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1. Introduction

Quite commonly, engineering design problems transcribe into mathematical

programming problems of the form

P:min{f(z)|gj(z) <0, j=l,2,...,p; /(z,</) <0,

a) e n£, i =l,2,...,q} (1)

where z^l ,u Si ; f, gJ, are all continuously differentiable,

on 1R , and the (J) and V <j> are continuous on IRn x IR £. The sets

a C ]R are assumed to be compact. In particular, circuit design, with

tolerances, problems (see e.g. [Refs. 1,2,3]), multivariable control

system design problems (see e.g. [Refs. 5,4,6]) and shock resistant structure

design problems (see e.g. [Refs. 7,8]) have been cast in this form.

From a mathematical programming point of view, P is a particularly

difficult problem, since a constraint of the form <j> (z,<d) <_ 0

Vo) €= Q is, in fact, an infinite number of constraints. Because of this,

even to check whether a point z is feasible may require an infinite

number of function evaluations, and, consequently, any conceptual algorithm

for solving the general problem P is bound to be multiply infinite,

i.e., it constructs an infinite sequence {z.}. = n, each point of which

is constructed by means of an infinite number of operations. In the

nonconvex case, there are basically two conceptual algorithms which

can serve as prototypes for an implementable algorithm. The first is

in the class of feasible directions and is due to Demyanov [Ref. 9] and the second

one is in the class of outer approximations and is due to Levitin and

Polyak [Ref. 10], Eaves and Zangwill [Ref. 11], and Blankenship and Falk [Ref. 12].

The set of implementable (i.e. practical) algorithms is equally scarce:
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in [Ref. 6] the authors made use of Demyanov's ideas for the special case where

9, 1
v = 1 (i.e. all ft C ]R ), while in [Ref. 12] Blankenship and Falk present

a slightly incomplete algorithm for the convex case. There seem to

be no iraplementable algorithms, in the literature, for the general

case.

In this paper we present a new, implementable algorithm of the outer

approximations type for the general case of problem jP. It is an

implementation of a conceptual scheme proposed by Eaves and Zangwill in

[11]. We shall now explain the conceptual scheme and the obstacles

which we had to overcome in constructing an implementation. For this

purpose, consider the simplified form of P : min{f (z) |<J>(z,(o) 1 0, w £ ft}

(i.e. one constraint only) and let M(z) denote the problem max <j>(z,a>).
0) € ft

The simplest conceptual algorithm begins with a a)n £ ft and solves

Pq : min{f (z) |<J)(z,a)k) < 0, k=0} to obtain zQ. It then computes

w1 by solving M(zQ) and if (j>(zQ,u) ) < 0, it stops, otherwise it proceeds

to solve V± : min{f (z) |<J>(z,wk) 1 0, k= 0,1} for a z-, etc. Let

j^ : min{f (z) |4>(z,wk) <_ 0,k = l,2,...,i}. The problems P. have a finite

number (i) of constraints only. Their feasible sets F. = (z|<f>(z,u), ) £ 0,

k = 0,1,2,...,!} satisfy FQ 3 F1 D,. .. ,D FA (z|<j>(z,u>) <• 0 Va> e ft}. Hence
it

f(zQ) _< f(z1) £•••£ f(z±) <.•••<, f(z ), where z* is any solution of ?.

The theory in [Ref. 11] leads to the conclusion that any accumulation
^ 00

point z of {zi}i = Q is in F and solves P. Furthermore, it is shown

in [Ref. 11] that, in constructing _P., a number of the constraints on z,

<J>(z,wk) 1 0, can be dropped from P^^ if (i) <Kzi_1»wk) <_ 0 and f(z ) is

sufficiently larger than f(zk), and (ii) the next solution z. satisfies

f(z±).^ f(zi_1). Thus, the growth of complexity of P. can be slowed and,

possibly, even arrested. To obtain an implementation we needed to invent two
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nontrivial modifications, (i) Since the problems P^ and M(z) generally take an

infinite number of iterations to solve,, we had to invent an efficient

approximation scheme which is compatible with the convergence of the overall

algorithm, (ii) Since in the absence of convexity, P can only be solved

in the sense that one computes a feasible stationary point z., we

could not assume that the sequence {f(z.)} was monotonically increasing.

Hence we had to invent a constraint dropping scheme which,unlike the one

of Eaves and Zangwill, does not depend on monotonicity. The result is

an algorithm which can be (and was) coded without further interpretations.

Our computational experiments show that it works rather well and, in

particular, that our constraint dropping scheme works very well in the

sense that the number of constraints in T. remains small.
—i

2. The Algorithm

As already stated in the introduction, we need the following

hypotheses.

Assumption 2.1: The functions f, gj ,j = 1,2,...,p, from TRn into StX
v

are continuously differentiable. The functions <J> : ]Rn xIR l -*- H1 and
v

Vz<f> : IRn x IR -> ]Rn, I =l,2,...,q, are continuous. n

Assumption 2.2: The sets ft C ]R , i = l,2,...,q, are compact.
n

The specific subalgorithms called by the Master Algorithm to be presented

usually require additional assumptions. We shall introduce these for

one subalgorithm in Appendix A.

We now develop the three optimality functions (6,0,,6 ) which
du Ob Kf

will be used in the algorithm and the analysis. These functions assume

zero value at optimal points.
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Let ft A ^1»ft ,-.-,^q} and let ft' A {ft'^ft'2,... ,ft,q}, with
Z Z

ft* C ft , for Z = l,2,...,q. We now defi:

and

ine

ifi,(z) Amax{gJ(z), j=1,2,...,p; <f>£(z,u/),

o 6 ft'*, Z=1,2,...,q} (2)

^t(z) A max{0,^,(z)} (3)

For reasons of computational efficiency in the implementation, we

ft
shall use the optimality function 8 : IRn -*- ]R1 defined by

6fi(z) Amin{ilhH2 +max{< Vf(z),h> - i/j (z);
h ^

gj(z) - *n(z) +<Vg3(z),h>, j =1,2,....p; <j/(z,</) - $ (z)
Ob

+<Vz /(z,</),h>, o)££ ft*, £=1,2,...,q}} (4)

with ft = {ft1,ft2,...,ftq}# Let

FA 4 U|gJ(z) < 0, j = 1,2,...,p; 4>\z,</) < 0,
I *= ~Z

U — IT _ I

(5)
0) € ft , Z = 1,2,....q}

i.e. F is the feasible set for P_.

It can be seen from section (4.4) in [Ref. 13] that the various
optimality functions used in defining various methods of feasible
directions are equivalent, in the sense that they all have the same
zeros. Also, they are zero at a feasible point if and only if it
is an F. John point [Ref. 14]. Many of these optimality functions
are interchangeable in the Master Algorithm.
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We can then write problem P_ in the equivalent form

P^ : min{f(z)|z e Ffi} (6)

It is an easy extension of the results in [Ref. 6] to show (see Proposition 2.1

further on) that if z G F is optimal for P_, then 8_(z) = 0. Given (finite)
« ft

discrete sets ft' ={a>0,u>J,... ,u>£ }Cn\ £=l,2,...,q, we define
JO

Fftl A(z|gj(z) <0, j =1,2,...,p; /(z,c/) <0,

ai£ € ft'*, £ = 1,2,...,q} (7)

P^, : min{f(z)|z GFQ|} (8)

with ft1 as defined before. For the problem P^,, we define 9 , : ]R ->• ]R by

eQl(z) Amin{-|llhll2 +max{<7f(z),h> - *ftI(z); gj (z) - ty ,(z)
h

+<Vgj(z),h) ,j=1,2,...,p; /(z,/) -*Q,(z)

P

+ <V <|> (z,w ),h> , w € ft'*, £ = 1,2,...,q}}

= max J— •" "" -*- m *J '~J{-yf* ,(z) + 2 ui(gJ(z) - * ,(z))
y > 0 " j = 1 8 "

k

q -* £,j, £, £, „. , .. 1
+ E £ W*'J (♦(«.<) - *0.U» -4«MfVf(z)

P q k£
+ Z p^ vgj(z) + y; E ^,J v. ♦*<*."!»
j=lS £ = 1 j = 1 * Z J

P q k£ ,.
*f + S *g + E, £ m{° =1> (9)

j=lg £ = 1 j = 1 ?

The alternative expression follows from duality (see [Ref. 15]) and hence it

is easy to see that if z1 £ F , is optimal for P^i» then 0 ,(z') = 0 and

that this fact is equivalent to satisfying the F. John condition [Ref. 14]. Thus
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for the original problem, we see that 6fi(z) = 0 is a generalization of

the F. John condition to the case of an infinite number of constraints.

This fact will be proved in Proposition 2.1.

In our convergence analysis we shall make use of the auxiliary function

BQ, : mn -* IR defined by

8,(z) Amin{^Hh!l2 +max{<Vf(z),h> -i|>0,(z);

gj(z) -*Ql(z) +<Vgj(z),h>, j=1,2,...,p; (j>£(z,c/)

"V(z) +<vz^(2»^),h>, a)£ Eft\ £=1,2,...,q}} (10)
£ £

with ft1 C q. Note that 0 , differs from 0 , because in (10) (o C ft , while

£ £ £
in (9) a) €= ftf ^ ft . The important properties of 0 , 0 f and 0 , are as follows

Proposition 2.1: If Assumptions 2.1 and 2.2 are satisfied then: (i) For

all zG ]Rn and any discrete subset ft' C ft, 9Q(Z) 1 °» 6ft> (z) 1 °» and

furthermore, 6fil(z) <8fi|(z),

(ii) If z€ Ffi is optimal for P^ then efl(z) = 0. If z» S f ,is optimal

for P^f then 6^,(z)• = 0.

(iii) For any ft' C ft , efi, 0^, and 8 ,are continuous on ]Rn.

Proof: (i) Since h = 0 is allowed in the right hand sides of (4) and

(9) and for any ft' C ft, gJ (z) -^, (z) <0, j=l,2,...,p, /(z,</) -* (z) <0,
£ £

a) £ ft1 , £= l,2,...,q, it follows that 0o(z) <_ 0 and 0of (z) < 0
ii ft

for all zS]Rn. The fact that 6fll (z) <8fll (z) for all ze]Rn follows
from the fact that ft1 C ft , £ = l,2,...,q. i.e. because the max in (10)

is over a larger set than the max in the first expression in (9).

(ii) The fact that if zf is optimal for P^t, then Qq'^') =0 follows

directly from the second expression in (9), which shows that 0 ,(z') = 0
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is equivalent to the F. John condition being satisfied. To show that

if ze Ffi is optimal for P^, then QQ(z) =0, we proceed as follows

(c.f. proof of Theorem (4.2.32) in [Ref. 13]). Since 8_(z) < 0

we assume, for the sake of contradiction that 0o(z) < 0. But

this implies that for the h solving (4),

<Vf(z),h> 10Q(z) -| llhll2 <0 (11)

gj(z) +<Vgj(z),h> <9j2(z) -\ llhll2 <0, j =1,2,...,p (12)

♦£(z) +<Vz/(z,a)),h> <0^(z) - \ »hll2 <0, u)G ft\ £=1,2,...,q

(13)

Since the sets ft are compact by assumption it can be shown (as in the

proof of theorem (4.2.32) in [Ref. 13]), that there exists a X > 0 such that

z+ An e Fq and f(z + Ah) <f(z), contradicting the optimality of z.

Thus, 9fi(z) = 0, is a necessary condition of optimality for P .

(iii) To show that 0^(0 is continuous on ]Rn, consider any sequence

zi -* z* G ]R . Let hi be a minimizer associated with z. in (4),

and h* with z*. Let s: ]Rn x mn + IR1 be defined by

s(z,h) A-| Hhll2 +max{<Vf(z),h> -^(z);

gJ(z) -*Q(z) +<Vgj(z),h>, j=1,2,...,p;

/(z,</) -^(Z) +<Vz«J,\z,u)£),h> ,/ Eft£, £=1,2,...,q} (14)

6The minimizers h± for (4) exist for all z±, i = 1,2,..., since
s(z,h) is bounded from below and s(z,h) -> <=° as llhll •> « and s(z,h) is
continuous in h.
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Then 0 (z*) = s(z*,h*). Because of assumptions 2.1 and 2.2 and because

\\) (•) is continuous, s(»,#) is continuous and therefore, for any sequence

z ->- z* G ]R , as i -*• », s(z.,h*) + 0 (z*) as i -*• «. But 60(z.) <_ s(z.,h*)

by definition of 0 (z.), and hence lim 0o(z.) _< lim s(z.,h*) = 0 (z*),
14 1 ii 1 1 it

which shows that 0q(O is upper semicontinuous (u.s.c).

To show that 0 is also lower semicontinuous (l.s.c.) we first

show that the sequence {h.} is bounded. Suppose this is not true,

then there exists a subsequence {h. } such that llh. II + » as i + «>.

Now

0o(z. ) = s(z. ,h. ) >i llh. II2 + raax{-IIVf(z. ) II llh II - i|>n(z. );
0 \ \ \ " 2 Xk \ *k fl \

gj(z ) - if, (z ) - HVgj(z. )H llh. II, j = l,2,...,p;
\ " Xk 1k Xk

/(z. ,</) - *0(z. ) - DV *(z. ,</)ll llh. II, (/ Gft*, £ =1,2,...,q}
k " \ z \ xk

and hence '9o^zi ) + M as i, •»• «. But, by continuity, s(z. ,0) is bounded

for all i = 1,2,..., and by definition, 9Q(z.) £ s(z.,0)

so that {Qo(zi^ is a bounded sequence. This is a contradiction and

therefore {h.} is bounded and hence {h.} (and any infinite subsequence of

{h^}) must have accumulation points. If we consider any accumulation

point h of {h } i.e., h. + h as i + « then s(z. , h. ) -*• s(z*,h) > 0 (z*)
\ fc \ ik - ft

Hence, for some subsequence (z. , h. ) •+ (z*,h) as i '-*• «, lim 0 (z )
Xk \ k n i

= lim s(z , h ) = s(z*,h) >_ 0o(z*), and this proves that 0_ is l.s.c.
k k " " "

Since 0Q(#) is both u.s.c. and l.s.c, it is continuous. The proof that
ft

*~t are continuous is identical to the one iust- pivpn fnr f, .9ft' anc* 9ft! are continuous is identical to the one just given for 0n.
n
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We note at this point that, for ft± adiscrete subset of ft, an

algorithm such as the one in Appendix A, will construct a z G ]Rn
i

satisfying -31 <0^(z.) <0and 0<̂ (z.) <01 in afinite number
of iterations. (Note that z. need not be in Ffi ). Because of this we
shall find the following consequence of Proposition 2.1 most useful.

Corollary 2.1: Let $G (0,1), let Q± ={ft*, ft2,...,ft^} i=1,2,...,
Z Z

with ft.^ ft , £ = l,2,...,q, be an infinite sequence of discrete sets.

If z± G ]Rn, i=1,2,... satisfies -fl1 <_ 0_ (z.) <. 0, 0<ij;n (z.) <31
" j 1 ft. i —

i 1
and z± + z* G fq then 0o(z*) = 0.

Proof: We begin by defining the function o: ]Rnx]R1-)-]R1by

1 2a(z,i|/) A min{- llhll + max{< Vf (z),h> - i/>;
h

gJ(z) - $ + <VgJ(z),h>, j = 1,2,...,p; /(z,u/)

- * +<Vz(j»Jl(z,a,£),h>, (/G ft£, £=1,2,...,q}} (15)

a(-,') is continuous by the same arguments used in the proof of Proposition

2.1. Letting \\>± A ^ (z ), i = 1,2,..., we have BQ (z±) = a(z±,^i).
i i

Because z± •*• z* G fq, and ^ + 0881 + -, it follows by continuity that

<7(zi,^1) ->• o(z*,0) = 9fi(z*), where the equality follows from the definitions

of a, 9n, and the fact that ^(z*) = 0. By Proposition 2.1.

V(V - 6ft.(zi) for a11 i=1»2»---» and eft(z*> 1 0- Thus, by
continuity of 0 and 0 we get 0 > 0o(z*) = lim a(z.,i/>.) = lim (L (zj

"i "^ — ft 11 ft. i
>lim e^Cj) =0.

The algorithm which we shall shortly describe constructs sets ft and points
1

zi which satisfy the conditions of the above corollary. However, before

we state it, we must postulate a process for solving

-10-



max{£(z,w) |u = (uj ,u> ,...,ajq), </ G ft*, £= l,2,...,q} (16)
to

where

jfc.(z,o)) A max <j> (z,oj ) (17)
£ G £

with £ A {l,2,...,q}. Since the sets ft are compact, we may postulate

that we have an algorithm for solving (16) with the following properties

which we state as an assumption.

Assumption 2.3: The algorithm for solving (16) is such that: (i) it

accepts an initial point w1 and after k iterations it constructs a point

s(k,z,(ol) G ft = {ft1,ft2,...,ftq}.

(ii) Given any compact set ZG ]Rn, the sequence s^k.z.w1) -»- £(z)

as k + », a solution of (16), uniformly in z, for z G z.

Generally speaking, we can always find such an algorithm for

solving (16): in the worst situation we would have to use a Monte Carlo

method. Next, in order to give ourselves some flexibility in the

specification of the number of iterations to be performed on (16),

we shall use positive integer valued, monotonically increasing "truncation"

functions t: 2T+ +2+, where »+ A{0,1,2,...}, with the property that
t(i) + oo as i -> oo. we now have all the elements we need to state our

Master Algorithm. The operations in Steps 1 and 2 call for the use of

subroutines which will be discussed in the Appendices.

Master Algorithm

Data: t>0, BG (0,1), Y>0, ^ > 0, »2 > 0, a truncation function t.

Step_0: set i=0, k=0, fQ =-oo, 6q =0, ftQ = {*,♦,...,♦}. (i.e., ft£ = ♦,

Z = l,2,...,q. Here 4> denotes the empty set.)
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j3tep_l: Compute a.z , by subroutine which solves P , (using z as
"™"•"• i—1

an initial point) such that 0^ (z±) >-u.^1 and * (z±) <uft1.
i i

SteP 2: c°mP"te ok = s(t(i),zi,M1->1) by t(i) iterations of subroutine
for solving max {£(z.,uO|w G ft}.

Step_3: if jL(zi,«i) <0, set ft±+1 = ft±, set i=i+1 and go to step 1.

Else, set ft* =ft* for all £such that <J>£(z,,u)£) <0and ft£ =ft* U{</}
l l — i i i

for all £such that /(z^wj) >0, and go to step 4.
Step 4: If

f<*i> >fk+ t(1 -fik)\- Y6k (18)

set xk+l =V set fk+l =f<zi>' set 6k+1 =KV-^i*' set k=k+1> set
Qi+1 =^i "<V ^ere \ ={w G ft± |<J> (zi,w) <0}, £=l,2,...,q,
set i = i+1 and go to step 1.

If (18) is not satisfied, set ft*+1 =ft* ,£=1,2,...,q set
i = i+1 and go to step 1.

n

We now turn to the analysis of the Master Algorithm.

Proposition 2.2: Suppose the sequence {xk} constructed by the Master

Algorithm is infinite. Then, either the sequence {f(x )} has no

accumulation points (and hence is unbounded) or else, it converges.

Proof: Suppose {xk} is infinite and (f(xR)} has an accumulation point,

f*. Since ffe = f(xk) for k = 1,2,..., we get from (18) that

f<xk+1) 1f(*k) -Y3k, k=1,2,..., (19)

For the purposes of contradiction, suppose now that {f(x )} is

unbounded.

For i = 0, set z_1 and oj> arbitrary.
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Since because of (19) f(xR) >_ f(X;L) - Y3/1-3 for k = 1,2,...,

the fact that {f(x.)} is unbounded implies that there is an infinite

subsequence, with indices in K C {1,2,...} such that f(x, )S oo

as k •>». Therefore, there is a L G K such that f(x, ) >_ f* + 2y3/(l-3)
ko

But from (19),

fOO 1 f(xu ) - Y3/(l-3) > f* + Y3/1-3 (20)
K *0

for all k ^ kg, and hence f* cannot be an accumulation point of

ifixy)}. Thus, if {f(xk)} has an accumulation point, then {f(x,)}

must be bounded. A similar argument shows that f* must then be the

unique accumulation point. Thus, either {f(x,)} converges, or it has

no accumulation points.
n

Lemma 2.1: Suppose the Master Algorithm constructs an infinite

OO

sequence (xk}k = 1« Then every accumulation point x* is feasible,

i.e. x* G F ,and satisfies 0Q(x*) = 0.

Proof: Suppose that {x,} has an accumulation point x*. Then,by

continuity, {f(xk)} must have an accumulation point and therefore, by

Proposition 2, f(xfc) -* f(x*) A f* as k + ». Since by construction

fk = f(\) for k = 1,2,..., it follows from (18) that

f(*k+1) >f(xk) +x(l-3k)6k -Y3k (21)
k

and hence, since 3 -»• 0 as k -*- 0 and f(x, ) -> f*
k '

lim «Sk < 0 (22)

But, by Assumption 2.3, and the construction in the Master Algorithm

[max i(x ,w) - &] -»• 0 ask •»• » (23)
a) G ft
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and hence, since max £(x,u)) is continuous in x, we have, because of
(u G ft

(22) and (23),

max £(x*,o)) <_ lim max j>.(x, ,w) <_ 0 (24)
w G ft w G ft k

Next, by construction, each xk satisfies gJ(xk) <_ u3 for j=l,2,...,p,

and therefore, by continuity, gJ(x*) £0 for j = 1,2,...,p. Thus we have,

gJ(x*) <_ 0for j=1,2,...,p, and max £(x*,uj) = max max <J>*(x*,</) £ 0,
w G ft £ G q o
~~ U) *= ft

Next, we define i(k) as the index i at which x, = z. was constructed.
k i

Since i(k) >_ k for all k = 1,2,..., the test in step 1 of the Master

k i(k)Algorithm gives - u 3 <_ - u 3 ' <. 0O (x ) <_ 0 and
i(k) k ^ '

0 1 ^o W-) 1 Po3 <_ y03 . It now follows from the Corollary to
i(k) K l l

Proposition 2.1 that G^**) = °> which completes our proof. n

Lemma 2.2: Suppose that the sequence {x, } constructed by the Master

Algorithm is finite and that the sequence {z.} is infinite, then any

accumulation point z* of {z.} satisfies z* G F and 0o(z*) = 0.

Proof:

CaseJ.: Suppose z + z* as i + », K C {0,1,2,...} and Mzj9ta.)] < 0

for all i G K. Then we must have lim £(z.,w.) <_ 0. But, by Assumption

2.1, [ max £(z ,oo) - <J)(z ,oj.)] -> 0 as i -*• <» and hence, since z. 5 z*
a)G ft x * "^ i

as i •* oo, k C {0,1,2,...} results in max £(z.,oj) 5 max <J)(z*,w),
(j G ft to G ft

we must have max £(z*,uO < 0. Also gj(z.) < u,^1 for all
wG ft i-2

j = 1,2,—,p and all i = 1,2,..., by construction in step 1. It

now follows by continuity that gJ(z*) <_ 0 for all j = 1,2,...,p.

Thus, we have shown that z* G p it now follows from Proposition 2.1

and its Corollary that 0o(z*) = 0.
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Case 2: Suppose z. -*• z* as i + oo, and there exists an infinite

subsequence, indexed by K1 C k, such that £(z.,oj.) > 0 for all

i G Kf. Since the sequence {x } is finite, there exists an in such
K 0

that fti C ft^+i for all i > L and hence to. G ft for all

i >. iQ» j = 1>2,... Suppose, for the sake of contradiction, that

max £(z*,w) = 2y > 0 (25)
w G ft

K1Now we have, since z, -»• z*,

N^i+j'^) "i(zi^i)l +° (26)

as i -> oo, i G K', i+j G k', and

±<zi+j»«±> lVi231+J (27)

for all iG k1, i^ iQ and all j= 1,2,... by construction in step 1

of the Master Algorithm. Next, because of the properties of the map s

(Assumption 2.3) we have

l4.(zi><iLL) - max £(z ,uj) |•> 0 as i•* oo (2g)
co G ft

Combining (28), (25) and (26), we conclude that there is an index

i2 1 iQ in Kf such that

Kzi+j>V >Y>u231+J (29)

for all i > i1, i G K', i+j G K', which contradicts (27). Hence we

must have max £(z*,a>) <0. Since gj(z.) <yft1 for all i=0,1,2,...,
0J.G ft 1-2 »

for all j= l,2,...,p, it follows, by continuity, that gJ(z*) <_ 0, for all

j= l,2,...,p, and hence that z* G Ffi.• It now follows from the Corollary

to Proposition 2.1 that 0fi(z*) = 0. This completes the proof.
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We can summarize the conclusions of Lemmas 2.1 and 2.2 as follows.

Theorem 2.1; Suppose that the Master Algorithm constructs a sequence

{zi}, possibly dropping constraints and constructing a corresponding

subsequence {xR}. If the subsequence {xfc} is finite (i.e. if no

constraints are dropped beyond acertain point) and {z±} is infinite, then

every accumulation point z* of {zJ} satisfies z* G f . 0 (z*) = 0
i ft' ftv '

If the (sub) sequence {xk} is infinite then every accumulation point

x* of {x^} satisfies x* G f_, 0o(x*) = 0.
K. ft ft
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Appendix A

The subalgorithm presented here is a new dual method of feasible

directions. It is included as a method for executing step 1 of the

Master Algorithm. This subalgorithm has two highly desirable features

which were evolved from earlier work.[Refs. 6,15]. The first feature is a dual

type direction finding subproblem which (cf. [Ref. 15]) provides a better

descent direction and results in a faster speed of convergence than

conventional methods of feasible directions (which use box constraints).

The second feature is the elimination of the requirement of starting

at an initial feasible point. The method developed in [Ref. 6] for starting at

arbitrary initial points has been modified to be used in conjuction with

the dual direction finding subproblem (see also [Ref. 5]).

AI. Assumptions and Definitions

We begin by stating our first hypothesis for problem P_. The

assumptions which we use are standard for methods of feasible directions.

Assumption Al.

For any discrete set ft' C ft the set F , satisfies: (a) int F , f <{>,

8(b) Int F , = F i, and (c) F , is compact. n

For any y G ]R , for any discrete ft' C ft, and z >_ 0, we define the

"e-active" constraint sets:

8

Jft»,e(y) 4<j|gj(y) "*ai(y) >-e, j=1,2,...,p} (Al)

i £ £LQ, (y) A {Z\ max <j> (y,u> ) - * ,(y) > - e, £ = l,2,...,q}

a) G ft'

(A2)

Int denotes the interior of a set and the overbar indicates closure.
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^\y) A^Gft'V^,/) "^.(y) 1-£} £=l,2,...,q (A3)

where *n,0) is defined in (2). For any discrete set ft1 C ft and e > 0

we define the optimality function 0 , : lRn -> ]R by
ii ,£

©Al £(y) £rainv| HhiĤ+max{< Vf (y),h> - * j(y) ;
» h ft

gJ(y) - *n,(y) +<Vgj(y),h>, j GJfit>e(y);

♦ (y,a)£) " *ft'(y) +<v*£(y,u£),h>, c/Gft'̂ y), £GL (y)}}

= max {- j »M Vf(y) + £ pj Vgj(y)

£

+ ? *£ i^'" v/(y,U*)l^-yf#Q,(y)
*•te l0. (y) u e a,& ♦ y 2 f °

+3?^,£(y) ^W-VW)
+ ? £^ £ ^^ <**<y,«£) - *0.(y))|uf*G Lft*,e(y) u ene (y) * ft ' f

+ £ y^+ E V /•"*«!>

(A4)

where the second expression follows from duality [Ref. 15]. We define the

descent direction vector by

ho'ft .c — I - ."E" T /x'g
jGjft',e(y)

EV ^w^ „ J-, Z.^Is o V V4 (y,u> )
AeLft',e(y) w e V <A5>

,» E(y) 4- M£Vf(y) - E y^ Vgj

9
It is easily shown that 0O, n is an u.s.c. function with the property

that If z is optimal for P ,, then 8 , n(z) = 0. Furthermore,

u , ()(z) = 0 If and only If z t ].' Ls an F. John poLnt.
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where the u's are obtained by solving the second expression in (A4)

which is a quadratic program.

We also require the following condition to hold:

Assumption A2.

For any discrete set ft' G ft and for any y G ]Rn the set of vectors

{VgJ(y),j GJfilj0(y); V<fr£(y,u>£), </ Gft'*(y), £GLflt Q(y)} is positive
10

linearly independent.
•

Satisfaction of this assumption ensures that for any y G FC,

(the complement of Ffil), 6fll Q(y) < 0, and hence ensures that the

subalgorithm to be presented cannot jam up at an infeasible point.

It also ensures that the subalgorithm cannot converge to trivial

F. John points in F ,.

All. The Subalgorithm

Given any i G {0,1,2,...} and the corresponding ft, and z , from
i l-l

the Master Algorithm, the following subalgorithm finds a point z
i

such that 0fi (z±) >-u^1 and ^ (z±) <u^1.
i i

The subalgorithm can now be stated.

Subalgorithm

Data: i G {0,1,2,...}, z. , G ]Rn
i-1

l, ft± C ft, U]L >0, u2 >0,
3G (0,1), aG (0,1), 3G (0,1), S>0, 6>0, eQ >0, 0<e « 1.
Step_0: set k= 0, e= eQ, yQ =z^.

SteP 1: Compute eQ^£(yk) and hQ^e(yk) by solving (A4) and (A5).

This assumption is related to the Kuhn-Tucker constraint qualification [Ref. 16]
We say aset of vectors {rjj}j 1 1 ±s positive linearly independent if
the zero vector is not contained in the convex hull of {n } s

j j = 1"
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Step 2: If eQ.9e(yk) - " 6£' g0 t0 steP 45 else set £=e/2 and go
to step 3.

-^-^ If V^V -~Mlgl and *ft.(V 1^ set z. =yk and stop; else
go to step 1. """

Step_4: If \1>Q (yfc) = 0 compute the largest step size
_A ±

\ =6 G (0,S/Hhfi<>e(yk)nw] (Xfc an integer) satisfying

f(yk +Sk \,eV"f(yk> i"a6esk <A6>

83(yk +8kh01,e(yk)) -° j=1«2--".P (A7)

♦l(yk+BkhflA,»u!,i° ^GftJ, £=l,2,...,q (A8)

If ^ft ^yk^ > ° comPute the largest step size s = 3 G (0, S/Hhn (y, )II ]
i k ft,, £ k °°

(A^ an integer) satisfying

~% (yk+ sk V ,e (yk»" *n (yk>1 - a6esk <A9>
1 i i

^-^ Set yk+l =yk +sk \,€^t?. \+1 -e, k-k+1, and go to
step 1.

Theorem Al: Under Assumptions 2.1 and 2.2 and Al and A2, the subalgorithm

computes a point z , satisfying i|» (z.) <_ y 31 and 0O (z.) >- p ft1 in a
J- *s. i z ft. i — l

i l

finite number of iterations.

Proof: By modifying a convergence theorem due to Klessig [Ref. 17] in the same

manner that Theorem (1.3.10) of [Ref. 13] was modified in [Ref. 6] we can conclude

that if the sequence {yk} constructed by the subalgorithm is infinite,

then every accumulation point y* of {y } satisfies ty (y*) = 0.
k ft

l

It is tacitly assumed that any sequence {y } constructed by the
subalgorithm is contained in a compact set.
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Also, the sequence {e, } must satisfy e -> 0 as k •+ ».

Now for the sake of contradiction, suppose that {y } is infinite,
K.

i.e. the stop command in step 3 of the subalgorithm is not executed.

Since e^ •*• 0 and k -»- «, there exists an infinite subsequence K C {0,1,2,...}

such that (in step 2) 0 (y ) > - 6e. for all k G K and e. ^ < e.
i k *^ ^

is produced. Hence, there exists a finite integer k1 such that

~^x^1 1"5ek <eo_ e^ for all k_> k', kGK. By comparing (A4) and

(9) we get 0fi (y) <_ 0fi (y) for all e^ 0 and for all yG ]Rn. Hence,
i* i

- ux3 < 0ft (yk) for all k >_ k', k G k. Let y* be any accumulation point
i

of *yk}k G K' i•e•, yk "*" y*' kG K' C K* Since ^ft (y*> = °» there exists
ak" >_ k' such that if»Q (yfc) <_ y^1 for all k >_ kM, kG k'. Thus, the

stop command in step 4 of the algorithm would be executed at the first

k G k' satisfying k >_ k". This is a contradiction to the assumption that

{y. } is infinite.
k n

Appendix B

We now present an example of a control system design problem which

is in the form of problem P. Given the system in Figure 1 with

G(s) = o (B1)
(s+3)(s +2s+2)

12 ^
we wish to design a PID series compensator H(z,s) = z + z /s + z s

to give the closed loop system a phase margin not smaller than 45°,

and to minimize mean square error in the zero-state response to a step

input. The cost becomes

f(z) - f e2(z,t)dt =z2(^.2-H7z1+6z3-522+z1z3) +180z3 -36Z1 +
0 z2(408+56z1-50z2+60z3+10z1z3-2(z1)2)

(B2)

-21-
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where we have used Parseval's theorem and the tables in [Ref. 18].

The phase margin requirements are formulated as an inequality constraint

<j> (z,w) <_ 0 for (0 G ft1 4 [10~6,30.0] where

1 ?
<f> (z,oj) A Im T(z,w) - 3.33(Re T(z,u>)) + 1.0 (B3)

and T(z,(d) = 1 + H(z,ja>) G(j<d). With this constraint satisfied the

Nyquist plot will remain outside a parabolic region as shown in Figure 2.

Conventional constraints are placed on the gains, 0 <_ z1 <_ 100,
2 1

0.1 <_ z• <_ 100, 0 <_ z <_ 100.

The max calculation required in step 2 of the Master Algorithm is

performed by discretizing ft into t(i) equally spaced points and calculating

the maximum of <f> (z,u)) over this discrete set. The iteration truncation

function t: Z+ -* ar+ is given by t(i) =2max{5'i}+ 1. This approximation

method satisfies the requirements of Assumption 3. The parameters used

in the Master Algorithm are:

t=10" ,3=0.5, Y=1(T3, u± =10"8, m2 =10"4

The parameters used in the subalgorithm in Appendix A are:

a=0.2, J= 0.3, S=15.0, 6=10~3, eq =0.02

Our results are tabulated in Table 1. The column marked "Iterations

Subalgo" gives the number of iterations of the feasible directions sub-

algorithm needed to execute step 1 of the Master Algorithm. The total CPU

time used for the 12 iterations shown in Table 1 was approximately 23

seconds on a CDC 6400 computer.
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Conclusion

To a very large extent, the efficiency of an outer approimation

algorithm depends on how successful it is in dropping constraints.

So far, it is impossible to predict theoretically that all but a finite

number of constraints must be dropped. However, our very easily

satisfied constraint dropping test (18) coupled with the fact that,

the subalgorithm in Appendix A constructs points z. in the interior

of the feasible set, lead us to expect that constraints would be

dropped en masse. Our experimental results bear this out. The current

algorithm tends to be more efficient even than the highly specialized

algorithm described in [Ref. 6], because the new algorithm spends

much less time computing step size. It is also more efficient than

penalty function methods which tend to stall at fairly low precision

on this type of problem.
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, k
1

z.
l

—-—

2

2i
3

z.
i

f(z±)
i

4>(z±,u>±)
Iterations

Subalgo

0 0 34.641 56.797 99.999 0.1274 10.312 4.949xl0_1 32

1 1 28.778 57.985 64.375 0.1392 7.500 3.615X10"1 18
2 2 23.281 57.619 41.538 0.1597 6.562 1.387X10"*1 17

3 3 20.189 48.874 36.455 0.1686 5.625 6.259X10"1 72

4 4 16.780 46.776 34.827 0.1746 5.625 < 0 55

5 4 16.631 46.413 34.905 0.1746 5.625 < 0 8

6 4 16.694 45.945 34.852 0.1746 5.625 < 0 21

7 4 16.694 45.944 34.852 0.1746 5.625 < o 1

8 4 16.724 45.729 34.827 0.1746 5.625 < 0 24

9 4 16.724 45.729 34.827 0.1746 ' 5.684 1.921xl0"4 1
10 5 17.140 45.261 34.571 0.1746 5.654 1.704xl0"4 97

11 6 16.966 45.362 34.665 0.1746 5.654 < 0 118

12 6 16.967 45.362 34.665 0.1746 5.654 < 0 2

Table 1
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PID

Controller Plant

u

>r^ H(s)
*.

input
W G(s)

output

Fig. 1. System block diagram for PID
controller design problem.

,♦ (ReT(z,a)),ImT(z,o)))=0

T(z,to)

Fig. 2. Nyquist plot for system of Fig. 1
with gains z1=16.97, 22=45.36, and
z3=34.66.
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