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THEORY OF FUZZY SETS

*

L.A. Zadeh

The theory of fuzzy sets is a body of concepts and techniques for

dealing in a systematic way with classes whose boundaries are not sharply

defined — that is, classes in which an object may have a grade of member

ship intermediate between full membership and nonmembership. The principal

motivation for this theory rests on the premise that much of human thinking

involves the manipulation of fuzzy rather than nonfuzzy sets and is approxi

mate rather than precise in nature.

An important aspect of the theory of fuzzy sets relates to the fact

that it provides a basis for a possibilistic framework for human information

processing and natural language comprehension. Following a summary of the

basic properties of fuzzy sets and operations on them, various types of

translation rules for fuzzy propositions are described and illustrated by

examples.
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THEORY OF FUZZY SETS

L.A. Zadeh*

The theory of fuzzy sets may be viewed as an attempt at developing a

body of concepts and techniques for dealing in a systematic way with a type

of imprecision which arises when the boundaries of a class of objects are

not sharply defined. Among the very common examples of such classes are

the classes of "bald men," "young women," "small cars," "narrow streets,"

"grammatical sentences," "funny jokes," etc. Membership in such classes or,

as they are suggestively called, fuzzy sets is a matter of degree rather

than an all or nothing proposition. Thus, informally, a fuzzy set may be

regarded as a class in which there is a graduality of progression from mem

bership to nonmembership or, more precisely, in which an object may have a

grade of membership intermediate between unity (full membership) and zero

(nonmembership). In this perspective, then, a set in the conventional

mathematical sense of the term may be viewed as a degenerate case of a fuzzy

set -- that is, a nonfuzzy set which admits of only two grades of membership:

unity and zero.

Clearly, most of the classes of objects which we encounter in the real

world are fuzzy sets in the informal sense defined above. And yet, the major

focus of attention in mathematics, logic and the "hard" sciences has been

and continues to be centered on classes which are sets in the traditional

sense. In the main, this is due to the misconception that fuzziness is a

form of randomness and as such can be adequately treated by the tools pro

vided by probability theory. However, as we develop a better understanding

of the different varieties of imprecision, it is becoming increasingly clear

*Computer Science Division, Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720.



that (a) fuzziness is fundamentally different from randomness; (b) that

fuzziness plays a much more basic role in human cognition than randomness;

and (c) that to deal with fuzziness effectively, we may have to abandon many

long-held beliefs and attitudes, and develop radically new conceptual frame

works for the analysis of humanistic as well as mechanistic systems.

In speaking of the varieties of imprecision, a point that is in need of

clarification relates to the distinction between fuzziness and vagueness.

Although to some the terms are coextensive, it is more accurate to view

vagueness as a particular form of fuzziness. More specifically, a fuzzy

proposition, e.g., "Jill is quite tall" is fuzzy by virtue of the fuzziness

of the class labeled quite tall. A vague proposition, on the other hand, is

one which is (i) fuzzy and (ii) ambiguous -- in the sense of providing

insufficient information for a particular purpose. For example, the propo

sition "Jill is quite tall" may not be sufficiently specific for deciding

which size jeans to buy for Jill. In this case, then, the proposition in

question is both fuzzy and ambiguous — and hence is vague. On the other

hand, "Jill is quite tall" may provide sufficient information for choosing

a necklace for Jill, in which case the proposition in question is fuzzy

but not vague. In effect, vagueness is an application-dependent or context-

dependent characteristic of a proposition, whereas fuzziness is not.

To understand the distinction between fuzziness and randomness it is

helpful to interpret the grade of membership in a fuzzy set as a degree of

compatibility (or possibility) rather than probability. As an illustration,

consider the proposition "They got out of Roberta's car," (which is a Pinto),

The question is: How many passengers got out of Roberta's car? -- assuming

for simplicity that the individuals involved have the same dimensions.
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Let n be the number in question. Then, with each n we can asso

ciate two numbers u and p representing, respectively, the possibility

and the probability that n passengers got out of the car. For example,

we may have for u and p :
n *n

n 1 2 3 4 5 6 7

Mn 0 1 1 1 0.7 0.2 0

pn 0 0.6 0.3 0.1 0 0 0

in which u is interpreted as the degree of ease with which n passengers

can squeeze into a Pinto. Thus, u5 = 0.7 means that, by some specified or

unspecified criterion, the degree of ease of squeezing five passengers into

a Pinto is 0.7. On the other hand, the probability that Roberta may be carry

ing five passengers might be zero. Similarly, the possibility that a Pinto

may carry 4 passengers is one; by contrast, the corresponding probability in

the case of Roberta might be 0.1.

This simple example brings out three important points. First, that

possibility is not an all or nothing property and may be present to a degree.

Two, that the degrees of possibility are not the same as probabilities. And

three, that possibilistic information is more elementary and less context-

dependent than probabilistic information. But, what is most important as a

motivation for the theory of fuzzy sets is that much, perhaps most, of human

reasoning is based on information that is possibilistic rather than proba

bilistic in nature. This basic issue will be discussed in greater detail at

a later point, at which a connection between possibilities and probabilities

will be stated as a possibility/probability consistency principle.

The term possibilistic in the sense close to that used here was coined by
B.R. Gaines and L. Kohout in connection with their analysis of
so-called possible automata [69].



The theory of fuzzy sets has two distinct branches at this juncture.

In one, a fuzzy set is treated as a mathematical construct concerning which

one can make provable assertions. This "nonfuzzy" theory of fuzzy sets is

in the spirit of traditional mathematics and is typified by the rapidly grow

ing literature on fuzzy topological spaces, fuzzy switching functions, fuzzy

orderings, applications to system analysis, etc. (See the appended

bibliography.)

The other branch may be viewed as a "fuzzy" theory of fuzzy sets in

which fuzziness is introduced into the logic which underlies the rules of

manipulation of fuzzy sets and assertions about them. The genesis of this

branch of the theory is related to the introduction of the so-called linguis

tic approach [245], [248] which in turn has led to the development of fuzzy

logic [247], [18]. In this logic, the truth-values as well as the rules of

inference are allowed to be imprecise, with the result that the assertions

about fuzzy sets based on this logic are not, in general, provable as propo

sitions in two-valued logic. For example, the proposition "Helen is very

intelligent," may be "more or less true," which in turn may be an approxi

mate consequence of the truth-values of other fuzzy propositions. Although

the "fuzzy" theory of fuzzy sets is still in its initial stages of develop

ment, it is important as a foundation for approximate or, equivalently,

fuzzy reasoning. Such reasoning permeates much of human thinking and is

at the base of the remarkable human ability to attain imprecisely specified

goals in an incompletely known environment.

In the following exposition of the theory of fuzzy sets, the accent is

on the basic aspects of the theory. Expositions of such topics as the lin

guistic approach, fuzzy logic, fuzzy topological spaces, fuzzy languages,

fuzzy algorithms and the applications to systems analysis, decision analysis,

V
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pattern classification and other fields may be found in the papers listed in

the bibliography and in the comprehensive texts by Kaufmann [102] and

Negoita-Ralescu [155].

Notation, Terminology and Basic Operation

A fuzzy set is generally assumed to be imbedded in a nonfuzzy universe

of discourse, which may be any collection of objects, concepts or mathema

tical constructs. For example, a universe of discourse, U, may be the set

of all real numbers; the set of integers 0,1,2,...,100; the set of all

residents in a city; the set of all students in a course; the set of objects

in a room; the set of all names in a telephone directory, etc. Universes

of discourse are usually denoted by the symbols U,V,W,..., with or without

subscripts and/or superscripts. A fuzzy set in U or, equivalently, a

fuzzy subset of U, is usually denoted by one of the uppercase symbols

A, B, C, D, E, F, G, H, with or without subscripts and/or superscripts.

A fuzzy subset A of a universe of discourse U is characterized by a

membership function \i^: U-* [0,1] which associates with each element u

of U a number uA(u) in the interval [0,1] (or, more generally, a point

in a partially ordered set [75]), with u.(u) representing the grade of

membership of u in A. The support of A is the set of points in U at

which uA(u) is positive. The height of A is the supremum of u»(u)

over A. A crossover point of A is a point in U whose grade of member

ship in A is 0.5. A is normal if its height is unity and subnormal if

this is not the case.

Example. Let the universe of discourse be the interval [0,100], with

u interpreted as age. A fuzzy subset of U labeled o^d may be defined by

a membership function such as



uA(u) =0 for 0<u<50 (1)

=(l+t^r2)""1 for 50<u<100.

In this case, the support of &\d_ is the interval [50,100]; the height of

old is effectively unity; and the crossover point of old is 55.

It should be remarked that in many applications the grade of membership

u«(u) may be interpreted as the degree of compatibility of u with the

concept represented by A. (For example, in the case of the fuzzy set old

as defined by (1), the degree to which the numerical age 60 is compatible

with the concept of old is y ld(60) = 0.8.) In other cases, Pn(u) may

be interpreted as the degree of possibility of u given A. When yA(u)

plays the role of a degree of compatibility or possibility, the function

y»: U -* [0,1] may be referred to as the compatibility function. The less

specific term membership function is generally used in situations in which

the interpretation of u„ is unspecified;

It is important to note that the meaning attached to a particular

numerical value of the membership function is purely subjective in nature.

For example, in stating that the degree of ease with which 5 passengers may

be squeezed into a Pinto is 0.7, one may or may not be able to explain how

this figure is arrived at. In some instances, the meaning of an anchor

(i.e., a reference) point on the scale may be explained and the meaning of

others might be defined in relative terms. As will be seen later, what

matters in most cases is not the meaning attached to the grades of membership

in a particular context, but the manner in which the membership function of

a fuzzy set is related to those of other fuzzy sets.

To simplify the representation of fuzzy sets it is convenient to employ

the following notation.



A nonfuzzy finite set such as

U= {u.|,...,u }
is expressed as

U=u1+u2 +---+un (2)
or

n

1=1 1

with the understanding that (2) is a representation of U as the union of

its constituent singletons, with + playing the role of the union rather

than the arithmetic sum. Thus,

u. +u. = u. + u.
i J J i

and u- +u. = u.
i l i

for i, j = l,...,n.

As an extension of this notation, a finite fuzzy subset, A, of U

is expressed as the linear form

A=ylV---+Vn (3)

or

n

A = I u.u.
i=l n n

where y.., i = l,...,n, is the grade of membership of u. in A. In

cases where the u. are numbers, there might be some ambiguity regarding

the identity of the y. and u. components of the string y.u.. In such

cases, it is convenient to employ a separator symbol such as / for disam

biguation, writing

A= y]/u1 +.-. +un/un (4)

or
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A = I y,/u. .
1=1 1 1

Example. Let U = {a,b,c,d} or, equivalently,

U=a+b+c+d.

In this case, a fuzzy subset A of U may be represented unambiguously as

A = 0.3a + b + 0.9c + 0.5d .

On the other hand, if

U = 1 +2 + --« +100

then A should be expressed as

A = 0.3/25 + 0.9/3

in order to avoid ambiguity.

Example. In the universe of discourse comprising the integers

1,2,...,10, i.e.,

U = 1 +2+ ••• +10

the fuzzy subset labeled several may be defined as

several = 0.5/3 + 0.8/4 + 1/5 + 1/6 + 0.8/7 + 0.5/8 . (5)

Example. In the case of the countable universe of discourse

U = 0 + 1 +2 + ---

the fuzzy set labeled small may be expressed as

small =I0+(t7t)2)" /u . (6)
0 ,u



Like (2), (3) may be interpreted as a representation of a fuzzy set as

the union of its constituent fuzzy singletons y.u. (or y./u.). From the

definition of the union (see (26)), it follows that if in the representation

-e of A we have ui = u., then we can make the substitution expressed by

-o Vi +yjui =(Pi-vij)ui (7)

where - is the symbol for max.

For example,

A = 0.3a + 0.8a + 0.5b

may be rewritten as

A = (0.3-0.8)a + 0.5b

= 0.8a + 0.5b .

Consistent with the representation of a finite fuzzy set as a linear

form in the u.., an arbitrary fuzzy subset of U may be expressed in the

form of an integral

A£|uA(u)/u (8)

with the understanding that yA(u) is the grade of membership of u in A,

and the integral denotes the union of the fuzzy singletons yA(u)/u, ueU.

(The symbol =- stands for "is defined to be.")

Example. In the universe of discourse consisting of the interval [0,100],

/ with u = age, the fuzzy subset labeled old^ (whose membership function is

given by (1)), may be expressed as

oM= 0+(t^) ) /"• (9)
J50 b
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In many cases, it is convenient to express the membership function of

a fuzzy subset of the real line in terms of a standard function whose para

meters may be adjusted to fit a specified membership function in an approxi

mate fashion. Two such functions, the S-function and the -rr-function, are

defined below. .

S(u;a,8,y) =0 for u < a (10)

=2(—)2 for a<u<3

=1-2(^)2 for 3<u<y

= 1 for u >_ y

tt(u;3,y) =S(u;Y-3,Y-fvY) for u<y (11)
=1-S(u;y,y+|,y+3) for u>y•

In S(u;a,8,Y)» the parameter 3, 3=^, is the crossover point.
In ir(u;3,Y)» 3 is the bandwidth, that is the separation between the cross

over points of it, while y Is the point at which it is unity.

In some cases, the assumption that yA is amapping from U to [0,1]

may be too restrictive, and it may be desirable to allow yA to take values

in a lattice or, more particularly, in a Boolean algebra. For most purposes,

however, it is sufficient to deal with the first two of the following

hierarchy of fuzzy sets.

Definition. A fuzzy subset, A, of U is of Type 1 if its membership

function, yA> is amapping from U to [0,1]; and A is of Type n,

n=2,3,..., if yA is amapping from U to the set of fuzzy subsets of

Type n-1. For simplicity, it will always be understood that A is of Type 1

if it is not specified to be of a higher type.
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Example. Suppose that U is the set of all nonnegative integers and

A is a fuzzy subset of U labeled small integers. Then A is of Type 1

if the grade of membership of a generic element u in A is a number in

the interval [0,1], e.g.,

ysmall integers(u) =0+ffi ) > u=0,1,2,.... (12)

On the other hand, A is of Type 2 if for each u in U, \iAu) is a fuzzy

subset of [0,1] of Type 1, e.g., for u = 10,

ysma11 integers(10) =^ <13>

where low is a fuzzy subset of [0,1] whose membership function is defined

by, say,

ulow(v) = 1- S(v;0,0.25,0.5) , ve [0,1] (14)

which implies that

low =((1-S(v;0,0.25,0.5)l/v . (15)

Containment

A fuzzy subset of U may be a subset of another fuzzy or nonfuzzy sub

set of U. More specifically, A is a subset of B or is contained in B

if and only if uA(u) < yg(u) for all u in U. In symbols

AC B o yA(u) <uB(u) , ueU . (16)

Example. If u = a + b + c + d and

A = 0.5a + 0.8b + 0.3d

B = 0.7a + b + 0.3c + d

then A c B.
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Level-Sets of a Fuzzy Set

If A is a fuzzy subset of U, then an g-level set of A is a non

fuzzy set denoted by A which comprises all elements of U whose grade
a

of membership in A is greater than or equal to a. In symbols

Aa = (u| yA(u) >a} . (17)

A fuzzy set A may be decomposed into its level-sets through the

resolution identity [241], [248]

fl
A = aA

0
a

(18)

or

A = I aA (19)
a

a

where aA is the product of a scalar a with the set A (in the sense
a , a

of-(30) and (or D is the union of the A , with a ranging from
Jo a

0 to 1.

The resolution identity may be viewed as the result of combining

together those terms in (3) which fall into the same level-set. More speci

fically, suppose that A is represented in the form

A = 0.1/2 + 0.3/1 + 0.5/7 + 0.9/6 + 1/9 .

Then by using (7), A can be rewritten as

A = 0.1/2 + 0.1/1 + 0.1/7 + 0.1/6 + 0.1/9

+ 0.3/1 + 0.3/7 + 0.3/6 + 0.3/9

+ 0.5/7 + 0.5/6 + 0.5/9

+ 0.9/6 + 0.9/9

+ T/9

(20)
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or

A= 0.1(1/2 +1/1+1/7 +1/6 +1/9) (21)

+ 0.3(1/1+1/7 +1/6 +1/9)

+ 0.5(1/7 +1/6 +1/9)

+ 0.9(1/6 +1/9)

+ 1/9

which is in the form (19), with the level-sets given by

A0.1 =2+l +7+6+9 (22)

AQ3=l+7+6+9

A0.5 =7+6+9

A0.9 =6 + 9
A1=9

As will be seen in later sections, the resolution identity — in combi

nation with the extension principle — provides a convenient way of generaliz

ing various concepts associated with nonfuzzy sets to fuzzy sets. As an

illustration, if U is a linear vector space, then A is convex if and

only if for all Xe [0,1] and all u], u2 in U,

uA(Au1 +(1-X)u2) >min(yA(u1),yA(u2)) . (23)

In terms of the level-sets of A, A is convex if and only if the A are
a

convex for all a e (0,1]. Dually, A is concave if and only if

yA(Au1 +(1-X)u2) <max(yA(u1),yA(u2)) . (24)
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Operations on Fuzzy Sets

Among the basic operations which can be performed on fuzzy sets are

the following. (A, B are fuzzy subsets of U.)

1. The complement of A is denoted by A' and is defined by

A' 4 (l-y.(u))/u .
*A

(25)

2. The union of fuzzy sets A and B is denoted by A+B (or,

more conventionally, by AUB) and is defined by

r
A + B =•

U

(y.(u) vyR(u))/u
B

(26)

where v is the symbol for max.

3. The intersection of A and B is denoted by A n B and is

defined by

A n B ^
U

(y.(u) -yR(u))/u
*AXM/ "B

(27)

where ~ is the symbol for min.

4. The product of A and B is denoted by AB and is defined by

r

AB A uA(u)yR(u)/u .
JU

(28)

Thus, Aa, where a is any positive number, should be interpreted as

Aa =• f(yA(u))a/u . (29)

Similarly, if a is any nonnegative real number such that a sup yA(u) < 1,

then

aA £ auA(u)/u . (30)
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As a special case of (29), the operation of concentration is defined as

CON(A) 4 A2 (31)

while that of dilation is expressed by

DIL(A) £A0,5 . (32)

5. The bounded-sum of A and B is denoted by A © B and is

defined by

A e B 4
U

1-(yfl(u)+uR(u))/u
'Avu/ HB

(33)

where + is the arithmetic sum.

6. The bounded-difference of A and B is denoted by A e B and

is defined by

A0B A|Ov(yA(u)-yB(u))/u (34)

where - is the arithmetic difference.

7. The left-square of A is denoted by A and is defined by

y P.(u)/u'

where V 4 {u | ueU}. More generally,

where V 4 {ua| ueU}.

Example. If

aA &f pA(U)/ua

U = 1 + 2 + ••• + 10

A = 0.8/3 + 1/5 + 0.6/6

B = 0.7/3 + 1/4 + 0.5/6

(35)

(36)
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then

A' = 1/1 + 1/2 + 0.2/3 + 1/4 + 0.4/6 + 1/7 + 1/8 + 1/9 + 1/10 (37)

A + B = 0.8/3 + 1/4 + 1/5 + 0.6/6

A n B =0.7/3 + 0.5/6

AB = 0.56/3 + 0.3/6

A2 =0.64/3 + 1/5 +0.36/6

0.4A = 0.32/3 + 6.4/5 + 0.24/6

CON(B) = 0.49/3 + 1/4 + 0.25/6

DIL(B) = 0.84/3 + 1/4 + 0.7/6

A e B = 1/3 + 1/4 + 1/5 + 1/6

A G B = 0.1/3 + 1/5 + 0.1/6

2A =0.8/9 + 1/25 +0.6/36

3A = 0.8/27 + 1/125 +0.6/216

8. If A,,...,A are fuzzy subsets of U, and w,,...,w are non-
1 n I n

negative weights adding up to unity, then a convex combination of A1>...,An

is a fuzzy set A whose membership function is expressed by

yA =WlyAi +-..+wnyAn (38)

where + denotes the arithmetic sum. The concept of a convex combination

is useful in the representation of linguistic modifiers such as essentially,

typically, etc. which modify the weights associated with the components

of a fuzzy set [243].

9. If A1,...,An are fuzzy subsets of ^,...,0^, respectively, the

cartesian product of Ar...,An is denoted by A^'-'x^ and is defined

as a fuzzy subset of U, * ••• xu whose membership function is expressed by
J In

»'A1x...xA^V"-'un>-Vu1) \(Un) " ^^



Equivalently,

V-xAn-
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J (%(u1) MA{un))/(Ul....,un) .
U,x-..xU

1 n

Example. If \i] =U£ =3+5+7, A] =0.5/3 +1/5 +0.6/7 and

A2 = 1/3+0.6/5, then

A1 xA2 =0.5/(3,3) + 1/(5,3) + 0.6/(7,3)

+ 0.5/(3,5) + 0.6/(5,5) + 0.6/(7,5) .

(40)

(41)

Fuzzy Relations

If U is the cartesian product of n universes of discourse U,,...,U ,

then an n-ary fuzzy relation, R, jji U is a fuzzy subset of U. As in

(8), R may be expressed as the union of its constituent fuzzy singletons

PR("19--«»"n)/(u1,...,un), i.e.,

R =

U,x--.xU
1 n

MR(ur...,un)/(ur...,un) (42)

where yR is the membership function of R.

Common examples of (binary) fuzzy relations are: much greater than,

resembles, is relevant to, is close to, etc. For example, if U, = U« =

(-oo}oo), the relation is close to may be defined by

is close to ?
' -a|u1-u2

/(u1$u2) (43)

u^u2

where a is a scale factor. Similarly, if U, = U2 = 1+2 +3+4 then the

relation much greater than may be defined by the relation matrix
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R 1 2 3 4

1 0 0.3 0.8 1

2 0 0 0 0.8

3 0 0 0 0.3

4 0 0 0 0

(44)

,th thin which the (i,j) element is the value of yR(u,,u2) for the i value
•Hi

of u, and j value of Up-

If R is a relation from U to V (or, equivalently, a relation in

U*v) and S is a relation from V to W, then the composition of R and

S is a fuzzy relation from U to W denoted by RoS and defined by

RoS = -v(yR(u,v) -y$(v,w))/(u,w) . (45)

U><W

If U, V and W are finite sets, then the relation matrix for R°S

is the max-min product of the relation matrices for R and S. For example,

the max-min product of the relation matrices on the left-hand side of (46)

is given by the right-hand member of (46):

R

f 0.3 0.8 *

0.6 0.9

f 0.5 0.9 1

0.4 1

RoS

f 0.4 0.8 1

0.5 0.9

(46)

Projections and Cylindrical Fuzzy Sets

If R is an n-ary fuzzy relation in t^ x••• xUn, then its projection

(shadow) on U. x ... xU. is a k-ary fuzzy relation R in U which is

defined by

R 4 Proj Ron u\ *••.'• *Ui 4 PR •
1

L yR(ur...,u ))/(u. ,...,u. )
u(q') R ' n nl \

U. x.-.xU.

(47)
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where q is the index sequence (i,,...,i.); u, % = (u. ,...,u. ); q'

is the complement of q; and v is the supremum of yD(u, ,...,u )
u(q') R ' n

over the u's which are in U/ ,\.

Example. For the fuzzy relation defined by the relation matrix (44),

we have

R] = 1/2 + 0.8/2 + 0.3/3 (48)

and

R2 =0.3/2 +0.8/3 +1/4 . (49)

It is clear that distinct fuzzy relations in U, * ••• *U can have
J 1 n

identical projections on U. x...xu. . However, given a fuzzy relation
nl 1k

R in U. x-.-xu. , there exists a unique largest relation R in
I K

U, *••• xU whose projection on U. *••• *U. is R . In consequence of
i-, ik q

(47), the membership function of R is given by

y=. (u,,...,u ) = yD (u. ,...,u. ) (50)
Rq ' " Rq ^ h

with the understanding that (50) holds for all u, ,...,u such that the

i,,...,i. arguments in yR are equal, respectively, to the
th q

first,second,...,k arguments in yD . This implies that the value of

ys at the point (u,,...,u ) is the same as that at the point (u{,...,u!)
k in in

provided that u. = u'. ,...,u. = u'. . For this reason, R is referred

to as the cylindrical extension of R , with R constituting the base
—— q q

of R .
q

Suppose that R is an n-ary relation in U, x ••• xu , R is its
I n q

projection on U. x--- xU. , and R is the cylindrical extension of R .
nl \ q q

Since R is the largest relation in U, x ••. xu whose projection on

U. x---xu. is R , it follows that R satisfies the containment
M h q q
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relation

for all q> and hence

RCR (51)

rcr or n ••• n R (52)
q, q2 \

for arbitrary q,,...,q (index subsequences of (1,2,... ,n)).

In particular, if we set q, = l,...,q = n, then (52) reduces to

rcr n r2 n ... n Rn (53)

where R,,...,R are the projections of R on U,,...,U, respectively,

and R,,...,R are their cylindrical extensions. But, from the definition
In J

of the cartesian product (see (40)) it follows that

^ n••• nR = R1 x••• xr

which leads to the containment relation

Rc r x... xRn . (54)

The concept of a cylindrical extension can also be used to provide an

intuitively appealing interpretation of the composition of fuzzy relations.

Thus, suppose that R and S are binary fuzzy relations in U^ x.U2 and

U2xU3' respectively. Let R and S be the cylindrical extensions of

R and S in U^u^u Then, from the definition of R°S (see (45))

it follows that

R°S =Proj Rns on U] xU3 (55)
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The Extension Principle

The extension principle for fuzzy sets is in essence a basic identity

which allows the domain of the definition of a mapping or a relation to be

extended from points in U to fuzzy subsets of U. More specifically,

suppose that f is a mapping from U to V and A is a fuzzy subset of

U expressed as

A = y,u, + ••• +y u . (56)
linn

Then, the extension principle asserts that

f(A)=f(y1u1+-+ynun)=y1f(u1) +-+yr|f(un) . (57)

Thus, the image of A under f can be deduced from the knowledge of the

images of u,,...,u under f. When it is necessary to signify that f(A)

is to be evaluated by the use of (57), f(A) is enclosed in angular brackets,

Thus,

<f(A)>4f(A)5iJ1f(u1) +-+ynf(un) . (58)

Example. Let

U = 1 +2 + -.. +10

and let f be the operation of squaring. Let small be a fuzzy subset of

U defined by

small = 1/1 + 1/2 + 0.8/3 + 0.6/4 + 0.4/5 . (59)

Then, in consequence of (57) and (35), we have

2sma11 = <small2> = 1/1 + 1/4 + 0.8/9 + 0.6/16 + 0.4/25 . (60)

If the support of A is a continuum, that is

r

A = yfl(u)/u (61)
U M
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then the statement of the extension principle assumes the following form

f(A) 4f(f y,(u)/u] =• fyA(u)/f(u) (62)

with the understanding that f(u) is a point in V and yA(u) is its

grade of membership in f(A), which is a fuzzy subset of V.

In some applications it is convenient to use a modified form of the

extension principle which follows from (62) by decomposing A into its

constituent level-sets rather than its fuzzy singletons (see the resolution

identity (18)). Thus, on writing

A = aA
a

(63)

where A is an a-level-set of A, the statement of the extension principle
a

assumes the form

f(A) = f aA
a

af(A )
^ a

when the support of A is a continuum, and

f(A) = f Y aA = I af(A )
Ka J a

(64)

(65)

when either the support of A is a countable set or the distinct level-

sets of A form a countable collection.

In many applications of the extension principle, one encounters the

following problem. We have an n-ary function f, which is a mapping from

a cartesian product U-. x••• xu to a space V, and a fuzzy set (relation)

A in Un x... xu which is characterized by a membership function
In

y.(Ul,...,u ), with u., i= l,...,n, denoting a generic point in u\.
mi n *

A direct application of the extension principle (62) to this case yields
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yA(u1,...,un)/(u1,...,un)

V"xUn

yA(u-|,...,un)/f(u-,,...,un) •

(66)

However, in many instances what we know is not A but its projections

A,,...,A on U,,...,U , respectively (see (47)). The question that arises,

then, is: What expression for yA should be used in (66)?

In such cases, unless otherwise specified it is assumed that the

membership function of A is expressed by

yA(.V...,un) =WAl(u1)^A2("2)--"~,JAn(un) (67)

where yfl , i = l,...,n, is the membership function of A.. In view of
Ai n

(39), this is equivalent to assuming that A is the cartesian product of

its projections, i.e.,

A = A1 x•••xA

which in turn implies that A is the largest set whose projections on

U,,...,U are A,,...,A , respectively.

Example. Suppose that

and

and

U1 = U2 = 1+2 +3+ ••• +10

A] =2 4 approximately 2=1/2+ 0.6/1 +0.8/3 (68)

A2 =6 4 approximately 6=1/6+ 0.8/5 +0.7/7 (69)
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f(u.,,u?) = u, xu« = arithmetic product of u-j and u« .

Using (67) and applying the extension principle as expressed by (66)

to this case, we have

2x6 = (1/2 + 0.6/1+0.8/3) x (1/6 +0.8/5 + 0.7/7). (70)

= 1/12 + 0.8/10 + 0.7/14 + 0.6/6 + 0.6/5 + 0.6/7

+ 0.8/18 + 0.8/15 + 0.7/21

=0.6/5 + 0.6/6 + 0.6/7 + 0.8/10 + 1/12 + 0.7/14 + 0.8/15

+ 0.8/18 + 0.7/21 .

Thus, the arithmetic product of the fuzzy numbers approximately 2 and

approximately 6 is a fuzzy number given by (70).

More generally, let * be a binary operation defined on UxV with

values in W. Thus, if u e U and v e V, then

w = u * v , weW.

Now suppose that A and B are fuzzy subsets of U and V,

respectively, with

and

A=Vl +..-+Vn (71)

B = v, v, + ••• + v v .
11 mm

By using the extension principle under the assumption (67), the operation

* may be extended to fuzzy subsets of U and V by the defining relation

A*B= [I y.u) *(I v.v.) (72)
i i i j J J

=.I.K^vj)(ui*vj) •
i »j
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It is easy to verify that for the case where A=2, B=6 and * = x,

the application of (72) yields the expression for 2x6.

Fuzzy Sets with Fuzzy Membership Functions

Fuzzy sets with fuzzy membership functions play an important role in

the linguistic approach [245], [248], in which the values of variables are not

numbers but words or sentences in a natural or synthetic language. For

example, if Age is treated as a linguistic variable, its values might be:

young, not young, very young, more or less young, not very young, old,

not old, not very young and not very old, etc. Each of these values repre

sents a label of a fuzzy subset of a universe of discourse which is asso

ciated with Age — e.g., the interval [0,1001. A fuzzy set which corres

ponds to a linguistic value of Age, say not very young, constitutes the

meaning of not very young. The meaning of each possible value of a linguistic

variable is defined by the semantic rule which is associated with the

variable [248].

Frequently, the grade of membership in a fuzzy set is not well-defined.

In such cases, it is natural to treat the grade of membership as a linguistic

variable with the linguistic values: low, not low, very low, more or less

low, medium, high, not high, very high, more or less high, not low and not

high, etc. Each of these values represents a fuzzy subset of the interval

[0,1], e.g.,

Mlow(v) = 1- S(v;0,0.25,0.5) , ve [0,1] (73)

yvery ]ow(v) =0"S(v;0,0.25,0.5))2 (74)
Vdium(v) =*(v;0.5,0.2) (75)
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where S and it are the S- and tt-functions defined by (10) and (11).

The fuzzy sets in question are of Type 2 (see (13)). Consequently,

to manipulate the linguistic grades of membership, it is necessary to extend

to fuzzy sets of Type 2 the definitions of complementation, intersection,

union, product, etc. which were stated earlier for fuzzy sets of Type 1

(see (25)-(36)). The method used for this purpose is illustrated in the

sequel by application to the computation of the intersection of fuzzy sets

of Type 2. The same technique can be used to define other types of opera

tions on fuzzy sets with fuzzy membership functions [138] and, in particular

to characterize the operations of negation, conjunction, disjunction and

implication in fuzzy logic [18].

To extend the definition of intersection to fuzzy sets of Type 2, it

is natural to make use of the extension principle. It is convenient, how

ever, to accomplish this in two stages: First, by extending the Type 1

definition to fuzzy sets with interval-valued membership functions; and

second, generalizing from intervals to fuzzy sets by the use of the level-

set .form of the extension principle (see (64)). More specifically, it will

be recalled that the expression for the membership function of the inter

section of A and B, where A and B are fuzzy subsets of Type 1, is

given by

yAnB(u) =yA(u)-uB(u) , ueU. (77)

Now if yA(u) and yg(u) are intervals in [0,1] rather than

points in [0,1], . that is, for a fixed u

UA(u) = [a19a2]

yB(u) = [b-|,b2]
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where a,, a2, b, and b« depend on u, then the application of the exten

sion principle (64) to the function - (min) yields

[a],a2] -[^,b2] = [a1 -b], a2 -b2] . (78)

Thus, if A and B have interval-valued membership functions, then their

intersection is an interval-valued function whose value for each u is

given by (78).

Next, consider the case where, for each u, PA(u) and yB(u) are

fuzzy subsets of the interval [0,1]. For simplicity, we shall assume that

these subsets are convex, that is, have intervals as level-sets. In other

words, we shall assume that, for each a in (0,1], the a-level sets of

yA and yR are interval-valued membership functions.

By applying the level-set form of the extension principle (64) to the

a-level sets of yA and yR we are led to the following definition of the

intersection of fuzzy sets of Type 2.

Definition. Let A and B be fuzzy subsets of Type 2 of U such

that, for each u e U, uA(u) and yB(u) are convex fuzzy subsets of Type 1

of [0,1], which implies that, for each a in (0,1], the a-level sets

of the fuzzy membership functions yA and yR are interval-valued member

ship functions yA and yR.

Let the a-level-set of the fuzzy membership function of the inter

section of A and B be denoted by yAnB» with the a-level-sets y?

and yR defined for each u by

PA = <v|vA(v)>a> (79)

HB = {v|vB(v)>a} (80)
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where vA(v) denotes the grade of membership of a point v, v e [0,1], in

the fuzzy set yA(u), and likewise for yR. Then, for each u,

a _ a a /01 \

"AnB-^A*^ • (81)

In other words, the a-level-set of the fuzzy membership function of the

intersection of A and B is the minimum (in the sense of (78)) of the

a-level-sets of the fuzzy membership functions of A and B. Thus, using

the resolution identity (18), we can express yAnB as

rl

^AOB= Lafor$ * (82)

For the case where yA and yR have finite supports, that is, \i.

and y are of the form
D

and

Un = a,v, + «• • +a v , v. e [0,1], i = 1,... ,n (83)
PA 11 n n i

Pr = Mi +*** +^mwm » w. e [0,1], j = l,...,m (84)
d i i mm J

where a. and 3- are the grades of membership of v. and w. in yA

and yR, respectively, the expression for yAnB can readily be derived

by employing the extension principle in the form (72). Thus, by applying

(72) to the operation ~, we obtain at once

yAHB = *VyB

=(a1v1 +...+anvn)MB1w1 +».+Bmwm)

= I {a. -$.)(v. -w.)
i,j J J

as the desired expression for PAnB

(85)
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The Concept of a Fuzzy Restriction and Translation Rules

for Fuzzy Propositions

The concept of a fuzzy restriction plays a basic role in the applica

tions of the theory of fuzzy sets to logic, approximate reasoning, pattern

classification, and many other fields. In what follows, a brief discussion

of the basic aspects of this concept is presented and its application to

the formulation of translation rules for fuzzy propositions is outlined.

Informally, by a fuzzy restriction is meant a fuzzy relation which

acts as an elastic constraint on the values that may be assigned to a

variable. More specifically, if X is a variable that takes values in a

universe of discourse U, then a fuzzy restriction R(X) on the values

that may be assigned to X is a fuzzy relation in U such that the assign

ment of a value u to X requires a stretch of the restriction expressed by

degree of stretch = 1-uR(v)(u) '^

where MR(v\(u) is the grade of membership of u in R(X). In symbols,

this is expressed as the assignment equation

x=u: uR(X)(u) (87)

where x denotes a generic value of X and uR(vn(u) ""s tne "degree of

ease" with which u may be assigned to X.

As a simple illustration, suppose that U = 0 + 1+ 2+ ••• and that X

is a variable labeled "small integer." Assume that the fuzzy set small

integer is defined by

small integer = 1/0 + 1/1 + 0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 . (88)

Then, if x is a generic value of the variable "small integer" and we
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assign the value 3 to this variable, we have

x = 3: 0.6 (89)

which implies that the fuzzy restriction labeled small integer must be

stretched to the degree 0.4 to allow the assignment of the value 3 to the

variable "small integer."

More generally, if X=(X^-.-.X ) is an n-ary variable taking

values in the cartesian product space

U = U1 x•••xun

then an n-ary fuzzy relation R(Xr...,Xn) in U is afuzzy restriction

if it acts as an elastic constraint on the values that may be assigned to

X. An n-ary variable which is associated with a fuzzy restriction on the

values that may be assigned to it is said to be an n-ary fuzzy variable.

The concept of a fuzzy restriction provides a basis for the formula

tion of translation rules for fuzzy propositions, that is, propositions

which contain names of fuzzy sets. Common examples of such propositions

are the following. (Names of fuzzy sets are italicized.)

Karl is very intelligent.

Anneliese is rather emotional.

John is tall and Pat is very kind.

If X is large then Y is smal 1.

X is much smaller than Y.

Most tall women are well-built.

X is small is true.

X is small is likely.

X is small is possible.

If X is small is true then Y is large is very likely.
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By a translation of a fuzzy proposition is meant a representation of

the meaning of a fuzzy proposition as a system of relational assignment

equations, that is, a set of assignment equations whose right-hand members

are fuzzy relations which are assigned to fuzzy restrictions on the variables

associated with the proposition in question.

As a simple illustration, the translation of the proposition "John is

tall" has the form

John is tall -»• R(Height(John)) = tall (90)

where Height(John) is a variable, R(Height(John)) is a fuzzy restriction

on the values that may be assigned to this variable, and tall is a unary

fuzzy relation which is assigned to the fuzzy restriction R(Height(John)).

More generally, the translation of a fuzzy proposition has the form

P-+ m}) = F] (91)

R(X2) = F2

R(X ) = F
n n

where X, ,...,X are variables which are implicit or explicit in p,

R(X,),...,R(X ) are the fuzzy restrictions on these variables and

F,,...,F are fuzzy relations which are assigned to R(X,),...,R(X ),

respectively. For brevity, the system of relational assignment equations

associated with p is denoted by R(p).

Example. The translation of "A tall man is blond" may be expressed as

A tall man is blond -*• R(Color(Hair(X))) = blond

R(Height(X)) = tall

where X is an element of a population of men.
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To deduce the translation of a given fuzzy proposition p it is

convenient to treat p as the result of a sequence of operations on a set

of kernel fuzzy propositions which play the role of generators. For example,

attributional modification of the kernel propositions

Mike is intelligent

Zene is charming

results in

Mike is very intelligent

Zene is extremely charming

which upon conjunctive composition yield the composite fuzzy proposition

Mike is very intelligent and Zene is extremely charming

which upon truth-qualification results in

(Mike is very intelligent and Zene is extremely charming) is very true .

With each operation is associated a translation rule which describes

the effect of the operation on the relational assignment equations associated

with the operand proposition. Thus, for example, if M(p) is the result

of applying a modification M to a fuzzy proposition p and M(R(p)) is

the modification induced by M in R(p), then the associated translation

rule has the general form

If p -* R(p) (92)

then M(p) -• M(R(p))

which implies that R, viewed as a mapping, is a homomorphism.
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In what follows, the translation process is described in greater

detail for (i) a type of attributional modification (Type I); (ii) conjunc

tive composition (Type II); and (iii) likelihood and possibility-qualifications

Translation Rules of Type I

Translation rules of this type pertain to operations involving attribute

modification; more specifically, they apply to fuzzy propositions of the

form p =• X is mF, where F is a fuzzy subset of U = {u}, m is a modi-

fer such as not, very, more or less, slightly, somewhat, etc., and either X

or A(X) -- where A is an implied attribute of X — is a fuzzy variable

which takes values in U.

Translation rules of Type I may be subsumed under a general rule which,

for convenience, is referred to as the modifier rule. In essence, this

rule asserts that the translation of a fuzzy proposition of the form

p =• X is mF is expressed by

X is mF -• R(A(X)) = mF (93)

where m is interpreted as an operator which transforms the fuzzy set F

into the fuzzy set mF.

In particular, if m =• not, then the rule of negation asserts that

the translation of p^ X is not F is expressed by

X is not F — X is F' — R(A(X)) = F' (94)

where F' is the complement of F, i.e.,

Upt(u) =1-yp(u) , ueU.



34

For example, if

yyounq(u) =1-S(u;20,30,40) (95)

then p => John is not young translates into

R(Age(John)) = young' (96)

where, in the notation of (25),

young S(u;20,30,40)/u . (97)
0

In general, m may be viewed as a restriction modifier which acts in

a specified way on its operand. For example, the modifier very may be

assumed to act — to a first approximation — as a concentrator which has

the effect of squaring the membership function of its operand. Correspond

ingly, the rule of concentration asserts that the translation of the fuzzy

proposition p = X is very F is expressed by

Xis very F— Xis F2 — R(A(X)) =F2 (98)

where

very F = F = (yF(u))Vu (99)

and A(X) is an implied attribute of X.

As an illustration, on applying (98) one finds that "Jennifer is

very young" translates into

where

young

R(Age(Jennifer)) = young (100)

2 TV _, o2(1 -S(u;20,30,40))7u . (101)
0
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The effect of the modifier more or less is less susceptible to simple

approximation than that of very. In some contexts, more or less acts as a

dilator, playing a role inverse to that of very. Thus, to a first approxi

mation, we may assume that, in such contexts, more or less may be defined by

more or less F = /F (102)

where

/F = '(yF(u))1/2/u .
u ^

Based on this definition of more or less, the rule of dilation asserts

that

X is more or less F -* X is # -^ R(A(X)) = /F (103)

where A(X) is an implied attribute of X. For example, "Pat is more or

less young" translates into

«00

R(Age(Pat)) =i^oung = (1 -S(u;20,30,40))1/2/u . (104)
0

Translation Rules of Type II

Translation rules of this type apply to composite fuzzy propositions

which are generated from fuzzy propositions of the form "X is F" through

the use of various kinds of binary connectives such as the conjunction, and,

the disjunction, or, the conditional if...then..., etc.

More specifically, let U = {u} and V = {v} be two possibly different

/ universes of discourse, and let F and G be fuzzy subsets of U and V,

respectively.

Consider the propositions "X is F" and "Y is G," and let q be their

conjunction "X is F and Y is G." Then, the rule of noninteractive conjunctive
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composition or, for short, the rule of conjunctive composition asserts that

the translation of q is expressed by

X is F and Y is G -* (X,Y) is FxG -+ R(A(X),B(Y)) = FxG (105)

where A(X) and B.(Y) are implied attributes of X and Y, respectively;

R(A(X),B(Y)) is a fuzzy restriction on the values of the binary fuzzy

variable (A(X),B(Y)); and FxG is the cartesian product of F and G.

Thus, under this rule, the fuzzy proposition "Eugene is tall and Cathieen

is young" translates into

R(Height(Euqene)),Aqe(Cathleen)) = tall * young (106)

where tall and young are fuzzy subsets of the real line.

To differentiate between noninteractive and interactive conjunction,

the latter is denoted by and*. With this understanding, the rule of

interactive conjunction, in its general form, may be expressed as

- X is F and* Y is G — R(A(X),B(Y)) = FOG (107)

where ® is a binary operation which maps F and G into a subset of

UxV and thus provides a definition of and* in a particular context.

A simple example of an interactive conjunction is provided by the

translation rule

X is F and* Y is G -> R(A(X),B(Y)) = FG (108)

where

pfg =Vg. 009)

Note that, in this case, an increase in the grade of membership in F can

be compensated for by a decrease in the grade of membership in G, and

vice-versa.
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In general, interactive conjunction is strongly application-dependent

and has no universally applicable definition.

The translation rule for conditional fuzzy propositions of the form

"If X is F then Y is G" is referred to as the" rule of conditional composition

and may be expressed as

If X is F then Y is G -* R(A(X),B(Y)) = F' © G (110)

where © denotes the bounded sum and F' is the complement of the cylin

drical extension of F.

As an illustration, assume that tall and young are defined by

tall =

young =

S(u;160,170,180)/u
U

(1 -S(v;20,30,40))/v

where U and V may be taken to be the real line and the height is assumed

to be measured in centimeters. Then, the fuzzy proposition "If Eugene is

tall then Cathleen is young" translates into

R(Height(Eugene),Age(Cathleen)) = tall' © young (111)

or, more explicitly,

R(Height(Eugene),Age(Cathleen)) (112)

=LM-Wu>+Wv)))/(u'v)
=I fl -(1 -S(u;160,170,180)+1-S(v;20,30,40))l/(u,v) .
JUxVv J

If the conditional fuzzy proposition "If X is F then Y is G else Y

is H" is interpreted as the conjunction of the propositions "If X is F then
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Y is G" and "If X is not F then Y is H," then by using in combination the

rule of negation (94), the rule of conjunctive composition (105), and the

rule of conditional composition (110), the translation of the proposition

in question is found to be expressed by

If X is F then Y is G else Y is H -*- R(A(X),B(Y)) = (F'©G)n(F©H) .

(113)

Translation Rules for Likelihood- and Possibility-Qualified Propositions

An important mechanism for effecting a modification in a proposition

p involves the use of a qualifier following or preceding p. In ordinary

discourse, the most commonly used qualifiers are truth-values, likelihood-

values and possibility-values. For example, if p =• X is small, then

as modifications of p we may have propositions such as

X is small is quite true

X is small is very likely

X is small is possible

A discussion of translation rules for truth-qualified fuzzy proposi

tions of the form "X is F is t," where t is a linguistic truth-value such

as true, quite true, very true, not very true, etc. may be found in [18].

The translation rules for likelihood-qualified propositions of the form

"X is F is X," where X is a linguistic likelihood-value such as likely,

unlikely, very likely, etc., are quite similar to the rules described in

[18] which apply to quantified propositions of the form "OX are F," where

Q is a fuzzy quantifier such as most, many, few, etc.

As was stated earlier, the concept of possibility differ in essential

ways from that of probability. Reflecting these differences, the translation
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rules for likelihood-qualified propositions are very different from the

corresponding rules for possibility-qualified propositions. More specifically,

the translation rule for a likelihood-qualified fuzzy proposition of the

form "X is F is X" is expressed by

Xis Fis X-> R( pA(x)(u)yp(u)du) =X (114)

where pwwx(u)du is the probability that the value of the implied attribute

A(X) falls in the interval (u,u+du), and yp is the membership function

of F as a subset of U. For example,

•100

Laura is young is likely —*• R P «(u)u „ (u)du0 Kagex /Hyoungv = likely (115)

where likely is a fuzzy subset of the unit interval [0,1]. In effect,

(115) defines a fuzzy set of probability density functions P,_tt(*) which
age

is induced by the proposition in question.

By contrast, the translation rule for the possibility-qualified fuzzy

proposition "X is F is possible" is expressed by

X is F is possible -*- R(A(X)) = F+ (116)

where A(X) is an implied attribute of X and F is a fuzzy set of

Type 2 which is related to F by

y +(u) = [l-yF(u),l] (117)
F r

which signifies that y is interval-valued, with the value of y . at
F F

u being the interval expressed by the right-hand member of (117).
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As a simple illustration of (116), consider the nonfuzzy proposition

"X is in [a,b]" where X is a real-valued variable. Applying (116) to

this proposition, we obtain the translation

Xis in [a,b] is possible -* R(X) = [a,b]+ (118)

which implies that

yR(x)(u) =1 for a <u<b (119)
= [0,1] elsewhere .

Intuitively, (118) signifies that, whereas "X is in [a,b]" implies

that the degree of possibility that Xis outside of the interval [a,b]

is zero, "X is in [a,b] is possible" implies that the degree of possibility

that X is outside of the interval [a,b] is unknown, i.e., is the inter

val [0,1].

An interesting point that is worthy of note is that (118) provides a

justification for an intuitively plausible implication, namely,

Xis in [a,b] is possible => Xis in [c,d] is possible (120)

where [c,d] c [a,b] . , (121)

By contrast,

X is in [a,b] <= Xis in [c,d] . (122)

To verify (121) and (122), it is sufficient to demonstrate that the

restriction associated with the antecedent is a subset of the restriction

associated with the consequent. This is obvious in the case of (122) and

is an immediate consequence of (118) in the case of (120).

What is particularly important about the concept of possibility is

that much of the knowledge on which human decision-making is based is in
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reality possibilistic rather than probabilistic in nature. Thus, if X is a

variable which takes the values x-,,...,x with respective probabilities

p,,...,p and possibilities y,,...,y , then, in practice, one is much

* ♦ more likely to know--or be given—the y's rather than the p's, In many

cases, the distinction between the two is not clearly understood, so that

any collection of data, regardless of whether it is possibilistic or proba

bilistic, is treated as if it were probabilistic in nature. However, as

the foregoing analysis shows, the manipulation of possibilities calls for

rules that are quite different from those that apply to probabilities. Thus,

in any realistic application of decision analysis, it is essential to

differentiate between probabilities and possibilities and treat them

by different methods.

Although in principle there is no connection between probabilities and

possibilities, in practice the knowledge of possibilities conveys some infor

mation about the probabilities but not vice-versa. Certainly, if an event

is impossible then it is also improbable. However, it is not true that an

event which is possible is also probable. This rather weak connection

between the two may be stated more precisely in the form of the possibility/

probability consistency principle, namely:

If X is a variable which takes the values x,,...,x with probabilities

p,,...,p and possibilities y,,...,y , respectively, then the degree of

consistency of the probabilities p,,...,p with the possibilities

y.|,... ,yn is given by

4

p =y]p1 +u2p2 +..- +unpn . (123)

i
Intuitively, (123) means that, in order to be consistent with y's, high

probabilities should not be assigned to those values of X which are associated

with low degrees of possibility.
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