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Abstract
Physical systems can frequently be modeled by polynomial equations.
Then interesting properties of the systems can be determined from the
zeros of the polynomials. Standard codes compute those zeros from the
coefficients in a stable fashion. But what should be done if the
zeros are inherently hypersensitive to changes in the coefficients
of their polynomials? Newly developed methods can be used to explain

such an i1l conditioned polynomial by exhibiting a nearby polynomial

with one or more muitiple zeros which are well conditioned. Further-
more these methods can be abused by uncritically replacing the i11
conditioned polynomial with the well conditioned one nearby. When

such a replacement is unwarranted, bounds can be obtained on the varia-
tion of the zeros corresponding to the uncertainty in the coefficients.
One way to obtain such bounds is to exploit the nearby well condi-
tioned polynomial to obtain a revision of the classical Puiseux
fractional power series expansions of the zeros.

These notions have been investigated experimentally in a long
series of computer calculations. In the course of these calculations
the existing stock of numerical techniques has been augmented. A new
way is now known for computing the condition numbers which measure the
condition of zeros. The previously known equations to be solved for

the nearest polynomial with a single multiple zero are now joined by

1



equations for the nearest polynomial with a complex conjugate pair of
double zeros and eqﬁations for the nearest polynomial with sevéral
distinct.double zeros. A1l these equations have simplified forms
because certain Lagrange multipliers vanish in the complex case. But
some examples demonstrate that when only real perturbations are con-
sidered, the Lagrange multipliers do not always vanish, Finally, there
is some theory about the location of the nearest polynomial with a
double zero. ,

The numerical experiments show that Newton's method may be used
successfully to solve the equations in the cases of greatest interest
when the expected result is sufficiently simple. The techniques may
also be applied to polynomials such as Wilkinson's famous example whose
zeros are the integers from 1 to 20. But then the numerical results
suggest that that i11 conditioned polynomial can not be explained
successfully as a small perturbation of a well conditioned polynomial.
Instead Wilkinson's polynomial 1ies in a region of polynomial space
whose geometry seems to be exceptionally complicated.

Bounds on uncertainties in zeros corresponding to uncertainties
in coefficients are customarily computed with Taylor series. For i1l
conditioned simple zeros these Taylor series have radii of convergence
that are much too small. The well conditioned multiple zeros of a
nearby polynomial are not amenable to Taylor series expansions but may
be expanded in 5 Puiseux fractional power series. These fractional
power series, however, also have unsatisfactory regions of convergence.
But by choosing a different starting point the convergence problem of
the Puiseux series can be overcome to produce, in principle, series

that converge rapidly throughout the region of interest. In practice



those series are used to produce realistic bounds on the uncertainties
in-the zeros. Full exploitation of these techniques awaits édequate

facilities for symbolic algebra.
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CHAPTER I
INTRODUCTION AND MOTIVATION

1. What is the Problem?

The research to be reported in the following chapters deals with
“i11 condition" of the zeros of polynomials. "I11 condition" means
unusually great sensitivity 6f the zeros to changes in the coefficients
of the polynomial.

Consider the following example: a physicist has determined that
a parameter of interest may be determined by finding the zeros of a
polynomial. He computes the coefficients of the polynomial and solves
for its zeros with any of a number of computer codes which find zeros
of polynomials. Then the computer states that his polynomial of degree

six has the following zeros:

-2.0
-1.0
+ .99999998 + .000104625 i
+2.0
+3.0

Perhaps being distrustful, the physicist computes the coefficients of
the polynomial which has exactly these zeros. . He finds that those
reconstituted coefficients agree with the original coefficients of
the polynomial he gave the computer to well within the uncertainty

in the coefficients, which were derived from experimental data. He
will usually find that the differences between those sets of coeffi-
cients are comparable in size to a few rounding errors, so he seems

to have no grounds for complaint wjth the computed result.



None the less there may be sound physical reasons why the answers
he seeks can not héve imaginary components. Then why do they appear
in his answer? Is he justified in ignoring them? The methods pro-
posed in the following chapters provide a way of dealing with these
questions.

Those methods would "explain" the physicist's quandary as follows.
First they would show that the two complex conjugate zeros are
extremely i11 conditigned. That is, small changes in the coefficients
combarab]e with experimental error could easily cause them to undergo
much larger real or complex changes. The i11 condition arises from
the fact that the physicist's polynomial is very close to a polynomial
with a double zero. In fact, the methods we will discuss show that
changing each coefficient of the polynomial by as little as one part

in 10°

suffices to cause the polynomial to have a double zero at 1.0.
That double zero is well conditioned, in a sense to be explained later.
Therefore the physicist might "ameliorate" the condition of the ans-
wers to his problem by accepting a double zero at 1.0 in place of the
complex conjugate pair if the experimental uncertainties in the coeffi-
cients exceed one part in 109 and there is physical justification for
assuming that his answer should be in the form of a double zero.

Where that justification is lacking, the i11 condition of the result

is a warning signal that a misjudgment in the design of the experiment

and computation may have invalidated the results.

LTS
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2. What is I11 Condition?

We turn now to precise definitions of terms like posedness,
condition, and stability. The terms have been defined by numerical
analysts in many different and sometimes inconsistent ways; our defi-
nitions will be those used by W. Kahan in numerical analysis courses
at the University of California, Berkeley [18]. These definitions
are also close to those in the widely used text by Dahlquist and
Bjorck [6].

The definitions to follow make sense if one thinks of a problem
having a definite set of input data and a similar set of output data
which we call the solution. For instance, in the problem of deter-
mining the n complex zeros of an n'th degree polynomial, the n+1
coefficients of the polynomial are the input data and the n zeros
are the solution. In contfast, the “problem" of finding a polynomial
approximating a given function is incomplete until we specify'a
criterion for choosing the best approximation. That criterion could
be regarded as fixed, and hence part of the problem, or subject to
change, and hence part of the data.

If furthermore the data are regarded as uncertain, then the infor-
mation on the size of the uncertainty becomes part of the data. This
information is often expressed in terms of a metric or norm on the
space from which the input data are drawn. The norm itself may also
be part of the input data if it is subject to change. The purpose of
the norm on the input data, for example, is to provide a way for the
problem poser to specify which inputs are so close together as to be
indistinguishable from his point of view. In addition, there may be

a norm on the output solution with a similar purpose. As we shall
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see, the poser may be obliged to prévide these norms even if the input
data are regarded as exact.

Within this framework a problem is well posed if it (1) has a
solution which (2) is unique and (3) varies continuously when the
input data vary continuously. Consequently an i1l posed problem may,
for some input data, have several solutions or none or the solution
may change discontinuously when the input data is changed continuously.
The answer to the question of whether a problem is well posed is
either yes or no.

Given a problem that is analytically well posed, we call it well
conditioned if changes that we consider negligible in the input data
can only cause changes in the solution that we also consider negligi-
ble. Conditioning can be measured by computing the partial derivatives
of the solution with respect to changes in the input data. If the
appropriate norm of these partial derivatives, called the condition

number, is too large, the problem is ill conditioned. Unlike posed-

ness, then, there is not a sharp break between well and i11 condi-
tioned problems, but rather a continuum.

From our point of view, stability is a property of algorithms,
rather than problems, and relates to the question, "Does this
algorithm always produce a solution as good as can be expected, con-
sidering the condition of the problem?" Interesting numerical
algorithms almost always fail to prdduce the mathematically correct
solution to a problem. This is because such algorithms usually commit

rounding errors due to finite precision arithmetic and truncation

errors due to terminating infinite analytical processes after a finite

number of steps.

=
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A stable algorithm has the property that the uncertainty it con-

~tributes to the solution of a problem is not much larger than the

uncertainty that would be associated with small changes in the input
data. Figures I.1 and I.2 illustrate a stable algorithm applied to an
i11 conditioned problem. A stable algorithm applied to a well condi-
tioned problem yields nearly the correct answer. Many stéb1e
algorithms, moreover, can be shown to deliver the exact solution of

a problem with input data very near the given input data, even if that
data is i1l conditioned.

To conclude the definitions, recall that the key to the problem
of the physicist in section 1 was to find the polynomial with a double
zero nearest his polynomial. In general, the polynomials with one or
more multiple zeros form a subset of the space of all polynomials.
These subsets have been called pejorative manifolds by W. Kahan [17],
because polynomials near a pejoratjve manifold always have some i1l
conditioned zeros. Since they are the only manifolds that interest

us, we will use the term manifold in subsequent chépters to mean one

of these pejorative manifolds. Thus the manifold of n'th degree monic

polynomials with one m-tuple zero is a surface with dimensionality

n-m+1 in the space of all n'th degree monic polynomials.

The distinction between wrong answers caused by an i11 conditioned
problem and wrong answers caused by an unstable algorithm applied to
a well conditioned problem is well known in the west mostly because
of the work of Wilkinson [34]. But similar concepts are also present
in the contemporaneous work of the Soviet author V. Zaguskin [37].
Zaguskin defines condition numbers with respect to small finite rather

than infinitesimal perturbations. In well conditioned cases his
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Figure I.1. Effect of i11 conditioning: a ball in the input
space maps into a cigar-shaped region in the
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Figure I.2. ‘A stable algorithm maps the input point « 4
into the region bounded by the dotted ball

which is not much larger than the image of the
input ball.
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methods give an idea of how much the zeros of a polynomial may vary

as the polynomial varies within its finite uncertainty. In chapter VII
we will show how such notions may be app1ied even for an i1l condi-
tioned pojynomial. There we will show how to develop the whole series

of which the infinitesimal condition number is simply a bound on the

first term.



3. Examples of Definitions

An example might he]ﬁ to clarify the definitions of the previous

section. ‘Consider the problem of finding the smaller real zero of the

quadratic polynomial

f(x) = x2+2x+1-¢ for |e| <0.7.

We see that for ¢ = 0, there is a real double zero; for € < 0
there are no real zeros; for € > 0 there are two distinct real
zeros. Since in some cases of the input there is no solution to this
problem, it is i11 posed.

Suppose we restrict the problem so 0 < e < 0.1, Now the pro-
blem has become well posec but i11 conditioned. Consider the depen-

dence of the zeros of f on e:

-1/

+ ’

x
n

+ 1/(2/€) .

So as €+ 0 this condition number becomes arbitrarily large in
magnitude. Any small error in the original data or in the computation
may be magnified by an arbitrarily large factor. Note how in this
case, as in many others, approaching i11 posedness corresponds to
worsening condition. See Kahan [17],

What are the pejorative manifolds in the quadratic case? There
is just one, the manifold of quadratics with double zeros. In the

space of quadratics

x2+bx+c,

the manifold of polynomials with double zeros is just the subset of

vy
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polynomials with

It is evident that the previous polynomial

x2 +2x+1 - ¢

1ies rather near this manifold; that nearness causes the i11 condition
of its zeros.
Stability may be illustrated by considering the problem of find-

ing the small real zero X of the polynomial

xz -2x+ 68,

20

for |8] <107 The usual formula yields

On most computers there will be numbers & Tlarge enough to be
representable but small enough'that the computed value of 1-68 is 1.
In this case the computed X = 0. For many purposes this is unaccep-
tably far from the correct answer which is X £ %6. A check of con-
dition numbers shows that they are small. That the fault lies with
the algorithm implementing the qsua] formula, rather than with the

problem, can be seen by considering another less well known but equi-

valent formula for the zero:
% =6/(1+/1-8) .

An algorithm implementing this formula will compute an approximately

correct answer for small & even in the face of rounding error,



This should come as no surbrise sfnce this polynomial is obviously far

from the pejorative manifold.

10
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4. What is 111 Condition of Zeros of Polynomials?

The chapters to come will discuss methods for dealing with i1]
conditioned zeros of po]ynomia]s. In order to see why such methods
might be useful, we consider first the problem of finding the zeros
of a polynomial from its coefficients. Several a]gorithms‘are now
known which are not only stable in the sense outlined above, but also
are more efficient than other (unstable) methods. Best known of these
js that of Jenkins and Traub [14]; another good one is Brian Smith's
version of Laguerre's method [30]. FORTRAN implementations of both
these algorithms'are available in the IMSL library [13]. The sta-
bility of these algorithms may be shown for a specific problem by com-
puting the coefficients of a polynomial whose zeros are exactly the
zeros computed by the algorithm. Then the coefficients of the original
polynomial do not differ much from the coefficients of the polynomial
recomputed from the numerical solution.

But if we happen to know the exact zeros of the original polyno-
mial, we may find that they differ greatly from the zeros that were
computed. If this is the case -- that a stable algorithm has produced
results that are more than slightly wrong -- then the problem must be
i11 conditioned, In the previous section we saw that the condition
of zeros of a quadratic polynomial was related to how nearly the poly-
nomial came to having a double zero. It is a basic fact about the
zeros of analytic functions that nearness to a function with a multiple
zero corresponds to i1l condition of the zeros,

As a simple example consider the analytic function

(1) = (t-a)"a(1)

et



where g(t) is analytic and. g(a) # 0. If f(r) is perturbed by
eh(t), h(a) # 0, then the perturbed zeros B satisfy |

f(B) -eh(B) = 0 ,

SO

e = (9(8)/h(8)) (B~0)™ .

In chapter VII we will see that the last equation can be transformed
to express B-a as a power series in ellm. Thus there are m zeros
B which converge to o as € =+ 0.

Implicit differentiation reveals the dgpendence of a solution B

on the data e:

d;&:l.
de €

1
BY\T/m, g'(B) h'(B)y °
nGE ™ Erit - e

As ¢ +0, B~+a, g(B)+gla), and h(B) +'h(a). Simultaneously
the condition number I%§1 increases like 1/(|e|]"]/"5 without
bound, so thé condition of each B becomes infinitely bad.

One way to visualize the meaning of the condition number is to
think of the process of finding a zero of a polynomial as a mapping
from the space of polynomials into the complex plane. Then we can
ask how an infinitesimal neighborhood in polynomial spacelis mapped
into the complex plane. AIf that neighborhood is spherical then its
jmage will usually look elliptical. In a well conditioned case the
ellipse is small; in an i11 conditioned case large. - In the case of an

infinitesimal neighborhood of a polynomial with a multiple zero, the

jmage is a large star-shaped region.

&
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The research to be described is motivated by the desire to know
how large these image regions may become for polynomials within a finite
ball. The condition number tells how large the ellipses may be in the
infinitesimal case; it can be used to bound the first term of a power
series. Just when that first term is large, however, the power series
turns out to have a short radius of convergence, In fact, if a mani-
fold of po]ynomiais with multiple zeros runs through the ball, then
the usual power series can not converge at every point in the ball.

But by exploiting that manifold as described in chapter VII we
may be able to get, in principle, a different kind of series that con-
verges throughout the ball. The notion underlying that series may be
used, in practice, to obtain a bound on the size of the image of the
ball. .

If the polynomial from which we expand 1ies on a manifold, the
nature of series ekpansions of its multiple zeros is different than
when the polynomial 1ies off the manifold. The series includes frac-
tional powers of the perturbations. This is not a severe handicap.
However it may be that there are a priori reasons for knowing that
the only significant perturbations are those which are along the mani-
fold and maintain multiplicities. Then reasonable condition numbers
can be defined which are finite with respect to those perturbations.
Furthermore the expansions used to bound the changes in the zeros take

much simpler forms.
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5. Treating the Symptoms of I11 Condition

Large condition numbers are a warning that small changes in the
input data cause large changes in the solution of a problem. 1In the
next section we consider ways of identifying the underlying difficulty,
but now we will merely treat the symptoms: substantial changes in |
our answers are being caused by seemingly insignificant changes in our
data or by rounding and truncation errors in our algorithms.

If our data is derived experimentally, we could try to perform
more careful experiments in order‘to get the variation in our answers
within acceptable 1imits. If the data is not subject to empirical
uncertainties, then the errors in our algorithms are the cause of our
symptoms. Ve may use increased precision to reduce the effect of |
rounding errors, and we may carry out more steps of infinite processes
to reduce truncation errors. For polynomials, this would mean carry-
ing out more steps of iterative processes such as Newton's method.

If the coefficients of a polynomial are known exactly, then
rational arithmetic may be used to determine the zeros to any required
accuracy. Pinkert [41] discusses such a method, These methods are
relatively slow on present computers, but they do eliminate i11 con-
dition as a factor affecting accuracy of computed zeros. Exact arith«
metic methods are inappropriate, however, when the coefficients are
not precisely knowng then explicit account should be taken of i11
condition.

Changing the algorithm does not change the candition of the pro-
blem, but an unstable algorithm can aggravate ouF/Symptoms of i11°
condition. Sometimes we can reformulate tﬁé-problem to take advantage

of a stable algorithm. In other cases we can reformulate the problem

‘o

o?
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to make it better conditioned.

Thus we will see later that the condition of a zero of a poly-
nomial may sometimes be improved by translating the pd1ynomia1 so that
the zero to be found is near the origin., In certéin cases this may
be helpful, but care must be iaken that the translation is computed
with insignificant rounding error, The translation of the coeffi-
cients is computed effectively by evaluating the polynomial and n of
its derivatives. Usually such translations must be performed in
higher precision when i11 conditioned zeros are invo]ved. Stewart
[31] shows that the effect of such translations, carried out in con-
ventional fashion, is comparable to the effect of rounding errors in
the coefficients of the original polynomial. Kahan [18] has shown
that unconventional algorithms can sometimes do better than would be
expected from [31], but his algorithm is a fluke.

If one is concerned with numerical treatment of a polynomial that
arises experimentally, it may be that careful translation is the most
reasonable method of "ameliorating” i11 condition that has no obvious
source. Such translation is justified if the zeros represent a phy-
sical quantity whose origin is arbitrary. The coordinates of a point
on a line, for instance, are sometimes arbitrary, but not if something
interesting, such as a body exerting a central force, occurs at the
origin.

However performed, translation amounts to attacking the problem
of i11 condition piecemeal, one zero at a time, rather than trying to
deal with the overall condition of the problem. And the results of

translation in no way "explain" the i1 condition.
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6. Explaining I11 Condition

The methods to be presented later try to "explain" i1l condition
by finding the nearest polynomial with all its zeros well conditioned.
That polynomial will be on one of the pejorative manifolds of polyno-
mials with mp]tiple zeros. At the end of chapter II we will see that
if an m-tuple zero is sufficiently i11 conditioned there must be a
polynomial with an m+1-tuple zero fairly close by. So we may in
succession try to find the nearest polynomial with a double zero, a
triple zero, two double zeros, and so on. We may count ourselves
successful if we find that one of these nearest polynomials has all
of its zeros well conditioned and yet is close enough to our original
polynomial. When we are successful, our starting polynomial may be
explained as a small perturbation of a polynomial with some multiple
zeros, all of which are well conditioned.

The reader with some experience may feel that the nearest such
polynomial should be apparent fromvinspection of the distribution of
zeros, for i11 conditioned zeros often form obvious clusters. After
all, an m-tuple zero subjected to a suitably small perturbation will
usually split up into m distinct zeros, and sucﬁ configurations
should be easily recognized. However, the i11 conditioned simple
zeros scatter so quickly that they may soon lose their clustered
aspect. As we shall see later when we discuss Wilkinson's polynomial,
it is sometimes impossible to guess just by inspection of the zeros
what the nearest polynomial with well conditioned zeros might be 1ike,

We may find, moreover, that no small perturbation will get us to
a polynomial with all zeros well conditioned. Rather, by moving

increasing distances we may increasingly improve the condition of the
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zeros, but in order to improve the condition of all zeros as much as
we want it is necessary to move much further than we want. Wilkinson's
polynomial seems to be of this sort; it is discussed in chapter X.
There is no natural division between the polvnomials which are
explainable and those which are not; however we set a somewhat arbi-
trary boundary by our choice of norm and tolerance.

If we do find a nearby polynomial with all of its zeros wg]] con-
ditioned with respect to variations that maintain multiplicities, then
we might say that moving to the new polynomial has ameliorated the
problem of i11 condition. Such a viewpoint makes sense only if the
new polynomial is indistinguishable from the original and it is
reasonable to hypothesize that the original problem could have a built
in constraint in favor of multiple zeros. This constraint may have
existed unrecognized heretofore, or perhaps there was no convenient
algorithmic way to provide for it when finding the zeros of the poly-
nomial from the coefficients. Such a constraint may reveal itself in
the following way: an experimental system has the property that the
observed parameters always seem to be well conditioned functions of
the controllable parameters. The mathematical model for the system,
however, might lack that well conditioned relation of output to input.
Should we add something to the model? We could add a constraint in
favor of some multiplicity structure, e.g. one double zero, that is
inspired by a feature of the physical system. For instance a symmetry
in the experimental system might correspond to a double zero in the
polynomial.

Constraints ‘upon the form of the solution should not be imposed

merely to obtain a well conditioned solution. Not all experimental

. I



systems are well conditioned, and not all problems should have well
conditioned solutions. Suppressing annoying numerical properties may
be equivalent to ignoring the most important and interesting features
of the system. It may be that the observed i1l condition corresponds
to an important feature of the problem that is not properly reflected
in our theory. In other cases iT] condition may mean that the problem
we seek to solve is so close to being i11 posed fhat it is senseless

to try to solve the problem in the presence of error.

Example. Figure 1.3 is an example of a physical system. It is
the well known damped harmonic oscillator discussed in elementary
physics courses; see, e.g., Kibble [20]. A mass m may travel up and
down. It is attached through a spring to the roof; the other end is
attached to a shock absorber (dashpot). If the mass is moved from
its rest position and released it will eventually return to its rest
position, because of friction forces in the dashpot. The goal of an
engineer might be to design the dashpot so that the mass will return
to its rest position as quickly as possibie after a perturbation. By
adjusting the dashpot, the mass may be caused to return to its rest
position as rapidly as possible without oscillation. The system is
then said to be critically damped. The engineer may decide that the
spring force on m is -kx for a k > 0 which can be measured to
perhaps three significant figures. An investigation of the friction
forces of the fluid in the dashpot might confirm that the friction
forces on m can be approximated by -dx for.a constant d > 0,
.whichvcan again be measured to a few figures. Finally the mass itself

can be measured.

18
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Figure I.3. A damped harmonic oscillator.
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Then the mathematical model corresponding to the stated physicé1

assumptions is that the restoring force on m is -kx-dx so
m¥+dx+kx = 0 ,

and x(0) = Xg and x(0) = vy are the initial conditions., The solu-

tions to such linear ordinary differential equations with constant

: c,t
coefficients are usually linear combinations of exponentials e *

ct
and e~ where c_ and c_ are the zeros ¢ of the quadratic

polynomial
.mc2+dc+k .

et
If c, =¢C_ then the solutions are linear combinations of e + and

c+t
te 7", The quantity to be minimized is the maximum time constant for

ct is defined

the components of the solution. The time constant for e
to be -1/Re ¢ which corresponds to the non-oscillatory, decaying
part of the motion of m. (The oscillatory part is governed by Im c.)

Then

2m

d - /d%-4mk
max (L .—-]__) = <
Re c+’Re c_

for d > v4mk ,

| B for 0cdovER.

For d > 0 this is minimized by letting d2 = 4mk. In that case

Given m and k the engineer can compute an optimal d which
he can obtain approximately by adjusting the dashpot.
The engineer may then mass produce these assemblies. Of course

there will be variations within tolerances in m, k, and d. Some of
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the assemblies will probably exhibit oscillazory motions when perturbed.
Then thé question will arise: are these variations from unit to unit
due to the normal variation of components within tolerances, or is
there an error in the design, or in the claimed tolerances?

We can resolve this question by asking: given the polynomial

corresponding to one of the production units.

ple) = 2+ (e + (&,

is the nearest polynomial with a double zero within the distance
allowed by the tolerances on (%) and (%9? If Ay 1is the tolerance
on (%) and A the tolerance on (%) then we might measure pertur-
bations
q(c) =oc + B
by
1q1? = (ﬁ)? + (&)2 .

Then if the distance to the nearest polynomial with a double zero were
less than v2 in this norm, the components would 1ikely be within
tolerance.

Suppose we have adjusted the assembly to be critically damped.
Then we may carefully measure m, k, and d. If we wanted to compute
the time constant from the data and the model, we would be wise to
incorporate a constraint in favor of double zeros in our polynomial
solver, for that constraint corresponds to a fact we know about the
physical system. A

In contrast, if we carefully measured m, k, and d on an

(unadjusted) assembly from the production 1ine, and we wished to
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compute the time constant, it would be folly to incorﬁorate a con-
straint for a double zero in the polynomial solver. If we did we
would always think that the assembly was critically damped.

Even when the assembly is at or near critical damping, where

small changes in m, d, or k produce large changes in c, or C_s

+
such small changes produce only small changes in the solution of the
differential equation, measured in an appropriate norm. That is, an
important feature of the physical system is well conditioned, We
encounter i1l conditioning numerically because we choose to think 6f
the solution of the equation as a sum of exponentials. As a conse-
quence of this point of view we then solve a polynomial equation to
find the time constants of fhe exponentiaIs._ Solving the polynomial
equation is the step that may be i11 conditioned.

Similar mechanical problems are used as examples in the text of
Carnahan, Luther, and Wilkes [4, exercises 4.23-4.26 and example 3.1].
There the natural circular vibrational frequehcies of mechanical
systems with several components are computed. These frequenciés are
obtained from eigenvalues of symmetric matrices. Multiple eigenvalues
merely mean that two different modes of circular vibration happen to
have the same frequency because of chance or some physical symmetry.
Viewed as an eigenvalue problem, eigenvalues of symmgtric matrices are
always well conditioned [5]. An inappropriate reformulation of an
~ eigenvalue problem as a polynomial problem is responsible for the i1l
conditioned zeros Carnahan et al obtain in some of the numerical

results given in their example 3.1.



7. What Do We Do With the Explanation?

Once the nearest polynomial has been found which "explains" some
i11 conditioned problem, what should be done next?

If we just substitute the zeros of the ameliorated or regularized
polynomial for the zeros of the original polynomial, we may be guilty
of covering up important features of the problem,

One way to investigate those features is to answer the following
question: How do the zeros of the polynomial vary when the coeffi-
cients of the polynomial vary within their respective uncertainties?
When all zeros are well conditioned this question is easily answered
by expressing changes in the zeros as a Taylor series in changes in
the polynomial, of which only the first term or two are needed because
the series converges quickly. |

In the interesting case, however, we find that a conventional
Taylor series approach will not work for i11 conditioned zeros, The
radius of convergence of the series never exceeds the distance to the
nearest polynomial with a multiple zero, If we actually move to that
nearest polynomial, we then find that conventional fractional power
series expansion methods still tend to founder because of short radii
of convergence.

In chapter VII these problems are discussed and a method is pro-
posed for obtaining expansions for changes in zeros that converge in
a much larger region than conventional techniques. The proposed
method depends on using the nearest well conditioned polynomial as a
starting point for an expansion in two phases. The first phase retains
the multiplicity structure of the starting point while the second

phase continues in a conventional manner. Thus the symbolic
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determination of a series expansion depends on numerical means for
determining the most suitable stérting point. Most of the difficulty
of the problem is in the numerical part. Analytical difficulties
preclude getting the actual expansions, but the idea may be used in a
very practical way to get bounds for the changes in the zeros as the
coefficients vary throughout the entire region of interest. Smith
[42] explains how Gerschgorin circles may also be exploited to obtain

similar bounds.
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8. Survey of Previqus Results

Prior to the computer era relatively little attention was devoted
to the problem of i11 conditioned simple zeros beyond recognizing that
small perturbations tended to break up multiple zeros into i11 condi-
tioned simple zeros. Thus the multiple zeros themselves were usually
unfairly considered to be i11 conditioned. The behavior of multiple
zeros under perturbation has long been a matter of interest to analysts
and algebraists; the fractional power series discussed in chapter VII
have been known since the eighteenth century.

Another facet of multiple zeros is their effect on convergence of
zero finding algorithms. It has long been known, for instance, that
the convergence of Newton's method is only linear in the vicinity of a
multiple zero. Consequently much effort has been expended in develop-
ing zero finding iterations that perform better near multiple zeros,
Such methods have been discussed by Traub [33] and Ostrowski [25],
among others; Stewart's is a recent example of such work [32].

James Daniel [7] has recently studied the problem of improving
approximations to multiple zeros. He suggests that averages of clus-
tered i11 conditioned simple zeros may be taken to determine the
multiple zero of which they are apparently approximations, The exam-
ples he cités show that his suggestion may sometimes be helpful for
double zeros and perhaps for higher multiplicities if accuracy require-
ments are not very stringent. Daniel's work has not been incorporated
in any widely available codes for polynomial zeros. The reason may be
that a conventional zero-finding code with deflation would, in the
vicinity of an m-tuple zero, find first an i11 conditioned member of

an m-member cluster. Then it would find an i11 conditioned member of
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an m-1-member cluster caused by perturbing an m-1-tuple zero which is
not the same as the m-tuple zero of the original problem. Then the m
i11 conditioned zeros that are averaged together at the end are not
all perturbations of the same multiple zero and consequently this ’ <.
average does not make a very good estimate of any multiple zero.
To J. Wilkinson [34] must go credit for publicizing the fact that
111 condition and apparent clustering are not equivalent characteris- ?
tics of zeros of pd]ynomia]s. This fact does not seem to be explicitly
recognized previous to Wilkinson's work. The polynomials he chose as
~examples are still being studied profitably as in chapter X of the
present work. .
Wilkinson also brought to the attention of many readers the facts
that condition could not only be rigorously defined but could be mea-
sured as well. ‘
In 1975 Dunaway [8] proposed a different method for dealing with
polynomials with mu1fip1e zeros. Her work is based on the fact that
the greatest common divisor (GCD) of such a polynomial and its deri-
vative is a polynomial whose factors are the multiple zeros of the
original polynomial, but of multiplicity one less. GCD :algorithms
have Tong been used for studying polynomials whose coefficients are
exactly known. Recent work by Collins [5] and others has been in the .
context of symbolic algebra systems employing exact rational arithmetic.
Dunaway's idea was to implement a traditional GCD algorithm in
- standard finite precision floating point arithmetic. There the key
problem is determinihg when a term in a polynomial remainder sequence .
may be considered to vanish, indicating that an approximate GCD has )

been found. As Dunaway remarks, that is a difficult problem in finite



precision arithmetic. She does not give details as to how she resolved
it, and it is not clear that her procedure could be automated. If

that were possible, it might be an attractive method for investigating
the multiplicity structure of the zeros of polynomials without speci-
fying that structure in advance. In contrast, the methods to be pre-
sented in subsequent chapters require that one specific structure be
investigated at a time -- one double zero, a‘triple zero, two double
zeros, etc,

The present investigation is based on the work of W. Kahan
‘described in [17]. Kaﬁan displayed the connection between i11 condi-
tion and nearness to the manifold of polynomials with multiple zeros.
In [17] and also in [19] he determined how to compute condition numbers
and how to derive the equations to be solved for the nearest polynomial
with a double or triple zero. He also perceived that the manifolds
could be exp]bited to provide a better way to express perturbed zeros
as an expansion in terms of the perturbation.

Kahan went as far as theory undided by extensive computational
experience could be expected to go; this dissertation supplies some of
that computational experience and some of the theoretical extensions

motivated by that experience.
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9. Summary of Findings

. The principal original results of this research are:
1) A new method for computing cpnditioq numbers for zeros of
polynomials, valid for certain norms only, is presented in chapter II. t
2) The equations to be solved for the nearest polynomial with
two complex conjugate double zeros, two double zeros, and three or
more double zeros are presented in chapters IV and V. 2
3) When k complex multiple zeros are sought, the equations
that need to be solved are less complicated than might have been
thought at first. It is shown that k Lagrange multipliers may be
assumed to vanish for any interesting solutions. This resu]t,'pre-
viously known [19] for the case of a single multiple zero, has been
extended to the case of several multiple zeros and the case of a com-
plex conjugate pair of multiple zeros in chapters IV and V. But a
counterexample has been discovered which indicates that, in the most
common case of a real polynomial subject only to real perturbations,
these results are not always applicable.
4) Some results on the location of the nearest polynomial with

a double zero are given in chapter VI.

‘a

5) The details of a new technique for bounding changes in the
zeros of a polynomial are presented in chapter VII. This technique,
originally suggested by W. Kahan, exploits nearby manifolds of poly-
nomials with multiple zeros whereas conventional techniques are <
usually hindered by the presence of those same manifolds,

6) Extensive computer codes of methods presented in earlier
chapters were prepared to test the theory experimentally. In chapter

IX examples are given of successful application of these codes.
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7) Extensive computer.resu1t5'are givenvin cﬁapter X to supbort
the conclusion that one polynomial mentioned by Wilkinson [34] is
intrinsically not amenable to treatment of the type proposed in the
previous section, due to its position near a particularly complicated

part of the manifold of polynomials with double zeros.
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10. Notation

In the following chapters we will consider perturbations of monic
algebraic polynomials p, of degree n, with real or complex coeffi-
cients:

n, o n-j
p(t) =t + ) P4t .
J=1

We will usually follow the conventions of using lower case Greek
letters for scalars, lower case Romen letters other than i through
n for vectors and polynomials, and capital Roman letters for matfices,

non-linear operators on vectors, and sometimes for functions. But pj‘

and Aij will usually represent scalar elements of p and A. R

and,'Cn represent the real and complex vector spaces of dimension n.
The perturbations will be polynomials of degree at most n-1,
not usually monic:
a(r) = n-J
J

A

nes-13

We identify the space of perturbations q of a polynomial p with a

vector space of dimension n and, in the obvious basis
{Tn-l n-2

3T aeeesTo1}

the elements of the vectors are the coefficients of the polynomials:

Any norm for R" or C" may now be imposed. We will be interested

in a weighted 22 norm on C" defined by
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where q* denotes conjugate transpose and W 1is Hermitian positive

definite and usually diagonal as well. In the diagonal case we write

1’". 2
Iqll,, = W laq.l” .
W 35909

There is a dual space of functionals u* which haé the usual

norm
*

fu*f,, = sup lu"g] _ (u"'w']u)"/2 .
or
n
): Iujlzle
j=1
in the diagonal case. Most often the functional we are interested in
is ec*, the functional -that evaluates a polynomial q at z:
eg*q = q(z). In our basis ec* = (c"'];"'z'-~c'l).
One frequently used operator is the derivative operator D which

maps c" to c" and has the matrix form

( 0 Y™
n-1 0 0]
D = n-2 0 f"
0 0
1 0
‘" Y
Y
n

We can for instance write ec*Dk for the functional which evaluates

the k'th derivative of a polynomial at z. In fact we will often be

interested in the operator which computes a polynomial and its first
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m-1 derivatives at z. We will define it as

r % W\
ec*
e.’D
AC = % : > m
lm-
e *D
LC J 4
n
so
q(;)
Acq =

q(m-])(C) )

Corresponding operators D and A can be defined for polynomials of
‘degree n; their matrices operate on vectors of dimension n+1.

Then
plz)

~

Acp =

.

o™ (zy

EC is m by (n+1).

It is handy to note here that the m rows of A_ are independent

C
for m < n. For if we apply A; to the vector q representing -

(z-z)¥ we find

Aq =] k! |+ position k+1 .

By letting k run from 0 to m-1 we find that the rank of AC

is indeed m,

s



Frequently we will be using ¢ as a symbol for a multiple zero
of a nearby polynomial and a will be a symbol for.a zero of the
original polynomial., We will write e* for ec* and A for AC'
In chapters II and VII, however, A will be an m-1 by n matrix

Those chapters also use the n by n-m+1 matrix

¢ 1 : 3
(m1)(-a) O
: . 1

Pt = . (m-'l)(-a)v

(_a)m-]

0] K (_a)m-I

/

Multiplying an n-m+1 vector q by P corresponds to multiplying

m-1

a polynomial of degree n-m, q(t), by (t-a)m'1. The columns of

Pm-] are linearly independent since (Tfa)m-]Q(T) #0 if q # 0.
When presenting numerical results we will often use FORTRAN

E-format, e.q.

123E-5 means .123x10°° |
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CHAPTER 11
COMPUTING CONDITION NUMBERS FOR ZEROS OF POLYNOMIALS

1. Definition of Condition Numbers for Simple Zeros

In this chapter we explain several ways to compute condifion
numbers for zeros of polynomials. In the last section we see why i1l
condition is always associated with nearness to a polynomial with one
or more double zeros.

Condition numbers are intended to be a nﬁmerical measurement of
condition. They tell us how large a change in the solution may result
from a given change in the data. In general, for a problem which con-
verts m input data items di into n components of a so;:?ion S.,
there'cou1d be nm condition numbers Yij = |rij|, Ty = 53%’ and
the condition of the problem could be defined to be a norm of the
matrix of rij. If there is a norm ﬂ-us def{ned on the solution and
a norm H-ED defined on the data, then the most suitable norm for T,
is

the matrix of rij,

irh = sgpfﬁaia-

One could just as well consider relative condition numbers,

-
ij sj 33;

as long as sj # 0.
For our purposes we will generally consider a separate condition
number for each zero of a polynomial but we will lump together changes

R

in the coefficients and measure the combined change by means of a norm.
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Let p be a monic polynomial of degree n,

-J

n
p(t) = Tn + 2 pan s

j=1
and let &p be a perturbing polynomial of degree n-1, not neces-

sarily monic, representing a change in the coefficients:

n .
sp(t) = J spyrd .
=1

Let o be a zero of p(t) and a+8c a zero of p(t)+6p(t).

Definition. The (absolute) condition number, y, of o« with

respect to changes &p s

(1.1) y = 1im_ sup 1%9% .
A0 (8p with] P
fispl = A
As we have seen, this limit is infinite for multiple zeros o, a

defect which we shall remedy shortly.

There is one aspect of i11 condition of zeros of polynomials
that may surprise those accustomed to thinking of i11 condition pri-
marily in terms of systems of linear equations. In that context norms
are usually chosen in such a way that the condition number of a matrix
with respect to inversion is never less than 1. There is no such
natural choice of norms for zeros of polynomials and their condition
numbers may take on any positive value. We shall see in chapters IX

and X that well conditioned zeros can be very well conditioned indeed:
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in a certain reasonable norm, the condition number of one of the zeros
of Wilkinson's polynomial is about 1.E-16. |

Our definition of condition and condition number is similar to
that of Wilkinson [34], and is also a special case of a more general
formulation proposed by Rice [27]. Both Rice and Wilkinson also pro-

pose relative condition numbers which we would define as

=_Y
Yrel = Tol
for o # 0. In this case we would choose a norm for 6&p which would

measure relative changes in the coefficients. An example is

n | 6ps2y1/2
Ispl = [ y |l ]
j=11 P;

if all pj # 0. Other norms can be devised suitable for the case when
some pj is zero. It isvthe responsibility Qf the definer of a pro-
blem to decide the appropriate norm. For instance, if none of the
zeros of p are 0, then the polynomial p(t), 'whdse positive zeros

are the moduli of the zeros of p, may be used to define a norm:

—p—

n 6p:12y1/2
iopt = [ 1 |53
3=11Pj

None of the Bj are 0 as long as p_# 0.
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2. . Definition of Condition Numbers forMultiple Zeros

The previous discussion shows that our definition of condition
number does not make sense for a multiple zero, which would apparently
have an infinite condition number. That infinite condition is caused
by the fact that most arbitrary infinitesimal perturbations applied to
a polynomial with a multiple zero tend to break up that multiple zero
into i11 conditioned simple zeros.

In order to have a sensible definition of condition number
for a multiple zero we must only allow perturbations which do not
destroy the multiple zero. Here is an example: cons%der a real monic

cubic polynomial,
p(r) = (-a)?(r-8) = - (20+8)7% + (208+a®) T - %8
and small quadratic perturbations,
q(T)l'-' q1f2+q2T+q3 ,
which preﬁerve the multiplicity of a so that
p(r) +q(t) = (- (ate))?(x - (846))

We discover that

q-l = 28 + 0 . ’
9y = 20e + 2Be + 2a6 + (2694-62) ,
q3 = 20Be + aze + (2a€6+B€2+526) ,

where the parentheses segregate higher order terms which we shall
ignore. Thus the three parameters q; are defined in terms of the

two variables € and 6. We can choose any two of the q; as the
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independent parameters of the perturbation and solve for e in terms

of them. Thus if we choose 9 and 9y, we find

W7
e = (q,-a,)/(2(8-a))
and =
6 = (Ba;-9,)/(B-a)

to first order in € and 6. =

Then we can see that the ratio of change in solution (e) to change
in data (q]) is

: € qZ/q] -0
o B-a

‘which will be well defined unless B = a, which would mean that the
multiplicity of o was not two, as we thought, but actually three.

In general let

p(t) = (1-a)"q(1) , qla) # 0.
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