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ABSTRACT

Voltage multipliers are used for transformerless conversion of an

ac input voltage v.(t) = E sin u»t into a ^c output voltage V = nE, where

n _> 2. This paper investigates the topological properties of voltage

multiplier circuits and presents a unified approach for generating new

voltage-multiplier circuit structures. In particular, an algorithm is

presented for generating n-fold voltage multipliers with n capacitors and

n diodes. A theorem is presented for finding the dc capacitor voltage by

inspection when no load current is drawn. For the case with load, explicit

formulas for the output dc voltage and the output resistance are given.

Using the algorithm developed in this paper, three new voltage quadrupler

circuits are generated and shown to have an output resistance only one-half

of the conventional ladder quadrupler circuit.
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1. Introduction

A voltage multiplier (abbreviated VM) is a capacitor-diode network

capable of convertinganac input voltage v.(t) = E sin u)t into a dc

output voltage V = nE, where n > 2. Several commonly used voltage

multiplier circuit configurations (n=2,3,4) are shown in Fig. 1. Voltage

multipliers have been used extensively in the high-voltage power supply of

television sets and in many other applications requiring an ac-to-dc conversion

[1-3]. Figure 2(a) shows a C-D ladder network with the diodes forming

the "rungs," and with v±(t) applied to one end of the ladder [4,p.822].

A dc capacitor voltage V = nE may be obtained by connecting the output

circuit of Fig. 2(b) across an appropriate pair of nodes of the ladder

network. The output circuit consists of a diode in series with a capacitor

(called the output capacitor) and will henceforth be referred to as the

"output tank" to emphasize the fact that in practice, the output capacitor

has a much larger capacitance than the others in the ladder. Two tank

connections for realizing an even order and an odd order multipliers are

shown in Figs. 3(a) and (b), respectively [5].

As an aid for understanding the operating mechanisms of voltage

multiplier circuits, let us first review some basic properties of the

simple rectifier circuit shown in Fig. 4. If the capacitor is initially

uncharged i.e., vc(0) = 0, then the steady-state capacitor voltage is

Te + E, if E + E > 0
A / ° ° ~

vc =vc(oo) =\ n (1)
(^0 , if E + E < 0

We assume all diodes are ideal throughout this paper, i.e., the diode
voltage VD and the diode current iD satisfy the constraints vn < 0, in > 0,
and vDiD = 0. D - » D - >
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In other words, if the input voltage at any time forward biases the diode,

then the capacitor will be charged to the peak forward biasing voltage

and will retain that voltage forever. Furthermore, if any passive load is

now connected across the capacitor such that it draws only a finite amount

of charge from the capacitor for all t _> 0, then it is intuitively clear

that the lost charge will eventually be replenished by the source during

the subsequent forward biasing intervals of v (t). Therefore v («) is

again equal to E + E. Thus, in steady state, the capacitor is equivalent

to a dc voltage source of value E + E, provided that the passive load

draws only a finite amount of charge.

Using the preceding equivalent voltage-source concept, we can now

find the steady-state solution of the VM circuits of Figs. 2 and 3 via an

intuitive method, provided the following requirement is satisfied by these

circuits:

Assumption 1. The steady-state solution of the initially relaxed C-D-1E

network is the same as the solution obtained by connecting the diodes to

the initially relaxed C-IE subnetwork, one at a time, in any order,
ac

2
provided that a steady state is reached before each new diode is connected.

As a specific example, consider the C-D-1E ladder network of
clC

Fig. 3(a). The associated C-IE network is obtained by disconnecting all

diodes. Assuming that all capacitors are initially uncharged at t = 0

when the diode D.. is re-connected, then it follows from Eq. (1) that V ^ = E.

9
For simplicity, we use the abbreviation "C-D-1E network" to denote any
network containing capacitors, diodes, and exactly one sinusoidal voltage
source. Similarly, a C-lEac network contains only capacitors and exactly
one voltage source. A network is said to be initially relaxed if the initial
voltages on the capacitors are equal to zero prior to the application of the
voltage source.
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We now treat C, as if it is a voltage source V,., = E. Looking to the left

of nodes 1 and 2, we see an equivalent voltage source v21 (t) = E + E sin tut.

Hence if we re-connect diode D after C. has reached steady state, we would

obtain V „ = 2E in accordance with Eq. (1). Continuing this diode re-

connection procedure, the following steady-state voltages for the circuits

of Figs. 3(a) and (b) are easily obtained:

vci = E

VC2=VC3=-'-- =VC,n-l=2E

VCn=nE

The preceding method is simple and gives correct results (as will be

proved in Section 3) for these circuits. Unfortunately, its validity

depends on whether Assumption 1 is satisfied, or not. To demonstrate that

not all capacitor-diodes networks satisfy the property stipulated in

Assumption 1, consider the circuit shown in Fig. 5, where both capacitors

are assumed to be initially uncharged. If D. is re-connected at t = 0

(D2 not connected yet) then v it) = y It) = 10 for t _> t T, where T = 2tt/u).

Now suppose that D2 is re-connected at t = T, then D? will be reversed

biased at all times since v o(t) = 4 sin wt - 10 < 0 for all t >_ T.

Thus the steady-state solution is V . = V 2 =10. On the other hand, if

we re-connect D2 first at t = 0, and subsequently re-connect D, at t = T,

then a straightforward analysis gives the steady-state solution V = 8

and V 2 = 12. This example shows that different orders of re-connecting

the diodes could lead to different steady-state solutions. Consequently

the property stipulated in Assumption 1 is certainly not true in general.
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Even assuming that Assumption 1 is satisfied for the time being, the

preceding Intuitive Method still has a serious drawback: It is not

applicable to all C-D-lEa voltage multiplier circuits, such as the one

shown in Fig. 11.

One objective of this paper is therefore to present a rigorous theory

and a reasonably simple method for computing the steady-state solution

of voltage-multiplier circuits.

Another objective is to provide answers to the following practical

questions:

Is the ladder network of Fig. 3 the only general voltage multiplier

circuit configuration? If not, what other general configurations are there?

How does one choose among different configurations? What is the effect of

the load on the dc output voltage? In Section 2 we present a topological

procedure for constructing a variety of n-fold voltage multiplier

configurations using n capacitors and n diodes. It will be clear that the

conventional ladder voltage multiplier circuit is just a special case

generated by our topological algorithm. In Section 3 we present a rigorous

theory for determining the steady-state capacitor voltages of the voltage

multiplier circuits generated in Section 2, under no load condition. The

result of this section actually gives a justification for the Intuitive

Method described earlier. The effect of load current on the dc output

voltage is analyzed in Section 4. The resulting analysis will enable one

to choose the best among several n-fold voltage multiplier configurations,

when voltage regulation is the primary concern.

2. A Topological Method for Generating Voltage Multiplier Circuits

The problem at hand is to construct a network N made up of ideal

capacitors, ideal diodes, and one sinusoidal voltage source (abbreviated
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C-D-1E ) that will possibly perform as a voltage multiplier. Since a

general theory of C-D-1E networks does not currently exist, we shall

not attempt to investigate the most general network configuration in which

the diodes and the capacitors can be connected in an arbitrary fashion.

Instead, we shall first identify the features of the conventional ladder

voltage multiplier circuit which are fundamental to the operation of the

circuit and then develop a topological method for generating other

configurations possessing the same fundamental features. The following

two conditions on the C-D-1E networks are two such features which we
ac

will henceforth assume to hold for all networks to be investigated in this

paper:

(1) C-E tree Hypothesis: The capacitors and the voltage source

form a tree of the network.

(2) D-E tree Hypothesis: The diodes and the voltage source form a

tree of the network.

In Section 3 we shall describe a rigorous and yet simple method for

finding the steady-state solution of any C-D-1E network satisfying the

C-E tree and the D-E tree hypotheses. Although our original motivation

for imposing these two hypotheses was to preserve partly the conventional

ladder voltage multiplier circuit configuration, several subsequent

considerations have indicated that these two hypotheses are in fact

desirable for the design of any practical voltage multipliers. For example,

if there is a loop consisting of the voltage source and some capacitors,

and hence violating the C-E tree hypothesis, then the capacitor voltages

in the loop will no longer remain constant even in steady state. If there

are two diodes connected in series, and hence violating the C-E tree

hypothesis, then either one diode may be shorted, or both diodes may be
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removed without affecting the solution. If there are two diodes connected

in parallel, and hence violating the D-E tree hypothesis, then either one

diode may be removed, or both diodes may be shorted without affecting the

solution. If there are two capacitors connected in series (and hence

violating the D-E tree hypothesis), or in parallel (and hence violating

the C-E tree hypothesis), then the two capacitors can be replaced by an

equivalent capacitor.

One immediate consequence of hypotheses (1) and (2) is that if the network

N has n+2 nodes, then

total number of capacitors

= total number of diodes = n

Given n, we can construct all nC-nD-lE networks (containing n capacitors,

n diodes, and one voltage source), satisfying the C-E tree and D-E tree

hypotheses. The conventional voltage multiplier circuits in Figs. 2 and

3 are rather special cases where the voltage source and (n-1) capacitors

form a path in the network. Upon eliminating the (n-1)C-IE path constraint, we

immediately have a new realm of nC-nD-lE networks which can possibly perform

as voltage multipliers. Figure 6 shows three networks that satisfy

hypotheses (1) and (2), but do not have (n-l)C-lE paths. The steady-state

capacitor voltage are indicated in the figure.

We shall now examine the number of nC-lE trees that can be constructed,

given the number n. As an illustration, consider first the special case

n=3. There are six distinct 3C-1E trees as shown in Fig. 7. Label the

nodes of the voltage source E as nodes 0 and 1. If the E-branch is

removed from each of these graphs, the resulting graph separates into two

sut-trees T Q and T -, with nQ and n. C-branches, respectively, where
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n > 0, n-. j> 0 and n + n1 = n. Now in the enumeration of all T
CO

and

Tr, subtrees, the nodes 0 and 1 are different from the rest because they

serve as reference nodes and will henceforth be called the roots of T_0

and Ti , respectively. Given any nft and n.. such that n = n_+n , our

problem is to find all distinct combinations of rooted trees Tr~ containing

nQ branches, and all rooted trees T , containing n branches. This problem

can therefore be identified with the problem of enumerating "unlabeled

rooted trees" for which well-known methods exist [6,p.246]. In particular,

if w, denotes the number of unlabeled rooted, trees of k branches, then

the value of w, corresponding to the first 9 values of k are listed below.

k 1 2 3 4 5 6 7 8 9

Wk
1 2 4 9 20 48 115 286 719

Applying this table to Fig. 7, we see that we have 1 rooted tree T_n

of 1 branch, 2 rooted trees T-.. of 2 branches, and 4 rooted trees T^,

of 3 branches. The value of w, for any k can be calculated by the use of

a counting series [6,p.247] which we will not elaborate here. The above

list should suffice for our present discussions.

To get the total number of nC-lE trees we should:

(1) consider all possible ways of partitioning n into n = n_+n,;

(2) for each (n^n^ pair, enumerate the unlabeled rooted

trees T^ and T^s

(3) consider all possible combinations of T n and T - which,

together with E, form a C-E tree, and take care to avoid duplications.

It can be shown that the result is:
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tfl = number of distinct nC-lE trees

\ +wlVl +****+Vi'Vi' for odd n
2 2

lwr, + wiw_ i + + w • 1nT wlVl ^ •-• + % * + 2 wn <wn + D for even n (2)
K2 " } (2 1} I I

The first seven values of t are listed below,

n 1 2 3 4 5 6 7

t
n

1 3 6 16 37 96 237

Observe that for the example in Fig. 7, we have n=3 and hence we expect

to have 6 distinct 3C-1E trees. Once a particular C-E tree configuration

has been selected, there are still many ways to connect the n diodes to

form a D-E tree. The combinatorial problem becomes extremely complicated.

Fortunately some practical considerations described below will further

restrict the class of C-E trees and D-E trees for our purpose.

Consider the three circuits shown in Fig. 6, each of which uses

4 capacitors and 4 diodes. Figure 6(a) is a voltage quadrupler whereas

the other two circuits can at most function as voltage doublers. Naturally,

we are only interested in voltage multiplier circuits which produce the

highest dc output voltage possible with the given number of components.

With this practical consideration in mind, we see that the diode D, in

Fig. 6(c) is poorly located because its fundamental loop relative to the C-E

tree contains only capacitors (and D, of course). Since the ac voltage

source is not included in the loop, we have a situation of charging some

capacitors by other capacitors. We can not expect the highest dc voltage

to be enhanced by such a mechanism. Therefore, it is reasonable to connect
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every diode only from one node of T Q to another node of T -. In this

way, every fundamental loop associated with the diodes relative to the

C-E tree will contain the voltage source. This procedure further

implies that the fundamental cutset defined by the voltage source relative

to the C-E tree will contain all the diodes [7]. Therefore, we have now

justified the imposition of a third hypothesis:

(3) D-E cutset Hypothesis. The diodes and the voltage source form

a cutset of the network.

Next, let us review the action of the voltage multiplier of Fig. 3(a).

When D, alone is connected to the C-E ladder, C, will be charged to

V =E. At this time, the voltage drop from node 2 to node 1 is

v (t) = E + E sin cot

which has positive peak of 2E. By connecting D2 from node 2 to node 3.

we utilize the 2E peak voltage to charge C2 and obtain V,2 = 2E. At this

point in time, if we connect another diode from node 2 to some other

capacitor, the voltage available for charging the capacitor is at most

2E. Hence, nothing is to be gained by connecting more diodes to node 2.

Thus, in order to make the best use of every diode; it is advisable not

to have more than two diodes connected to every node. This, together with

the D-E cutset hypothesis, suggests that (a) The number of the capacitors

in the two subtrees T Q and T-, differ by no more than 1. (b) The diodes

are contained in a path. We have therefore justified the imposition of

3
still another topological constraint:

3
Hypotheses (1) through (4) imply that at most two diodes are connected to
each node.
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(4) Aiigned D-path Hypothesis. The diodes, possibly with the voltage
source, form apath and are forward biased in the same direction in the path,

A network satisfying hypotheses (l)-(4) can be depicted as shown in

Fig. 8. We wish to emphasize that all four hypotheses have been imposed

through practical considerations rather than theoretical development. The

C"E tree and D-E tree hypotheses are introduced so that the fundamental

features of the conventional ladder voltage multiplier are preserved,

and such that the steady-state solution can be found by simple and rigorous

method (Section 3). The D-E cutset and the aligned D-path hypotheses are

introduced in order that an n-fold voltage multiplier with only n

capacitors and n diodes may be developed. The D-E cutset and D-path

hypotheses can also be justified mathematically once the C-E tree and D-E

tree hypotheses have been imposed. This will be done in Section 3 after

a general steady-state analysis method is developed. Observe that the

conventional ladder circuits of Figs. 2 and 3 satisfy all four hypotheses.

In contrast, the circuits shown in Figs. 6(b) and (c), which fail to

function as voltage quadruplers violate the D-E path hypotheses.

Taking into consideration the four hypotheses stated above, we

shall now describe an algorithm for producing an n-fold voltage multiplier

with n capacitors and n diodes. For the purpose of our subsequent analysis

of the circuit (Section 3), the algorithm also includes a scheme for

labeling the nodes the capacitors, and the diodes.
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Algorithm VM (Voltage Multipliers):

Step 1. C-E tree construction. Construct two rooted trees TCQ and Tcl

with ^.and -^ capacitors, respectively. Connect the voltage source across

the two roots of T„n and T^,.

Step 2. Node Labeling.

Case 1. n is even. For Tp,, select any capacitor as the output capacitor

and label its nodes with 1 and n+1. Label the remaining nodes of T^

with odd integers (3,5,...,n-l). For T Q, label the root with 0, and

the remaining nodes with even integers (2,4,...,n).

Case 2. n is odd. For Tp,, select any capacitor as the output capacitor

and label its nodes with 1 and n+2. Label the remaining nodes of T^,..

with odd integers (3,5,...,n). For T , label the nodes with even integers

(2,4,...,n+l), taking care that roots of Tc and T , are labeled with

consecutive integers.

Step 3. Diode connection and labeling.

Case 1. n is even. Connect a string of n diodes to node pairs

(1,2),(2,3),...,(n,n+l), with each diode forward biased from node j to

node k, j < k. Label the diodes consecutively as D.,D-,...,Dn-

Case 2. n is odd. Connect n diodes to the node pairs (1,2),(2,3),

—,(n,n+1),(n+1,n+2) disregarding the pair associated with the nodes

of the voltage source, with each diode biased from node j to node k,

j < k. Label the diodes consecutively as D.,D.,...,D .

Step 4. Capacitor labeling.

Label the output capacitor as C , which is between the node pair

(l,n+l) for the case n is even, or between the node pair (l,n+2) for

the case n is odd. Label the remaining capacitors as C,,C2,...,C - in

any order.

We use the symbol LXj (floor of x) to denote the greatest integer equal
to or less than x and the symbol rx"1 (ceiling of x) to denote the least
integer equal to or greater than x.
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Observe that the fundamental loop defined by C with respect to the

C-E tree contains n diodes. It will be shown rigorously in Section 3

that VCn = nE if vi = E sin tot.

As examples, the conventional voltage multiplier circuits of

Fig. 3 and the new quadrupler circuit of Fig. 6(a) have been generated and

labeled according to the algorithm. Observe that Algorithm VM has been

presented as one possible way of constructing voltage multiplier circuits.

There may exist other voltage multiplier circuits that cannot be generated

by algorithm VM. However, we conjecture that all nC-nD-lE , n-fold
ac

voltage multipliers can be generated by Algorithm VM, provided that the

positions of any two series-connected elements may be interchanged, if

necessary. In the conjecture, it is understood that the output voltage

Vq = nE must appear across a capacitor. Consider n=4 for example.

Algorithm VM generates 9 distinct configurations which are listed in

Fig. 14. For this simple case, one can exhaust all possible connections

of 4C-4D-1E elements and show that there are only 9 distinct voltage

quadruplers and that all of them are generated by Algorithm VM.
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3. Steady-State Analysis — Without Load

Consider an nC-nD-lE network N which satisfies the C-E tree and
ac

D-E tree hypotheses. To facilitate the formulation of the equilibrium

equations for N, we construct G , the directed graph associated with N.

In G^, let each diode branch direction be the same as the forward current

direction. Branch directions for the capacitors and the voltage source

may be arbitrarily assigned. Then the fundamental loop matrix with respect

to the C-E tree may be partitioned as follows (see [7] for notation):

B =

e c1 ...,cn d1,.:..,d,
n

J

D-

1
" n

J

C-E tree •cotree

(3)

The current and voltage vectors are denoted by L, i . i . v , v , and
~E ~C ~D E ~C

YD respectively. Throughout the remaining sections, we use small letters

for functions of time, and capital letters for constants. The network is

governed by three laws which are expressed by matrix equations as follows:

Kirchhoff voltage law (KVL):

?TTV + BoVo + Y = QE e C~C *d

Kirchhoff current law (KCL) [7,p.145]

— — r«T i
1_ B
"E

31
~E

i

i .
T

B ~D

L~cJ L~C J

•14-
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Branch v-i relationships:

dv

i = C-r^- (6)
~C ~ dt

v < 0, i > 0, vTi =0 (7)
~D ~D ~D-D

Equations (4)-(7) must be satisfied for all t, although we are looking

only at t •*• ». Assume that the steady-state capacitor voltages are

constant, i.e., v («) = V . We shall outline a procedure for finding Yc.

From Eq. (6), we have i («) =0. Since the D-E elements also form a tree

T , we can express i^ and ±n in terms of the link (for T „) currents i .
DE ~E -D D-t q

Then, i = 0 implies i = 0 and i = 0. It follows that all currents are

zero in steady state, a result that obviously satisfies KCL.

Letting v = y ,v = E sin wt (E>0), we have from Eqs. (4) and (7)
•"C — v-» £•

v (t) = - B_ E sin cot - B V <_ 0, for all t (8)

It is easy to see that the inequality (8) holds for all t if, and only if,

™ - ?c?C ^ 9

or

(9)
Vc^E

where U is an n-vector with l's and 0's as its elements; namely,

(1 if the j-th element of Bg is either 1 or -1.
u. = I
J j0, otherwise

We have succeeded in obtaining an inequality devoid of the time variable

t. We will show that inequality (9) is the crux to the steady-state analysis

In the paper, a >^ b means ai _> b^ f°r a^ *••
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of N.

The matrix Bc is a square matrix of order n. Since the capacitors

form a cotree for the D-E tree, gc is nonsingular [8,p.93]. At this point,

it is rather tempting to ignore the ">" sign in Inequality (9) and then

find Vc by solving Bcyc = UE and accepting the result as the steady-state

solution. Unfortunately, such a procedure has no theoretical foundation.

It may or may not give the correct answers, as the following two simple

examples will demonstrate.

Example 1. Consider the voltage doubler shown in Fig. 1. We have

B=("b_ B„ 11 1 i 1 Oil 0
i i

-l; -l i ; o i

Then U-[1 1] ,and yc =R^ =[E,2E]T which is indeed the correct solution
for y .

Example 2. Consider the circuit shown in Fig. 9. We have

i i i o o! l o o
i ,

-1 j-1 1 0,0 1 0
-i ! o i ij o o i

Then U = [1 1 17T anH v = R_1in7 - rv oi- DlT ,., .l -i-j , ana yc aQ m - [E, 2E, -E] , which is obviously

not a solution, as Vc3 can never be negative in Fig. 9.

In view of these examples, it is clear that we should use Inequality (9)

as the basis for the steady-state analysis. Observe that Inequality (9)

is only anecessary, but not asufficient condition for Vr to be the

steady-state solution of N. Ageneral inequality of the form AX >Kmay

have no solution, a unique solution, or infinitely many solutions. For

the case of infinitely many mathematical solutions, further information
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must be used to determine which can be accepted as the solution to a

physical problem. To see the significance of the above observation,

consider the voltage doubler circuit of Fig. 1 again. The equation

corresponding to (9) is given by:

1 0

-1 1

VC1

LVC2J

One obvious solution is V = [E, 2E] . But another solution is V0 = [4E, 6E] ,
-L. ~C

among infinitely many others. Consider now the actual operation of the

circuit. VC1 = 4E, Vc2 = 6E is possible only if we charge 0, and C2 up to

4E and 6E, respectively, before the ac source is applied. If the circuit

starts with uncharged capacitors, then a transient analysis will reveal

that the voltage finally approach vcl(°°) = Vcl = E, and vc2(«) = Vc2 = 2E.
T t

Therefore, we will reject [4E, 6E] , but accept [E, 2E] as the steady-

state solution of Vr.

Except for some extremely simple circuits, finding the steady-

state solutions of C-D-1E networks through transient analysis
3.CZ

is not a practical approach. Therefore, we should try to find some

features that will distinguish the steady-state solution (for initially

relaxed networks) from all other feasible solutions of (9). Fortunately

this is possible with the aid of some physical reasoning. Consider

again the doubler circuit of Fig. 1. Suppose that we have capacitors

initially charged to vcl(0) =4E, vc2(0) =6E. Then V =[4E,6E]T
is a solution to Inequality (9). But now imagine that due to some

temporary leakage the capacitor voltages drop to[3.9E,5.9E] . These

reduced voltages also satisfy Inequality (9). Since the ac voltage

source v.=E sin wt does not have the capability to restore the
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capacitor voltages to their previous values [4E,6E] . We shall say

that the solution voltages [4E,6E] are not maintainable. Next,

consider the solution Vc =[E,2E]T which,by transient analysis, has

been found to be the steady-state solution if the network is

initially relaxed. Imagine again that due to some temporary

leakage, the capacitor voltagesdrop to V = [0.9E,1.9E] . It

can immediately be shown that these lower capacitor voltages cannot

satisfy Inequality (9). The consequence of violating Inequality (9)

is that the diodes begin to conduct (i >0), and charges will be restored

to the capacitors until yc = [E,2E]T is again reached. Consequently,

in this case we shall say that the voltages [E,2E] are maintainable.

Thus, one feature that distinguishes the steady-state solution of

an initially relaxed network from the other feasible solutions of

Inequality (9) is their "maintainability". The mathematical

counterpart of this observation will now be defined precisely.

Defln±ti°n- LSt ?"?* "e asolution of AX >K, where * and
K are mxn and nxl real matrices, respectively. X* is called

a reducible solution if there exists another solution X=X#C*

such that for i=l,2,...n, the following is true:

* - *
"x >x.>0 if x. >0

l — i— i

* ~ *
x± ±x±<0 if x. <0

x.=0 if x.*=0
- 1 !

Otherwise, the solution is said to be irreducible.

For the two-dimensional case, this definition can be illustrated

geometrically. In Fig. 10, the feasible solutions of AX=K
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are indicated by the hatched areas. For Fig. 10(a), X = [1,2]T

is the only irreducible solution, and X is also the solution of

AX=K. In Fig. 10(b), X=A-1K = [1 -1]T is asolution of AX >_ K,

but it is reducible. The only irreducible solution in Fig. 10(b)
T

is X = [10] which is not a solution of AX=K. To show that a

irreducible solution need not be unique, observe that all points along

the solid bold line segment in Fig. 10(c) are irreducible solutions.

A moments reflection will reveal that for the Inequality (9), a

reducible solution corresponds to a non-maintainable set of capacitor

voltages, while a irreducible solution corresponds to a maintainable

set of capacitor voltages. Clearly, the correct steady-state solution

must be a irreducible solution of Inequality (9). For the general case

°f £X ?- £ > finding the irreducible solution, or solutions, is a

complicated problem. However, there are some special cases that can

be solved quite easily. The following lemma is of great usefulness

in the present study.

Lemma 1. Let A be an n*n non-singular matrix, and K an

n-vector where K >_ 0 . If for each row of A , all non-zero

elements have the same sign, then the inequality AX _> K has one,

and only one, irreducible solution given by X=A K.

Proof: See Appendix.

We shall now illustrate the use of Inequality (9) and Lemma 1

with an example.

Example 3. Find the steady-state capacitor voltages for the

circuit shown in Fig. 11.
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Solution:

For Eq. (3), we have

B = [BJ1 ] =
1 E~C~nJ

1

0

-1

1

2

-1

1

0

3

1

-1

1

D

The matrix B and vector U associated with the Inequality (9) can
~C

now be identified as follows:

'0 -i 1 '

B =
-c

-1 i -1

_ 1 0 1J

The inverse (Df B
-c

is

r-i -1 0

-Vf1- 0 1 1

L i 1 1.

u =

1

1

LU

Since the non-zero elements in each row of B have the
-c

same sign, it follows from Lemma 1 that the unique irreducible

solution, is given by

yc=Bc"1UE=[-2E,2E,3E]

and this solution is the steady-state solution of this circuit.

We see that the circuit is a voltage tripler. Observe that it is

not possible to find the steady-state voltages of this circuit by

the intuitive reasoning described in Section 1.

We shall now present a theorem which will once again make it

possible for us to obtain the steady-state solution by inspection.

The theorem is a major result of this paper, and therefore will be

stated clearly in words.
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Theorem 1. Let N be an nC-nD-lE network which satisfies
ac

the following topological constraints:

(a) the capacitors and the voltage source form a tree

(b) the diodes and the voltage source form a tree

(c) the diodes and the voltage source from a cutset

(d) the diodes, possibly with the voltage source, form

a path and are forward biased in the same direction

in the path

If v,(t)=E sin wt, E>0 and the capacitors are intially

uncharged, then in steady state the capacitor voltages are

constant, and are given by

vc. " ±kjE
where k. denotes the number of diodes contained in the

fundamental loop defined by the capacitor C. with respect

to the diodes-voltage-source tree, and where the positive

sign holds when the reference direction of V is aligned

with the diode's forward directions, and is negative

otherwise.

Proof: Let B and § be the fundamental loop matrices with respect to the

C-E tree and the D-E tree, respectively. Let g be the fundamental cutset

matrix with respect to the C-E tree. These three matrices may be

partitioned as follows (assuming, of course, columns are ordered correspond

ingly in all matrices):

V_#- • * . C
n

E

i i
Di D

n
—

8c ,BJ
i~Ei

1
-n

L- i * _J

V J

D-C-E tree •cotree

-21-
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Q =

B =

r 1
-n

v_

C-E tree

1
~n

»0 ' 0
I - I ?CD
i__i

I1 • 0
. » ?ED

D-cotree

i ~ i

IB '
i-Ei

I i
\ ]

J

From BQ

C-cotree D-E tree

0 [5,p.97], we obtain

?C + 9CD = 0

and

?E + 9ed = 0

From BQT =0, we obtain

1 + B Q =0
~n -D^CD -

Substituting Q from (13) into (15), we obtain

in " ?D?C " 9

Since Bc is nonsingular [8,p.93], Eq. (16) yieldj

-1

5b " 5c

(11)

(12)

(13)

(14)

(15)

(16)

(17)

Now consider any jth row of §D> which corresponds to the fundamental loop

defined by Cj with respect to the D-E tree. Due to the Aligned diode

path hypothesis, the nonzero elements in the 1th row of j$D and hence the
jth row of B~ , must all be equal to +1 or -1. Since b!1 satisfies the

conditions of Lemma 1, it follows that Inequality (9) has a unique
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irreducible solution given by yc =B^UE- Hence the steady-state voltage
is given by

Yc =fc1™ =hF (18)

Let us next observe that the D-E cutset constraint (c) implies each

element of QED in Eq. (11) is equal to either +1 or -1. It follows from

Eq. (14) that every element of B£ is either +1 or -1. According to the

definition of U in Inequality (9), we see that all elements of U are equal

to 1. Therefore, the steady-state solution (18) may be rewritten as

YC = *M (19)

A T
where E = [E,E,...,E] .

Since for any 1th row of BD, the nonzero elements are all 1, or all -1,

it is clear from Eq. (19) that

VCj °±kjE (20)

where k. is the total number of nonzero elements in the ith row of iL,
3 •"*- ~D

which is simply the number of diodes in the fundamental loop defined by

C. with respect to the D-E tree.

Now if we redefine the reference polarity of each capacitor voltage V

so that V . is aligned with the forward bias direction of the diodes, then

Eq. (20) reduces to:

vcj =Y <21>

This completes the proof of Theorem 1. n
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Corollary 1. For each voltage multiplier network N^ generated by

Algorithm VM of Section 2, if v. = E sin ait, E > 0, then the output voltage

under no load condition is given precisely by

V„ = nE
Cn

Proof: Observe that N^ satisfies all hypotheses of Theorem 1. Moreover,

since the reference polarity of the output voltage is chosen, by assumption,

so that it is positive, it follows that V„ = k E. An examination of
Cn n

Steps 3 and 4 shows that the fundamental loop defined by C with

respect to the D-E tree contains all n diodes, therefore V__ = nE. n
Cn

With the aid of Theorem 1, the conventional voltage multiplier

circuits of Figs. 2 and 3, as well as the new circuits of Fig. 6(a) and

Fig. 11 can now all be solved by inspection. The solutions of the steady-

state voltage are indicated in the figures. Observe that the answers

obtained earlier in Section 1 for the circuits of Figs. 2 and 3

using the Intuitive Method are in fact correct. However, for the circuit

of Fig. 11, this intuitive method cannot be applied. In any event, since

Theorem 1 is much easier to use, there is no reason to resort to the

intuitive method of Section 1, even if it is applicable.

Remarks:

(1) Theorem 1 remains valid for any periodic function v.(t) as long as

E = max[v (t)] > 0, and min[v.(t)] = -E.
•J* i

(2) It follows from Eq. (18) that in order to attain the highest capacitor

voltage, we should make all elements of U nonzero. This in turn requires

that all elements in B£ and Q be nonzero [see Eqs. (9) and (14)]. From

Eq. (11), a QEd with all nonzero elements is equivalent to the requirement
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that all diodes and the voltage source form a cutset, a condition

introduced earlier in Section 2 through intuitive reasoning, and which

serves as a hypothesis for Theorem 1;

(3) It follows from Eq. (19) that the maximum capacitor voltage magnitude

|VC| =nE can be attained only with a row of B having all elements nonzero

and of the same sign. This immediately leads to the "aligned-diode path"

constraint introduced in Section 2, and which serves also as a hypothesis

for Theorem 1.

(4) If all diodes have a cut-in voltage V > 0 (i.e., the diode is

characterized by i < 0, v -V <0, and i (v -v ) = 0), then the basic
D- D r— DDr

Inequality (9) becomes B V _> U(E-V ), and Theorem 1 is easily extended

to give Vc = +k.(E-V ). Hence, for an n-fold voltage multiplier, the

output voltage will be actually lower than the ideal output voltage

V = nE by nV volts .
o r

(5) From Eqs. (4) and (18), it is easily seen that the peak reverse voltage

experienced by every diode is 2E.

4. Steady-State Analysis — With Load

In the previous sections, we have considered two voltage quadruplers

[Fig. 1(c) and 6(a)]. We now ask which is the better circuit? To answer

this question, we must first define some criteria for"goodness." For

example, if we are most concerned with the capacitor dielectric breakdown

requirements, then Fig. 1(c) might be selected because its four capacitors

are charged to [E,2E,2E,4E] , whereas the corresponding capacitor voltages

for Fig. 6(a) are [E,2E,3E,4E] . But in many cases we may be more concerned

with the voltage regulation, i.e., the drop in the output voltage when a

load is present, in the form of an equivalent resistor IL connected in

parallel with the output capacitor C (see Fig. 12(a)). In order to derive
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a quantitative comparison of such voltage drops, we shall extend the

concept of output resistance of a linear circuit to voltage multipliers.

This will be done after we make some simplifying assumptions concerning

loaded voltage multipliers.

For a given value of R^, the steady-state output voltage v (t)

and load current iL(t) will be periodic with the same period T = 1/f

of the input waveform. Since our objective is to obtain a dc output

voltage, it is desirable to choose as large a value of the capacitance

Cn as possible in order to reduce the ripple components in v (t) and

iL(t). For the purpose of carrying out a quantitative analysis, we will

assume that Cn -j- « so that the output voltage becomes a constant dc

voltage vq («) = Vq = VQn in steady state. The exact value of v («) of

course depends on the amplitude E and frequency f = <d/2tt of v.(t), as well

as on the load current IL drawn by the equivalent load resistor R^,

and the values of the remaining capacitors; namely,

VQ(co) = Vo(E,co;IL,C1,C2,...,Cn_1) (22)

The voltage regulation of the multiplier depends on the sensitivity of

Vo relative to 1^, and a convenient measure of this sensitivity is therefore

given by

A o
R = -
o IT (23)

where Rq has the unit of resistance and will henceforth be called the

output resistance of this voltage multiplier. Notice that the negative

sign in Eq. (23) is due to our reference direction of I in Fig. 12(b)

which is out of the one-port seen by the load resistor R^ . Note also

that Eq. (23) implicitly assumes C -*•«>.
n
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We shall now describe a method for calculating R for any voltage
o

multiplier N^ generated by Algorithm VM. To facilitate the discussions

we shall assume without loss of generality that the reference polarity

of the input voltage v.(t) has been assigned in such a way that D — the
i n

diode in series with the output capacitor C — conducts during positive

peaks of vi(t) = E sin tot. We will let t and t denote the positive peak

and negative peak instants of v^t), i.e., v (t ) = E and v.(t ) = -E.

The calculation of R is accomplished in two stages.

Stage 1. Calculation of Surge Charges.

2ttDuring each period T =—, the charge passing through the load R^

is given by

L\ - VT =Vf <24>

where IL is a constant current in view of our assumption that C -*- «.

It was shown in Section 3 that when there is no load (IT=0), all

currents in N are zero in steady state. However, when a load current

is drawn (1,^0) thereby causing the output voltage to drop slightly,

currents will also be flowing in the other branches of the network for

short time intervals At just before the positive and negative peaks of

vi(t). The surge charges through a branch with current i(t) are therefore

given, respectively, by

and

Aq+ £ 1 i(i)dT (25)*$:.t -At
P

»r.«--Aq ^ I i(T)dx (26)
t -At
n
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The diodes Dn»Dn_2» ••• wiH be collectively denoted by D to emphasize

that they conduct near the positive peak of v.(t) from t -At to t .
i P P

Similarly, the diodes Dn_i»Dn_3» ••• will be denoted by D_ to emphasize

that they conduct near the negative peaks of v.(t). Since the diodes

belonging to D (resp; D.) are cut off during the time interval (t -At,t )
+ P P

(resp., (tn~At, tn)), it follows that:

A3d_ =9 (27)

A9d =9
+

Our next task is to determine the remaining surge charges Aq+, Aq"",
+

AqQ , and AqD in terms of AqL« Consider a typical node "m" as shown in

Fig. 12. Kirchhoff current law requires that

iCl(t) - 1Dl(t) " ±C2(t) =° for a11 fc (28)

If we integrate both sides of Eq. (28) from t -At to t , we obtain
P P

AqCl " AqDl " AqC2 = ° (29)

Equation (29) is exactly of the same form as Eq. (28). This means that

KCL must be satisfied by the surge charges, provided they are referred to

the same time interval.

Although the capacitor voltagesv, v „, ..., v , now vary as a

function of time, they must nevertheless have constant average values in

steady state. This implies that

A<£j +aqc,j= o- j =i "-1
or

AqC,j =~AqC,j' j = x»•••.«-! (30)
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The condition prevailing at the output tank — consisting of the

output capacitor Cr and the load resistor R^ Fig. 13(a) — requires

special attention. Refer to Figs. 13(b)-(d), and observe that when the

diode Dn conducts near t ,a surge current flows into C . But
v n

immediately after tp, the diode DR is cut-off. Since Cn is assumed to
be infinite, the voltage vCn is equal to aconstant V^ (the steady-state
voltage). This voltage maintains the constant load current I = -i

L Cn

= VCn/RL throuShout the whole period. Since there should be no net increase

or decrease of the charge on Cn in steady state, it follows from Fig. 13(a)

that whatever surge charge AqCn injected into Cn during the short interval

At near the positive peak tp must be transferred to the load resistor IL;
namely:

AqCn = VT = AqL (31)

Since Dn is connected in series with C^, KCL requires that

AV = AqCn " AqL (32)

To determine other diode surge charges, consider first the case n is even.

The network N^ has an aligned diode path starting from node 1 and

terminating at node n+1. Thus for each node j = 2,3,...,n-1, there are

exactly two diodes connected to it, with one directed toward node j, and

the other away from node j. Besides, there are two or more capacitors (the

number of capacitors is unimportant in the argument) connected to node j. By

way of illustration, consider node 3 in Fig. 3(b). We have,

near ty Aq^ -Aq^ +Aq^ =0 (33)

near V - Aq~2 - Aq^ +Aq^ =0 (34)
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Adding Eqs. (33) and (44) and invoking Eq. (30) we obtain

AqDl = A%2

Thus the two diode surge charges have the same magnitude although they

occur at different time intervals. Similar situation applies at nodes

3,4,—,n-land also for the case n is odd. Therefore we conclude that for

NVM' a11 diode surge charges are equal to AqT, i.e., if we define
Li

AqD+ "[AqDn'AqDn-2'"- ]T and AqD_ "[AqDn-l'AqDn-3'*'' ^ then we have

*D = AqD_ = AqL (35)

where AqL - [AqL,AqL, ...,AqL] .

We shall now turn our attention to the calculation of q . This is
~cn

easily done by applying KCL to N^ near t= t . During this time interval,

all diodes in the D_ group j^^, D ,..A are cut-off, whereas each
diode belonging to the D+ group (Dn>Dn_2»* *•} behaves as acurrent source.
The capacitor surge charges Agc can be expressed.in terms of Aq+ through

a relationship similar to Eq. (5). An explicit formula for Aq+ will now

be derived.

Further partition the fundamental loop matrix given by Eq. (3) as

follows:

B = [B B 1 ] =
" l~r "v *nJC ~E cn"

E D D

+ ' + i

!c !E ; i
(36)

!c |!e
J

C-E tree D-cotree
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The associated fundamental cutset matrix is given by:

C E D,

C-E tree D-cotree

Let the surge charge vector Aq be similarly partitioned. Using Q-Aq+ = 0

and Aq = 0 from Eq. (27), we obtain

A3c "(bc>%d -9
+

Substituting Eq. (35) for Aq* in Eq. (37), we obtain

AqC =<?C)T-AqD+ -<?C)T*qL

(37)

(38)

Finally,we observe from Eq. (30) that Aq" in simply equal to -Aq+
~L ..C

Note that AqCn does not appear as a surge (see Fig. 13(d)).

Example 4. Consider the voltage quadrupler circuit of Fig. 6(a) with a

load resistor connected across C^. The fundamental loop matrix for this

circuit is given by

C-E tree D. n

B =

Cl S C3 C4 E D4 D2 D3 Dl
0 0 -1 1 1-1 1 0 0 0

-1 1 0 0
1

I-1 0 1 0 0

0 -1 1 0
I

1 1
1

0 0 1 0

1 0 0 0

1

1 1 0 0 1 0 1

Hence we identify

-31-

(39)



r ° 0 -1 1
+

B =
SC -i 1 0 0

From Eq. (35): Aq^ =q+2 =Aq^ =Aq+4 =AqL

+ + T TFrom Eq. (38): Agc = (Bc) AgL = [-AqL,AqL,-AqL»AqL] .

From Eq. (30): Aq~ =[AqL,-AqL,AqL,-AqL]T.

Stage 2. Calculation of Capacitor Voltages

In Section 3, we have shown that the steady-state solution of N^.

when 1=0 must satisfy Eq. (18); namely,
Li

?CYC = ^ (40)

Substituting this equation into Eq. (8), we observe that in every scalar

equation of Eq. (8), the equality sign will be reached periodically, at

positive peaks or at negative peaks of v.(t). The physical meaning is

that for this class of networks, each diode reach the breakpoint

(i =0, v = 0) periodically in steady state. Now when a load is

connected across C to draw current IT , the diodes will not only reach
n L J

the breakpoint, but will actually be forward biased for a brief time

interval. In particular, the diodes in the D group I'd ,D _?,.. A will be
conducting currents from t -At to t , while the diodes in the D_ group

D .,,D 0,...y will be conducting currents from t -At to t . Therefore,Jd ,,D 0,.. A wi^ n-1 n-3 |

in applying Eq. (40), the scalar equations should be separated into two

groups, one applicable at t = t , while the other applicable at t = t .

The matrix B in Eq. (36) has already been partitioned for this purpose.

Hence, Eq. (40) decomposes into two equations:
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!& " S+« (41)

?cYc - 5 E (42)

+ - + -
where U and U are associated with B and B in Eq. (40), respectively.

See the explanatory note in Inequality (9) for the construction of U

and U from B_ and B_, respectively.

For each capacitor C., the surge charge Aq . has been found earlier
J t>j

by the use of Eq. (38). The voltage difference Vp. - v" is therefore

given by

VCj"VCj = AqCj/Cj» J =l,2,...,n (43)

Again, the output capacitor C requires special attention. Since C
n n

is assumed to be infinitely large, we have V0 = v" = V . Equation (43)
Ln Ln o

may be expressed more compactly as

Yc - Yc - 5 A3c (44)

where S = diag.( — , —,..., —) .
12 n

From Eqs. (42), (44), and (38), we can eliminate V~ and Aqr to obtain

We -?"E + ?c§<?c> AqL

Equation (41) and (45) can be combined into a single equation

+ ~,,+B„ u

« „+
~C

+
B0V„ = vT = E +
~C~C

5c
~c

u~ ?C?(?C)TAqL

(45)

(46)

-1Since B is nonsingular, and its inverse is given by B_ = B_ [see Eq. (17)]
~\j ~C ~D

+
we obtain the following explicit formula for V :
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Yc " !> +?d
0

_B-S(B^)TAqJ (47)

where

B and B are defined in Eq. (36);

U is defined in Eq. (9)

S is defined in Eq. (44)

AqT is defined by Eq. (35) and (24)

|D is defined in Eq. (12)

If V = vi is the only information desired, the calculation of Eq. (47)
0 Cn

should be carried out without the full effort of finding yc- For the
T

voltage multipliers generated by Algorithm VM, we have U = [1,1,—,1] »

v = vt , and the n-th row of Bn = [1,1,1,...,1]. Define W = [1,1,...,1] ,
0 Cn -D

then Eq. (47) leads to

Vo =nE+WTB^S(B^) Aq_L (48)

Substituting Eq. (24) for Aq in Eq. (48) and using Eq. (23), we obtain

the following explicit formula for the output resistance:

-(wTBc§Bc?)/f (49)

The explicit formulas (48) and (49) have been derived for VM

circuits where the output capacitor C is in series with a diode D . Voltage

multiplier circuits generated by Algorithm VM may or may not have a

series-connected C -D output tank (see the tripler of Fig. 11 for an
n n

example of the latter case). It can be shown that Eqs. (48) and (49) are

also valid for the latter case, and even for the case of finite (but
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large) C .provided that we consider V to be V+
n o Cn

We shall now illustrate the use of the explicit formulas (48) and

(49) with an example.

Example 5. Let us continue with the voltage quadrupler circuit of

Example 4 [Fig. 6(a)J. Suppose that C± =C2 =C3 =Cand C + «>.

5-dia*< i £• ^ 0)

From Eq. (39), we obtain

„+
0 0 -1 1

B„ =
~C ^-1

r* ~

1 0 0_

0 -1 1 o"
B~ =
~C _1 0 0 0_

Substituting the above matrices into Eqs. (48) and (49), we obtain

and

V = 4E -

R =
_3_
fC

fC (50)

(51)

By the same method, we find the output resistance for the voltage

quadrupler circuit of Fig. 1(c) to be R = 6/fC. The output resistance

of Fig. 1(c) can also be obtained from the equation given in [5,Eq.(3)]

by letting n=4. It is important to note that R for the new voltage
o 7

quadrupler circuit of Fig. 6(a) is only one-half of the conventional

quadrupler of Fig. 1(c).

Using Eq. (49), we can prove the following theorem which constitutes

the second major result of this paper.
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Theorem 2. For any network generated by Algorithm VM (i.e., an nC-nD-lE

network which, besides satisfying the four conditions of Theorem 1, has

the D-path or D-E-path terminated in C ), if the output capacitor
n

C ->• °°, then the output resistance is given by

Ro" f *-* C
J=l 3

i ** (i-)
(52)

where m. is the number of diodes contained in the cutset defined by C.
J J

with respect to the C-E tree.

Proof: In the derivation of Eq. (32), we have assumed that the output

capacitor C is in series with the diode D . This condition
r n n

can be relaxed. By a reasoning similar to that given in Eqs. (33)-(34),

we can easily see that Aq_ = Aq., as long as one node of C has only one

diode D , and possibly several other capacitors connected to it. Since

this is true for all circuits generated by Algorithm VM, we can repeat

the derivation of the subsequent equations (33)-(49). Therefore the

explicit formulas (48) and (49) are valid for all circuits generated

Algorithm VM.

Equation (49) has a topological interpretation. First, note that

from Eq. (49)

R =-j53 all elements of B~S(B^)T| (53)

-1 + T
Since S is a diagonal matrix [see Eq. (44)], the triple product B S(B )

can be expanded quite easily to give the contribution of 1/C. in the output

resistance. We have
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7T~ term in Eq. (53)
Cj

=-Yc~ Ij-th column of B~ j-th row of (B*)T

- Yr~ P°' °f diodes in D_ group whose f-loops contain C.

|No. of diodes in D, group whose f-loops contain C.

= "7pr- No. of diodes in D_ group contained in the cutset

defined by C w.r.t. the C-E tree

No. of diodes in D, group contained in the cutset

defined by C. w.r.t. the C-E tree (54)

Summing up all of such terms in the expansion of (53) one obtain

*0 "7E £ -ft <55)
J=l 3 J J

where m. and m. are the number of diodes in the D group and D group,

respectively, which are contained in the fundamental cutset defined by

C. with respect to the C-E tree.

Now for any circuit generated by Algorithm VM, we shall show that

+ - m'm. = m~ =-^-, j = 1,2,...,n-1 (56)
J j ^

Recall that (a) C has D connected to one node and D, connected to the
n n 1

other, with D in the D group and D-. in the D_ group (or vice versa);

(b) node labeled 0; if present, has no diode connected to it; (c) each

of the other nodes has exactly two diodes connected to it, one in the D+

-37-



group, and the other in the D_ group. Now consider the formation of a

cutset defined by C , j ^ n, with respect to the C-E tree. Removal of

C. from the C-E tree produces two subtrees, which we shall denote by

TS C and TS C-E' with the v°ltage source in the latter subtree. Now

consider the subtree T . The fundamental cutset defined by C. simply
b ,o j

consists of all diodes connected between one node of T n and another

node of Tg c_£. Upon reviewing the properties (a)-(c) described above,

we immediately conclude that the number of diodes connected to T is

even, and are equally divided in the D and D_ groups. Thus, Eq. (56)

is valid. As an example, consider Fig. 1(c). For C,, the fundamental

cutset contains all four diodes, with ra* = 2, m~ = 2, and m= 4.

Putting Eq. (56) into Eq. (55), we have Eq. (52). This completes

the proof of Theorem 2. a

We observe that the expressions for the output resistance as shown

in Eqs. (1) and (2) of [5] are just special cases of Theorem 2. With

Theorem 2, the problem of determining the output resistance is reduced to

that of finding the fundamental cutsets defined by the capacitors (with

respect to the C-E tree) and counting the diodes in the cutsets. In

particular, if we assume C, = C = ... = C . = C, then Theorem 2 leads
1 z n—1

to (see also Eqs. (3) and (4) of [5]) the following expressions for the

conventional ladder voltage multipliers:

6 \~2 + 1/ fC * for n even» Fis- 3(a)

n/2 \ 1 (5?)
12 \n/ ^ » for n odd> Fi8« 3(b)

3
Since R * n , for large n, the voltage regulation is a serious problem

•38-



in voltage multipliers of large n. As pointed out earlier, the capacitor

voltages for the conventional ladder voltage multiplier are

[E,2E,2E,...,2E,nE]

The output resistance can be greatly reduced by choosing T n and T to
\AJ CJL

be rooted "star" subtrees (see Fig. 6(a) for example). For such voltage

multipliers, Theorem 2 leads to

o fir" (58)

which varies only linearly with n for large n. It can be shown that

R0 - (n-l)/fC is the smallest output resistance obtainable with the

circuits generated by Algorithm VM. This smallest output resistance is

achieved at the expense of more costly capacitors, because the capacitor

voltages for this case are [E,2E,3E,...,(n-l)E,nE], instead of

[E,2E,2E,...,2E,nEj.

5. Conclusion

We have described an algorithm for generating n-fold voltage

multiplier circuits with n capacitors and n diodes. It is shown that

the conventional ladder VM circuit [4,5] is just a special case generated

by our Algorithm VM. A rigorous steady-state analysis for NTTW is
VM

presented both without load and with load. For the unloaded case,

Theorem 1 makes it possible to determine the capacitor voltages by

inspection.

Three important factors to be considered in selecting different

voltage multiplier circuits are the capacitor voltage ratings, the

output resistance, and the common-ground requirement. Consider the voltage
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quadruplers for example. Algorithm VM generates a total of 9 distinct

quadruplers whose C-E trees and, labeling of nodes are shown in

Fig. 14(a)-(i). The connection of diodes is shown in Fig. 14(j).

After connecting the diodes, Figs. 14(a) and (b) result in the quadruplers

of Figs. 1(c) and 6(a), respectively. Figs. 14(c) and (d) lead to

two more quadruplers shown in Figs. 15(a) and (b), respectively,

both having RQ=3/fC (assuming C^-C^C^C, and C^). The quadruplers

derived from Fig. 14(e)-(i) all have RQ=6/fC. The following table gives

a comparison of the voltage quadruplers based on Fig. 14.

\^ properties
Fig. 14\^

R -fC
0

Capacitor voltages,
multiples of E

common-

ground

(a), also Fig. 1(c) 6 1,2,2,4 yes

(b), also Fig. 6(a) 3 1,2,3,4 yes

(c), also Fig. 15(a) 3 1,2,3,4 yes

(d), also Fig. 15(b) 3 1,1,2,4 no

(e) 6 1,2,2,4 yes

(f) 6 2,2,3,4 yes

(g) 6 1,2,2,4 no

(h) 6 1,2,2,4 no

(i) 6 2,2,3,4
,

yes

The properties indicated in the table have also been experimentally

verified. From the table, it is seen that Fig. 15(b) is the

best voltage quadruplers as far as the output resistance and capacitor

voltages are concerned. But this circuit has no common terminal

between the input and the output, which makes it unsuitable for some
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applications. The quadruplers of Fig. 6(a) and 15(a) are better than

the conventional quadrupler of Fig. 1(c) as far as the output resistance

is concerned. But the capacitor voltages for the former are [E,2E,3E,4E],

whereas those for the latter are [E,2E,2E,4E]. In other words, the

third capacitor has E volts higher steady-state voltage across it.

Our conclusion about the selection of voltage multipliers is

that the conventional ladder configuration of Fig. 3 is among the best,

if the capacitor voltage is the primary concern, and the common ground

is a requirement. On the hand, if one can tolerate the use of capacitors

with higher voltage ratings, then other voltage multiplier circuits

generated by Algorithm VM should be considered as some of them have

output resistance smaller than the conventional ladder configuration of

Fig. 3.
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APPENDIX

Proof of Lemma 1:

Case 1. All non-zero elements of A are positive. The inequality

AX^K with K > 0 (59)

may be expressed in equivalent form

AX = K+S, S > 0 (60)

where S is called the slack vector. Any feasible solution of Eq. (59) may

be expressed as

X=A_1K+A"1S, S_> 0 (61)

Since all non-zero elements of A are positive, then A K _> 0, and

A S _> 0. The smallest magnitude of each x. is achieved if, and only

lf> §=9* Thus X = A K is a irreducible solution, since every x.
~ ' J i

has the smallest magnitude possible. To see that any other solution

* *+ -1
x (? £ !P is reducible, refer to the definition and simply let
~ —1 "k -* ic M &

X = A K. Since X > 0 and X > 0, but X >_ X, then X is a reducible

solution.

Case 2. The non-zero elements of some m (l<m<n) rows of A~

are negative. Without loss of generality, we assume these to be the first

m rows.

Rewrite Eq. (60) as

!

= K+S, S >_ 0 (62)

where A-. has m columns, and X, is an m-vector.

AX = [AlfA2] h
h

A-l



Then,

[xj] •rV+s
Since (K+S)>0, it follows from the hypothesis concerning the signs of

the elements of A that

?1 - 9 » ?2 - ? (63)

Construct another system

(64)[-AX,A2] y1 =K+S, S>0

Then there is a one-to-one correspondence between the solutions of (62)

and Eq. (64), namely

Yx = -Xx and Y2 = ^ (65}

With Eq. (65), it is easy to see that two corresponding solutions of Eqs. (62)

and (64) are either both reducible, or both irreducible.

For Eq. (64), let us calculate the inverse of the coefficient matrix

I-*l*2l";- {lAiAj o'l
"X 1-1 0

~m

0 1
-n-mj J L - ~n-mj

A"1

Since by hypothesis the non-zero elements in the first m rows of

A are negative, a premultiplication of A by diag. [-1 , 1 _ ] results
-1

in [-A, A_] whose non-zero elements are all positive. It follows

from our result in Case 1 that the system defined by Eq. (64) has

one, and only one, irreducible solution given by

A-2



Y=[-^ A^'Y

Hence the system (62) has one, and only one, irreducible solution given

by

X =

h

={[^1 b
h

-1 0

0 1
-ti-m.

-1 0
~m -

0 1
, - -n-m,

-1

}

[-^ A^'1 •K

K= [A± A2]'"1K =A\

This completes the proof of Lemma 1.

A-3

Q.E.D.
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Figure Captions

Fig. 1. A voltage doubler, tripler, and quadrupler.

Fig. 2. (a) A ladder C-D network. (b) output tank.

Fig. 3. An N-fold voltage multipliers derived from a C-D ladder network.

Fig. 4. A simple rectifier circuit.

Fig. 5. An example showing the steady-state voltages depend on the order

where the diodes are connected.

Fig. 6. Networks with C-E tree and D-E tree.

Fig. 7. Enumeration of distinct 3C-1E trees.

Fig. 8. A general voltage multiplier configuration.

Fig. 9. An example showing that B„V =UE gives an incorrect solution.
-L.-L. -

Fig. 10. Examples and geometrical interpretations for illustrating the

concept of irreducible solutions of AX £ K.

Fig. 11. A voltage tripler defying the intuitive method of solution.

Fig. 12. A voltage multiplier with load connected.

Fig. 13. Current waveforms in the output circuit.

Fig. 14. Generation of voltage quadruplers by Algorithm VM.

Fig. 15. These two voltage quadruplers, as well as Fig. 6(a), have

output resistance R0 = 3/fC.
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