

Copyright © 1977, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

«PM8f§©WPy§ATI*N «»CT|ON).

yNIVKMITY •* CALIFORNIA
liHRtLIYi CAUFOW41A #47«>

PROBABILISTIC ANALYSIS OF PARTITIONING ALGORITHMS

FOR THE TRAVELING-SALESMAN PROBLEM IN THE PLANE

by

Richard M. Karp

Memorandum No. UCB/ERL M77/31

13 May 1977

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94920

PROBABILISTIC ANALYSIS OF PARTITIONING ALGORITHMS

FOR THE TRAVELING-SALESMAN PROBLEM IN THE PLANE*

by Richard M. Karp**

Abstract

We consider partitioning algorithms for the approximate solution of

large instances of the traveling-salesman problem in the plane. These

algorithms subdivide the set of cities into small groups, construct an opti

mum tour through each group, and then patch the subtours together to form a

tour through all the cities. If the number of cities in the problem is n,

and the number of cities in each group is t, then the worst-case error

is O(yr-). If the cities are randomly distributed, then the relative error
-1/2

is 0(t ') (with probability one). Hybrid schemes are suggested, in

which partitioning is used in conjunction with existing heuristic algorithms,

These hybrid schemes may be expected to give near-optimum solutions to pro

blems with thousands of cities.

Key words and phrases: Euclidean traveling-salesman problem, approximation
algorithm, heuristic algorithm, geometric probability,
partitioning

*

Research supported by National Science Foundation Grant MCS74-17680-A02.

Computer Science Division, Department of Electrical Engineering and
Computer Sciences and the Electronics Research Laboratory, University of
California, Berkeley, CA 94720.

1. Introduction

By the traveling-salesman problem in the plane we mean the problem of

constructing a polygon of minimum perimeter through a given set of points

(cities) in the plane. There has been considerable investigation of heuristic

methods for the solution of this problem. Computer programs based on local

improvement techniques ([13]) or other heuristic principles ([11]) appear to

give near-optimal solutions to problem instances with two or three hundred

cities, without using excessive amounts of computer time. Good results

have also been obtained using man-machine systems, in which a person, commu

nicating with a computer through a display terminal, controls the search for

a solution ([1],[12],[14]). Success on problems of modest size has also

been achieved by persons armed with pegs to mark the cities and string to

measure distances ([5]).

On the other hand, at the present state of the art it is quite impos

sible to find, and prove that one has found, the strictly optimal solution

to a large problem. The most effective exact solution methods are based on

branch-and-bound techniques ([7],[9],[10],[19]); they solve sixty-city

problems routinely, but use excessive amounts of computer time on problems

with one hundred cities. The fact that the traveling-salesman problem in

the plane is NP-hard ([6],[15]) provides convincing evidence that there

does not exist a polynomial-time algorithm capable of solving the problem

exactly.

Recently attention has turned to the construction of polynomial-time

algorithms guaranteed to solve the problem within a specified approximation

([4],[16]). The best result along these lines is due to Christofides [4],
3

who has given an algorithm that runs in time 0(n), and always yields a

tour less than 50% longer than the optimum tour.

The present paper takes a probabilistic approach. We assume that the

cities are scattered at random in a rectangular region X of the plane.

We exhibit a family of algorithms with the following property: for every

e > 0 there is an algorithm A(e) in the family such that

(a) A(e) runs in time C(e)n +0(n logn);

(b) with probability 1, A(e) produces a tour costing not more than

(1+e) times the cost of an optimal tour.

The algorithms are based on partitioning the region X into "small"

subregions, each of which contains about t cities. An optimum tour is

constructed within each subregion, and these subtours are then combined to

yield a tour through all the cities. Of course, standard heuristic methods

may be used instead of exact solution methods to find the tours through the

subregions. Such a combination of partitioning with existing heuristic

methods should make it feasible to find near-optimal solutions to problems

with many thousands of cities.

2. Tours and Spanning Walks

The traveling-salesman problem in the plane asks for a polygon of minimum

length through a given set of points. Such a polygon corresponds to a closed

tour in which each city is visited exactly once. In designing algorithms

for the problem it is convenient to allow a larger set of feasible solutions,

corresponding to tours which visit some cities repeatedly. This short

section is devoted to showing that such a change in the problem statement

makes no real difference.

Let V be a set of points in the plane. For u e V and v G V, let

d(u,v) be the euclidean distance between u and v. Given any multigraph

(possibly with loops or multiple edges) G = (V,E), with vertex set V

and edge set E, define w(G), the weight of G, as I d(u,v);
, % (u,v}€E

here d(u,v) is counted multiply if {u,v} is a multiple edge. The graph

G = (V,E) is a tour if G is connected and every vertex has degree 2;

G is a spanning walk if G is connected and all vertices are of even

degree (a loop at v contributes 2 to the degree).

Lemma 1. Let G be a spanning walk. Then there is a tour H such

that w(H) < w(G).

Proof. We define two operations on a multigraph G = (V*E) at a

vertex v.

(a) If there is a loop v then the operation LOOP(v) is applicable;

it deletes the loop.

(b) If {u,v} e E, {w,v} g E and the pair of arcs {{u,v},{w,v}}

is not a cut set of G, then the operation PASS(u,v,w) is applicable;

it deletes the arcs {u,v} and {w,v}, and adds the arc {u,w}. We claim

(omitting the easy proof) that

(i) the application of any operation transforms G to another

spanning walk G';

(ii) w(G') < w(G); this follows from the triangle inequality

d(u,v)+ d(v,w) >^ d(u,w)

and (iii) if v is of degree > 2 in G, then some operation at v

is applicable.

Repeated application of operations yields the desired tour H.

3. A Partitioning Algorithm

In this section we present a partitioning algorithm (called Algorithm 1)

for the construction of a spanning walk through n given points (cities)

PASS(2,4,3)

PASS(2,3,2)

LOOP(2)

FIGURE 1. TRANSFORMING A SPANNING WALK TO A TOUR

in a rectangular region of the plane. The algorithm uses a subroutine TOUR

capable of the exact solution of t-city traveling-salesman problems, where

t is specified by the user of the algorithm. We show that the execution
n 1

time of Algorithm 1 is O(nlogn) plus the time for t^t calls on TOUR,

and that 1*1^ -|T*| =O(^), where IW^ is the length of the spanning
walk W, produced by the algorithm, and |T*| is the length of an optimum

tour T*. It follows that, if the cities are distributed at random then,

lWl! ,-1/2,with probability 1, tj4t =l+0(t l,c).

Specification of Algorithm 1

Let n be the number of cities, let t be a parameter which will

serve as an upper bound on the sizes of subproblems solved exactly by the

subroutine TOUR, and let k(n) = pog2 r^yl; when n is clear from con

text we write k instead of k(n).
k

' Algorithm 1 proceeds by subdividing the original rectangle into 2

subrectangles, each containing at most t of the cities. Subroutine TOUR

is then called to construct an optimum tour through the cities in each sub-

rectangle. The subdivision is such that the union of the 2 subtours

forms a spanning walk through all n cities. The operations LOOP and PASS

introduced in Lemma 1 may then be used to transform this walk to a tour.

We assume for convenience that no two cities are at exactly the same

distance from any side of the original rectangle.

Let Y be a rectangle containing m cities. Assume Y is placed so

that its longer side is horizontal. Let x be the |^| the closest city
to the left edge of Y. A vertical cut through x subdivides Y into a "left

rectangle" Jl(Y) and a "right rectangle" r(Y), having x on their common

boundary. The construction is indicated in Figure 2.

•

• •

•

1

•
X

•

•

*(Y) r(Y)

FIGURE 2. PARTITIONING A RECTANGLE BY A CUT IN THE SHORTER DIRECTION

Note that a spanning walk through the cities in £(Y), plus a spanning walk

through the cities in r(Y), constitutes a spanning walk through the cities in Y,

Now we are ready to specify Algorithm 1. In the following recursive

procedure definition, Y denotes a rectangle, and n(Y) denotes the number

of cities in the rectangle Y. The subroutine TOUR(Y) constructs an

optimum tour through the cities in Y.

PROCEDURE Al

A1(X) = WALK(X,k(n(X))

WALK(Y,j) = If j = 0

then TOUR(Y)

else WALKU(Y),j-l) U WALK(r(Y),j-l)

Figure 3 shows the result of applying Algorithm 1 to an example with

n = 25, t = 4 and k = 3. The walk is the union of 8 quadrilaterals.

Figure 4 gives a tour obtained from this walk by the technique of Lemma 1

FIGURE 3. WALK CREATED BY ALGORITHM 1

FIGURE 4. TOUR OBTAINED USING THE LOOP AND PASS OPERATIONS

Correctness of Algorithm 1

Lemma 2. The result of applying A,(X) is a spanning walk through the

cities in X. Each time TOUR(Y) is called, Y contains at most t cities.

Proof. Induction on k shows that WALK(Y,j) delivers a spanning walk

through the cities in X; the first statement follows. A second induction,

through decreasing values of j, shows that, whenever WALK(Y,j) is called,

the number of cities in Y is £2J(t-l) +l; since TOUR(Y) is called by

WALK(Y,j) only when j = 0, the second result follows.

Analysis of the Execution Time of Algorithm 1

In the following analysis we assume that Algorithm 1 is to be implemented

on a random-access computer that requires one unit of time to compare or add

real numbers (such as the x- or y-coordinates of two cities). We assume

there are constants D and d such that T0UR() requires time <_ Dd to

solve a t-city problem. For example, if the standard dynamic programming

2 t
algorithm with execution time t «2 is used ([3],[8]), then any value > 2

can be used for d.

Theorem 1. With suitable implementation, Algorithm 1 operates within

the time bound

2k(n)D(Jt +0(nlogn) <2£j-Ddt +O(nlogn) .

Proof. The term 2 ^n'Dd bounds the total time spent in executing

procedure TOUR (i.e., solving small traveling-salesman problems).

The remaining work is dominated by the computations of £(Y) and r(Y).

Assume inductively that when we are ready to compute Jl(Y) and r(Y), we

have available n(Y), the number of cities in Y, as well as linked lists

10

H(Y) and V(Y); H(Y) contains the cities in Y listed in left-to-right

order, and V(Y) contains these cities listed in bottom-to-top order.

Setting up these lists initially requires sorting the n cities on their

horizontal and vertical coordinates, which can be done in O(nlogn) steps.

Thereafter we can process each Y in time proportional to n(Y), producing

A(Y), r(Y), nU(Y)), H(£(Y)), VU(Y)), n(r(Y)), H(r(Y)) and V(r(Y)) as

output. The total work for these computations is O(nlogn) for the initial

sorting, and 0(nk) = O(nlogn) for the subsequent processing.

A Cutting Game

Our next objective is to derive an upper bound on the difference between

the cost of the walk produced by our algorithm and the cost of an optimum

tour.

In preparation for this analysis we introduce a game involving the

subdivision of a rectangle X into subrectangles. There are two players,

called Min and Max. The play requires k rounds. Each round consists

of a move by Min, and then a move by Max. At the beginning of round £,

X has been subdivided into 2 subrectangles {X.}. During round Jl,

each of the X. is cut in two, by either a vertical or a horizontal cut.

Min's move consists of deciding, independently for each X., whether the

cut dividing X. will be vertical or horizontal. Max then chooses the

location of the cut. At the end of the k rounds of play, Min pays Max an
Is

amount equal to the sum of the perimeters of the 2 rectangles produced

in round k.

Figure 5 shows a play of the 3-round game. Each cut is labelled with

the number of the round in which it is played.

11

3
1 3 2

3
2

3

FIGURE 5. A PLAY OF THE CUTTING GAME

By the short strategy for Min we mean the policy of choosing, for each

rectangle which occurs, the direction parallel to the shorter side. By the

bisection strategy for Max we mean the policy of placing each cut so as to

divide a rectangle into equal halves.

Theorem 2. The short strategy is optimal for Min and the bisection

strategy is optimal for Max.

Proof. First we show that the short strategy is best against the

bisection strategy. However Min plays against the bisection strategy, the

result of the play will be 2 congruent copies of a single rectangle. The

total perimeter will be minimized by minimizing the longer side of this rec

tangle; the short strategy clearly achieves this objective.

Next we show by induction on k that the bisection strategy is best

for Max against the short strategy. This is certainly true for k = 1,

where any strategy for Max is best against the short strategy. Assume it

as an induction hypothesis for k = JL Since we know already that the short

strategy is best against the bisection strategy, we can conclude that the

short strategy and the bisection strategy form an optimal strategy pair for

any £-round game. Now consider an U+l)-round game on an axb rectangle,

with a < b. Suppose Min, following the short strategy, specifies a cut

12

parallel to the short side. If Max bisects we get two a*|- rectangles,
and optimal play (with Min using the short strategy and Max using the

bisection strategy) for the I ensuing rounds yields 2 congruent

b -«Lrectangles of size, say, aax^, where aB = 2 . The value of the game

to Max is

2*+1(2aa +2e|) =2*+2oa +2*+1Bb.

On the other hand, if Max does not bisect we get an axb, rectangle and

an ax(b-b,) rectangle, with b, f 5-. Suppose that, in the ensuing play,

Max uses the bisection strategy (which 1s known to be optimal), but Min,

possibly deviating from optimal play, chooses the same directions he would

have chosen if Max had bisected 1n the first round. Then we get 2 aa x 3b..

rectangles, and 2 aax$(b-b,) rectangles, for a total payoff of

2jl(2aa +23b1) +2*(2aa+28(b-b1)) =2*+2aa +2*+13b .

Thus, if Max fails to bisect in the first round, Min can achieve at least

as much as he could have achieved if Max had bisected. It follows that

bisection is best for Max against the short strategy 1n the U+l)-round game,

and the induction step is complete.

Finally, since the short strategy and the bisection strategy are best

against each other, they form a saddle point, or optimal pair of pure strate-

gies, for the cutting game.

Let Fk(a,b) denote the value (to Max) of a k-round cutting game on

an a x b rectangle.

13

Corollary 1.

(a) F.(a,b) = Min 2(2*3 +2^)
s integer
s+t = k

F.(a,b)
(b) If a and b are held fixed, then sup Vi* exists

k 2K/^

Error Analysis of Algorithm 1

We are now ready to apply our results about the cutting game in an

error analysis of Algorithm 1. First we establish notation. Let per(Y)

denote the perimeter of rectangle Y, and let |W| denote the length of

the walk W (i.e,, the sum of the lengths of the occurrences of line seg

ments in W). Let X bean axb rectangle containing n cities. Let

T* denote an optimum tour through the n cities, let W, denote the walk,

produced by Algorithm 1, and let k= k(n) = llog^ t5tI«

Theorem 3. Let Y be a rectangle within X. Let T(Y) be an optimum

tour through the cities in Y. Then |T*hy| -|T(Y)| <| per(Y).

Proof. Let T*ny consist of k continuous curves C|,C2,... ,Ck.

Let the 2k end points of these curves, in clockwise order around the

boundary of Y, be y^yg*...^^ Assume without loss of generality that

^+^+''-+^k^^^+^+,,'+^* where Vj" denotes
the distance from y. to y. along the perimeter of Y. Consider the

walk W(Y) consisting of the following three parts:

the curves C,,C2,... »C.,

two copies of each of the segments y^'ya^'**'*y2k-l 2k'

plus one copy of each of the segments yzy^'y^y^'^^zk V

Then the length of the first part is |T*hy|, and the sum of the lengths
3of the second and third parts is less than or equal to ^ the perimeter of Y,

14

Thus

|T(Y)| <|W(Y)| <|T*HY| +|per(Y)

FIGURE 6, CONVERTING T*OY TO A WALK W(Y)

Figure 7 indicates a family of examples for which |T(Y)| -|T* nY|
3approaches 2"per(Y). Let Y bean exl rectangle, where e is small,

let the cities occur more and more densely on the dotted line segments, and

let T*OY be as indicated in Figure 7b. Then |T*nY| •* 1, |T(Y)| -• 4+2e,

and |T(Y)|-|T*nY| ^3+e->|i|.|per(Y).

15

1

b

(a) POINTS IN A RECTANGLE

YYYYYYYYVYVYYYVYYYyYYYYYYVYVYY

mmmmmmmmmm

(b) T*OY

(c) T(Y)

FIGURE 7. AN ADVERSE DISTRIBUTION OF POINTS

f

V

16

Theorem 4. |W]| -|T*| <fFk(a,b)

k
Proof. The execution of Algorithm 1 subdivides X into 2 subrec-

k
tangles, {Y.}, i = 1,2,,.,,2 , and may be regarded as a play of a k-round

cutting game on X. Since every cut 1s parallel to the short side of its

rectangle, the play may regarded as one in which Min uses the .short strategy.
2k 2k

which is optimal. Thus I per(Y.) < F.(a,b). But |W,| = 7 |T(Y.)| and,
1=1 i - K l i=1 i

applying Theorem 3,

I |T(Y.)| < I |T*OY |+|per(Y.)
i=l 1 i=l 1 d 1

2k
<|T*| +| I per(Y.)

M=l 1

1 |T*| +|Fk(a,b) .

Now regard a and b as fixed and n and t as variable. Then the

error bound 2fk(a,b) -2' -# . Thus, we have

Corollary 2. [W^ -|T*| =O(^)

The following construction, which we sketch informally, shows that the

growth rate of our error estimate cannot be improved. Let X be the unit

square, let k(n) be even and let t be a multiple of X. Subdivide X

k k -k/2
into 2 congruent subsquares Y., i = 1,2,...,2 , each of side 2 ' .

Then it is possible to place the cities such that Algorithm 1 produces the

subdivision {Y.}, and such that the t cities in each subsquare Y. fall

into four clusters of size t/4, with one cluster infinitesimally close to

each corner of Y.. Then

k/2Fk(l,l) = 4-2

2k

17

k
2

I |T(Y.)| ~2k(4.2"k/2) =4.2k/2 ,
i=l

|7*| -(2k'2+l)2.2-k/2 -2k/2 ,

and J |T(Y.)|-|T*| ~3-2k/2 =|f (1,1)

4. Random Traveling-Salesman Problems in the Plane

In this section we discuss a theorem due to Beardwood, HaHon and

Hammersley [2], showing that, if the cities are randomly distributed in a

region of the plane, then the length of the shortest tour tends to grow as

the square root of the number of cities. Since Algorithm 1 produces a

spanning walk whose cost differs from the cost of an optimum tour by 0(l&),

it follows that the ratio of the cost of this walk to the cost of an optimum

tour tends to vary with the parameter t as l+0(t '),

As is customary, we model a random distribution of points in a region

of the plane by a two-dimensional Poisson distribution. For any rectangle

X and any positive real number n, let n (X) be a two-dimensional Poisson

distribution over X with density n. For any region A, let v(A) denote

the area of A. Then, for any subregion A of X, the mean and variance

of the number of points (cities) in A is nv(A). We study the random

variable T (X), which denotes the length of a shortest tour through the

cities in X.

Theorem 5 ([2]). There exists a positive constant 3 such that, for

every e > 0,
T„(X)

3-e < -=—- < 3 + e ,
^vW

with probability one.

18

Here, a statement is said to hold with probability one if, for every X,

its probability of being true goes to 1 as n •* ~. Note that the constant

3 is independent of X.
T

Thus, when n is sufficiently large, one can predict the value of —
/S

closely with a high probability of being correct. The result of Beardwood,

Hal ton and Hammersley applies not only to rectangles, but to all Lebesgue
d-1

measurable regions; replacing 4 by n d , their result also applies to

traveling-salesman problems in Euclidean d-space.

Combining Theorem 5 with our analysis of Algorithm 1, we can state the

following result, which establishes that Algorithm 1 yields a "probabilistic

e-approximation scheme" for the solution of the traveling-salesman problem

in the plane.

Theorem 6. There are constants D, and d, such that, for every

e > 0, we can construct an algorithm A,(e) with the following properties:
2

(1) A^e) runs within time D^d]/6 n+O(nlogn)
and (ii) with probability 1, A(e) constructs a tour of length < (1+e)

times the cost of an optimum tour.

Proof. Corollary 2tells us that IW^ -|T*| <C^ . Thus, the rela-
r»t"^2

tive error is < ^-~ , with probability 1, for any C > C; A(e) is
p 2

c
simply Algorithm 1, with t > -«-*• . By Theorem 1, the running time is

8e 2

<2^-0(1* +O(nlogn). The result follows if we set D, =̂ -, and
dl=dCV C

We shall be interested in the expected performance of a partitioning

algorithm for the traveling-salesman problem in the plane.
E(T.(X))

This leads us to investigate the quantity 3v(t) = . Theorem 5

implies that $x(t) -^+ pVv(X). Here we study the rate of convergence.

19

Let the axb rectangle X be fixed throughout the following discus

sion. Assume that dimensions are scaled so that ab = 1.

Theorem 7. For all t, 3Y(t) -3<6(a+b).

Proof. Consider a problem instance drawn for IL.fX). Let T* be an
a b

optimum tour. Subdivide X into four j^J rectan9les Yi» Y2» Y3' Y4*

Let T(Y.) denote the length of a shortest tour through the cities in Y...

By Theorem 3

|T(Y.)| <|T*nY.| +§per(Y.) .

I |T(Y.)| <|T*| +6(a+b) .
i=l 1

E(|T*|) =34tv^t

E(|T(Y.)|) -J-Bt^.

Hence,

But

and

since the set of cities in Y.. is distributed as if it were drawn from

nt(X), and then had all dimensions scaled down by a factor of j. Hence,

3x(t) <ex(4t) +3(a+b)-L .
/t-

By induction on k,

Bx(t) <3x(4kt) +3(a+b)--jkl +!+••• +^)
/t

< 3Y(4kt) +3(a+b)-— .

Since 3x(4kt) fgzr* 3, the theorem follows.

20

5. Expected Performance of a Partitioning, Algorithm

In this section we assume that the set of cities is drawn from nn(X).

We consider a variant of Algorithm 1 in which the rectangle X is parti

tioned into subrectangles, in each of which the expected number of cities

is t. An optimum tour is constructed in each subrectangle, and these tours

are then patched together to form a walk W2 through all the cities. Our

main result is that

E(|WJ) 7/6
2—< 3v(t) +0(t-7/6) .

Jxi "" X

Specification of Algorithm 2

Throughout the following discussion X is a fixed rectangle of area 1,

and t is a fixed positive real number. Choose k = k(n) as the least

positive integer such that t»2 ^n' > n. Given any rectangle Y, define

Jl'(Y) and r'(Y) as the two subrectangles determined by a bisecting cut

parallel to the short sides of Y. Define e(Y) as the shortest line

segment joining a city in £.'(Y) with a city in r'(Y); if either £'(Y)

or r'(Y) contains no city, then e(Y) is undefined. In the following

recursive specification of Algorithm 2, TOUR(Y) is a subroutine that

constructs an optimum tour through the set of cities in Y.

PROCEDURE A2

A2(X) = WALK2(X,k)

WALK2(Y,j) = if j=0

then TOUR(Y)

else WALK2U' (Y),j-1) UWALK2(r* (Y),j-1) u2e(Y)

Alternately Algorithm 2 may be viewed as follows. The rectangle X is

k
subdivided into 2 subrectangles according to a play of the cutting game

21

in which the two players use the short strategy and the bisection strategy,

respectively. The spanning walk W2 consists of shortest tours through

these subrectangles, together with additional line segments linking these

tours together into a connected structure; each of these connecting segments

occurs twice.

Figure 8 shows the result of applying Algorithm 2 to the example of

Figure 3. The parameters are n=25, t=^-, k=3. Each cross-hatched
segment in Figure 8 occurs twice in W«.

FIGURE 8. EXAMPLE OF THE CONSTRUCTION OF W,

Lemma 3. The result of applying Algorithm 2 is an eulerian walk through

the cities in X. Each time TOUR(Y) is called, the expected number of

cities in Y is < t.
TJ-

22

The Expected Execution Time of Algorithm 2

In analyzing the performance of Algorithm 2, we make the following

assumption about the subroutine TOUR,

Assumption. Let E(s,Y) denote the expected time for TOUR to compute

a shortest tour through s points randomly distributed in the rectangle Y.

Then there are absolute constants c and C such that, for all s and Y,

E(s,Y) < Ccs .

If TOUR is the standard dynamic programming algorithm ([3],[8]) with

2 s
execution time 0(s »2) then any constant c > 2 will work. Certain

branch-and-bound methods ([7],[9],[10],[19]) seem to achieve substantially

smaller values of c, but no rigorous analyses exist.

Theorem 8. Let c and C be as in the Assumption. Then, with

suitable implementation, the expected execution time of Algorithm 2 on

problems drawn from n (X) is less than or equal to

2cne(c-l)t +0(nlog2n)

Proof. The execution time is the sum of three contributions:

(i) the time spent solving "small" traveling-salesman problems using

the subroutine TOUR;

(ii) the time spent determining the line segments e(Y);

and (Hi) the time spent on other operations.

Contribution (iii) can be bounded by O(nlogn), exactly as in the

analysis of Algorithm 1.

We estimate contribution (1) as follows. The subroutine TOUR is invoked

2 ^n' times. Each time the number of cities has a Poisson distribution

23

with mean t. Thus the expected execution time of each invocation is
°° -t tX / lU

<C I e" -Tcx =Ceu" . The expected total time spent in TOUR is thus
x=0 *'

<2k(n)Ce(c"1)t <^W0"1^.

Finally, we show that contribution (ii) is 0(nlog n). As a first

step, we show that the time to compute e(Y), the shortest segment joining

a city in £'(Y) with a city in r'(Y), is 0(n(Y) log n(Y)). Each candi

date for e(Y) must cross B, the cut separating Jl'(Y) from r*(Y).

For each city a € &'(Y), define the interval 1(a) by:

1(a) = {xGB|a is the closest city in Jl'(Y) to x} ;

similarly, for any city ber'(Y),

J(b) = {xGB|b is the closest city in r'(Y) to x} .

Using techniques due to Shamos and Hoey ([17],[18]) these intervals can be

determined in 0(n(Y) log n(Y)) steps. Then, in linear time, one can list

all pairs a, b such that 1(a)nj(b) has positive measure. There are at

most n(Y) such pairs, and they are the only candidates for the segment

e(Y). Thue e(Y) can be determined in 0(n(Y) logn(Y)) steps. The

expected time spent in computing the segments e(Y) thus grows as

E(I n(Y)logn(Y)) .
{Y|Y is subdivided}

Application of Chebyshev's inequality yields the result that, if n(Y) is

Poisson distributed with mean X, then

E(n(Y)log2n(Y)) <Xlog2X +|.

24

Hence,

E(I n(Y)logn(Y)) < \ 2j(ilogA- +§
{Y|Y is subdivided} j=0 2J 2J J

<knlogn +|(2k-l)
= 0(nlog n) .

This completes the proof.

The Expected Error of Algorithm 2

We continue to assume that X is a fixed axb rectangle and the

parameter t is fixed. Assuming that problem instances are drawn from

nn(X), we analyze the expected value of |W2| -|T*| as afunction of n.
Here W2 denotes the spanning walk generated by Algorithm 2, and T

denotes a fixed tour.

To avoid purely technical complications we assume that a < b <_ 2a,

n=2k^n^t, and k(n) is even.

Theorem 9. E(|W2|) =^n(3x(t) +0(f7/6))

Proof. In estimating |WJ we note that, because a ± b < 2a, the

k-stage subdivision process alternates between stages of vertical cutting

and stages of horizontal cutting. Because k is even, the 2 resulting

rectangles are similar to X, but with both their dimensions scaled down

by the factor 2"k/2.

The length |WJ is the sum of two contributions:

(i) the sum of the lengths of the shortest tours within the rectangles

and (ii) twice the sum of the lengths of the arcs e(Y).

The first contribution may be estimated as follows. The distribution

k
of cities in any one of the 2 rectangles is the same as if the cities had

25

been drawn from nt(X), and then all directions had been scaled down by
-k/2

the factor 2 ' , Thus the expected value of the first contribution is

2k(3x(t)/E}2"k/2 =3x(t)vfiT .

We estimate the second contribution as follows. By Lemma 5, the

expected length of e(Y) is n"2/V1/3 + o(n"2/V1/3), where I is the

length of the shorter side of Y (the fact that £'(Y) or r'(Y) may fail

to contain a city, in which case we take |e(Y)| = 0, only helps us). Sum

ming over all the rectangles Y that get subdivided we have

*-l *-l
2l n"2/3(a.2-J)"1/3.22J +2I (b.2-"+1V1/3.22j'+1
j=0 j=0

JL-! k-i
=n-2/V1/32I 27J/3 +2n-2/V1/32I 27"+1^3

j=0 j=0

- 0(n-2/327k/6) - 0(n-VH$)7/6) - O^'V7'6) .

It only remains to give the Lemma used in the proof of Theorem 9. This

requires a preliminary Lemma.

Lemma 4. Let h points be placed at random on a unit interval. Then

the expected value of the minimum distance between a pair of these points

1si(h-2)(h-l) *

Proof. Let A be a constant. We derive an upper bound on QA, the

probability that the minimum distance is >^ A. Regard the points as being placed

successively at random locations on the unit interval. Assuming that no two

of the first k points are within A of each other, the probability that

the (k+l)th point is within A of some previously placed point is > (2k-2)A.

26

Hence

QA <hiV-.(2k-2)A) <Ve"2^-1* =e^h-2»M)
M k=2 " k=2

The expected value of the shortest distance is

f QAdA^fJA=0 a M=(

e-A(h-2)(h-l)dA=
(h-2')(h-l) •

Lemma 5. Suppose cities are distributed according to a 2-dimensional

Poisson distribution with density n in the infinite strip between the two

parallel lines y = 0 and y = £. The expected value of the minimum dis

tance between a city in the right half-plane and a city in the left-half

plane is

< an-2'3*-1'3 +odf2'3*-1'3) .

Proof. Let h be a positive integer to be specified later. Order the

cities in increasing order of their distance from the line x = 0; call

this total ordering •-<•. Select an increasing sequence of cities

a19a2,...,a^ as follows. For a,, we select the first city in the order

ing. Given a.j,...,au, au+1 =min{a|au^a and Pu(a) holds}, where P(a)

is a property which holds if the point in {a^a^... ,au} at the least

vertical displacement from a is in the opposite half-plane from a.

Among the points {a,,...,a.}, let a. and a. be the two at minimum

distance from each other. By the way the points were selected, a. and
*1

a. are in opposite half-planes. We compute the expected value of the
n2

distance between a. and a. .
H '2

27

Let a. have the coordinates (x^y..). Then \x^\ has an exponential
distribution with mean ^ and |x1+11 -|x..| is exponential with mean ±-.

i-j
Thus Edx^) =-^--. Since ai is equally likely to be any of the a.,

1 h 1"I h
E('xiJ) =h.L"nT* =^nT' similarly» E(lxil)=2nT By Lemma 4'
E(|y.j -y. |) =(h.2)(h-1)' Hence, the expected value of the distance

between a. and a. <vh 6wui\ +^ Setting h=[n]/V/3], the
1

result follows.

li2-(h-2)(h-1) +HI

y = &

*

-*y4

y2
•

•

*i -®*i\(Z> y5 \J ^

*

•

•

• •

• y3
•

3nnr

FIGURE 9. CONSTRUCTION IN THE PROOF OF LEMMA 5 (h = 5)

It is natural to conjecture that 3x(t) >_ 3 for all t.

prove this, but Theorem 9 does yield the following corollary.

Corollary 3. 3x(t) +0(t"7/6) >3

We cannot

28

Proof. Theorem 9 shows that, for Infinitely many n, 3x(t) +0(t" ')

>_ 3x(n). Since 3x(n) •*• 3» the result follows.

Corollary 4. The expected value of |W2| -|T*| <vfr(3x(t) -3+0(t"7/6)).

Proof. By Theorem 9, E(|W2|) =^n(3x(t)+0(t"7/6)), By definition,
E(|T*|) =^*3x(n). By Corollary 3, 3x(n)+0(n"7/6) >_ 3. Combining these
results,

E(|W2|-|T*|) <^n(3x(t)-3x+0(f7/6)+0(n-7/6)) .

Since t < n, this simplifies to

.-7/6,xfT(3x(t)-3 +0(t-,/o)) .

|w2l
Corollary 5. For every a > 1, the ratio -pray

with probability 1.

is < 1 +a

f3x(t) +0(t"7/6)1
3

Since 3x(t) -3 = 0(t" '), the expected relative error for Algorithm 2
-1/2

is 0(t). So far as growth rate is concerned, this is no improvement

over Algorithm 1. The advantage of Algorithm 2, and our reason for present

ing it in detail, is that the expected error is given explicitly in terms

of 3x(t). Thus, any information gained about 3x(t), with respect to

either its growth rate or its values for specific t, will be directly

applicable.

6. Experimental Results

To determine experimentally the quality of solutions produced by

Algorithm 1 or Algorithm 2 would have required a supply of randomly generated

problems for which optimal (or nearly optimal) solutions are known, as well

as considerable investment in computer programming and data preparation.

29

We decided instead to test the effectiveness of partitioning schemes using

the minimum spanning tree problem in the plane as a substitute for the

traveling-salesman problem. This permitted the experiments to be done by

hand.

The problem of constructing a minimum-length spanning tree through a

set of n points in the plane can be solved in O(nlogn) steps ([17],[18]).

To test our partitioning ideas, we ignored the existence of this efficient

exact solution algorithm, and instead used the following partitioning scheme,

which combines features of our two partitioning algorithms for the traveling-

salesman problem.

Let Y be a rectangle, oriented so that its longer sides are horizontal,

and containing m cities. Then Y can be subdivided into two rectangles,

&*(Y) and r*(Y), by avertical cut equidistant between the \j\ city

from the left and the (I j\ +l)th city from the left. Let e*(Y) denote
the shortest segment joining a city in £*(Y) with a city in r*(Y). Let

TREE(Y) be a subroutine capable of finding a minimum spanning tree through

all the cities in Y; this subroutine will be called only when Y contains

t or fewer cities. Let k(n) be the least integer such that 2^n' >_p

PROCEDURE A3

A3(X) = APPROXTREE(X,k)

APPROXTREE(Y,j) = If j=0

then TREE(Y)

else APPROXTREE(**(Y),j-1)

U APPROXTREE(r*(Y),j-l) U e*(Y)

Applying ideas quite similar to those that occur in the analysis of

Algorithm 1, we can show that the difference between lTaDDroxl» tne len9tn

of the spanning tree produced by A3(X), and |T J, the length of the

30

minimum spanning tree, is less than

(I per(Y)) - per(X) ,
Y

where the summation is over all rectangles Y to which the procedure TREE

is applied.

Five 128-city problems were generated. In each, the cities were randomly

distributed in the unit square. Each problem was solved with t = 4, 8, 16,

32 and 64. Table 1 reports the observed percentage error (defined as
|T |

100(flPP™? -1)) for each run of Algorithm 3.
•'opt1

Problem

12 3 4 5

64 '

32

t 16

8

4

TABLE 1. PERCENTAGE ERROR EXPERIENCED BY ALGORITHM 3

.6 3.2 3.0 .5 1.6

2.4 4.7 4.3 1.7 4.9

5.3 10.7 7.0 3.7 9.7

7.9 14.1 8.0 6.2 12.9

10.5 16,3 10.6 10.4 16.8

A good empirical formula for the error is

I-|Tminr *.13((I per(Y))-per(X)] .
approx

Thus, the error is typically proportional to (][per Y) -per(X), but with
Y

a much smaller constant of proportionality than the one arising from a

worst-case analysis.

31

We speculate that asimilar relationship exists between the average and

worst-case error of our traveling-salesman algorithms. In particular, we

conjecture that 3x(t)-3 is proportional to f"1/2, but with amuch
smaller constant of proportionality than the one given in the upper bound

of Theorem 7.

7. Conclusion

We believe that the partitioning schemes presented here have both

theoretical and practical interest. Using Algorithm 1 we have available a

"probabilistic e-approximation scheme" for the traveling-salesman problem

in the plane. That is, for every e > 0, we can construct an algorithm

A,(e) that runs within time D,e d,' n+0(nlogn) and, with probability

1, constructs a tour of length < (1+e) times the cost of an optimum tour.

This is done simply by running Algorithm 1, with t depending suitably

on e. A similar scheme can be constructed using Algorithm 2. The choice

of t necessary to achieve a specified relative error in this case will

depend on the rate at which 3x(t) converges to 3; our present estimates

of this convergence rate (Theorem 7) are undoubtedly far too pessimistic.

-1/2We conjecture that 3x(t) -3 is indeed proportional to t , but with

a much smaller constant of proportionality than is given by our upper

estimate. Our experimental results with a partitioning algorithm for the

minimum spanning tree problem lend support to this conjecture.

Some of the technical results used in analyzing the algorithms may be

of independent interest. Among these results are the characterization of

optimal strategies for the cutting game, and the lemma bounding the expected

shortest distance between cities in adjacent rectangles.

32

Our partitioning schemes should prove to be of practical use in the

solution of extremely large traveling-salesman problems in the plane. The

heuristic methods of Krolak [11] or Lin and Kernighan [13] yield good

approximate solutions in reasonable time to problems with two or three

hundred cities, but they become unwieldy for larger problems. When the

number of cities is in the thousands one can use a hybrid scheme which com

bines partitioning with one of these heuristics. In such a scheme the exact

solution procedure TOUR(Y) in Algorithm 2 would be replaced by a heuristic

method. It would then be feasible to run the algorithm with t = 200 (say),

and the expected relative error would be

A(t) +\-+0(t"7/6)
where A(t) is the expected relative error for the underlying heuristic

algorithm.

All the results generalize easily if we allow the locations of the

cities to be determined according to an arbitrary 2-dimensional probability

density function or if we let the domain X be any connected Lebesgue

measurable set. Also, we may use the rectilinear or L metric instead of
00

the Euclidean metric. The algorithms may also be generalized to d dimen-
d-1

sions; the worst-case error in Algorithm 1 becomes 0((?-) °), and the
d-1 z

relative error (with probability 1) is 0(t °").

Finally, the partitioning methods and their analyses may be modified

in a straightforward way to apply to many other optimization problems of

a geometric nature. Among these are the Steiner tree problem in the plane,

the problem of constructing a minimum-weight perfect matching when the weights

are euclidean distances, the simple plant location problem in the plane, and

various multi-vehicle delivery problems in the plane.

33

References
i • • • i

1. Barbosa, L., Personal communication.

2. Beardwood, J., Halton, J.H. and Hammersley, J.M., "The Shortest Path
Through Many Points," Proc. Camb. Phil. Soc. 55 (1959), 299-327.

3. Bellman, R.E., "Dynamic Programming Treatment of the Travellinq
Salesman Problem," JACM 9 (1962), 61-63.

4. Christofides, N.» "Worst-Case Analysis of a New Heuristic for the
Travelling Salesman Problem," abstract in Algorithms and Complexity
(J. Traub, ed.), Academic Press (1976).

5. Dantzig, G., Personal communication.

6. Garey, M.R., Graham, R.L. and Johnson, D.S., "Some NP-Complete
Geometric Problems," Proc. 8th ACM Symp. on Theory of Computing (1976),
10-29.

7. Helbig Hansen, K. and Krarup, J., "Improvements of the Held-Karp
Algorithm for the Symmetric Traveling-Salesman Problem," Math. Prog. 7
(1974), 87-96. ~

8. Held, M. and Karp, R.M., "A Dynamic Programming Approach to Sequencing
Problems," SIAM J. 10 (1962), 196-210.

9. Held, M. and Karp, R.M., "The Traveling-Salesman Problem and Minimum
Spanning Trees," Operations Research 18 (1970), 1138-1162.

10. Held, M. and Karp, R.M., "The Traveling-Salesman Problem and Minimum
Spanning Trees: Part II," Math. Prog. 1 (1971), 6-25.

11. Krolak, P.D., Felts, W. and Marble, G., "Efficient Heuristics for
Solving Large Traveling-Salesman Problems," presented at 7th Int. Symp.
on Mathmatical Programming (1970).

12. Krolak, P.D., Felts, W. and Marble, G., "A Man-Machine Approach Toward
Solving the Traveling Salesman Problem," Comm. ACM 14 (1971), 327-334.

13. Lin, S. and Kernighan, B.W., "An Effective Heuristic Algorithm for the
Traveling-Salesman Problem," Operations Research 21 (1973), 498-516.

14. Michie, D., Fleming, J.G. and Oldfield, J.V., "A Comparison of
Heuristic, Interactive, and Unaided Methods of Solving a Shortest-
Route Problem," Machine Intelligence 3, Edinburgh University Press (1968),
245-255.

15. Papadimitriou, C.H., "The Euclidean Traveling Salesman Problem is
NP-Complete," to appear in Theoretical Computer Science.

34

15. Rosenkrantz, D.J., Stearns, R.E. and Lewis, P.M., "Approximate
Algorithms for the Traveling Salesperson Problem," Proc. 15th Annual
IEEE Symp. on Switching and Automata Theory (1974), 33-42.

17. Shamos, M.I;, "Geometric Complexity," Proc. 7th ACM Symp. on Theory
of Computing (1975), 224-233.

18. Shamos, M.I. and Hoey, D., "Closest-Point Problems," Proc. 16th Annual
IEEE Symp. on Foundations of Computer Science (1975), 151-162.

19. Thompson, G.L., "Algorithmic and Computational Methods for Solving
Symmetric and Asymmetric Traveling Salesman Problems," Working Paper
presented at the Workshop on Integer Programming, Bonn (1975).

	Copyright notice 1977
	ERL-77-31

