

(i.e., p has one axis of symmetry); the answer to Q« is t (i.e., p

has a second axis of symmetry; the answer to Q3 is t (i.e., the two

axes of symmetry are orthogonal); the answer to 0. is f (i.e., p has

two and only two axes of symmetry); the answer to Q5 is about 1 (i.e.,

the major and minor axes are about equal in length); and the answer to Og

is t (i.e., Q- is convex), with the answer to Qg provided by the

subquestionnaire; then the answer to Q is b (i.e., p is an oval object

to a degree which is approximately equal to 0.5, with "approximately equal

to 0.5" defined by (3.4)).

Similarly, the fifth row in the table signifies that if the answer to

Q, is t; the answer to Q« is b; the answer to Q3 is NA; the

answer to 0- is f; the answer to Q5 is about 1 and the answer to

Q6 is t; then the answer to Q is b. Comparing the entries in row 5

with those of row 6, we note the answer to Q remains b when we change

the answer to Q5 from about 1 to about 1.5.
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4. Translation Rules and the Interpolation of a Relational Tableau

Assuming that we have a characterization of M(p) in the form of a

relational tableau R, the question that arises is: How can we deduce

from R the grade of membership of an object p in F?

As a preliminary to arriving at an approximate answer to this question,

we have to develop a way of converting R into an (n+l)-ary fuzzy relation

in U1 x... xUnxV. To this end, we shall employ the translation rules of

fuzzy logic — rules which provide a basis for translating a composite fuzzy

proposition into a system of so-called relational assignment equations [14],

More specifically, let p be a pointer to an object and let q be a

proposition of the form

q -> P is F (4.1)

where F is a fuzzy subset of U. For example, q may be

q i Pamela is tall . (4.2)

Translation rule of Type I asserts that q translates into

p is F-> R(A(p)) = F (4.3)

where A(p) is an implied attribute of p and R(A(p)) is a fuzzy

restriction on the variable A(p). Thus, (4.3) constitutes a relational

assignment equation in the sense that the fuzzy set F — viewed as a unary

fuzzy relation in U — is assigned to the restriction on A(p). For

example, in the case of (4.2), the rule in question yields

Pamela is tall -> R(Height(Pamela)) = tall

11
A fuzzy restriction is a fuzzy relation which acts as an elastic constraint
on the values that may be assigned to a variable [2], [14].
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where R(Height(Pamela)) is a fuzzy restriction on the values that may be

assigned to the variable Height(Pamela).

Now let us consider two propositions, say

<\} &P1 is F1 (4.4)
and

q2 = P2 is F2 (4-5)

where p1 and p- are possibly distinct objects, and F, and F« are

fuzzy subsets of U-j and U2, respectively. For example, q, and q-

might be q, _> X is large and q2 _Y is small.

By (4.3), the translations of q. and q? are given by

p1 is F- — RtA^p-)) = F- (4.6)

p2 is F2-^ R(A2(p2)) = F2 (4.7)

where A-^p-j) and A2(p2) are implied attributes of p, and p2.

By the rule of conjunctive composition [4], the translation of the

composite proposition q, and q? is given by

q1 and q2 -^ R(A1(p1),A2(p2)) = F- xF2 (4.8)

where F^ xF2 denotes the cartesian product of F, and F« (see A56)

which is assigned to the restriction on A^p,) and A2(p2). Dually, by the

rule of disjunctive composition, the translation of the composite composi

tion q, or q« is given by

q1 or q2 -*- R(A] (p-) ,A2(p2)) = F] +F2 (4.9)

where F, and F2 are the cylindrical extensions of F, and F? (see

A59) and + denotes the union.
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As we shall see presently, these two rules provide a basis for con

structing a translation rule for relational tableaus. More specifically,

consider a tableau of the form shown in Table 3

A1 A2 • » ♦ An

rll r12 rln
r21 r22

• r2n
*

•

•

rml \z r
mn

Table 3. A relational tableau

in which A^,...,A are variables taking values in U,,...,U , and the

r.. are linguistic labels of fuzzy subsets of U.. (In relation to Table 1,
•J j

the A. play the roles of Q. and Q.)
j j

Expressed in words, the meaning of the tableau in question may be

stated as:

or

or

or

A1 is r^ and A- is r,- and

A-j is r21 and A2 is r22 and

Al is rml and A2 isrm2 and

and A is r,
n In

and k is r«
n Zn

and A is r
n mn

(4.10)

Regarding (4.9) as a composite proposition and applying (4.8) and (4.9)

to (4.10), we arrive at the tableau translation rule which is expressed by

Al An

rll rln

mn

-R(Ar...,An) = r11x'...xr1 +

+ r , x
ml

• x r
mn

(4.11)

where rnx"*xrln + *" + rmi x'" xrmn is an n-ary fuzzy relation in
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U1 x«.- xun which is assigned to the restriction R(Ar...,A ) on the

values of the variables An,...,A .
In

As a very simple illustration of the tableau translation rule, assume

that the tableau of R is given by [86]

«! ^2 Q

t t vf

f f t

(4.12)

where t, f and vf are abbreviations for true, false and very false,

respectively, and

U1 = U2 = V=0+0.2 +0.4 +0.6 +0.8 +1

t = 0.6/0.8 + 1/1

f = 1/0 + 0.6/0.2

and by (3.6)

vf = 1/0 + 0.36/0.2 .

(4.13)

(4.14)

(4.15)

(4.16)

Applying the translation rule (4.11) to the table in question, we

obtain the ternary fuzzy relation in VxVxV:

R(Q1»Q2»Q) =txtxvf + f xf xt (4.17)

= (0.6/0.8 +1/1) x (0,6/0.8 +1/1) x (1/0 +0.36/0.2)

+ (1/0 +0.6/0.2) x(l/0 +0.6/0.2) x (0.6/0.8 +1/1)

=0.36/((0.8,0.8,0.2) +(0.8,1,0.2) +(1,0.8,0.2) +(1,1,0.2))

+ 0.6/((0,0,0.8) +(0,0.2,0.8) +(0.2,0,0.8) +(0.2,0.2,0.8)

+ (0,0.2,1) +(0.2,0.2,1))

+ 1/((0,0,1) +(1,1,0))

as the expression for the meaning of the relational tableau (4.12).
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The Mapping Rule

The translation rule expressed by (4.11) provides a basis for an inter

polation of a relational tableau, yielding an approximate value for the

answer to Q given the answers to Q.,,...,Q which do

not appear in R.
J. u

Specifically, let (r.,,...,r. ,r.) denote the i (n+l)-tuple in R

and let R denote the (n+l)-ary fuzzy relation in U, x--- xu *V, V _> [0,1],

expressed by

R = r,, x ... xr. xr. + ••• + r , x ... xr xr (4.13)
II In 1 ml mn m

where, as in (4.11), x and + denote the cartesian product and union,

respectively.

Now suppose that g-.,...sg are given fuzzy subsets of U, ,...,U ,

respectively, and that we wish to compute the value of Q given that the

values of Q-j,...,Qn are g1,...,gn-

Let R(g-.,...,g ) denote the result of the substitution and hence the

desired value of Q, and let G denote the cartesian product

G= g-, x--- xgn . (4.14)

12
Then, the mapping rule may be expressed compactly as

R(gr....gn) = R°g (4.15)

where © denotes the composition (see A60) of the (n+l)-ary fuzzy relation

R with the n-ary fuzzy relation G.

In more explicit terms, the right-hand member of (4.15) is a fuzzy

subset of U which may be computed as follows.
—

This mapping rule may be viewed as an extension to a fuzzy relation of the
mapping rule employed in such query languages as SQUARE and SEQUEL [15],
[16].
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Assume for simplicity that ^.....U ,V are finite sets which may be

expressed in the form (+ denotes the union)

so that

U} =u] +---+u1k (4.16)

U2 =U2 +...+u2k
2

U = u? +•••+u"
n 1 k

n

V = v, + ••• + v.
1 k

Now suppose that the g. are expressed as fuzzy subsets of the U.

by (see A6)

9l =y]u] +-+YJuJ. (4.17)
1 "1

«n-^l +-+«
n n

G=Iy] -y? Y? /u] u] ...UJ (4.18)
I M *2 \ nl n2 \

where I denotes the index sequence (i,,...,i ), with l__i-i<.k-,
IP n

1 liplkp*---*1 linlkni u. u. •••u;: is an abbreviation for the n-tuple
£- c nn ii in l_

I c. n

(u. ,u. ,...,u. ), and y. ~y. A...^y is the grade of membership of
M n2 'n M n2 ' nn

ip n

the n-tuple u. u. •••u. in the n-ary fuzzy relation G.
1 2 \

By the definition of composition, the composition of R with G may

be expressed as the projection on U, x ••• xu of the intersection of R

with the cylindrical extension of G. Thus,

RoG = Proj (ROG) (4.19)
U1x..-xun
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where G is given by

G = I y] -Y? Y? /u] u2 --u?v. . (4.20)
(M) 'l h \ M n2 'n T

In this expression, (I,i) denotes the index sequence (i*,...,i ,i), with
i p n

1 < i <_ k, and u. u. •••u. v. is an abbreviation for the (n+l)-tuple

1 2 n ] 2 n
(u. ,u. ,...,u. ,v.).
H n2 \ 1

Now suppose that the computation of the right-hand member of (4.13)

yields R in the form

.1 .2R" I Pit o/u uf •••u? v. . (4.21)
(1,1) (I,1) ^ ]2 \ 1

Then, the intersection of R with G is given by

ROG= I y] ~y\ Y!J ~WTn/ui **'ui Vi (4'22)
(1,1) M n2 nn Usl) nl \ 1

13 ~ -
and the projection of RHG on U, x •••xu -- and hence the composition

of R and G — is expressed by

1 2
RoG = I yi -Y,- -•••-yJ ^/j^/Vi (4.23)

(1,1) ^ ]2 \ (Ij1) 1

where, to recapitulate:

R(g1»---»gn) = R°G
= result of substitution of g. for Q., i = l,...,n,

in R;

G = g1 x••• xgn ;

y. = grade of membership of u. in g,, X = l,...,n ;
\ nX

A convenient way of obtaining the projection is to set u-j, = ••• =uj =1

in the right-hand member of (4.22) and treat the (n+l)-tuple (uj.,,... ,u-jn,v-j)
as if it were an algebraic product of u-j-.,... ,u? ,v-j.
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I4 (ir...,Tn)

(I,i) A(ir...,in,i)

IVt i\ = grade of membership of (u! ,u? u" ,v.) in RU.i) ^ i2 in l
R=r11x...xrlnxr1 + ...+rmlx...xrmnxrm

It should be noted that we would obtain the same result by assigning

9-|>".»gn to Q-j,...,Q in sequence rather than simultaneously. This is

a consequence of the identity

RoG = (•••((Rog1)og2)"-ogn) (4.24)

which in turn follows from the identity

I Yi *Y,- A",AY? Ay/T ^/v. (4.25)
(1,1) nl n2 \ (Ijl) 1

- I [[[Yi -P/t n/u] U2 •••u" V.] - ^Y?]2 Y? ] n
(1,1) M (Is1) nl n2 nn nu =1 ^ u? =1 nn u? =1

nl *2 nn

As a very simple illustration of the mapping operation, assume that

n = 2 ;

U1 = U2 = V = 0+0.2 +0.4 +0.6 +0.8 +1 ;

R is given by

and

R = 1/(0,0,0) + 0.8/(0,0,0.2) + 0.7/(0.2,0.2,0) (4.26)

+ 0.6/(0.2,0,0) + 0.8/(0.4,0.6,0.4) + 0.8/(0.4,0.2,0)

+ 0.5/(0.4,0.2,0.4) + 0.6/(0.2,0.6,0.8) + 0.8(0.8,0.8,0.2)

+ 0.9/(0.8,0.8,1) + 0.8/(0.8,1,0.8) + 0.6/(0.2,0.8,1)

+ 0.8/(0.6,0.8,1)
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g1 = 0.6/0.4 + 1/0.2 (4.27)

g2 = 1/0.6 + 0.8/0.2 . (4.28)

9 = 9}*92 (4.29)

= 0.6/(0.4,0.6) + 0.6/(0.4,0.2) + 1/(0.2,0.6) + 0.8/(0.2,0.2)

and thus

R(g1»g2) = R°g (4-30)
= 0.6-0.8/0.4 + 0.8-0.6/0 + 0.5-0.6/0.4 + 0.6-1/0.8

+ 0.7-0.8/0

= 0.6/0.4 + 0.7/0 + 0.6/0.8 .

There are two points related to the computation of Rog that are in

need of comment. First, if R is sparsely tabulated in the sense that

many of the possible n-tuples of values of Q-,,...,Q are not in the table,

then the interpolation of R by the use of (4.23) may not yield a valid

approximation to the answer to Q. And second, the result of substitution

of
g = r._ X... xr.n

in R would not, in general, be exactly equal to r. — as one might expect

to be the case. As pointed out in [14], the cause of this phenomenon is

the interference between the rows of R, which in turn is due to the fact

that the fuzzy sets which constitute a column of R are not, in general,

disjoint, that is, do not have an empty intersection.

An important assumption that underlies the procedure described in this

section is that one has or can obtain a relational tableau which characterizes
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the dependence of the grade of membership of an object on the linguistic

values of its attributes and/or the degree to which it possesses specified

properties. The main contribution of the linguistic approach is that it

makes it possible to describe this dependence in an approximate manner,

using words rather than numbers as values of the relevant variables.

5. Cluster Analysis

Theory of fuzzy sets was first applied to cluster analysis by E. Ruspini

[17]-[19]. More recently, J. Dunn and J. Bezdek have made a number of

important contributions to this subject and have described effective algo

rithms for deriving optimal fuzzy partitions of a given set of sample

points [20]-[32].

Viewed within the framework described in Section 2, cluster analysis

differs from pattern classification in three essential respects.

First, the point of departure in cluster analysis is not -- as in pattern

classification -- an opaque recognition algorithm in U which defines a

fuzzy subset F of U , but a fuzzy similarity relation 5° which is a

fuzzy subset of U xu and which is characterized by an opaque recognition

algorithm R . Thus, when presented with two objects p and q in U°,

RQp yields the degree, u Q(p,q), to which p and q are similar. The
oo

function u : U xu •*• [0,1] is the membership function of the fuzzy rela-
S
oo

tion Su in U°.

Second, the problem of cluster analysis includes as a subproblem the

following problem in pattern classification.

Let p and q be objects in U° and let x^ M(p) and y _> M(q)

be their correspondents in the space of mathematical objects U = (M(p)}.

The problem is to convert the opaque recognition algorithm R which
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acting on p and q yields

Rop(p»q) =V0(p,q) , (5.1)

into a transparent recognition algorithm R which acting on x and y
tr

yields the same result as R . i.e.,
op

Rtr(x,y) =Rop(P»q) (5.2)

= v n(p»q) •
s°

It should be noted that this problem is of the same type as that formulated

in Section 2, with the fuzzy subset S° of U°xu° playing the role of F.

Third, assuming that we have R. — which acts on elements of UxU
tr

— the objective of cluster analysis is to derive from R. a number, say

k, of transparent recognition algorithms R. ,...,R. -- acting on ele-
trl trk

ments of U — such that the fuzzy subsets (fuzzy clusters) F,,...,F. in

U defined by R. ,...,R. , have a property which may be stated as follows.
tr1 trk

Fuzzy Affinity Property

Let x = M(p) and y = M(q) be mathematical objects in U corres

ponding to the objects p and q in U°. Let {F,,...,F.} be a collection
14

of well-separated fuzzy subsets of U with membership functions

u, ,...,u, respectively. Then the F. are fuzzy clusters induced by S°

if they have the fuzzy affinity property defined below.

(a) Both x and y have high grades of membership in some F ,

r = l,...,k o (x,y) has a high grade of membership in S (the similarity

relation induced in U by S°).

By well-separated we mean that if Fr and Ft are distinct fuzzy sets
in {F-|,... ,F|J, then every point of U has a low grade of membership
in FrnFt.
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(b) x has a high grade of membership in some F , r = l,...,k and

y has a high grade of membership in F., t f r =• (x,y) does not have

a high grade of membership in S.

Stated less formally, the fuzzy affinity property implies that (a) if

x and y have a high degree of similarity then they have a high grade of

membership in some cluster, and vice-versa; and (b) if x and y have

high grades of membership in different clusters then they do not have a

high degree of similarity. It should be noted that this property of fuzzy

clusters is more demanding than that implicit in the conventional definitions

in which the degree of similarity of objects which belong to the same cluster

is merely required to be greater than the degree of similarity between

objects which belong to different clusters. Another point that should be

noted is that, if we assumed that the only alternative to the consequent

of (b) is "(x,y) has a high grade of membership in S," then (b) would be

implied by (a) since the latter consequent would imply that x and y have

a high grade of membership in some F — which contradicts the antece

dent of (b). Thus, by stating (b) we are tacitly assuming that (x,y) is

not restricted to having either "high" or "not high" grades of membership

in S. For example, the grade of membership of (x,y) in S could be

"not high and not low."

An important implication of the fuzzy affinity property is the follow

ing. Suppose that x and y have high grades of membership in some fuzzy

cluster F , and that z has a high grade of membership in a. different

fuzzy cluster, say Ft. Then, by (a) and (b), we have

similarity of x and y is high (5.3)

similarity of y and z is not high

similarity of x and z is not high
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which implies that we could not have

similarity of x and y is high (5.4)

similarity of y and z is high

similarity of x and z is not high .

The inconsistency of the assertions in (5.4) is ruled out by the fuzzy

15
transitivity of the similarity relation S which may be stated as

similarity of x and z is at least as great as the (5.5)

similarity of x and y or the similarity of y and z .

Thus, if S has the fuzzy transitivity property and the similarities of

both x and y and y and z are high, then the similarity of x and

z must also be high.

Another point that should be noted is that the fuzzy affinity property

does not require that the fuzzy clusters {F,,...,F.} form a fuzzy parti

tion in the sense of Ruspini. However, the stronger assumption that the

F form a fuzzy partition makes it possible for Dunn and Bezdek to con

struct an effective algorithm for deriving from a fuzzy similarity relation

a family of fuzzy clusters which form a fuzzy partition.

As described in [26], the Dunn-Bezdek fuzzy ISODATA algorithm may be

stated as follows.

Let u,,...,y. denote the membership functions of F,,...,F., where

the F., i = l,...,k, are fuzzy subsets (clusters) of a finite subset, X,

15 :
In more precise terms, the transitivity of a fuzzy relation R in U is
defined by (see [13])

uR(u,v) >Vw(yR(u,w) -pR(w,v)) , (u,v) eUxU

where y^(u,v) is the grade of membership of (u,v) in R, and V is
the supremum over w e U. w
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of points in U. The fuzzy clusters F.j,...,Fk form a fuzzy k-partition

of J( if and only if

u-,(x) +--- +uk(x) =1 , x e X (5.6)

where + denotes the arithmetic sum. The goodness of a fuzzy partition

is assumed to be assessed by the criterion functional

where

J(u) =min I I (u.(x))2||x-v.l|2 (5.7)
v i=l xeX n n

y£(y.j,...,Uk), v=(v1,...,vk), vi eL, and Lk vector space
with inner product induced norm || ||. Intuitively, the v. represent the

"centers" of F,,...,Fk and J(y) provides a measure of the weighted dis

persion of points in X in the relation to the optimal locations of the

centers v,,...,v..

Step 1: Choose a fuzzy partition F,,...,F. characterized by k

nonempty membership functions y = (y, ,...,yk), with 2 < k <_ n.

Step 2: Compute the k weighted means (centers)

I(u..(x))2x
v. = — 5- , 1 < i < k (5.8)
1 I(y^x))2 " "

xeX 7

where x e X c L.

Step 3: Construct a new partition, F,,...,F., characterized by

y= (y,,...,yk), according to the following rule.

Let I(x) ^ 0<i<.k| v^x}. If I(x) is not empty let i be the

least integer I(x) and put
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y.(x) =1 if i = i (5.9)

= 0 if i f l

for 1 < i < k. Otherwise, if I(x) is empty (the usual case), set

1

flx-v.il2 -
Vx) =n;— • (5J0)

K—^-g)
j=i iix-v.ir

Step 4: Compute some convenient measure, 6, of the defect between

y and y. If 6 < e ^ a specified threshold, then stop. Otherwise go to

Step 2. v

In a number of papers [20]-[32], Bezdek and Dunn have studied the

behavior of this and related algorithms and have established their conver

gence and other properties. Clearly, the work of Bezdek and Dunn on fuzzy

clustering constitutes an important contribution to both the theory of

cluster analysis and its practical applications.

Fuzzy Level-Sets

As was pointed out in [13], the conventional hierarchical clustering

schemes [33] may be viewed as the resolution of a fuzzy similarity relation into

a nested collection of nonfuzzy equivalence relations. To relate this

result to the fuzzy affinity property, it is necessary to extend the notion

of a level-set as defined in [13] to that of a fuzzy level-set. More

specifically, let F be a fuzzy subset of U and let F , 0 < a <_ 1,

* be the a-level subset of U defined by

F & (x| yF(x)>a} (5.11)
a ' F —
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where yr is the membership function of F. We note that F -- which is
F r a

a nonfuzzy set -- may be expressed equivalently as

Fa=yp1([a,l]) (5.12)

where yZ is the relation from [0,1] to U which is converse to yp,

and F is the image of the interval [a,l] under this relation -- or,

equivalently, multi-valued mapping — y" . It is easy to verify that in

terms of the membership functions of F , F and [a,l], (5.12) translates

into

yF ^ =u[a,l]^Mx^ 5 x6U (5.13)

where yc and yr in denote the membership (characteristic) functionsFa [a,l] K '
of the nonfuzzy sets F and [a,l], respectively.

Now suppose that a is a fuzzy subset of [0,1] labeled, say, high,

with ynl-an defined by (see A17)

yhigh(v) =S(v;0.6,0.7,0.8) , 0<v<l . (5.14)

When a is a fuzzy subset of [0,1], the fuzzy set > a may be

expressed as the composition of the nonfuzzy binary relation >_ witn tne

unary fuzzy relation a. Thus, if a ^ high, then

>a = > oa (5.15)

= >o high

= high

since the membership function of high is monotone nondecreasing in v.

Correspondingly, the expression for the membership function of the fuzzy

level set F. . . becomes (see A73)
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UFhigh(X) =yhigh(lJF(x)) • (5-16)

To relate this result to the fuzzy affinity property, we note that

if the objects x, y in U have a high degree of similarity, then the

ordered pair (x,y) has a high grade of membership in the fuzzy similarity

relation S. Thus, by analogy with (5.12), the set of pairs (x,y) in

IJxll which have a high grade of membership in S form a fuzzy level-set

of S defined by

Shigh •̂ W (5J7)
or, equivalently,

\igh(X'y) =WyS(x,y,) • (5J8)

This expression makes it possible to derive in a straight-forward fashion

the fuzzy level-set S. . . from the similarity relation S.

An important property of S. . . may be stated as the

Proposition. If S is a transitive fuzzy relation, so is S. . ..

The validity of this proposition is readily established by observing

that the transitivity of S means that (see (5.5))

ys(x,y) >Vzy$(x,z) -y$(z,y) , x, y, zeU . (5.19)

Now, (5.19) implies and is implied by

Vz (y$(x,y) >y$(x,z)~ys(z,y)) (5.20)

which in turn implies and is implied by

Vz (y<.(x,y) >_\iJx,z) or y.(x,y) > yQ(z,y)) . (5.21)
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Since Vus-i. is a monotone nondecreasing function, we have

ys(x,y) >ys(x,z) =* yhigh(ys(x,y)) iynigh(ys(x,z)) (5.22)
and

ys(x,y) >y$(z,y) =* yhigh(ys(x,y)) >unigh(y$(z,y)) (5.23)
and hence

Vz (y. (x,y) >y~ (x,z) or y- (x,y) > y~ (z,y)) (5.24)
°high *high ^high 5high

which by (5.21) and (5.20) leads to the conclusion that S. .h is transitive

Basically, the employment of fuzzy level-sets for purposes of cluster

ing may be viewed as an application of a form of contrast intensification

[34] to a fuzzy similarity relation which defines the degrees of similarity

of mathematical objects in U. Thus, given a collection of such objects,

we can derive Sj. h from S by the use of (5.18) and then apply a Dunn-

Bezdek type of fuzzy clustering algorithm to group the given collection of

objects into a set of fuzzy clusters {F,,...,F.}.

6. Concluding Remarks

In the foregoing discussion, we have touched upon only a few of the

many basic issues which arise in the application of the theory of fuzzy sets

to pattern classification and cluster analysis. Although this is not yet

the case at present, it is yery likely that in the years ahead it will

be widely recognized that most of the problems in pattern classification

and cluster analysis are intrinsically fuzzy in nature and that the concep

tual framework of the theory of fuzzy sets provides a natural setting both

for the formulation of such problems and their solution by fuzzy-algorithmic

techniques.
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Appendix

Fuzzy Sets — Notation, Terminology and Basic Properties

The symbols U,V,W,..., with or without subscripts, are generally

used to denote specific universes of discourse, which may be arbitrary

collections of objects, concepts or mathematical constructs. For example,

U may denote the set of all real numbers; the set of all residents in a

city; the set of all sentences in a book; the set of all colors that can

be perceived by the human eye, etc.

Conventionally, if A is a fuzzy subset of U whose elements are

u-.,...,u , then A is expressed as

A={u1,...,un} . (Al)

For our purposes, however, it is more convenient to express A as

A= u-j +••• +un (A2)

or

A = I u. (A3)
i=l 1

with the understanding that, for all i, j,

u, + u. = u- + u. (A4)

and

u. + ui =ui . (A5)

As an extension of this notation, a finite fuzzy subset of U is

expressed as

F =Vl +""'+Vn (A6)

or, equivalently, as

F= y1/u] +"--+un/un (A7>



- 37 -

where the y., i =l,...»n, represent the grades of membership of the u^

in F. Unless stated to the contrary, the yi are assumed to lie in the

interval [0,1], with 0 and 1 denoting np_ membership and full_ member

ship, respectively.

Consistent with the representation of a finite fuzzy set as a linear

form in the u., an arbitrary fuzzy subset of U may be expressed in the

form of an integral

=JyF(u)/u (A8)

in which yp: U•* [0,1] is the membership or, equivalently, the compa-

tibility function of F; and the integral denotes the union (defined
/ JU

by (A28)) of fuzzy singletons yp(u)/u over the universe of discourse U.

The points in U at which yp(u) >0 constitute the support of F.

The points at which yp(u) =0.5 are the crossover points of F.

Example A9. Assume

U = a+b+c+d. (A1Q)

Then, we may have

A = a + b + d (All)

and

F = 0.3a + 0.9b + d (A12)

as nonfuzzy and fuzzy subsets of U, respectively.

If

U = 0 + 0.1 + 0.2 + ••• + 1 (A13)

then a fuzzy subset of U would be expressed as, say,

F = 0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1 . (AH)



- 38 -

If U = [0,1], then F might be expressed as

F =
1

0 1 +u'
r/u (A15)

which means that F is a fuzzy subset of the unit interval [0,1] whose

membership function is defined by

yp(u) = 1

1+u
2 '

(A16)

In many cases, it is convenient to express the membership function of

a fuzzy subset of the real line in terms of a standard function whose para

meters r?.ay be adjusted to fit a specified membership function in an approxi

mate fashion. Two such functions are defined below.

S(u;a,B,y) = 0

= 2
u-a

hr-aj
2

= 1-2 'Mill
lY-aJ

= 1

tt(u;B,y) = S(u;y-B,Y-f>Y)

for u <_a

for a < u < 3

for 3 < u £ y

for u > y

for u < y

3=1- Stu^Y+f.Y+S) for u>y

(A17)

(A18)

In S(u;a,B,Y), the parameter 3, 3=^r» is the crossover point.
In tt(u;8,y), 3 is the bandwidth, that is the separation between the

crossover points of ir, while y is the point at which ir is unity.

In some cases, the assumption that yp is a mapping from U to

[0,1] may be too restrictive, and it may be desirable to allow yp to

take values in a lattice or, more particularly, in a Boolean algebra. For

most purposes, however, it is sufficient to deal with the first two of the

•»*.
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following hierarchy of fuzzy sets.

Definition A19. A fuzzy subset, F, of U is of type 1 if its membership

function, yp, is a mapping from U to [0,1]; and F is of type n,

n = 2,3,..., if yp is a mapping from U to the set of fuzzy subsets of

type n-1. For simplicity, it will always be understood that F is of

type 1 if it is not specified to be of a higher type.

Example A20. Suppose that U is the set of all nonnegative integers and

F is a fuzzy subset of U labeled small integers. Then F is of type 1

if the grade of membership of a generic element u in F is a number in

the interval [0,1], e.g.,

Ismail integers(u) ' ^+̂ • " =0,1,2,.... (A21)

On the other hand, F is of type 2 if for each u in U, yp(u) is a

fuzzy subset of [0,1] of type 1, e.g., for u = 10,

"all integers(10) " ^ <A22>

v/here low is a fuzzy subset of [0,1] whose membership function is defined

by, say,

Ulow(v) =1 - S(v;0,0.25,0.5) , v e [0,1] (A23)

which implies that

low =f (1-S(v;0,0.25,0.5)]/v
Jn

(A24)

If F is a fuzzy subset of U, then its g-level-set, F , is a
9

nonfuzzy subset of U defined by
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Fa ={u| yp(u)>a} (A25)

for 0 < a < 1,

If U is a linear vector space, the F is convex if and only if for

all X e [0,1] and all u]5 u2 in U,

yp(Xu1 +(l-y)u2) >_min(yp(u1),yp(u2)) . (A26)

In terms of the level-sets of F, F is convex if and only if the F^ are
26

convex for all a e (0,1],

The relation of containment for fuzzy subsets F and G of U is

defined by

FCG o yp(u) <uG(u) , u e U . (A27)

Thus, F is a fuzzy subset of G if (A27) holds for all u in U.

Operations on Fuzzy Sets

If F and G are fuzzy subsets of U, their union, FUG,

intersection, F n G, bounded-sum, F © G, and bounded-difference, F 0 G,

are fuzzy subsets of U defined by

FUG£[yF(u)~uG(u)/u (A28)

FOG4 f yp(u)~uG(u)/u (A29)

F © G £

F 0 G 4

l~(uP(u)+pr(u))/u (A30)
U

0~(yF(u)-yr(u))/u (A31)
U

26This definition of convexity can readily be extended to fuzzy sets of
type 2 by applying the extension principle (see (A70)) to (A26).
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where v and ~ denote max and min, respectively. The complement of F

is defined by

F' = (l-yp(u))/u (A32)

or, equivalently,

F' = U 0 F . (A33)

It can readily be shown that F and G satisfy the identities

(FOG)' = F' UG' (A34)

(FUG)' = F' HG' (A35)

(F © G)1 = F' © G (A36)

(FeG)'=F'eG (A37)

and that F satisfies the resolution identity

F

J°

where F is the a-level-set of F; aF is a set whose membership func-
a -I a

tion is u ,- = aiir , and denotes the union of the aF, with
aFa Fa JO

a e (0,1].

Although it is traditional.to use the symbol U to denote the union

of nonfuzzy sets, in the case of fuzzy sets it is advantageous to use the

symbol + in place of U where no confusion with the arithmetic sum can

result. This convention is employed in the following example, which is

intended to illustrate (A28), (A29), (A30), (A31) and (A32).

rl
= aF (A38)

Jn a
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Example A39. For U defined by (A10) and F and G expressed by

F = 0.4a + 0.9b + d (A40)

G = 0.6a + 0.5b (A41)

we have

F + G = 0.6a + 0.9b + d (A42)

F n G = 0.4a + 0.5b (A43)

F©G = a + b + d (A44)

F0 G = 0.4b + d (A45)

F' = 0.6a + 0.1b + c (A46)

The linguistic connectives and (conjunction) and p_r (disjunction) are

identified with n and +, respectively. Thus,

F and G ^ F O G (A47)

and

F or G 4 F + G . (A48)

As defined by (A47) and (A48), and and or are implied to be noninter-

active in the sense that there is no "trade-off" between their operands.

When this is not the case, and and or are denoted by and* and or* respec

tively, and are defined in a way that reflects the nature of the trade-off.

For example, we may have

Fand* G£fyp(u)yG(u)/u (A49)

For* G*f(yp(u) +yG(u) -yF(u)yQ(u))/u (A50)

whose + denotes the arithmetic sum. In general, the interactive versions

of and and or do not possess the simplifying properties of the connectives
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defined by (A47) and (A48), e.g., associativity, distributivity, etc

If a is a real number, then Fa is defined by

Fa =• (yF(n))a/u . (A51)
U h

For example, for the fuzzy set defined by (A40), we have

F2 =0.16a +0.81b +d (A52)

and

F1/2 =0.63a +0.95b + d . (A53)

These operations may be used to approximate, very roughly, the effect of

the linguistic modifiers very and more or less. Thus,

very F4 F2 (A54)

and

more or less_ F4F1/2 . (A55)

If F,,...,F are fuzzy subsets of U1,...,Un, then the cartesian

product of F,,... ,F is a fuzzy subset of U-j *•••xun defined by

F1 x--- xFn =f(yp (u-j) yp (un))/(ur...,un) . (A56)
U1x.l.xUn

As an illustration, for the fuzzy sets defined by (A40) and (A41), we have

FxG = (0.4a +0.9b +d) x (0.6a +0.5b) (A57)

= 0.4/(a,a) + 0.4/(a,b) + 0.6/(b,a)

+ 0.5/(b,b) + 0.6/(d,a) + 0.5/(d,b)

which is a fuzzy subset of (a+ b +c+ d) x (a+b+ c +d).
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Fuzzy Relations

An n-ary fuzzy relation R in U, x ••• xu is a fuzzy subset of

U, x • • • x u . The projection of R oin U. x---xu. , where (i,,...,i.)
in 11 11. I k

is a subsequence of (l,...9n), is a relation in U. x---xu. defined by
M k

Proj Ron U—u AJV ^ yR(Ul ,...,un)/(ur...,uR) (A58)

U. x-.-xU.

where (j^.-..^) is the sequence complementary to (i^,,..,^) (e.g.,

if n = 6 then (1,3,6) is complementary to (2,4,5)), and V

denotes the supremum over U. x ••• xu. .
Jl J£

u, ,...,u.

Jl J2,

If R is a fuzzy subset of U. ,...,U. , -then its cylindrical exten-
nl \

sion in U, x ••-.xu is a fuzzy subset of U, x •-• xu defined by
In in

R=Ju^u^. ,...,Ui )/(ur...,un)
Ulx-xUn

(A59)

In terms of their cylindrical extensions, the composition of two

binary relations R and S (in U-j xU2 and U2xU3, respectively) is

expressed by

RoS = Proj RHS on l^ xU3 (A60)

where R and S are the cylindrical extensions of R and S in

IhxlLxlL. Similarly, if R is a binary relation in U-j x U"2 and S is

a unary relation in U«, their composition is given by

RoS =Proj RHS on U] . (A61)
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Example A62. Let R be defined by the right-hand member of (A57) and

S = 0.4a + b + 0.8d . (A63)

Then

Proj Ron U] (4 a+b+c+d) =0.4a + 0.6b + 0.6d (A64)

and

RoS = 0.4a + 0.5b + 0.5d . (A65)

Linguistic Variables

Informally,a linguistic variable, x» is a variable whose values are

words or sentences in a natural or artificial language. For example, if

age is interpreted as a linguistic variable, then its term-set, T(x),

that is, the set of linguistic values, might be

T(age) = young + old + very young + not young (A66)

+ \/ery old + very very young

+ rather young + more or less young + •••

where each of the terms in T(age) is a label of a fuzzy subset of a

universe of discourse, say U = [0,100].

A linguistic variable is associated with two rules: (a) a syntactic

rule, which defines the well-formed sentences in T(x); and (b) a semantic

rule, by which the meaning of the terms in T(x) may be determined. If

X is a term in T(x)» then its meaning (in a denotational sense) is a

subset of U. A primary term in T(x) is a term whose meaning is a primary

fuzzy set, that is, a term whose meaning must be defined a priori, and

which serves as a basis for the computation of the meaning of the non-primary

terms in T(x). For example, the primary terms in (A66) are young and

old, whose meaning might be defined by their respective compatibility
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functions Pyoung and yQlc|. From these, then, the meaning — or, equiva

lently, the compatibility functions -- of the non-primary terms in (A66)

may be computed by the application of a semantic rule. For example, employ

ing (A54) and (A55) we have

2

yvery young ~ ^uyoung' \A67)

1/2
ymore or less old = Kid5 (A68)

2

ynot very young ~ " 'yyoung' ' ' '

The Extension Principle

Let g be a mapping from U to V. Thus,

v = g(u) (A70)

where u and v are generic elements of U and V, respectively.

Let F be a fuzzy subset of U expressed as

F = y,u, + ••• +y u (A71)
linn

or, more generally,

r
F = uF(u)/u . (A72)

U r

By the extension principle, the image of F under g is given by

g(F) = ]x^g{u}) + ••• + yng(un) (A73)

* or, more generally,
»

9(F) = uF(u)/g(u) . (A74)
U

Similarly, if g is a mapping from U*V to W, and F and G are

fuzzy subsets of U and V, respectively, then
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g(F,G) =
N

(uF(u) -yQ(v))/g(u,v) (A75)

Example A76. Assume that g is the operation of squaring. Then, for the

set defined by (A14), we have

g(0.3/0.5 + 0.6/0.7 + 0.8/0.9 + 1/1) (A77)

= 0.3/0.25 + 0.6/0.49 + 0.8/0.81 + 1/1 .

Similarly, for the binary operation v (£ max), we have

(0.9/0.1+0.2/0.5 +1/1) - (0.3/0.2 +0.8/0.6) (A78)

= 0.3/0.2 + 0.2/0.5 + 0.8/1 + 0.8/0.6 + 0.2/0.6 .

It should be noted that the operation of squaring in (A77) is different

from that of (A51) and (A52).
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