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Abstract

Developments in numerical analysis fall into two separate categories.

The first comprises work on problems which are unsolved in the sense that

either no feasible methods are available or else there is no reliable analysis

for the methods which are in use. The second category comprises work on

solved problems and its aim is to remove the human user from the solution

process, in so far as this is possible, and also to improve efficiency in

regard to other factors such as execution time, storage requirements or

length of code.

Shortly after the introduction of modern digital computers and high

level programming languages most of numerical analysis fell into the unsolved

category. With every success in this category the second one has grown —

and vice versa. In order to judge properly the value of the multifarious

research activities in numerical analysis it is important to grasp the

evolution of this sprawling empire.

In this essay we point out some muddles caused by not discriminating

between the two categories, we present a simple picture of the evolution of

scientific computation, and we find how hard it is to dismiss any area as

having no future promise.
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1. THE TERRITORIAL FALLACY

i

The Territorial Model of Progress

Whether or not they readily acknowledge it, many people, including

engineers, scientists, and scientific administrators, subscribe to the

territorial model of progress. The model says that the experts in some field,

nuclear reactor design say, can in principle describe all the problems

which have ever been considered important in the field. The problems can

be arranged according to their apparent difficulty and this arrangement

constitutes the territory. At any given time there is a boundary between

the solved and the unsolved problems. Progress is measured by the advance

of this frontier.

In applying this structure to Numerical Analysis the territory consists

not so much of problems but rather of mathematical tasks which a variety of

users would like to delegate to the computer. A task is considered "solved"

when there is known a reasonable way to accomplish it.

There is something attractive in this picture of progress. It seems

to be quite satisfactory for those parts of numerical analysis in direct

contact with users from other disciplines working on problems such as

weather prediction, the responses of a bridge to an earthquake, the alloca

tion of resources in an organization, or the design of a vehicle. Many,

but not all of these applications require the approximate solution of special

systems of partial differential equations. What is disconcerting about these

areas is that the following boring pronouncement hangs like a fog over them.

"Despite progress the crucial problems are still far from resolution.

Further development is needed." This assessment can be put in a

more positive light. Success with simple, often linear, approximations has

whetted the appetites of users for more and more realistic models. Such is



the open ended nature of science and technology.

An Example of Extroverted Numerical Analysis

In order to give some flavor of numerical analysis in these direct

application areas we shall sketch briefly a single example.

In studying combustion the variables which describe the state of the

gas are not globally smooth functions. They either start off with, or

subsequently develop shocks and other discontinuities. The user wants to

know the motion and interaction of these shocks in good detail. Now there

are techniques for explicit shock fitting [Richtmyer and Morton, Ch. 13],

but they are wery difficult to apply and are not regarded as satisfactory for

combustion problems.

A new type of explicit difference scheme has been proposed by Chorin

[Chorin, 1976] and found to be \/ery satisfactory in preliminary tests. The

ideas behind the method are interesting because they were suggested by a

formal proof of existence of weak solutions to strongly nonlinear hyperbolic

systems [Glimm, 1965]. Thus can pure mathematics influence computation.

However there is as yet no convergence theory for the new method because

several hypotheses (e.g. nearly constant initial data) used in the existence

proof are deliberately flouted in the numerical method. So there is scope

for some good analysis.

At each time step t each dependent variable is regarded as a step

function, i.e. a piecewise constant function over intervals of length Ax.

Thus discontinuities can develop quite naturally.

Figure 1 illustrates how the solution vector is advanced through one

time increment At. A single space variable x is used to simplify the

explanation. Suppose that u is known at time t. Let x be a typical



mesh point, the mid-point of a subinterval of length Ax on which the step

function u is constant. Now

1. Solve for v(£,t) the given differential equations with the simple

initial data

u(x,t) for £ < 0 ,

u(x+Ax,t) for £ > 0 .
vU.O) =

This is called a Riemann problem and the details of its solution will not

be discussed here.

2. Choose an equidistributed random number p in [-o"»p"] and set

u(x+^Ax,t+lAt) =v(pAx,^At) .

Proceed as in (1) and (2) for all mesh points x using the same p.

3. Solve for v the Riemann problem with initial data

v(£,0) =
u(x-^Ax,t+7jAt) for £<0,
u(x+^Ax,t+lAt) for C>0.

4. Choose another equidistributed random variable a in [j>jl

and set

u(x,t+At) =v(aAx,^At) .

Proceed as in (3) and (4) for all mid mesh points using the same a.

Of course, there is much more to the method than we have indicated.

Appropriate modifications must be made at the boundary. For two space dimen

sions each time step is split into four alternating quarter steps (x,y,x,y),

each of duration At/2, so that the x and y waves interact properly.



To the reader who is not well versed in this problem area we would say

that this scheme is a radical departure from conventional difference schemes,

especially in the use of random samples. Moreover even for flow problems

with smooth solutions it is in general wery difficult to concoct ways of

replacing derivatives by differences in a way that works satisfactorily in

practice. It is even harder to prove convergence of the few satisfactory

techniques. So the domain of applicability is not clear yet. A challenging

aspect of the Glimm-Chorin method is that it is not even consistent, a sacred

property for linear problems.

Defects in the Territorial Model

There is an important part of Numerical Analysis which has grown steadily

during the last 25 years and for which the territorial model provides a poor

description of progress. We refer to the well developed areas in which

there has been significant progress on rather basic tasks such as matrix

calculations, quadrature, and minimization of functions. Dare we call it

introverted numerical analysis?

The somewhat military picture of progress outlined initially has the

following weaknesses.

A. New Ways for Old Problems

It fails to register the importance of finding a better way of perform

ing an old task. Why recapture a town way behind your own front line? A

dramatic example of this phenomenon was in the area of discrete Fourier

analysis. The traditional way of computing the n Fourier coefficients
p

belonging to a sequence of n function values uses a total of n (complex)

multiplications and that seemed to be a proper price to pay. However the

discovery of a way to evaluate these coefficients using a mere nlog«n



multiplications [Cooley and Tukey, 1965] has encouraged the greater use of

Fourier transforms and has revolutionized certain applications from signal

processing to regular boundary value problems [Gentleman & Sande, 1966].

A less dramatic and generally unappreciated example was the introduction

at last of reliable, efficient and accurate FORTRAN library functions, such

as LOG, by the mid 1960's. On such foundations it is worthwhile to build

up big, complex programs [Kuki, 1970].

Because most calculations are organized to exploit repetition there

is great incentive to have rapid execution of all the tasks in the inner

loops. As more ambitious projects are tackled so does the complexity of

oft repeated tasks. For example a substantial linear programming problem

may have to be solved at each step in some loop, or perhaps a two dimen

sional linear boundary value problem with different coefficients each time

or a slightly different boundary each time.

B. Negative Results

There is no natural analogy in the territorial model for negative

results in research. An example of this is the realization that the spec

tacularly good convergence rates for optimal alternating direction iterative

methods could only be realized for very special problems and regions [Birkhoff

& Varga, 1959].

Another example is Dahlquist's demonstration that A-stable methods which

would be most attractive for stiff problems cannot have order of accuracy

greater than two. The conclusion is that there is going to be no simple

way of treating all stiff problems. It will be necessary to delineate such

tasks in finer detail.
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C. Changing Values

The model does not suggest the rapidity with which the importance of

various computing tasks can change. In 1955 the automatic computation of

polynomial zeros was considered an important task. By 1965 there were, at

last, good routines available [B. Smith, 1967; Jenkins and Traub, 1970],

but the demand had fallen off greatly. The polynomial zeros had turned into

matrix eigenvalues. Going further in this direction it appears that some

standard eigenvalue problems, Ax = Xx, actually come from generalized

eigenvalue problems By = XCy and are better posed in this form. However

good methods for solving the latter problem did not become available until

1972 [Stewart&Moler, 1973], and the importance of this formulation is

still not as widely appreciated as it should be.

Our conclusion is that an important part of our subject is inner

directed (the numerical analyst's numerical analysis?) and the territorial

model is quite misleading for understanding both its value and its develop

ment. An analogy with automobile production suggests itself. Electric

cars, steam driven cars, emission-clean cars all represent external develop

ments while electronic ignitions, fuel injection, and disk brakes represent

interval developments. The latter perform tasks for which there existed

satisfactory devices. Who can say what facets of the automobile need no

further improvement?

2. THE TOWER OF SCIENTIFIC COMPUTATION

The principle reason why the observations made in Section 1 are not

common knowledge is that when automatic digital computers first came into

general use, about 1950, virtually all of Numerical Analysis was outer

directed. During the last 25 years the methods used for certain tasks have



disappeared from many a user's sight, having passed to the inner directed

category. Thus the latter branch has quietly grown alongside the former

and few people have noticed the change.

Figure 2, the tower of scientific computation, gives a picture of the

structure on which so many applications depend. For various reasons the

bottom layers, the hardware of the computer, the algorithms for actually

performing + - * /, and the high level programming languages are not

considered part of numerical analysis but rather of electrical engineering

and computer science.

Our subject begins with the basic functions, such as square root, logarithm

and sine, thoughtfully provided by the computer manufacturer. Creating such

programs is a small, very specialized activity. Surprisingly it took nearly

15 years to produce reliable algorithms nicely tailored to each computer,

the better to satisfy the conflicting demands of economy (in both time and

space) and of accuracy. It is characteristic of this level that the domains

of all these functions are clear and easy to describe. It appears that the

manufacturers of hand held calculators have taken little note of this work.

Their management's judgment that the problems are routine may compel this

industry to repeat that learning process [Kahan and Parlett, 1976].

During the 1950's the tasks at the next level (No. 3) of the tower were

on display in the sense that users came to computing centers with functions

to be integrated, with big sets of 20 linear equations to be solved for the

20 unknowns, with systems of ordinary differential equations, and so on.

Moreover they wanted to see the solutions. At this level the problems can

sometimes be ill-posed and the numerical methods are sufficiently complicated

that it is not obvious when they will fail. Nevertheless twenty-five years

work on these standard problems has produced algorithms which enjoy a high
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degree of reliability and efficiency. In 1956 would any one have guessed

that there would emerge a single method (the QR algorithm) which could

calculate very rapidly the eigenvalues of all square matrices of orders up

to 100? No one has been able to prove that this is the case, even ignoring

roundoff errors, but no cases of failure have been reported.

There are now available, quite generally, program libraries whose

programs are the result of the collaboration of the experts in the field.

The Argonne National Laboratory has undertaken the testing, documentation,

and dissemination of four major collections:

EISPACK (for most eigenvalue/eigenvector computations)

FUNPACK (for the evaluation of special functions)

LINPACK (for most linear equations and linear least squares problems)

MINPACK (for minimizing functions of several variables, with and

without constraints)

Similar work is being undertaken in Britain by the Numerical Algorithms

Group (NAG). In the private business sector there are libraries catering

to a bewildering variety of well specified computations in statistics,

smoothing, approximation by splines, standard matrix tasks, and so on. The

best known are IMSL (International Mathematics and Statistics Libraries, Inc.)

and SSP (IBM Scientific Subroutine Package).

The next level in the tower (No. 4) has developed only during the last

decade. It comprises big programs which aim to be portable (directly trans

ferable from one system to another) and to solve real engineering problems.

The pioneers here were the civil engineers who had developed the Finite

Element Method (usually designated by the acronym FEM) for analyzing the

response of complicated structures to various loads and forces. Such programs

have between 10,000 and 100,000 Fortran statements. Also at this level
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belong tasks of computing with large, sparse matrices. Notice that the user

with a problem is directly involved at this level. He manages the package

but does not write the program.

The top level is reserved for the enormous codes that have grown up

at certain institutions for local problems in nuclear reactor design, curcuit

design, satellite tracking, magneto-hydrodynamic calculations and such like.

These massive programs are not designed to be shared with other installations,

One hears that sometimes no one person understands the codes and one wonders

how often such codes produce plausible but completely erroneous output.

Of course particular applications are not obliged to rest on the top

level. The key fact is that more and more work is based on Level 3 rather

than Level 2 and this movement will continue.

Implications of the Tower's Growth

A. Hidden Computations

These days most well specified computations are HIDDEN. This means

that the human user sees neither the data nor the output. In a big calcu

lation the data for a subtask (a Fourier Transformation, perhaps) will be

generated by some program and the results promptly used by another. This

is characteristic of introverted Numerical Analysis. It is the passing of

Level 3 out of the user's sight which has made progress on this level

intractable by the territorial model. The growth of layers on the tower

has, as it were, added an extra dimension to Numerical Analysis.

B. Reliability

Algorithms for hidden computations need to be much more reliable than

those whose results will be seen by a human eye. Execution time seems to

be less crucial but both reliability and efficiency are wanted. To what
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extent, in each case, can we have both? That is an interesting question.

The difficulties are suggested by pondering the following two desiderata.

PI. A program may fail but should not lie.

P2. A program should expend only a negligible amount of time, space,

or code checking for rare eventualities.

A detailed understanding of the problem space and of the nature of an

algorithm are needed to produce a happy match. Insufficient homage is paid

to failure. The only honorable response to an ill-posed problem is failure

to produce an answer. Yet acceptance of this burden raises the problem of

discriminating between those computations which deserve no solution and

those which are not amenable to the algorithm or algorithms embodied by the

program.

The simplest way to sense the importance of reliability in the founda

tions of a computation is to imagine the effect on the programs at Level 3

in EISPACK, LINPACK, or on a good Ordinary Differential Equations solver,

of an arithmetic unit in which one multiplication in 10,000 produces a

totally false but reasonable result. Scientific computation would not be

halted but it would become messier, more cumbersome, and harder to analyze.

C. Success Forfeits Attention

There is more to scientific computation than numerical methods. Data

management and user interfaces are examples. Moreover success in the

development of numerical methods serves to shift the bottleneck in complex

calculations to these other factors. Thus the importance of the numerical

solution sometimes appears to diminish according to several objective

measures of effort. This is a simple fact of life and reminds us that the

highest form of art is the art which conceals itself! Here is an example.

The idea of discretization is very old and a sceptical engineer might wonder
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how much he has been helped by twenty-five years of fussing with this idea.

In 1976 Rice [Rice, 1976] made a study, for four boundary value problems,

of the decrease in solution time which can be attributed solely to improve

ments in numerical methods. His estimates are encouraging, to say the least.

In the tables below we show some of his figures for two of the problems.

Task No. 1: Solve Poisson's Equation Au = f on the unit cube with

Dirichlet boundary conditions to an accuracy of 0.1%.

Table 1 goes here

Task No. 2: Solve Lu = f in D with an accuracy of 0.1% where L

is a 2nd order, non-separable, elliptic operator with variable coefficients

and D is a plane simple domain with one or more curved boundaries.

Table 2 goes here

An important part of this overwhelming improvement in efficiency is

the result of attention to problems which were already "solved."

3. CANDIDATES FOR NEGLECT

Our object here is to show that it is not easy to write off any area

of numerical analysis as complete.

A. Library Functions

This is almost a counterexample to our assertion. Today the elementary

functions are evaluated to working precision (almost) and, of more impor

tance, properties such as monotonicity or symmetry are preserved as far as

is possible. What more is there to be done? The advent of hand held
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calculators and microcomputers should revive interest in new algorithms which

have minimal storage requirements.

B. Iterative Methods for Solving Ax = b

This was the most fashionable research topic from 1950-1965. Has the

point of diminishing returns been reached? Here is a quotation from a sophis

ticated user. Italics are mine.

Iterative techniques for processing large sparse linear
systems were popular in the late 1950's and early 1960's
(and their decaying remains still pollute some computational
circles). When iterative methods finally departed from
the finite element scene in the mid 1960's — having been
replaced by direct sparse-matrix methods -- the result
was a quantum leap in the reliability of linear analysis
packages, which contributed significantly to the rapid
acceptance of FE analysis at the engineering group level.
(This effect, it should be noted, had nothing to do with
the relative Computational Efficiency, in fact itera
tive methods can run faster on many problems if the user
happens to know the optimal acceleration parameters.)
Presently, linear FE analyzers are routinely exercised
as black box devices; ...

Our own view of the situation is different. By their training the

experts in iterative methods expect to collaborate with users. Indeed the

combination of user, numerical analyst and iterative method can be incredibly

effective. Of course, by the same token, inept use can make any iterative

method not only slow but prone to failure. Gaussian elimination, in con

trast, is a classical black box algorithm demanding no cooperation from the

user. As the tower of scientific computation grew so did the value of a

reliable black box program. In the 1950's it did not seem possible that

Gaussian elimination could ever be adapted efficiently for large systems

of orders exceeding 200. So the alacrity with which serious users switched

to direct methods in the 1960's must have been a painful surprise to the

adepts of relaxation methods. As computer systems developed one saw time

and again that as soon as direct methods became feasible for a particular
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problem they were preferred to their more computer efficient iterative rivals.

Surely the moral of the story is not that iterative methods are dead

but that too little attention has been paid to the user's current needs?

The asymptotic convergence theory is only part of the picture. Some exciting
new directions are making their appearance.

The recent work of Brandt [Brandt, 1977],and of Frederickson,can be

seen as a way of getting good starting approximations for relaxation methods.

We are used to the idea of refining a discretization mesh in order to improve

accuracy. Brandt's idea is to go back temporarily to a cruder mesh when

this is called for. For example, if the error at the end of a relaxation

sweep is judged to be decaying slowly it may be better to go back to a

coarser mesh for the purpose of purging the recalcitrant low frequency

components of the error rather than wait for relaxation to do it. Please note
that the programs needed to effect these powerful ideas are decidedly more com
plicated than standard favorites like Successive Overrelaxation.

C. Small Matrix Computations

Good methods have been invented for nearly all the variants of the

three basic tasks: (1) solve Ax = b for x, (2) find (minimal length)

x to minimize Ilb-Axll, and (3) solve Ax = Xx for X and x. These

methods assume that all the elements of A can be held simultaneously in

the fast store of the computer. Such matrices are called small (or stored)

although a 100*100 matrix would have seemed huge in 1950. In fact the

methods are so well understood that they have been turned into black box

programs demanding no tricky choices of tolerances or accuracy. This is a

valuable byproduct of successful theoretical analysis of these methods.

Excellent. When the LINPACK collection of programs joins the EISPACK

collection we should turn our energies to other areas.

Such a reaction is an example of territorial thinking. Often, but not

always, these matrix computations are hidden parts of larger programs. It

is very desirable that these hidden computations be performed as reliably
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as is the square root function. Is this possible? Is it a reasonable aim?

Will our programs fail to return a solution only when there is no reasonable

solution? For example, in linear least squares problems a decision must

be made explicitly or implicitly, as to the rank of the coefficient matrix A,

Often the algorithm can make the appropriate decision with no fuss but there

are cases where the use to which the solution will be put should influence

that decision. The less one knows about a_ computing task the easier it is

to demand reliability. Nevertheless reliable black boxes are needed here

if really complex programs are to be built above this level in the tower.

As the human user recedes standards must go up. The small matrix programs

referred to above are good but are they fail-safe? Do they respond chari

tably to ill-posed tasks? For the most part no.

Here is the last sentence from Forsythe (1966):

The proper treatment of fine points is the reason why
professionals should concentrate very hard on completely
fool proofing the algorithms they devise, before putting
them on the shelf for widespread use.

To make a program foolproof is almost the same as providing a proof of

correctness. Sanderson [paper presented at the Atlanta SIAM meeting, 1976]

has attempted such a proof for TQL1, the Eispack program for reducing a

symmetric tridiagonal matrix to diagonal form. He found two Fortran state

ments which obstructed such a proof and permitted failure on a few artfully

constructed examples. Yet the failure was not inevitable. The statements

can be rewritten so as to preserve the mathematical relationships used in

the exact arithmetic convergence proofs. Sanderson was able to prove

correctness for the amended algorithm under reasonable hypotheses on the

roundoff properties of the arithmetic unit. What we are seeing here is an

example of a new thrust in theoretical numerical analysis. Such analysis

is strongly influenced by work in computer science but it should not
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be classified as Mathematical Software which is concerned with the use and

dissemination of programs, not with a particular detailed analysis. Others

might wish to classify these activities as part of Mathematical Software

on the grounds that numerical analysis should confine itself to mathematical

methods and keep away from programs. The reader may take his choice.

There is more work for matrix specialists than the fool proofing of their

algorithms. For those problems in which a black box approach is not feasible

there will be a need for somewhat more elaborate programs which include

sensitivity analysis and describe the whole solution set to a bunch of

numerically indistinguishable problems. At present condition numbers for

various problems (a simple measure of the sensitivity of the solution to

infinitessimal changes in the data) are found only in theoretical work.

Despite the extra work involved we can expect future versions of current

methods to produce condition numbers along with the basic solutions.

Last but not least comes the appearance of new problems involving

stored matrices. Here is a small selection.

(a) Update the factors of a matrix when the matrix is changed

slightly (by addition of a rank one matrix or by deletion of a row, for

example). The method should be more efficient than starting from scratch.

(b) Given matrices A, B, C find a matrix X, if it exists, such that

AX + XB = C .

This is a special set of linear equations and warrants special treatment.

See [Bartels & Stewart, 1972] for a stable solution via the Schur form.

(c) Find exp(tA) or A ' . See [Moler & van Loan, 1977] for a

discussion of the former.

(d) A given matrix should be positive definite but is not because of

key punching errors. Detect the elements which are most likely to be in error,
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We conclude that small matrix computations are moving down novel avenues

not contemplated twenty years ago. This is largely because standard matrix

calculations have sunk down out of the user's sight and are taken for granted

D. Nonstiff Systems of ODE's

A recent survey [Shampine, Watts & Davenport, 1976] shows that programs

based on the traditional methods (Runge-Kutta and multi-step) have gone

about as fas as they can go. The article brings out the fascination of try

ing to satisfy several conflicting demands centering on quick execution and

reliability. Has the point of diminishing returns been reached? Let us see.

The price paid for swiftness is that the user of the best of available

programs is required to select a tolerance for the error per step (or the

error per unit step). Most of these methods use variable step size and

variable order schemes so the effects of various tolerance choices are hard

to predict. The need for this choice keeps these ODE computations in the

external mode, in direct contact with users.

Methods which furnish a global error estimate are beginning to appear

[Stetter, 1972; Shampine & Watts, 1976]. They are significantly more demand

ing of machine time than are the traditional programs. We expect to see

research on the extent to which the user can be removed from the solution

of ODE's. If the price is not exorbitant we can expect these computations

to join matrix computations at the very useful hidden level of the tower

of scientific computation. Again we find the need for more work in this

area.
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4. THEORY — NECESSITY OR LUXURY?

A. Examples

Perhaps the previous pages seem overly preoccupied with programs,

ignoring the mathematical highlights of numerical analysis. Our reflections

on this question suggest that in considering the subject as a whole we must

give pride of place to computing tasks and to algorithms for accomplishing

them. The mandate for numerical analysts is to invent methods and to

explain their behavior. This statement is too sweeping, there must be a

judgment that the tasks are worthwhile. To ignore this constraint is to

court decadence. Theoretical work thus has a natural role in explaining

and predicting the performance of worthwhile methods. In addition the best

work in our field shows the powerful influence of good theory on the develop

ment of good methods. Here are some examples.

1. The Lax-Richtmyer theory [Richtmyer & Morton, 1967] provided a

framework for understanding the behavior of difference schemes for linear

initial value problems. The conflict between accuracy and stability explained

the difficulties in finding useable high order schemes in problems in two

or more space dimensions.

2. The Dahlquist theory [Henrici, 1962] explained why some accurate

multi-step methods for ODE's which were fine for use with desk calculators

failed as automatic (black box) programs. It gave a precise limit on the

accuracy of stable multi-step methods.

3. [Frankel, 1950] and Young's 1950 thesis [Young, 1954] turned into a

science Southwell's art of overrelaxation for solving linear boundary value

problems. The comparison of the asymptotic behavior of rival linear sta

tionary methods was soon well understood. Quickly the older techniques

were refined and adapted to an impressive variety of PDE's.
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4. Wilkinson explained away the worries which had beset those who,

in the early 1950's, wanted to use Gaussian elimination as an automatic

procedure for solving large sets of linear equations with twenty or thirty

unknowns. The subject of roundoff error analysis seemed to be important,

boring, and difficult. Wilkinson developed an approach which made relatively

simple the analysis of matrix computations executed in noisy arithmetic.

Once this point of view was grasped new, reliable methods came quickly, an

unavoidable consequence of right thinking. Who, in 1950, would have thought

of effecting the Gram-Schmidt process via a product of orthogonal matrices?

5. Schoenberg's early work [Schoenberg, 1946] on splines was pure

approximation theory but it showed how much could be done with functions

which are not very smooth globally. The practical impact was slow in coming

but it has spread astonishingly far. Almost no text books prior to 1970

mention approximation by piecewise polynomials.

B. Paradigms

Each of these theories didmorethan present nice results; they estab

lished what Thomas Kuhn [Kuhn, 1962] would call a paradigm, an accepted way

of looking at the topics. Yet the very success of a paradigm can lead to

stagnation. A good example of this phenomenon is the comparatively long time

that elapsed before it was realized that Dahlquist's model was not the most

general way of saving information from the past for use in Predictor-

Corrector methods. Thus the Dahlquist barrier is a limitation on one par

ticular class of PC methods. See [Gear, 1971] for more details.

In fact it is all to easy to forget that the stability and convergence

notions which dominate our thinking are asymptotic qualities developed for

linear problems. They are not sacred, they are guides. The Particle-in-Cell
techniques for fluid flow calculations needed the nonlinearity of the differen
tial equations in order to work. Another case is the
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Glimm-Chorin method described in Section 1. It is not even consistent in

the usual polynomial sense and would be hopeless on linear problems.

However the fact that success can lead to blinkers is no reason for

avoiding good paradigms.

Perhaps the most important, albeit indirect function of good theoretical

numerical analysis is the intellectual formation of a group of experts.

In the process of mastering the theory the paradigm is absorbed with suffi

cient thoroughness to be a basis for thought. If this be the case it goes

some way in explaining why ideas and exposition are more important than

"mere" results.

C. FEM

Let us now turn to the Finite Element Method which appears to be a

counterexample to the notion that a good paradigm is necessary for the

development of good methods.

To those readers not familiar with the FEM this paragraph is addressed.

The region on which a boundary value problem is to be solved is divided

up into simple pieces called elements (rectangles and triangles in 2 dimen

sions) and the solution is approximated by polynomials of a certain degree

on each element. The polynomials are matched on the boundaries of each

element to have as low order of smoothness as one can get away with. The

piecewise polynomial function with minimum "energy" is chosen as the best

approximation. The definition of energy is particular to each problem.

In order to find this function it is necessary to solve a set of algebraic

equations. Frequently this set of equations can be interpreted as a set of

difference equations but for realistic problems such an interpretation is

strained. Ordinary finite difference approximations would never come up
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with such equations and so FEM really is a rival approach. Its flexibility

is well suited to complicated regions, such as bridges or buildings, and

the local character of the method makes for efficiency.

To the mathematician it is clear that the FEM is an instance of the

Rayleigh-Ritz-Galerkin methods which were well understood before the era of

modern numerical analysis. What is striking is that the FEM was developed

and in widespread use before its intimate connection with Rayleigh-Ritz

was appreciated. All this looks like evidence against the need for a good

paradigm before useful methods can be developed. However the FEM was not

found by numerical analysts. It is quite plausible that the civil engineers'

understanding of structural analysis was more than adequate for pointing

the way to more useful approximation techniques than they would have learned

from numerical analysis courses.

The importance of FEM in numerical analysis is that it, coupled with

direct methods for systems of linear equations, has moved linear structural

analysis in two, and even three dimensions down from the external to the

inner directed category. You can model some very complicated structures with

a program "off the shelf". There is no need for an expert in numerical

methods!

Ever since they found out about the method the numerical analysts have

done an excellent job in explaining it and seeing to what other problems

it can be applied. Error estimates in terms of the strain energy come fairly

naturally from approximation theory and the Rayleigh-Ritz-Galerkin framework.

What was not so obvious was how to bound the error in the least squares or

uniform norms and clever work has been done on this topic.

Other problems are the rigorous analysis of the effect of using curved

boundaries for some of the elements, the degree to which the thinness of
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some finite elements degrades the solution, and the discovery of conditions

under which the proper degree of smoothness in the trial solutions can be

safely avoided. The honors list of those who have made impressive contri

butions to FEM theory is growing so fast that we dare not try to give one

here. Their reward is in the groves of Academe.

D. Ripe Areas

There are several areas in which there has been significant activity in

algorithm creation and the time is ripe for a more complete theory. We

will give a few examples.

Adaptive Algorithms: In most quadrature schemes a definite integral

is approximated by a weighted sum of function values. Traditionally the

points at which evaluation occurred were fixed in advance as part of the

scheme. A radical idea, stemming from computer science rather than mathe

matics, was to let the program choose the next evaluation points in the

light of the current state of the approximation. Such a scheme offers the

hope that the points will be located where the function seems to be roughest

and so the number of evaluations needed for a given accuracy could be inde

pendent of the global smoothness of the integrand. Various adaptive quadra

ture methods, as these are called, have been developed and their success

has been mixed. They certainly have their place but they are not a general

panacea. There are plenty of things to be explained. Rice [Rice, 1975]

has presented an asymptotic theory showing that indeed, in the limit, func

tions with integrable singularities can be integrated as efficiently as

smooth ones. In practice, however, Lyness and Kaganove [Lyness & Kaganove,

1976] have shown that adaptive schemes can be very inefficient, indeed

disastrous, in certain situations. Moreover these situations are not
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easily recognized in advance. It turns out that the problem of termination

is far more tricky with these more sophisticated methods than with formula

evaluation. This is a typical problem of inner directed numerical analysis;

subtle and unexpected side effects come from greater flexibility in the

algorithm. We wish to emphasize that the clarification of the behavior of

adaptive methods is a task for theoretical numerical analysis not mathematical

software.

Stiff Systems of ODE's: The adjective stiff is applied somewhat loosely

for any problem on which the traditional methods fail. Strictly speaking a

differential equation itself should not be called stiff, rather it is the

trio involving the equation, the interval of integration and the accuracy

requirement which can be labelled stiff. Moreover problems can be stiff in

radically different ways and there may, or may not be methods which are useful

on all stiff problems. In some cases the type of stiffness may be fixed and

known in advance. In other cases not.

This area is very hot at present, see [Miranker, 1975; Gear, 1971].

But it seems fair to say that no generally accepted paradigm has yet emerged.

Convergence of the OR Algorithm: For over ten years the QR algorithm

has been the champion method for finding eigenvalues of small matrices,

both symmetric and unsymmetric. It was quite surprising to the experts that

one single method triumphed in a wide variety of situations. A complete

and very satisfactory convergence theory has been made for the symmetric

case but, contrary to popular belief, there is no explanation for the

unfailing convergence of the shift strategy used for general (nonnormal)

matrices. It would be nice to understand the methods we put "onto the shelf".

Faith is admirable but it should be conserved for more profound issues.
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5. CONCLUSION

As a result of thirty years work on numerical methods and on computers

many of the basic tasks discussed in introductory textbooks on numerical

analysis can now be carried out by canned programs. As a result more ambi

tious calculations are being undertaken now than ever before. Consequently

there is room for ever more complicated fiascos in which the numerical output

is completely misleading. As the tower of scientific computation grows

there will be a need for people who understand numerical methods at the

various levels in the tower. There will be many phenomena to be explained

but it is unlikely that there will be, or need be, general convergence

theorems or error bounds for nonlinear problems per se. Instead we expect

a proliferation of special results designed to exploit all the features of

particular applications. There will be a boom in the study of numerical

methods but it is quite likely that courses entitled Numerical Analysis will

disappear as the subject evolves into distinct applications just as Engineering

has done.
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Table 1

Poisson Problem on Unit Cube in 3 Dimensions

Date Method Multiplies Storage

1945 (A) 7-pt. star
Gauss-Seidel

437 xio6 190,000

1965 (B) Fast Fourier Transform 628 xio3 32,000

1965 (C) 27-pt. star
Tensor product

8.2xl03 1,500

Time Ratios: A/B = 670, A/C = 53,000

Note: Method C [Direct solution of PDE's by tensor product
methods, by Lynch, Rice, and Thomas, Numer. Math. 6
(1964), 185-199] has been analyzed but not implemented.

Table 2

General Elliptic Operator on a Simple, Plane Domain D

Date Method Multiplications

1945 (A) Finite Differences
Gaussian Elimination

9xl0]1

1965 (B) Better boundary approximations
Iteration

20xl06

1975 (C) Collocation with Hermite'Cubics
Tensor product methods

2.5xl06

Time Ratios: A/B =4.5 xio4, A/C =3.5 xlO5

Additional speed ups by factors of 10 or more are possible with
the latest techniques.
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The Tower of Scientific Computation
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