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A GENERALIZED NONLINEAR LUMPED CIRCUIT

MODEL FOR GUNN DIODES WHICH INCLUDES

FIELD-DEPENDENT DIFFUSION EFFECTS

L. 0. Chua and Y. W. Sing

ABSTRACT

A complete nonlinear lumped circuit model for Gunn diodes which includes
the effects due to domain extinction and nucleation phenomena is presented. The
model is based upon physical principles and allows an arbitrary nonlinear drift
velocity curve v(E) and a nonlinear diffusion curve D(E) to be specified by the
user. It is valid for simulating arbitrary Gunn-diode circuits operating in
any matured high-field domain mode, or in the LSA mode. Under additional
assumptions, the model simplifies to other existing models. Several computer-
simulated examples of Gunn-diode circuits operating under both steady state
and transient regimes are presented. Finally, a rigorous definition of a "dc"
I-V curve for Gunn diodes is offered and shown to be rather useful for predicting
the qualitative behavior of Gunn-diode circuits during all time intervals where
a matured domain exists.
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I. INTRODUCTION

Gunn diodes are two-terminal "transferred-electron" devices which are finding
increasing applications as a basic "low-noise" active component in the design

of microwave circuits [1-4]. Our objective in this paper is to present a new

nonlinear lumped circuit model which is capable of simulating the Gunn diode*s

various distinct operating modes; namely, the transit-time mode, the delayed-

domain mode, the quenched-domain mode, and the LSA mode. Although only
these four well-known modes are simulated in this paper, our model is valid

under very general operating conditions and can be used to mimic other single-

domain operating modes involving a Gunn diode which satisfies the stable-domain
12 -2requirement nflL > 10 cm [1].

Several nonlinear Gunn diode lumped circuit models have been proposed

over the past decade [5-8]. The Carroll-Giblin model [5] is an "analog circuit"

which requires different circuit parameters for mimicking different operating

modes. It is therefore not suited for computer simulation. The Robrock model

[6] is ideal for computer-aided-design of Gunn-diode circuits in view of its

simplicity — it contains only 4 lumped circuit elements. However, the associated

element characteristics are not derived from physical governing equations, but

rather from empirical data and relationships obtained from previous computer

solutions of the associated partial differential equations. Consequently,

as pointed out by Gunshor and Kak [7], this model violates a basic "current

conservation law" and is therefore not valid in general. This discrepancy is

overcome in the latest model due to Gunshor and Kak [7] who based their deri

vation directly on physical governing equations for both the zero and non-zero

diffusion case. The Gunshor-Kak model contains 5 elements, one of them being

a nonlinear controlled current source which, in the non-zero diffusion case,

depends on two "space variables" x_ and x associated with the domain width.

Since x_ and yl~ are not circuit variables, only the zero-diffusion case of the

Gunshor-Kak model is suited for computer-aided circuit analysis. Finally, we

remark that with the exception of the Carroll-Giblin model, all other published

Gunn-diode circuit models that the authors are aware of are incomplete in the

sense that they can only be used to model "domain dynamics," but not the

extinction and nucleation phenomena when a high-field domain reaches the anode.

Such models cannot be used for automatic circuit simulation.

The model to be presented in this paper not only overcomes the objections

raised in the above cited models, but also allows the diffusion coefficient to
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be a nonlinear function of field intensity. In particular, our model is

imbued with the following desirable features: 1) It retains the simplicity of

the Robrock model. In fact, it has an identical topology and choice of circuit

elements. Only the elements' characteristics are different. 2) Our model for

domain dynamics is derived entirely from the physical equations governing the

device and its elements bear a one-to-one correspondence to actual physical

operating mechanisms. 3) In its most general form, our model includes the

nonlinear effects due to the field-dependent diffusion coefficient [9]. In

particular, both the electron drift velocity-vs.-field nonlinear characteristic

v(E) and the diffusion-vs.-field nonlinear characteristic D(E) can be independently

specified by the user. 4) Our model structure is fixed, regardless of the

various additional simplifying assumptions commonly imposed on D(E). Moreover,

the characteristics of only one element need be changed when additional

assumptions are made on D(E). In the limiting zero-diffusion case, our model,

though topologically distinct, is in fact identical to the Gunshor-Kak model

in the sense that its governing circuit equations are identical. 5) The para

meters associated with our model are fixed for each given device, regardless of

the mode of operation or external circuits. With the exception of the "domain

width" W, all other model parameters are readily determined from the device

material and geometry. The parameter W is introduced in our model to mimic

the capacitance associated with the high-field domain. It will be seen in the

next section that unlike the Robrock or Gunshor-Kak model where the domain

width is a nonlinear function of the domain voltage, we can assign an arbitrary

constant value to W in our model without affecting the solution of the circuit

external to the device. 7) By adding a "timing circuit" for sensing when the

domain reaches the anode, our model is capable of simulating the domain nucleation

and extinction phenomena automatically. In other words, our "timing-circuit

augmented" model is a complete model suitable for computer simulation under any

external circuitry and over any desired time interval. 8) In its most general

form, our model makes only two rather reasonable assumptions:

(a) there exists a high-field domain with a single local maxima which

propagates without change of shape with a "domain velocity" vD(t) from the cathode

to the anode

1A11 existing circuit models for Gunn diodes made the simplifying assumption
that the domain velocity vD(t) is a constant. This is not true in practice
because vD(t) depends on the external circuit and is generally time-dependent.
Our model allows vD(t) to be computed numerically as a function of time during
any computer-simulation.
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b) Quasi-static Assumption: in terms of the "moving coordinates"

A
y = z

Jt

v (t)dt and t1 = t, we have 3E/3tf =0 [9].
0

Since no other simplifying assumptions are made, our circuit model for

mimicking domain dynamics is as accurate as that of solving the original device's

physical equations subject to the above two assumptions. Moreover, since our

model agrees in topology with the Robrock model, and includes the Gunshor-

Kak model as a special case, it can be considered as a unified circuit model
12 —2

for Gunn diodes having a concentration-length product n.L > 10 cm . In

other words, our model is valid for all single-domain operating modes except

the "accumulation-layer mode" [10].

II. LUMPED CIRCUIT MODEL FOR DOMAIN DYNAMICS

Our objective in this section is to present the circuit model for simulating

the formuation of a single high-field domain in a Gunn diode. We assume a one-

dimensional structure as shown in Fig. 1(a) with length L, uniform cross-

sectional area A, di-electric constant e, and a uniform donor concentration n ,

-12 -2where nQL > 10 cm This "concentration-length inequality" is necessary to

support a high-field domain consisting of an accumulation layer with carrier

concentration n _> n^, and a depletion layer with carrier concentration n _< n ,

as shown in Fig. 1(b). The corresponding dipole-induced field distribution is

shown in Fig. 1(c). Observe that Figs. 1(b) and (c) give the typical shape

of n(x) and E(x) associated with a single high-field domain at one instant of

time. As the domain grows in size, it propagates from the cathode (x=0) to

the anode (x=L) with an instantaneous velocity v~(t). The exact shape of n(x)

and E(x) at different instants of time are governed by rather complex dynamics

whose instantaneous effects on the device current and voltage will be accurately

simulated by our circuit model. To distinguish between the accumulation layer

and the depletion layer, we will henceforth use the symbols n and n, to denote
i • .

the carrier concentration in the jaccumulation and depletion layers, respectively;

namely, n(x) = n&(x) for x, _< x _< x~ and n(x) = nj(x) for x3 — x — x2* Since
E(x) in Fig. 1(c) is a strictly monotonic function in the two intervals

[x.,,x.«] and [x«,xj, we can eliminate the space variable x and define n& = i*a(E)
as a single-valued function of E over the interval [EQ,Em] corresponding to the
accumulation layer. Likewise, we can define n, = n^(E) as a single-valued
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function of E over the same interval [Eg^] but relative to the depletion

layer.

Using the above notations, we will first present the circuit model in its
most general form and show how the associated model parameters and functions
are determined (Section II-A). Next, we will make two simplifying assumptions

and obtain two corresponding simplified circuit models (Section II-B). Both

of these subsections are addressed to the circuit designers who are mainly

interested in simulating microwave circuits utilizing Gunn diodes, and not so

much on the physical mechanisms inside the device. Consequently, only the
minimum essentials for a complete specification of the circuit model will be
presented in Sections II-A and II-B. The complete derivation and justification
of our model are given in Section II-C. Finally, a comparison between our

model and other existing models are given in Section II-D.

A. Description of the General Model

Our most general circuit model for simulating the dynamics of a single

high-field domain is given in Fig. 2, where the element parameters and
characteristics are defined as follow:

_ eA c\\
1. Cathode-to-Anode Capacitance: ^ = — ^x'

where e = dielectric constant, A = cross=sectional area, and

L = device length.

2. Domain Capacitance: C0 - ~rr T v '
• A 1 C r 1where W = average domain width = lim — I x2(t)-x1(t) dt (3)

3. Nonlinear Resistor R: IR =G(VR) =AqnQv^—) <4>
where A = cross-sectional area, q = electron charge, nQ = donor

concentration, and v(E) is the velocity-vs.-fieId

characteristic (E=VR/L).

4. Nonlinear Controlled Current Source:

The diamond-shape symbol in Fig. 2 denotes a controlled current source whose

terminal current I at any instant of time t depends upon the instantaneous

•value of the two capacitor voltages v^t) and v2(t), and the device terminal
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current I(t) in accordance with the following nonlinear relationship:2

h =VW1* " C2F(vrv2} " X <5>

where F(vlSv2) is a single-valued function of v, and v2 defined as follow:

m rv(v1/L)-v(E)
dE > (6)

frEm fv(v /L)-v(E)] fEm
F(vrv2) =n0O [n(E)-nn JdE +J .

pv,/L L av 0 J "'v-./L
1'" 1

Vnd(E)

where E denotes the "peak" domain field (Fig. 1(c)), n (E) denotes the carrier

concentration in the accumulation layer, and n,(E) denotes the carrier

concentration in the depletion layer. In the general case where the diffusion

coefficient D = D(E) is a nonlinear function of the field intensity E, these

three yet unspecified quantities are determinedfor each value of (v,,v„) as

follow:

(1) Peak-domain Field E

Assuming for the moment that n (E) and n,(E) have been found, then E is
ad m

obtained by solving the scalar nonlinear equation

9<wv2>= ° (7)

The constant C2 in (5) is equal to the domain capacitance C2 - eA/W in Fig. 2.
Notice that if we apply Kirchhoff current law to the lower terminal of our
model, we would obtain I = C2 dv2/dt - C2F(vi,V2) + I, which upon cancellation
of I and C2 yields the simplified equation dv2/dt = F(v^,V2) independent of Co-
This shows that the solution of the external circuit does not depend on the
value of C2. Hence, for computational purposes, it is convenient to simply set
C2 = 1. However, if one is interested also to attach some physical meaning to
C2» then one could set C2 = eA/W, where W is the average domain width defined
in footnote 3.

3 AThe capacitor voltage v-^ = EQL can be interpreted as that component of the
device terminal voltage due the uniform field Eq outside of the domain, and

x

the capacitor voltage v? = 1 [E(x)-EQ] dx can be interpreted as the remaining

xl
device terminal voltage component due to the excess field E(x) - Eg over the
domain from x;l to x2» If we let w(t) = x2(t) - x1(t) denote the domain width

A 1 f

at time t, then we can define the average domain width by W = lim — ft [x (t)-x (t)]dt
T-*» Jo
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where

9^V2>»vCJ^;]a+I
m r E-v^L 1

vx/L LnQ-nd(E) (8)

Observe that since E is a dummy variable of integration, for each given value

of (v,,v„), Q(E ;v-,v«) is a nonlinear function of Em alone. We included the
12v-^ml2 ~. m

two variables v, and v as arguments of y(0 in order to emphasize that the

solution E of (7) depends on both v1 and v2; i.e., Effi = Em(v1»v2^*

(2) Accumulation layer carrier concentration na(E)
For each given value of (v-,v0), n (E) is obtained by solving the following

x z a

scalar nonlinear ordinary differential equation

dn

dF

where

-JWa(na,E;v1,vD)

A nA a0M(na,E;v1,vD) =

n (E)
a

n (E)
a

n-VVi

E=E
m

v(E)-vT

n

= n.

(9a)

Dj+n0 vD-v(v1/L) -(q/e)(na-nQ)naD'(E) (9b)
(q/e)(na-n0)D(E)

(9c)

(9d)

The symbol D'(E) in (9b) denotes the slope dD(E)/dE of the nonlinear diffusion-

vs.-field characteristic and is therefore a known quantity. The parameter vD

in (9b) has been defined earlier as the "domain velocity" and will be shown

in Section II-C to depend upon both v;, and v2» Observe that since (9a) is a
scalar first order differential equation, the two boundary conditions (9c) and

(9d) cannot be satisfied simultaneously for arbitrary values of vD- Consequently,

to solve for n = n (E) from (9a), we must choose an appropriate value for
a a

v in order that (9c) and (9d) are satisfied. In other words, rather than

solving an initial-value problem, we must solve a "two-point boundary-value
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problem" giving both vD and n^(E) as its solution. The reason for prescribing
the above two boundary conditions can be seen from Figs. 1(b) and (c) and will

be elaborated later in Section II-C. Several numerical methods can be devised

to solve this two-point boundary-value problem. One such method — the

modified shooting method -- is presented in Appendix A. To emphasize that the

solution n (E) of (9a) depends upon both v. and E , we will sometime write
°- i m

na(E) = na(E;v1,Em). Observe that since E^ itself depends upon v and v ,we
can also say n&(E) is a function of both v1 and v . Likewise, we will sometimes
write the corresponding "domain velocity" v obtained from solving( 9a) by

VD = VvV-

(3) Depletion layer carrier concentration n,(E)

ue of (v1,v2), n (E)
--'.tial-value problem"

For each given value of (v ,v ), n (E) is obtained by solving the following

dnd

dE •tAld(nd*E5vl»VD) (10a)

where

JJd(n
. And[v(E)-vD]+n0[vD-v(v1/L)Hq/e) (^-n^D' (E)

(10b)I' "1"D; (q/e)(nd-n0)D(E)

nd(E) E=E()=v1/L ^ (10c)

VD =WV (10d)

Here vQ = VDCV^»V2) denotes the domain velocity obtained from solving (9a)
and is therefore a known quantity for each given value of v.. and v~. Again,

to emphasize that n,(E) depends upon both v_ and E , we write n,(E) = n,(E;vn,E )
a 1 m a a 1 m

Observe that the three equations (8), (9), and (10) are coupled to each

other since (8) can not be solved without first solving for n (E) and n, (E)
a G

from (9) and (10). But (9) and (10) cannot be solved without first prescribing

E . Consequently, we must solve (8), (9), and (10) together by an iterative

method.

Notwithstanding the complexity of (6)-(10), our task for evaluating

F(v^,v ) in (6) is really a simple one conceptually since (8) is only a scalar
algebraic equation and can be solved by well-known iteration techniques such as

the Newton-Raphson or the Secant method [11-12] — so long as we can devise an



algorithm for implementing this method on a computer. We will now present one

such algorithm:

Algorithm for Computing F(v1,v2), Given (v1,v2) - (v-^^)

Step 0. Substitute (v-^v ) into (8), (9), and (10).

Step 1. Assume two initial guesses Em and Em .

Step 2. Let E =E^k) and solve the two-point boundary-value problem (9) for
m m

^-^(vV^W, k=0,l dla)

n =n (E^.E00)£»«(£), k=0,1 ("b)
a aim a

Step 3. Substitute (11a) for vD in (10b) with k=0and k=1, respectively,
and solve the initial-value problem for

n -n.(E;v1,E*)> &n*><E>, k-0,1 (He)
d d 1 m d

(k+1)
Step 4. Substitute (lib) and (lie) into (8) and solve for Em using the

following secant iteration formula

E(j+D . E(3) _ p(E(J), (W^v v ) (Hd)
m m m/^ml2

where

F(E(j)) * JLJ-SL
m g(E«);v1,v2)-g(E«-«;v1,v2) die)

Step 5. Iterate step 2 through 4 with the superscript "k" replaced by "j",
j = 2,3,... until the iteration converges; namely,

n(j)(E) -> n (E;v.,v0) (llf)
a a 1 2

n<3)(E) •* nd(E;vvv2) dig)

E(j) +E(3)<v1,v_) (Hh)
m m 1 2

Step 6. Substitute (llf), (llg), and (llh) for n&(E), nd(E), and Em in (6)
and compute the two integrals numerically to obtain F(v^,v2).

4For Step 4, we let k=l and use (lid)-(lie) with "j" replaced by "k". We choose
the secant method here and not the more commonly used Newton-Raphson_method
because the latter would require computing for the slope of y(Em 'vl'v2^
numerically, a rather inaccurate and time consuming task.
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Observe that since na(EQ) =n^/L) =nQ, and nd(EQ) =n^/L) =n,
the denominators in (6), (8), (9b) and (10b) vanish at E = E . Fortunately,
the corresponding numerator also vanishes at E = E in each case. Consequently,

(6)-(10) are well-defined for all EQ <_ E<E as can be verified by a straight
forward application of H'opital's rule. See Appendix B for a proof of this

assertion and for some techniques for avoiding numerical ill-conditioning at
E = EQ = v±/L.

Since v1 and v2 are the two state variables associated with the circuit model
in Fig. 2, and since the preceding algorithm shows how F(v-,v0) can be computed

numerically for each given value of (v ,v2), it follows that this circuit model
can be used with any "circuit simulation program" [12] which allows the current

source to be described by a special subroutine based upon the preceding

algorithm. Observe that once this subroutine is included, I can be treated

just like any other current source. In fact, we will now consider two special

cases in which the subroutine for evaluating 1^ can be greatly simplified.

B. Model Simplification

An examination of the circuit model of Fig. 2 shows that it already has

a very simple topology and hence any further simplification should be made on

the characteristics of the four circuit elements in the model. We have already

shown in Footnote 2 that in so far as computer simulation is concerned, C may be

assigned any value since it cancells out with the corresponding C2 in ID and
hence C2 does not appear in the overall state equation describing the model.

Consequently, we will simply set C2 = 1. The nonlinear resistor R is characterized

by a VR_IR curve identical (apart from a scaling factor) to the velocity-vs.-
field characteristic v = v(E). This characteristic may be represented in various

forms; namely, tabular form, piecewise-linear form, or analytical form. Any

simplification here will not affect the overall computational efficiency

significantly. Consequently, any meaningful simplification must be made on the

controlled current source L_. Let us now consider two special cases:

Special Case 1. Constant-Diffusion Case — D(E) = D

It will be shown in Section II-C that when D(E) = D, the domain velocity

becomes identical to the electron drift velocity; namely, v_. = v(v,/L). In this

case, n (E) and n,(E) are decoupled from each other as well as from E . and can
a a m

be computed directly from
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fa(na) =h(E;vx) (12a)

fd(nd) -ME^) <12b>

where

•c

kfir.-.T ^ = —-— • iviki-viv- iui i dE ^1 '(EiVi)A=^l1/Jv(E)"v(Vl/L)l
f(^^-LfcA d2d)
a a n0 no

«d(-d> -?-!"«-? (126)d d nQ nQ

Since fa(na) *0for all n& >nQ and f^) +0for all nd <nQ, it follows
that the inverse function f^O) and f^(-) exist over the corresponding domain
and can be computed once and for all. Hence, n&(E) and nd(E) are given

explicitly by

na -n^v,) =f^bCE^,)) ^

n, =n^E^) =^(MEiv,)) <13b>

Substituting (13a) and (13b) for na(E) and nd<E) in (6) and (8) respectively,
we can solve (7) for Vvl'v2} directly by either the Newton-Raphson method,
or the Secant method. Substituting the resulting value of Em into (6), we
can evaluate F(vx,v )numerically. Finally, 1^ can be computed from (5) by
direct substitution.

Special Case 2. Zero-Diffusion case — D(E) =0

It will be shown in Section II-C that (13a) and (13b) reduce to na = ~

and n =0 when D = 0. Under this condition, (8) can be solved explicitly
d

for E ; namely,
m

E
m -^\/(?k

It follows from (5) and (6) that the controlled current source can be

characterized explicitly by
E

I =C0 ( m [v^/D - v(E)l dE - I (14b)
D 2 Jv./L L J
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Hence, for each given value of (v-^v^, we can compute for E explicitly from
(14a). Using this value of Em as the upper limit of integration in (14b), we
can evaluate I by numerical integration.

C. Derivation of the Model

Consider the one-dimensional Gunn structure shown in Fig. 1(a) along with

a typical carrier concentration n in Fig. 1(b), and a typical field intensity

E in Fig. 1(c), at some instant of time t — when a single high-field domain

exists, or is being formed, in the region 0 < x < x < x < L, henceforth

referred to as the domain region. For convenience, the remaining region where

n = nQ and E = EQ will be referred to as the "outside region". Since the
diode is assumed to be one-dimensional, the current density J at any point in

the outside region must be equal to the current density J0 in the domain region:

aE0 aF aqn0v(EQ) +e j± =qn v(E) +ej^ -q-^ D(E)n (15)

where q = electron charge, e = dielectric constant, n = electron density

outside the domain, n = electron density inside the domain, E = electric
! U

field outside the domain, E = electric field inside the domain; v(-) = electron

drift velocity-vs.-field characteristic, and D(E) = field-dependent diffusion

coefficient. Equation (15) can be recast into the form

SF o
Applying Poisson's Equation — = •* (n-n ) to the last term in (16) and

integrating both sides over the domain from x. to x«, we obtain

D^E(x2)^n(x2) E(x2)
v(E!

(17)

^\ (E-EQ)dx (18)

fX2 qn. r , A«*j) n<*2> , fE(X2>
1 -T1 v(E0)-v(E) dx +) , . f-d(D(E)n-\ v(E),Jx1 E L 0 J Jd(e(Xi)) n(Xl) c V /JE(Xi>

where

X2
v2 -

Xl

is the "domain-excess" voltage. Now under our assumption of a single high-

field domain with electron density n and electric field intensity E as shown

0

-12-



in Figs. 1(b) and (c), respectively, we see that E(x1) = E(x2) - EQ and

n(xx) = n(x2) = nQ. Hence (17) reduces to:

dv2 r 2 qn

dt~
=( ^ [v(E0)-v(E)]dx (19)
Jxl

Equation (19) is due to Kurokawa [13] and is valid regardless of the size and
shape of the domain. It accurately describes the domain dynamics and is
therefore valid for both transient and steady-state (dv2/dt=0) analysis.
Observe that in steady state (19) reduces to the well-known "equal-area rule" [1].

If we now make the additional mild assumption that the domain field E(x)
has asingle maximum E=Em at x=x3> as in Fig. 1(c), then we can unambiguously
break up the integral in (19) into two parts:

x x
dv„ r 3 qnn r n f 2 qn(

xl w " A3

Applying Poisson's Equation once again to (20), we obtain

^2 j3 ^0 JV(V_V(E)] dx +J ^0 [v(V-v(E)-| dx (20)

dv2 pn nJv(E0)-v(E) rEm nQ[v(E0)-v(E)
ir=K Vn0 ^ V VndEQ * u "0

dE (21)

where we have replaced the symbol for electron density n by nfl in the
accumulation layer (xx <x<x3) and by nd in the depletion layer (x3 <x<x£)
in order to facilitate our subsequent interpretation. We can likewise

decompose the integral in (18) into the corresponding parts from k± to x3
and from x to x , and then apply Poisson's Equation once again to obtain

Em (E-En) ^f^ (E-En)
dE C22)V2 =q)E T^V dE +q)E (nQ-nd)

o o

Let us next derive an expression relating the external device current I

to the internal field. Since the device is one-dimensional, the total
current through any cross section must be equal to the external device current.
For simplicity, let us choose a cross section outside the domain so that the
total current through it consists of only a carrier current component and a
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displacement current component (there is no diffusion current since the field

is uniform in the outside region). Hence, we have

dE

I=Aqn0v(E0) +eA ^

The corresponding voltage across the device is given by

,L

(23)

V=f E(x)dx =f EQdx +f (E-EQ)dx (24)

or

V = vx + v2 (25a)

where

vi - E0L (25b)

can be interpreted as the voltage component due to the uniform field E ,

and where v0 is defined earlier by (18) as that component of the domain voltage

due to the electric field over and above the uniform field E^.

Equations (21), (22), (23), and (25) completely describe the dynamics of

the high-field domain in terms of the external device current I and voltage

V. It remains for us to show that the equations governing the circuit model

shown in Fig. 2 are given precisely by these equations. Applying first

Kirchhoff current law to the upper and lower node respectively, we obtain

I=Aqn^/L) +(f)^ (26)

I+[c2F(Vv2)-l] =C2d? (27)
Simplying (27), we obtain

dV2J? =F(vrv2) (28)

where F(v-,,v2) is defined earlier by (6). Observe that C2 has been cancelled

in (26) and hence the state equation actually used for circuit analysis does

not involve C2 at all. Now if we substitute (25b) for v1 in (26) and (28), we
would obtain (23) and (21), respectively. Applying next Kirchhoff voltage law

to the circuit model in Fig. 2, we obtain (25). Finally, let us recall that

the peak-domain field E of our circuit model must satisfy (7) and (8).
m
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Substituting (25b) for v in (8) and using (7), we obtain (22). Hence we

have proved that the governing equations of the circuit model shown in Fig. 2

are given precisely by the "physical" equations (21), (22), (23), and (25).

An exam-?nation of (21) and (22) shows that they are still incomplete in

the sense that the electron density n = n (E) in the accumulation layer and
a a

n, = n,(E) in the depletion layer has not yet been specified other than that
d d

it must satisfy the following boundary conditions:

n(xx) = na(EQ) = nQ (29a)

n<x3> = na<E»> = n0 (29b)

n(x2) = nd(EQ) = nQ (29c)

Since the high-field domain grows as it propagates from the cathode (x=0)

to the anode (x=L) with an instantaneous domain velocity v (t), the electric

field intensity E and the electron density n depend upon both the "time"

variable t and the "space" variable x. Hence, the exact form of E, na, and

n, must be obtained by solving the governing partial differential equations,
d

It is here where some simplifying assumptions must be made in order to obviate

the difficult problem of solving partial differential equations. The stronger

the assumption, the easier it is to derive n and n,, and of course the poorer
5

will be the resulting approximate solution for n (E) and n,(E).
Si ^

For the general field-dependent diffusion case, the external device current

I can be expressed in terms of the current components inside the domain:

f =nv(E)-^- +ff (30)
Aq 3x q 9t

Now recall our Basic Assumption (a) in Section I asserts that the solution to

this partial differential equation consists of a high-field domain which

propagates without change of shape with the domain velocity v (t). Consequently,

if we introduce a new space variable

y = x - f v (t)dt (31a)
Jo

Our basic assumption (a) implies that E(x) is a strictly-monotonically increasing

function from x^ _< x _< X3, and a strictly-monotonically decreasing function from
X3 <_ x <^ X£. This guarantees that n and n, are well-defined single-valued
functions of E.
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and a new time variable

t' = t (31b)

then (30) is transformed into the form

3(Dn) _ ,_. I ,e f 9E , 3E 1 /ooX

Let us now invoke our Basic "Quasi-Static" Assumption (b); namely

ffr =0 (33)

Under this assumption, (23) reduces to

I = Aqn^Vj/L) (34)

Substituting (33) and (34) into (32), we obtain

^ =«"«) - v<V» - f VD f <35>
Applying Poisson's Equation, we obtain

3E _ 3E 3x _ ^ , . ,„,.
•57 ""5 "3y~ " e (n"n0) (36)

3(Dn) 3(Dn) 3E 3, . ["_ 3n , 3D") ,q7v
"V = 3E * =e(n"n0) [D 3E +n^ij (37)

Substituting (36) and (37) into (35) and changing the partial differentiation

operation into ah ordinary differentiation operation (since the independent variable

t' is no longer present), we obtain upon simplification the expression

dn n[v(E)-vD]+n()[vD-v(v1/L) ]-(q/e) (n-nQ)nD' (E)
dE (q/e)(n-n0)D(E) (38)

Since (38) must hold for both n in the accumulation layer, and in the depletion

layer, we obtain (9a)-(9d) by replacing n in (38) by n and by making use of

(29a) and (29b). Similarly, we obtain (10a)-(10c) by replacing n in (38) by

n, and by making use of (29c). Observe that although (9b) and (10b) are

c.

Our Basic Assumptions(a) and (b) are similar to that made by Butcher, Fawcett,
and Hilsum [14] for guaranteeing that both E and n become a function of "y" alone
with the shape shown in Figs. 1(b) and (c). The new space variable "y" can be
interpreted as the distance measured in a coordinate system moving in the
direction of electron flow with the domain velocity v_(t).
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identical in form, we have elected to solve (9) as a "two-point boundary-value"

problem, thereby yielding both vD and na(E) as its solution. We then solve
(10) as an "initial-value problem" with vD given by (lOd) representing the
solution of (9). This "unsymmetrical" procedure is chosen here because solving

both (9) and (10) as "two-point boundary-value" problems may not necessarily

give the same value for Vp. This is because (38) is not an exact equation but
is in fact derived under the two simplifying assumptions (a) and (b). In

order for our solution to be consistent with assumption (a), we must force vD

to be identical in both (9) and (10) and let nd(Em) assume whatever "slack"
that may arise due to our simplifying assumptions.

The preceding material completes our derivation of the Gunn diode circuit
model as described in Section II-A for the general nonlinear field-dependent

diffusion case. Let us turn next to the derivation of the two simplified models

described in Section II-B. Our first task will be to derive an explicit

expression for the "domain velocity" vD for the general field-dependent diffusion
case by recasting (38) into the following equivalent form:

»(E)
l ^\!W e rv(E)-vDi
V1 n/ dE qnQ [_ D(E) + ^-

I~v«-v(v../L)D-V(V1/L)] _^0_
nD(E) J Di D'(E) (39)

Integrating both sides of (39) from E to E, we obtain

'oJe0 d(e)
UE

E D'(E)
E„ D(E)

r
n

.no~
1

dE

-j
0

dE (40)

Now observe that when E = E we have n = nn and the left-hand side of (40)
m' o

vanishes. Referring to Figs. 1(b) and (c) again we see that n(x) has two

branches, each of which is a single-valued function E defined over the same

interval [EQ,E ]. Consequently, the right side of (40) must be satisfied
by both branches. If we let E = Em in (40) and pick the left branch
corresponding to the accumulation layer with n = n&, we would obtain

0 =
qn i.

m

0^E

[v(E)-vJ
D(E)

dE +*lyv^/L)] }"-±I> dE -{J j£gi-
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Similarly, if we pick the right branch corresponding to the depletion layer
with n = n,, we would obtain

d

Jm [v(E)-v_J
^-1
Ln0 -

(42)

Subtracting (42) from (41) and solving for v , we obtain [9],

VD = V^V1^L^

r

M

f m D'(E)
J„ /T nrtD(E)vx/L "0

n (E)-n
a d

dE

JCi

f m -I-
J„ h D(E)
VL

^

n (E) n (E)
La a

~\

\ = vD(V;L,v2) (43)
dE

J

dE

Observe that (43) can be computed only after E , n (E), and n,(E) have been

found using either the algorithm given in Section II-A, or other approximation

techniques. Observe also that v is shown as a function of v and v0 since v

is present explicitly in (43) and since E depends implicitly on both v and
m 1

v . We are now ready to consider, the two special cases in Section II-B:

Special Case 1. Constant-Diffusion Case — D(E) = D.

Substituting D'(E) = 0 in (43), we obtain

VD = V^V1^L^ (44)

Hence, in the constant-confusion case, the domain velocity is equal to the

electron-drift velocity [14]. Substituting (44) for Vp. in (40) and then

letting n = n and n = n, respectively, we obtain

n n

-^- *n^
no no

1 = w?f ,T [v<E>-v<VL>]dE =h<E;vi>
n

- £n ~T " 1 =dhi [ [v(E)-v(v /L)ldE =h(E;Vln0 qV Jv^L l 1 J • ]

(45a)

(45b)

where h(E;v_) is defined earlier in (12c). Substituting (12d) and (12e)

into (45a) and (45b), we obtain (12a) and (12b) which in turn lead to (13a)

and (13b).
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V

Special Case 2. Zero-Diffusion Case — D(E)> = 0.

Observe that the right-hand size of botn (45a) and (45b) tends to °° as

we let D tend to zero. This implies that n •*• » and n, •* 0 because

n -n
C a a

lim J-A-- £n-^- 1-11. -* <l--^--T")n~ln0 n0 J n-x» n0 ] ^a ^a (
L no noJ

and

lim (^ - in ^ - ll =lim {^ +ftn J - ll =°nd-K3ln0 n0 J nd-0ln0 "d J

Substituting n = » and n, = 0 into (22), we obtain

V2 = qn,-r0 Jv,/L
[E-v^LjdE

(46a)

(46b)

(47)

Integrating (47) directly and solving for Em, we obtain (14). Similarly,
substituting n = °° and n, = 0 into (6), we obtain

F(V1,V2) =J [v(v1/L)-v(E)jdE

Finally, substituting (48) into (5), we obtain (15).

(48)

D. Comparison with Other Models

Comparing our circuit model in Fig. 2 with Robrock's model [6] for the

single-domain case, we find that they are idenctical in both topology and the
type of circuit elements. However, there are also significant differences.

For example, the domain capacitance C2 in our model is linear whereas that in
Robrock's model is nonlinear. The most important difference, however, is in

the characterization of the controlled current source Ip. In our model, ID
may assume many different forms depending upon the simplifying assumptions

made in reducing the exact partial differential equations into approximate

ordinary differential equations. The characterization given in our paper

along with the two special cases represent only three reasonable choices. It

is conceivable that other equally reasonable or better assumptions may be found

which give rise to other characterizations. In contrast to this, the current
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source I in Robrock1s model is given by a purely empirical curve depending

only on the domain voltage v . Since 1_ must depend also on the terminal

current I in order for Robrock's circuit model to be consistent with the

governing physical equations, the violation of a "current-conservation law"

in Robrock's model as pointed out by Gunshor and Kak [7] can be traced to

the characterization of L.

Comparing next our circuit model with the Gunshor-Kak model [7-8], we

note first that one has 4 circuit elements, the other has 5, two of them are

controlled sources — a linear voltage-controlled voltage source V and a

nonlinear voltage-controlled current source I n(E0,E ). However, it is

interesting to observe that inspite of the differences in the network topology

and the number of circuit elements between these two models, it can be easily

verified that the governing equations derived from these two models are

identical in the zero-diffusion case: In other words, so long as the domain

has not yet reach the anode, then both circuit models would yield identical

answers, when imbedded in the same external circuit, provided D(E) = 0. These

two models differ drastically, however, in the nonzero-diffusion case. Here

the nonzero-diffusion effect is treated only very briefly in an ad hoc manner

in [7] whereas an arbitrary nonlinear diffusion characteristic D(E) is allowed

in our model. Observe also that the parameter I in the Gunshor-Kak model

depends on two space variables x- and x whereas all parameters in our model

are circuit variables.

III. COMPLETE LUMPED CIRCUIT MODEL INCLUDING DOMAIN EXTINCTION (AT THE ANODE)

AND NUCLEATION PHENOMENA

The circuit model shown in Fig. 2 is valid so long as the domain is

extinguished by the external circuit constraints before it gets to the anode,

such as in the quenched-domain mode, or when a "mature" domain does not exist,

such as in the LSA mode. However, in the transit-time mode, or in the

delayed-domain mode, this model is valid only during the time interval where the

domain is in motion and has not yet reached the anode. In order to model the

domain extinction phenomena at the anode, it suffices to devise a timing circuit

which "tracks" the domain motion and causes the domain capacitor C2 to

discharge quickly whenever the domain reaches the anode. This timing circuit

is then added to the circuit of Fig. 2 to obtain the complete circuit model

shown in Fig. 3. The nonlinear controlled current source is given by
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*C = A1n0 VW (49)

in the general case where D'(E) ± 0. However, in the constant-diffusion case,

we can obtain from (44) the relationship vD = v(v1/L) and then using (4), we
can simplify (49) to obtain:

Ic =AqnQ vCvj/L) = IR (50)

Hence, in the constant-diffusion case, the nonlinear controlled source Ic

reduces to a linear controlled current source depending only on the current IR

of the nonlinear resistor R. The three voltage-controlled nonlinear resistors

behave like "relays" which are activated whenever a prescribed threshold voltage

is reached; namely,

f0. vx > E

U. vx <E

„ T A0, v, >EJ, =vu (5i>

where E is the "threshold" field intensity when the drift velocity curve v(E)

attains its maximum.

,2w2.
f0, v = 0

R.(v0) = 2 <52>
U, v2 t 0

„ ( , fTd/C2' V3 ^AqV "V3t (53)R(v )=j (53)
L co , v3 < AqnQL = v3fc

where C9 is the domain capacitance (usually set equal to unity for convenience)
and t, is a very small number chosen equal to the "average" time constant for

the domain to collapse (x, is of the order of a few hundred picoseconds [2]).

From the computer simulation point of view, a separate subroutine for

implementing (51), (52), and (53) via efficient logic statements should be used.

This is because the augmented timing circuit shown in Fig. 3 comes into play

only momentarily whenever a high-field domain reaches the anode. It does not

affect the domain dynamics at all and therefore should be included in the

computation only when needed. Hence, considerable computer time can be saved

if a special subroutine is used in place of the timing circuit. Also observe

that the circuit model in Fig. 2 is much more efficient computationally when

D(E) = 0 and should therefore be used in most computer simulation analysis
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when the error due to this assumption is tolerable. The complete Gunn diode

circuit model for the zero-diffusion case is redrawn in Fig. 4 to emphasize

the simplifications resulting from assuming D(E) = 0. Among other things,

we note the controlled current source Ic in the timing circuit now depends
directly on the current IR of the nonlinear resistor. But the most dramatic

simplification is in ID where it can now be evaluated explicitly by using (14)

and (15) without having to solve any algebraic or differential equations. The

dotted lines in Fig. 4 are included to help locate where the controlling

variables are.

To understand the operation of the timing circuit, observe first that

the two resistors R-, and Ro are always open whenever v_ < v, and v. ^ 0.
•*- *• 1 it 2

Physically, this means that whenever the domain is being formed and transported

towards the anode, the current source I flows directly into the timing

capacitor C3 and charges it until v3 reaches the threshold value v- = v_ . At

this point R_ changes from an open circuit to a very small resistance, thereby

allowing the domain capacitance voltage v0 to discharge rapidly. It remains

for us to show that the total time T_ it takes the current source Ir to charge the

capacitor C~ from v = 0tov« = v is precisely equal to the time it takes the

domain to traverse from the cathode at x = 0 to the anode at x = L. To show

this, observe that whenever v < v.. and v„ ^ 0, both R-, (v-,) = « and R0(v?) = °°

and hence we have v„(t) =1 Aqn_ v (x)dx. Substituting vg(t) =v^ =Aqn..L

at t = T~ into this expression and simplifying, we obtain

T

f DL = I v (x)dx (54)
0

This relation verifies that the domain indeed reaches the anode (x=L) at

precisely t = T^. Observe that T depends on the external circuit in general

since the domain velocity v (t) depends on both v and v .

In the transit-time mode where the terminal voltage is constrained by a

dc or ac bias voltage source with amplitude VR > V- , the voltage v^ must

increase as the domain voltage v« collapses in order to take up the slack.

Consequently, v-, will reach v before v2 goes to zero, thereby activating R,.

Hence in the transit-time mode v2 ^ 0 and R2 remains an open circuit at all
times. On the other hand, in the quenched-domain mode where the domain never
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reaches the anode, or in the LSA mode where a "mature" domain does not

exist, we have v„ < v and hence the timing circuit is automatically

deactivated at all times even though R2 may switch on and off periodically.
Observe also that if the dc bias voltage is smaller than vlt and if v2(t) = 0,
then no domain will form and hence v2(t) =0 for ti 0. In this case we have
R = co, r = o, and the timing circuit is once again deactivated at all times.

In other words, the timing circuit comes into play in the sense that R3 changes
state periodically only in the transit-time mode and in the delayed-domain mode.
The controlled resistors R± and R2 are used to reset the capacitor voltage v3
to zero in the transit-time mode and in the delayed-domain mode, respectively,

whenever the domain begins to build up at the cathode, thereby allowing C3 to
keep track with the domain motion. Notice that our preceding analysis allows
the domain velocity v to vary with time. Consequently, given any external
circuit, our timing circuit can indeed precisely predict the time when a domain

reaches the anode.

Observe also that as soon as the capacitor voltage v3 has been reset to

zero, we have R- = «> and a domain will be nucleated thereafter whenever

v. >v1 . In the transit-time mode, this starting condition occurs at the
same time when v3 changes to zero because v± must have increased to v^ in order
to take up the slack due to the bias voltage. However, in the remaining modes,
the domain-starting condition will depend on the amplitude of the waveform

across the diode. In any event, our timing circuit will allow a domain to

nucleate at the appropriate point in time.

In actual implementation of this model for computer simulation, we have

found it desirable to replace (53) by a continuous function such as

^(v^^le50011-^^}
where x,_ is some appropriately chosen time constant. Finally, observe that

dO n ,,
since dv2/dt =0whenever v2 = 0, it is necessary to insert a small noise
current source in parallel with the domain capacitance in any computer simulation

in order that a domain may be nucleated automatically even when v2 = 0.

IV. COMPUTER-SIMULATED EXAMPLES

Our objective in this section is to present a number of examples for

demonstrating the validity of our circuit model under any loading condition
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when the diode is connected across an arbitrary external circuit. In particular,
we will show that for the same set of model parameters associated with a given
Gunn diode, our model can indeed predict, among other things, the four well-

known Gunn diode steady-state operating modes [3]; namely, the transit-time

•S2de, the delayed-domain mode, quenched-domain mode, and the LSA mode. We will

also show that our model is suitable for simulating transient behaviors such
as those associated with Gunn logic circuits [2].

Five examples will be presented in this section. Since the "zero-diffusion"

model shown in Fig. 4 is much more efficient computationally, these examples

will be simulated on the computer using this model in order to emphasize that

the "zero-diffusion" model is adequate for most purposes. Our first four

examples are concerned with simulating the steady-state waveforms associated

with the "single-cavity" Gunn-diode circuit shown in Fig. 5(a), where the

cavity is modelled by a parallel resonant circuit. The relevant model parameters

and the associated nonlinear resistor VR-I curve chosen for this example are
also specified in Fig. 5(a). The external circuit parameters R, L, C, and

Vfi for the first four examples are tabulated as shown in Fig. 5(b). The wave

forms to be simulated in each example consists of the following:

a) Steady-state waveform for diode terminal voltage V(t).

b) Steady-state waveform for diode terminal current I(t).

c) Steady-state waveform for the "excess" capacitor voltage v,(t) across

capacitor Cy (Recall that v^t) = EQ(t)L, where EQ(t) is the excess electric
field intensity at time t, and L is the device length.

d) Steady-state waveform for the "domain" capacitor voltage v2(t) across
capacitor C«.

e) Steady-state waveform for the "timing" capacitor voltage v~(t) across

capacitor C~.

While a model can only be an approximation of a device [12], it must at least
have the ability to predict correctly the qualitative behavior of the device
when imbedded in an arbitrary external circuit. This implies that given a
device, its associated model parameters can be determined once and for all
through a combined experimental and numerical method. Once the model parameters
are found, the circuit model is completely specified and can be used for
simulating an arbitrary circuit containing the device.

8
We have abused our notation slightly by using L to denote both the device
length and the inductance of the resonant circuit. However, the context will
make it clear which meaning to assign.
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For purposes of comparison among different devices, the waveform associated

with the following normalized variables will be plotted:

Normalized Voltages Normalized Current

V = V/EtL, vx = v1/EtL, v2 = v2/EtL I = I/AqnQyEt

where E denotes the threshold electric field of the velocity-vs.-field

curve, and u denotes the mobility of the electrons. For our first four examples,

have V_ = EL = 4 volts and I = Aqn^yE^ = 0.512 mA.
t t tOt

we

Example 1. Transit-Time Mode

Using the model and circuit parameters given in Fig. 5 for the transit-time

mode, the normalized steady-state voltage waveforms V(t), v.(t), v„(t), and

the unnormalized voltage v~(t) are shown in Figs. 6(a), (b), (c), and (d),

respectively. The normalized steady-state current waveform I(t) is shown in

Fig. 7(b), where the associated V(t) is repeated in Fig. 7(a) for comparison

purposes. The "ac" I-V curve obtained by plotting the Lissajous figure

corresponding to I(t)and V(t) is shown by the loop labelled (T) ,\2), Qj) ,(4)

in Fig. 7(c).

The operation of the transit-time mode can be illustrated with the help

of Fig. 6. First we recall that the sawtooth-like waveform v (t) in Fig. 6(d)

serves as a time base whose period is automatically set equal to the total

time it takes a high-field domain to traverse from the cathode to the anode

with a not-necessarily constant domain velocity v... Let us examine the sequence

of events over one period starting at point (l) which corresponds to the time

when the domain reaches the anode. Referring to (52), this occurs when v«,(t)

increases to Aqn L, at which point, resistor R switches to t"d/C2, where t,
is of the order of a few hundred picoseconds [2]. Hence the domain capacitor

9
voltage v? discharges rapidly through R~ with a time constant equal to x,.

An examination of Figs. 6(a), (b), and (c) shows that as v«(t) drops, v.(t)

increases in order to take up the slack until v,(t) = (E L)v.(t) = EL, i.e.,

until v (t) = 1 (point (2) ). At this point in time, R.,(v,) switches momentarily

from an open to a short circuit and v»(t) drops instantaneously to zero (also

labelled (2) ). This effectively forces R.. (v ) to switch immediately back to

9
To avoid dealing withodiscontinuous functions, our examples in this section
are all simulated with a continuous R3CV3) as given by (54), which results in
an approximately equal time constant for the discharge waveform.
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an open circuit and the capacitor C begins to charge through the "time-base"

current source Ic- Observe that point (5) at v (t) =0 corresponds to the
nucleation of a new domain at the cathode. As the domain voltage v0(t)

increases, v.(t) decreases as shown in Figs. 6(c) and (b), respectively.

Point (3) is located where the high-field domain has matured into a steady
state and subsequently, v (t) and v (t) must remain constant as the domain

traverses toward the anode. Observe that since v«(t) > 0 for all times in

Fig. 6(c), the resistor R2(v2) in the transit-time mode is always an open
circuit. Finally, as the "time-base" voltage v~(t) reaches point (4)

corresponding to the time instant where the domain arrives at the anode,the

cycle repeats itself.

The portion of the I-V curve shown in Fig. 7(c) from point Q) to point
(4) is the Lissijous figure associated with the steady-state waveforms shown

in Figs. 7(a) and (b) and will henceforth be referred to as the "ac" I-V curve

Observe that the dotted portion corresponds to the time interval where the

domain is either being discharged, or being formed. The small solid segment

between points (5) and (4) corresponds to the time interval where the domain
has matured to a steady state and is traversing toward the anode. The overall

curve formed by the dash lines and the short solid line segment is the "dc"

I-V curve to be described in the next section.

Example 2. Delayed-Domain Mode

Using the model and circuit parameters given in Fig. 5 for the delayed-

domain mode, the normalized steady-state voltage waveforms V(t), v^(t), v2(t),

and the unnormalized voltage v~(t) are shown in Figs. 8(a), (b), (c), and

(d), respectively. The normalized steady-state current waveform I(t) is

shown in Fig. (9) (b), where the associated V(t) is repeated in Fig. 9(a)

for comparison purposes. The "ac" I-V curve obtained from Figs. 9(a) and (b)

is shown by the solid and dotted portion of the curve in Fig. 9(c).

The operation of the delayed-domain mode can be illustrated with the

help of Fig. 8. Again, let us begin at point (l) on the time-base voltage

waveform v3(t) corresponding to the time instant when the domain reaches the

anode, thereby switching Ro(v~) to its low-resistance state. Hence, the

domain capacitor voltage v«(t) discharges rapidly through R3 until it reaches

zero volt (point (5)) at which time resistor R2(v ) switches from an open to
a short circuit. From here on the domain remains extinguished while v,(t)

takes up whatever slack needed to satisfy KVL in order to maintain a nearly
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sinusoidal voltage V across the high-Q resonant circuit. As v^t) increases
beyond the threshold votlage v± =1(point @), R^^) switches from ashort
to an open circuit. A slight increment of time thereafter, v2 becomes

positive once again since V continues to increase at point ©. This causes
R9(v9) to switch from a short to an open circuit, thereby starting the time-
base sawtooth waveform until the domain reaches the anode, and then the cycle

repeats itself.

The "ac" I-V curve corresponding to the waveforms in Figs. 9(a) and (b)

is shown in Fig. 9(c) to consist of 2 dotted segments and 2 solid segments.

The dotted segments correspond to the interval where the domain is in motion;

i.e., either growing or decaying. The solid segments correspond to the intervals

where the "mature" domain is in transit between points (§) and ©, or when
the domain is in its extinguished state between points © and © . The overall
curve made up by the dash and solid segments constitute the "dc" I-V curve

whose significance is to be presented in the next section.

Finally, we remark that the origin of the name "delayed-domain" mode

comes from the observation that a new domain is not formed until the excess

capacitor voltage v,(t) rises above its threshold value. The delay in the

initiation of a new domain is due to the near-sinusoidal nature of V(t) which

prevents v-.(t) from assuming a higher voltage before point © .

Example 3. Quenched-Domain Mode

Using the model and circuit parameters given in Fig. 5 for the quenched-

domain mode, the normalized steady-state voltage waveforms V(t), v^t), v2(t),
and the unnormalized voltage v«,(t) are shown in Figs. 10(a), (b), (c), and (d),

respectively. The normalized steady-state current waveform I(t) is shown in

Fig. 11(b), where the associated V(t) is repeated in Fig. 11(a) for comparison

purposes. The "ac" I-V curve obtained from Figs. 11(a) and (b) is shown by

the solid and dotted portion of the curve in Fig. 11(c).

The operation of the quenched-domain mode can be illustrated with the

help of Fig. 10. Unlike the preceding examples, let us start with point ©
in Fig. 10(c) where the domain voltage v2(t) drops to zero, thereby switching
R (v„) to a short circuit. This causes v~(t) to drop instantaneously to zero
2 2 _ j _

and remain so until v.. (t) rises above the normalized threshold voltage v1 = 1

at point (4), thereby switching R^^) to an open circuit. Thereafter the
domain voltage v2(t) begins to build up while the time-based voltage v3(t)
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rises to keep track of its motion. In sharp contrast with the operation of

the preceding examples, however, observe that the domain voltage v (t) becomes

zero at point © before the domain reaches the anode. Consequently, R,(v,)
remains an open circuit for all times and the timing circuit therefore plays

no role in determining the waveforms in the quenched-domain mode. The term

"quench" is used to emphasize that the high-field domain in this case is

extinguished by the waveform V(t), and not by discharging at the anode.

The "ac" I-V curve associated with the waveforms in Figs. 11(a) and (b)

is given by the dotted and solid portion of Fig. 11(c). The dotted portion

corresponds to the intervals where the domain is being formed, or being

quenched, while the solid portions correspond to the intervals where the

domain has reached a steady state. As before, the overall curve consisting

of the dash lines and the solid portion is the "dc" I-V curve.

Example 4. LSA Mode

The waveforms corresponding to the preceding examples for the LSA mode are

shown in Figs. 12 and 13. Here, we observe that v.(t) = V(t) because v (t) = 0

everywhere except over a very small time interval where v_(t) increases to no

larger than 0.01. Consequently, R„(v?) becomes a short circuit most of the

time, and the domain can be assumed to be almost non-existing. Since the

time-base voltage v~(t) is also almost zero, R3(v~) remains an open circuit

for all time in the LSA mode.

The "ac" I-V curve associated with the waveforms in Figs. 13(a) and (b)

is given by the dotted curve in Fig. 13(c).

Our fifth and final example is concerned with simulating the transient

waveforms using the zero-diffusion circuit model shown in Fig. 4.

Example 5. Gunn-Diode Logic AND Gate

Consider the two-Gunn-diode logic circuit shown in Fig. 14(a) along with

a truth table taken from [2] which describes the basic logic operation due to

two input voltage waveforms v (t) and vg2(t). Observe that only when both

inputs assume positive values do we get a positive output voltage — hence

the name AND gate. For this example, we choose the two "unsymmetrical" square-

waves shown in Fig.s 14(b) and (c) as the inputs. The resulting output voltage

vn(t) as simulated by the computer using our zero-diffusion circuit model is

shown in Fig. 14(d). A comparison of the three waveforms Vg..(t), vs2(t^' and
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v (t) shows that the circuit does behave in accordance with the logic operation

tabulated in Fig. 14(a).

V. DC I-V CURVE OF GUNN DIODE AND ITS INTERPRETATION

An examination of the "ac" I-V curve associated with the normalized

terminal voltage V(t) and current I(t) of the Gunn diode in Figs. 7(c) , 9(c),

11(c) and 13(c) reveals that the solid portion of each "ac" I-V curve lies on

an identical curve. From our past experience with oscillator circuits con

taining locally active 2-terminal elements — such as tunnel diodes — it is

indeed tempting to define a "dc" I-V curve for the Gunn diode shown in

Fig. 5(a) and then use it to explain and predict circuit behaviors. Our

objective in this final section is to show how this can be done in a meaningful

and rigorous way.

Since the solid portions of the "ac" I-V curves in the preceding section

are all associated only with the "domain model" shown in Fig. 2, and since

the dotted portions of these curves are clearly time-varying in nature, any

reasonable definition of a "dc" I-V curve must be associated with the domain

model. From the circuit and system-theoretic point of view, this circuit

model can be considered as a dynamic nonlinear one-port characterized by a

"state" equation and an "output" equation as follow [12,15]:

State Equation:

dv

IT -^ Hv] (56a)dt

dv

2= F(v,,v0) (56b)
dt iV¥l"2

Output Equation:

V= V.J+V2 (56c)

where GCv^) and F(v1,v2) are defined by (4) and (6), respectively. Equation (56)
completely characterizes the circuit model of Fig. 2 in the sense that given

any external circuit connected to the Gunn diode, one could simulate the

solutions using the above equation in place of the circuit model. Observe that

for each given value of I, (56a) and (56b) represent a system of two autonomous
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equations [16-17] whose equilibrium states are simply obtained by equating

(56a) and (56b) to zero and then solving for (v,,v2). Hence, we can obtain
a relation between the "dc" port current I and the associated port voltage V

in equilibrium by eliminating the two variables v and v from the following

three equilibrium equations derived from (56):

I - G(V;L) = 0 (57a)

F(vl»v2) = ° (57b)

V - vx - v2 = 0 (57c)

The solutions of (57) represent a set 2 of points in the I-V plane and it is

this set 2 that we will define as the "dc" I-V curve of the Gunn diode. The

set S can be obtained by solving (57) numerically, or graphically. For the

zero-diffusion case, F(v.,v2) is given simply by (48), where E is given by

(14). The resulting curve is shown in Fig. 15(a) in terms of the normalized

variable V and I defined earlier. Observe that this "dc" I-V curve is a

multivalued function of both terminal variables I and V. A comparison

between this curve and those of Figs. 7(c), 9(c), 11(c), and 13(c) shows that

the solid portions of the latter are identical to the former. In other words,

we have just verified that the solid portions of the "ac" I-V curves actually

lie on the "dc" I-V curve. We also observe that the two points "T" (for

threshold) and "Q" (for quenched) on the "dc" I-V curve are of special interest

because each is connected to the solid portion of the "ac" I-V curve by dotted

lines representing the domain transient buildup and decay. The obvious question

to raise at this point is why doesn't any point on the "ac" I-V curves in

Figs. 7(c), 9(c), 11(c), and 13(c) fall on the segment of the "dc" I-V curve

between points T and Q?

The answer to the above question becomes obvious if we recall that each

point (V ,1 ) on the I-V curve o corresponds to an equilibrium point of the

autonomous system (56a)-(56b) with 1=1. Since an equilibrium point may be

either locally attracting (stable) or repelling (unstable) [16-17], it follows

that each point P on the "dc" I-V curve can be either "attacting" or "repelling"

in a neighborhood of P. The stability or instability of each equilibrium point

can be determined by examining whether the eigen-value of the associated

Jacobian matrix evaluated at P lies in the left- or in the right-half plane.
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Such an analysis has in fact been carried out for all points along the dc I-V

curve and the result (for any v(E)-vs.-E curve passing through the origin

with a positive slope and having a single maxima and minima) can be summarized

as follow:

Region Type of Equilibrium Point Property

From -» to T Node Stable

From T to Q Saddle point Unstable

From Q to +00 Node Stable

It is interesting to observe that our analytical result here agrees with the

computer-simulated results obtained by Kak and Gunshor [8]. In particular,

our region from T to Q corresponds to their |gRQ| >1 region, and our region
from Q to +« corresponds to their |gR |< 1 region. In fact, it can be shown

analytically that our "quenching point" Q corresponds precisely to their

critical condition gR = 1. Figure 15(b) shows a typical "dc" I-V curve with the

type and stability of each corresponding equilibrium point indicated on the curve.

Now it is clear why the "ac" I-V curve cannot fall on the segment between T and Q

if the input current I is held constant. For our examples, I = I(t) is a time-varying

waveform and the above conclusion is no longer valid in general. Howeve, if

I(t) changes much more slowly than the settling time associated with (56), then
I(t) can be considered as a constant in a small neighborhood of any time tand
the same conclusion holds. An examination of the time scales involved in the

waveforms given in Figs. 8-11 shows that this is indeed the case because the
domain "build up time" is only a small fraction of the period of the associated

waveforms.

From the physical point of view, the above conclusion can also be derived
by observing that after a domain matures and propagates toward the anode, the
"excess" uniform field E no longer depends on the domain dynamics, but only
on the external waveform V(t) in order to satisfy KVL. In other words,
v (t) = E (t)L serves only as a "slack variable" independent of the domain
dynamics. Hence both the excess capacitor (^ and the domain capacitor C2 can
be replaced by open circuits as soon as the domain has grown to maturity
The resulting circuit is purely resistive and is in fact characterized by the

same "dc" I-V curve defined earlier.
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The above interpretation of the significance of the "dc" I-V curve clearly

shows that it can be used meaningfully just like a nonlinear resistor — such

as tunnel diode — over any time interval where a matured-domain is propagating

towards the anode.

VI. -y CONCLUDING REMARKS

We have demonstrated through examples that the zero-diffusion circuit model

is capable of predicting correctly the qualitative behaviors and waveforms

associated with Gunn-diode circuits. Since the zero-diffusion model is

computationally much more efficient, it should be chosen first in any computer

simulation analysis. Only when there is reason to believe that the answers

to a particular circuit will depend strongly on a nonlinear diffusion

characteristic D = D(E) should the general circuit model given in Section II-A

be chosen.

We have given a rigorous definition of a "dc" I-V curve for Gunn diodes

and have shown that so long as the circuit is operating while a matured domain

is traversing towards the anode, the circuit can be correctly analyzed by

replacing the Gunn diode by a nonlinear resistor characterized by this "dc"

I-V curve. Since circuit engineers are much more familiar with the analysis

of tunnel diode circuits, and since the "dc" I-V curve for Gunn diodes

resembles that of a tunnel diode, this observation should come in handy in the

analysis and design of Gunn-diode circuits.

Finally, we remark that although the I-V curve shown in Fig. 13(c) for

the LSA mode is a continuous and single-valued function, it is nevertheless

an "ac" I-V curve valid only over the frequency range for LSA operation.

Observe that the solid portion on this curve falls on the "dc" I-V curve

because the domain does not exist in the region V<1 for all frequencies,

including dc. Beyond V = 1, a matured-domain would generally exist unless

the operating frequency is so high that the domain has no time to build up,

which is exactly the condition for the LSA mode. Under this situation, the

capacitor C becomes almost a short circuit and we have V(t) = VD(t) = v_(t).
£. K 1

Moreover, the value of C, is typically so small that the current i (t) through
clC- in the LSA mode is negligible compared to IR(T). Hence, we expect the "ac"

I-V curve associated with the LSA mode to be simply the I^-vs.-V curve of
R R

the nonlinear resistor R. This is precisely what we obtained in Fig. 13(c).
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APPENDIX

A. THE MODIFIED SHOOTING METHOD

The "shooting-method" often refers to a well-known technique for transforming
a boundary-value problem into an initial-value problem by finding an appropriate
initial condition which forces the resulting solution to satisfy the prescribed
boundary condition [11]. Our problem of finding an appropriate domain velocity vD
in solving (9a) subject to the two boundary conditions (9c) and (9d) is quite
different from the above initial-value problem. However, it can be solved by a

method analogous to that of the shooting method.
The basic idea behind our "modified" shooting method can be explained with

the help of Fig. 16(a) where the solution to the initial-value problem 9(a)
subject to the single initial condition (9c) is shown for three different values
of v . Observe that only the solution corresponding to vD = v* will satisfy the
boundary condition (9d) and is therefore the desired solution. Our problem is
to find v*. Atypical solution n& =nfl(E) for vD *v* is shown if Fig. 16(b).
Notice that n& =nQ at E=EQ and at E=Ep(vD>, where E<vD) +E^ If we
define £(v )=E -E (v ), then our objective is to find vD such that the
"error" £(v )= 0. This is analogous to finding an appropriate velocity such
that aprojectile starting form nQ(E0) will strike the target nfl =nQ at E=Em
— hence the name "modified shooting method." Now g(vD) depends on vD because
E (v ) depends on v_. Our problem is therefore simply to solve the scalar
p D DP

nonlinear algebraic equation

e<v =Em- yv= o
(A-l)

This can be solved by either the Newton-Raphson or the Secant Method [11,12].
Since for each given value of vD> Ep(vD) must be computed numerically by solving
the "initial-value problem" (9a) and (9c) and then determining the value of E
when n =nQ, it would usually be more efficient to use the Secant Method. To
summarize, our "modified shooting method" consists of transforming the two-point
boundary-value problem (9a) - <9d) into a scalar nonlinear equation where the
associated nonlinear function is evaluated by solving an initial-value problem.

B. TECHNIQUE FOR AVOIDING NUMERICAL ILL-CONDITIONING

Our objective in this section is to first show that (6), (8), (9b), and
(10b) are well-defined at E= EQ =v^L even though the numerator in each
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equation tends to zero. Then we will propose a numerical method for evaluating
these equations in the vicinity of E= EQ = v±/L without causing ill-conditioning,

Observe first that (9a) and (9b) can be recast into the following form:

dn n [v(E)-v(Vl/L)] v(v-/L)
3 X — + X

naD'(E)
dE (q/e)D(E) n -nn

a 0
(q/e)D(E) (q/e)D(E) D(E) (A-2)

Now substituting na = nQ and E = EQ = v^L into (A-2) and applying H'opitals
Rule, we obtain

dn

dE

n
0

E=V;L/L
(q/e)D <

dv(E)
dE

dn

dE

E=V;L/L

E=vl/Lj

> +
v(v /L) v_ n D1

1 D a

(q/e)D " (q/E)D D

A ^n
If we define X =

& 0 dv(E)
, and

dE

E=Vl/L
(q/£)D dE

E=V;L/L

AV(V1/L) VD "a0*

(A-3)

^ ~ ToTeTd TaTcYD b"— ' tnen (A~^) reduces to a quadratic equation:

X - bX - a = 0 (A-4)

Solving (A-4) for X, we obtain:

dn

X =
dE

X2b+/b +4a
(A-5)

E=v1/L

where we have chosen the positive sign in front of the square-root sign because

dna/dE >0 at E = v^L = EQ (see Fig. 1(b)). Hence, (9a) is defined simply by
(A-5) at E = v^L.

Consider next the first integrand in (8) and (6):

lim

E-^/L

n^nn
a 0

E-Vl/L
n -nn
a 0

dE

dE

dn.

dE"
E=vx/L
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lim

E-^/L

n ->nn
a 0

v(E)-v(v1/L)
n -nn
a 0

dv(E)
dE

dn.

dE~

E=Vl/L

E=vx/L

v'^/L)
X

(A-7)

where X ^ 0 is as defined by (A-5). By a similar procedure, it is easily seen

that (6), (8), and (10) are well defined at E = v /L.

Even though all equations are well defined at E = v./L, numerical ill-

conditioning may occur unless special subroutines are included for evaluating

the expressions in (6), (8), (9), and (10) at E = v-/L. For example, (A-5),

(A-6), and (A-7) may be used whenever E = v_/L. Also, instead of using the

initial condition n (v,/L) = n_, we can use
a i u

naCr+s)s n
dn

0 + dE 6 = n + X6 (A-8)

E=Vl/L

for sufficiently small 6.

-35-



REFERENCES

1. Bulman, P. J., Hobson, G. S., and Taylor, B. C, Transferred-electron Devices.
Academic Press, New York, 1972.

2. Hartnagel, H. L., Gunn-effect Logic Devices, Heinemann Educational Books,
London, 1973.

3. Hobson, G. S., The Gunn Effect, Clarendon Press, Oxford, 1974.

4. Howes, M. J. and Morgan, D. V., Microwave Devices. John Wiley and Sons,
New York, 1976.

5. Carroll, J. E. and Giblin, R. A., "A Low Frequency Analog for a Gunn-
Effects Oscillator," IEEE Trans, on Electron Devices. Vol. ED-14, No. 10,
October 1967, pp. 640-656.

6. Robrock, R. B., II, "A Lumped Model for Characterizing Single and Multiple
Domain Propagation in Bulk GaAs," IEEE Trans, on Electron Devices. Vol. ED-17,
No. 2, February 1970, pp. 93-102.

7. Gunshor, R. L. and Kak, A. C, "Lumped-Circuit Representation of Gunn Diodes
in Domain Mode," IEEE Trans, on Electron Devices. Vol. ED-19, No. 6,
June 1972, pp. 765-770.

8. Kak, A. C. and Gunshor, R. L., "The Transient Behavior of High-Field Dipole

Domains in Transferred Electron Devices," IEEE Trans, on Electron Devices,

vol. ED-20, No. 1, January 1973, pp. 1-5.

9. Butcher, P. N., Fawcett, W., and Ogg, N. R., "Field-Dependent Diffusion on

Stable Domain Propagation in the Gunn Effect," Brit. J. Appl. Phys., Vol. 18,
1967, pp. 755-759.

10. Sze, S. M., Physics of Semiconductor Devices, J. Wiley, New York, 1969.

11. Dahlquist, G. and Bjorck, A., Numerical Methods, Prentice-Hall, Englewood
Cliffs, N. J., 1974.

12. Chua, L. 0. and Lin, P. M., Computer-Aided Analysis of Electronic Circuits:

'Algorithms and Computational Techniques, Prentice-Hall, Englewood Cliffs,

N. J., 1975.

13. Kurokawa, K., "Transient Behavior of High-Field Domains in Bulk Semiconductors,"

Proc. of the IEEE, Vol. 55, September 1967, pp. 1615-1616.

14. Butcher, P. N., Fawcett, W. and Hilsam, C, "A Simple Analysis of Stable

Domain Propagation in the Gunn Effect," Brit. J. Appl. Phys., Vol. 17,

1966, pp. 841-850.

-36-



15. Desoer, C. A., Notes for a Second Course on Linear Systems, Van Nostrand

Reinhold, New York, 1970.

16. Chua, L. 0., Introduction to Nonlinear Network Theory, McGraw-Hill, New York,

1969.

17. Hirsch, M. W. and Smale, S., Differential Equations, Dynamical Systems,

and Linear Algebra, Academic Press, New York, 1974.

-37-



FIGURE CAPTIONS

Fig. 1. (a) A one-dimensional Gunn diode of cross-sectional area A and length L.
(b) Carrier Concentration at one instant of time showing a dipole being

formed with an accumulation layer from xi to x3, and a depletion
layer from x3 to x2. Electron density n in the accumulation layer
is denoted by na and that in the depletion layer is denoted by nrf.

(c) A high-field domain being formed at the same instant of time. The
domain is assumed to increase monotonically over the interval
[x-^,X3.] from Eq to Em, and then decrease monotonically over the
interval [x3,x2] from Em to EQ.

Fig. 2. The general circuit model for simulating the dynamics of the domain
formation in a Gunn diode having an nQL product greater than 1012 cm"2.
The function F(v1,v2) is given by Equation (6).

Fig. 3. Complete Gunn diode circuit model which includes domain nucleation,
formation, and extinction phenomena. The three controlled resistors
Rl(vl)» R2(v2)» and R3(v3) depend on v]_, v2, and v3, respectively,
as given by Equations (51), (52), and (53). These resistors behave
like relays and therefore should be described by a separate subroutine
using logic statements to save computer time.

Fig. 4. Complete Gunn diode circuit model for the zero-diffusion case. The
nonlinear resistor R and the linear capacitor C^ are as described in
Fig. 3. The controlled current source coefficient is given by the
simplified expression:

(v1/L)+/(2qn()/e)v2
In = I [v(v /L)-v(E)]dE -I
D -W-j/L X

The three controlled resistors are described Equations (51), (52), and
(53). The dotted lines show the controlling variables.

Fig. 5. A single-cavity Gunn-diode circuit and the external circuit parameters
leading to four distinct modes of steady-state operation.

Fig. 6. The waveforms associated with the Gunn-diode circuit operating under
the transit-time mode. Horizontal scale is 57x10-1^ seconds per division
Voltage normalization constant = 4 volts.

Fig. 7. The normalized terminal voltage and current waveforms of the Gunn-diode
circuit operating under the transit-time mode and its associated "ac"
I-V curve. Voltage normalization constant = 4 volts, current
normalization constant = 0.512 mA.

Fig. 8. The waveforms associated with the Gunn-diode circuit operating under
the delayed-domain mode. "Horizontal scale is 75x1O'^2 seconds per
division. Voltage normalization constant = 4 volts.

Fig. 9. The normalized terminal voltage and current waveforms of the Gunn-diode
circuit operating under the delayed-domain mode and its associated "ac"
I-V curve. Voltage-normalization constant = 4 volts, current
normalization constant = 0.512 mA.



Fig. 10. The waveforms associated with the Gunn-diode circuit operating under
the quenched-domain mode. Horizontal scale is 44xl0~l2 seconds per
division. Voltage normalization constant = 4 volts.

Fig. 11. The normalized terminal voltage and current waveforms of the Gunn-
diode circuit operating under the quenched-domain mode. Voltage
normalization constant = 4 volts, current normalization
constant = 0.512 mA.

Fig. 12. The waveforms associated with the Gunn-diode circuit operating under
the LSA mode. Horizontal scale is 0.33xl0"12 seconds per division.
Voltage normalization constant = 4 volts.

Fig. 13. The normalized terminal voltage and current waveforms of the Gunn-
diode circuit operating under the LSA mode, and its associated "ac"
I-V curve. Votlage normalization constant = 4 volts, current
normalization constant = 0.512 mA.

Fig. 14. A two-Gunn-diode AND logic gate circuit and its output transient
response VQ(t) due to two unsymmetrical square-wave inputs vs (t)

-12
and vc (t). Horizontal scale is 1.4x10 seconds per division.

Voltage normalization constant = 4 volts.

Fig. 15. The "dc" I-V curve associated with a Gunn diode and its associated
equilibrium points.

Fig. 16. A geometrical interpretation of the shooting method.
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