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Abstract

Physical systems can frequently be modeled by polynomial equations,

Then interesting properties of the systems can be determined from the

zeros of the polynomials. Standard codes compute those zeros from the

coefficients in a stable fashion. But what should be done if the

zeros are inherently hypersensitive to changes in the coefficients

of their polynomials? Newly developed methods can be used to explain

such an ill conditioned polynomial by exhibiting a nearby polynomial

with one or more multiple zeros which are well conditioned. Further

more these methods can be abused by uncritically replacing the ill

conditioned polynomial with the well conditioned one nearby. When

such a replacement is unwarranted, bounds can be obtained on the varia

tion of the zeros corresponding to the uncertainty in the coefficients.

One way to obtain such bounds is to exploit the nearby well condi

tioned polynomial to obtain a revision of the classical Puiseux

fractional power series expansions of the zeros.

These notions have been investigated experimentally in a long

series of computer calculations. In the course of these calculations

the existing stock of numerical techniques has been augmented. A new

way is now known for computing the condition numbers which measure the

condition of zeros. The previously known equations to be solved for

the nearest polynomial with a single multiple zero are now joined by
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equations for the nearest polynomial with a complex conjugate pair of

double zeros and equations for the nearest polynomial with several

distinct double zeros. All these equations have simplified forms

because certain Lagrange multipliers vanish in the complex case. But

some examples demonstrate that when only real perturbations are con

sidered, the Lagrange multipliers do not always vanish. Finally, there

is some theory about the location of the nearest polynomial with a

double zero.

The numerical experiments show that Newton's method may be used

successfully to solve the equations in the cases of greatest interest

when the expected result is sufficiently simple. The techniques may

also be applied to polynomials such as Wilkinson's famous example whose

zeros are the integers from 1 to 20. But then the numerical results

suggest that that ill conditioned polynomial can not be explained

successfully as a small perturbation of a well conditioned polynomial.

Instead Wilkinson's polynomial lies in a region of polynomial space

whose geometry seems to be exceptionally complicated.

Bounds on uncertainties in zeros corresponding to uncertainties

in coefficients are customarily computed with Taylor series. For ill

conditioned simple zeros these Taylor series have radii of convergence

that are much too small. The well conditioned multiple zeros of a

nearby polynomial are not amenable to Taylor series expansions but may

be expanded in a Puiseux fractional power series. These fractional

power series, however, also have unsatisfactory regions of convergence.

But by choosing a different starting point the convergence problem of

the Puiseux series can be overcome to produce, in principle, series

that converge rapidly throughout the region of interest. In practice
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those series are used to produce realistic bounds on the uncertainties

in the zeros. Full exploitation of these techniques awaits adequate

facilities for symbolic algebra.
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CHAPTER I

INTRODUCTION AND MOTIVATION

1. What is the Problem?

:* The research to be reported in the following chapters deals with

* "ill condition" of the zeros of polynomials. "Ill condition" means

unusually great sensitivity of the zeros to changes in the coefficients

of the polynomial.

Consider the following example: a physicist has determined that

a parameter of interest may be determined by finding the zeros of a

polynomial. He computes the coefficients of the polynomial and solves

for its zeros with any of a number of computer codes which find zeros

of polynomials. Then the computer states that his polynomial of degree

six has the following zeros:

-2.0

-1.0

+ .99999998 ± .000104625 i

+2.0

+3.0

Perhaps being distrustful, the physicist computes the coefficients of

the polynomial which has exactly these zeros. He finds that those

* reconstituted coefficients agree with the original coefficients of

the polynomial he gave the computer to well within the uncertainty

in the coefficients, which were derived from experimental data. He

will usually find that the differences between those sets of coeffi-

; cients are comparable in size to a few rounding errors, so he seems

to have no grounds for complaint with the computed result.



None the less there may be sound physical reasons why the answers

he seeks can not have imaginary components. Then why do they appear

in his answer? Is he justified in ignoring them? The methods pro

posed in the following chapters provide a way of dealing with these

questions.

Those methods would "explain" the physicist's quandary as follows.

First they would show that the two complex conjugate zeros are

extremely ill conditioned. That is, small changes in the coefficients

comparable with experimental error could easily cause them to undergo

much larger real or complex changes. The ill condition arises from

the fact that the physicist's polynomial is very close to a polynomial

with a double zero. In fact, the methods we will discuss show that

changing each coefficient of the polynomial by as little as one part

in 10 suffices to cause the polynomial to have a double zero at 1.0.

That double zero is well conditioned, in a sense to be explained later,

therefore the physicist might "ameliorate" the condition of the ans

wers to his problem by accepting a double zero at 1.0 in place of the

complex conjugate pair if the experimental uncertainties in the coeffi-
g

cients exceed one part in 10 and^there is physical justification for

assuming that his answer should be in the form of a double zero.

Where that justification is lacking, the ill condition of the result

is a warning signal that a misjudgment in the design of the experiment

and computation may have invalidated the results.
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2. What is 111 Condition?

We turn now to precise definitions of terms like posedness,

condition, and stability. The terms have been defined by numerical

analysts in many different and sometimes inconsistent ways; our defi

nitions will be those used by W. Kahan in numerical analysis courses

at the University of California, Berkeley [18]. These definitions

are also close to those in the widely used text by Dahlquist and

Bjorck [6].

The definitions to follow make sense if one thinks of a problem

having a definite set of input data and a similar set of output data

which we call the solution. For instance, in the problem of deter

mining the n complex zeros of an n'th degree polynomial, the n+ 1

coefficients of the polynomial are the input data and the n zeros

are the solution. In contrast, the "problem" of finding a polynomial

approximating a given function is incomplete until we specify a

criterion for choosing the best approximation. That criterion could

be regarded as fixed, and hence part of the problem, or subject to

change, and hence part of the data.

If furthermore the data are regarded as uncertain, then the infor

mation on the size of the uncertainty becomes part of the data. This

information is often expressed in terms of a metric or norm on the

space from which the input data are drawn. The norm itself may also

be part of the input data if it is subject to change. The purpose of

the norm on the input data, for example, is to provide a way for the

problem poser to specify which inputs are so close together as to be

indistinguishable from his point of view. In addition, there may be

a norm on the output solution with a similar purpose. As we shall



see, the poser may be obliged to provide these norms even if the input

data are regarded as exact.

Within this framework a problem is well posed if it (1) has a

solution which (2) is unique and (3) varies continuously when the

input data vary continuously. Consequently an ill posed problem may,

for some input data, have several solutions or none or the solution

may change discontinuously when the input data is changed continuously.

The answer to the question of whether a problem is well posed is

either yes or no.

Given a problem that is analytically well posed, we call it well

conditioned if changes that we consider negligible in the input data

can only cause changes in the solution that we also consider negligi

ble. Conditioning can be measured by computing the partial derivatives

of the solution with respect to changes in the input data. If the

appropriate norm of these partial derivatives, called the condition

number, is too large, the problem is ill conditioned. Unlike posed-

ness, then, there is not a sharp break between well and ill condi

tioned problems, but rather a continuum.

From our point of view, stability is a property of algorithms,

rather than problems, and relates to the question, "Does this

algorithm always produce a solution as good as can be expected, con

sidering the condition of the problem?" Interesting numerical

algorithms almost always fail to produce the mathematically correct

solution to a problem. This is because such algorithms usually commit

rounding errors due to finite precision arithmetic and truncation

errors due to terminating infinite analytical processes after a finite

number of steps.

•4".
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A stable algorithm has the property that the uncertainty it con-

^ tributes to the solution of a problem is not much larger than the

uncertainty that would be associated with small changes in the input

ft data. Figures I.l and 1.2 illustrate a stable algorithm applied to an

ill conditioned problem. A stable algorithm applied to a well condi

tioned problem yields nearly the correct answer. Many stable

algorithms, moreover, can be shown to deliver the exact solution of

a problem with input data very near the given input data, even if that

data is ill conditioned.

To conclude the definitions, recall that the key to the problem

of the physicist in section 1 was to find the polynomial with a double

zero nearest his polynomial. In general, the polynomials with one or

more multiple zeros form a subset of the space of all polynomials.

These subsets have been called pejorative manifolds by W. Kahan [17],

because polynomials near a pejorative manifold always have some ill

conditioned zeros. Since they are the only manifolds that interest

us, we will use the term manifold in subsequent chapters to mean one

of these pejorative manifolds. Thus the manifold of n'th degree monic

^ polynomials with one m-tuple zero is a surface with dimensionality

n-m +1 in the space of all n'th degree monic polynomials.

* The distinction between wrong answers caused by an ill conditioned
«*

problem and wrong answers caused by an unstable algorithm applied to

a well conditioned problem is well known in the west mostly because
T

of the work of Wilkinson [34], But similar concepts are also present

^ in the contemporaneous work of the Soviet author V. Zaguskin [37],

Zaguskin defines condition numbers with respect to small finite rather

than infinitesimal perturbations. In well conditioned cases his



Input Data Space Output Solution Space

Figure I.l. Effect of ill conditioning: a ball in the input
space maps into a cigar-shaped region in the
solution space.

Figure 1.2, A stable algorithm maps the input point *
into the region bounded by the dotted ball
which is not much larger than the image of the
input ball.



methods give an idea of how much the zeros of a polynomial may vary

% as the polynomial varies within its finite uncertainty. In chapter VII

we will show how such notions may be applied even for an ill condi-

;4 tioned polynomial. There we will show how to develop the whole series

6 of which the infinitesimal condition number is simply a bound on the

first term.



3. Examples of Definitions

An example might help to clarify the definitions of the previous %•

section. Consider the problem of finding the smaller real zero of the

quadratic polynomial ^
¥

f(x) ^x2 +2x +l-e for |e| <0.1 .

We see that for e = 0, there is a real double zero; for e < 0

there are no real zeros; for e > 0 there are two distinct real

zeros. Since in some cases of the input there is no solution to this

problem, it is ill posed.

Suppose we restrict the problem so 0 < e <_ 0.1 , Now the pro

blem has become well poser8 but ill conditioned. Consider the depen

dence of the zeros of f on e:

x± =- 1± v€ ,

3x

So as e •*• 0 this condition number becomes arbitrarily large in

magnitude. Any small error in the original data or in the computation

may be magnified by an arbitrarily large factor. Note how in this *,~-

case, as in many others, approaching ill posedness corresponds to

worsening condition. See Kahan [17], *

What are the pejorative manifolds in the quadratic case? There <*,.

is just one, the manifold of quadratics with double zeros. In the 7

space of quadratics

2
x + bx + c ,

the manifold of polynomials with double zeros is just the subset of



polynomials with

b2 = 4c

It is evident that the previous polynomial

x2 + 2x + 1- e

lies rather near this manifold; that nearness causes the ill condition

of its zeros.

Stability may be illustrated by considering the problem of find

ing the small real zero x of the polynomial

x2 -2x +6 ,

20
for |6| < 10 . The usual formula yields

x = 1 -/TT .

On most computers there will be numbers 6 large enough to be

representable but small enough that the computed value of 1 -6 is 1.

In this case the computed x = 0. For many purposes this is unaccep-

tably far from the correct answer which is x # is. A check of con

dition numbers shows that they are small. That the fault lies with

the algorithm implementing the usual formula, rather than with the

problem, can be seen by considering another less well known but equi

valent formula for the zero:

x = 6/(1 +/N6") .

An algorithm implementing this formula will compute an approximately

correct answer for small 6 even in the face of rounding error.



This should come as no surprise since this polynomial is obviously far

from the pejorative manifold.
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4. What is 111 Condition of Zeros of Polynomials?

The chapters to come will discuss methods for dealing with ill

conditioned zeros of polynomials. In order to see why such methods

might be useful, we consider first the problem of finding the zeros

of a polynomial from its coefficients. Several algorithms are now

known which are not only stable in the sense outlined above, but also

are more efficient than other (unstable) methods. Best known of these

is that of Jenkins and Traub [14]; another good one is Brian Smith's

version of Laguerre's method [30], FORTRAN implementations of both

these algorithms are available in the IMSL library [13], The sta

bility of these algorithms may be shown for a specific problem by com

puting the coefficients of a polynomial whose zeros are exactly the

zeros computed by the algorithm. Then the coefficients of the original

polynomial do not differ much from the coefficients of the polynomial

recomputed from the numerical solution.

But if we happen to know the exact zeros of the original polyno

mial, we may find that they differ greatly from the zeros that were

computed. If this is the case — that a stable algorithm has produced

results that are more than slightly wrong — then the problem must be

ill conditioned. In the previous section we saw that the condition

of zeros of a quadratic polynomial was related to how nearly the poly

nomial came to having a double zero. It is a basic fact about the

zeros of analytic functions that nearness to a function with a multiple

zero corresponds to ill condition of the zeros.

As a simple example consider the analytic function

f(T) - (T-a)mg(x)

11



where g(x) is analytic and g(a) + 0. If f(x) is perturbed by

eh(x), h(a) f 0, then the perturbed zeros 6 satisfy

f(3)-eh(3) = 0 ,

so

e- (g(3)/h(e))(3-a)m .

In chapter VII we will see that the last equatipn can be transformed

to express 3-a as a power series in e . Thus there are m zeros

3 which converge to a as e -*- 0.

Implicit differentiation reveals the dependence of a solution 3

on the data e:

dB _ 1 , 1

As e •*• 0, 3 -»• a, g(3) •»• g(a), and h(3) -»• h(a). Simultaneously

the condition number |^|| increases like l/(|e| " /m) without
bound, so the condition of each 3 becomes infinitely bad.

One way to visualize the meaning of the condition number is to

think of the process of finding a zero of a polynomial as a mapping

from the space of polynomials into the complex plane. Then we can

ask how an infinitesimal neighborhood in polynomial space is mapped

into the complex plane. If that neighborhood is spherical then its

image will usually look elliptical. In a well conditioned case the

ellipse is small; in an ill conditioned case large. In the case of an

infinitesimal neighborhood of a polynomial with a multiple zero, the

image is a large star-shaped region.

12
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The research to be described is motivated by the desire to know

^ how large these image regions may become for polynomials within a finite

ball. The condition number tells how large the ellipses may be in the

f> infinitesimal case; it can be used to bound the first term of a power

0 series. Just when that first term is large, however, the power series

turns out to have a short radius of convergence. In fact, if a mani-

fold of polynomials with multiple zeros runs through the ball, then

the usual power series can not converge at every point in the ball.

But by exploiting that manifold as described in chapter VII we

may be able to get, in principle, a different kind of series that con

verges throughout the ball. The notion underlying that series may be

used, in practice, to obtain a bound on the size of the image of the

ball.

If the polynomial from which we expand lies on a manifold, the

nature of series expansions of its multiple zeros is different than

when the polynomial lies off the manifold. The series includes frac

tional powers of the perturbations. This is not a severe handicap.

However it may be that there are a_ priori reasons for knowing that

the only significant perturbations are those which are along the mani

fold and maintain multiplicities. Then reasonable condition numbers

can be defined which are finite with respect to those perturbations.

Furthermore the expansions used to bound the changes in the zeros take

much simpler forms.

*s
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5. Treating the Symptoms of 111 Condition

Large condition numbers are a warning that small changes in the

input data cause large changes in the solution of a problem. In the

next section we consider ways of identifying the underlying difficulty,

but now we will merely treat the symptoms: substantial changes in

our answers are being caused by seemingly insignificant changes in our

data or by rounding and truncation errors in our algorithms.

If our data is derived experimentally, we could try to perform

more careful experiments in order to get the variation in our answers

within acceptable limits. If the data is not subject to empirical

uncertainties, then the errors in our algorithms are the cause of our

symptoms. We may use increased precision to reduce the effect of

rounding errors, and we may carry out more steps of infinite processes

to reduce truncation errors. For polynomials, this would mean carry

ing out more steps of iterative processes such as Newton's method.

If the coefficients of a polynomial are known exactly, then

rational arithmetic may be used to determine the zeros to any required

accuracy. Pinkert [41] discusses such a method. These methods are

relatively slow on present computers, but they do eliminate ill con

dition as a factor affecting accuracy of computed zeros. Exact arith^

metic methods are inappropriate, however, when the coefficients are

not precisely known; then explicit account should be taken of ill

condition.

Changing the algorithm does not change the condition of the pro*-

blem, but an unstable algorithm can aggravate our symptoms of ill"*

condition. Sometimes we can reformulate the problem to take advantage

of a stable algorithm. In other cases we can reformulate the problem

14



to make it better conditioned.

Thus we will see later that the condition of a zero of a poly

nomial may sometimes be improved by translating the polynomial so that

the zero to be found is near the origin. In certain cases this may

be helpful, but care must be taken that the translation is computed

with insignificant rounding error. The translation of the coeffi

cients is computed effectively by evaluating the polynomial and n of

its derivatives. Usually such translations must be performed in

higher precision when ill conditioned zeros are involved, Stewart

[31] shows that the effect of such translations, carried out in con

ventional fashion, is comparable to the effect of rounding errors in

the coefficients of the original polynomial. Kahan [18] has shown

that unconventional algorithms can sometimes do better than would be

expected from [31], but his algorithm is a fluke.

If one is concerned with numerical treatment of a polynomial that

arises experimentally, it may be that careful translation is the most

reasonable method of "ameliorating" ill condition that has no obvious

source. Such translation is justified if the zeros represent a phy*.

sical quantity whose origin is arbitrary. The coordinates of a point

on a line, for instance, are sometimes arbitrary, but not if something

interesting, such as a body exerting a central force, occurs at the

origin.

However performed, translation amounts to attacking the problem

of ill condition piecemeal, one zero at a time, rather than trying to

deal with the overall condition of the problem. And the results of

translation in no way "explain" the ill condition.
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6. Explaining 111 Condition

The methods to be presented later try to "explain" ill condition

by finding the nearest polynomial with all its zeros well conditioned.

That polynomial will be on one of the pejorative manifolds of polyno

mials with multiple zeros. At the end of chapter II we will see that

if an m-tuple zero is sufficiently ill conditioned there must be a

polynomial with an m+1-tuple zero fairly close by. So we may in

succession try to find the nearest polynomial with a double zero, a

triple zero, two double zeros, and so on. We may count ourselves

successful if we find that one of these nearest polynomials has all

of its zeros well conditioned and yet is close enough to our original

polynomial. When we are successful, our starting polynomial may be

explained as a small perturbation of a polynomial with some multiple

zeros, all of which are well conditioned.

The reader with some experience may feel that the nearest such

polynomial should be apparent from inspection of the distribution of

zeros, for ill conditioned zeros often form obvious clusters. After

all, an m-tuple zero subjected to a suitably small perturbation will

usually split up into m distinct zeros, and such configurations

should be easily recognized. However, the ill conditioned simple

zeros scatter so quickly that they may soon lose their clustered

aspect. As we shall see later when we discuss Wilkinson's polynomial,

it is sometimes impossible to guess just by inspection of the zeros

what the nearest polynomial with well conditioned zeros might be like.

We may find, moreover, that no small perturbation will get us to

a polynomial with all zeros well conditioned. Rather, by moving

increasing distances we may increasingly improve the condition of the

16
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zeros, but in order to improve the condition of all zeros as much as

we want it is necessary to move much further than we want. Wilkinson's

polynomial seems to be of this sort; it is discussed in chapter X.

There is no natural division between the polynomials which are

explainable and those which are not; however we set a somev/hat arbi

trary boundary by our choice of norm and tolerance.

If we do find a nearby polynomial with all of its zeros well con

ditioned with respect to variations that maintain multiplicities, then

we might say that moving to the new polynomial has ameliorated the

problem of ill condition. Such a viewpoint makes sense only if the

new polynomial is indistinguishable from the original and it is

reasonable to hypothesize that the original problem could have a built

in constraint in favor of multiple zeros. This constraint may have

existed unrecognized heretofore, or perhaps there was no convenient

algorithmic way to provide for it when finding the zeros of the poly

nomial from the coefficients. Such a constraint may reveal itself in

the following way: an experimental system has the property that the

observed parameters always seem to be well conditioned functions of

the controllable parameters. The mathematical model for the system,

however, might lack that well conditioned relation of output to input.

Should we add something to the model? We could add a constraint in

favor of some multiplicity structure, e.g. one double zero, that ,is

inspired by a feature of the physical system. For instance a symmetry

in the experimental system might correspond to a double zero in the

polynomial.

Constraints upon the form of the solution should not be imposed

merely to obtain a well conditioned solution. Not all experimental

17
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systems are well conditioned, and not all problems should have well

conditioned solutions. Suppressing annoying numerical properties may *»

be equivalent to ignoring the most important and interesting features

of the system. It may be that the observed ill condition corresponds ^

to an important feature of the problem that is not properly reflected >

in our theory. In other cases ill condition may mean that the problem

we seek to solve is so close to being ill posed that it is senseless

to try to solve the problem in the presence of error.

Example. Figure 1.3 is an example of a physical system. It is

the well known damped harmonic oscillator discussed in elementary

physics courses; see, e.g., Kibble [20]. A mass m may travel up and

down. It is attached through a spring to the roof; the other end is

attached to a shock absorber (dashpot). If the mass is moved from

its rest position and released it will eventually return to its rest

position, because of friction forces in the dashpot. The goal of an

engineer might be to design the dashpot so that the mass will return

to its rest position as quickly as possible after a perturbation. By

adjusting the dashpot, the mass may be caused to return to its rest

position as rapidly as possible without oscillation. The system is ^

then said to be critically damped. The engineer may decide that the

spring force on m is -kx for a k > 0 which can be measured to «

perhaps three significant figures. An investigation of the friction ^

forces of the fluid in the dashpot might confirm that the friction <

forces on m can be approximated by -dx for a constant d > 0,

which can again be measured to a few figures. Finally the mass itself

can be measured.
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spring constant k

mass m

friction coefficient d

TTTJTTT
Figure 1.3. A damped harmonic oscillator.
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Then the mathematical model corresponding to the stated physical

assumptions is that the restoring force on m is -kx - dx so

mx" + dx + kx = 0 ,

and x(0) = xQ and x(0) = vQ are the initial conditions. The solu

tions to such linear ordinary differential equations with constant

coefficients are usually linear combinations of exponentials e
c t

and e " where c+ and c_ are the zeros c of the quadratic

polynomial

2
mc + dc + k

c+t
If c = c then the solutions are linear combinations of e and

c+t
te . The quantity to be minimized is the maximum time constant for

ct
the components of the solution. The time constant for e is defined

to be -1/Re c which corresponds to the non-oscillatory, decaying

part of the motion of m. (The oscillatory part is governed by Im c.)

Then

i -1 -1 X J

+ -

2m for d> >/4mic ,
d - /dz-4mk

^ for 0<d<•« .
d — —

2
For d >_ 0 this is minimized by letting d = 4mk. In that case

c. = c .

Given m and k the engineer can compute an optimal d which

he can obtain approximately by adjusting the dashpot.

The engineer may then mass produce these assemblies. Of course

there will be variations within tolerances in m, k, and d. Some of

20
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the assemblies will probably exhibit osci 11a~ory motions when perturbed,

v, Then the question will arise: are these variations from unit to unit

due to the normal variation of components within tolerances, or is

Jy there an error in the design, or in the claimed tolerances?

We can resolve this question by asking: given the polynomial

corresponding to one of the production units.

P(e) =c2 ♦ (J)c +(J) ,

is the nearest polynomial with a double zero within the distance

allowed by the tolerances on (£) and (£)? If Ad is the tolerance
on (-) and Ak the tolerance on (-) then we might measure pertur

bations

q(c) = ac + 3

by

BqU2 -(f-)2 +(£-)2 .
Ad Ak

Then if the distance to the nearest polynomial with a double zero were

less than & in this norm, the components would likely be within

tolerance.

Suppose we have adjusted the assembly to be critically damped.

Then we may carefully measure m, k, and d. If we wanted to compute

the time constant from the data and the model, we would be wise to

* incorporate a constraint in favor of double zeros in our polynomial

solver, for that constraint corresponds to a fact we know about the

physical system.
>

In contrast, if we carefully measured m, k, and d on an

(unadjusted) assembly from the production line, and we wished to
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compute the time constant, it would be folly to incorporate a con

straint for a double zero in the polynomial solver. If we did we

would always think that the assembly was critically damped.

Even when the assembly is at or near critical damping, where t

small changes in m, d, or k produce large changes in c or c ,

such small changes produce only small changes in the solution of the

differential equation, measured in an appropriate norm. That is, an

important feature of the physical system is well conditioned. We

encounter ill conditioning numerically because we choose to think of

the solution of the equation as a sum of exponentials. As a conse

quence of this point of view we then solve a polynomial equation to

find the time constants of the exponentials. Solving the polynomial

equation is the step that may be ill conditioned.

Similar mechanical problems are used as examples in the text of

Carnahan, Luther, and Wilkes [4, exercises 4.23-4.26 and example 3.1],

There the natural circular vibrational frequencies of mechanical

systems with several components are computed. These frequencies are

obtained from eigenvalues of symmetric matrices. Multiple eigenvalues

merely mean that two different modes of circular vibration happen to

have the same frequency because of chance or some physical symmetry.

Viewed as an eigenvalue problem, eigenvalues of symmetric matrices are

always well conditioned [5]. An inappropriate reformulation of an

eigenvalue problem as a polynomial problem is responsible for the ill

conditioned zeros Carnahan etaj[ obtain in some of the numerical

results given in their example 3,1.

<-^
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7. What Do We Do With the Explanation?

Once the nearest polynomial has been found which "explains" some

ill conditioned problem, what should be done next?

If we just substitute the zeros of the ameliorated or regularized

polynomial for the zeros of the original polynomial, we may be guilty

of covering up important features of the problem,

One way to investigate those features is to answer the following

question: How do the zeros of the polynomial vary when the coeffi

cients of the polynomial vary within their respective uncertainties?

When all zeros are well conditioned this question is easily answered

by expressing changes in the zeros as a Taylor series in changes in

the polynomial, of which only the first term or two are needed because

the series converges quickly.

In the interesting case, however, we find that a conventional

Taylor series approach will not work for ill conditioned zeros. The

radius of convergence of the series never exceeds the distance to the

nearest polynomial with a multiple zero. If we actually move to that

nearest polynomial, we then find that conventional fractional power

series expansion methods still tend to founder because of short radii

of convergence.

In chapter VII these problems are discussed and a method is pro*-

posed for obtaining expansions for changes in zeros that converge in

a much larger region than conventional techniques. The proposed

method depends on using the nearest well conditioned polynomial as a

starting point for an expansion in two phases. The first phase retains

the multiplicity structure of the starting point while the second

phase continues in a conventional manner. Thus the symbolic

23



determination of a series expansion depends on numerical means for

determining the most suitable starting point. Most of the difficulty

of the problem is in the numerical part. Analytical difficulties

preclude getting the actual expansions, but the idea may be used in a

very practical way to get bounds for the changes in the zeros as the

coefficients vary throughout the entire region of interest. Smith

[42] explains how Gerschgorin circles may also be exploited to obtain

similar bounds.

24
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8. Survey of Previous Results

Prior to the computer era relatively little attention was devoted

to the problem of ill conditioned simple zeros beyond recognizing that

small perturbations tended to break up multiple zeros into ill condi~

tioned simple zeros. Thus the multiple zeros themselves were usually

unfairly considered to be ill conditioned. The behavior of multiple

zeros under perturbation has long been a matter of interest to analysts

and algebraists; the fractional power series discussed in chapter VII

have been known since the eighteenth century.

Another facet of multiple zeros is their effect on convergence of

zero finding algorithms. It has long been known, for instance, that

the convergence of Newton's method is only linear in the vicinity of a

multiple zero. Consequently much effort has been expended in develop

ing zero finding iterations that perform better near multiple zeros.

Such methods have been discussed by Traub [33] and Ostrowski [25],

among others; Stewart's is a recent example of such work [32].

James Daniel [7] has recently studied the problem of improving

approximations to multiple zeros. He suggests that averages of clus

tered ill conditioned simple zeros may be taken to determine the

multiple zero of which they are apparently approximations, The exam

ples he cites show that his suggestion may sometimes be helpful for

double zeros and perhaps for higher multiplicities if accuracy require

ments are not very stringent. Daniel's work has not been incorporated

in any widely available codes for polynomial zeros. The reason may be

that a conventional zero-finding code with deflation would, in the

vicinity of an m-tuple zero, find first an ill conditioned member of

an m-member cluster. Then it would find an ill conditioned member of
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an m-1-member cluster caused by perturbing an m-1-tuple zero which is

not the same as the m-tuple zero of the original problem. Then the m

ill conditioned zeros that are averaged together at the end are not

all perturbations of the same multiple zero and consequently this ^

average does not make a very good estimate of any multiple zero.

To J. Wilkinson [34] must go credit for publicizing the fact that

ill condition and apparent clustering are not equivalent characteris

tics of zeros of polynomials. This fact does not seem to be explicitly

recognized previous to Wilkinson's work. The polynomials he chose as

examples are still being studied profitably as in chapter X of the

present work.

Wilkinson also brought to the attention of many readers the facts

that condition could not only be rigorously defined but could be mea

sured as well.

In 1975 Dunaway [8] proposed a different method for dealing with

polynomials with multiple zeros. Her work is based on the fact that

the greatest common divisor (GCD) of such a polynomial and its deri

vative is a polynomial whose factors are the multiple zeros of the

original polynomial, but of multiplicity one less. GCD algorithms

have long been used for studying polynomials whose coefficients are

exactly known. Recent work by Collins [5] and others has been in the

context of symbolic algebra systems employing exact rational arithmetic.

Dunaway's idea was to implement a traditional GCD algorithm in

standard finite precision floating point arithmetic. There the key

problem is determining when a term in a polynomial remainder sequence

may be considered to vanish, indicating that an approximate GCD has

been found. As Dunaway remarks, that is a difficult problem in finite



precision arithmetic. She does not give details as to how she resolved

^ it, and it is not clear that her procedure could be automated. If

that were possible, it might be an attractive method for investigating

** the multiplicity structure of the zeros of polynomials without speci

fying that structure in advance. In contrast, the methods to be pre

sented in subsequent chapters require that one specific structure be

investigated at a time — one double zero, a triple zero, two double

zeros, etc.

The present investigation is based on the work of W. Kahan

described in [17], Kahan displayed the connection between ill condi

tion and nearness to the manifold of polynomials with multiple zeros.

In [17] and also in [19] he determined how to compute condition numbers

and how to derive the equations to be solved for the nearest polynomial

with a double or triple zero. He also perceived that the manifolds

could be exploited to provide a better way to express perturbed zeros

as an expansion in terms of the perturbation.

Kahan went as far as theory unaided by extensive computational

experience could be expected to go; this dissertation supplies some of

that computational experience and some of the theoretical extensions

motivated by that experience.
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9. Summary of Findings

.The principal original results of this research are:

1) A new method for computing condition numbers for zeros of

polynomials, valid for certain norms only, is presented in chapter II. ^

2) The equations to be solved for the nearest polynomial with

two complex conjugate double zeros, two double zeros, and three or

more double zeros are presented in chapters IV and V.

3) When k complex multiple zeros are sought, the equations

that need to be solved are less complicated than might have been

thought at first. It is shown that k Lagrange multipliers may be

assumed to vanish for any interesting solutions. This result, pre

viously known [19] for the case of a single multiple zero, has been

extended to the case of several multiple zeros and the case of a com

plex conjugate pair of multiple zeros in chapters IV and V. But a

counterexample has been discovered which indicates that, in the most

common case of a real polynomial subject only to real perturbations,

these results are not always applicable.

4) Some results on the location of the nearest polynomial with

a double zero are given in chapter VI.

5) The details of a new technique for bounding changes in the

zeros of a polynomial are presented in chapter VII. This technique,

originally suggested by W. Kahan, exploits nearby manifolds of poly*-

nomials with multiple zeros whereas conventional techniques are

usually hindered by the presence of those same manifolds,

6) Extensive computer codes of methods presented in earlier

chapters were prepared to test the theory experimentally. In chapter

IX examples are given of successful application of these codes.



7) Extensive computer results are given in chapter X to support

"^ the conclusion that one polynomial mentioned by Wilkinson [34] is

intrinsically not amenable to treatment of the type proposed in the

^ previous section, due to its position near a particularly complicated

part of the manifold of polynomials with double zeros.

a
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10. Notation

In the following chapters we will consider perturbations of monic

algebraic polynomials p, of degree n, with real or complex coeffi

cients:
n

.n-jp(t) =Tn+ Ip.T1
j=l J

We will usually follow the conventions of using lower case Greek

letters for scalars, lower case Romen letters other than i through

n for vectors and polynomials, and capital Roman letters for matrices,

non-linear operators on vectors, and sometimes for functions. But p.
<j

and A.. will usually represent scalar elements of p and A. Kn

and Cn represent the real and complex vector spaces of dimension n.

The perturbations will be polynomials of degree at most n-1,

not usually monic:

q(x) = Iq.Tn-j .
j=l J

We identify the space of perturbations q of a polynomial p with a

vector space of dimension n and, in the obvious basis

r n-1 n-2 ,-,
{t ,t ,...,t,1} ,

the elements of the vectors are the coefficients of the polynomials:

q =
^2 q(T) = Iq,Tn"j

j=l 3

Any norm for Rn or Cn may now be imposed. We will be interested

in a weighted &„ norm on C defined by

30
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DqQw =(q*Wq)1/2 =BW1/2qB2 ,

where q* denotes conjugate transpose and W is Hermitian positive

definite and usually diagonal as well. In the diagonal case we write

TT

'""w-tai^r-

There is a dual space of functionals u* which has the usual

norm

0"X=supl^=(u*W-V/2,
or

!j=l a J

in the diagonal case. Most often the functional we are interested in

is e *, the functional that evaluates a polynomial q at c:

ec*q =q(c). In our basis e;* =(cn"V"2--•£ 1).
One frequently used operator is the derivative operator D which

maps C to Cn and has the matrix form

D =

f 0

n-1 0 0

n-2 0

0 \ 0

1 0
J"

n

>n

We can for instance write e *D for the functional which evaluates

the k'th derivative of a polynomial at c. In fact we will often be

interested in the operator which computes a polynomial and its first

31



m-1 derivatives at 5. We will define it as

e *D
A. = > m

m-1
e *D

so

V =
fq(0

(f)j

Corresponding operators D and S can be defined for polynomials of

degree n; their matrices operate on vectors of dimension n+ 1.

Then

'p(c)

.P(frl)Wj
A?P =

A is m by (n+1).

It is handy to note here that the m rows of A are independent

for m £ n. For if we apply A to the vector q representing

(t-c) we find

Acq

' 0 ^

0

k! position k+1

By letting k run from 0 to m-1 we find that the rank of A

is indeed m.
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Frequently we will be using c as a symbol for a multiple zero

of a nearby polynomial and a will be a symbol for a zero of the

original polynomial. We will write e* for e * and A for A .

In chapters II and VII, however, A will be an m-1 by n matrix

A =

' e*
a

*rsm-2
a

Those chapters also use the n by n-m+1 matrix

m-1

1

(m-1)(-a) *\

(-a)

0

m-1

O

1

(m-1)(-a)

(-a)
m-1

Multiplying an n-m+1 vector q by P ^ corresponds to multiplying

a polynomial of degree n-m, q(x), by (T-a)"1"1. The columns of

P .j are linearly independent since (i-a) q(-r) f 0 if q f 0.

When presenting numerical results we will often use FORTRAN

E-format, e.g.

-5
.123E-5 means .123x10
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CHAPTER II

COMPUTING CONDITION NUMBERS FOR ZEROS OF POLYNOMIALS

1. Definition of Condition Numbers for Simple Zeros

In this chapter we explain several ways to compute condition

numbers for zeros of polynomials. In the last section we see why ill

condition is always associated with nearness to a polynomial with one

or more double zeros.

Condition numbers are intended to be a numerical measurement of

condition. They tell us how large a change in the solution may result

from a given change in the data. In general, for a problem which con

verts m input data items d. into n components of a solution s.,
1 3s. J

there could be nm condition numbers y.. = |r..|, r.. 5 -r^*-, and
lj lj 1J da.

the condition of the problem could be defined to be a norm of the

matrix of r... If there is a norm fl»Ds defined on the solution and

a norm B*DD defined on the data, then the most suitable norm for r,

the matrix of r.., is
* j

•iTdlSi
d-0dDDnro -= suP(^i) .

One could just as well consider relative condition numbers,

*ij =
d.

i
•

3s.

3di

as long as s. f 0.

For our purposes we will generally consider a separate condition

number for each zero of a polynomial but we will lump together changes

in the coefficients and measure the combined change by means of a norm.
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Let p be a monic polynomial of degree n,

P(T) =T0 + I p.T^" ,
j=l J

and let 6p be a perturbing polynomial of degree n-1, not neces

sarily monic, representing a change in the coefficients:

«p(t) - I6p,Tn"j .
j=l J

Let a be a zero of p(x) and a+6a a zero of p(t)+6p(t).

Definition. The (absolute) condition number, y, of a with

respect to changes 6p is

(1.1) y = lim sup
6p with
J6pH=A

A+0

6aI
t!6pD

As we have seen, this limit is infinite for multiple zeros a, a

defect which we shall remedy shortly.

There is one aspect of ill condition of zeros of polynomials

that may surprise those accustomed to thinking of ill condition pri

marily in terms of systems of linear equations. In that context norms

are usually chosen in such a way that the condition number of a matrix

with respect to inversion is never less than 1. There is no such

natural choice of norms for zeros of polynomials and their condition

numbers may take on any positive value. We shall see in chapters IX

and X that well conditioned zeros can be y/ery well conditioned indeed:
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in a certain reasonable norm, the condition number of one of the zeros

of Wilkinson's polynomial is about l.E-16.

Our definition of condition and condition number is similar to

that of Wilkinson [34], and is also a special case of a more general

formulation proposed by Rice [27]. Both Rice and Wilkinson also pro

pose relative condition numbers which we would define as

- y
Yrel ="fSf

for a f 0. In this case we would choose a norm for 6p which would

measure relative changes in the coefficients. An example is

IISpO =
c n Si 1/2

if all p. f 0. Other norms can be devised suitable for the case when

some p. is zero. It is the responsibility of the definer of a pro-

blem to decide the appropriate norm. For instance, if none of the

zeros of p are 0, then the polynomial p(t), whose positive zeros

are the moduli of the zeros of p, may be used to define a norm:

•( I
6P* 1/2

None of the p. are 0 as long as p f 0.
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2. Definition of Condition Numbers for Multiple Zeros

The previous discussion shows that our definition of condition

number does not make sense for a multiple zero, which would apparently

have an infinite condition number. That infinite condition is caused

by the fact that most arbitrary infinitesimal perturbations applied to

a polynomial with a multiple zero tend to break up that multiple zero

into ill conditioned simple zeros.

In order to have a sensible definition of condition number

for a multiple zero we must only allow perturbations which do not

destroy the multiple zero. Here is an example: consider a real monic

cubic polynomial,

p(x) =(t-cx)2(t-&) =t3 -(2a+B)x2 +(2a3+a2)x -a2S ,

and small quadratic perturbations,

q(T) =q.,T +q2x +q3 ,

which preserve the multiplicity of a so that

p(T)+q(T) =(T-(a+e))2(T-(B+6)) .

We discover that

q-, = 2e + 6

q2 =2ae +2$e +2a0 +(2e6 +e2) ,
q3 =2a$e +a20 +(2ae9 +$e2+ e26) ,

where the parentheses segregate higher order terms which we shall

ignore. Thus the three parameters q.. are defined in terms of the

two variables e and e. We can choose any two of the q. as the
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independent parameters of the perturbation and solve for e in terms

of them. Thus if we choose q. and q„, we find

e= (q2-aq1)/(2(3-a))

and

6= (3q1-q2)/(6-a)

to first order in e and 6.

Then we can see that the ratio of change in solution (e) to change

in data (q,) is

q1 Z(B-a)

which will be well defined unless 3 = a, which would mean that the

multiplicity of a was not two, as we thought, but actually three.

In general let

P(x) = (T-a)mq(T) . q(a) t 0 .

Definition. The condition number of a is

(2.1) y=lim sup iH.
over 6p maintaining
multiplicity of a
[with 06p§ = A

A-K)

In order to appreciate graphically what is meant by constraining

perturbations to maintain multiplicity, consider the drawings in

Figures II.1-1I.3 of the space of monic real cubic polynomials. That

space is three dimensional and the set of small perturbations about a

point in that space is a closed ball. The drawings are based on a

norm in which closed balls look like spheres; see Figure 11,1,
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The set of monic real cubic polynomials with double zeros is a

two dimensional algebraic surface (manifold). The set of small per

turbations maintaining multiplicity of a double zero is the intersec

tion of the ball and that manifold. If the manifold were a plane that

set might be an oval. In general that set resembles a bent coin or

an ellipse warped into three dimensions; see Figure II.2.

The double zero is well behaved in the face of perturbations that

keep the polynomial on the manifold but away from the one dimensional

submanifold of real cubic polynomials with a triple zero. That sub-

manifold is an algebraic curve and a subset of the surface mentioned

previously. The set of small perturbations maintaining a triple zero

is the intersection of the ball and that curve — amounting to a seg

ment of the curve, as in Figure 11.3,
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Figure II.1. A small ball about p in R containing pertur
bations 6p such that D5pB < A.

^-' \
ball

surface of polynomials
with double zeros

Figure II.2. The set of small perturbations about p
maintaining a double zero resembles a
bent coin.
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Figure II.3.

curve

\ j? P '

ball

The set of small perturbations about p
maintaining a triple zero is a segment
of a curve. .
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3. Condition Numbers for n-tuple Zeros

As a start we derive a condition number for the simplest case,

that of a single n-tuple zero. When the polynomial has the form

.n-jP(t) = (T-a)n = T"+ IP.t"-j ,
j=1 J

where

ih _ n!
Pj=^(-a)J, (P-Tdh31

then 5p has the form

6p(x) = (T-(o+«o))n - (T-a)n

=.? ("){(-a-6a)j-(-a)J'}Tn'j
j=l °

=(-6a) I ("VM-cO^'V"0' to first order
J-l J

ri-1

Then, recognizing an expression for (*r-a) " ,

Y = sup

5p

JM. I
nKT-a)""'!

n-l„ n n
a

j-1 J

In particular for the diagonal W norms

Y =
a

n 9 9

Vi

except if a = 0,

Y =
n^wT

.n-j
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4. Resolution of Condition Number into Components

We show now that the condition number we have defined is a product

of two independent factors. Thus for the polynomial

P(t) = (x-a)m n (t-c.)
j=m+l J

the condition number for a will be shown to be

la
Y = m

n

n |a-U
j=m+l J

where the numerator a/m will depend on the zero a but not on the

other zeros t.. The denominator depends on the other zeros £. but

not on m nor on the norm. We require that a f c so that m is

indeed the true multiplicity of a.

W. Kahan demonstrated this fact in [17] after showing that, for a

monic polynomial of degree n, an m-tuple zero may be regarded as an

analytic function of the first n+1-m coefficients of that poly

nomial. This may be compared to the well known result that a simple

zero is an analytic function of the n coefficients of a monic poly

nomial. In both cases analyticity is confined to regions in which the

zero does not increase or decrease in multiplicity.

We shall infer the resolution of the condition number directly,

however. Let

P(t) = (T-a)mq(T)

and let 6p represent infinitesimal variations in p such that

p+6p has a multiple zero a+ 5a of multiplicity m. Then
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m(p+6p)(T) = (T-(a+6a))u,.(q+6q)(T) ,

and in consequence, keeping only first order terms, we find

Lm-16p(x) = (T-a)'"",{(T-a)6q(T) -mq(x)6a}

Thus 6p is displayed as a function of 6q and 6a.

We claim

Y = sup

constrained
6p

to I _ 1 1
6pl " mWT fr of £gree]

< n-m

r(a)

(x-a) ~ *r(x)

and we prove it by showing the one-to-one correspondence between such

r and such 6p. Namely let

r(x) = (x-a)6q(x) -mq(x)6a

so

6P(t) =(x-af-Mx) .

Since 6p has degree <_ n-1, r has degree <_ n-m. The dimension of

the vector r is n-m+1, however, since the polynomial r(x) is not

monic.

Any such r defines 6p and hence 6q uniquely:

6a"iq(aT' 6q(T) T-a

The numerator of the expression for 6q(x) does vanish when x = a

so that expression is indeed a polynomial rather than a rational func

tion. Therefore we may write

6a 1 r(a)
WT "m|q(a)| j^^jm-^^
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n n

and, since q(x) = n (x-c.), then |q(a)| = H |a-£.|.
j=m+l J j=m+l J

As claimed, then, we may write the condition number for a as

(4.1)

and

1

n

n |a-C,|
j=m+l J

(4.2) la-1 sup 1441
m nifj !_ „^n/_ \m-lfdegree rlKx-aJ'^'rfx)

£ n-m J

is the part of the condition number that is independent of the other

zeros £.. The next few sections will be devoted to explaining how to

compute a.
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5. Computing a for Arbitrary Norms — Dual Method

W. Kahan [19] has provided the following method for computing a

in arbitrary norms. We shall see that it leads to solving a standard

kind of linear approximation problem, namely

a = min ||s* + il*A||/(m-l)! ,
£*

for vectors s* and .'* and a matrix A to be defined.

To prove the statement above, write the formula for a as

e*r|
a '

a = sup

V of degree] m-1 rll

< n-m ('I
sup

e*ZSy
a J

IIPfy of degree]^-^
< n-1

m-1

where yeCn and S is amap from Cn onto C0""14" . Z is the

operator which fills out n-m+1-vectors with zeros to form n-vectors:

7 - > n

n-m+1

ZS is required to be a projector. Finally P -j is the linear

operator from cn~ to Cn mentioned in chapter Iwhich represents
m 1

multiplication by (x-t) " .

Our goal is to transform the sup problem into a dual min problem.

We therefore state a duality theorem of Buck [3], The setting for the

theorem is a normed vector space E with its dual space of functionals

E*. If M is a subspace in E and ^ its annihilator in E*,
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the theorem states

Iv *x |
SUP -nvtl = min Iv *-v*lx|| ' • "'0

v*eAfLx e M ..*

For the application at hand, E is Cn. M= {P -iSy|yeCn}. Then

MJ-={v*|v*P tS =0}. We discover
1 m-1

|v *Pm ,Sy|
sup nup "*"'rt = min Bu*fl .

Then if there is a vn* such that v *P nS = e *ZS we will have the
u 0 m-I a

sup we seek, expressed as a min.

Since the columns of P , are linearly independent, the range

space of Pm_i* must have full dimension so the equation

z*e« = pm i*vn may De solved for vft. Therefore
a m-I 0 0

(5.1) a = min Hu*H .
(u*Pm nS =e *ZS)
k m-1 a ;

Let us see what the solutions of u*P ,S = e *ZS are; amonq
m-1 a 3

if

them we will find that of minimal norm. As in chapter I let D

denote the operator which maps polynomials to their k'th derivatives.

Then we find that

u* =e^D^Vdn-l)!

is one solution of the equation. For consider any y(x) and let

r(x) be its image; r = Sy. Then

ea*um"lpm-lr -{(T-arVfT)}^11!^
= (m-l)!r(a) = (m-l)!e *Zr .

a
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The next step is to determine the solutions of the homogeneous

equation u*Pm_-|S = o. The rank of S is n-m+1, as is the rank of

Pm_-j» and therefore their product. Since u* has dimension n, the

null space of (P ,S)* must have dimension m-1. Therefore we seek

a subspace of solutions u* of dimension m-1.

We may easily verify that {e *,e *D,...,e *Dm"2} is a set of

solutions to u*Pm ,S =0, because e*DkP ,r ={(x-a)m"1r(x)}^k^(a)
m-1 a m«* I »/*/%/

=0 for 0 < k < m-2. These m-1 linearly independent solutions

therefore form a basis for the solution space and we may insert the

general solution of the inhomogeneous equation in the formula (5.1)

to get

m-2
(5.2) a =u\\i min lie *Dm"1 + Y X. e *Dk|| .(m-1)! ^ Ua k=0

If we write the m-1 vector A* =(^0»xi»*••»xm-2 '̂ tne m"1 by n
matrix

A =

e *
a

e *D
a

{ e *Dm"2 J
k a J

and the vector s* = e *Dm" , we have
a '

(5.3) a = min lls*+£*AD/(m-1)! .
I*

Consequently a may be found by solving the indicated linear approxi

mation problem, as claimed.
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In the special case a = 0 we find

"** a =1(0 ••• 0 10 ... 0)|| .

•: : f •
* n-m+1 position



6. Computing a for %r> Norms--Dual Method

We now evaluate a for &« norms. First we note that

-1/2Uu*llw = llu*W ' ll2 and, using the theory of least squares, the

minimal residual may be expressed as

a=min ||W"1/2s+ W~1/2A*Jl||2 /(m-1)!

={s*(W-1 -W"1A*(AW"1A*)"1AW"1)s}1/2/(m-l)! .

In particular, if m = 1 then A = 0 and s = e so
a

(6.1) a- (e'W^e )1/2 =\\ |a2|n"W 1/2

If m

find

2, then A = ea*, s= D*e , and after some computation we

2 ! „, .,2, 2,n-j II(n-J)l«2|n-J/Wj|2 •
Cl Ilann"3/«*-4

or in a computationally more economical form,

V 1, 2|n-j-l, 8 1| 2,n-k,. .x2.
2 _ j=1 wj k=j+l wkitl

21 n-j
I la

j=1 /wd

For m > 2,

a =
1 m,n r r 1 (n-j)! ,n-j-m+l .m;2, (n-j)! n-j-k(srryr ™n {X wt (n-j-m+i)!a +j0xk fcmr

This may be written in conventional least squares format as

2 1/2
}
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where

a = min lls-Anil9/(m-l)!

$ = (n~j)! n-j-m+1,, J/2
Sj (n-j-m+1)! a /(wj>

fi* - (n-j)! n-J-k,, J/2
Aj,k (n-j-k)! a ^wj}

Finally, if a =0, then a =V(wn+1_m)1/2.

.V

51



7. Computing a for &o Norms — Primal Method

In the previous section we computed a by solving the dual

problem. Our goal now is to find c directly. First convert the

expression

SUD lr(a)lo - sup •—J. i •

r of degree] ||(x-a) " r(x)i
< n-m

into the vector notation:

|e *r
1 a

a = sup
pm irlm-1

But if we define a new norm llrIL = flPm ,rll then by definition
P m-1

a - K\

119
in the dual norm. Now ilrIL = U(Pm -,*WP„, ,) ' HL in our Z0 norm so

P m-l m-I c c

(7.D a=||e *(Pm *WPm ,)"1/2L
' "a m-1 m-1 "2

=(e *(Pm ,*WPm ,)'\ )1/2 .
a m-1 m-1 a'

We can check this result by comparison with the simplest case, m = 1

Then PQ = I and

°Z =ea*W"1ea = l l^|n"j/wia a j=1 j

which is just the result obtained in the previous section.
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8. Computational Details

We shall see how to compute the non-zero elements of P ,*WP ,
m-1 m-1

Let P denote a generalized matrix of the P , type corresponding

to multiplication by a monic polynomial t(x) of degree d. For

2 2 9
instance, if m = 3, P« corresponds to (x-a) = x -2ax+ a . Then

2
tQ = 1, t, = -2a, and t« =a are the elements of t. P has the

form of an n by n-d matrix

so

Then

'd .

pij =
Vj if i 1 i£ J+d >
0 otherwise

(P*WP)ia. =

k=min(i,j)

k=max(i,j)

0 otherwise ,

so this matrix has bandwidth 2d +1 in addition to being positive

definite Hermitian.
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9. Condition Numbers for Complex Conjugate Zeros of Real Polynomials

The formulas derived in the previous sections were valid for

complex zeros of a complex polynomial subject to complex perturbations.

It is easy to verify that the same formulas apply for real zeros of a

real polynomial subject to real perturbations. The case of complex

zeros of a real polynomial subject to real perturbations, however, is

more complicated. The requirement that the perturbed polynomial

remain real amounts to an extra constraint. We now define condition

numbers that reflect this constraint. Let

P(t) = (x-a)m(x-a)mq(x) , q(a) f 0 ,

represent a real polynomial with a complex m-tuple zero at a and

consequently at a as well, with Im a f 0. Considering infinitesimal

perturbations we define

(p+6p)(T) = (x- (a+6a))m(x- (a+to))m(q+6q)(x)

and to first order we find

6p(x) = (x-a)m"1(x-a)m'1[(x-a)(x-a)6q(x)-2mq(x){(Re 6a)x -Re(ato)}]

Definition. The condition number of a with respect to real

perturbations of p is

(9.1) y=I™ sup j^1
A+0 Constrained 6a v

[with H6pH =AJ

Let

r(x) = (x-a)(x-a)6q(x) - 2mq(x){(Re 6a)x - Re(a6a)} .

54



J

55

Then real 6q and complex 6a define r uniquely. Conversely,

6a = (/T r(a))/(2m(Im a)q(a))

and

<5q(T) = r(x) +2mq(x){(Re 6a>x -Re(a6a)}
(x-a)(x-a) •

As before we can verify that the expression for 6q defines a poly-

riomial rather than a rational function.

Thus there is a one-to-one correspondence between r and

(6a,6q). Substituting in (9.1) we find

or

7ml Tm cllnf»ll ,^ ^ , 1(x-a)"1'1 (x-5)"1"1 r(x!
{ < n-2m+l J

Zm|lm a||q(a)

(9*2) Y=2m|lma||q(a)| °c '

Thus in this case as well, the condition number consists of (1) a numera

tor a/(2m|lma|) independent of the other zeros ?., and
c n J

(2) a denominator |q(a)| = n |a-£.|.
j=2m+l J

The limit Im a •* 0 corresponds to a and a coalescing to

form a zero of greater multiplicity 2m. Therefore the condition

number becomes infinite as Im a -*• 0.



10. Computing q_ for JU Norms

We turn now to the problem of computing a by a method similar

to the primal method for computing a. Define C , mapping £n~2m+2

into Rn as the operator corresponding to multiplication by
m 1 m 1

(x-a) " (x-a) " for complex a. Then in matrix form, C, for

instance is n by n-2:

C, =

1

-2 Re a

lot!2 1

•2 Re a

loci2

Consequently

9 ivf~M^ r e e *rac2 - sup JlMU - sup «°
C r llC^rir r r Vl WCm-lr

As before C -.*WC , is real symmetric positive definite so

,-V2(cm i*wcm J exists. We find that
m-i m-1

a. = sup

c r

-1/2 -1/2-
?*<Cm-l*WW'"W'vi^i)"^

r*r

The supremum is over real r but the matrix e e * is complex so a

Rayleigh quotient argument does not apply directly. Instead write

e * = u* + iv* where
a

and

n-1u* = Re(ea*) = (Re(a ) ••• Re a l)

v* = Im(e *) =(Im(an_1) ... Im a 0) .
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Then observe that for any real s,

s*e e *s = s*(uu* + vv*)s .
a a x '

Applying the Rayleigh quotient theorem now we find

-V2,a " =max eigenvalue[(C *WC J",/c(uu*+vv*)(C *WC n)'1/2]
c m-1 m-1 m-1 m-1 J

= max eigenvalue[xx* +yy*]

where

x= (C *WC ,)"1/2u ,
x m-1 m-V '

y= (C *WC ,)"1/2v .
J m-1 m-r

A rank two matrix has two positive eigenvalues which can be found

by reduction to a matrix of dimension two. For an eigenvalue X and

an eigenvector (6x+<j>y),

Therefore

(ex +<j>y) = (xx* +yy*)(6x + <j>y)

x*x x*y ' e "
= X

' e "

y*X y*y
. *. . ♦.

and X is an eigenvalue of the indicated two by two matrix. The

largest eigenvalue of that matrix is

(10'1) \nax =f(x*x +y*y+((x*x-y*y)2 +4|x*y|2)1/2)

where

etc. Then

x*x = u*(CB.1*HC1B.1)u ,

x*y=u*(Cra.1*WCm.1)v ,
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<10-2> °c2 =xmax

and

niax

(10'3) Yc =2m|lma||q(a)| •

What does this result mean in the case m = 1? For comparison, suppose

we computed the condition number y of the same complex a using the

general formula for complex polynomials (4.1, 6.1). the result is

and consequently

=>£*W~V/(2m|lm a||q(a)|) .
a a

To compute a note that x*x = u*W u, etc., and

*-., -^e-w'e+A1/2)max 2V a a

2 2where A = (x*x-y*y) +4|x*y| . From the Cauchy-Schwartz inequality

we can deduce that

(e(x*W"1ea)2 =(x*x+y*y)2 >A>0,

l(e "W^e )<X <e*W"]e .
2V a a' - max - a a

Then we find that

(10.4) 1< Y/Yr < &

for m = 1.

When m > 1, however, the discrepancy between these condition

numbers can be much greater. In fact, as Im a •*- 0 for fixed Re a

and m >^ 2, y/yc increases without bound. The condition numbers

differ because y maintains the multiplicity of only one zero intact
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but yc maintains intact the multiplicities of two zeros.

Computational Details for a

The computation of a is similar to that of a, except the

matrix C 1 corresponds to multiplication by t(x) =(x-a)"1"1 (x-a)"1"1,
a polynomial of degree d = 2m-2. Then C , is n by n-2m+2, and

(k=min(i,j)+d
, X. -x Vk-i^Vj » l1"4l <d.k=max(i,j) K K 1 K J

(°m i*wcm 1)44 =<m-l m-l ij
otherwise .
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11. General Condition Numbers

The first condition numbers we considered reflected the condition

of a zero subject to infinitesimal perturbations that maintain the

multiplicity of (only) that zero. The second condition numbers

reflected condition with respect to perturbations that maintain the

multiplicity of that zero and its complex conjugate. We can go fur

ther, restricting the class of allowable perturbations to those that

maintain whatever multiplicity structure we consider important in the

other zeros.

For instance, let

where

p(-x) = n (x-a.) K q(x)
^k=l K J

q(ak) t 0 , 1<k< K,

and we consider only perturbations of the form

so that

6p(T) =

k m.

(p+<5p)(x) = n (x-(a.+6a.)) k(q+6q)(x)
k=l K K

n(T-ak) k]{ n(x-a.) 6q(x) -q(x) I (m. 6a. n (x-a,))} .
Ik K J k k kj^k J

In the usual way define the condition number y of a with respect

to such constrained perturbations to find that

(11.1) Y=

m

jj? • SUD hisR

n (T-a.) k r(T)
lk=l K >
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In the £« case we can write the sup as

2 t r*ee*r ^
aG = sup WwGW

t.1 where G is the operator corresponding to multiplication by

m-i-1 m0-l m.,-1
,) ] (x-a2) 2 ...(x-aK) K

Then as before, in the case of complex perturbations of a complex

polynomial,

where

a 2=e*(G*WG)"1e

~* _ / n-1 n-2 -, \
e* = (a, a, ••• a, 1) .

The case of real perturbations of a real polynomial with real a1 is

similar. If a, is a complex zero of a real polynomial, however,

then one of the other a. = a,, and

aG2 =~(x*x+y*y+{(x*x-y*y)2+4|x*y|2}1/2) ,

where x*x = u*(G*WG)" u, y*y = v*(G*WG)" v, etc., as in the previous

section.
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12. Application of the Idea of General Condition Number

Let

p(x) = (x-a)m(x-a)mq(x)

be a real polynomial with complex a. We have defined yc> the con

dition of a with respect to real changes which maintain conjugate

m-tuple zeros a + 6a and a + 6a. We want to compare y to Yo»

the condition of a with respect to complex changes that maintain

m-tuple zeros a + 6a and a+ 63. 6a and 63 are no longer neces

sarily complex conjugate.

We have seen that

Y„ = a||q(a)| '~'^*x+y*y+̂(x*x-y*y)2+ 4[x*y|2c "" 2m|Im a| |q(a)| ^

where x*x =u*(cm.^*WCm-^^lu, u* =Re(ea*)' etc* cm-l corresP°nds
to (T-o)m"1(T-5)in"1.

To compute Yo» let

p(x) = (x-a) (x-a) q(x) .

Then

Yo =m|J„n •t-W ^ *(GWG)"1e2 m|q(a)| |a-a| a 'a

where G also corresponds to (x-a) (x-a) . Since G = C ,,

Y2 =2m|lma1||q(a)| *******
and

(12.1) 1<X^.
yc
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In contrast to (10.4), our present result is independent of m.

It means that the restriction to only real perturbations does not

affect the condition number by a very large factor compared to a con-

^ dition number that allows complex perturbations that maintain the

multiplicities of the same number of complex zeros.
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13. Condition Number vs. Distance to Submanifold

Now that we have a definition for condition number, we shall show

why ill condition prompts us to look for the nearest polynomial with a

more multiple zero. Consider the polynomial

p(x) = (x-a)mq(x) .

Then the condition of a is

In
v - ."? . _ (m-1) la
Y"TqTSJT |pW(a)| •

Consider the second polynomial

p(x) = (x-a)n(q(x)-q(a)) .

This polynomial has an m+1-tuple zero a. Further if

A = Bp-Pfl = |q(a)|||(x-a)m0 ,

then

(13.1) A = ^ .

That is, if n, m, a, and the norm are regarded as fixed, then ill

condition (large y) always implies that there is a nearby polynomial

with an m+1-tuple zero. Furthermore, the closest such polynomial may

be much closer than the estimate above.

W. Kahan has suggested [17] that ill condition may be explained

by exhibiting the nearest polynomial with a higher order zero. In the

vector space of polynomials with m-tuple zeros, that corresponds to

finding the closest point on the manifold of polynomials with m+1-tuple
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zeros. If that m+1-tuple zero is still ill conditioned, then there

t% must be a nearby polynomial on the submanifold of polynomials with

m+2-tuple zeros.

«?* In the chapters that follow we shall describe ways of finding the

* nearest polynomial with an m-tuple zero.
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CHAPTER III

FINDING THE NEAREST POLYNOMIAL WITH AN m-TUPLE ZERO

1. Introduction

In the first chapter we discussed why we might wish to find the

nearest polynomial with an m-tuple zero. Now we will demonstrate how

to set up the equations to be solved. The problem amounts to a con

strained optimization, and in general we find we must solve a non-

analytic equation in a complex variable.

We first consider the simplest cases of the problem: finding

the nearest real polynomial with an n-tuple zero or with a double zero,

Then we discuss the equations to be solved for the stationary

points which include the nearest complex polynomial with an m-tuple

zero. Finally we explain two kinds of second derivatives which may

be used for deciding which stationary points are actually minima.
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2. The Nearest Polynomial with an n-tuple Zero

We will start by considering the simplest case — that of finding

the nearest polynomial with an n-tuple zero. We suppose that we have

a monic polynomial

P(X) =x" + I p,^
j=l J

and we wish to find another polynomial

qW-(T.c)"-T-*yJ)(.c)^. (Jj-jhSjjt

such that Ilp-qB is a minimum.

Since

p-q = Pj -(J)(-C)J

and depends only on c we can easily find the equation to be solved

for stationary points with respect to a given norm. We will demon

strate the equation for the weighted JU norms as follows:

If we let the raised dot • represent .p^ or ttt— we find
a Rec

(IrOn = f*Wr +r*Wr » 2Re(r*Wf) .
w

3 Im;

For stationarity we require then Re(r*Wr) = 0. Thus

=Rej(Pj-(j)(-C)J)*wj(-(J-)-J-(-C)j-1.(-l).?)

=Re? w1.j(")(-c)J_l(pi-(?)(-c)Jrc
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or

(2.1) f(c) = Iw1.j(5)(-C*)J"l(p1-(l})(-C)d) =0.
j=l J J 3 J

f(c) is thus our first example of a non-analytic function of a

complex variable c To find a zero would in general require solving

a system of two equations in two real variables.

In the most interesting case, however, we would be interested in

real perturbations q-p of a real polynomial p. If c were complex

then q-p could not be real, so we need only consider cases for which

S is real. Then the real function f(c) is

(2.2) f(c) =w-nfo+ncJ+C ?w..j(")(-c)j"2{0?2(-E;)J"2 -p.} .

We write f(c) in this way for comparison with the expression for

f(c):

(2.3) f(c) =w.n2+ I w..j.(")-(-;)j-2{(2j-l)(")?2(-c)j-2- (j-l)p.} .
• j=2 J J J J

Then we may use Newton's method from a suitable starting point to find

a stationary point c. f(c) is evidently a real polynomial of odd

degree 2n- 1 so it does have at least one real zero. We shall see

later that even when n = 2 there may be more than one real zero. We

could in principle find all the zeros of f with a conventional poly

nomial zero finding technique, but we would have to reject most of

those zeros as irrelevant since they would be complex.

In practice it appears that when Newton's method is started from

C = -P-i/n, convergence occurs quickly to a stationary value which
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appears to be a reasonable candidate for a global minimum. This choice

of starting point makes sense because, when we consider

p(x) =(x-cQ)n +eq(T) for infinitesimal perturbations eq, the solu-
1 pl

tion turns out to be c = Zn-z£Qi - - tt •
0 n 1 n

Even in the apparently simple case of finding the nearest n-tuple

zero we encounter most of the characteristic difficulties of the more

complicated cases of m-tuple zeros for m < n. In the next sections

we will explore these cases in detail.
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3. The Nearest Polynomial with a Fixed Double Zero

In the present section we will solve the following problem: given

a real polynomial

P(T) =Tn+ I p.Xn"J ,
j=l3

what is the least real perturbation

q(T) - I q/"3'

such that p+ q has a specified real double zero c? We will measure

perturbations q by the familiar &0 norms IlqD2 = qTWq = Y w.q?.
Z w j=l 3 J

Our problem is to minimize BqO subject to the constraints that

p(x)+q(x) = (t-c) r(x) for some r of degree n-2. Using the nota

tions of the chapter on condition numbers, then, our problem is to find

r to minimize

OP2r-pOw =IIW1/2P2r-W1/2p02 .

Recall that P2 is the operator which multiplies polynomials of

degree n-2 by (x-c) .

The solution of this linear least squares problem is

r-(W^p/w^p .
Then

q=(P2(P2WP2)"1P2W-l)p .

Thus we can solve this problem by the usual least squares method.

But when we do not specify c in advance that method is inapplicable
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since P2 now depends on c Therefore we will look at a dual formula-

,_ "^'on of the problem that can easily be expanded when we allow c to
vary.

%.-4 So now when we minimize llqll2 subject to (p+q)(c) =0 and
r (p+q)'(c) =0 we will apply Lagrange multipliers according to the con

ventional formulation. Namely we will seek the stationary points of

*= J/Vqj>2 +Vp(c)+qW) +MP'(c)+q'(c))
n

. _n-i
so

with respect to changes in q.. We note that q(c) = I q-cn"J'
iMs)) =£n-j and smn.m (n.j)cn-j-i. Thus >'J

3qj 90j

whence

J

«j =̂ Vj +*1(n-J)5n"J-1} . J<n and qn =̂ .
** n

To determine XQ and X1 we will use the constraints:

n-1

(p+q)(0 -P(C)^4) j{^(A^nx^n-JJcfc2)^-1)}.^.
J-l J n

(P+q)'(C) =P'(c)+(4)ni1J7(X0(n-j)C(C2)'1-M+x1(n.j)2(c2)n-j-l)

The above may be written as a linear system of equations:
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j=i wj
^^(n-JjC?2)"-0'"1
j=lwj

YA-ln-jftc2)"-'-1
j=l j

f '

xo
= 2

PU)

xl p'U)
V . >

cYwL(n-J)(C2)n-J-1

If we write 0.= 7 ^-(n-j)k(c2)n~J then
K j=l WJ

Ao

and

"Wl

a2 -5a1

1-?°-, C2aQJ
' P(C) '

.P'(C) .

n-j
_ -1 Cq, =^~— 2^(a2-(n-j)a1)p(c) +c(-a1+(n-j)a0)p'(c)} .
j o0oz-o}

Then

(3.1) q(x) --*-! I-L((a2-(n-j)a1)p(c)+c(-a1+(n-j)a0)p'(c)}
a,-a«a0j=l j ~ „• « 4'1 U0W2 cn-JTn-j

is the smallest perturbation moving p(x) to the manifold of polyno

mials having double zeros at £. The distance may be calculated to be

DqOw =
'cj2(pU))2--2o1p(?)(5p 'U)) +a0(CP U))2'

k W •? .

1/2

The foregoing calculation is invalid when C = 0. In that case

«n = -Pn' Vl =-pn-T and V °' !<J< n'2-

""5"Vl(Pn-l)2+wn(Pn)2-

72

*



4. The Nearest Polynomial with a Double Zero

After the complicated expressions of the previous section, one

would expect worse from the following problem: given real p, find

real q such that p+q has a real double zero c not fixed in

advance, so that c may vary. The final expressions to be derived

are surprisingly simple, however.

We could solve this problem by differentiating with respect to c
2

the final expression for flqO of the previous section. It will be

more enlightening, however, to make a fresh start. The direct linear

least squares solution method won't work now, and we must solve the

problem with Lagrange multipliers. Thus we seek the stationary points

of

n 9
v= I WjCqjr +X0(p+q)(c) +X](p+q)'(c)

with respect to variations in q. and c. Then as before
j

0=W= 2wjqj+ xoc""J +h("-De""3"1 .
J

but now, in addition,

0=|~= XQ(p4<|),(t)+X1(p+q)"U) .

We exploit the constraint (p+q)'(c) =0 to see that

0=A^p+qV'U) .

Remarkably enough, either one of the Lagrange multipliers is identi

cally zero or else the unknown c is not only a double but a triple

zero of p+ q. It turns out that stationary points with (p+q)"(c) = 0

73



and A. f 0 are almost never minima; see section 9. Accepting that

assertion for the time being, assume X, = 0. Then

a = -^L X cn"jqj 2w. A(T

From the constraint (p+q)(c) =0, we find

pfc>-Klir<n'J-<n'J
j i j

so

and

0 aQ

q. - -P(C) J, C"-J
J °0 wj

a0 j=l wj

We still don't know %, but we can exploit the constraint

(P+q)'(C) = 0 to find

and

-P'(C) = \ q^n-j)^'-1 =d2f£l.j (a=i)cn-J+n-J-l
j-l J °0 wi

P(C) an n , - .

j=l Wj

is the equation to be solved for c. Apparently it could be written

as a polynomial equation of degree 3n-2. We will devote several sec

tions to discussions of ways to solve this equation. Let it suffice
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to say that when p is real, the equation always has a solution

C= 0, and when n> 2 is even and pn-1 ^ 0 it always has at least

one other real solution as well.

Once a solution c has been found, the corresponding distance is

w ^ ai °

There are usually several real solutions c and, surprisingly, most

of them are local minima, rather than maxima or saddle points. It

turns out that the maxima are usually the stationary points with

(p+q)"(c) = 0. A difficult, unsolved problem is to find the c

corresponding to a global minimum of llqll without having to find al]_

the solutions c.
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5. The Nearest Polynomial with a Fixed m-tuple Zero

Using the notation of Chapter I we will now show how to find the

nearest polynomial with an m-tuple zero c. We wish to minimize

2 ~
llqll = q*Wq subject to Ap +Aq = 0.

w

We may find the linear least squares solution directly. The

1/2 1/2 1/2-vector W ' q of least Euclidean norm solving (AW ' )(W ' q) = -Ap
1/2 -1/2 + " +

is just (W ' q) = (AW" ' )T(-Ap), where denotes pseudo inverse.

Since A has more columns than rows, and the rows are linearly

independent,

(AW"1/2)f =W^VtAVrV)"1 ,

whence

(5.1) q=-W'1A*(AW"1A*)"1Ap .

Consequently

•1**1-1^1/2DqDw = ((Ap)*(AVTA*r,Ap)

To compare this with our earlier results for real double zeros, we let

m = 2 and recall that when m = 2,

so

AW"1A* =

A =

e*D

e*W_1e e*W"Ve )

e*DW"1e e*DW'1D*e

We can derive expressions for the matrix elements in terms of the
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*kE Z^Hc2ln-J
K j=i wj

Notice that this is a redefinition of the a. replacing the previous
n / .xk 2 . K

definition J v"J; (c ) J which is not suitable for complex c.
j=l j

Then

Therefore

and

w

„*n-le*W e= aQ

e*DW"1e =̂ =(e*W"Ve)* ,
e*DW"1D*e =-1-^a

C|
2W2

(AW'V)"1 ii

a0a2"al

7J7-2
-1

-1

?°1

_cT2lp(c)l2~2a1Re(p*(c)cp,(c))^a0lcp,(c)l2 1/2
a0a2 "al

Apparently the major difference between the previous real case and the

present complex case is that expressions like (e) have been replaced

by expressions like |e| . The effect of this change will be that the

equations to be solved for c* when it is not fixed in advance, will

no longer be analytic.
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6. The Nearest Polynomial with an m-tuple Zero, No Longer Fixed

Our problem appears similar to that in a previous section: mini

mize HqOw subject to Ap +Aq = 0. The difference is that the c on

which A and A depend is no longer fixed, and a linear least squares

theory is no longer applicable. As we have just seen, if we do hold c

fixed, we can write q as a non-analytic function of c. Therefore

we can find a directional derivative of q if we think of c as a

function of areal parameter 6: c=C0 +6c. Then 3§-= C and if

v = q*Wq

then

^ =v=q*Wq+q*Wq =2Re (q*Wq)

since W is constant. At a stationary point of v we would require

v = 0 for all q, including that particular one which makes q*Wq

real. From that case we conclude that

0 = q*Wq

is the condition for stationarity.

But q is constrained in the values it may take. When we dif

ferentiate that constraint we find Ap +Aq+ Aq = 0. Since

(e*) =(•••(cn"J)"0 = (•••(n-j)cn"J*~1c--.) =e*Dc, we conclude that
A = ADc. Therefore the constraint on q and c is (ADp +ADq)c +Aq = 0.

The idea of constrained optimization is that every pair (q,c)

which satisfies the constraint should also satisfy the stationarity

property, i.e., in the notation of the Lagrange multiplier theorem

(Appendix 6),

Bx = 0 => y*x= 0 ,
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where

and

x =

r • \

q

I c J

B = (A jADp +ADq)

y* = (q*W j0) .

The Lagrange multiplier theorem just cited assures us that y may

be written y = B*£ for some vector I of Lagrange multipliers. For

convenience we will write

Then

(6.1)
'Wq'

> 0 .

I =

^*m-l

A*

{ (ADp+ADq)* J

But since Ap +Aq = 0 is the constraint, (ADp +ADq)n = 0 °>

((P+q) (c))*ilm-1 =0 and we are therefore faced with the two possi

bilities we saw in the m = 2 case: either the last Lagrange multi

plier is zero, or the zero c has one higher multiplicity than we had

planned. By examining the second derivative v in a subsequent sec

tion we will find that stationary points with extra multiplicity

corresponding to minima of v always have £ , = 0. Therefore we may

always assume that i ^=0 at interesting stationary points.

Continuing we find Wq =An so q=W-1An. Then the constraint

implies (AW'Vh =-Ap. Although AW~V is Hermitian positive
definite and therefore invertible, we would find that I , would not

m-l

come out to be zero except for certain special c's. These special
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values of c must correspond to the stationary points of v. To find

out what they are, we write ^ = ( n ) and

,-1Ap + (AW"'A*)( * ) = 0

or

(Ap AW_1A*Z)( |)=0.
Here

f 1 0 1

Z =

and it has the effect of removing the last column of AW-1A*. The

resulting homogeneous equation above obviously has a nontrivial solu

tion so the matrix is singular. Therefore

(6.2) -10 = det(Ap iAW"'A*Z)

is the equation to be solved to find the c's corresponding to interest

ing stationary points of v.

To see what kind of equation it is, consider the case m = 2:

AW"V =
e*W"1e e*W"Ve '

ke*DW"1e e*DW"Ve
so

0 = det

which we may write

' P(C)

. p'U)

e*W"1e

e*DW"]e
«̂ TP(c)-a0p'(c) ,
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(6.3) ;p'.(?) =jsi WJ
I^Ic2!^*

j=l wj

This equation is evidently not that of an analytic function. We shall

return to it later. Supposing for now that we have found an acceptable

solution c for the equation above; we can then evaluate £ from

AW'Vzfc =-Ap

in any of a variety of ways; the obvious way is to solve

(Z*AW"Vz)£ =-Z*Ap .

This equation is the same as

1/v

aw A**, = -Ap

where A is one dimension smaller than A, i.e., A = *nm-l
(e*D .

Then q=W"1*** and finally

w? (£*AW"1A*£)1/2 =((^Wm^A*)"1^))172 .

For the case m = 2 that we considered previously,

AW-1A* =aQ ,
£=-p(C)/aQ ,

(6.4) q=(-pfcJ/a^W'^ ,

and Oqflw = |p(c)|/^ .
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7. Computational Details: The Equation to Solve for the

Nearest m-tuple Zero

As we have seen, in order to find the nearest polynomial with a

double zero, we must solve the equation

where

h(x) =o^pd:) -cx0tp'(t) =0

0 = y(n-J)k,T2,n-j
k"fy wj ' '

We will see that there are various ways of solving this equation for

its zeros c when t and p are real, but for the more general com

plex case there do not seen to be many methods that work. We will

usually solve this equation by means of Newton's method applied to two

real equations in two real unknowns. In this section we will provide

the expressions necessary for Newton's method in the case of an m-tuple

zero.

The equation we have to solve is in this form:

0=det(Ap jAW'Vz)

or, written out,

0 =

P(C)

P'(C)

e*W"1e ••• e*W'1(Dm"2)*e

p(m-l)(c) e*Dm-lw-le ... e*[f-V1 (Dm-2)*e

By multiplying rows and columns by powers of z. and c* we can
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rewrite the determinant without changing its value as

0 =

P(C)

CP'(C)

cm-lp[m-l](c)

'00

r10

m-1,0

r0,m-2

...

m-1,m-2

= f(c)

In this form it is obvious that the expansion in terms of minors from

the first column will yield

f(C) =A0p(c)-41(?p,(c)) +--- +(-l)n,"1V1(?m"1PCn,"1](C))
T P(C)

m-1

='VV ^""'Vi'
cp'(c)

(?m:ip[,n-1](s) J
= v*u .

Thus f may be expressed as a scalar product of (1) a vector u of

analytic functions of c and (2) a vector v of functions depending

only on ex.. and hence only on |c2|. In fact the A. are realu j

analytic functions of the real variable |c |.

The two real equations which we shall solve by Newton's method are

Re f = 0 and Im f = 0, that is,

(7.1)

Now

3Ref

3 Rec

(7.2a)

v*Reu = 0 ,

v* Im u = 0 .

=(^)*Reu +v*(f§^) =(v')*4^Ke u+v*Reu
3Rec' '^M ' ' v3Rec' w ' 3Re c"

2RecRe((v')*u) + Re(v*u') .
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Similarly

(7.2b)

3Ref

3 Imc

3 Imf

3 Rec

3 Imf

3 Imc

= 2 Imc Re((v')*u) - Im(v*u') ,

= 2Rec Im((v')*u) + Im(v*u') ,

= 2 Imc Im((v')*u) + Re(v*u«) .

In general v* is a vector whose components are functions of the a..
*j

which can in turn be written as functions of the a. defined earlier.

Then a'=-Uk+1.
It I

For the case m = 2 we have v* = (a,-^) and u = J?l/i\ .

Then

and

(V)*u =~L{a?p(c)-a1cp,(c)}
M

v*u' ={^p'tci-a^Cp'tcJ-p^C))}

are the quantities required in the expressions for the partial deriva

tives. Those partial derivatives enable us to compute the Jacobian

matrix required for Newton's method in two dimensions.

The case for m = 3 is more complicated. In accordance with the

previous formulation,

Aft =

A, =

Ao =

a10 all

a20 a21

= a-jtoyo^) - (ag-a^ag

a0a3"a0a2"ala2+al *

a0a2"al •

For simplicity we will make a slight change:

ala3"a2 »
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f 1 0 Ol

0 1 0

0 -1 1

f 1 0 0 1

0 1 0

0 1 1

(7.3) v*u = V

={°f3-°lMo0o3-o^2).o0o2-o2}) cp'(c)
ICP'(C)+CV(C) .

= v*u .

f P(C)

With v* and u thus redefined,

(v1)*
1 2

T2IV4"°ZaZ'~(V4"a2)'a0a3"ala2^ "
Cl

f p(?)

{ ?2p'" +3cp"+p' J

1 /* ^ * \

|C
(7.4)

u' =

2 _.It may be observed that expressions like o^o^-cu involving subtrac

tion of positive quantities will result in cancellation. Therefore we

will rewrite those expressions. Let a typical term be

Then

S =

a b c d

Cin^|c2|n-JHIln^kL|;2|n-k)

-G^#lc2ln-J)(I^|c2ln-k)
J K

I I^wLU2r-j|c2|n"k{(n-j)a(n-k)b-(n-j)c(n-k)d>
i=l k=lwjwk

This double sum has an entry for each position in an n by n square

array, except for the diagonal entries which vanish. Therefore, we

may add the i,j and j,i terms together and count only the terms
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with k > j:

a- U2lV^-U2ln-j-1[ l J-lc2ln-k{.}] ,
j=l wj k=j+l wk

{•> =(n-j)a(n-k)b+(n-j)b(n-k)a-(n-j)c(n-k)d-(n-j)d(n-k)c

/s i 2i
If we consider A to be a function of a real variable |c | then we

may define A' as —^-. Then
3|C2|

S'-Vff-U2!""^^ I wLU2|n"k(n-j+n-k){.}] .
j=l wj k=j+l wk

The expression {•} in the equations above has the following values:

for £0, (n-j)(n-k)(k-j)2 ;
for Sr (n-k+n-j)(k-j)2 ;
for 82> (k-j)2

We may use these expressions for 2 and &' to compute v and

v'. Using the expressions for u (7.3) and u' (7.4) we may solve

the equations for the nearest polynomial with a triple zero (7.1). The

partial derivatives (7.2) are used by Newton's method.
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8. The Second Derivative of tlgD

We have just seen which equation must be solved to find the sta

tionary points of llqfl. Some of these points are local minima; others

are maxima or saddle points. To investigate the nature of the sta

tionary points we now develop expressions for directional second

2
derivatives of JlqOw.

Suppose that c = C0 +6C "f°r e real. Let the function to be

minimized be v = q*Wq. As we have seen,

—• = v = 2Re (q*Wq) = 2Re U*Aq) .

But the constraint Ap +Aq = 0 implies Aq = -(ADp+ADq)c so

v = -2Re (£*(ADp +ADq)c). Therefore

v = -2ReU*(ADp +ADq)c +£*(ADp +ADq)c +Jl*ADqc} .

Differentiating Wq = A*& we find

•. .. •

Wq = A*A + A*£ = D*A*JIC* + A**, .

Differentiating (AW A*H = -Ap reveals that

Aw'Va +AW^An +AifVi =-Ap

or

ADW"1Anc +AW"1D*Anc*+AW"1A*i =-ADpc

so

£=- (AW"1A*)"1{ADpc +ADW"1A*£C+AW"1D*A*ilc*}

and

q=W"1D*A*£c* +W"1A*i
Then

v»Re((j>c2)+^|C|2 ,

87



where

Thus

(8.1)

4q*WDW"1A*(AW"1A*)"1 (ADp +ADq) -2**(AD2p +AD2q) ,
-2q*WDW"Vwq + 2(ADp +ADq)*(AW"1A*)"1 (ADp +ADq)

+ 2q*WDW"1A*(AW"V)"1AW"1D*Wq .

v = (Rec Imc)
' i|> +Re<j) -Im<|>

-Im<() ip - Re <J>

' Re C '

k Im c ,

The eigenvalues of the matrix are ij>± |<J>|. If ij> > |<|>| then v

is concave upward at c. If |4>| < -^ then v is concave downward.

Other possibilities correspond to more complicated geometries. For

instance if ty _> |<j>| at a stationary point, the point may be a minimum

or a saddle point, depending on the third derivative.

To compute the components comprising v note that

and

n+l-i
,-1

(n-k)!w
k+1(AW-D*Wq). - ^ (n-k)(w.k,H1^q|cf1c

q*WDW VWq = \ (n-j)' -J±J—|q |z .
j=l Wj J+l

.n-k-i+1

Special Cases for v

There are two cases in which the previous expression for v may

be simplified. The simplifications will become evident after we prove

the

Lemma. q*WDW"Vwq =q*WDW"1A*(AW"1A*)"1AW'1D*Wq if and only if

m = n or l , = 0.
m-l
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Proof. (1) If m * n then A is square and invertible so

(AW'V)"1 = (A*)"1!^"1.

(2) If l ^=0 then A*v =D*A*£ has a unique solution

vQ =0, v] =£0,...,vm-1 =£m-2. Also x(v) =(A*v-D*An)*W1 (A*v-D*A*£)
= 0. That means that the linear least squares problem

W"1/2A*u =W"1/2D*A*£ =W~1/2D*Wq

has a solution u for which the residual x(u) must vanish; otherwise

v would be a better solution. In fact, since the rows of A are

linearly independent, u = v. But there is another expression for uj

u=(AW"1A*)"1AW"1D*Wq .

Then x(u) = 0 implies the desired result.

(3) Assume the hypothesis and that m < n; our goal is to show

that Ji 1=0. If we write B=W"1/2A* then the hypothesis is

(8.2) £*ADW1/2(l-BB+)W"1/2D*An =0.

The theory of the pseudo-inverse implies that 1-BB' is positive semi-

definite for any B. Therefore

(1 -BB+)W"1/2D*A*£ =0

and D*An =A*v for v=B+W"1/2D*A*£. Since m<n the rows of

AD are linearly independent so the equation &*AD = v*A has a unique

solution v. By considering components we find that vn = 0 and

therefore that i^ = vk+1, k= 0,1,...,m-2, and finally that

*m-l = °' as claimed- Q.E.D.

89



The next simplification lemma is an easy consequence of the

foregoing.

with

Lemma. If m =

v

ty = 2(ADp +ADq)*(AW"lA*)",(SDp +ADq) .

n or £ , = 0, then
m-l

Re(<j>C2)+<H£|2
2**(AD2p +AD2q) ,

,-l^x-l/Ttfc.

Proof. The assertion about ty is a direct corollary of the

previous lemma. To prove the assertion about <J> requires showing that

£*(AD2p+AD2q) =q*WDW"1A*(AW"1A*)"1 (ADp+ADq).
(1) If m = n then we must show that

£* 2(p+q)(n)(C) =JMDA"1 (ADp +ADq)
or

' 0^
-1

V-2 = **ADA y » y =

-1 n 1
But A" y = x where x represents (t-c) /(n-1)!.

ADx =

' 0 ^

0
n!

0

so £*ADx = A « as we wished to show.
m-£

Then

(2) If £ , = 0 we must show that

£*.2(p+q)(m)(C) =q*WDW"1A*(AW"1A*)"1y(p+q)(m)(c)

or fc* g = u*y for the u* of the previous lemma. The right hand

side further reduces to u* , = i* 2 as we sought to prove.
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9. The Last Lagrange Multiplier is Zero at a Minimum

In a previous section we saw that there are two kinds of stationary

points for the norm of the distance to the nearest polynomial with an

m-tuple zero. Our object is to prove what we asserted then:

Proposition. Let c represent a stationary point for llqfl that

is locally minimal with respect to complex perturbations. Then the

last Lagrange multiplier I , = 0,

Proof. We know that all stationary points for Bqfl have either

Vl =° or (P+q)WU) =0. Therefore we must show that if
(p+q)W(c) =0 and llqll is locally minimal then I =0. To do
this we will examine the expression for the second derivative obtained

in the previous sections.

The hypothesis, that SBp +ADq = 0, implies that

4> =-2A*_1(p+q)(m+1)(c)
and

¥=- 2q*WD{W~1 -W"1A*(AW"1A*)"1AW"1}D*Wq .

A minimum requires that ty >_ |<j>| or

- q*WDW"1{W-A*(AW"1A*)"1A}W~1D*Wq >|£ 11 (p+q)(m+1)(c) |

The quantity in {•} on the left is 1-BBf where B=W"1/2A*.

1-BB is positive semidefinfte for any B, so the left hand side

must be < 0. Since the right hand side is > 0, both sides are exactly
0, so

q*WDW~Vwq =q*WDW'1A*(AW"1A*)"1AW'1D*Wq
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and

^.•,(p+q)(n,+1)(c) =0

The first lemma of the last section tells us consequently that w

either £, = 0, as claimed, or m = n. But if m = n, then

(p+q)W(c) =n! f 0,

contrary to the hypothesis that ADp + ADq = 0. This concludes the

proof as originally worked out by W. Kahan [19].

Thus to find the nearest polynomial with a double zero it is only

necessary to solve the simpler equations resulting from the assumption

that the last Lagrange multiplier vanishes. In the case of a real poly^-

nomial, of course, it may happen that the nearest polynomial with a

double zero is a complex polynomial with a complex double zero.

The situation is much more complicated if given a real polynomial,

we see the nearest real polynomial with a double zero. Then three

possibilities may arise: the nearest such polynomial may have a real

double zero, a real triple zero, or a conjugate pair of complex double

zeros. The last case is treated in the next chapter. That the second c

case may arise is illustrated by the following.

r

Example. Consider the real cubic polynomial whose roots are 1,0

and .224± .174i. Let the weights in the usual norm be 1, 1000, and

10000. Then the nearest real polynomial with a double zero is the

same as the nearest real polynomial with a triple zero, which is at

C = .4235... . The second Lagrange multiplier does not vanish at

this c.



This example does not,invalidate the proposition proved earlier

in this section. If complex perturbations are allowed, then when

double zeros are sought, c = .4235 is a saddle point rather than a

minimum. The nearest polynomials with double zeros turn out to have

C = .4245± .0993i, and this c may be found by allowing the second

Lagrange multiplier to vanish.

The example above was found by accident while searching for some

thing else; see Chapter VI. As a practical matter it seems likely that

such examples are quite rare, especially when normal weights are used.

In all the other examples we have encountered, it was sufficient to find

all the closest polynomials with double zeros and the closest with a

complex conjugate pair of double zeros.
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10. Another Kind of Second Derivative

In the previous sections we have discussed a directional second

derivative for v = q*Wq which we compute by expressing v as a func

tion of c» the m-tuple zero. Another approach, which we could use

numerically as a qualitative check on the previous method, is to compute

a constrained Hessian matrix of partial second derivatives. In the

next two sections we will define this idea and explain how such a

matrix may be computed. Then the character of a stationary point may

be construed from the signs of the eigenvalues of the constrained

Hessian.

Let f(x) = x*Hx be a scalar function of the vector x, Then

how does f vary when x is constrained to the nullspace of a given

linear operator L*? L* is m by n with m < n.

We could choose a transformation P into a subspace of dimension

n-m so that the space P*x satisfies the constraint. Then P*HP

would be the constrained Hessian and its signature would determine the

nature of the stationary point.

As far as computational details go, we could let P be composed

of columns from the QR factorization of L; see Figure III.1. P of

course is not unique. We require L to be of full rank m; that is,

none of the constraints are redundant. Then R is invertible and

L*x = R*Q*x = R*H*x, so L*x = 0 o H*x = 0. Thus the columns of P

span the space of x satisfying the constraint.

The QR factorization of a real rectangular matrix may be computed

using the algorithm decompose in the Wilkinson-Reinsch compendium [35,

pp. 113-114], Q will be computed as a product of m orthogonal

reflector matrices (I-Buu*). As each is computed, the corresponding
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Figure III.l. The QR factorization of L.
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similarity may be performed stepwise on H. If a represents a column

of H and b* a row, then

(I - 3uu*)a = a- 3(u*a)u ,

b*(I-3uu*) = b*-$(b*u)u* .
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11. Computational Details: A Constrained Hessian for v

We may apply the technique of the previous section to compute a

Hessian matrix for v = q*Wq subject to the constraint Ap +Aq = 0.

The constrained function to be minimized may be written

r = q*Wq-£*(Ap + Aq)

with the Lagrange multipliers £* treated as independent of the varia*-

bles q and c. Unfortunately the complex variables q appear in the

equation non-analytically while the complex variable c appears

analytically in A and A. Therefore we will divide q, £*, and c

into real and imaginary parts to have two sets of constraints:

Re(Ap +Aq) = 0

and Im(Ap + Aq) = 0 .

Writing out the resulting expression for r in scalar form,

r = I Wj{(Re qj)2 +(Im q.)2} +J Re{Xjp+q)(k)(c)}

where X. = p. - iu.. Then

n 9o m-1
I w.{(Re q.r + (Im q.n + £ ._,,,

j=l J J J k=0 K

kk Hk ,pk'

ar m"l • ujjjL-- 2WjReq. +kIoRe(Ak(n,j,kkn-J-k) ,
»r ^l * LrT%= 2wJImqj - kI0Im^k(".J.k)cn-J-k) ,

FRT?= VRe(xk(P+q)(k+1)(c)) ,

afc" "JoIm(Xk(p+q)(k+1)(c)] '
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where (n,j,k) = (n-j)!/(n-j-k)!. The second derivatives are

32r
OReqj)'

2
3 r

(3Rec)^
2

3*r
9 Re cIm c

2
a r

a2r
= 2w, =j Oimqj)2 *

=I Re(X,(p+q)(k+2)(c)) - -

=- I Im(Xk(p+q)(k+2)(c)) .

32F

32r
(3 Imc)

32r
3 Re q. 3 Im q. 3Req. 3Req.

i ^J ni J
(ii'j) = 3 Imq. 3 Imq. (1*J) • 0 ,

32r
3 Re q. 3 Re C

2
3*r

3 Req. 3 Imc
j

=I(n,j,k+l)Re(Xkcn-j-k-K
) = -

2
3 r

3 Imq. 3 Imc '
j

-I(n,j,k+l)Im(Xk5"-J-k-1) =3Imq3I3Re5.
J

With these expressions for partial second derivatives we may con

struct the Hessian matrix H of the previous section. Then the second

order change in r, for a small change

6x =

f Re «q]
Im 6q

Re c

Im c t

will be 6x H6x.

The constraints on 6x should appear in the matrix L. Those

constraints may be found by differentiating Re(Ap + Aq) and

Im(Ap + Aq). Then
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x

3 Re(Ap+Ag) a R ,. . = 3 Im(Ap+Aq)
3Req. ™V™jt a Im q

j j

3 Im(Ap+Aq) = . ,. , = 3 Re(Ap+Aq)
3Re q. inuau.; 3 im q »

J j

where u. is the j'th column of the identity matrix. Also

3Rl{tTq) - Re(ADP+ADq) =3My) ,

3̂ feAq) =IotiBp+ADq) =-3Rg^' .

Then the matrix L will be 2n + 2 by 2m and the matrix H will be

2n+ 2 by 2n+ 2.

It was necessary to resort to real arithmetic to deal with the

non-analytic nature of the function r. If, however, we happen to be

interested only in real changes in real q and c9 then the dimen

sions corresponding to imaginary parts may be omitted, with considerable

saving in computational effort to determine the signature of the con

strained H.
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CHAPTER IV

FINDING THE NEAREST REAL POLYNOMIAL

WITH A COMPLEX CONJUGATE PAIR OF m-TUPLE ZEROS

1. Introduction

If we attempt to find the nearest polynomial with an m-tuple zero

using the methods of the previous chapter, we sometimes find that one

of the stationary points of IIqO corresponds to a complex m-tuple

zero c» even if the starting polynomial p is real. Then q turns

out to be complex. It might be more reasonable to restrict q to be

real if p is real. Then we would find that the nearest real poly

nomial might have a real m-tuple zero, a real m+1-tuple zero, or a

conjugate pair of complex m-tuple zeros.

In the present chapter we will develop the equations to be solved

to find the nearest polynomial with a complex conjugate pair of m-tuple

zeros. In that development we will take care to divide symbolically

by Im c to eliminate real solutions c that we usually do not want.

Then we will develop an expression for the second derivative and show

that we may assume that the last Lagrange multiplier vanishes, just as

in the previous chapter.
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2. The Nearest Polynomial with a Complex Conjugate Pair

of m-tuple Zeros

Our goal is to minimize v = q*Wq subject to Ap +Aq = 0 and

Ap +Aq = 0. We assume that the polynomial p is real, but the m-tuple

zeros c and c are complex with Im c^O. At first we will not

require q or W to be real.

The second constraint may be written Ap + Aq = 0 and the con

straints together imply A Im(q) = 0, since p is real.

As in the previous chapter let c vary in a specified direction

C so c=Cq+6C» B real, and thus the directional derivative ^
is c. Then v = 2 Re(q*Wq).

The result of differentiating the constraints is

and

(ADp +ADq)c + Aq = 0

(ADp +ADq)c + Aq = 0

Thus if the vector of infinitesimal changes is

x =

f Re q

Im
•

q

Re
•

c

Im
•

c J

then its constraint is Cx = 0, where

C =

Re A -Im A Re(ADp+ADq) -Im(ADp+ADq) '

Im A Re A Im(ADp+ADq) Re(ADp+ADq)

Re A Im A Re(ADp+ADq) -Im(ADp+ADq)

Im A -Re A Im(ADp+ADq) Re(ADp+ADq)
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Then at a point where v is stationary with respect to changes in

q and c satisfying the constraint, Cx = 0 implies y*x = 0 where

y* = ( Re(q*W) -Im(q*W) 0 0 ) ,

The notation x, y, and C has been chosen to conform to that of the

Lagrange multiplier theorem of Appendix 6, That theorem states that

y* = ( r* s* u* v* )C

for a vector of Lagrange multipliers (r* s* u* v*) of length 4m.

Therefore the components of y* are

(2.1) Re(q*W) = (r+u)*Re A + (s+v)*Im A ,

(2.2) -Im(q*W) = (s-v)*Re A + (u-r)*Im A ,

0 = r* Rea, + s* Iman + u* Rea0 + v* Ima0 ,
(2.3) ] ] 2 2

0 = - r* Ima, + s* Re a, - u* Ima« + v* Re a« ,

where a, = ADp +ADq and a2 = ADp +ADq.

Recall the formula q*W = £*A from the previous chapter. The

analogous formula now is

(2.4) q*W = £*ReA + £*ImA ,

where

£if = (r+u)* + i(s-v)* ,

*2 = (s+v)* + i(u-r)* .
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Then substituting into the constraints yields

Ap +AW"1 (Re A)T£., +AW'^Im A)T£2 =0,
(2.5)

Ap +AW"1 (Re A)1^ +AW'^Im A)T£2 =0.

This amounts to 4m real equations in 4m +2 real unknowns, counting

Re c and Im c. As in the previous chapter, there must be a way of

using (2.3) to eliminate some of the unknowns in (2.4).

Instead of pursuing this most general case, let us digress briefly

to see what simplifying assumptions might be helpful.

Recall that for a Hermitian W,

q*Wq =(Re q)T(Re W)(Re q) +(Im q)T(Re W)(Im q)
- 2(Re q)T(Im W)(Im q) .

If q is real, then q*Wq is independent of Im W so W might as

well be taken to be real. From (2.2) and A(Im q) = 0, moreover, we

deduce that

- Im(q*W)(Im q) = 0

=(Im q)T(Re W)(Im q) -(Re q)T(Im W)(Im q) .

Consequently if W is real, then Im q = 0.

Therefore the simplifying assumption we will make is that W and

q are real. Of course, real solutions q are the ones most likely to

be of interest when p is real.

Returning to (2.2), with these assumptions we find

0 = (s-v)*Re A + (u-r)*Im A

s-v

u-r
B



where

f Re A 1
B =

Im A

We shall see in a subsequent section that the rows of B are linearly

independent. Therefore s = v and u = r, and (2.3) becomes

(2.6) £*(ADp +ADq) = 0

for £* = 2(r*-is*). (2.4) becomes

(2.7) q*W = Re(£*A) .

(2.6) and (2.7) are the equations for stationarity of real q and

complex c with respect to complex variations in q and c. (2.5)

becomes

(2.8) Ap +AW^RefAn) =0 ,

which is only 2m real equations in 2m+2 real unknowns.

As in Chapter III we might hope to apply (2.6), which implies

that either the last Lagrange multiplier vanishes or else the multi

plicity of c is m+ 1. In a subsequent section we shall see that we

may reduce the dimension of (2.8) by one because the last Lagrange

multiplier always vanishes at stationary points which are local minima.

Consequently we may assume the last Lagrange multiplier vanishes

when solving (2.8), so the problem becomes one of solving 2m real

equations in 2m real unknowns. The equations are linear in the 2m-2

remaining Lagrange multipliers and very non-linear in Re c and Im c.

So as before we should eliminate the linear variables algebraically

and solve for c numerically. If c were held fixed temporarily and
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symbolic Gaussian elimination were attempted on the remaining system

of 2m linear equations in 2m-2 unknowns, one would obtain two

expressions involving Re c and Im c which would be required to

vanish. These last two expressions would be set to zero and solved

numerically for Re c and Im C.

We will leave the discussion of arbitrary m now and concentrate

on the most interesting case, when m = 2. In this case (2.8)

becomes much simpler. Then

£ =
' -X '

. 0 .

and

so

'(Re e*)W'1(Re e

k(Im e*)W"1(Re e

'(Re e*D)W-1(Re e

(Im e*D)W"1(Re e

r o* ^

A =
I e*D J

-(Re e*)W"](Im e) '

-(Im e*)W"1(Im e)

-(Re e*D)W"1(Im e) '

-(Im e*D)W"1(Im e) t

Re X

Im X

f ReX )

Im X

Written out in detail for the usual W:

I(Re cn"j)2/w, J(Re tn"J)(Imcn"JVW1l
.I(Re Cn"J')(Im c""1)^ J(I« Cn"j)2/Wj

'I(n-j)(Re Cn"j)2/Wj I(n-j)(Re cn-j)(Im c""0')^.
kI(n-j)(Re ;n-J')(Im cn"J)/w., £(n-J)(Ia c1

fRe CP'(C) ]

'Re p(c) '

kIm p(c) 4

' Re p'(c) '

kIm p'(c) t

[ Re X ]

Im X

' Re p(c)

.Im p(e) .

"n-J)S
Re X

Im X

Im CP'(c) .

105



Write these last equations as

AQA = xQ and A,A = x,

for matrices AQ, A,, and vectors A, xQ, and x,. We could solve

the equation

F(C) =Aq1xq-A"1x1 =0,
or

(2.9) F(c) =D^+Xq-BqA^ =0,

where f denotes the adjoint and D. denotes the determinant det(A.);

e.g.

a"1 =(6 rVM0 KU0} M0 •

In the equation P(c) = 0, we have avoided explicit inverses at

the cost of introducing extraneous solutions, by multiplying F by

DqD^. The equation F(c) =0 may be solved trivially by any real c»

since then the D vanish. Since only the complex solutions matter,

the real solutions will just be a nuisance that will distract numerical

procedures. Therefore we will discuss divided differences in the next

sedtion to see whether we can avoid the numerical difficulties.
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3. Divided Differences for the Equations

for a Complex Conjugate Double Zero

The equation of the previous section

F(C) =DlAjx0-60a}Xi =0

has every real c among its solutions. The reason for this state of

affairs is that F, the equation we really wished to solve, was multi

plied by DQ6,. Now

D0 =<I(Re ^V/WjHKlm ?n-J')2/Wj}
-{I(Re Cn-j)(lm ?n-j)/w.}2 .

But Im c divides Im c for any k> 0, as may be simply verified

by induction. Therefore we could write

D0 =(Im c)2[{RRe ^"^^^{Ka^.)2^.}-{^Re Cn"d)Vj'wJ}]
where the standard divided difference symbol A means

Tm T

Ak E im c =a Po1ynomial in Im c and Re c .

We could similarly factor out (Imc)2 from Dr It turns out, more
over, that for real polynomials p, Im c divides Im(p(c)) and

Im(cp'(c)). We may denote these divided differences by A and A
i P CP

Then AIxQ is

f(Im c)2 0 "

0 Im c , ^-I(A .Recn"J)/w I(Recn"j)2/w.
f Re P(C) 1

A_

In all, then, (Im c) divides the upper element of the vector D,Atx

and (Im c) divides the lower element. Have we found all possible
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Im c factors? If we have, the equation v/ill no longer be solved by

every real c.

To answer the question, let c approach a real value. Then as

Im c -*" 0,

1c - *<"> -^' Ap-^P(C)-P'(0

Acpl—^(cp»(c)) =cp"(e) +p'(e)

Then when we substitute this information in the equation

(3.1) F(C) =
'^(cr f(Im C)'

(Im c)'
F(C) ,

we find that, for instance,

C4MO o 90' =(cy1a3-app(c)-(a0a3-a1a2)cp,(c) +(a0a2-ap(cp"(c)+P,(c))

The right hand side is just the equation (III.7.1) to be solved to

find the nearest polynomial with a real triple zero c.

Naively we might expect that the limiting case of equation (3.1),

an equation for two complex conjugate double zeros, would look like

the equation for one real quadruple zero, rather than a triple zero.

That such is not the case shows how unreliable intuition can be when

applied to these problems!

We may safely conclude, however, that all factors of Im c have

been removed from (3.1). Ideally, the equation for a real triple zero

should also be removed by algebraic means. That removal is such a

formidable prospect that it seems more attractive just to numerically
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prevent convergence to those real c's. Therefore we will solve

F(c) =0 with F defined as in (3.1), with the Imc factors removed

symbolically but with convergence to the real triple zeros prevented

numerically. The reader interested in the details of computing F

may find them in the next few sections.

In the previous chapter we saw that the nearest real polynomial

with a triple zero may sometimes also be the nearest real polynomial

with a double zero. By numerically deflating the solutions for triple

zeros we might be missing some interesting information, but experience

has shown that, if the solutions for double zeros are unsatisfactory,

then the triple zeros are much more efficiently found by solving the

equations for triple zeros rather than allowing the solutions of the

equations for complex conjugate pairs to coalesce.
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4. Computational Details: The Equations to Solve

for a Complex Conjugate Pair of Double Zeros

We aim to find zeros of the function

F(C) =
'F^c) ' f(Im C)4 0

0 (Im C)3 .

-1

l61AJxo-6oAtxi)

Therefore define

and

for i = 0, 1.

Now

t.
l

bi

D. = D./(Im c)'

fl/(Imc)2 0 '

0 1/Im c ,4xi

.n-jx2DQ -I(Re c'^w.^./w. -(I(Re ^X-jV

and D, is the same, except (n-j)/w. replaces 1/w.. The formula
J j

may be rewritten

(4.1)
n-1

j=l j k=j+lwk

The formulas for the derivatives are

1 i.4,n-kA2
k-j

no

(4.2a)
3D,

9 Rec
2ki2nfwL "i j-tk AS\n-k-hz(n-me^k i+lclV.l

j=l wj k=j+l wk K J k J k"J
n-1

Ut L, l»fwn j=l wj An-JAn-j '

•*4.



i
n

3D
n

«
n

-2
-,

n
-1

n
.

,
_

«-2b>
HiT

=2l^!2jl^
^
iVjl^|n"k"lt2(^)In.CAk..+|c|2A-..]

+
2-

y
J_

a
.Am

.
.

wn
j=

l
wj

n"J
n'J

In
th

e
n

o
ta

tio
n

o
f

A
p

p
en

d
ix

4
,

r
_

k
Am

_
k

A
i

=
k

3
R

e
c

'
k

"
3

Im
c

N
o

w

a
n

d

(4
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tQ
-

d^.j/w^Re
p-(I(Re

C
^V

j/w
^

3W
=

(lA^j/w.jRe
p'+

(Re
P)I(2An..A^)/w.

-y(Re
C^X^.+fn-jjA^.Rec"'3*"1)^

;
3

t

-4pI(Re?n"jAj;.J.-(n-o)An.J.Im?n-;l-1)/w;..
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ik
e
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e
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1
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n-jjA^/w

^Re
cp'

-
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•
a

t,

+
Re(cP')I(n-j)(2An..A;..)/w.

-
(I(n-j)Re
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at-at.,
The expression for 3Im may be obtained similarly by substi

tuting (n-j)/w. for 1/w. and Cp' for p in the expression for
at0
3 Im?"

Continuing in the same fashion,

(4.5)

bQ =- (jRec^Vj/WjJlte P+(Z(te ?n"j)2/Wj)Ap ,
b, =- (I(n-j)Re ^A^/w^Re cp'+(X(n-J)(Re c""*)2/".,)^. .

- (Re p)J(Re c""^., +(n-J)Vj Re ^'^^j
3A+(I(Re ^-J)2^)^ +Apl2(n-j)Re C""J Rec '̂Vwj

abn .

- (Re p)J(Re Cn"jAj|.;.-(n-j)An_jImcn-;i-1)/wj
+(I(Re Cn"j)2/Wj)g^_ . Apl2(n-j)Re ^ Inr?'^/*. .

The formulas for the derivatives of b, can be obtained by the usual

substitutions.

The formulas in this section may be used to implement Newton's

method to solve the two real equations F,(c) = 0 and Fp(c) = 0 for

their two real unknowns Re c and Im c.



5. The Rows of B are Linearly Independent

Corresponding to the complex operator A of previous chapters,

A =

r e*

e*D

m-1
e*D

it was necessary in Section 2 to define the real operator B which

maps Rn to R2m by

B =

f Re Al

Im A

f Re e*

m-1
Re e*D

Im e*
»

Im e*D'
m-1

> 2m

Proposition. If Im c t 0 then the rows of B are linearly

independent.

Corollary. BW B is invertible.

Proof of Proposition. We will show that B has full rank 2m by

exhibiting a set of real vectors {qkr> 0<k£m-l}, such that

X

X

X

0

X

X

{Bqkr} =<

' 0 N
1

X

X

0

0

X

X

m

>

m

j
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and a set i\~} such that

r

<Bcw -<

<±

0 ' f o 1
X 0
X X

X X

1
>

0

X 1

X X

x. , x .

>

In other words,

and

0 , 0 < j < k-1 ,

%r
U , j = k ,

0 , 0 < j < k-1 ,

'km (a) HKm Li , j = k .

The existence of 2m such real q.'s is equivalent to the linear inde

pendence of the rows of B.

Clearly, for either set of q. ,

qk(T) =(T-a)k(T-a)ks(x)

(j)for some real s(t) with s(a) f 0. Obviously qk '(a) =0 for
(k}0 < j < k-1. Furthermore qkv '(a) = <J> f 0. If <j> were real it would

suffice to let s(t) = l/<f>. But what if <J> is complex?

It turns out that s(t) = 9t +ti with real " 6 and r) to be deter-
fk}mined. To see this we must examine q.v y(a). First form an expression

for (x-a)k:

(x-a)k =(x-a +2i Ima)k = I (k)(T-a)j(2i Ima)k"j ,
j=0 a
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by the binomial theorem.

Then

(t-cx) (x-a) I(^)(T-a)k+j(2iIma)k"j
j=0 3

and

-V(T-a)k(T-5)k} = I d)JmUT.a)W-r{2i Ima)k-3
dx j=max(0,r-k) J VK J n*

and

dx'
(x-a)k(x-a)k}

0 , r < k ,fU , r < k ,

:=a lk!(2Ima)k-ik ,

We may now invoke Leibniz* rule,

Dk(ps) = I (k)(Dk"jp)(Dks) ,
j=0 J

to find

r = k

—-k(x-a) (x-a) s(x)}
dxK

= k!(2Ima)k.iks(a) .
x=a

(k)This expression for q. v ;(a) shows that it is only necessary to choose

an appropriate real s of degree at most 1 to get any desired complex
(k}value of qkv '(a). If u> is the desired complex value of s(a) then

Re s(a) = Re(8a +n) = 0 Re a + t\ = Re w ;

Im s(a) = 0 Ima = Im u .

Thus 0 = Im u>/Im a, n = Re to - 0Rea, so we can construct s and

therefore each qkr and q^. So the rows of B are linearly inde

pendent as claimed.
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6. The Last Lagrange Multiplier is Zero

Section 2 demonstrates that there are two kinds of stationary .?

points for v = q*Wq, q real, namely those for which the last

Lagrange multiplier vanishes, and those for which the multiplicity is **

greater than anticipated, so that (p+q) (c) =0.

Proposition. Let c represent a stationary point for llqll that

is locally minimal with respect to complex perturbations of c. Then

the last Lagrange multiplier I , * 0.

Proof. Since v = q*Wq, v = 2Re(q*Wq). But Wq = Re(A*J>) for

a complex vector l of Lagrange multipliers. Therefore

v = 2ReU*Aq) = -2 Re U*(ADp +ADq)c)

because of the constraint Ap+ Aq = 0. Then

(6.1) v=-2Red*(ADp+ADq)c +^*(AD2p+AD2q)c2 +)l*ADqc} •

Assume now that we are at one of the stationary points with ADp + ADq = 0.

Our next task is to obtain expressions for q and £. Differentiating

the constraint reveals that

(ADp + ADq)c + Aq = 0 , so Aq = 0 ,

while differentiating the stationarity condition Wq = A*£ yields

Wq = Re{A*i+ D*A*£c) p

so

Aq =AW"1 Re {A*£ +D*A**I} =0 .



v

*+

From

deduce that

where

,-1 -1AW"1 Re (A*i) = - AW"1 Re (D*A*U) »

-1 T
BW V

Re i '

Im £

= -BRe(W-1D*A*)lc) ,

f Re A 1

Im A

B =

as in previous sections. Since the rows of B are linearly indepen

dent, BW" B is positive definite and

(6.2)

Then

and

(6.3)

r Re I"

Im l

,-lnTx-l -1= - (BW",B,)",BRe(W",D*Anc) ,

,-1q = W~' Re(A*i +D*Anc) .

Re(A*£) =-BT(BW"1BT)"1BRe(W'1D*A*£c)

q=W1(W-BT(BW'1BT)"1B)W"1D*Re(Anc) .

Recall that

v=-2Re(£*(AD2p+AD2q)c2) -2Re U*ADqc)

We may write

-1/U dT/du-UTx-I,,,...!(6.4) Re(£*ADqc) = Re(a*A)DW~' (W -B1 (BW^B1 r'BjWV Re (A*Ac) .

The matrix (W -BT(BW" BT)"'b) is positive semidefinite s^both sides
are real and > 0.
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As in the previous chapter we may write

v = -2(Re£lm i)

where

'Re (J) +(Re b)TM(Re b) -Im <J> +(Im b)TM(Re b)'

k-Im<j)+(Imb)TM(Reb) -Re <j)+ (Imb)TM(Im b)^
Rec

b = D*A*A ,

M=W"1/2(l -(W^^BJKW^^B^W^^Bjl^tW^^B^jW-"172 ,
and (J> = Jl*(AD2p +AD2q) .

Then a tedious but straightforward argument paralleling that of

Section III.9 shows that v j> 0 for all £ implies <J> = 0.

Alternatively we may recognize that for a suitable £,

v=-2{|**(AD2p+AD2q)c2| +ReU*ADqJ)} .

At a local minimum v >^ 0 for all c; recall (6.4) to see that

£*(AD2p+AD2q) =0 and also £*ADq =0.
Thus by either argument, at a stationary point which is also a

minimum, % , =0 or (p+qr (c) = 0. In the first case we are

finished. The second case implies that n >^2(m+2).

Furthermore, £*ADq = 0 and (6.3) tell us that

Re(£*A)DW"1{W-BT(BW"1BT)"1B}W"1D*Re(A*il) =0 ,

Since the matrix in brackets is positive semidefinite,

{W-BT(BW"1BT)"1B}W"1D*Re(A*£) =0
and

ReU*A)D = s'B
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where

sT =Ref^AjDW'VCBW"V)"1

so s is real.

Our next goal is to construct a matrix like B, but augmented by

two more rows, from which we can conclude the result. Partition £*

and s as follows:

** = (£,x)* ,

sT = (y u 8 v)T .

X, u, and 6 are scalars. Then

Re(S*A) =(Re A)TReA - (Im £)TImA
and

ReU*A)D = (Re£ Re X -InU -ImX)T

Finally let

e*D

A =

jn-1e*D'

so

A=(e£)
and

AD = ( e*tf» )
Then

Re(Jt*A)D - s'b = 0

may be written

' Re AD ^

Im AD
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(y, Re£T-uT, ReX, 6,-Im£T-vT,-ImX)

Re e*

Re A

Re e*D'

Im e*

Im A

,m

m
Im e*D

The matrix on the right is just a B matrix, but for m augmented

by 1. Since n ^2(m+2), the augmented matrix has at most n rows

which are linearly independent. Consequently t = u-iv, 6 = 0,

u = 0, and X = 0. But this X is just the last Lagrange multiplier

Jl ,, concluding the proof,
m-1

We learned in the previous chapter that to find the nearest real

polynomial with a real double zero, it might be necessary to solve

equations for a real double zero and equations for a real triple zero.

But in this chapter we have the more satisfactory result that to find

the nearest real polynomial with a complex conjugate pair of double

zeros, we need solve only one set of equations; it is not necessary to

look for the nearest real polynomial with a complex conjugate pair of

triple zeros.
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CHAPTER V

FINDING THE NEAREST POLYNOMIAL WITH MORE THAN ONE MULTIPLE ZERO

1. Introduction

Previous chapters have exhibited the equations to be solved to

find the nearest polynomial with one multiple zero or one pair of com

plex conjugate multiple zeros. Now we turn to the more general problem

of finding the nearest polynomial with a specified configuration of

multiple zeros. We shall see that despite some complications the

theory bears a family resemblance to what has gone before. We shall

find that, in the complex case, the equations to be solved for the

multiple zeros assume forms simpler than what might have been expected,

because certain Lagrange multipliers vanish. However there is some

doubt, in general, as to which of these simpler equations should be

solved for the multiple zeros. Fortunately when all the zeros are

double the equations to solve are fairly obvious.

Unfortunately, just as in the case of the complex conjugate

multiple zeros, the equations we solve become much more complicated

when divided differences are taken in order to inhibit unwanted coales

cence of the multiple zeros. These equations are given in full detail

for the case of several double zeros, and especially for the case of

two double zeros.
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2. The Nearest Polynomial with Several Multiple Zeros

Given a complex polynomial p(t) we seek the nearest polynomial

(p+q)(x) such that p+q has k complex multiple zeros £.. Each

C_. has a multiplicity m. > 2, and ][ m. <_ n. Corresponding to the
l l . l

operator A of previous chapters we define A.- by

A1-

ei
e,*D

>

e.* is the evaluation functional for c.. The m. by n+1 operator A,

~ *is defined analogously with e. replacing e. . Then the equation

A.p + A.q = 0

expresses the constraint that p+ q has an m-tuple zero c.

We also define the operator

f A, 1

S =
L l

^Ak

which may be seen to be somewhat like the B of the previous chapter;

it will be used for similar purposes.

Proposition. If c. t £_• when i f j then the rows of S are

linearly independent.
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Corollary. SW S* is invertible.

Proof of Proposition. We will show that S has full rank by

displaying £m. linearly independent vectors

Sq,- y> > 1 £ J < k, 0 < r < m.-l .

The q. are defined by their corresponding polynomials as

q, Jt) =(T-?.)rn (t-cJ1"1

and the conclusion follows immediately.

Our goal is to minimize v = q*Wq subject to A.p + A.q = 0,

1 <_ i £ k. Let the raised dot (") represent differentiation in a

particular direction of a specific r.: £.(e) = Cj(0)+ec.. Then
j j j j

as usual

v =d£=2Re(q*Wq) .

Differentiate the j'th constraint to find

(AjDp +AjDq)£j +Ajq =0 ,

but differentiate the other k-1 constraints to find

A..q = 0 , i f j ,

because A. is independent of ?•.

By applying the Lagrange multiplier theorem of Appendix 6 at a

stationary point, discover in the usual way that

(2.1) q*W = I Hi*Ai =£*S .
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There are k vectors £..* of Lagrange multipliers and i* is their

concatenation. Furthermore

(2.2) *,*(A.Dp +A.Dq) = 0
j j j

for 1 < j < k.

Thus at a stationary point, for each j, either its last Lagrange

multiplier SL*. , vanishes or r. has multiplicity one greater than

expected. In the next section we will see how the techniques of pre

vious chapters can be applied to show that the minima of v always

have lA m i=0.J.m.j-1
Now when we substitute in the constraints we find

^.p +A^Sn =0, 1<i<k,
or

(2.3) SW'VS =-Sp .

Since the rows of S are linearly independent, SW S* is positive

definite symmetric and therefore invertible. But we may assume that

k elements of £ vanish, so we have ]m. linear equations in

(Im..) -k unknowns. The attempt to solve such a system by Gaussian

elimination yields k expressions which must vanish. The corres

ponding k non-linear equations in the c- may in principle be solved

for the £•• In subsequent sections we will display equations for the

case that all m. = 2.
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3. The Last Lagrange Multipliers are Zero

From the previous section we may deduce that

v = 2 Re(q*Wq) = 2 Re(£*Sq) = -2 ReU*(A.Dp+A.Dq)£.) .
vl J vl vl

When v is stationary, then for each j, either its last Lagrange

multiplier vanishes or the multiplicity of c- is one greater than
j

expected.

Proposition. Assume \f$ => c. itv Then at a stationary point

at which v is minimal with respect to complex perturbations in £., '
«j

the last Lagrange multiplier in &t vanishes.
j

Proof. Continue to differentiate the expression for v above:

v=-2 ReU^.Dp+A^q^+A^ .

Assume that A.Dp +A.Dq = 0 at a stationary point, which simplifies
Jo

the expression for v above. Furthermore the assumption means that

Jm.j <n because k>2 and all ^'s are distinct.
From (2.1),

q =wVs+wVi ,

and from the constraint and the assumption,

Sq = 0 .

Therefore

SVfVt =- SW^sn ,
But

S*f =lAtA. =D*A*£j!j ,
so
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i =- (SW"1S*)"1SW'1D*Ani. ,

q =W"Va*£-L - W*1S*(SW"1S*)"1SW"1D*A*A.C. ,
j j j J J J

and

AtA.Dqc =A*A.DW"1/2{1 - (W"1/2S*)(W"1/2S*)f}W"1/2D*A1[Jl,|£J2 .
J J vl vl J J J

4.

(1 -MM ) is positive semidefinite for any M so

v =- 2 ReUt(A.D2p +A.D2q)£?}
j j j j

- 2(Jl*A.DW"1/2{l-(W"1/2S*)(W"1/2S*)%"1/2D*A*A.)|c,|2 .'
j j j j j

If v is to have a local minimum then v >_ 0 for any £., yet by apt
vl

choice of £. we may arr
vl

so they both must vanish:

choice of c. we may arrange for both terms to be real and negative,
vl

and

(m,+l)X*(p+q) J (Cj) =0

(3.1) £*A.DW~1/2{1 -(W~1/2S*)(W"1/2S*)f} =0.
j j

From this point we follow the argument of III.8 to show that xt,
vl

the last element of &?, vanishes. From (3.1) we find
vl

A*A.D = v*S
j J

where v* =£?A.DW~1/2((W~1/2S*)+)*. Now partition v* conformally
j J

wi th S so

v*S « 5>*A. .

Introduce an augmented operator
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t-
S =

J m-
e*D *

vl

Aj+1

> Im.+l

Then we may rewrite the equation

as

(3.2) (v* •••

v*S-JrtA.D = 0
J J

V* - V* V*
M vj Vl v£)§ = 0 ,

where 0* = (v* 0) -(0 **). Since Jm. < n, the rows of S are

linearly independent, so the vector in (3.2) vanishes. In particular,

the last element of v>, which is -Xj, the last Lagrange multipler,
vanishes as claimed, completing-the proof.

As in Chapter III, the present result applies when complex pertur

bations are considered. In the case of real perturbations of a real

polynomial, the result is known to be false in general for k = 1 and

counterexamples could probably be constructed for larger k. It seems

likely, however, that in most practical problems satisfactory results

may be obtained by assuming that the last Lagrange multipliers vanish.
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4. Equations for k Real Double Zeros

The nearest polynomial with k real double zeros is of interest f

in studying polynomials like Wilkinson's (Chapter X). The formulas

we shall derive have not been treated by means of divided differences. ~*

Section 6 contains formulas for the case k = 2 derived with the aid

of divided differences.

The equation we wish to solve is (2.3);

SW'Vs =-Sp ,

We know that the last elements vanish for each £., a subvector of i.

Therefore we may define the vector A by letting A. be the first

element of &.. Then

S*£ = lAta. = lA.e. .

Recall that ej is the evaluation functional for c..
i -i

Having eliminated some of the unknowns we are left with 2k equa

tions in the 2k variables ArA2,...,Ak and c-j »C2»-• •»Ck. Since
the equations are linear in the A.'s we can easily eliminate them,

leaving k non-linear equations in the c's. To do this divide the

equation (2.3) into two pieces:

vV • - V
and

(4.1) siM"ls(JA °"V

where



&-

S0 = ei and S, = e*D

To simplify matters later multiply (4.1) by the matrix

Z=diag(c-j,...,Ck). Then if we define

T0 = S0W S0 '

T, =ZS^S* ,

where

(4.2)

r P(cn) i
v0 = V =

kp(ck) ,

Vi = ZS,p =

(Vij= *F\ ,-1and (TJ = r.e*DW!e. ,
i ij ii j

then we may eliminate A and try to find zeros of the function

F(z) =A0-Al "^V7!*1*!

where z= (c15...,ck) and F are k-vectors.

To keep the following computational details simple, we restrict

attention to real £.. We wish to solve (4,2) by Newton's method; to

get the necessary derivatives let (') represent ^- and recall that
— 1 ii i

(M )= - M" MM" for invertible matrices M. Thus

(4.3) tM-ii\ +ti\-^\-r;\
=To1(Wo> -Ti1(vViJ •
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Now

-1 -1 •
T =SWS* + SW<s*

e*DW"V.
vl '

0 eJW"1D*e. 0
' vl

The non-zero entries are contained in the j'th row and the j'th column

respectively. Continuing,

(4.4)

-1

Vo = e!DW

0

*

0

EA0,iei
0

T1A1 (ej +cjejD)vfl

j'th entry non-zero

+Ao,jsow~lD*ej •

IAl,iei +A, •ZS1W"1D*e.

0

By use of formulas (4.4) in (4.3) we may compute the j'th row of the

Jacobian matrix appropriate for use with Newton's method to find solu

tions of (4.2).

In terms of our familiar diagonal norms,

j

<V« =ri^vn'r/\.
n-r(Vij =Kn-rX^Cj)"~7wr »

130

S .



*-•'

(To*o'i

(T0A0)j

(T1A1)i

A05JCiI(n-r)(?.C!)n-1/wr,

+A0iJC1I(n-r)(c1cJ)"-p-1/Wp

+A1>.CiI(n-r)2(?iC!)"-'-1/wr
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5. Deflation for Several Double Zeros

When solving equation (4.2) for polynomials of degrees only

modestly larger than 2k, one often finds that zeros of F are quite

abundant. In order to prevent reconvergence to zeros already found,

some sort of deflation is required.

Unless further steps are taken, moreover, convergence will occur

to solutions in which some of the ostensibly distinct t. have coalesced.

This behavior must also be suppressed; we shall do so numerically.

A workable approach is to find the zeros of G, rather than F,

where

G(z) = F(z)/A

a, = n (c.-c )2
1 • i r

i>r

for elements c. and t of z, and

for known zeros zs of F.

a2 =n iiz-zsn2
s

If we let f) =^!- then
^j

G = F/A - (A/A)G .

We know that

(A/A) = (A^A^ +tA^)

and we find that

(C-z2)
*i =2A.. I l/(crC,) , A2 =2A2 I * \ .
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6. The Equations for Two Real Double Zeros

For the case when only two real double zeros c-i and c2 are

sought, divided differences may be exploited to reduce the probability

of coalescence of ?, and c2 to the same double zero.

Recall our equation:

(4.2)

Here

Then

.-1

-1

Jr, =

T, =

v« =

F(z) -Aq-A, =T-VT11v1

re^W"1e1 efW"^
e|W"1e2

' C1e|DW"1e1
. C2e|DW"1e1

^epw^eg
C2e|DW" e2

vl = >c2p'(c2) .

det(T0) -eJW"1e1
-e*W-1e2
e|W e.

,'lt60 -0

detTTJT
CgeJDW'̂ g -C1e*DW"1e2

k-CgepTe, c1efDW"1e1 J 61 1
= _Lt*

The symbol * denotes the adjoint matrix: A* = det(A)A .

Revert to the usual diagonal norm to obtain the following expres

si on for 6Q:

«o- I57-1 XJ-{U?ln'jl^ln-k-(c1c|)n-j(c2cf)n-k}]
u j=1 wj k=l wk ' c ' i z '
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n-1

(6.1) Sn=
|Cl-C2r j=l jk=j+lwk ' L k"J

In the last expression, the divided difference A. = (Cn-Co)/(c-,-Co)

is a polynomial in c-j and c2 for any i^ 0. The corresponding

result for 6, is

«! "¥(?), I(^(IC^I2)11"^!kA2 .
j=l j k=j+l wk ' c K J

To apply Newton's method the derivatives will be required; assume C-,

and c2 are real:

(62, !0 =lYVi!Vi
* ' 3?1 wnj=l wj *1

+2ICi^ Â tJIIt itAk-j(^)n"k"1 t(n^)Ak-j+ci t^"11
Since c, and Co are symmetric in (6.1), -r— may be obtained by

1 * 9C2 35,
interchanging the roles of c, and c2 in (6.2). Similarly ^~-

^O5 V<T<2> - .H<?> V-j^j •

•1
may be obtained by substituting (n-j)/w. for 1/w. and (n-k)/w.

j j •>

for 1/w^.

When finding zeros we will need to compute eQ, the first element

of the vector TJSJvq, and e,, the first element of the vector Tjv,.
Then

(6.3) §n e On/tc-Co) = I (Co)n"J'i

t ,



t-»

Now

Ap,n-j " C-, -C2

A . is a polynomial in Ci and c0; tne details of its construc-
p,n-j r 1 £

tion are given in Appendix 5. Similarly

(6.4) ^ ee^t^-tg) =C^Cjl2 "l {n-j)(cpn-j-1ipljn.j.1/wj
vl •

where

_^-jP'(c1)-^"jp'(c2)
V .n-j " C-, - C2 *

The derivatives of the §'s will also be needed. In the real case they

are

—£ =J ££ + r y r^-J P»n-J/W
3C1 wn 3C1 2j=l 2 acl J '

/\

8e0 . 1 8Ap,0 , r .n-j-1r. 3Vn-j , fn m ..
(6.5) / Z

^^(n.j)cn-J-1{Ci^H+V)n_.i}/w. §
361 „ . .. n_«i-l .. 3A ,1= C1C2I(n-j)^1an-j+lHpl>n...1+c2-tetl}/w. .ac2

We could find zeros of the function

F<z>BTSVTi1vi
60'ovo fi^ri
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but for simplicity we will instead find the zeros of

P(z) S-p F(z) =TpVfk -TrVrrtv,

F(z) » 0 is a system of two equations. The first one is

<* A> /\ /\

(6.6) 6le0"606l =° '

The second equation may be obtained from (6.6) by reversing all

occurrences of c-i and c2- in tne expressions for the 6's and e's.

The appropriate derivatives may be computed similarly.

Now that a specific equation, (6.6), is ready to be solved, methods

for computing the various divided differences that appear in it will

be required; these methods are in Appendix 5. We turn now to the

question: what happens when £, + Co?

The original function (4.2) is undefined when C-i = Co. The

modified equation

6iTovo-60TtVl =°

turns out to be satisfied whenever c«j = C2- But the divided difference

version, (6.6), is not so easily satisfied; let us examine what happens

to its terms as c, •* C2-

We discover that

Tim A.=^<Ck) =kc^1 ,
crc2-c K ac

lim A .=^kp'(c)-kck"1p(c)
C-|,C2 + C

lim A,.=Ckp"(c)-kck"V(c) .
C^Cg-C P ,K
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Substituting these expressions in (6,6) and simplifying leads even

tually to the equation to be solved for the nearest triple zero

(III.7.1). Recall that the case of a complex conjugate pair also reduced

to a triple zero when the divided differences became confluent. Just

as in that case, numerical methods will be required to inhibit conver

gence to the triple zero solutions we wish to avoid.

Both the method of this section and the method for k > 1 double

zeros may be used when two double zeros are required. Both methods

seem to work satisfactorily for polynomials of low degree, but the

general method for k double zeros worked better for Wilkinson's poly

nomial of degree 20 discussed in Chapter X. The equations described in

this section seem to have a much greater propensity for causing Newton's

method to dawdle aimlessly without converging. It may be that the

divided differences warp the geometry of the function whose zeros are

sought in a way that tends to conceal the zeros. There is some compen

sation in the fact that those divided differences help prevent coales

cence of the zeros much more effectively than numerical means alone.



CHAPTER VI

LOCATION THEORY FOR NEAREST POLYNOMIALS WITH A DOUBLE ZERO

1. Introduction

In this chapter may be found some clues to the answer to the

question: Given a polynomial p, all of whose zeros are simple, where

should we look to find the nearest polynomial p+ q with a double

zero c? That c which minimizes Dqfl globally is one of the solu

tions of the equation

(1.1) F(c) =alP(c)-a0cp'(c) =0 ;

but there are usually many other solutions, most of which represent

local minima.

Remember that the real non-analytic functions aQ and a, are

defined as

a0 = I |c2rj/w.
u j=l J

n-1 o „ a.2,n-j
o-i s I |cT"J(n-j)/w. ..
1 j=l J

Thus we are considering only the norms derived from diagonal Hermitian

quadratic forms. Most of the results to follow, moreover, only apply

to real polynomials p.

The purpose of attempting to develop a theory of location is to

make our numerical solution procedures more efficient. Equation (1.1)

is typically solved by Newton's method from some starting point. An

ideal starting point would have the property that Newton's method

would always converge to the global minimum corresponding to the
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nearest polynomial with a double zero. A satisfactory starting point

would always converge to a local minimum that is nearly globally

minimal. The ad hoc starting procedures discussed in Chapter VIII

usually seem to be satisfactory but the known theory is insufficient

to account for their success.

The results in the following sections seem far from optimal. One

might hope that atheory could be developed comparable to the elegant

theory of the location of zeros of polynomials discussed by Marden [21]

and Householder [12]. But much of the theory for polynomials hinges

on the entire analytic nature of polynomial functions. Certain of the

examples to follow effectively counter some of the conjectures that

might be made by analogy with the polynomial case.

We can make afew preliminary observations about (1.1). Among

its solutions are the global minimum we seek, numerous other local

minima, a few non-minimal stationary points, and the solution c= 0.

This solution t; =0 is an artifact of the way we wrote the equation.
We could just as well divide by c and write

(1.2) c*(J ((n-j)/w,)|c2|n-j-1)p(0 -alP'(C) -0.
j=l J »

Then c=0 is asolution of this equation only if p'(o) =0; that

is, only if the next to last coefficient p^ =0. An examination of
the stationary condition q*W =£*A tells us that q =o while

the constraint Ap +Aq =0 tells us that q^ =-p^. Therefore
C=0 is astationary point for flqB if and only if p = o. Even

then e = 0 need not represent a minimum.
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Since the factor c does not seem to contribute any information,

why not leave it out in our subsequent analyses? We keep it for a

reason which becomes apparent when we write (1.1) in yet a third form:

(1 3) CP'(C) -gl(c) _R,rx

Now

R(c) =(I(leV"%j).(n-j))/G(|?2|n"j/w.j))

may be thought of as a weighted average of the quantities (n-j). If

we do so then we realize that

0 < R(c) < n-1

for 0 < |c| < °° .

Thus (1.3) equates a meromorphic function of the complex variable

C to a bounded positive real function of |c|9 which is in fact

analytic when regarded as a real function of a real variable. If the

factor of c were removed from (1.3) it would lose its attractive form.

We will exploit that form later.

A typical result in this theory is the following.

Proposition. Let p be real with two real zeros a, and ou,

°h £ a2* ^nen

F(c) =o^pW-OgCP'U) =0

has a solution c such that a, <. C <. cu.
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Proof. If a, and cu have opposite signs or if either is zero,

then c = 0 satisfies the assertion. Then without loss of generality

assume that 0 < a, < ou and that (a, ,a2) contains no real zero of

p. Then

F(a.|)F(a2) =a0(a1)a0(a2)a.|a2p'(a.|)p'(a2) .

If that product is zero or negative then a zero of F lies in [a, ,ou]

by the intermediate value theorem. But if that product is positive

then p'(a.j)p'(a2) > 0. Considering Taylor series, we see that

p(ai+6) # 6p'(ai) ,

p(a2-6) * -6p'(a2) ,

for small enough 6 > 0. Thus

p(ai+6)p(a2-6) *-62p'(ai)p'(a2) <0

so the p must have another zero in [a.j,a2], contrary to assumption.

The contradiction implies F(a1)F(a2) <_ 0 and concludes the proof.
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2. No Complex Solutions for Certain Real Polynomials

Wilkinson's polynomial of chapter X has the property that all its

zeros are real and have the same sign. When solving (1.1) for

Wilkinson's polynomial we need not search for complex zeros because

of the following.

Proposition. Let p(x) = n(Tm-a.) be a complex polynomial in t"1.
j J

If all the numbers a. are either zero or have the same argument 9
j

then the non-zero solutions c of (1.1) may only have arguments

(9+kTr)/m, 0 < k <_ 2m-l.

Corollary. If a real polynomial p(x) = n(T-a.) has all real
j

zeros a. all of the same sign, then all its e's are real,
j

2 2Corollary. If an even real polynomial p(x) = II(t -a.) has all
<j

zeros ±a. real, then all its e's are either real or pure imaginary.
vl

Proof of Proposition. Rewrite (1.1) in the form of (1.3):

CP'(c)/p(c) = R(|c|) .

Remember R is a real function of |c| and 0 <_ R < n-1. Suppose

first the special case that all a. =0 so p(x) = xn. Then (1.1)
j

reduces to n = R(c)» so the only solution of (1.1) is the universal

solution C = 0.

Otherwise we may assume that at least one a. f 0. Recall that
j

p'(c)/p(?) =PCm"1IV(cm-aj)
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take imaginary parts of (1.3) to find

0 = Im(cpVp) ,

0= Im^I^./lc^a.!2) ,
0= Im(cVie).I|aj|/|cm-aj|2 .

Since at least one a. is non-zero the sum £ of positive quantities
j

may not vanish. Then if 0 denotes the argument of a non^zero c

we have

Im(exp(i(m0-e))) = 0

from which the result follows. Q.E.D.

Note the two resulting equations for |c| are

R-nUriVdcl^lajl)

which could be expressed as two real polynomials of degree 3n -2 in

|c|. However, for polynomials in t"1 it might be reasonable to

restrict perturbations to polynomials in t"1 by causing appropriate

weights in the norm to become infinite. Then R(|c|) becomes R(|c|m)

and the resulting polynomials are of degree (3n-2)/m in |e|m.



3. Counterexample

The previous proposition might lead one to hope that polynomials

with all zeros real would not have complex solutions to (1.1). The

following counterexample, produced by W. Kahan, eliminates such hopes

Example. Let n= 2 and p(t) = (t-1)(t+1). If 2w, < w2,

then (1.1) has a complex solution

C =± i/1 -(2w1/w2) ,

Comments. Some other surprising facts may be learned from this

one example. We start by deriving all the solutions of (1.1). Let

io = (w,/w2) > 0. Then (1.1) is

|C|2(C2-1)-(|C|2+0>)C(2C) =0

or, dividing by the solution c = 0Y

c|c|2 +2coj+C* =0;
then

(Re c)(|c|2 +2u) +l) =0
and

(Im c)(|c|2 +2u>-l) =0

By considering the various possibilities we conclude that the only

solutions of these.equations are just c=0 and, if u> < i,
1/2

C = ±i(l-2io) ' . The norm of the corresponding q's may be calculated

to be

2 = w2 , for a double zero at 0,
2 1/2= 40,(1-oj)w2 , for a double zero at ±i(l-2io) '

144



So for 0<w<p the global minima are at =±i(l-2o))1y'2, not at
C = 0. In this case, 0 represents a saddle point; it is where the

global minimum occurs if only real c are considered. But on the

imaginary axis, the minima occur elsewhere, and a local maximum occurs

at c = 0 if only pure imaginary c are considered.

Of course, there are other real polynomials with all zeros real

which have solutions of (1.1) which are complex but not pure imaginary.

It is perhaps surprising that an even real polynomial with some zeros

real and some pure imaginary may have solutions c of (1.1) which are

neither real nor pure imaginary. For instance, by appropriate choice

of weights so that the R(|c|) of (1.3) has the value 2 when

|c| = 1> we find that some solutions c for the polynomial

p(x) =t4-1

are c= 0 and c= (±l±i)/v^. We may further restrict the weights

so that these are the only e's.

Returning to Kahan's counterexample, recall the Lucas theorem:

the convex hull of the zeros of a polynomial contains all the zeros of

its derivative. The present example shows that no such simple state

ment may be made about the geometrical relationship between the zeros

of a polynomial and the solutions of (1.1), Some early experimental

results suggested that the convex hull of the origin and the zeros of

the polynomial always contained the global minimum. But the counter

example shows that this is not always the case.

Yet the solutions of (1.1) do behave somewhat like the zeros of

the derivative of the corresponding polynomial. Consider these symmetry
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Facts:

1) If p is real then F of (1.1) is real;

2) if p is odd then so is F;

3) if p is even then so is F;

4) if all the zeros of p are multiplied by a constant phase

factor exp(ie) then so are the zeros of F. Thus there is no essen

tial difference between a real polynomial and a complex one whose

zeros are symmetric about a line through the origin.

In contrast, consider this invariance of polynomials under scaling

if the zeros of p are all multiplied by a scale factor, then all the

zeros of all the derivatives are scaled by the same factor. But if

the weights in the a's of (1.1) are regarded as fixed, then scaling

the zeros of p does not introduce a corresponding scaling of the

solutions of (1.1), which change in a complicated way. One could

regard the weights as depending on the scaling factor, however. If,

for instance,

Wj =c..(y2)^

where c. is fixed and u is the modulus of the zero of p of
j

largest modulus, then a scaling change in the zeros of p will produce

a corresponding scaling of the solutions of (1.1). One could go

further and imagine that u = |c|» a function of the ostensibly

unknown c. Then the a's are constant and the F of (1.1) takes an

especially simple form: it becomes a polynomial. In some of the

sections to follow this analytical "swindle" will be exploited.
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4. A Bound on the Solutions c

We will exploit Theorem (17,2a) of Marden [21] to bound the solu

tions of (1.1). It is not immediately obvious how large those solutions

might be, relative to the zeros of the polynomials,

Marden's theorem concerns the location of the zeros of a linear

combination of monic polynomials of degree n. Let x(T)-Xy(x) be

that linear combination, and let C(c,r) represent a circle of radius

r centered at c. Cx(cx,rx) contains all the zeros of x and

Cy(c,r) contains all the zeros of y. The theorem asserts that all

the zeros of x-Xy lie in the union of the n circles C.(Yk,pJ,
1 <_ k <_ n, where

and

pk • (yKi^/i1-^!
and

- J/na)k - X ek .

The ek are the n n roots of 1.

Our result is the following.

Corollary. If |amax| is the maximum modulus of the zeros of p,

then all the solutions c of (1.1) satisfy

Proof. Rewrite (1.1) in a form appropriate to the theorem-:

gr(c) - isqsi). (i,p(c) .0.

Then if R is held fixed, Gp is in the proper form. Let the circles



C and C be crudely approximated by C(0,|a I). This circle
A y max

certainly contains all the zeros of p, and hence of p', as well

as 0. Then Yk =0 so the circles Ck of the theorem are concen

tric and only the radius of the largest matters:

- n-*Vfi7n .
k |l-n^7nek| ,Qmax

Remembering that 0 <_ R < n-1, it is clear that

1 l-n^7n-' max'

1i-n/(?niAr|a,naxl
<2n2|a 1.
— 'max1

Since any solution of (1.1) is a zero of GR for some positive

R < n-1, the bound is valid for all such solutions. Q.E.D.

The purpose of this crude estimate is just to show that the solu

tions of (1.1) are bounded. The gross approximations involved might

lead one to doubt that the bound is realistic, and indeed for "normal"

polynomials the solutions do not seem to exceed la I,
1 max'

However Wilkinson's polynomial of degree 20, discussed in

chapter X, has a solution for (1.1) at C t -117.31; the norm has
p

w. = l/|pJ which minimizes relative changes in the coefficients.
J vl

In this case |cmav| exceeds |al by a factor of nearly 5.
ma A Hid A

Presumably by appropriate choice of norm that factor could be made

even larger — how much larger is unknown.
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One might consider a type of iteration scheme: since the bound

(4.1) depends heavily on the maximum value of R, which we bounded by

n-1, any knowledge that reduces that R. w should affect the bound
max

appreciably. But R is monotonic in |c| so R depends on the
max

bound on |c|, which is in turn dependent on R . Clearly we could
max

reduce the bounds on |c| and Rmav alternatingly. Unfortunately in
max

practice such an iteration seems to improve the bound so little as to

be scarcely worth the trouble.
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5. Propositions for Real Quadratic Polynomials

The example of section 3 was a counter to a tempting, but incor

rect assertion. That same example could be regarded positively, how

ever, as an example of the propositions of the present section.

Proposition 5.1. Consider a real monic quadratic polynomial

o

p(t) = t - 2cxt +y .

Let u be the modulus of its largest zero. Then every solution c

of (1.1) satisfies |c| £ u.

Proof. By examination of cases. Equation (1.1) may be written

(C^acnKIci2^) -c(2c-2a)(|v:|2/Wl+l/w2) =0.

Factor out c to remove the uninteresting solution c = 0; then

letting to = (w,/w2) > 0, and taking real and imaginary parts leaves

the equations

(5.1) |c| Rec + (2co-Y)Re c - 2ooj = 0 ,

(5.2) |c|2lmc + (2oj+Y)Im C=0.

p

The second of these equations is satisfied if |c| = -(2w+y) or

Im c s 0, providing two cases.

In the first of these cases y < 0 so the zeros of p are real

and

V= |a| + (a2-Y)1/2 .

But we may easily verify that
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|C|2 =-(2o)+y) <y2
as claimed.

Im c = 0 in the second case so the solutions c are just the

real solutions of (5.1), which satisfy

(5.3) g(5) =C3+(2a)-Y)c-2aa) =0 .

g may have complex solutions but these do not satisfy (1.1).

We will prove the proposition by showing that g(-y) < 0,

g(+y) > 0, and the real critical points where g'(c) vanishes are

contained in [-y,+y]. Thus the real zeros of g are bracketed in

[-y,+y] whether they be 1, 2, or 3 in number. The details, however,

depend on whether the zeros of p are real or complex.

Suppose fi

y=Y1/2. Then

and

2
Suppose first that a < y so the zeros of p are complex and

g(-y) = -2u)(Y1/2+a) <0

g(+u) =+2co(Y1/2-a) >0.

1/2
Furthermore the zeros of g' are ±((y-2u))/3) ' , When these zeros

1/2
are real they are less than y ' in modulus since to > 0.

2
Now suppose that a >_ y so the zeros of p are real and

y= |a| +(a2-Y)1/2 .
Then

2
g(-u) = -\i{\i +2u>-y) - 2au)

2
g(+y) = +y(y +2u)-y) - 2aa) .
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It is easy to verify that

and

2
y +2co-y > 0

|y(y2+2u>-Y)| > |2oud|

so g(-y) < 0 and g(+y) > 0. And finally we may verify that when
1/2

g' has real zeros ±((y-2u))/3)" , they do not exceed y in magni

tude. q.E.D,

Our next result is in a similar vein.

Proposition 5.2. Consider a real monic quadratic polynomial

2
p(t) = t -2ax +Y .

Then there is a solution c of (1.1) in the smallest circle containing

both zeros of p.

Proof. The zeros of p are a±(a2-Y)1/2 and the smallest

circle containing them has center a and radius |a -y|^2. Therefore

the assertion is that there is a solution c such that

U-«| < |a2-Y|1/2 .

The solution c=0 satisfies the proposition if y£0 or y>2a2,
2

so assume henceforth that 0 < y < 2a .

Recalling equations (5.1) and (5.2), we find that the only remain

ing solutions are the real solutions of

g(c) = C3+(2u>-Y)c-2aa) =0 .
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In the limiting case R -*- 0, the e's approach a and 0. In con-

1/2
<^t trast, as R -»• 1 the e's approach ±y . So, in particular, if

Y < 0, corresponding to the zeros of p being real and opposite in

*^ sign, then in the second limit the zeros are pure imaginary. This

situation corresponds to the counterexample of section 3.

Two results from the previous section that the limiting cases

support are that 1) the magnitude of the e's does not exceed that of

the larger zero of p, and 2) there is always one c in the smallest

circle containing both zeros of the quadratic p. These are correct

inferences.

Proposition 6.1. Let c be any solution of (6.1) when p is a

real quadratic polynomial. Then |c| does not exceed the magnitude

of the larger zero of p.

Proof. Consider four cases: the zeros of p are equal; the zeros

of p are complex; the zeros of p are real as are the c; the zeros

of p are real but the c are complex. The first case is trivial

and the other three cases are similar in proof. For the last case, for

instance, we have
X.

(1-R)2a2 +R(2-R)Y <0 and a2 >y.
*

Obviously y < 0. We wish to compare |c| with y, the modulus of
.*

the larger zero of p:

Ul =/(2Tr)(-y) •

y= |a| +A -y .
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Thus

y2-U|2 =2a2+2|a|^-2Y(^|)

which is a sum of non-negative terms, since y < 0 and R < 1. The

last term is positive so |c| < y. Q.E.D.

Proposition 6.2. The smallest circle containing both zeros of a

real quadratic p contains a solution of (6.1),

Proof. As in the previous proposition there are four cases.

Below we sketch the proof of the case in which both zeros of p are
2

complex. Then a < y9 Y > °» and both e's are real. We wish to

2 1/2
show that |c-a| < (y-cx )' for one of the e's.

Now

where

C-a= (^)a±A1/2

. _ /1-Rx2 2X RA= (2Tr) a +2IRY .

Then

. ,2 , 1 x2 2 . ,1-Rx2 2 , , R x z , 2 * J/2

and we want to show that for either + or -,

+aA1/2 <(l-R)(Y-a2)-f^ .

If we choose the sign that makes +a negative we find that the last

2
inequality is equivalent to y>a, which is what we assumed.

The proofs of the other cases are similar. ' Q.E.D.

As a tool for analysis the swindle does not seem to help much in

the quadratic case. All of the propositions about quadratics are



Thus we must show that there is e solution c in [n,8] where

n =a-|a2-Y|1/2 , 6=a+|a2-Y|1/2 .

We do so by demonstrating that g(n)*g(e) < 0.

Now

g(n)g(8) =a2(3|a2-Y| +a2-Y)2- |a2-Y|(|a2-Y| +3a2-Y +2u>)2
2

Suppose first that a >, y- Then

g(n)g(6) =-4(a2-Y)(Y2 +w2 +2u)(2a2-Y)) .

But the last factor is easily seen to be positive.
2

Suppose that a < y- Then

g(n)g(6) =-4(Y-a2)(u)2 +2a2u)+a2(2a2-Y)) .

o

But at the outset we restricted y < 2a . Q.E.D.

This last proposition might lec-d one to suppose that for any poly

nomial p of degree n >_ 2, equation (1.1) has a solution in the

smallest circle containing two zeros of p. In section 7 this suppo

sition will be shown to be incorrect, and a weaker conjecture will be

proposed.
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6. Swindle Results for Real Quadratic Polynomials

A method for evading certain problems arising from the non-

analyticity of (1.1) was briefly mentioned in section 3. Namely, each

weight in the norm was defined to be

w.=c.U2f-J.

Thus aQ and a, are constant and therefore so is R of (1.3).

This amounts to an analytical swindle since the dependence of the w.

on c was not incorporated into the derivation of (1.1). None the

less any solution of (1.1) is also a solution of

(6.1) s(c) e CP'(C)-RP(C) = 0

for some fixed R; the R depends on |c| in general, but not in the

swindle case. In either case 0 <_ R < n-1.

It is useful to study the solutions of (6.1) for fixed R to see

what light they shed on the original problem.

We start by noting that (6.1) has a solution c = 0 only if

p(0) = 0. So the part of the previous theory that depends on a solu

tion at c = 0 may not necessarily be true.

Write the quadratic p as

2
p(x) = t -2ax +Y

so a is the arithmetic mean of the zeros of p and y is their

product. Then the zeros of s are

C
/1-Rx . /1-R\2 2 . / R v
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proved just as easily without the swindle. It is neverthe less help-

V* ful to verify the similarity of the theories in the quadratic case,

since it is difficult to extend any results to higher degrees without

the swindle.
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7. The Smallest Circle Containing Two Zeros Need Not Contain a c

In sections 1 and 5 we learned that 1) there is a real c between

any two real zeros of a real polynomial p, 2) a corresponding result

holds for complex polynomials symmetric about a line through the origin,

and 3) the smallest circle containing the two zeros of a real quadratic

polynomial contains a c. Furthermore, when a is a complex zero of

a real p with |Re a| < |Im a|, then c = 0 is contained in the

smallest circle containing a and its conjugate. In section 8 we will

see that when a polynomial with a double zero is subjected to a small

perturbation causing the double zero to split, the smallest circle

containing the split zeros contains a c. From these facts we might

conclude that the smallest circle containing two zeros of any polyno

mial p contains a c.

This conclusion is supported by all the experimental results

reported in chapters IX and X, using norms which measure absolute or

relative changes in the coefficients of p. But an investigation to

settle this specific question turned up a counterexample, given below,

and led to a further conjecture which is not yet resolved.

The counterexample was discovered by computationally exploiting

the analytic swindle described in sectidh 6. A crude optimization

program varied the zeros of a real cubic polynomial and the fixed

constant R in order to make the e's lie as far as possible from the

center of the smallest circle containing the two complex zeros of the

polynomial. A polynomial p(x) was found with zeros a at 1.0 and

.224 ± .174i. When R = 1.987 the zeros of s(t), as in equation

(6.1), were -.830 and .424 ± .0991; see Figure VI.1. Thus the

complex e's are just outside the circle containing the complex zeros a.

158



The swindle was used because the polynomial equation s(t) = 0

may be solved equickly. Our real interest, of course, is in finding

an example without using the swindle. So another crude optimization

program was run with p(x) fixed but with the norm weights allowed to

vary in such a way that c = .424±.174i remained a solution of (1.1).

Surprisingly enough, the program quickly converged to a suitable

counterexample: Let the weights be 1,1000, and 10000, Then

(1.1) has no solutions inside the smallest circle containing the a's

.224±.174i. The closest e's are at .4245±.0993i and 0. See

Figure VI.2.

Thus we must discard the conjecture that the smallest circle

containing two zeros of a polynomial contains a c. That should come

as no surprise, however, for the corresponding conjecture about deriva

tives is not true either: the smallest circle containing two zeros of

a polynomial need not contain a zero of the derivative. Rather the

following is known:

Proposition. Let a circle of radius p contain m zeros of a

polynomial p of degree n. Then there is a zero of the m-1

derivative of p in the concentric circle of radius

p csc((Tr/2)/(n+l-m)) .

This proposition is stated in a stronger form and proved by

Kahan [17]. The proposition suggests the following revised

Conjecture. Let a circle of radius p contain m zeros of a

polynomial p of degree n. Then there is a solution of the appro

priate equation for the nearest polynomial with an m-tuple zero within
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the concentric circle of radius

p csc((ir/2)/(n+l-m)) .

Thus real cubic polynomials that have a complex conjugate pair of

zeros a should have a solution c for a double zero such that

|c-Rea| < v^|lm a|. None of the examples we have encountered or

constructed have violated this revised conjecture.



**

-I

Figure VI. 1.
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Counterexample based on swindle,
No c lies inside circle.
p(a) = 0, s(c) = 0, R = 1.987.
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Figure VI.2.

-+1

•#-<•

a

' N#C

#

-1

+1

—•-

a

Counterexample without swindle.
No c lies inside circle. p(a) = 0,
F(c) = 0, other e's are farther away.
w1 = 1, w2 = 1000, w3 = 10000.
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8. Infinitesimal Location Theory

This section provides a bridge between the location theory of

previous sections and the perturbation theory of the next chapter. In

this section we seek to answer the question: "Where do the solutions

C of (1.1) go when a polynomial with a double zero is perturbed

infinitesimally?"

Recall that if a is a double zero of a polynomial p then it

is a solution of equations (1.1) and (6.1) — as would be expected,

since a place where no perturbation is required to get a double zero

is obviously a critical point for norms of such perturbations. Most

perturbations of a polynomial with a multiple zero will break that

multiple zero into ill conditioned simple zeros, but we shall see that

the solution of (1.1) only moves in a well conditioned manner when

subject to such a perturbation.

Let

P(t) = (T-a)2q(x) , q(a) f 0,

be our starting polynomial with a double zero and a solution of (1.1)

at a. Let

p(t) = p(T) +6eh(x) , h(a) f 0 ,

be p subject to a perturbation which is a linear function of 6e.

Also a+ 6a will represent a zero of p perturbed from a. Then

expanding in Taylor series,

0=p(a+6a) ?l(6a)2p"(a) +6e(h(a)+ 5ah'(a)) .
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Simplifying, we find

(8.1) 6a *± ((-n(a)/q(a))6e)1/2 ,

the classical result that a double zero tends to divide into two simple

zeros according to a fractional power of the perturbation.

a is also a zero of

f(c) = R(C)P(C)-CP'(C) .

Let a+6c be the perturbed solution when p is perturbed to p. We

wish to find a Taylor series expansion for 6c in terms of 6e. R is

not analytic in c» so we must use the fact that it is an analytic

real function of the real variables Re c and Im £. Eventually we

find that

(8.2) 6C = {(R(ct)h(a)-ah'(a))/(2aq(a))}6e + 0(6e2)

provided a ^ 0

and R(a)h(a)-ah'(a) i 0 .

The last condition represents a kind of "orthogonal" perturbation h

which does not affect the solution c of (1.1) to first order.

Comparing (8.2) and (8.1) we see that for a typical perturbation

h, the zeros of p move away from a much faster than the zero of f.

Since those ill conditioned zeros of p are moving in opposite direc

tions, the smallest circle containing them will also contain a solu

tion of (1.1) whenever p is close enough to the manifold of polyno

mials with double zeros.
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For further comparison, consider the change in the zero of the

derivative of p. If a+ 66 denotes the zero of p', we find that

66 = (-h'(a)/2q(a))6e

provided h'(a) f 0. So the zero of the derivative also changes

linearly with 6e. If (R(a)h(a)/ah'(a)) is sufficiently small —

as must occur if a is sufficiently close to zero — then 6c and

66 are nearly the same. Unfortunately 6c and 66 are quite

different in general so 66 may not serve well as an estimate of 6e
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CHAPTER VII

PERTURBATION THEORY FOR MULTIPLE ZEROS OF POLYNOMIALS

1. Introduction

In this chapter we will recall the standard theory of perturba

tions of multiple zeros of polynomials, discern its limitations, and

propose a more satisfactory theory which reflects the insights gained

from the research described in previous chapters.

To recall the classical theory, start with a polynomial with

multiple zero a:

P(t) = (T-a)mq(x) , q(a) f 0 .

The condition q(a) f 0 means that the multiplicity of a is pre

cisely m. We wish to see how an arbitrary perturbation of p affects

a. In general a will tend to split up into m distinct zeros.

Apply a perturbing polynomial er(x) of degree at most n-1 to

get

p(x) - (x-a)mq(x)+er(x) .

If (T-a)m divided r(x) then the problem would be uninteresting

since the m-tuple zero a would retain its identity regardless of the

kperturbation. Similarly if (x-a) divided r(x), 1 £k<^m-l,

then the k-tuple zero a would persist after perturbation and the

only interesting problem would be the fate of the zeros of

(x-a) " q(x) + (r(x)/(x-a) ). Thus we may assume without loss of

generality that (x-a) does not divide r(x), i.e. r(a) f 0.

For our purposes the degree of p is presumed to be known and

fixed. Since we are only interested in the zeros of p, there is no
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essential loss of generality in restricting the degree of r to be no

greater than n-1, because a small perturbation er of degree n

would be equivalent to some other small perturbation er of smaller

degree.

Let a+n represent a zero of the perturbed polynomial p:

(1-D p(a+n) = 0= Timq(a+n) +er(a+n) .

Thus

e = nm[-q(a+n)/r(a+n)] .

However our interest is in expressing n in terms of e. Since r

and q are polynomials they may be expanded easily in a Taylor series

about a; thus

e = -ri [q(a)/r(a)] + higher order terms .

Then

n= f(-r(a)/q(a))e] /m + higher order terms .

J.L.

The m different m roots define the different perturbations n

corresponding to the m zeros of p derived from the m-tuple zero a

of p.

Thus we seem to have a series in fractional powers of e when

m > 1. In the next section we will indicate a rigorous justification

for this result and explain a constructive method for the higher order

terms.

Our overall goal is to find series that converge rapidly, since

we do not want to calculate more than one or two terms. Consequently

we want series that converge over the largest possible region so that
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convergence will be fast in the region of interest. If the region of

convergence is not much larger than the region of interest, convergence

is so slow there that the series "fails" in the sense that it is not

practically useful, A worse failure arises when the region of conver

gence does not contain all of the region of interest.
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2. Classical Theory of Expansions of Algebraic Functions

In the previous section we indicated how to solve

(2.1) f(e,n) « nmq(a+n) +er(a+n) = 0 ,

subject to

(2.2)

r
deg q = n - m < n ,

deg r £ n- 1 ,

r(a) f 0 ,

q(a) t 0 ,

for t) in terms of a series in fractional powers of e. Now we will

cite the classical results which justify our approach and explain how

to construct that series.

f(e,Ti) =0 is an example of an algebraic equation defining alge

braic functions e or n in terms of the other. It is easy to get

e as a function of n; our goal is to construct n as a function of

e. We will recall certain results from standard texts, changing the

notation to suit our problem, and omitting hypotheses which duplicate

our assumptions (2.2).

The first result is

Weierstrass' Preparation Theorem [22, p, 105]: There is a

neighborhood

|e| < P-| » hi < P2 f

such that

f(e.n) =[E0(e) +E1(e)n+-"+Em_1(e)nm"1+nm]g(e,n)
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for functions EQ,E,,...,E , which are analytic in that neighborhood

and g which is analytic and never vanishes in that neighborhood.

E0(0) = E^O) = ... = Em-1(0) = 0.

Expansions of Simple Zeros

Consider first the case of expansions of a simple zero. The next

result is a consequence of the preparation theorem:

Implicit Function Theorem [22, p. 109]: When m = 1, then there

is a neighborhood

hi < p-j » hi < p2 >

such that f(e,n) = 0 has a unique root j\ = n(e) for any e in the

neighborhood. n(e) is single valued and analytic in the neighborhood

and n(0) =0.

In other words, in the vicinity of a simple zero a, n may be

expressed as a Taylor series in e. The theorem says nothing about

the size of that vicinity — it may be quite small.

If all the zeros of p are simple, then there is a neighborhood

in which the n zeros of p(x)+er(x) are all simple and they may be

expressed as n Taylor series in e, defining n analytic functions

of e.

Given a function r\(e) defined by the polynomial equation

f(e,n) = 0, a singular point eQ may be defined for our purpose as

one for which the discriminant of f(eQ,n) vanishes. The discriminant

of a polynomial with n zeros a^,a2 an may be defined [10, p. 115]

to be
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D(e) = n (a -a.)2 .
l<i<j<n ' J

D is a function of e because the zeros a. are. D(e) may also be

expressed [12, p. 39] as a polynomial in the n-coefficients of f(e,n).

Then at a singular point eQ, p(x) +eQr(x) has at least one

multiple zero. Bliss [1, p. 29] shows that the radii of convergence

of the n Taylor series for perturbed simple zeros are at least as

large as the distance to the nearest singular point. Thus when per

turbing p(x), with all zeros simple, in the direction r(x), the

expansions in powers of e converge for |e| at least as large as

|cq| in the nearest polynomial p(x)+eQr(x) on the manifold of

polynomials with double zeros. When p and r are real we must

remember that complex e must be considered when computing radii of

convergence.

It is usually the case, moreover, that the radius of convergence

is exactly the least |e| such that p(x)+er(x) has a double zero.

Of course if p and r have some zero in common then the "series"

for that zero will converge everywhere. But in the usual case when

the zeros of p and r are distinct, the Taylor series which

coalesce to a multiple zero of P+ enr can not converge for

hi > h0|.

Expansions from a Singular Point

What if we start from a singular point, where p(x) has a multi

ple zero? The answer is contained in
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Puiseux's Theorem [10, p. 118]: Let rn^l in (2.1). Then

there is a neighborhood

hi < p-, > hi < p2 ,

and an integer k such that ri is an analytic function of 6, where

6 = e. The k values of 6 determine k analytic functions.

Since we require that r(a) j 0 we will find that there are

k = m distinct branches, defining m Puiseux fractional power series.

As before, the radius of convergence depends on the distance to the

next singular point in any of the directions er as e takes on

complex values.

Newton's polygons may be used to transform f into a form from

which it is convenient to construct the actual expansions. For details

the curious may consult Bliss [1, p. 35] or Kung and Traub [40] for a

modern algorithmic account; the process involves expanding f(e,ri) in

a Taylor series in both variables e and n, and then plotting points

corresponding to the terms with non-zero coefficients. Thus

(2.3) f(e,n) =q(a)e°nm + r(a)eV +other terms .

Because our discussion is based on the constraints (2.2) the Newton

polygon has the especially simple form shown in Figure VII.1. Bliss

shows how to use the Newton polygon to discover the substitutions

e = 6m and n = 6<f>

which transform (2.1) to

(2.4) <A(a+6<|>) + r(a+6(J>) = 0 .
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of n tpowers

*w
q(a)e°nm ~ (0,m)

Figure VII.1.

(1,0) - KcOeV
powers of e —»-

Newton's polygon for

f(e,Ti) = Timq(a+n)+er(a+n),
q(a) f 0, r(a) f 0.
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Bliss shows that all the expansions of interest are obtained from

(2.4), which may be solved easily by the method of substitution or by £

faster methods [40] to express <J> as a Taylor series in 6.

Defi ne **

x(x) = -r(x)/q(x)

and suppose

<f> =A+ Be + ce2 +o(e3) ;

then we find that

Am = x(a) ,

B=(A2/m)(x'(a)/x(a)) ,

C=(A3/2m){^+(^)(^)2} .x(a) v m /v x(a) ' J

It does not matter whether we use one value of A and m values of

6 or vice versa. Higher order terms are tedious to derive for

general m.

For m = 1 the expressions become

where

n=Ae + Be2 + Ce3 +0(e4)

A = x(a) ;

(2.5) ^ B = Ax'(a) ;

C=A((x'(a))2 +iAx"(a) ,

For m = 2, however,

n=Ae1/2 + Be +Ce3/2 +0(e2)
where



** (2.6)

<w

fir = x(a) ,

B-|x'(a) ,
C=iA(x"(a) +(x,(cO)2/(2x(a))) .
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3. Failure of Classical Taylor and Puiseux Series Expansions

Suppose wa consider perturbing the quadratic polynomial (x-1)2
p

in the direction toward (x-0) , i.e.

P(t) = (x-l)2 +e(2x-l) .

Then the zeros of p are

1-e±/e2-e =1-e+ie1/2(l-e)1/2 .

We could expand (l-e)1/2 in aTaylor series 1-.L--L2... , yield-
ing Puiseux fractional power series for the zeros; those series can

not converge outside a circle of radius equal to the distance to the

nearest singularity of (l-e)1/2. That singularity is the branch
point at e = 1.

Thus when we consider perturbations of p from one point on the

manifold of quadratic polynomials with a double zero toward another

point on that manifold, the fractional power series expansions of the

perturbed double zero fail to converge rapidly as that manifold is

approached. The same slow convergence occurs whenever we attempt

expansions from one point on the manifold toward another point on the

manifold. For practical purposes, a power series that converges

slowly is worth little more than one that does not converge at all.

Figure VII.2 represents the space of monic real quadratic poly

nomials. Each point in the plane corresponds to such a polynomial.

The coordinates of a point corresponding to

2
P(x) =x +p.jx + p2

are the coefficients p] and p£. The curve is the manifold of

176



963^

w

\
V

Figure VII.2. The zeros of polynomials in the shaded
region may be represented by convergent
Puiseux fractional power series from *.

The zeros of polynomials on the tangent
line may be represented by convergent
finite integral power series from *.
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2
polynomials with double zeros; its equation is p, = 4p?.

2
The * marks the polynomial p(x) = (x-1) whose coordinates

are p^ = -2, p2 = 1. We can imagine perturbing p to any other

polynomial p in the space; then we may ask: can the zeros of p

be obtained from the zeros of p by convergent Puiseux fractional

power series in e(p-p)? The shaded region in Figure VII,2 is the

region of points p for which those fractional power series do con

verge. That region is bounded by the union of the parabola p1 = 4p0
2and another parabola, p,+8p,+8 = -4p2, which is congruent and

osculatory to the first. Puiseux fractional power series expansions

from * will not converge to any point outside the shaded region.

The shaded regions were determined by considering real perturbations

in real directions; that turns out to be sufficient for this special

case of a real quadratic with a double zero. For more general poly

nomials it would also be necessary to consider complex perturbations

in order to properly delimit the shaded region.

What happens on the indicated line tangent to the manifold at *?

That line represents polynomials one of whose zeros is always 1. Then

the appropriate "expansions" for the two zeros of

(x-1)2

when perturbed in the direction

x + px - p - 1

are 1 and 1-e(p+2). This finite expansion converges everywhere

on the tangent line.
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Notice that there are polynomials arbitrarily close to * such

as

(t-1)2 - 6(T +i$-l)

whose zeros can not be represented by convergent Puiseux fractional

power series from *.

In contrast to the case of starting on the manifold, suppose now

that we start off it, but near it. Then the regions where convergence

of conventional Taylor series may occur are circumscribed indeed; see

Figure VII.3 for examples.

In conclusion, we see that the classical Taylor and Puiseux

series approaches for expressing changes of zeros in terms of a para

meter of the perturbations is limited in applicability since neither

series will converge beyond the nearest singularity of the function

they represent. In our case singularities amount to double zeros. In

the next section we will see how to alleviate this problem.
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Figure VII.3. The zeros of polynomials outside the shaded
regions can not be represented by convergent
Taylor series from *. © marks a polynomial
close to * whose zeros can not be so
represented.
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4. Why Find the Nearest Polynomial with a Multiple Zero?

Suppose that the output of a physical system may be modeled by

the zeros of a polynomial. p whose somewhat uncertain coefficients

may be computed from experimental data. Suppose furthermore that

polynomials with multiple zeros lie within the region of uncertainty.

We may desire to determine how the zeros of the polynomial can

vary as the coefficients vary within their uncertainty. A natural way

to do this is with a Taylor series expansion of the type described in

section 2, but such an approach is doomed to fail when p is near a

pejorative manifold. Such expansions are not valid across the mani

folds of polynomials with multiple zeros. Thus we can not study the

variation of the zeros of p subject to all perturbations that

interest us if the ball representing our uncertainty intersects a

manifold. Furthermore the convergence rate of the expansions we do

have becomes unacceptable as they approach their radius.of convergence.

Thus we would like to find an expansion process that is convergent in

a ball that is much larger than the uncertainty in p. Then only 1or

2 terms of an expansion would be needed in order to bound the variation

in the zeros as p moves within its ball of uncertainty. See

Figure VII.4.

In the rest of this chapter we will describe a new method for

bounding variations of zeros that may be used in situations like that

of Figure VII.4. This technique is based on finding a polynomial

p= p+6p which is close to p and has as high amultiplicity

configuration as any in the ball of uncertainty. All its zeros are

well conditioned, reflecting the fact that it is far from the next

higher manifold, p would usually be found by one of the methods

181



described in chapters UI-V. When such a p is found, the technique

to be described exploits the manifold on which p lies to obtain

bounds applicable over the entire region of interest.
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t~-

* p»p+6p \
manifold

♦ next higher
manifold

p's ball of uncertainty

Figure VII.4. Moving to a manifold to improve the region of
convergence. Taylor series expansions from p
converge only in the shaded region. Puiseux
fractional power series expansions from
p = p+ Sp converge in a large region as in
Figure VII.2 which however omits points
arbitrarily close to p. The new expansions
from p converge in a region extending to the
next higher manifold and including all of p's
ball of uncertainty.
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5. Resolving Expansions into Components

Our task now is to find a simpler method for describing the

changes in the zeros of a polynomial due to perturbations.

First consider a polynomial on the manifold of polynomials with

one m-tuple zero:

p(x) = (T-a)mq(x) , q(a) f 0 ,

We want to perturb p to another polynomial on that same manifold:

P(t) = (x-5)mq(T) , q(S) f 0 .

The classical fractional Puiseux series approach of the previous

section attempts (and fails) to get from p to p along a straight

line in the space ,of polynomials of degree n:

Kt) = (T-a)mq(T) + e[(T-5)mq(T)-(T-a)mq(T)] ,

See Figure VII.5,

We will instead move along the manifold, regarding it as a

convenience rather than a barrier:

P(t) - [T-(a+e(5-a))]m[q(T)+e(q(T)-q(T))] .

Now the multiple zero stays multiple, and the change in the multiple

zero may be easily expressed as a function of e. If the multiple

zero is a + n then

r\ = (a-a)e

which is certainly convergent for all e. The changes in the other

zeros are described by Taylor series in the classical manner. These
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manifold

Figure VII.5, Two ways to get from p to p. The classical
Puiseux expansion goes directly via p. The
new expansion goes along the manifold via p

185



Taylor series will converge in some region in the space of polynomials

of degree n-m. That region is determined by the locations of mani

folds of polynomials with multiple zeros in the n-m dimensional

space. These manifolds correspond to manifolds of polynomials with

more than one multiple zero in the original n dimensional space.

For a specific example, if we start with a polynomial with a

double zero, so m = 2, we can expand the zeros along the manifold

until we reach a submanifold containing polynomials with two double

zeros, or one quadruple zero, or some other configuration that implies

a multiple zero in q+ e(q-q). A submanifold of polynomials with a

single triple zero, however, would have no effect on the expansion,

for a triple zero in p implies only a simple zero in q+ e(q-q).

Obviously this approach can be extended to polynomials with

several multiple zeros. To get from

m.

p(t) - (n(T-a.) ')q(T)
i v

to

p(t) -(n(T-5.)mi)q(T)

just let

m.

P(t) -(n(T-(o1+e(aro1))) Vtqd)+ e(q(x)-q(T))) .

Suppose now that v/e wish to expand from a polynomial on a mani

fold to a polynomial off that manifold. As we saw in the previous

section, a straight Taylor series expansion may be limited in appli

cability by the presence of the same or other manifolds. From our

present vantage point it appears that the procedure most likely to
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succeed would be to expand along the manifold to get as close as pos

sible to the off-manifold polynomial we seek, and then expand "ortho

gonally" directly from the manifold to that point with Taylor series.

v* We would thus minimize the effect of nearby manifolds on the conver-

* gence of the Taylor series. Figure VII.6 illustrates the notion.

There may still be no reasonable way to expand from p to every

polynomial of degree n. For instance consider the situation in

Figure VII.7. A self-intersection singularity, corresponding to a

polynomial with two double zeros, means that it is impossible to

expand from p to p. If our problem were, however, to expand from

y to p, it might be possible to do so by finding a p on y's

manifold of polynomials with two double zeros.
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manifold

Figure VII.6. Two ways to get from p to p.



$>.

w

#p

self-intersecting manifold

Figure VII.7. There is no reasonable way to expand from p
to j5, or even to p.
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6. A Practical Technique for Bounding Changes in Zeros

In the previous section we introduced the notion of expanding

along a manifold before resorting to conventional Taylor or Puiseux

series techniques. In order to have a technique usable for bounding

changes in zeros as coefficients vary, we need to overcome two

problems:

1) Apparently it is necessary to solve the problem of finding

p, the nearest point on the manifold, for every j$ for which we want

an expansion. As we have seen this is a difficult numerical problem

that is even more intractable symbolically.

2) Our expansions have always been defined in terms of a direc

tion r(-r) and a size parameter e. We would like to state the

expansion directly in terms of the perturbing polynomial without

introducing the additional parameter e.

The second problem may be solved fairly easily by letting e go

to 1 at the end or by ignoring e altogether. We find that the term

that was attached to the k power of e contains powers of r that

are always greater than or equal to k, and thus we can construct a

series in r — whether r is represented by its coefficients, its

zeros, or the value of r and its derivatives at some point. The

next section contains examples of such series.

As for the first problem, we might settle for s, an approxima

tion to p that can be expressed symbolically, s should be a satis

factory substitute in regions where the manifold is not too wild.

Figure VII.8 illustrates the approximation. Instead of p we

could compute a projection § of p on a tangent surface and map s

to a polynomial s on the manifold. We hope that s is reasonably

close to p.
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w

manifold

Figure VII.8.

tangent

As a practical matter, the new expansion must
get from p to p via s rather than p. p is a
polynomial for which p is the closest poly
nomial on the manifold.
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Given p and p, s is uniquely determined by the norm, but

there are many possible ways of mapping from the tangent surface to *

the manifold. Unfortunately there is no simple way of insuring that

I = p when p is already on the manifold. Any discrepancy in this !•/

case is intolerable because it leads to the situation in Figure VII.9 "*

with its familiar problem of short radii of convergence.

Any expansion technique for arbitrary p must somehow recognize

when p is on the manifold. A vanishing discriminant is an example

of a condition characterizing polynomials on the manifold. But such

characterizations are too complicated to be useful.

The notion of expanding along the manifold may still be put to

good use, however, if we only seek bounds on changes in zeros rather

than explicit expansions in terms of a perturbation. Thus given p

with zeros 6. of various multiplicities, we may ask for bounds on

Mil

for zeros §. of polynomials p such that Ilp-fll <_ A. See Figure

VII.10. The variation of 6. with respect to 6. can be thought of

as having two components, one due to motion on the manifold and one

due to motion orthogonal to the manifold. If we can bound these

changes separately and independently then we can add the bounds to get

the overall variation.

Taking a closer look at the components of p-p, recall that

P(t) = (T-a)mq(x) ,

p(x) - (T-afq(T) ,

where



i W,

e^y

manifold

Figure VII.9. Shortcoming in revised expansion method when
p is on the manifold. The Puiseux expansion
from s to p is doomed to have a short radius
of convergence.
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Figure VII.10.

manifold

How do the zeros vary as j5 yaries within
the small ball centered on p? A bound may
be computed by studying the variation in the
zeros as p varies within the larger ball
centered on p.

194

v*



a = a + 6a

q = q + 6q .

q is a monic polynomial of degree n-m; 6q is not monic and is of

degree at most n-m-1. Then

_ m .

p-p - (x-a)m6q(T) + I (,J)(T-a)m-J(q+6q)(T)(-6a)J
j=l J

rm^
where (..) = m!/(j!(m-j)!). We will mostly be interested in the

infinitesimal case for which we need not be concerned about the higher

order terms.

Summary of the New Technique

Before looking at details we summarize the new technique.

Vie are given a polynomial p with a norm and a bound on the

uncertainty in p. We want a bound on the corresponding uncertainty

in the zeros of p.

The ball representing polynomials practically indistinguishable

from p contains some polynomials p with multiple zeros. By the

numerical means discussed in chapters III to V, we locate the poly

nomial p nearest to p with all zeros well conditioned; some are

therefore multiple. Then we may determine a ball about p that con

tains the original ball about p and which is usually only slightly

larger. Then we may bound the variation in the zeros of polynomials

p in this second ball.

To do so we first construct symbolic expansions for the changes

in the zeros of p due to moving to another polynomial p on the
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same manifold but within the second ball (Figure VII.10). For the

multiple zeros a these expansions from a have only two terms but v

for the simple zeros 3 these expansions from B are Taylor series

in the perturbation 6q. vr

Now we compute expansions from p to points p which lie on the *

planes normal to the manifold at p. These symbolic expansions are

Puiseux fractional power series to get zeros a from the multiple

zeros a and Taylor series to get zeros B from simple zeros B.

The series are in p-p which is orthogonal to the manifold at p.

Then we substitute, again symbolically, the series for a and B

in the second sets of series to obtain series for a and & which do

not contain a or B. Finally we may convert the numerical bound A

on the size of the second ball into numerical bounds on the terms of

the series for a and 6.

It is essential to study an example to understand the technique.

The example given in the next section is simplified but contains the

essential ideas.

The method just described ought to be compared to one based on

the results of Brian Smith [42]. Smith uses Gerschgorin circles to
r

obtain bounds for the zeros of a polynomial subject to uncertainty in

its coefficients. Smith's bounds are easier to compute than those

based on expansions, but they may be unrealistic by a factor that is

proportional to the degree of the polynomial. However, they are valid

for finite as well as infinitesimal perturbations, unlike the new

method. Comparative evaluation of the two bounding methods must be

postponed until the new bounds can be computed automatically.
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Notation

Recall the vector notation of chapter I. We will represent q

by a vector of dimension n-m+1 and 6q by a vector of dimension n-m.

Corresponding to polynomial multiplication of 6q by (x-a) define

P, =

f 1

-a 1

-a
> n-m+1

< ^v

0

• 1

-a J
>

n-m

Then corresponding to polynomial multiplication of q or P.,Sq by

(x-a) ~ define

m-1

f 1

-(m-l)a "\

m-1
(-a)

0

1

-(m-l)6

m-1
(-a)

v_
—v—

n-m+1

> n

Then to first order

In chapter VIII we will see that an "orthogonal" perturbation to

p has the form

p-p =W-1A*6Jl
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where A is the m-1 by n matrix

x* - /~n~T ~n-2e* = (a a

fi = e*D

• a 1), which depends on a, hence the ~ in A.

This A should not be confused with the m by n+1 matrix A of

chapters III, IV, and V. A or e without ~ means a = a. 6£ is

an m-1 vector which is infinitesimal like 5q and 6a, To first

order W"1A*6£ = W_1A*6£, so

P =
,-1p-p #W A*6Jt+Pm_1P15q-mPm_1q6a

f 6£l

Pm lPim-1 1

L-mPm-lq J

6q

6a

= M6h .

The matrix operator M is n by n and invertible so a specific infini

tesimal perturbation 5p may be mapped into 6&, 6q, and 6a, the

components of 6h.

We would like to define a region in 6h-space whose image, mapped

into 6p-space, is the ball B6pllw < A. Obviously that region is just

{6h|06hOH<A}

where B6hDH = BM6hll,,. For infinitesimals with quadratic norms this

approach is practical.
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Best Possible Bounds for Changes in Zeros Due to Variations

Over an Infinitesimal Ball

To see how to get the infinitesimal bounds in a series expansion,

let

(6.1)

where

and

IlopB2 =6p*W6p =6h*M*WM6h =6h*H6h = Il6hfl2

' AW"1A* 0 0 ]
H = 0 p1*xp]

0 -mq*XP1
-mP^Xq
m2q*Xq

X = P *WP , .
m-1 m-1

The zero entries in H arise because AP„ , = 0,
m^i

Suppose v/e want to compute the first two terms of an infinitesimal

bound for the zeros a of

P(t) = p(x) +6p(x) = (x-a)2q(x) +6p(x) ,

The change due to the move from p to p is just 6a. The orthogonal

direction is W" A*6£ = W" e6X where e* is the evaluation functional

for a and 6X is a scalar. Then using (2.6),

,-1X(T) =dX it# ,

a-a = /x(a) + jx' (a) + ••• .

,-1
But x(a) = 6X(W" e(a))/q(a) which is just a constant y-i times 6X.

Likewise x'(a) is just a different constant y« times 6X. Thus

o-o= /r^"(6X)1/2+(y26X+6a) +... .
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How large can these terms become, given that B6hBH £ A? The maximum

value of |6X|2 is A2/(e*W"1e£X) so for the first term,

/^(6x)1/2| <j hi
(e*W"1e )1/2
x a a7

1/2

As for the second term,

(Y2 0 1)
6X

|6aJ

-1<B(Y2 0 l)fiHA =/(y2 0 1)H
t *

Y2

Such bounds are achievable by 6h satisfying fl6h||u < A and so are
n —

best possible.

A Region Circumscribing an Infinitesimal Ball

The method just outlined is best possible for perturbations that

are infinitesimal or essentially so. Sometimes we may be content with

bounds that are not optimal but hopefully are realistic.

To that end rewrite (6.1) as

where

V =

B6p[P = 6g*V6g
w

f 1 0 0

0 1 v

0 v* 1

Vs-

(P^XP^-^P^Xq
(q*Xq)1/Z
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and

6g =

W"1/2A*6*

(P^XP^^q
m(q*Xq)1/26a

Then we might let

!W"1/2A*6JtD.
,1/2

BW"1A*6AB <A ,
w —

B(P1*XP1),^6qB2= "P^P^qOyl A ,
Bm(q*Xq)1/26aD2 =milP^ql^al <A;

but depending on v, we might find that the image of the region so

defined does not contain the entire ball B6plltl < A. If q = X-1e
w — ^ a

then v = 0 and the image is just the ball, while if q = P,u then

BvB = 1 and the image is not an n-dimensional ball or ellipsoid but

something of lower dimension which can not possibly contain the ball.

To see what is going on, suppose B6pBw =A exactly and 6£ = 0,

How large can 6a and 6q become? We have

LZ =

so

,m(q*Xq)1/26a .
M vl '(P1*XP1)1/26q -

m(q*Xq)1/26o

6q*(P1*XP1)6q +m2q*Xq|6a|2 =A2/minev

where "minev" means the smallest eigenvalue of

' 1 v"

. v* 1 .
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But the eigenvalues of that matrix are just 1, of multiplicity n-2,

1-BvB2, and 1+llvll2. So at worst

where

2 . A2
jouj 2: "7

rn q*Xq(l-IvB2)

^-iWUl^fvlJ'
2 q*XP1(P1*XP1)-1P1*Xq
2 q*Xq

Therefore our constraints should read

B6Jt,flL =[|W"1A*6£[IW <. A£ =A,
(6.2) ^ U6qBQ =«VlPl6qllW - Aq E*/0-M2)V2 ,

|6a| <Aa =A/WP^qllyd-Bv^)172) .

The image of such an infinitesimal region does indeed contain the ball

D6pQw <_ A, and in fact circumscribes it; the question remains: how

much larger is the image than the ball? If 61, 6q, and 6a have

bounds A., A , and A in the proper norms, then

l+BvD? 1/2
0M6hDw <A{1+21Tir^->,/^ .

Thus bounds based on (6.2) will be realistic if and only if BvIL « 1.

It turns out that BvB0 « 1 if and only if P ,q, which has
c m-i

an m-1-tuple zero a, is far from the nearest polynomial P ,P.u

with an m-tuple zero a. To see this, solve the least squares problem

"find u to minimize BPm Tq-Pm nP-iUfl,," to get
m-I m-I I w

u=(W1/2Pm_lPl>+wl/2p1n-l('
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so

,1Pm-l^Pm-lPlu"w =^m-l^17^1 -wl/\-lPl(w1/VlPl)+)w1/2Vl^
-1q*Xq -q*XP1(P1*XP1)",P]*Xq

=q*Xq(l -BvB2)

and

0Pm-l^

Recall from section II.3 that the condition number y of the

multiple zero a is inversely related to the distance to the next

higher manifold. In fact, from the definition of condition number in

II.4 we know

y >
1_1_ |y(a)|
mw^n iipBHlyiw

for any y of degree n-m or less. Take y =q-P]u in particular
to see

Yil/MP^q-P^P^)

whence

1/(1 -BvB2) <m2DPm-1qB2(l +BvB2)YJ

Thus we have demonstrated the

= 2m OP-^ql^y2nn _n2 2
m-

Proposition. If the condition number of a is small then the

image of the infinitesimal region defined by (6,2) is not much larger

then the infinitesimal ball B6pBw < A.
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Bounds for Changes in Zeros Due to Variation

Over a Region Circumscribing a Ball

When it is inconvenient to bound the changes in the zeros by use

of (6.1) we can resort to (6.2). If the zero a is well conditioned

and the ball is not too big then we have confidence that the error

bounds we derive are not much larger than necessary.

So suppose that A., A , and A bound 6&, 6a, and 6q. How

can the zeros of p vary subject to these bounds? Let a be the

multiple zero and 3 a simple zero of q. First consider possible

changes due to motion along the manifold. Let a and 8 denote

corresponding zeros of a polynomial p along the manifold. Trivially

|5-a| < A .
i ' — a

To get 8 it is necessary to construct a Taylor series expansion. 8

is a simple zero of q; 8 a simple zero of q+ 6q. Let

q(x) = (T-B)qe(x) and

x(t) =-6q(T)/q6(B)

as in (2.5). Then

We

8-8 = x(3)+x(B)x'(B) + -..

|B-B| < |x(8)| + |x(B)||x'(B)| + ... ,

can use B6qflQ £ A to obtain bounds for these terms. For instance

6q(8) = e*6q

where e* is the functional that evaluates a polynomial at 8. Then
p
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v^

l«q(B)l i Beglgliaqlq <Oe*BqAq .
Now

»eSV "Wm-Pm-ipirV2
which is a constant that may be evaluated. So

and succeeding terms may be calculated in the same way. The bounds

can be calculated with just a few terms if q0(8) is not too small.
p

Thus we may bound the change in a and 8 due to movements along the

manifold.

Next to consider are changes due to movements orthogonal to the

manifold. Suppose we are at

P(t) = (T-a)mq(T) ,

and g is a zero of q. Then an orthogonal perturbation is W~^A*6£.

To see what happens to a, use a formula such as (2,6). First

define

x(x) =-(W'1A*6fi,)(T)/q(T) ;

v 1
then for a, a zero of p = p +W X*6&,

5-5= (x(5))1/m+ (x(5))2/m.x'(a)/(mx(a)) +... .
Now

x(5) =-e*W"]A*6il/q(a) ,

|x(a)| <|g*W"1S*6£|/|q(a)| .

If p\ are the zeros of q, then |q(5)| =n|a-B.|.
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A lower bound may be calculated by using

|S-B1I 1 |a-8.| - Aa - AB.

206

where A8- is the bound for IfL-B. | computed previously. <*

As for the other term,

y t

|e*W"1A*6£| <le*W"1A*0LD6ilDL <flenf^O^ ;

Oe*W"1A*0L =Ile*W"1A*(AW"1A*)"1AW"1eB2 .

Since |a| -A < |a| < |a| +A we can compute a bound for |x(5)| and
a — *"• a

for the other terms of |a-a|.

Similarly we can compute a bound for |B-8| for 8, one of the

other zeros of cj. The process is similar to that for |8-8|.

Obviously these derivations would be much less tedious if a

suitable algebraic manipulation system were available to do part of

the work.

So far it may not be apparent that the process described is much

of an improvement. A simple example in the next section shows that

the payoff can be substantial.
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7. An Example of Expansions

We will apply both the classical and the new expansion techniques

to an example. It will become evident that the new expansion technique

is very much dependent on a symbolic manipulation system like MACSYMA

or REDUCE [38] for its successful implementation. Even though the

example we provide is somewhat contrived, the amount of algebra

required is substantial.

We will study the zeros of polynomials in the neighborhood of the

real cubic

p(t) =t3 -(1+6)t2 -(1+6)t + (1-6) ,

with 6 = 1E-6. Its three simple zeros are

g = - .99999975 ,

^ = .99877563 ,

a£ = 1.00122512 .

The last two of these are somewhat ill conditioned. We will use the

uniform norm in which all weights are 1; then the condition numbers of

a.| and a2 are about 350; the condition number of 0 is about .43.

The results are given in Tables VII.1 and VII.2. p is the

original polynomial with zeros Sj, a2, and 8. p is the nearest

polynomial with a double zero:

p(t) = (T-a)2(T-8)

where a = l and 8 = -1. Finally g and 5 represent zeros of an

arbitrary polynomial p such that r = p-p with DrB < a, or

r = p-p with flrfl <_ A.
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Table VII.1. Expansions to p

Classical Taylor series

From 6 = -.99999975, a simple zero of p:

g=8- .25?(8) + .25?(8){.25r(8) +.25rl(8)} + 0(?3) .

From 8 = -1» a simple zero of p:

6=8- Jr(8) +Jr(8){}r(8)+Jr»(8)} +0(r3) .

From a1 = .99877563 or ag = 1.00122512, simple zeros of p:

a1 =ai +204r(a.,) +204r(a1){83282r(S1) +204r'(S1)} +0(r3)
a2 =a2 - 204r(a2) - 204r(a2){83386r(S2) -204r'(S2)} +0(?3)

Classical Puiseux fractional power series

From a = 1, a double zero of p:

a=a+/ir(a) +̂ r(a) -r» (a)}
1n i i i (ir(a)-r'(a))2+J/JrW{-Jr(a)+Jr'(a) -Jr''(a) -2 4r(a) }

+0(r2)

"Expansions" based on the new technique

From 8 = -1» a simple zero of p:

8 = 8 - 6q

I»8+xg(5) +xg(B)x|(B) +0(x|)
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From a = 1, a double zero of p:

a = a + 6a

a=5+A5(5) +lxi(5)
i (xi(5))2
+l/x5(a){xS(a)+12__} +0(x52)
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Table VII.2. Bounds on Zeros

Crude bounds based on classical expansions

|g-8| < .43A + .43A2 +0(A3) V

|B-3| <.43A + .43A2 +0(A3)

|i2-S2| <353A +5.1E7A2 +0(A3)
|a-a| <.93A1/2 +.78A +(.60+ A3 —)A3/2 +0(A2)

^|r(a)|/A

Crude bounds based on the new technique

|g-8| <.84A + .38A2 +0(A3)
|a-a| < .93A1/2 +1.00A + .66A3/2 +0(A2)

Best possible bounds based on classical expansions

|8-8| < -43A + .078A2 +0(A3)
|g-8| <.43A + .078A2 +0(A3)

|a2-S2| <353A +5.1E7A2 +0(A3)
|a-a| <.93A1/2 + .42A +(.13+ ;22 -)A3/2 +0(A2)

/|r(a)|/A

Best possible bounds based on the new technique

|8-8| <.43A +0(A3)
|a-a| <.93A1/2 +.42A +.0084A3/2 +0(A2)



*®r.

Table VII. 1 represents expansions to p from p and p. There

is little difference in the expansions for g, but the difference for

a is remarkable. Starting from the ill conditioned zeros a, the

Taylor series terms have huge coefficients reflecting short radii of

convergence. In contrast, the fractional power series expansion from

the double zero at a has modest coefficients but exhibits a different

kind of shortcoming: in certain directions the fractional power series

does not exist at all, namely those directions, tangent to the manifold,

such that r(a) = 0. Then the coefficient of the third term becomes

infinite because its denominator contains (r(a)) ' . As we have seen,

in this direction the proper series expansions consist of a trivial

one a = a and a Taylor series in integral powers of r. It is easy

enough to bound changes in that special direction; the severe problem

is that when r(a) is not zero but is small compared to Br||, the

terms in which r(a) appears have huge coefficients.

"Expansions" are also given in the form produced by the new

technique. These expansions are not useful until converted into

bounds, since they are not in terms of a perturbation r but rather

depend on the unknowns 5 or 8, and on x, which is defined below

in terms of an orthogonal perturbation.

Table VII.2 shows bounds for the changes in the zeros based on

the expansions. The table gives both "crude" bounds, which reflect

the simplest approximations that come to mind, and "best possible"

bounds which reflect a finer analysis. An automatic symbol manipulator

might produce rather crude bounds while the best possible bounds would

likely be produced by a human analyst.
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The bounds for 5 are not of much interest. The bounds for a

reflect the same difficulties as the Taylor or Puiseux series from

which they were derived. The interesting part of Table VII.2 shows

bounds for small A based on the revised expansion techniques dis

cussed in the previous section. The important improvement is that the

bound for |a-a| is now independent of the direction of r and all

the coefficients are of modest size. Furthermore the first two terms

are the same as the best classical bound. The new technique may be

used for bounding until A becomes comparable to |a-8|.

Thus this example vindicates the approach advocated in the previous

section. The rest of the current section provides the details of

computing Tables VII.1 and VII.2. Those details provide convincing

evidence that practical exploitation of the new expansion technique

requires a sophisticated symbol manipulation system.

The bounds computed by Smith's method [42] are somewhat larger

than those in Table VII.2. In particular, that method indicates

|a-a| <1.32A1/2 + 0(A) .

Details of Expansions

We first construct the expansion from p. If we consider a per-

turbation er(x) to (T-a.)q.(x) we find, according to (2.5), that
• ii

the perturbed zero

a.. = a\ + x(a\)e + x(a..)x,(a\)e +•••

where

x(t) e -r(T)/q.(T) .
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Thus if i=1 then ^(t) =(T-6l2)(T-a3); a3 =§. Also

x(a.j) = -Ha^/fa^-agMa-i-a^) ,

r[oL^){2oL^z-a3) r'(a\|)
^ "((S1-a2)(a1-a3))Z "(a1-S2)(a1-a3) '

We may represent the polynomial r by the value of r and its deri

vatives at a, or by its coefficients. Using coefficients,

r(-r) = r^T + r2T + r3 ,

r(a-j) = r]a1 + r^ + r3 ,

r'ta-j) = 2r]a1 + r2 .

Finally let e + 1 to obtain a Taylor series in the coefficients of r.

Notice that in the first order term those coefficients appear linearly,

in the second order term they appear quadratically, etc. Substituting

numerical values yields

5=6- .25r(8) + .25r(8){.25r(8) +.25r'(B)>+ 0(?3) ,

51 =a1 +204r(o1) +204r(a|){83282r(o1) +204?'(a^} +0(r3) ,
a2 =a2 -204r(a2) -204r(a\,){83386r(S2) -204r' (fig)} +0(r3) .

The expansions for a^ and 52 look unlikely to converge for other

than small f; in fact there is a polynomial p with a double zero

at distance flfl k 1.7E-6.

We now consider expansions from

P(t) = (T-a)2(x-8)

with a = 1 and 8 = -1. We will compute the effect of a perturba

tion r(x) = p(x) -p(t) on a and 8. For 8, following (2.5),



defi ne

so

Then

and

so

so

and

Then

x(t) = -r(x)/(T-a)2

(x-a)3 (x-a)2

x(8) =-̂ r(e) ,

x'(8) =-Jr(B) -Jr'te) >

g=8-ir(B) +^r(8){r(8) +r'(8)} +0(r3) .

Following (2.6) in corresponding fashion for a, define

x(t) = -r(x)/(T-8)

(t-8)2 (T"3)

(t-b)3 (t-e)z (T_$)

x(a) =- gi"(a) ,

x'(o) =Jr(cc) -Jr'(o) ,
x-(a) -.- Jr(o) +Jr'(a) -Jr-(o) •

Finally

5=a+/£r(a) +Jr(o) -Jr'(a) +J*^(a) x-(a)

(ir(a)-r'(a))2 -
+ -? + 0(r*-) .

s/lr(a)
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Bounds from Expansion

The changes in zeros may be crudely bounded in a straightforward

way:

|8-8| <.25|r(8)| +^|r(8)|{|r(8)|+|r'(8)|> +0(r3) .

But |r(8)| < 0(82 8UB-llril < fi A. Similarly
|r'(8)| < B(28 1 0)OBrD < J$ A. So

I&-8I = .433A + .430A2 + 0(A3) .

The bounds for |g-8| and |a-fi| are similarly derived. As we have

seen, bounds for |a-a| independent of r do not exist.

We can improve on these bounds by taking a little care. For

instance, the second term in the expansion for g-8 is

r(8)(r(8) + r»(8)}/16 .

Writing r(x) =^x +r2x +r3 we find that term becomes

(rrr2+r3^"rl+r3)/16 •

Then the question is: how large can

Krrr2+r3)("rl+r3)'/16

be, subject to the constraint BrB2 =|r1|2+ |r2|2+ |rJ2 =A2 ? This
problem in non-linear optimization can be solved, for instance with

a Lagrange multiplier, to find that the desired maximum is .0776A2.

Similarly the second term in the expansion for a-a is

^(a)-r'(a)) .
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While we could bound the term as

1/15^|r(a)| +|r'(a)|) <v^A/8 +v^A/4 = .776A ,

we do better to observe that r(a) =r, +^2 +r3 so we wisn to maximize

ll-l.S^-^ +̂ l <J|(-1.5 -11)0
r ^

ri

3J

< (/TT/8)A = .415A .

Bounds from the New Technique

Now consider how the zeros change when subject to perturbations

of the form discussed in section 6. First, p is perturbed to

p(x) = (x-5)2(x-8)

by movement along the manifold. Then, an orthogonal perturbation

6\e =6X((5*)n"1 (5*)n"2 ••• a* 1)

is applied. The total perturbation should be commensurate with A

which to simplify matters will be taken to be no larger than 10 .

Corresponding to the bound BrII <_ A for the conventional expan

sion we have (6.1):

f ~. \

6X
n2

6X * 6X

6q <5q H 6q

6a
H

6a 6a

< A4
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To compute the components of H, note

So

AW 'A* = e *e
a a

= 3 »

' 1 0 '

Vi = -1 1

-1

9

' 2 -1
X = Vi*wVi =

k-l 2

' 1
'

pl
=

.-1
' 1 '

9

q

' 1 '

»

Xq ~

,1 .
»

P,Xq = () ,

q*Xq _ *I

P1*XP1 = (

' 3 0 0 '

H = 0 6

0

0

8

•

We will compute the best possible bounds from H, but for the crude

bounds we will use (6.2). Then v = 0 so (6.2) becomes

|6X| < [S5/3)L ,

|5q| = |68| < (^/6)A ,

and |6a| < (>^/4)A .

In the usual case when deg q > 1, 68 is a Taylor series in eq

The variation in the double zero 5 and the simple zero g is

thus easily bounded for movements along the manifold. Now we turn to
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the effect of the orthogonal movement in the direction 6Xe. The

effect on 8 may again be deduced from (2.5); let

218

x(T,..«xIM^- ^
so

Then

and

(x-5)'

,(T) =5x{2l(5*T)"-J.^(n-j)(a*x)"-J-1}
(x-5) (t-5)

x(8) --6X(I(5*8)n"j/(3-5)2)

x.(g, =̂ (^^^.^(n-jjta^)^-^ m
(g-a)3 (g-5)2

Since |a-a| < A and |8-8| £ A and A < 10 , in the bounds that

follow no harm is done by substituting a for a and 8 for 8,

since the resulting coefficients will only be given to 3 figures. For

larger A more care must be taken. In particular, if the perturbation

along the manifold is extended far enough to reach the next higher

manifold, where a = 8» the bounds below will be utterly wrong.

To get a crude bound, we would use

|x(B)| <16A|(115*6rj/16-512) =||6X| <£a ,

Then

Since

we get

|x'(8)| <|«A|.fi^A -

Ml £ |x(g)| + |x(6)||x'(8)| +

< (v^/4)A + 3/8 A2 + ... .

8-8| = |68| < W6)A ,



♦^

8-8| <(^+^)A +|a2+ ^.
< .841A + .375A2 + 0(A3) .

For a more refined bound, just be more careful:

x(8) =-16X ,

x'(8) = 0 (+ higher order terms) .

x'(8) is exactly 0 when 5 = a and 8 = 8, and has higher order

terms otherwise. x(g) also has second order terms which we have not

bothered to extract.

g-8=8-8+8-8=-6q + x(g) + x(8)x'(g) + •••

=-6q -1$X +0+ ••• .

A best possible bound for |-6q-ySX| may be obtained from the condi

tion B6hBH < A:

(-| -1 0)
r6\"
6q
6a

(-i -i o

=AK-1 -l OH'1

6q

r.1
4

-1

I 0

6hflH <y^A.

The corresponding computation for a is slightly more compli

cated:

x(t) =-6X(X(5*T)n-j)/(T-6) ,

x'(t) .a[y(5*T)"-J 5*y(n-j)(5*T)n-j-1] >
(x-B)"5 (x-B)

X«(T) =5x[(5*)2y(n-J)(n-j-1)(g*T)n-J'-2 25*7(n-,iH5*T)n-J-1 2TfS*x^
(r-g) (t-W (t-IF
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Substituting we find

x(5) =-6X(I|5n-j|2/(5-B)) ,

a"'3!2 5*y(n-j)|5n-J-1i2
(5-B)2 (5-6)(s-§r fa"6-

x«(a) =aC(5*)2y("-J)("-J-1)l5n"J"2l2 25*y(n-j)|5"-j-1l2
<5-B) (5-B)2

+2yi" r}.
(5-B)3

Then to get a crude bound,

|x(5)| =f|6X| <(^)A ,
|x'(5)| <|6X|(|+|) <f^A ,
|x"(S)| <|6X|(l+|+f) <(^)A

Since

then

or

•/2^^2
a-a =6a +A(a) +ic' (a) +l/x(a){x"(a) +(x' (ffi }+

2 4 2x(a)

r i ^ J^aV2 x rl^Tx^A x iJ^fls/J, 9^A3/2 A
|a-a| 1 »VA Ir* "P TlTH^T TFJa

|a-a| < .931A1/2 +1.003A + .663A3/2 +0(A2) .
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To get the corresponding best possible bounds, note that

x(5) =-|6X ,

x*(S) =-ySX ,

x"(S) =^tSX .

Then for the second term 6a +ix'(5) we have

|6a-|6X| <II(-|0 1)BHA =̂ A

For the third term,

j^m^H/aw (x'ta))^
4 lX U} 2x(a) J =1#It-ttII^I3/2i-^4a3/2
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CHAPTER VIII

EXPERIMENTAL METHODS

1. Introduction

In the next chapter experimental results will be given which

vindicate the theory of previous chapters. After that we will pre

sent experimental results for a class of polynomials more difficult

to understand.

In the present chapter we describe how the nearest polynomials

with given multiplicity configurations were found. Then we explain

the tests made to assure the validity of the results. Finally we show

how to contrive test problems with known answers.

Experiments were carried out on the CDC 6400 at the University of

California, Berkeley. Coding was in the FORTRAN language for the

University of Washington RUN compiler. Although most of the codes

usually perform satisfactorily in the stated environment they are not

presently in a portable form that would work reliably in other envi

ronments. Consequently a detailed discussion and listing of these

codes is not included here.
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2. How the Equations were Solved

Chapters III-V presented various equations to be solved for

solutions c corresponding to nearest polynomials with one or more

u multiple zeros. Expressions were usually obtained both for a function

^ and its partial derivatives so that Newton's method could be applied.

To use any iterative method, however, starting guesses must be

^ supplied.

Usually the starting point was taken to be a zero of the appro

priate derivative. Thus, if the nearest polynomial with a double zero

was sought, a starting point would be chosen from among the zeros of

the first derivative. One might try to use the zeros of the original

po.ynomial, but the zeros of the derivative seemed more often to lead

to faster convergence.

In order to maximize the probability of first finding the globally

nearest polynomial with the desired multiplicity configuration, the

starting points were tried in a definite order. That order was fixed

by computing the distance to the nearest polynomial with that start

ing point as a double zero. That distance is an upper bound for the

distance to the manifold from that starting point. The starting points

with the least upper bounds were used first.

The same criterion for choosing among starting points could be

used if the starting points were the zeros of the original polynomial.

In this case, however, it would be equally appropriate to rank the

starting points according to their condition numbers.

Once a starting point was chosen, Newton's method was used in all

but one instance. That case exploited the fact that the equation for

the nearest polynomial with a double zero always has a real solution
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between two real zeros of a real polynomial. Those two real zeros may

be used as starting points for a secant-like iteration for c; among

many such iterations Brent's [2] is a well known recent one. Brent's

method was used to quickly locate real solutions whenever appropriate.

In order to terminate the iteration an error bound on the func

tion evaluation was computed. When the function whose zero was sought

was reduced below its error bound, the current iterate was accepted as

a zero. These error bounds were usually computed with the aid of

interval arithmetic [24]. The lack of suitable facilities for inter

val arithmetic in CDC hardware and software made it necessary to code

interval operations as subroutine calls — making the codes for the

functions virtually unreadable, and thereby providing another reason

for not publishing those codes here.

If no solution was found after a fixed number of iterations

(usually 40) the iteration was terminated and another starting point

tried. If a solution was found it was added to the list of known

solutions used to deflate the function, as described in one of the

appendices.

When all the reasonable starting points had been tried the

accumulated solutions were checked for correctness and the correspond

ing perturbations analyzed.

224



3. How Do We Know the Answers are Correct?

^ The methods just described produce one or more solutions c

corresponding to locally nearest polynomials with a given multiplicity

*-* configuration. The next step is to compute each polynomial from its

~ C and check that it is indeed an appropriate solution. Because no

similar computations suitable for comparison have been published,

r extra care was necessary to be sure that the numerical results were

reliable.

It must be understood from the outset that in general we can not

be sure of having obtained the global minimum. With no theoretical

information on the size of the second derivative or on the number of

local minima that may exist in a region the best that can be done is

to obtain as many local minima as possible and examine each. Empiri

cally we have never found more than n+2 local minima while search

ing for the nearest polynomial with a single multiple zero, so that

task is not quite hopeless. Furthermore, whenever one might reasonably

expect from the nature of a problem that one minimum would clearly be

much better than the rest, that minimum has always been found approxi

mately as expected. An example of such a problem is one in which a

perturbation is applied to a polynomial having one multiple zero and

several simple zeros, all well conditioned in the sense of chapter II.

Thus the perturbed polynomial has simple zeros near the simple zeros

of the unperturbed polynomial, but the multiple zero has divided into

several very ill conditioned zeros. When the computer codes are asked

to find the polynomial with an appropriately multiple zero nearest

that perturbed polynomial, they have so far always found a locally

closest polynomial with a multiple zero near the multiple zero of the
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original unperturbed polynomial. In the circumstances described,

moreover, none of the other local minima are competitive in distance. <*

Thus it seems highly likely that the best local minimum is really the

global minimum. '*

There is the additional complication that our results are for

real polynomials and, as we have seen in chapters III and V, it is

sometimes necessary to solve an extra set of equations for higher

multiplicity in order to find the global minimum. In our experience

with double zeros, only once has a better minimum been found by solv

ing the equation for a triple zero. Thus our overall results are

probably not seriously compromised by failing to check for quadruple

zeros when searching for triples, or for various higher configurat'ons

when searching for two or more doubles.

The reader may wonder why it is so easy to find the c's when

the starting points are near ill conditioned zeros of a polynomial.

After all, ill conditioned zeros themselves are almost by definition

difficult to find.

The explanation lies in the form in which polynomials are pre

sented to our codes, namely as a list of their zeros. If the polyno

mials were represented by their coefficients, as they are represented

to a subroutine to find zeros of polynomials, then the solutions c

to the equations we wish to solve would also be ill conditioned func

tions of the input data. But since ill conditioned zeros are normally >

recognizable as a problem requiring amelioration only when those zeros

are in hand, the sensible form for representing that ill conditioned

polynomial is by its zeros rather than its coefficients. In that form



the polynomial may always be evaluated with low relative error, even

near its zeros.
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4. Computed Checks on Results

Once a c has been found, we can compute the perturbing polyno

mial q(x) by an equation such as (III.6.4). Then p(x) +q(x) should

be locally nearest to p(x) and should have a multiple zero c of

the intended multiplicity m, or several c's of appropriate multipli

cities if that was what was requested.

Analytical errors, approximation errors, coding errors, and

rounding errors could all cause the results to be other than expected,

so each assertion about p+ q is checked in the codes.

Note that p+q is never represented by computing the coeffi

cients of p+q. Since the coefficients of q are usually intended

to be small perturbations of the coefficients of p, adding them

together would entail severe loss of significance. Therefore to

evaluate (p+q)(n) at a specific r\9 compute

n

p(n) = n (n-a.)
1-1 1

and

n
n-iq(n) = I q,n

i=l

and then add p(n) and q(n).

Using this evaluation scheme our first task is to check the asser

tion that c is an m-tuple zero of p+ q, i.e.

P(k)(c)+q(k)U) =0, k=0,..,,m-l ,

We do not expect that equation to be satisfied exactly on a finite

precision computer so we compute error bounds by interval arithmetic
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and ask only that

T |p(k)(0+q(k)U)|

^ be within its error bound. That proves that p+q satisfies the con

straint of lying on the manifold of polynomials with m-tuple zeros.

The next assertion to be checked is that p+q represents a

stationary point on the manifold with respect to Oqfl. The analysis

of chapter III shows that this is the case if either the last Lagrange

multiplier vanishes or the multiplicity of c in p+q is at least

one greater than requested. For our codes the last Lagrange multiplier

is usually forced to be zero in the solution process for c and q.

If we wish to examine other stationary points which, as we have shown,

can not be minimal with respect to complex perturbations, we check

that one of the stationarity conditions is satisfied.

After checking stationarity we turn to minimality of Dqll.

Minimality may be checked by examining the Hessian matrix of second
2

derivatives of ilqll . Given any fixed c, there is a unique q

closest to p such that p+q has an m-tuple zero c. Thus Dqfl

could be regarded as a real function of two real variables, Re ; and

Im c, for which partial derivatives can be computed to provide a 2 by 2

Hessian matrix. Alternatively the method of section III.10 could be

used to compute a Hessian matrix for the coefficients of q and the

C's which are now regarded as independent except for constraints. To
p

simplify computation only real changes in q and c were considered

in computing the constrained Hessian of dimension n+ 1 -m.

Using either Hessian, minimality could be checked by computing

the signature. Actually the complete set of eigenvalues was computed
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to ascertain the shape of the minimum. Minimality corresponds to all

eigenvalues positive; maximality to all negative; other configurations

correspond to saddle points.

After the checks listed above, the other zeros of p(x)+q(x)

were computed, assuming that the m-tuple zero c was known. Then the

n zeros were used to reconstitute the coefficients of a polynomial

whose coefficients should be close to those of p(x) + q(x). The

explicit coefficients of p+ q were computed for use in this check

only. The maximum relative difference was noted and flagged if larger

than roundoff error level. If no flag was noted then the zeros of

p+ q were assumed to be reliably computed and their condition numbers

were calculated. Of special interest was the condition number of the

multiple zero c which should have been much smaller than the condi

tion numbers of the ill conditioned zeros it replaced.

When computing q and II qB in cases where we expect the last

Lagrange multiplier to be zero, we usually forced it to be zero while

solving the linear equations for q. We could, however, solve a

system of linear equations of dimension one larger, Then, because of

rounding error, we expect the last Lagrange multiplier to be small but

not zero. So as a check we re-computed q and flqll using the non

zero multiplier. The two values of OqB are compared and flagged if

they differ by more than a few units in the last place of precision,

Finally a number of random small perturbations of c were made

and the distance to the nearest polynomial with the perturbed c as a

multiple zero was computed. Since the original s was alleged to be

a minimal point, a message was printed if any of the nearby polynomials

were significantly closer to p.
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All the experimental results to be presented in this chapter and

the next satisfied these checks unless otherwise stated. Thus there

is a basis for confidence that the various complicated equations that

were solved for one or more c's were in fact formulated and solved

correctly.

y
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5. Setting Up a Problem with a Known Solution

While developing computer codes it is sometimes desirable to

solve a problem whose answer is known. Although it is not known how,

for instance, to set up a polynomial such that the globally nearest

polynomial with an m-tuple zero has the m-tuple zero we specified in

advance, it is a simple matter to set up such a polynomial so that a

locally nearest polynomial has that specified m-tuple zero.

One's first thought might be to start with a trivial problem whose

solution is known and apply a random perturbation. This is done for

some problems described in the next chapter. For instance, a small

random perturbation may be applied to the coefficients of a polynomial

with a double zero to obtain a nearby polynomial with two ill condi

tioned zeros. Then the computer codes find that the nearest polynomial

with a double zero has a double zero near the one we started with.

Figure VIII-1 shows why the double zero is not the same; a perturba

tion in a random direction is not generally "orthogonal" to the sur

face. The change in the multiple zero is usually commensurate with

the size of the perturbation when the multiple zero is well conditioned.

It is possible to set up a perturbation so we return to a speci

fic multiple zero, however. Recall the equation, (III.6.2), to be

solved for the polynomial nearest p with an m-tuple zero c;

f(C,p) =det(Ap ;AW_1A*Z) =0.

Z is a constant truncator matrix, W depends only on the norm, and

A and A depend only on C.

Normally p is given and we seek c by solving a highly non

linear equation. But now we wish to find p given 5. From the
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Figure VIII.1. p has a multiple zero. A random perturbation
to p produces p. p+ q is the polynomial with
a multiple zero closest to p.
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properties of determinants it is apparent that f(c,p) is a linear

functional of the vector p, so f(c,p) = u *p for some u * which

depends on c but not p. Then to find such a p it is only neces

sary to obtain one of the members of the (n-1) dimensional subspace

of solutions of u *p = 0.

As an example, suppose we wish to start with a polynomial p

with a double zero at a, so f(a,p) = 0. We then want to find a q

such that p+ q has a locally nearest polynomial with a double zero

at a. Presumably that nearest polynomial would be p if q is not

too large.

We find then that f(a,q) = 0 is the requirement on q. We can

find such a q by letting qQ be a polynomial with random coeffi

cients and q, be the constant polynomial whose value is 1. Then

q=q0-f(a^Tq

is the polynomial we seek. It may be verified that f(a,q,) f 0 for

m = 2 or 3.

Then we may apply the computer codes to p+ q to verify that

they do find a locally nearest polynomial with an m-tuple zero a.

We could impose an even more stringent requirement: that the

closest polynomial to p+ q with a multiple zero be p itself. This

is just as easy to arrange. Recall the notation from chapter III for

finding the polynomial p+ q with a multiple zero c nearest a poly

nomial p. For our present purpose p = p+ q and p+ q = p so

q = -q. But

q=W_1M
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for some m-1 dimensional vector i of Lagrange multipliers. So our

recipe is: choose any random m-1 dimensional vector u and let

p+q = p-W A*u

be the perturbed polynomial. Then we may verify that the equation

for c,

det(Ap jAW'Vz) =0 ,

is trivially solved when c = a, for then

where

Ap =-AW"]A*u

= - AW~]Au

u

u =

o

The matrix whose determinant we seek is just

AW~V(u iZ)

and the bottom row of the rightmost factor vanishes as does the

determinant.

When solving for Lagrange multipliers I,

AW 'A*Jl = -Ap = AW 'A*u ,

and since the rows of AW" A* are linearly independent, £ = u as we

hoped, and q = -q. Thus

* — I a

{q|q =-W"1S*G}
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is indeed the subspaca of perturbations of p for which p is a

locally nearest polynomial with an m-tuple zero. ^

$



CHAPTER IX

NONPATHOLOGICAL EXPERIMENTAL RESULTS

1. Introduction

We turn now to presentation of some results of calculations per

formed on specific polynomials. The results in this chapter generally

tend to vindicate the theory.

Calculations were usually based on the methods described in the

previous chapter. The norms used were weighted least squares norms

intended to minimize relative changes in the coefficients of the

starting polynomial. Thus if the monic starting polynomial of

degree n were

P(T) = II(T-CU) =Tn+ I p.T^*
i=l n j=l J

then polynomials

q(T) = I qixn-J"
J-lJ

would be sought such that p+q had the desired multiplicity struc

ture and

i«w5 twjlqil2J-1 J J

was minimized. Usually w.. =V|p,|2 but sometimes w. =l/|p.|2
was used instead, where

p(t) e n (x-|a,|) .
i=l 1
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The latter norm is applicable when some of the p.'s vanish.

The choice of norm also affects the condition numbers. Generally f

condition numbers for relative changes in the zeros are used.

In the first cases the "right answer" is obvious and the codes do *

indeed recover that answer.



2. n-tuple Zeros

Equations for finding the nearest polynomial with an n-tuple zero

are given in section III.2. The present example was created by ran

domly perturbing a polynomial whose quintuple zero 1 has condition

number .135. A perturbation of norm .749E-12 was applied in a

random direction to create p whose zeros are

.99557908 ± .32081885E-2 1

1.00168511 ± .52020041E-2 1

1.00547160 .

The condition numbers of these zeros vary from .353E+10 to

.357E+10. The equations for finding the nearest polynomial with an

n-tuple zero were solved by Newton's method, starting from the arith

metic mean of the five zeros of p(t). The result was that the

nearest polynomial with an n-tuple zero had the n-tuple zero

1.000000000000007 with condition number .135.

Corresponding results were obtained for similar polynomials of

degrees 8 and 20. Although the n-tuple zero is easy to find, the

nearest polynomial with a real double or triple zero is sometimes

difficult to locate, especially if n is odd. There are usually

numerous nearby polynomials with a complex double zero, and for some

of these may be found a nearby real polynomial with a complex conju

gate pair of double zeros.
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3. Returning to a Double Zero

The next polynomial has six zeros -2, -1, 1, 1, 2, and 3. The f

worst conditioned of these is 3, with condition number 43.4. The

double zero at 1 has condition number 5.04. ^

A random perturbation of norm .438E-8 was applied, creating a

polynomial p:

Zero Condition number

-2.00000000 2.89

-1.00000000 2.91

.99999998 ± . 10462513E-3i .557E+5

2.00000011 19.5

2.99999992 43.4

The methods of chapter III were applied to find the nearest poly

nomial with a double zero, and a polynomial p+ q was soon found

whose double zero at .99999998 has condition number 5.04. llqO = .94E-9

and the other zeros were not changed by more than .0000007.

Other locally minimal polynomials with double zeros were also

found. For instance the next closest one has a double zero at 2.5397

with condition number 3.85, and the worst conditioned zeros of p+ q

are .952±.158i, with condition numbers 28.6. But DqH = .385E-2,

so this perturbation is over a million times larger than the previous

one. By taking such a large step we manage to decrease the worst con

dition number only by a factor of 2, and this perturbation seems much

less natural than the previous one.

Similarly when we seek the nearest polynomial with a triple zero,

we find we must let IIqB = .017 in order to reach the polynomial with
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a triple zero at 1.20. The worst conditioned zero of that polynomial

has condition number 8.64.

Thus we find that by forcing a large enough perturbation on p

V* we can make its zeros as well conditioned as we want. However in this

case we find that there is an "obvious" perturbation in which a com

paratively small change in p results in a comparatively large improve

ment in the worst condition of p's zeros.



4. Returning to a Triple Zero

We start with the polynomial with simple zeros -2, -1, and 3, and

triple zero 1. The condition of the triple zero is .797 and the worst

zero is 3, with condition number 5.52,

Apply a random perturbation of norm .839E-10 to find p, a poly

nomial whose zeros and condition numbers are

-2.00000000 1.21

-1.00000000 .615

.99980426± .33876727E-3i .357E+7

1.00039148 .357E+7

2.99999999 5.52

When we search for nearby polynomials with double zeros, we find

for instance one with a double zero .99999525 at distance .365E-10.

The condition of that double zero is somewhat improved to .714E+5 but

the condition of the third zero near 1 becomes .807E+10. Even though

we can reach a double zero in a small step, the results are not

interesting.

When we search for a nearby triple zero, however, we find that a

perturbation of norm .495E-10 gets us to a polynomial with a triple

zero 1.000000000014 with condition number .797. The worst zero has

condition number 5.52. Comparing to the perturbation to a double

zero, we find that a not much larger perturbation to a higher multi«p

plicity structure yields a substantial improvement in condition.

Computer codes for quadruple zeros are not available but it seems

doubtful that this p could be perturbed to a quadruple zero by a

further small perturbation.
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5. Returning to Two Double Zeros

The polynomial with simple zeros -2, 0, and 2, and double zeros

-1 and +1 was perturbed by a random perturbation of norm .332E-7 to

^ produce a polynomial whose ill conditioned zeros were

» ± .9999999991 ± .562407E-4i with condition numbers .196E+4.

A polynomial at distance .143E-7 had a double zero but two

4 remaining ill conditioned zeros. There was a polynomial with a triple

zero at distance .629 with all zeros well conditioned. But the satis

factory polynomial had two double zeros at ± .999999997. All zeros

were well conditioned but the perturbation q was only .219E-7 in

norm.

*-

^
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6. Returning to a Complex Conjugate Pair of Double Zeros

Consider the eighth degree polynomial whose simple zeros are -3,

-2, -1, and 4, and which also has double zeros at 2±i. The worst

zero is 4, with condition number 55,0; the condition of the complex

zeros is 7.98.

A random perturbation of norm .168E-8 produces a polynomial p

whose zeros and condition numbers are

-3.00000000 9,98

-2.00000000 14.9

- .99999999 6.12

1.99982354 ± 1.00012355 i .126E+6

2.00017652 ± .999876371* .126E+6

3.99999984 55.0

When we apply the methods of chapter IV we discover that there is

a real polynomial p+ q with double zeros at 2.000000012 ± .9999999946 i

with condition numbers 7.98. Ilqll is .459E-9 and the worst zero is

3.9999993 with condition number 55.0.

Thus in the case of a complex conjugate double zero we can also

find the answer when it is obvious. In this case no real double or

triple zeros were found closer than .001. Of course there is no theo

retical basis for asserting that they do not exist — but if they are,

they must be rather well hidden!



7. A Polynomial with Several Pairs of Complex Conjugate Zeros

Wilkinson presents a real polynomial [34, p. 63] all of whose 16

zeros are complex, most being rather ill conditioned. Condition num

bers range from .878 to .107E+11,

No real £'s were found other than 0, but 7 complex c's corres

ponding to complex perturbations were found. All of these complex c's

lead to nearby real polynomials with complex conjugate pairs of double

zeros. The closest of these is at a distance of .247E-13 and the

worst conditioned zero of the perturbed polynomial has a condition

number of .551E+10. So from the point of view of "explanation,"

clearly some higher multiplicity configuration is required. The value

of this example is rather that it shows that the codes are capable of

finding a number of complex conjugate pairs of double zeros when the

problem is of a nature that several such solutions might reasonably

be expected.

In the table below we list the unperturbed zeros a and their

condition numbers on the left and, on the right, Ilqll, £, the condi

tion of c, and the worst condition number of the perturbed polynomial.

Real Imag Cond(ot) flqS e Cond(c) worst

-.305E-5 .312 .565E+10 .247E-13 -.884E-5 .312 .110E+8 .551E+10

-.148E-4 .312 .107E+11 .545E-13 -.354E-4 .311 .199E+8 .277E+10

-.471E-4 .311 .646E+10 .329E-12 -.116E-3 .309 .108E+8 .137E+10

-.143E-3 .309 .154E+10 .644E-11 -.417E-3 .306 .196E+7 .168E+9

-.491E-3 .304 .127E+9 .656E-9 -.201E-2 .295 .852E+5 .382E+7

-.232E-2 .293 .233E+7 .111E-5 -.166E-1 .260 .381E+3 .710E+4

-.187E-1 .253 .297E+4 .134E-1 -.121 .162 .483 .222E+2

-.132 .136 .878 .141E+1 0 0 .036 .227E+2
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8. An Uninteresting Polynomial

In contrast to the previous examples, we consider now a polynomial

all of whose zeros are well conditioned, just to see how the manifold

of double zeros appears from a distance.

Let p be a cubic polynomial with zeros 1, 2, and 3, and condi

tion numbers .87, 4.6, and 4.8. For this example we use the uniform

norm for which all weights are 1. After a lengthy search we find the

following interesting points:

C Oqll Worst condition

Double at 2.49244540 .0551 .72

Double at 1.32286845 .152 2.7

Double at 0.0 12.53 1.0

Double at -3.20829919 12.57 .15

Double at -1.13700604 13.93 10.4

Triple at 1.87492441 57.18 .99E-2

Of these points, 0.0 turned out not to be a stationary point, and

-1.13... turned out to be a maximum on the real axis, and a saddle

point in the complex plane. The point 1.87... represents a minimum

among perturbations to a real zero but a maximum among real perturba

tions to a double zero. The other three points are local minima in

the complex plane.

This example supports the conclusion in chapter II that absence

of ill condition implies distance from the manifolds of polynomials

with multiple zeros.
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9. Zeros in a Circle

The next example is a polynomial mentioned by Wilkinson [34].

Its zeros lie around the unit circle and are the twenty 20 roots of

unity. In the uniform norm the zeros are all very well conditioned;

the real zeros have condition numbers .224 and the complex zeros have

slightly smaller condition numbers, since only real perturbations are

considered. Our codes were unable to find any solutions for double

zeros other than zero or for complex conjugate pairs except by great

labor, which produced unsatisfactory results. It turns out that

p(x) =xn-3 ,

3 real and positive, has non-zero solutions c constrained as follows

for double zeros:

3/n < |c|n < (n-l)3 ,

^- arg c = (2k+l)7r/n , k =0,1,...,n-1 .

Thus argUn) = it and if n is even there are no real solutions c



10. Summary

The results presented in this chapter and other similar results

lead to the following conclusions:

1. When there is an "obvious" nearby polynomial of a certain

multiplicity structure, the computer codes find it. If insufficient

multiplicity is requested, the codes find a polynomial that is close

but has some zeros still very ill conditioned. When too much multi

plicity is requested, the codes find a polynomial that is relatively

far away although all its zeros are well conditioned. When the proper

multiplicity is specified, the codes find a polynomial which is rela

tively close and has all zeros well conditioned.

2. When there is no obvious reason why a nearby polynomial would

have substantially better conditioned zeros, the codes do not find any

such polynomials.

3. The polynomials that the codes find are indeed critical

points for OqD and are usually minima. In other words, the^answers

are correct, but the codes may not be able to find all the answers.

With conclusions like these, based on simple cases, we have some

basis for confidence in examining a more difficult polynomial in the

next chapter.
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CHAPTER X

WHAT'S WRONG WITH WILKINSON'S POLYNOMIAL?

1. Wilkinson's Polynomial

In [34] J. Wilkinson describes the astonishing ill condition of a

polynomial whose zeros are the integers from I through 20. He observed

that by changing one of the coefficients by less than one part in

1.0E+15 it was possible to create a polynomial some of whose zeros

were complex conjugate pairs.

Our results in chapter II lead us to conclude that this badly

behaved polynomial must be near the manifold of polynomials with double

zeros, at least, and perhaps near manifolds cc responding to higher

multiplicity configurations as well. Since this polynomial is pre

cisely defined, we are not interested in "ameliorating" its ill condi

tion but rather "explaining" that ill condition if possible. The

results mentioned in the previous chapter show that ill condition is

ideally explained by displaying a small perturbation to a nearby mani

fold of polynomials with some appropriate multiplicity configuration.

We shall see that the experimental results presently available do not

support any such simple explanation for Wilkinson's polynomial; rather

they suggest that it is near a place where the manifolds of polynomials

v with multiple zeros are especially contorted.

* After examining the well known Wilkinson polynomial we will look

briefly at its translation to the origin and at another Wilkinson poly

nomial which is in some ways the opposite of the first.
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2. Coefficients and Condition Numbers for Wilkinson's Polynomial

Two unusual things about Wilkinson's polynomial are the ranges in
♦

magnitude among the coefficients and among the condition numbers of

the zeros. j'

The zeros are the integers from 1 through 20. Therefore the

coefficients are exactly computable, but as a practical matter most

have so many significant figures that they must be rounded to fit in

48 bits of a CDC computer word. Consequently the polynomial should be

considered to be defined by its zeros, and the coefficients are only

used to compute the weights in the norm on perturbations:

p(t) = n (t-t) =Tn+ I P.Tn"j
1=1 j=l J

BqO2 =I wd|qd|2

wj=1'|Pj|2
This "relative" norm measures relative changes in the coefficient:

p; we will also present results for the "uniform" norm in which all

the weights are 1 and which measures absolute changes in the coeffi

cients of p.

Some differences between these norms might be expected due to the

large variation in those coefficients. In magnitude they range from

210 to 1E19; they are listed in Table X.2. Thus the corresponding

weights for the relative norm range from 1E4 to 1E38.

The zeros are given in Table X.l with their condition numbers.

The first condition number is with respect to the uniform norm on the

polynomial. The second condition number is with respect to the rela

tive norm on the polynomial. All condition numbers are for absolute
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changes in the zeros. The condition number for relative changes in a,

say, may be obtained by dividing the listed condition number by |a|. -

The most striking facts about the condition numbers are

1) the magnitude of the ill condition of the worst, /

2) the large group of zeros that are nearly as badly condi

tioned as the worst, and

3) the lack of any obvious partitioning into a set of well con

ditioned zeros and a set of ill conditioned ones.

The last fact distinguishes this polynomial from those of the

previous chapter. There is no obviously best multiplicity configura

tion that we should look for. So we will try as many as we can,

starting from the simplest.

Before giving the results, it is instructive to attempt to graph

this polynomial. It turns out to be impossible to perceive all its

features on one graph, so we present several successive magnifications

of interesting parts. Figures X.1-X.4 were produced on a TektKOjrix 4051

Graphics System.

It is interesting to note that the symmetry of the polynomial

about 10.5 is not reflected in the condition numbers, which reach their

maximum near 15, depending on the norm. That is because the formula

in chapter II for the condition number of a zero a has a numerator

which is a monotonic increasing function of |a| and a denominator

that depends only on the absolute spacing between a and the other

zeros. The numerator is a rather rapidly increasing function of |a|;

for a simple zero, it is

I|a2|n-j/w. .
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Intuitively it is hard to understand why the larger zeros should

be so much more ill conditioned than the smaller ones. Indeed, by

translating the entire polynomial by -10.5 so that it is symmetric

S- about the origin, one can eliminate that part of the anomaly. Wilkinson

did so and found substantial overall improvement in the condition of

the zeros. Of course, if that translation were regarded as a pertur

bation, its norm would exceed 1 in the relative norm and 1E19 in the

uniform norm, and we know that remarkable improvements in condition

often accompany large perturbations.

We wish, however, to study Wilkinson's polynomial as an untrans

lated object. The next section gives our results. Some results for

the translated polynomial are in a later section.
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Figure X.l. Wilkinson's polynomial on [0,21];



N

•*•'/

5.0E+15 r

0 H (.

-5.0E+15

-1.0E+16

1.5E+16 L
0 5 10 15 20

Figure X.2 Wilkinson's polynomial on [1,20].
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Figure X.3. Wilkinson's polynomial on [3,181.
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Figure X.4. Wilkinson's polynomial on [6,15].
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3. The Nearest Polynomial with a Double Zero

There are many polynomials with a double zero that are close to

Wilkinson's polynomial. In the next section we will list some of them.

In the present section we will just present the facts about the

closest known such polynomials in each norm.

In the relative norm the nearest polynomial on the manifold has

a double zero at 14.499... . The distance Ilqfl is .11054E-14. The

double zero and some of the nearby simple zeros are listed along with

their condition numbers and their condition numbers prior to pertur

bation:

Unperturbed zero and condition

12 .125E+15

13 .212E+15

14 .278E+15

15 .279E+15

16 .210E+15

17 .114E+15

Perturbed zero and condition

12.15289

12.77240

14.49963

14.49963

16.22347

16.85795

.174E+15

.225E+15

.963E+13

.963E+13

.215E+15

.159E+15

The coefficients of q are in Table X.2.

The corresponding distance in the uniform norm is .13481E-9.

Unperturbed zero and condition

13 .607E+9

14 .134E+10

15 .212E+10

16 .241E+10

17 .191E+10

18 .997E+9

Perturbed zero and condition

13.09030 .753E+9

13.83087 .123E+10

15.48653 .325E+7

15.48653 .325E+7

17.25351 .205E+10

17.83934 .152E+10
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In both cases we find that moving to the manifold of double zeros

improved the condition of the coalescing zeros appreciably, and thereby

improved the overall condition of the polynomial. But some of the

nearby zeros actually worsened slightly in condition. Evidently

moving to an even higher manifold is in order.
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4. Interesting Polynomials near Wilkinson's

*^ Tables X.3 and X.4 list a number of interesting polynomials near

Wilkinson's which have one or more multiple zeros. The first columns

N list the distance to the polynomial from Wilkinson's, Ilqll, and the

N multiple zeros £. All multiple zeros are double except those marked

(3) which are triple. In the last columns are listed the worst condi

tion number of a multiple zero c and the worst condition number among

the simple zeros.

Table X.3 is based on relative changes in the coefficients of

Wilkinson's polynomial. Table X.4 is based on the uniform norm in

which all the weights are 1. Some of the entries are incomplete; to

conserve paper some of the computer codes involved did not print all

details for some of the less interesting polynomials.

All the polynomials listed represent solutions of equations pre

sented in chapters III-V. Most of the solutions are local minima.

The likely candidates for global minima in each category are indicated

by *.

There are apparently a very large number of solutions for the

cases of 2, 3, or 4 double zeros. To keep computing expenses in bounds

it was necessary to discontinue the computation after a certain arbi-

trary number, usually 20, of these solutions had been found. Even

these are not all listed in the tables; some were omitted whose norms

are larger than those listed.
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Table X.3 (continued)

Ilqll C's
Worst conditi

Multiple zero
on numbers
Simple zero

31. .210E-13 14.708, 17.564 .114E+14 .360E+15

32. .210E-13 10.412, 14.708, 17.564 .114E+14 .250E+15

33. .261E-13 12.475, 15.407, 17.565 .881E+13 .231E+15

34. .264E-13 12.300, 18.638 .597E+13 .619E+14

35. .272E-13 11.487, 14.417, 16.559 .104E+14 .178E+15

36. .298E-13 12.496, 14.492, 16.525 .926E+13 .532E+14

37. .317E-13 9.372 .447E+12 .164E+14

*38. .341E-13 13.978(3) .482E+12 .431E+14

39. .343E-13 11.474, 13.514, 15.494 .876E+13 .114E+15

40. .367E-13 15.038(3) .413E+12 .466E+14

41. .423E-13 12.921(3) .414E+12 .344E+14

42. .547E-13 16.105(3) .253E+12 .199E+15

43. .696E-13 11.868(3) .268E+12 .195E+14

*44. .110E-12 11.458, 13.531,
17.549

15.466, .886E+13 .170E+14

45. .113E-12 19.710 .440E+11 .555E+13

46. .118E-12 17.181(3) .104E+12 .136E+14

47. J30E-12 10.448, 12.557,
18.617

14.396, .881E+13 .567E+14

48. .136E-12 10.464, 12.526,
16.543

14.472, .934E+13 .358E+14

49. .138E-12 8.349 .107E+12 .465E+13

50. .145E-12 9.417, 13.584,
17.560

15.444, .857E+13 .405E+14

51. .150E-12 10.816(3) .131E+12 .818E+13

52. .175E-12 10.462, 12.544,
17.554

15.440, .822E+13 .225E+15

53. .299E-12 10.477, 12.501,
17.519

14.542, .102E+14 .164E+15

54. .321E-12 9.443, 12.309,
15.777

14.708, .123E+14 .270E+15

55. .409E-12 18.273(3) .257E+11 .438E+13

56. .426E-12 9.766(3) .485E+11 .268E+13

57. .808E-12 7.325 .191E+11 .115E+13

58. .160E-11 8.717(3) .135E+11 .652E+12
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5. Discussion of Results

Apparently Wilkinson's polynomial lies near a thicket of inter-
f

secting branches of the manifold of polynomials with a double zero;

see Figure X.5. Although there is a unique point on this manifold

closest to p, there are other locally closest points in different "^

directions that are not much further away. In turn the self-inter-

sections of the manifold, which form the manifold of polynomials with

two double zeros, may be found not much further from p than the

first manifold. And by steps that are increasingly larger, but not

overwhelmingly so, it is possible to obtain 3 or 4 double zeros or a

triple zero.

Perhaps the polynomials whose zeros are the integers from 1 to n

form a family akin to the finite segments of the Hilbert matrix [11].

These ill conditioned matrices have the property that there is no

obvious perturbation to a matrix of lower rank that results in a per

turbed matrix of satisfactory condition. For large n, rathe*uthere

is a sequence of possible perturbations to nearest matrices of rank

n-1, n-2, etc. Each perturbation in this sequence has the property

that it is neither much larger than the previous perturbation nor much

smaller than the next. Furthermore the corresponding sequence of

nearest matrices of rank n-1, n-2, etc. has the property that each

matrix is somewhat better conditioned than the previous but somewhat

less well conditioned than the next one. Thus the ill condition of a

Hilbert segment can not be satisfactorily "explained" as due to a

small perturbation of a well conditioned matrix of lower rank.

If an analogy with the Hilbert segments is appropriate, then

Wilkinson's polynomial can not be satisfactorily "explained" by means



of the numerical methods described in previous chapters. A satis-

w factory explanation would entail an understanding and description of

the geometry of the manifolds of polynomials with multiple zeros and

Nfc their intersections.

f
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Figure X.5. A mental picture of the manifold thicket
surrounding Wilkinson's polynomial.
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6. Numerical Results for Translation

-^ Here we summarize some results for translating Wilkinson's poly

nomial. The zeros of the translated polynomial are ±0.5,±1.5,.,,,±9.5.

*T In tne uniform norm the worst conditioned of these are ±8.5 with con-

, dition numbers of 72, which are well enough conditioned for most pur

poses. In contrast the condition numbers for ±0.5 are .877E-12.

The nearest polynomial with a double zero had c = ±7.979 and

flqfl = .437E-2. Only the condition of the coalescing zeros was improved
significantly, to .402.

Thus in this norm the effects of translation go much farther

toward "amelioration" of ill condition than do any of the movements

to manifolds of multiple zeros.

When the translation to an even polynomial is carried out, some

of the coefficients in the translated polynomial vanish. Thus, in the

norm that measures relative changes in coefficients, some of the

weights-become infinite. Some of the computer codes do not handle

this case properly so only partial results are available.

The worst zeros now are ±7.5 with condition numbers .127E+5. The

nearest polynomial with a double zero appears to be a polynomial with

two double zeros at c=±6.979. Two double zeros are to be expected

since the infinite weights constrain the perturbation to be even. In

contrast, only one double zero was obtained for the uniform weights.

Numerical difficulties prevented accurate determination of flqe.

The difficulties arose from the fact that the code expected only one

double zero so that the other one was poorly determined as two single
zeros. The codes for two double zeros found c = ±8.201 with

•f



Ilqll = .247E-4 but they seem to have missed the polynomial with

C = ±6.979.
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7- Zeros in Geometrical Progression

In [34] Wilkinson also discussed the polynomial of degree 20
whose zeros are in the geometrical series 2"1,2"2 2"20. From one

^ point of view these zeros are all remarkably well conditioned despite
.( their apparent crowding near zero. Thus just as the first polynomial
> was ill conditioned yet free from clustering in its zeros, this second

«i polynomial seems well conditioned despite what seems to be extreme
clustering.

For this polynomial, however, all depends on the point of view.

Whereas the first polynomial was ill conditioned whether uniform or
relative perturbations were considered, the second is only well condi
tioned when relative perturbations are at stake.

When relative changes both in the coefficients and the zeros are
considered, the worst zero is 2'11 and its condition number is 65.7;
the other condition numbers are remarkably similar, the best being
8.43. In contrast, when absolute changes in the coefficients and zeros
are at issue, the worst is 2"19 with acondition number of .109E+59;
the best is 2"1 with condition number .210E+7. In the uniform norm,
then, this polynomial is far worse conditioned than the better known
one with a linear distribution of zeros.

., It should be realized that the coefficients of p range from 1
to 1E63 in magnitude. With such awide range of magnitudes of both

? coefficients and zeros, numerical problems made it difficult to obtain
meaningful results. What results were obtained frequently failed some
of the tests described in chapter VIII. Since floating point underflow

* is not detected by the CDC 6400 and overflow is known to have occurred,
we will not discuss these possibly contaminated results.
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CHAPTER XI

CONCLUDING REMARKS

We have given methods for finding nearby polynomials with various

configurations of multiple zeros. We have exhibited examples to show

that these methods provide the answer we would expect when the correct

answer is obvious.

For a polynomial like Wilkinson's, however, there is no obvious

answer, and these methods do not provide satisfactory explanations of

the ill condition of such polynomials. Rather the numerical results

provide evidence of an inherently complicated structure of the mani

fold of polynomials with multiple zeros.

Finally there are intermediate polynomials for which the "correct"

answer is no longer so obvious but which do not seem to present so con

fusing a picture as Wilkinson's polynomial. For such intermediate

cases our methods sometimes provide results that seem satisfactory and

sometimes do not. But it is not yet clear whether "unsatisfactory1

results are due to defects in algorithms or inappropriate expectations

about the existence of satisfactory nearby polynomials.

In each of these areas there is ample scope for further research.

For the "obvious" cases we would like to be able to specify starting

points for iterative methods which could be guaranteed to converge

quickly to the global minimum.

For the intermediate cases we would like to know simple criteria

for deciding when, for instance, nearby polynomials with complex con

jugate pairs of double zeros may exist. More generally we would like

to know when a solution c of the equations we wish to solve does not

exist in a particular region, so that we need not waste time looking there
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Sketchy information on where to look for c is known for the

case of one double zero, but for other configurations the only known
«

facts are that the dimensionality of the problem is less than might

*v have been thought, because certain Lagrange multipliers vanish in the

complex case. We would like to have a simple criterion in the real

case, that will tell us when we may rely on that theorem about Lagrange

multipliers, when we must check real configurations of higher multi

plicity, and when we must check for complex conjugate multiple zeros.

The new expansion technique discussed in chapter VII provides

some interesting questions. In how large a region can realistic

bounds be computed easily? It would be desirable to have a symbolic

algebra program to provide these tedious bounds automatically. Do

these bounds have any significant advantages over Smith's [42]?

A task of a different sort is to render the existing mass of

algorithmic ideas and devices into mathematical software. The com

puter codes with which the research reported here was conducted were

-^^constantly changing and required considerable experience to direct the

search and interpret the results. They were dependent on the local

computing environment in many ways and most likely contain some errors,

which would probably not affect the results presented in previous

chapters.

In contrast, respectable mathematical software is carefully

specified, written, documented, and tested. Then it is independently

examined and tested again. The experienced computer programmer now

recognizes, moreover, that the production of quality mathematical soft

ware from its raw materials entails as much effort as providing those

It
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raw materials. Consequently that production will be deferred to another

occasion in this case.

The final, and perhaps most difficult, challenge is to unravel

the nature of the manifold of polynomials with multiple zeros, partic- f

ularly in the vicinity of polynomials like Wilkinson's. Although ^

numerical investigations may sometimes be helpful, probably the prin- j

cipal factor for success will be the investigator's competence in )'

algebraic geometry.

Turning now to a more general point of view, we should recall that

one reason for studying polynomials is that they are simpler than the

often infinite dimensional eigenvalue problems they frequently replace.

Thus the more general problem might be stated as follows: given a

linear operator, some of whose eigenvalues are ill conditioned, what

is the nearest linear operator whose eigenvalues, some of them multiple,

are all well conditioned?

Ruhe [27], Wilkinson [36], and Kahan [16] have all given^bounds

for the distance to the nearest matrix with a multiple eigenvalue.

Kahan [17] and Golub and Wilkinson [39] have also surveyed the known

theory. But there are no known computational techniques which are
*

even as reliable as those discussed previously for zeros of polynomials.

The closest related work is that of Kagstrb'm and Ruhe [15] on finding

the Jordan canonical form of a matrix. Otherwise the many refractory

aspects of the problem remain untouched for future investigators, ,

r



APPENDICES

1. Using the Zeros of a Polynomial to Compute Its Coefficients

Our object is to display the well known algorithm for computing

the coefficients of a monic polynomial from its zeros. If we are to

determine the p. in

n (t-cJ - xn + I p.Tn"J
j=l J j=l J

and we expand directly we find

Pi = I Cn (of the (-C-)'s in each combination)]
over all (?) combinations]
of the n (-c.)'s taken j

at a time

We can avoid this nl calculation by building up the coefficients

recursively. If we have a polynomial

pk(T) k k-j _I Pit
j=0 J

n (t-c,) ,
j=i J

p0 = l •

we can form the polynomial of degree k+1 by multiplication by (t-c )
K • 1

k+1p^'W'tlpDNJJtjk-i
j=0 j

3=0 •> i=0

- ki>+^^
i=0 j

k+1
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where

"Ck+lpk
k+1 - J nk T nk

Wlpj-1 •

k+1 ,

k,k-l,

0 .

.,2,1 ,

We list the coefficients in the order that they could be successively

computed and overlaid in storage.

In the case of real polynomials, we wish to avoid complex arith

metic by considering complex zeros and their conjugates together.

Then

Pk+2(T) - pk(T).(T2-2(Re Sk+1)T+|ck+1|2)
so

•fcf2-«|p}-2(R.cfcfl)p;.1*uwiS}^
kPl*-2(Reck+1)

1

» j = k+2 9

, j = k+1 »

, j ~* i\,.. • 9«3»^ ,

» j = 1 ,

, j = 0 .

It may happen that we.are only interested in the last few coeffi

cients or the first few. The formulas above may be used for the first

few coefficients corresponding to high powers of t.

To find formulas for the last few coefficients, corresponding to
k

low powers of t, we redefine the p. as follows:

pk(T) = I PkTj .
j=0 3
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*<g>

**'

^1

Then

k+1

r j = k+1

r nk
k+lpO

K

-1 ~^k+lpj » J = k,...,2,l ,

j = 0 ,

and in the case c
k+2 = Ck+T

k+2

r

1

pk-l-2Re^k+l

M^-^^k+lil^^k+llM
-2Reck+1Pk+kk+1|2Plk
I*. |2 k
l^k+ll p0

, j = k+2 9

9 j = k+1 9

9 j = i\, •. ..2 ,

> j = 1 ,

9 j = 0 .

279



280

2. Simultaneous Evaluation of a Polynomial and Some of its Derivatives

Ways of efficiently evaluating a polynomial and its derivatives

simultaneously from the coefficients have been studied by Shaw and

Traub [29] among others.

Rice [26] has argued that, given the zeros c- of a polynomial,
j

computing the product

n

p(x) = n (t-c,)
j=l J

is usually the method of evaluation that minimizes the uncertainty in

p(t). When the polynomial is evaluated in this way the relative error

in the final result, due to rounding errors, is always small on a

properly designed machine. In contrast the relative error of the

evaluation from the coefficients is usually large when t is near one

of the cr

Furthermore if the zeros are the primary data, rather than the

coefficients, the attempt to compute the coefficients from the zeros

will, in the presence of rounding errors, produce wrong coefficients

which will be the coefficients of another polynomial with different

zeros. If the new zeros are ill conditioned they may be rather far

removed from the zeros we started with.

Therefore we prefer to evaluate polynomials and their derivatives

directly from'the zeros if they are the primary data. Typical expres- v*

sions for the polynomial and two derivatives follow:

^

m*-*

>



Method N:

n

p(t) = n (t-c.)
j=l J

P(t) it, t-C,
j=l

p"(t) . f5 jj2 5 i
*™~" lA t"cjj ' 0=1 (T^7

Similar expressions for higher derivatives may be found by means of

Newton's identities which are described in Householder [12]. These

expressions have the defect, however, that in the presence of rounding

errors, they tend to have high relative errors which are revealed by

cancellation at the end. Thus if t ± c- in the expression for p'Vp,

the two subexpressions will tend to cancel with subsequent severe loss

of significant figures. By algebraic manipulation we may be able to

find forms for these expressions in which cancellation is not pre

ordained. For instance

n» n-1 , n ,
£- =2 y -M y -JL-i
D .^n T-C. \ 4 , t-C >v j=l T ^j k=j+l T ^k

but this expression is not applicable when t = c» exactly.

Therefore it is helpful to use different methods for computing a

^ polynomial and its derivatives from its zeros. These methods are

0 ^ based on the observation that if

p(t)- ntr-Cj)- Ip,t"-j , Po =i,
j=o
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then p(0) =pn, p'(0) =p^, and in general, pk(0) =kip ..
Therefore we can evaluate the polynomial and m derivatives at 0 by vV

computing the last m+1 coefficients of p from its zeros C-.

Moreover we can evaluate p and its derivatives at a by com- J

puting the coefficients of the polynomial whose zeros are c.-a:
j

Method A:

(k)
pv '(a) = k!{n-k coefficient of polynomial whose zeros are C--a)

j

Another method is based on the observation that

oW • IPn./"j -fnp(l) =tn n (1-c.) = n(_c )n(T.J_)
0=0 n 3 T j=i T J j=l J j=l sj

Then

% = pn-k
Tn 1

= n (-c.)-{k coefficient of polynomial whose zeros are —}
j=l ° Cj

=p(k)(0)/k! .

So continuing as before,

Method B:

(k) 1
pv j{ol) = klp(a){k coefficient of polynomial whose zeros are —-—}

Cj"a

Like Newton's identities, however, this method is undefined if a = c-
w

We might conduct operation counts to help choose from among these

methods. They all require mn +0(m )+0(n) operations to evaluate a

polynomial and m derivatives. Therefore we choose Method A since it

is applicable even when t = c^»

< 0



3. Partial Derivatives of a Deflated Function of a Complex Variable

-^ When minimizing norms of functions of complex variables we are

often required to find zeros of non-analytic functions of a complex

*"£, variable. There seems to be little general theory for such functions

other than that of two real analytic functions of two real variables.

Consequently when finding zeros of such functions by Newton's method

we solve systems of two equations.

Having found one solution we may wish to deflate it out in order

to find other solutions. Fortunately there is a way of deflating such

functions that makes sense. In contrast, there is no completely satis«

factory way of deflating solutions of systems of n real equations in

n variables for n ^ 2.

f(T) will be the function to be deflated; it is not analytic.

Let c-|»..->Cl. be the zeros to be removed; we will divide f(x) by

the polynomial

^ k
_^-^ p(t) = n (t-c,) .

j-i k

The deflated function g(0 = fM/p(T) is not analytic, but the

analyticity of p will simplify the expressions for the partial deri-r

vatives of Re g and Im g.

Let (*) represent a differential operator, either -rJL or
a Re T

W *

8 ImT *
Then

(Reg) =(Re £) =[Re fRe(l) - Im f lm(h]
K HP

=[(Re f)Re(l) +Re f (Re 1) - Imf (Im(±-)) - (Im f)Im(l)]

and
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9Re9 = Re(l)9Ref - im(l)3Imf - R&(Q-)3ReT Key3ReT inV3ReT Ke^' »
P

where p' represents the complex derivative of p, 9pW. Similarly
oT

3 Reg _ na/l\3Ref Tm/^3 Imf , T/fp\
3liT " Re(F}3T]ir? " Im(p}3TiT + Im( 2) •

and

and

3 Img _ n0/l\3Imf . T-./l\3Ref Jmffp\

K ' P

284

P

These partial derivatives are now in a form suitable for use in Newton's

method applied to a system of two real equations in two unknowns.

&

x
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4. Computing the Divided Differences Rehired in the Equations

to be Solved for Complex Conjugate Double Zeros in Chapter IV

Below will be found the recurrences required to compute

A , A_,, and Ak ,

the divided differences of section IV.3. We will also obtain deriva

tives with respect to Re c and Im c for use with Newton's method,

AR =(Im Ck)/(Im c)

so An = 0, At = 1, and

Ak =RecA^ +ReU1^1)

If we write

and

we find:

3A,

Af= k
k 3 Rec

,m _ 3Ak
k 3 Imc

AQ = 0 ,

Ak =RecAk-] +Refc^1) ,
A« = A-. = A« = 0 ,

A* =ReU*.-, -(k-l)Itn(?^2) ,
r rAq = A-j = 0 ,

Ak =Ak-1 +RecAk-l +(k-DRe(ck"2) .

In order to compute Ap and A^pl it is necessary to start by
recalling the formulas for updating p and p\ If the zeros of p

are c^, 1 < i< n, then we could define
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p. = n (c-C,)
K i=l 1

Then we may imagine updating pk by one real zero c+ or by two com

plex conjugate zeros c+ and c+. Then

p0 =1 • pk+l = (c"?+)pk »
pk+2 ={^-2(Re 5+)c+|c+|2)pk ,

p6= ° • pk+i= k-i+K+ pk '
pk+2 ={^-2(Re £+)C+U+|2}p^ +2(c-Re c+)pk ,

p0 = ° • pk+l = {^M + 2pk •
pk+2= tC2-2(Re C+)c+|c+|2}p|;+2

+4(C-Re c+)p£ +2pk .

The formulas for computing A and its derivatives are as follows:

Im pQ
Im C U. *

Im Pu+i Im Pl^nJfl=Repk +Re(C-?+)(15-i) ,
Im p. ,« 9 o Im p.
-Ii^p-= Re{c^-2(Re C+)C+ Icj'M-jjj-i) +2Re(c-C+)Re P|< ,

~ Im p.,., Im p. • Im p.

3 '-iiJr)-«*pt+tTdL^-"'v- '
Im p. .9 Im p.

W-nrr0 °Re pk+ (Tif} +Re^-?^¥^Tsrf> '
3 ,Imlk±2, . , „ ._ w^P*

IH^TIlP =2 Re(^+)(Tlf>+2RePk +2 »te(c-^)Re P^
« « ^ Im p.

+Re{?Z-2(Re ^)c +UJ% R3e g( Im ft ,
a I"1 Pu+i a Im Pu

ai,ct imt >=-Im pk +Re^-M3i3me(im5) »
~ Im p. ,9

o 9 a Im Pi,+Re{c2-2Re(c,)C^lcJ2}3I3mC(ImCk).
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T

<*v

rd^

Note in passing that

Im pk Im p^
3 Re c Im c Im c '

We now state the corresponding formulas required for A ,:

Im cp'
Im c

_3 Im CP' =

Rep'+Rec^-Rep'+Rec^gi).
' im c r s 3Rel

,m + 3 (Im p} +R 32 ,1m p.

=-Imp"+Rec9Re^Imc(Mf)
3Re c Im c P 3

3 Im CP'
3Imc Im c

Im p
k+1 „

3 Re c Im c

32 Im pk+l
(3Rec)2 Im C
32 Im pk+1

3 Im c 3 Re c Im c

3 Im pk+2
3 Re c Im c

32 \ Im Pk+2 _
(3'Rec)

ZV Im c
X

\

Im pk^2
3 Im c 3 Re C Im C

Imp. a Im p.

a Im pt a2

Tmn o

'k

Repk
,2 Im pk

2"Tm~c~ '

a Imp,, .2 im p.

-ImPk+inkw*Re(^WSRe£ Im}>
Im Pk2Re pk +2Re(c-C+) (Re p£ +-j^)

+Re{c2.2Re(c+)c+U+|2}T1^^,
Tmn 3 ImpK)Im Pk a Im p.

4Re Pk +2T5TT+ 2R*(^+) (^ Pk +2J^ ~wi
? o «^2 Im p.

+Re{cZ-2(Rec+)C+C+|2}—S^,
+ (3Rec)2 Im ?

i Ini p.=-4lmp'+2Re(^+)(-I,npj;+TATl_Ji)

+Re{S2-2(Rec,)^kJ2}3lm^fee^.
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5. Computing the Divided Differences Required in the Equations

to be Solved for Two Real Double Zeros in Chapter V

The equations which follow provide recurrent methods for computing

the divided differences required to solve (6.6) of chapter V. j

Recall

Ak EtejfC2)/(CrC2) "

Therefore AQ = 0, and A, = 1. We may verify that

Ak =clAk-l +c2" =c2Ak-l +cl"1 • )
aAk r 3Ak-l .A
3C7= 51 ~9C7" Vl • v

3C2 " Q2 3C2 k-1 *

The equations for A . are more complicated. Recall that
p,K

k_,_ x _k.

Ap,k" C,-C2 • f
s

w

To compute A k when p is given in factored form^it is necessary

to fix k and develop A .. recursively by considering each factor
P»K /

of p in turn. To start, suppose p = 1; then A . = -a.. Now if-

suppose that A v is known and p is to be multiplied by a linear
P»* ^_

factor (T-a). Then denoting the new divided difference by A

AP,k - fc2p(ci)(crct)"cip(c2)(Va^/(crc2)
=ClC2Ap,k-l - aAp,k '

+1
P.k'
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Note first that

and

P+1(T) = (T-a)p(x) ,

•P^It) = (T-a)p'(T)+p(T) ,

P^(t) = (T-a)p"(T) +2p'(T) ,

P+2(t) = (T-a)(T-a)p(T) ,

p;2(t) =2(T-Re a)p(T) +(T-a)(T-a)p'(T) ,

P;2(t) =2p(T)+4(T-Re a)p'(T) +(T-a)(T-a)p"(T)

Then

^p'.k =clc2Ap',k-l ' aAp',k +Ap,k '

P tk 3A , . , 3A , b 3A_ •_
= r tr P >K ' +j, \ n P »K . P,K>} C2U1 3C1 +Ap',k-1>." a 3^+^C^

+A2p',k =^l4)2Ap',k-2 • 2<Re a>Wp',k-l +l°|2V.fc.
+ 2¥2Ap,k-l * 2<Re aV •

oP »k p 3A i t o o 3A . .
h;— h&h -%p+2V,k-2>+ l°l2^

.2{Reo)?i{,2!^M+V)k_i}
n \f 1 3A •

These formulas may be used to calculate A . and A , . except
P5^ p ,K

when k = 0 or k = 1. In those cases the formulas would require

A„ , which is not defined.
P»-l
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To deal with that difficulty, different formulas for divided

differences must be used for k = 0 and k = 1. These formulas will

be based on the finite difference analog of Leibniz' rule:

xy(e,) -xy(e9)
A(xy)(er62) 5 }

x^J +x^ yfe^-yfeg)
=I 2 H q^ZT2 J

y(e,)+y(e?) x(e,)-x(ej

Ve2

Here x and y are functions of a single variable; the divided

difference of the product xy is sought for the points (e,,6?).

This and other divided difference identities may be found in the book

by Milne-Thomson [23].

For our application, x will be p(t) or p'(t) and y will

be the updating factor (T-a) or (T-a)(T-a). We find that

(^-cO +^-a) p(C-,) +p(c2)
Ap,0 = 2 Ap,0 + 2 •

9Ap'° (^ra) +(^2-a) 3Ad 0 1 1T| = ' _ c P»iL + -U + In' (r )3c1 2 3c^ +rP,o +2? Ul} •

+2P'°~
p(^) +p(c2)

A-P,0 I 2 JAp,0

~> + 1—2 —[(l<[ " Re a)(^2 - Re a)) •

aAp'° (^ra)(^-a) +(Co-a)(c?-a) 3An n
-4p - (-1—L-H—M^+ <*i -Re «>v,

--* p(cJ + p(cJ ,
+ S ~+?P,(C1)((c1-Rea)(52-Rea)) ,
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. , . (VfSL2MWp]04 ,.,. . V2,*ll^ ,
+2

3 A

+2 P.l .Ci+S.

If- =t-T1- 2Re °) «1 ?2lff +?2 &1 +k "2Re ^p,,
3A

+h^-^ +̂ ^iP'^i^P^i5) •
Similarly

*p'.O =( 2 )V.O +( S 2) +Ap,,+1

3i.,+,p',0 ,(C,-o) +(c2-a) 3A , „ , . 3A

A p' ,0 = I 4 —)<(?! - Re a) +(c2 - Re a)}
(C1-a)(c1-tt) +(c2-a){?2-a)

+( z )y,o
+((c, - Re a) +(eg - Re a))&M +p(?1) +p^) ,

3+42p''° ,(C1-Rea) +(c2-Rea) P'CcJ +pMu)-J— =( f_^ )p.(Ci) + ]_ ?_

+̂ -Re a)Apl>0 +(-J 3 ^ 2__.}_JL^0
+((?1-Re«) +(c2-Rea))^M+Ap)0 +p-^) .

Finally

+42p',l "^ 4 H +(-V-2Rea)?1?24pl>0
+l«l2V,1+^i^p.O "2<Re a)4p,l •
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3 A ,
+2P),J i , x ,p'(ci) +p'(?A *K i

— " fW(c1} +C2^—— S *2(Re aJ-g**1
1 ^l+c?

+ ^{?i +("y^"2Rea)}V o
^1^9 3A i «+(_w.2Rea)CiC2^o

o 3A i i 3A_ n+|a,2_^i+2?2{Ci^o+Vo}.

Taken together, the foregoing equations provide all the divided

differences required in chapter V. To inhibit convergence to the

remaining unwanted solutions it is still necessary to use the defla^-

tion techniques of section 5 of that chapter.
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6. The Lagrange Multiplier Theorem

The following corollary of the Fredholm Alternative Theorem .^

provides the basis for the use of Lagrange multipliers to find

stationary points of functions subject to constraints. The vector I* f

is the vector of Lagrange multipliers.

Theorem. Let B map Cn to c"1. Then •

(for every xe Cn, Bx = 0 =^>y*x = 0)

if and only if there exists an £* e Cm such that

y* = £*B .

See Dunford and Schwartz [9, p. 609] for a statement of the Fredholm

Alternative Theorem in an arbitrary Banach space, and for references

to a proof.

i
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