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I. Research on the Drift Cone Mode and Radial Localization in the

Plasma Computational Group

The current research in the plasma computational group wés motivated
by results of the 2X and 2XII mirror plasma confinement experiments. Al-
: thbugh the drift cone mode was predicted to have a linear growth rate
greater than the ion cyclotron frequency1 for the parameters of the
plasma in these‘experimehts, and this instability was expected (on the
basis of quasilinear'theory) to cause the ions to be lost in a few
ion transit timesz, the 2X and 2XII plasmas were in fact found to be
quite stable, wigh ion loss times of several hundred ion transit times,
sometimes close to the collisional loss raté.3’4 Since the linear theory1
.was based on a "local approximation'" which aséumed that the ion Larmof
radius a, was much smaller than the radial scale length Rp, while for
theVZXII experiment the ion Larmor radius ai--Rp (Ref. 4), the possibility
arose that a 1inear theory correctly including the large ai/Rp would
predict linear stability for the 2XII. Even if this were not true, it
was still desirable to have a linear theory valid for aj~ Rp, as a
starting point for quasilinear and nonlinear studies (including computer
sﬁmulationsS’G). Accordingly, a method was developed by A. B. Langdon
in 1969-70 for finding the normal modes of a Vlasov plasma slab with sinu-
soidally varying density without assumiﬁg aj -~ Rp, and preliminary numerical
calcﬁlations were made using this method by Langdon, C. K. Birdsall and
D. Fuss between 1970 and 1972. The author completed this project be-
tween 1973 and 1976, making a number of changes, mostly involving improve-
ment of the numerical techniques to make the numerical calculations prac-

tical. It became apparent from the numerical results that the normal



‘mo&es were offeﬁ Well-localized‘even with ai-R?., It was féund that the
essential requirement for a local dispersion relation was not ai<<Rp but
kRp>>1 (where k is the wave number). A local diépetsion'felation, vali¢
when ajf ~R§; was developed and. shown to give numerical results in good
agreement with tﬁe.nonldcal theory of Langdon when kRp>>]u‘ All of this
“work is described in Ref. 7.

In. 1975, feéults‘of.the'ZXIIB éxperiment indicated that the presence
of Qarm Maxwellian ion component might account fér the lack of dfift
"cone instability in the quiet mode of operation, and that such a compon-
ent, deiiberately introduced, could étabilize the drift coné mode when
it was present, in the noisy modes. Since previous studies of the effect
of a warm Maxwellian component were incomplete (usually consisting of
numerical solutions for particular sets of parameters, as in Ref. 9), a
systematic study was made of the dispersion relation of the drift cone
mode with all possible density and temperature ratios of warm to hot
plasma. This was done using the usual local approximation with gi<<Rp.
The results are given in Ref.10. At the time Ref.l0 was written, the
term "cool" was used to describe the Maxwellian component, but the term
"warm" appears to have become standard nomenclature, and is used in this
review.

H.L. Berk pointed .out to the author that electromagnetic effects,
in particular the term wpez/kzc2 discussed by Callen and Guestll, could
significantly affect the results of Ref. 10 for the moderately large
values of 8 and the small values ai/RP expected in a mirror confined plas-
ma in a fusion reactor. - Calculations of the minimum amount'of warm

plasma needed to stabilize the drift cone mode, including some of the



effécts of_finite B,'wefe made by H.L; Berk and the autﬁor, and are
described in Ref. 12;

'iThé'réSults of Refs..10 and 12‘assﬁme ai_<§RP, and hénce may not be
valid for the 2XIIB experiment. -Recently we héve calcuiated the'ambunt
6f warm Maxwélliaﬁ,p;asma neceésary to stabilize the drift cone mode in
a hot loss cone plaéma with aj ~ Rp,. using the method devéloped in ﬁéf. 7.
'for.; plasmaAslab with sinusoidal density gradient. The ﬁreliminary

resﬁlts are given in Ref. 13.



II. The Local Approximation and its Justification

The local approximation is-a metﬁod for calculating linear growth
ratés or other behavioi of a non-uniform plasma, without findiﬁg the
normal modes exactly. Uéuélly the perturbed quéntities are assumed to
be independent of the radial coordinate x or to have a dependence like
exp(i kyx). All unperturbed quantities, such as the density, density
gradient, temperature etc., are evaluated at a particular position x,
.which may be chosen arbitrarily ér according to some formula (e.g. the
point of~stéepe§t density gradient).

Since the early 1960's, the local approximation has been widely
used for studying Vlasov plasmas which are non-uniform in a direction
perpendicular to a magnetic field. This survey will be concerned only
with those authors who have considered'ﬁhe conditions under which the
local approximation is valid, not with those who have only used it as a
"black box." Similarly, we will not be concerned with the many authors
who have solved radial normal mode problems without reference to the
local approximation.

The eafliest‘use of the local approximation seems to have been by
Tserkovnikovla, in 1957. 1In studying the electrostatic stability of a
cylindrical Vlasov plasma with temperature and density gradients in an

axial magnetic field, and radial electric field, he found the linear
1

dispersion relation, w(kz) by assuming a radial wave number kr>>'Rp- .

declaring that in this case boundary conditions could be ignored and un-
perturbed quantities, e.g. density, temperature and their gradients, could
be considered constant over many radial wavelengths. He then found that

w was independent of k, as long as krai<< 1. Thus the dispersion relation



w(kz) applied to any perturbation ¢(r) of the proper width, as 1ong'as

ai'<<R$. Tserkovnikov did not address himself to the questions of what

1

such a perturbation ¢(r) would do on a time scale much greater than w s

or whether uﬁstable normal modes (or any normal modes) had ¢(r) of the
proper:width.

The first of these questions wa3~considere& by Krall and Rosenbluth15
in 1962. They use the local approximation, i.e. set kx=0 and consider
the density and density gradients to be uniform, in studying the drift
cyclotron instability in a plasma with a magnetic fiéld_gradient and
finite electron temperature (i.e. kyae'fl). They then use the linearized
Vlasov-Poisson equation to solve for $(x,t) as an ini£1a1 value problem,
[with ¢(x,0) = const.] assuming uniform gradients of density and magnetic
field. ¢(x,t) is found to vary for many oscillation periods as

exp[iwloc (x)t], where w o (x) is the local approximation frequency, pro-

lo
~vided kyRB:ﬂ>l, where RB is the radial scale length of the magnetic field

[the density scale length does not enter here because w c (x) does not

1o

depend very much on the density in the limit considered; w does depend

loc
on the density gradient, but the density gradient is independent of x].
However, this important conclusion is not stated explicitly, but rather
the result is given in terms of k a_ and a,/R .
ye i p
A comparison between the local approximation results and the radial
1
normal modes is made by Rosenbluth, Rostoker and Krall 6. In dealing
2
with finite Larmor radius corrections [i.e. (kyai) --w/wci <<1) to the
Rayleigh-Taylor instability, they first consider a plane slab with uni-
form density gradient and use the local approximation, which they jus-
tify by saying that kyRp >>1. 1In this calculation kyai <<1, so aj/Ry<<1.

They then consider a cylindrical plasma with Gaussian density profile,



w:.l.t.’h a‘:j_./R'p << 1 and icyai << 1, but no longer: assume ngRp >>1 (in this .case',
the role of kpr is played by the azimuthal mode number m). The Vlasov-

~ Poisson equation becomes a differential equaﬁion (becauée.ai'¢<RP) which
is‘solved‘exactly for the normal modes ¢(r) in tefms of Whittaker functions.
For large azimﬁthai mode number, the dispersion relation approaphes.that
of thevplane slab case using the local approximaéioﬁ.

A similar calculation of the normal modes of the drift cone and

' dfift'cycloﬁron instabilities (with¢;=zmci) in a cylindrical plasma was
made by Shima and-Fowlerl7. They reduce the integral equation to a dif-
fereﬁtial equation"by assuming k;Rp>°ﬂl’ and find the normal modes in
terms of Bessel functions. They also assume aj <<Rj, although this is
not essential to their calculation. Stability thresholds and growth
rates are foqnd which agree in order'of magnitude with results found by

other authors for these instabilitiesl’18

using the local approximation.
Well-localized normal modes were found in Refs. 16 and 17, while

they were not found in Ref. 15 because the densitf gradient varied with

position in Refs. 16 and 17. The question of under what conditions local-

19,20 21

ized normal modes can be found was considered by Galeev » by S8ilin 7,

by Hohzz, by Krall and Rosenbluth23, and by Berk et al.9 If there is an
appropriate ''small parameter", which is usually taken to be ai/Rp [although
(kpr)_l will also do, and is used in ref. 22], then the integral Vlasov-
Poisson equation can be approximated by a differential equation, viz. the
Schrddinger equation in a potential well Q(x,w). The small parameter also
guarantees that the energy levelé of the potential well are close together,

so that WKB techniques can be used to solve the Sghradinger equation.

Localized normal mode solutions exist in a real-valued potential Q(x) only



if the potential has two turning points, whicﬁ allow WKB solutions

with real kx between them. In general, the potential .and its tﬁrning
points will have complex values, so the condition for local normal

modes to exist is a little more complicated, and involves tﬁe behavior

of the Stokes lines in the complex plane, as explained in Refs. 9 and 19-23.
However, the general idea is the .same as for a real-valued potential, viz.
Q(x,w) must be "concave." Theimost well-localized normal modes will

occur for w such that the turning points afe close together [if Q(x,w)

is concave and sufficiently "smooth"], In this case the potential well

cén be approximated by a parabola, and the Schrddinger equation becomes a
Weber-Hermite equation. The most well-localized mode will then be centered

around a point X, such that 3Q(x0)/8k = 0, and will be well-lecalized com-

pared ﬁo scale length R,, but broad compared to the small parameter21

(ay in Ref. 21). As pointed out in Ref. 23, the local approximation

at x = X, will then give results very similar to a full normal mode
analysis. The requirement for the validity of the local approx-
imation given by Hohzz, kRp >> 1, is more fundamental than those
given in Refs. 9, 19-21, 23, ai<<Rb,or by Pearlsteinza, AD‘U:RP; it is
assumed in all these papers that'klRp>>-l.

Although the local approximation at x = xo-will always give the
frequency of some normal mode if kLRp>> 1 and Q(x) is concave, it need not
be true that this normal mode is the most unstable one. It is pointed out
in Ref. 7 that a morekunstable mode might exist that is intrinsically non-
local, e.g. the negative energy loss cone mode of Berk et‘al;zs. In most
cases with kpr>>.i and Q(x) concave, however, the most unstable mode is well
localized, and hence is well descrised by the local approximation at X=X,
Several authors have confirmed this general result by finding exact

normal mode solutions for various models. Pearlstein24 used a density



profile proportional to tanh (x/Rp) and foﬁnd good agreement between the

exact normal modes, the solutions to the Weber-Hermite eq., and the local
approximation, when ADe
he was considering, ki

<<R.p (for the "universal instability" drift waves
De 1). Chen26 found normal mode solutions for
resistive drift waves in a cylindrical plaéma éolumn with Gauésian den-
sity profile. Wheﬁ the azimuthal wave number was large, the radial nor-
mal modes tended tb be well localized. Cordey et al.27 numerically found
normal mode solutiéns for the drift cone instability ‘in a plane plasma
slab of consfant density gradient and finite width (bounded by vacuum on
the low density side and by a conducting wall on the high density side).
These solutions, found for particular values of the parameters, were
in good agreement with the local approximation results. Batchelor and
Davidson28 found the norﬁal modes for the fluid lower hybrid drift in-
stability in a cylindrical column with either a gaussian density profile
or a density which is constant out to a sharp cutoff. In the latter case,
the scale length was zero at the surface of the plasma so of course the
local approximation broke down, but with a gaussian density profile the
normal modes were in good agreement with the local approximation for
large azimuthal mode number (kpr>>]).

In all of the references just cited (24,26-28), it is assumed that
ai<°<Rp, so it 'is still not clear‘that this is not needed in order for
the local approximation to be valid. (The assumption ai<u:Rp is not made
explicitly in Ref. 28, but it follows from the assumption w/ky>>~vi, since
for this instability m/ky must be less than the relative drift velocity
of the ions and.electrons due to the centrifugal force, which is vd-Rme2/

Wgs where w_, is the rotation rate of the plasma; and w

< w , 1s neces-
~ ci

E E
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" sary fof-equilibrium.)

-We now describe some papers which do not assume ai<«<Rp. Bajaj
and Krall29 found the normal modes of the ion acoustic insta-
bility in a plane shock wave with density prdfile proportional to
1-q tanh'(x/Rp). The results were in good agreement with the 1ocai
approximation (at x = 0, where the modes were localized) if XDe‘a:Rp
(note that kyADe ~ 1 forlthe most unstable mode) ; otherwise they were
more stable than predicted by the local approximtion. In this case there
was no assumption made that aj <<Rp; indeed aj doés not enter into the

problem at all, since even the equilibrium changes on a time scale short

compared to wci-l'

In a paper by Jungwirth30, the assumptioh ai~<~<Rp is dispensed with
in a rather artificial way by considering a cylindrical plasma column in
which the ion guiding centers are all located very near the center of the
column, so that the radial position of.an ion is strongly correlated with
its velocity. If Rp is defined as the scale length of guiding centers,
then a1:n>Rp in this plasma; however, at any given position, there is
very little spread in the velocities of the ions, so if we move to a
frame rotating with the ions at Waqo the ‘ions will be mearly cold, aj <<Rp,
and the usual local approximation can be used. This method will not work
if a; ~ Rp, only if aj >>R,.

Davidson3l, using essentially the same techniques as those described‘
in Ref. 7 (the authors were not aware of Davidson's work until after
Ref. 7 was completed), developed a method fo: finding the electrostatic
normal modes of a rotating Vlasov plasma column in a uniform axial mag-

netic field, without any ordering of ai/Rp. (Davidson planned to apply



11

this method to 6-pinch instébilities, since 6-pinches typically have

aj ~Rp; see Refs. 32-34. A similar method was proposed by Lewis and-
Symon35 and used for studying screw-pinch instabilities with ai-Rp.)
This method was used to study the lower hybrid drift instability in

an isothermal Maxwellian plasma with gaussian density profile. For
klRp>>]q the radial normal mode potenfials were proportional to Bessel
functiohs; for moderately large azimuthal mode numbe;, the fastest_
growihg modes were well localized in the radial direction, and had
frequencies close to what would be predicted by the local approximation
at.that radial position. For somewhat larger azimuthal mode numbers, the
most unstable modes ténded to be localized very close to the conducting
wall which was located at a radius of a few Rp. [This was not surprising
since the densiﬁy gradient (1/n)(dn/dx) and rotation velocity of the
plasma both increased mon otonidally with radius; hence there was really ,
no point x5 away from the wall where 3Q/3x = 0 in the WKB approximation.
Similar behavior was seen in Ref. 26.] It can be seen from Ref. 31 and
from the results in Ref. 7 that the'crucial requirement for the local
approximation to agree with a radial normal mode analysis is klRpi>>]q
not a; << Rp.

A few experiments have measured the radial localization of drift
waves. Hendel and Yamada36 found that drift-cyclotron instabilities
(with axial current and kz # 0) in a Q-machine are localized first near
the edge of the plasma, where (1/n)(dn/dx) is greatest (and hence, where
3Q/3x = 0). As they saturate at ;his radius, they begin to develop
further in, and eventually they are spread over the whole plasma inde-

pendent of radial position. Simonen37 found the absolute amplitude of
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the drift cone instability in the 2XIIB mirrpr'expériment only weakly |
dependent on radial position, but found that the frequency was lower
(~0.5 w, 4> a8 opposed to ~0.9mci) at the edge of the plasma. Since the
reduction in frequency below the cyclotron frequency is probably due to
nonlinear effects38 it seems plausible that here too the instability
originated at the edge of the plasma where (1/n)(dn/dx) is greatest, and
later spread towafd the‘centex (where nonlinear effects had not yet be-
come'important at the time of the observations).

As shown in Refs. 9, 19-23, localized normal modes cannot exist,
even though kiRp>¢-1, if Q(x) is "convex", i.e. if the Stokes lines
behave the wrong way as they go to infipity in the complex plane. This
doesn't happen if there is only a density gradient, but it doés happen
if the magnetic fiéld has enough shear. At first it was assumed that no
normal modes could exist if Q(x) was convex, and that this provided a
criterion for shear stabilization of the "universal" drift instabiiity.20’23
However, Pearlstéin and Berk39 showed that even if Q(x) is convex, a
normal mode of the universal drift insfability can be constructed which
has the boundary conditions that energy is being convected outward as
X & o, rather than that ¢(x) - 0 as x > +», (Eventually the energy is
absorbed at large x by ion Landau damping but this is not explicitly in-
cluded in the model.) At first, these modes are still unstable, but
with a.still larger amount of shear they are stabilized. A more careful
treatment of these modes, giving essentially the same reéult, was done by
Rosenbluth and Catto.40 The idea had been suggested by Coppi et al.l‘1
before Pearlstein and Berk39, but was not used then as the basis for a

calculation.
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41-43 have noted that a normal mode analysis is not

Several aufhors
the most appropriate way to study a non-uniform plasma if the local
growth rate Yy is much greater thén.vg/Rp where vg = Juw/3k is_the group
Velocity'of é,localized pulse or wave packet. In such a plasma, a pulse
will grow exﬁonentially large (and Saturéte nonlineafly) before it has
'crdssed’the piasma,'énd.hence beforé it has time to "know'" whether the
normgl mbdes.of the plasma are stable or not. Since ﬁhe local approximation
describes the.behavior of a pulse for many wave periods if the pulse rad-
ial width is much greater than a -wavelength, but much less than Rp, the
condition kLRp:>>l is a condition for the local approximation to agree
with a wave packet description (as well as being a condition for it to
agree with a normal mode description). If y>>vg/Rp, the local approxi-
mation is useful even if Q(x) is not concave, and even if it is evaluated
at a point where 3Q/3x # 0. (If 3Q/3x = 0, then a puise will stay put and
will not coﬁvectaway; if Q(x) is concave, it will not spread away; hence
these are the conditions for a pulse to be a normal mode.) Indeed,
Mikhailovskii44 glves Y>>vg/Rp as the condition of validity for the local
approximation,band this idea is also implicit in the justification for
the local approximation given in Ref. 15.

A wave packet approach was used to study the. shear stabilization of
the universal drift mode by Coppi et al.41 and by Rutherford and Frieman‘.'2
It was found ;hat the requirement y fvg/Rp gave a condition for stability
on the same order as that found later by Pearlstein and Berk39; Coppi et
alf41 suggested that such unstable pulses could be made up of a super-
position of normal modes which remained constant in absolute amplitﬁde

(rather than vanishing) for x + *», Chen 43 used wave packets to study
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shéar stabilization of resistive drift anes, and‘Briggs and Lau45 used -
this approach to study collisionless trapped particle instabilities
in tokomaks.

Lau and Briggs46 refined the wave packet approach by taking into
account spreadiné and acceleration of wave packets,in addition.to con-
vectidn. They found that sprgading was more important than convection
in the case of shear stabilization of the universal drift instability,
and in fact-ﬁhe normal mode stability criterion of Pearlstein and Berk39
was equivalent to réquiring that a wave packet spread fast enough to
make up for its growth, so that its local émplitude'would deéreasé with
time. On the other hand, there were still cases (collisionless trapped
particle modes) where y >>'vg/Rp for pulses, so that a wave packet approach
was more appropriate physically than a normal mode approach; and still
other cases (negative energy loss cone mode) where wave packets were
stable but normal modes were unstable, so that the instability was in-
trinsically nonlocal and could not be described by wave packets. Re-
cently Manheimer46a has shown that even such "intrinsi;ally nonlocal"
instabilities can be analyzed by wave packets if terms proportional to

33Q(x,w)/3%x%3w are not ignored (i.e. if the sign of the wave energy is

allowed to change across the width of the wave packet).



CIII. The Drift Cdne'and Drift Cyclotron Modggﬁ:_Linggx_Ihggnx A

Most of the research we will survey in this section used. the usual
local approximation, assuming §i<< Rp.

The drift cyclotron instability in a Maxwellian plasma withy? m%i
and y << 0.4 was‘first discussed by Mikhailovskii and Timofeevls. The
drift cone.instability seems to have been discovgred independently by
"three different groups at about the same time. Rosenbluth and Post47

briefly mention the possibility of such a mode, without giving any

8
quantitative details, in a 1965 paper. Mikhailovsk114 gives a dis-

persion relation for the drift cone mode using a ring distribtuion £i(vy) =

(vao)—a’s(vl-vo), and points out that any loss cone distribution will
be unstable to a similar mode. However, he uses straight-line ion or-
bits, valid when“{>>tqci, so he does not find a stability threshold.
Shima and Fowler17 take the opposite limity«mci and Q z zwci’ so they
do get an order of magnitude stability threshold, but don't get an

exact value since they only include one cyclotron harmonic at a time.

A precise stability threshold, including ali cyclotron harmonics (and
assuming kaj >> 1, appropriate for ai/Rp<K 1) was found by Post and
Rosenbluthl, who also used collisional equilibrium loss-cone ion dis-
tributions rather than a ring distribution or a distribution of the

form V;2 exp (-v12/2vié) (used in Ref. 17). The term "drift-cone" was
apparently first used in a 1966 paper by Mihailovskii'.49 which also in-
cluded the first use I have been able to find of an ion distribution made

« ~v. 2 2y _ —-2 2
up of subtracted Maxwellians, fi(vl) exp( VL./ZVHN? exp ( v; /zvhole)'

(Such a distribution is much simpler to work with than an exact collisional

equilibrium distribution and gives essentially the same results; in any

15
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case, the ion distributions in many real mirror confinement experiments
are nowhere near collisional equilibrium.) Tang et al?o point'éut that
such a distribution is cidse to a collisional equilibrium distribution
for mirror ratio R = vﬁ%t/vgile >>;1' Qomparisons between collisiopal
equiiibrium distributions, subtracted Maxwellain distributioné, and
distributions of the form vfj eicp(,-vl2 /2v 12 ), are made for smaller R
by Moir.51

Aamodt52 dropped the aésumption that kéi>°~l and found»stabilization
of the drift .cone mode with moderately low mirror ratio and ai/RP‘~l, but
pointed out that the local approximation was only marginally valid in
this case. Cordey et al.”3 showed that this stabilization did ﬁot occur
if the ion density gradient (neglected by Post and‘Rosenbluthl and by
Aamodtsz) were included. As pointed out by Mikhailovskii50 the ion den-
sity gradient is more important than the loss cone when (ai/RP)(VHot/vhole)
2 1, in which case the drift cone instability goes over into the drift
cyclotron instability of‘a‘Maxwellian plasma. This condition is margin-
ally satisfied for the loss cone plasma in the 2XIIB experiment.

Numerical ca;culations of the drift cone linear dispersion relation
for various densities, density gradients, and mirror ratios, but limited
toy g Wy were made by Lindgren, Langdon and Birdsallss.

Bhadra56 as well as Krall and Fowlersz showed that magnetic field
curvature of the minimum-B type could stabilize the drift cyclotron mode
since it.would result in a relative drift of the ions and electrons (Ti +
Te)c/eBo in the directiQn opposite to the diamagnetic drift due to the

density gradient. Even a small reduction in the drift could make the

slope of the ion distribution function negative at the phase velocity.
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Thisvstabilizatiqn_is made even greater by the effect of the fielé gradienﬁ
VB on the electron convection term 'gigza . Because the electronAcon-
vection velocity CEL/BO varies with x, itc:ives.rise ;o an additional
électron density variation of the same sign as that produced by the
electron density gradient, and the phase velocity is increased; ppshingv
it further into the range where the slope of the ion distribution is
‘negative, These'effécts were believed to be important in toriodal §ctu-
.pole experiments by. Ohkawa and Yoshikawa58 in which the drift cyclotron
mode may have been observed. For the drift cone instability Cordey et a1.27’53
showed that the field curvature is de-stabilizing, since an increase in
.the phase velocity and drift velocity put the phase velocity in a region
where the éldpe~of the ion distribution is even more positive.
Baldwin59 showed that fanning of the magnetic field could stabilize
modes which were unstable only over narrow—raﬁges of k;’ such as the
DorY—Guest—Harr1360 or drift cyclotron 0'<<wci) modes. However, fanning
was found not to have much effect on the drift cone mode, which is un-
stable over a broad range of kl.6l
Finite B introduces effects associated with the field gradient VB/
B = -(B/2) Vp/p which is present even in the absence of field curvature,
as well as electromagnetic effects due to the coupling of the electro-
static drift waves with transverse modes. The effect of the field grad-
ient on the electrons, discussed by Cordey et a1?7in studying field cur-
vature effects, is to multiply the electron convection term (wéi/kywwceRp)
by a factor 1 - 2(VB/B)(n/Vn), or 1 + B in the absence of field curvature

and temperature gradients. The effect of VB on the ion ferms is dis-

cussed in Refs. 12, 50 and 62. The effect is not very great if ai/VB/B<<l.



The electromagnetic effects were found by Callen and Guestll, and

2
2k2c s for k, = 0. This term has a simple physical

result in a term w 4/w
pe
explanation; it results from the fact that the electrons, although tied
to the magnetic field lines (because we<w and kae-<<1).can still move
perpendicular to the field by pulling the field lines with’;hem.. In

fact mét/wcikzcz is equal toillkszz, where A_ is thé,Debye length of a

B
;massleSS'fluid with pressure 302/81r, a charge density nee'and ay of 2.
The effect of this term is to reduce the phase velocity. For 8+0, the
p?essure 302/8w is veryilarge (compared to other pressures in the prob-
lem) and this "magnetized.electron fluid" is incompressiblé, so does not
contribute tb the dispersion relation.‘

For the drift cyclotron instability of a Maxwellian plasma, the VB
effect on the electrons and the electromagnetic term wpe4/wce2k2c2 nearly
cancel out, so finite B has little effect on this instability, to the ex-
tent that the vacuum term and the effect of VB on the ions can be ignored.
For the drift cone mode, the electromagnetic term is much more important,
and is a stabilizing influence since it decreases the phase velocity.
Tang et al50 and Mikhailovsk1163 showed that this term is important if
)2/3 2 2 /3

1
(wci /wpi + me/mi) , and that in this case the mini-

mum density gradient needed for instability is much greater than for

B 2 (VHot/vhole

g > 0.

The effects of finite length on the drift cone mode and other flute
modes (i.e. modes which require k,, = 0 to be unstable) are discus-
sed in Refs. 62, 64-66. If the plasma were in contact with conducting

plates at the ends of the machine, then only modes with k,L = nw would be

18
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4pos'sible, and if L ¢ ve/w th‘ese modgs would ail be stabilizegl by elec-
tron Landau damping (or more precisely, electron bounce resonance damping) .
.Because of‘ the ambipolar potential, however, the plasma is not directly

in contact with the ends of the machinev, but is surrounded by vacuum.

In this circumstance normal modes can exist when L $Ve/w for which the
perturbed potentiél_ on a given field line is very nearly constant over

the length of fhe plasma (i.e. 3¢/3z -~ mkl/wpe << “’/Vé < 1/L) out to a

point where the plasma density is sufficiently low that k, A 2 1, at

D
which poinj: the potential drops quickly to its value at the wall. (This
"flute approximation" requires, of course, that k, AD << 1 in the center
of the plasma. If k,A_ >>1 throughout the plasma, then the perturbation
sees the plasma as essentially vacuum, and only modes with k L = nm can
exist, This might be enough to stabilize the .sﬁort wavelength mode

discussed in Ref. 12, even without the stabilizing mechanism discussed

there.)
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IV. Warm Plasma Stabilization and thé Two Température Instabiligy '

Many authors have suggested that warm plasma filling or partially
filling the loss cone might stabilize the drift cone mode; this suggestion
‘has been made both as a means of getting rid of an observed instability,
and as an explanation for the drift cone mode not being obserngvin ex-
periments where it was expected. The warm plasma could come from ;n
injected-stream,-or from charge exchange with cold neutrals present in
the plasma (pefhaps unintentionally) or from diffusion of hot ions into
‘the ioss cone.

Post and Rosenbluthl suggested warm plasma as a.qeans-of'stabilizing
the drift cone mode in a reactor. Galeev2 calculated that in a ﬁachine
of reasonable length, the instability would grow to level.where ions
were being diffused into the loss cone at the same rate as they would be
lost out the ends of the machine once they were in the loss cone if the
loss cone were just full enough for the mode to be marginally stable
(i.e. quasilinear saturation). Only if the machine were unreasonably short
would ions be lost out the ends so quickly that the wave would have to
grow to a high enough level to saturate nonlinearly, i.e. by wave-wave
coupling. (Actually, this calculation was done for the high frequency
convective loss cone mode, but similar considerations would apply to the
drift cone mode). If it is assumed thag a large fraction of the ions
have to be in the loss cone for marginal stability, it follows that the
lifetime of plasma in a reasonabiy long mirror machine should not be
more than a few ion bounce times. The fact that mirror confined plasmas
have been observed to have much longer lifetimes3’4.has motivated the

search for a nonlinear mechanism to saturate the drift cone mode at a lower
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amplitude;;these will be discussed in Sec. V'of this chapter. ‘Hoﬁever,
Baldwin, Berk and Pearlstein67 have recently shown that quasilinear satur-
ation 1s consistent with the experimental observations if it is realized
that.only a small fraction of the lons need to be in the loss cone for
marginal stability in present experiments, becasue most of.the ions out-
side the loss cone have v, >>v,, (since they are injected that way, and
electron drég is more important than pitch angle scattering when Tg << Ty
an experimental measurement of the pitch angle distribution of ions is
given in Ref. 68). This also increases theiiqn transit time, which is
L/v">>1Jvi.

If the plasma in the loss cone comes from an initially cold component,
the plasma may also exhibit an lon two-temperature instabili;y, in addition
to the drift cone mode. Since the ilon two-temperature mode is unstable
when the warm component is too cool or too dense, and the drift cone sta-
bility occurs in the opposite limits, it is not immediately clear that
both modes can be stabilized at once, without filling in the loss cone
completely, so that the ion perpendicular velocity distribution function
is monotonically decreasiﬁé. That this can be done with only a small
amount of warm plasma (much less than that needed to completely fill
the loss cone) is the most important result of Ref. 10.

The ion two-temperature instability was first discussed by Pearlstein,
Rosenbluthland Chang69 (although an earlier paper by Hall, Heckrotte and
Kammash70 dealt with a related instability requiring k,, # O and wpi<<«uci).
They considered a cold component of much greater density than a hot loss
cone component, with no density gradient. This corresponds to regime III

2 2 -1/2
in Ref. 10. They found stability when ncold/nhot 2 (wci m +m /m,)

pi e i i
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unless the lower hybrid.frequency,happens to be very close to an ion
cyclotron harmonic; this is condition (3) is the discussion of regime III

in Sec. V of Ref. 10.

Pearlstein71 extended this study to n /nh <1and to T > 0,
warm hot warm

‘ , 3/2
and found stability when nwarm/nhot < (Twarm/Thot) ; this corresponds

to the boundary bet&een regimés IT and V in Ref. 10. A similar result

was obtained by Guest, Farr and Dory72.

73

Farr and Budwine numerically obtained stabiiity thresholds for

a cold component and a hot loss cone component with distribtuion function

2j /

proportional to v, exp(—v'Z/ZViZ), varying j, n

cold’ Mhot
They found (as did Tataronis and Crawford74 for the corresponding

, and mpi/mci

electron instability) that fof a ring distribtuion of hot ions (j +»), in-
stability persists for nhot/ncold arbitrarily small (though at small growth
rates) if the lower hybrid frequency is close to an ion cyclotron harmon-
ic. Mynick, Birdsall and Gerver75 found the corresponding stability
thresholds using a warm Maxwellian component of varying temperature in
place of the cold component, and varying j and nwarm/nhot’ but taking.
mﬁh/wci + ® go that straight line ion orbits could be used. A numerical
study of the stability threshold for each cyclotron harmonic, in a hot
loss cone plasma with a cold component, was made by Brossier et al.76.
They found a threshold for the first harmonic which corresponds to the
boundary between regimes II and III in Ref. 10, except that they use
wbi only a few times w40 instead of wpi>>wci as in Ref. 10. On the
basis of this calculation, noise at the ion cyclotron harmonics in a
mirror. experiment was identified as an ion two-temperature instabilipy.

The ion two-temperature instability with finite B effects (the elec-



tfomagnetié wpezkz/c2 correction of ref. 11) was considered by Gomberoff
and Cuperman77, who made some analytic and numerical calculations appli-
cable to the magnetosphere, using ncold ~ nhot’ straight-line ion orbits,
23

2 A
and loss cones of the form v, exp(-v_'_z/wi ). This instability was also

considered more briefly by~Mikhailovskii63, and a related instability

with kz # 0 was.studied by Coroniti et'al.78

' Crume et alzgudid a computer simulation (1% D, with particles) of

. a two temperature instability and found saturation when the cbld’particies
were coherently heated by the wave to a sufficient temperature so that

the distribtuion function would be linearly stable. This supports the

idea that cold plasma in a mirrér machine could be heated by the instability
until a marginally stable distribution (on the boundary between regimes II
and V in Ref. 10) were reached.

Several studies have been done of the use of warm plasma to stabilize
the drift cone mode without introducing a two-temperature instability.
Post80 and Berk et al.9 showed analytically that a warm loss cone compon-
ent of the same mirror ratio as the hot loss cone component increases the
critical density gradient for the drift cone modeby a "stabilization factor"
which is, however, never much greater than one if the two-temperature mode
is stable. Refs. 80 and 9 also include numerical studies of the effect
of a Maxwellian warm component and found some values of the parameﬁers
for which the critical density gradient was greatly increased by a fairly
small amount of warm plasma. However, most of these cases involved high
mirror ratio plasmas in which the loss cone was filled in completely. In
these studies the warm component was sometimes of a different species than

the hot component; a warm'hydrogen component would have four times less

23



24

energy thaﬁ a warm deuterium component of the same plasma frequency and
thermal velocity, and might be advantageous to use in a reactor.

| Moir51 calculated the amount and temperature of warm plasma needed
to stabilize loss cone instabilities, but éssumed that the total distri-
bution function had to~beAmonotonic (a sufficient but not necessary con-
dition for stability).

Broséier,.Girard, and Heﬁniongl di& a numerical study of k, = 0 modes
in a plasma composed of hot loss cone and warm Maxwellian ion components,
with a density gradient. As in Refs. 80 aﬁd 9, for the Stable cases
considered theiloss cone is almost completely filled in, and the conclu-
but

sion drawn is that warm plasma is de-stabilizing if T <<T, _,
‘ warm hot

stabilizing if Twarm"Thot'

Fowler82 showed that a small amount of warm plasma, not filling in

3/2

the loss cone, could stabilize the drift cone mode if nwarm/ n oot > (T / ) 3

warm Thot
this is the boundary between regimes IV and V in Ref. 10. However, this
is also approximately the condition for the ion two-temperature mode to
be unstable. Because the condifion for stabilizing the drift cone mode
was not calculated exactly but only approximately, it is not clear from
Ref. 82 that a regime like regime V in Ref. 10 exists at all, i.e. it
could be that regime IV borders regime II. This would mean that stability
of both the drift cone and ion two-temperature modes is possible only
by completely filling in the loss cone, i.e. in regime VII.

For a plasma with ai/Rp - vy like that of the 2XIIB and

ole/vhot’
other mirror experiments, regime V barely exists, and it is necessary to
completely fill in the loss.cone in order to stabilize the drift comne

mode. This requirement for stability was assumed in the quasilinear



model of Baldwiﬁ, Berk and Pearlstein;67 expléining,the much lower ampli- -
tude of waves and longer plasma lifetime when a cold stream was injected.
The amount of warm plasma needed to completely fill the loss cone is

: 2 E . .
nwarm/#hot ~(vholelvhot) . Hence, in the absence of a stream,.the drift

cone mode should remain at a 1evei so that the hot ions are diffused

into the loss cone in.a time (Yhot/vhole

(since v,, for a typical ion in the loss cone is Vhole

present (either from an injected stream or background gas) of density

2 ' .
)" times an ion bounce time‘L/vhole

). With cold ions

2
S ,
ncold/nhot 2 (vhole/vhot) , it is only necessary for the waves to grow
to an amplitude great enough to diffuse the cold ions to a velocity
v -V in a flight time. Since the diffusion rate in velocity
warm hole

. 3

space goes as 1/vl for v, >w/k, . vhole’ the loss time for hot ions

due to this amplitude of waves is about (v, _/ )5 times an ion bounce

Hot' Vhole
time, considerably greater than without the cold ion source. In fact,
this diffusion loss time is greater than the electron drag time for 2XIIB
parameters, so the ion loss is dominated by electron drag when there is
a cold ion source. The good agreement between the evolution of ion
temperature and density in the experiment8 and in a numerical calculation
based on this quasilinear model83 suggest that the drift cone mode does
saturate by quasilinear d;ffusion, at least when there is a cold source
present. Stabilization of the drift cone mode with an ion stréam is also
seen in the PR-7 by Ioffe et al.84 (Saturation by electron trappingss,

discussed in Sec. V, is also consistent with the experiments in the ab-

sence of a cold source.)
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v. Nonlinear Saturation of the Drift Cone Mode -

Several other mechanisms for saturation of the drift come mode have
- been proposed over tﬁe years, in additiomn to quasilinea? diffusion into
the loss cone.

‘MikhaiiovskiiAg used some kind of strong turbulence theory involving
wave-wave interaction to find a spatial diffusion coefficient for the

drift cone mode Dx - Y/k2 ~ aiz V. /R (for the w ~

hole ci
the highest Y/kz) which implies a spatial diffusion time T~ (Rp/ai)3

(vHot/vhole) wci

also diffusion in velocity space, and the time required for an ion to

mode, which has
for the plasma to diffuse a distance Rﬁ. There is

) 35 ,
diffuse into the loss cone is T, T (a /R ) (v, oJ hole . Thus spatial
diffusion is more ‘important than velocity space diffusion precisely in
those cases where the drift cone mode becomes a drift cyclotron mode
(ai/R.p > vhole/vHot)’ i.e.,when the ion density gradient is more impor-
tant than the loss cone in driving the instability. (Note,however, that

Vhole/vHot') This

calculation was made assuming that ions are lost immediately when they

the calculation is not necessarily valid for ai/Rp>>

reach the loss cone, thus precluding quasilinear saturation. Galeev2
showed that in practice the ions would be lost only after an ion bounce
time,L/vi, and that quasilinear saturation would occur before nonlinear
saturationbexcept for very short machines.

Because ai/Rp ~ vhole/vHot for the 2XIiB plasma, diffusion across
the density gradient ought to be comparable in importance to diffusion
into the loss cone; if the mode saturates by diffusion into the loss

cone, then the density gradient ought to be significantly reduced by

spatial diffusion at the same time. Sperling86 considered quasilinear.



diffusioﬁ across the density gradient by the drift cyclotron mode.

Several aut:ho::'s79’87-'89

have looked at resonance broadening or
trapping saturation of the Dory—Guest—Harr1360 and ion two-temperature
modes in a uniform plasma, obtaining differing results.

A nonlinear disruption of the ambipolar potential by the perturbed
potential near the ends of the plasma was suggested by Baldwin et al.64
This would allow some electrons to flow to the ends of the maéhine, des-
troying the flute approxiﬁation (which aésumed the plasmavwas isolated
from the ends) and allowing electron bounée resonance damping. Toffe
et al.84 consider (but reject) the possibility that an ion stream might
stabilize the drift éone mode not by filling in the loss cone, but by
end conduction.

Baldwin et al?1 postulated an electron Langmuir mode (with w'~wpe T W
driven unstable by electron anisotropy due to the mirror ratio and the
ambipolar potential, saturating when the spatial diffusion rate reached
y/kz. This electron spatial diffusion rate would be greater thah'y/k2
for the drift cone mode, and thus stabilize it, for mpez/mce2 > 0.4 and
ailRp < 0.5, accounting for the apparent stability of the drift cone mode
in the 2XII. This mechanism was proposed because it was felt that no
mechanism involving ion diffusion could account for the stability of the
2XII since the ion lifetime was several hundred bounce periods. However,

once it was realized that v for the 2XII plasma, and that the

Hot 77 vhole

velocity diffusion coefficient was proportional to l/v.,_3 for V1>>.Vhole’

it was possible to saturate the drift cone by quasilinear diffusion of

cold ions in the loss cone, while diffusion of the hot ions with Vi>? Ve

was negligible, and the mechanism involving electron diffusion was no
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ionger-nécessary. However, Liu and Aamodt38.note that this electron
diffusion ;ould in any case account for the fact that the drift cone mode
has never been observed at w§>wci, even if it cannot stabilize the

drift cone mode completeiy. This applies also to the short wavglength
‘mode discussed in Ref. 12.

Aamodt85 suggested that electron ttépping could be the most impor-
tant saturation mechanism of the drift cone mode when thére is no cold
ion source. The amplitudé of the wave required for such trapping was
found to be in fairly good agreement with the amplitude Observgd in the
"noisy" mode of operation (i.e. with no ion .stream and free of gas) for
several different mirror machines with differeﬁt parameters, viz. 2XII,
2XIIB, PR-6 and PR-7. The trapped electrons‘move around the equipotentials
of the wave in their E x B motion (see figure 3 in Ref. 7). Hence the
trapping amplitude depends on the radial width of the normal modes, and
the results of Ref. 7 and 13 should be useful in determining the trapping
amplitude more exaétly than in Ref. 85.

Another stabilizing mechanism was discussed by Ioffe et al.?4 who
noted that electron cyclotron resonance heating (ECRH) of electrons in
the PR-7 plasma with mpe < 0o resulted in stabilization of the drift
cone mode. Since such heating results mostly in increasing the perpen-
dicular velocity of the electrons, the authors suggested that the heated
electrons became magnetically trapped, locally decreasing the ambipolar
potential, and glectrostatically trapping ions in the loss cone, thus
stabilizing the drift cone mode. Aamodt90 considers applying this method
of stabilization to a fusion reactor.

We conclude this section by describing two nonlinear de-stabilizing



mechanisms. ' First, Kanaev énd Yushmanbvglvnote that once the drift

cone instability develops, it may lead to heating of the electrpns through
 some unspecified nonlinear process. This in turn increases the ambipolar
potential, which increases the size of the holé in the ion distribution,
which increases the growth rate of the drift cone mode. The increase
of.the'ambipolér potential, electron temperature, and phase velocity of

the drift cone mode with time are actualiy observed in the PR-6 experiment.
This .cycle éontihues until some méchanism, such aslion diffusion or
electron trapping, saturates the drift cone mode. The authors suggest
that without this positive feedback effect the drift cone mode might not

be observed at all, or would saturate‘at a lowér amplitude. The connection
between electron temperature and the drift cone mode growth rate is sup-
ported by experiments in which electroné are heated by ECRH (at mpe > Wegs
resplting in isotropic heating) and thg drift cone amplitude increases
earlier than it would without ECRH.

Liu and_Aamodt38 consider a parametric instability in which a nega-
tive energy drift cone mode of finite amplitude with frequency slightly
less than wci decays nonlinearly into two positive energy waves of lower
frequency. (The nonlinearity is in the motion of the electrons in the
direction of the density gradient; the ion motion and the electrﬁn polar-
ization drift are still treated linearly.) For PR-7 parameters, this

parametric instability has a growth rate of 0.1 w but is stable if the

ci’
plasma is azimuthally asymmetric. The authors note tﬁat the PR-7 plasma92
is azimuthally asymmetric when first injected; at this time, a drift cone

mode grows linearly, but remains nearly monochromatic with frequency near

Wy and does not cause anomalous ion loss (because it is monochromatic).
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Once the plasma has become axisymmetric (due to VB drifts) the parametric
instability becomes unstable, and the wave spectrum broadens, spreading

to frequencies of 0.5 w_, and belbw,'and-ion losses occur. Similar be-

ci
havior is observed in the 2XIIB plasma37. The ‘drift cone mode is unstable
linearly, but this nonlinear effect may be crucial in its causing ion dif-
fusion, which requires a finite bandwidth. Chu, Hendel and Simonen93
have found expefimental evidence for a similar nonlinear broadening of

‘the spectrum of low frequency (w<<w kz # 0) drift waves in a Maxwellian

ci’

Q-machine plasma}

"~
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