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A THEORY OF APPROXIflATE REASONING (AR)

L.A. Zadeh

Summary

The theory of approximate reasoning outlined in this paper is concerned

with the deduction of possibly imprecise conclusions from a set of imprecise

premises.

The theory is based on a fuzzy logic, FL, in which the truth-values are

linguistic, i.e., of the form true, not true, very true, more or less true,

false, not very false, etc., and the rules of inference are approximate

rather than exact. Furthermore, the premises are assumed to have the form

of fuzzy propositions, e.g., "(X is much smaller than Y) is quite true,"

"If X is small is possible then Y is very large is very likely," etc. By

using the concept of a possibility — rather than probability — distribu

tion, such propositions are translated into expressions in PRUF (Possibilistic

Relational Universal £uzzy), v/hich is a meaning representation language for

natural languages.

An expression in PRUF is a procedure for computing the possibility

distribution which is induced by a proposition in a natural language. By

applying the rules of inference in PRUF to such distributions, other dis

tributions are obtained which upon retranslation and linguistic approxima

tion yield the conclusions deduced from the fuzzy premises.

The principal rules of inference in fuzzy logic are the projection

principle, the particularization/conjunction principle, and the entailment

principle. The application of these rules to approximate reasoning is

described and illustrated by examples.

^Presented at the 9th International Machine Intelligence Symposium, Leningrad,
1977. Research supported by the National Science Foundation Grant MCS76-
06693, the Naval Electronics Systems Command Contract N000j9-77-C-0022, and
the U.S. Army Research Office Grant DAHC04-75-G0056.
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ATHEORY OF APPROXIMATE REASONIHO (AR)*

L.A. Zadeh

1. Introduction

Informally, by approximate or, equivalently, fuzzy reasoning we mean

the process or processes by which a possibly imprecise conclusion is deduced

from a collection of imprecise premises. Such reasoning is, for the most

part, qualitative rather than quantitative in nature and almost all of it

falls outside of the domain of applicability of classical logic.^
Approximate reasoning underlies the remarkable human ability to under

stand natural language, decipher sloppy handwriting, play games requiring

mental and/or physical skill and, more generally, make rational decisions

in complex and/or uncertain environments. In fact, it is the capability to

reason in qualitative, imprecise terms that distinguishes human intelligence

from machine intelligence. And yet, approximate reasoning has received

little if any attention within psychology, philosophy, logic, artificial

intelligence and other branches of cognitive sciences, largely because it

is not consonant with the deeply entrenched tradition of precise reasoning

in science and contravenes the widely held belief that precise, quantitative

reasoning has the capability of solving the extremely complex and ill-

defined problems which pervade the analysis of humanistic systems.

In earlier papers (see Zadeh 1973,1975,1976,1977), we have outlined a

conceptual framework for approximate reasoning based on the notions of
* ~

To Pat Suppes.

Computer Science Division, Department of Electrical Engineering and Computer
Sciences and the Electronics Research Laboratory, University of California,
Berkeley, CA 94720. Research supported by the National Science Foundation
Grant MCS76-06693, the Naval Electronics Systems Command Contract N00039-77-
C-0022, and the U.S. Army Research Office Grant DAHC04-7^-G0056.

^A thorough exposition of the foundations of fuzzy reasoning may be found in
Gaines (1976).

1



w

linguistic variable and fuzzy logic. In the present paper, a novel direc

tion involving the concept of a possibility distribution will be described.^

As will be seen in the sequel, the concept of a possibility distribution

provides a natural basis for the representation of the meaning of proposi

tions expressed in a natural language, and thereby serves as a convenient

point of departure for the translation of imprecise premises into expressions

in a language PRUF to which the rules of inference associated with this

language can be applied.

The theory of approximate reasoning which is outlined in the following

sections is still in its initial stages of development. Consequently, our

exposition of it in the present paper is informal in nature and our simple

examples are intended merely to aid the reader in the understanding of the

basic concepts and their applications within the theory. However, approxi

mate reasoning and fuzzy logic appear to have the potential for many signi

ficant applications in the analysis of both humanistic and mechanistic

systems, as is evidenced by the applications to control theory, pattern

recognition and related fields which have already been reported in the

literature. (See the appended bibliography.)

In what follows, our exposition of approximate reasoning begins with

a brief discussion of the concept of a possibility distribution and its

role in the translation of fuzzy propositions expressed in a natural lan

guage. In Section 3, the concept of a linguistic variable is introduced as

a device for an approximate characterization of the values of variables and

their interrelations. In Sections 4 and 5, we shall discuss some of the

^An exposition of a theory of possibility based on the theory of fuzzy sets
may be found in Zadeh (1977).

3
PRUF is an acronym for Possibilistic Relational Universal Fuzzy. A brief
discussion of some of the relevant aspects of PRUF is contained in
Section 2.



basic aspects of fuzzy logic -- the logic that serves as a foundation for

approximate reasoning--and introduce the concepts of semantic equivalence and

semantic entailment. Finally, in Section 6, we formulate the basic rules

of inference in fuzzy logic and illustrate their application to approximate

reasoning by a number of simple examples.



2. The Concept of a Possibility Distribution

A basic assumption which underlies our approach to approximate reason

ing is that the imprecision which is intrinsic in natural languages is, in
4

the main, possibilistic rather than probabilistic in nature.

To illustrate the point, consider the proposition p 4 X is an integer
5in the interval [0,8]. Clearly, such a proposition does not associate a

unique integer with X; rather, it indicates that any integer in the inter

val [0,8] could possibly be a value of X, and that any integer not in

the interval could not be a value of X.

This obvious observation suggests the following interpretation of p.

The proposition "X is an integer in the interval [0,8]" induces a possibility

distribution which associates with each integer n the possibility

that n could be a value of X. Thus, for the proposition in question

PossfX = n} = 1 for 0 £ n £ 8
and

Poss{X = n} = 0 for n < 0 or n > 8

where Poss{X = n} is an abbreviation for "The possibility that X may assume

the value n." Note that the possibility distribution induced by p is

uniform in the sense that the possibility values are equal to unity for n

in [0,8] and zero elsewhere.

Next, consider the fuzzy proposition q ^ X is a small integer, in

which small integer is a fuzzy set defined by, say,

small integer = 1/0 + 1/1+0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (2.1)

^The term "possibilistic" was coined by B.R. Gaines and L.J. Kohout in their
paper on posf'sible automata (1975).

5
The symbol C' stands for "is defined to be," or "denotes."



in which + denotes the union rather than the arithmetic sum and a single

ton of the form 0.8/2 signifies that the grade of membership of the integer
g

2 in the fuzzy set small integer is 0.8.

As an extension of our interpretation of the nonfuzzy proposition p,

we shall interpret q as follows. The proposition q A X is a small integer

induces a possibility distribution which equates the possibility of X

taking a value n to the grade of membership of n in the fuzzy set

small integer. Thus
Poss{X = 0} = 1

PossfX = 2} = 0.8

PossfX = 5} = 0.2
and

Poss{X = 6} = 0

More generally, we shall say that a fuzzy proposition of the form

p 6 X is F, where X is a variable taking values in a universe of discourse

U and F is a fuzzy subset of U, induces a possibility distribution llj^

which is equal to F, i.e.,

= F (2.2)

Thus, in essence, the possibility distribution of X is a fuzzy set which

serves to define the possibility that X could assume any specified value

in U. Stated more concretely, if u 6 U and pp! U [0,1] is the mem

bership function of F, then the possibility that X= u given "X is F" is

Poss{X =u|X is F) = Up(u) , u e U. (2.3)

^Expositions of the relevant aspects of the theory of fuzzy sets may be
found in the books and papers noted in the bibliography, especially
A. Kaufmann (1975), L. Megoita and D. Ralescu (1975), and L.A,*Zadeh,
K.S. Fu, K. Tanaka and M. Shimura (1975).



Since the concept of a possibility distribution coincides with that of

a fuzzy set, possibility distributions may be manipulated by the rules

governing the manipulation of fuzzy sets and, more particularly, fuzzy

restrictions. In what follows, we shall focus our attention only on those

aspects of possibility distributions which are of relevance to approximate

reasoning.

Possibility vs. Probability

What is the difference between possibility and probability? Intui

tively, possibility relates to our perception of the degree of feasibility

or ease of attainment, whereas probability is associated with the degree of

belief, likelihood, frequency or proportion. Thus, what is possible may

not be probable and what is improbable need not be impossible.^ More impor

tantly, however, the distinction between possibility and probability mani

fests itself in the different rules which govern their combinations, espe

cially under the union. More specifically, if A is a nonfuzzy subset

of U, and is the possibility distribution induced by the proposition

"X is F," then the possibility measure, n(A), of A is defined as^

II{A) 4 PossfXGA} ^ Sup^^^ Up(u) (2.4)

and, more generally, if A is a fuzzy subset of U, then

^ i^uzzy restriction is a fuzzy set which serves as an elastic constraint
on the values that may be assigned to a variable. A variable which is
associated with a fuzzy restriction or, equivalently, with a possibility
distribution, is a fuzzy varjabje.
Amore'concrete statement of this relation is embodied in the possibility/
probability/; cmTsjstenc^^^ (see Zadeh, 1977).
The possibility measure defined by (2.4) is a special case of the more
general concept of a fuzzy measure defined by Sugeno (1974) and Terano
and Sugeno (1975).



n(A) ^ Poss{X is A} ^ Sup^(up{u) Ay^(u)) (2.5)

where is the membership function of A and A = min.

From the definition of possibility measure, it follows at once that,

for arbitrary subsets A and B of U, the possibility measure of the

union of A and B is given by

n(AuB) = n(A) vn(B) (2.6)

where V 4 max. Thus, the possibility measure does not have the basic

additlvity property of probability measure, namely,

P(AUB) = P(A) +P(B) if A and B are disjoint (2.7)

where P(A) and P(B) denote the probability measures of A and B,

respectively.

Unlike probability, the concept of possibility in no way involves the

notion of repeated experimentation. Thus, the concept of possibility is

nonstatistical in character and, as such, is a natural concept to use when

the imprecision or uncertainty in the phenomena under study are not suscep-

table of statistical analysis or characterization.

Possibility Assignment Equations

The reason why the concept of a possibility distribution plays such an

important role in approximate reasoning relates to our assumption that a

proposition in a natural language may be interpreted as an assignment of a

fuzzy set to a possibility distribution. More specifically, if p is a

proposition in a natural language, we shall say that p translates into a

possibility assignment equation:



P ^ (2.8)

where are variables which are explicit or implicit in p;

j is the possibility distribution of the n-ary variable

X&(X^,...,X^); and F is a fuzzy relation, i.e., a fuzzy subset of the
cartesian product U.jX---xU^, where U^., i = l,...,n, is the universe

of discourse associated with X^.. In this context, the possibility assign

ment equation

(2.9)

will be referred to as the translation of p and, conversely, p will be

said to be a retranslation of (2.9), in which case its relation to (2.9)

will be represented as

In general, a proposition of the form p ^ X is F, where X is the

name of an object or a proposition, translates not into

P — II^ = F (2.11)
but into

p = F (2.12)

where A(X) is an implied attribute of X. For example,

Joe is young 1. (j^g) ° y°""9 (2.13)

Maria is blond ncolor(Hair(Maria)) = "1°"" (2.14)

Max is about as tall as Jim —>

"(Height(Max),Height(Jim)) =aPP-'ox^^tely equal
(2.15)



where young, blond and approximately equal are specified fuzzy relations

(unary and binary) in their respective universes of discourse. More con

cretely, if u is a numerical value of the age of Joe, then (2.13)

implies that

Poss{Age(Joe) =u) =Uy^^^g(u) (2.16)

Similarly, if u is an identifying label for the color of hair, then (2.14)

implies that

Poss{Color(Hair(Maria)) =u} =^blond^"^ (2.17)

while (2.15) signifies that

Poss{Height(Max)=u, Height(Jim)=v} =^approximately equal

where u and v are the generic values of the variables Height(Max)

and Height(Jim), respectively.

Projection and Particularization

Among the operations that may be performed on a possibility distribution,

there are two that are of particular relevance to approximate reasoning:

projection and particularization.

Let 11/Y Y \ denote an n-ary possibility distribution which is a
n^

fuzzy relation in x••• xU^, with the possibility distribution function

of IT/w V \ (i.e., the membership function of IT/y y denoted

by j or, more simply, as Vy.

Let s ^ (i-j,... ,i|̂ ) be a subsequence of the index sequence (l,...»n)
and let s' denote the complementary subsequence s' 6 (ji....,j|^) (e.g.,

for n = 5, s = (1,3,4) and s' = (2,5)). In terms of such sequences, a
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k-tuple of the form (A. ) may be expressed in an abbreviated form
1

as A/ V. In particular, the variable X, x = (X ) will be
1 ""kreferred to as a k-ary subvariable of X̂ (X^, X^), with

^(s'l ^ '^i ) being a subvariable complementary to X, x.
^ ^ -^1 ^m is;

The projection of ^ ^ ^ ^(s) ~^i ^ ^i ^ k-ary
possibility distribution denoted by ^

V

and defined by

(2.20)

where is the possibility distribution function of n, . For
, (s) *(s)

example, for n = 2,

''x/"!* ^S"Pu2 "(X^.X2)("r"2'

is the expression for the possibility distribution function of the projec

tion of *^1' analogy with the concept of a marginal

probability distribution, will be referred to as a marginal possi-

bi1i ty distribution.

The importance of the concept of a marginal possibility distribution

derives from the fact that Uy may be regarded as the possibility dis-
. . . (s)tribution of the subvariable Thus, stated as the projection principle

(in Section 6), the relation between X/ \ and iTw may be expressed as:is; X(^)
From the possibility distribution, Jl, of the variable

X= (X,,...,X ), the possibility distribution !ly of the subvariable
X(s)

tion of on anticipates (2.21)

that our use of the symbol fly in (2.19) to denote the projec-
^(s)



n

Xjgj i (X^. ,...,X^. ) may be inferred by projecting ^ ^ on Ujgj*
Ik In

I.e.,

ny = Proj,, H/y Y \ • (2.21)

As a simple illustration, assume that n = 3, = U2 = = a+b or,

more conventionally {a,b}, and iT/y y y \ is expressed as a linear form
\ >"2 * 3'

Il/y y y \ = 0.8aaa + laab + 0.6baa + 0.2bab + O.Sbbb (2.22)

in which a term of the form 0.6baa signifies that

PossCX^ =b, X2 =a, X2 =a} = 0,6 (2.23)

To derive j from (2.22) It Is sufficient to replace the
value of X^ In each term in (2.22) by the null string A. This yields

= 0.8aa + laa + 0.6ba + 0.2ba + 0.5bb (2.24)

and similarly

''(X^,X2)
= laa + O.Sba + O.Sbb

Hy = la + 0.6b + 0.5b (2.25)
^1

= la + 0.6b

Turning to the operation of partlcularlzatlon, let X) ~ ^

denote the possibility distribution of X = (X,,... ,X ), and let !!„ =61 n X(5)
denote a specified possibility distribution (not necessarily the marginal

distribution) of the subvariable X/ %= (X. ,...,X. ).

Informally, by the partlcularlzatlon of ll/y y \ Is meant the

modification of ll/y y v resulting from the stipulation that the

possibility distribution of Ily Is G. More specifically,
^s)
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"/y y jHy =G] § FOG (2.26)

where the left-hand member places in evidence the X^. (i.e., the attributes)
which are particularized in y while the right-hand member
defines the effect of particularization, with G denoting the cylindrical

extension of G, i.e., the cylindrical fuzzy set in U, x ••• xu whose
I n

projection on is G. Thus,

Ug(Ui....,u^) AUg(u. e U, X... (2.27)
1 k

As a simple illustration, consider the possibility distribution defined

by (2.22) and assume that

n(j^^,X^) =0.4aa +0.9ba +O.lbb (2.28)

In this case,

G = 0.4aaa + 0.4aab+0.9baa + 0.9 bab+O.lbba + O.lbbb

FOG = 0.4aaa + 0.4aab + 0.6baa + 0.2bab + 0.1 bbb

and hence

n (X ,X X)^^(X X) ~ 0.4aaa +0.4aab+ 0.Sbaa +0.2bab+0.1bbb (2.29)
12 3 12

In general, some of the variables in a particularized possibility

distribution (or a fuzzy relation) are assigned fixed values in their

respective universes of discourse, while others are associated with possi

bility distributions. For example, in the case of a fuzzy relation which

characterizes the fuzzy set of men who are tall, blond and named Smith,

the particularized relation has the form^^

^^Note that the label of a relation is capitalized when it is desired to
stress that i1^ denotes a relation.



13

MAN[Name =Smith; "Height'"color(Hair) =

Similarly, the fuzzy set of men who have the above characteristics and, in

addition, are approximately 30 years old, would be represented as

MAN[Name =Smith; "Height = "color(Hair) =

^Age "approximately EQUAL [Age =30]]

In this case, the possibility distribution which is associated with the

variable Age is in itself a particularized possibility distribution.

It should be noted that the representations exemplified by (2.30)

and (2.31) are somewhat similar in appearance to those that are commonly

employed in semantic network and higher order predicate calculi represen-

12
tations of propositions in a natural language. An essential difference,

however, lies in the use of possibility distributions in (2.30) and (2.31)

for the characterization of values of fuzzy variables,and in the concrete

specification of the manner in which a possibility distribution is modified

by particularization.

Meaning and Information

Particularization as defined by (2.26) plays a particularly important

13
role in PRUF -- a language intended for the representation of the meaning

of fuzzy propositions.

Briefly, an expression, P, in PRUF is, in general, a procedure for

computing a possibility distribution. More specifically, let U be a

Expositions of such representations may be found in Newel 1 and Simon (1972),
Miller and Johnson-Laird (1976), Bobrow and Collins (1975), Minsky (1976),
and other books and papers listed in the bibliography.

13A brief description of PRUF appears in Zadeh (1977). A more detailed
exposition of PRUF will be provided in a forthcoming paper.
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universe of discourse and let R be a set of relations in U. Then, the
pair

D^ (U,R) (2.32)

constitutes a databasel^with P defined on a subset of relations in R.
If p is an expression in a natural language and P is its transla

tion in PRUF, i.e.,

P P ,

then the procedure P may be viewed as defining the meaning, M(p), of p, with

the possibility distribution computed by P constituting the information,

I(p), conveyed by p.^^

As a simple illustration, consider the proposition

p John resides near Berkeley (2.33)

which in PRUF translates into

RESIDENCE[Subject =John; =Proj^ ^^NEAR[City2 =Berkeley]] (2.34)

where NEAR is a fuzzy relation with the frame^NEARj Cityl|City2|u|
and the expression xcityl "Berkeley] represents the fuzzy
set of cities which are near Berkeley.

The expression in PRUF represented by (2.34) ) is, in effect, a pro

cedure for computing the possibility distribution of the location of
1 ; ^

As defined here, the concept of a database is related to that of a possible
world in modal logic (^e_e Hughes and Cresswell, 1968; Mil ler and Johnson-Laird, 1976).
'The procedure defined by an expression in PRUF and the possibility distrib
ution which it yields are analogous to the intension and extension of a

two-valued logic. (See Cresswell, 1975.) When meaning is^^used loosely, no differentiation between M(p) and I(p) is made.
The frame of a fuzzy relation exhibits its name together with the names of
1 s variables (i-e., attributes) and jj -- the grade of membership of each
tuple in the relation.

T4

15
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residence of John. Thus, given a relation NEAR, it will return a possi

bility distribution of the form (tt ^ possibility-value)

RESIDENCE Subject Location IT

John Oakland 1

John Palo Alto 0.6

John San Jose 0.2

John Orinda 0.8

which may be regarded as the information conveyed by the proposition "John

resides near Berkeley."

PRUF plays an essential role in approximate reasoning because it serves

as a basis for translating the fuzzy premises expressed in a natural language

into possibility assignment equations to which the rules of inference in

approximate reasoning can be applied in a systematic fashion. In Section 4,

we shall discuss in greater detail some of the basic translation rules in

fuzzy logic which constitute a small subset of the translation rules in

PRUF. This brief exposition of PRUF will suffice for our purposes in the

present paper.

We turn next to the concept of a linguistic variable --a concept that

plays a basic role in approximate reasoning, fuzzy logic and the linguistic

approach to systems analysis.
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3. The Concept of a Linguistic Variable

In describing the behavior of humanistic -- that is, human-centered -
systems, we generally use words rather than numbers to characterize the
values of variables as well as the relations between them. For example,
the age of a person may be described as yer^ young, intelligence as quite
Mak. the relation with another person as not y^ friendly, and appearance
as quite attractive.

Clearly, the use of words in place of numbers implies a lower degree
of precision in the characterization of the values of a variable. In some

instances, we elect to be imprecise because there is no need for a higher
degree of precision. In most cases, however, the imprecision is forced
upon us by the fact that there are no units of measurement for the attributes

of an object and no quantitative criteria for representing the values of
such attributes as points on an anchored scale.

Viewed in this perspective, the concept of a linguistic variable may
be regarded as a device for systematizing the use of words or sentences in
a natural or synthetic language for the purpose of characterizing the values
of variables and describing their interrelations. In this role, the concept
of a linguistic variable serves a basic function in approximate reasoning
both in the representation of values of variables and in the characteriza
tion of truth-values, probability-values and possibility-values of fuzzy
propositions.

In this section, we shall focus our attention only on those aspects
of the concept of a linguistic variable which have a direct bearing on

approximate reasoning. More detailed discussions of the concept of a

linguistic variable and its applications may be found in Zadeh (1973,1975),
Wenstop (1975,1976), Mamdani and Assilian (1975,1976), Procyk (1976), and
other papers listed in the bibliography.
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As a starting point for our discussion, it is convenient to consider a

variable such as Age, which may be viewed both as a numerical variable

ranging over, say, the interval [0,150], and as a linguistic variable

which can take the values young, not young, very young, not very young,

quite young, old, not very young and not very old, etc. Each of these

values may be interpreted as a label of a fuzzy subset of the universe of

discourse U = [0,150], whose base variable, u, is the generic numerical

value of Age.

Typically, the values of a linguistic variable such as Age are built

up of one or more primary terms (which are the labels of primary fuzzy sets ),

together with a collection of modifiers and connectives which allow a com

posite linguistic value to be generated from the primary terms. Usually,

the number of such terms is two, with one being an antonym of the other.

For example, in the case of Age, the primary terms are young and old, with

old being the antonym of young.

A basic assumption underlying the concept of a linguistic variable

is that the meaning of the primary terms is context-dependent whereas the

meaning of the modifiers and connectives is not. Furthermore, once the

meaning of the primary terms is specified (or "calibrated") in a given con

text, the meaning of composite terms such as not very young, not very young

and not very old, etc., may be computed by the application of a semantic

rule.

Typically, the term-set, that is, the set of linguistic values of a

linguistic variable, comprises the values generated from eadh of the primary

terms together with the values generated from various combinations of the
—_

In the case of humanistic systems, primary fuzzy sets play a role that
is somewhat analogous to that of physical units in the case of mechanistic
systems.
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primary terms. For example, in the case of Age, a partial list of the

linguistic values of Age is the following.

young

not young

very young

not very young

quite young

more or less young

extremely young

old

not old

very old

not very old

quite old

more or less old

extremely old

not young nor old

not very young and not very old

young or old

not young or not old

What is important to observe is that most linguistic variables have the

same basic structure as Age. For example, on replacing young with and

^with short, we obtain the list of linguistic values of the linguistic
variable Height. The same applies to the linguistic variables Weight
(he^ and Ij^ht), Appearance (beautiful and ugly). Speed (fast and slow).
Truth (tnj^ and false), etc., with the words in parentheses representing
the primary terms.

As is shown In Zadeh (1973,1975). a linguistic variable may be charac
terized by an attributed graitmar (see Knuth, 1968; Lewis ^ aj[, 1974)
which generates the terra-set of the variable and provides a simple procedure
for computing the meaning of a composite linguistic value in terms

of the primary fuzzy sets which appear in its constituents.

As an illustration, consider the attributed grammar shown below in

which S, B, C, Dand Eare nonterminals; not, and, a and bare terminals;
a and bare the primary terms (and also the primary fuzzy sets); subscripted



•&3

19

symbols are the fuzzy sets which are labeled by the corresponding nonterminals,

with L ^ left (i.e., pertaining to the antecedent), R^ right (i.e.,

pertaining to consequent); and a production of the form

S and B (3.1)

signifies that the fuzzy set which is the meaning of the antecedent, S, is

the intersection of S^, the fuzzy set which is the meaning of the conse
quent S , and Bp, the fuzzy set which is the meaning of the consequent

K

B.

B

S and B

C

not C

S

D

E

very D

very E

a

b

The gramnar in question gene

by the list:

= B.

= c„

=Cp (^ complement of Cp)

= D,

= E

= Dp (4 square of Dp)

= Ep (i square of Ep)
= a

= b

(3.2)

ates the linguistic values exemplified
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abaand b

not a not b not a and b

very a very b not a and not b

not very a not very b not very a and not very b

not very very a not very very b _ _ _ - -

In general, to compute the meaning of a linguistic value, i, gener

ated by the grammar, the meaning of each node of the syntax tree of i is

computed — by the use of equations (3.2) -- in terms of the meanings of

its immediate descendants. In most cases, however, this can be done by

inspection -- which involves a straightforward application of the transla

tion rules which will be formulated in Section 4. Thus, we readily obtain,

for example:

not very a —(a^)' (3.3)
2 ?

not very a and not very b {a )' -^(b")'

2
where a' is the complement of a and a is defined by

u2^"' " (Ua(u))^ , ue u. (3.4)
d

To characterize the primary fuzzy sets a and b, it is frequently

convenient to employ standardized membership functions with adjustable

parameters. One such function is the S-function, S(u;a,0,Y), defined by

S(u;a,B,Y) = 0 for u £a I (3.5)

= 2(^^)^ for a <u < B
,u-v 2 D- V=1- 2(-^-^) for B<u<Y . ^

= 1 for u > Y
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where the parameter 3 = is the crossover point, that is, the value of

u at which S(u;a,3,Y) = 0.5 . For example, if a ^ young and b = old,

we may have (see Fig. 1)

y = 1 - 5(20,30,40) (3.6)
young \ » » / \ /

and

= 5(40,55,70) (3.7)u old

in which the argument u is suppressed for simplicity. Thus, in terms of

(3.6), the translation of the proposition p ^ Joe is young (see (2.13)),

may be expressed more concretely as

Joe is young '"Age(Joe) " ^- 5(20,30,40) (3.8)

where ''̂ Age(Joe) possibility distribution function of the linguistic
variable Age(Joe). 5imilarly,

Joe is not very young ^Age(Joe) ^^ -5(20,30,40)}^ (3.9)

An important aspect of the concept of a linguistic variable relates to

the fact that, in general, the term-set of such a variable is not closed

under the various operations that may be performed on fuzzy sets, e.g.,

union, intersection, product, etc. For example, if I is a linguistic
2

value of a variable X, then, in general, I is not in the term-set

of X.

The problem of finding a linguistic value of X whose meaning approxi

mates to a given fuzzy subset of U is called the problem of linguistic

approximation (see Zadeh, 1975; Wenstop, 1975; Procyk, 1976) . We shall

not discuss in the present paper the ways in which this nontrivial problem

can be approached, but will assume that linguistic approximation is implicit

Q



22

in the retranslation of a possibility distribution (see (2.10)) into a

proposition expressed in a natural language.
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4. Fuzzy Logic (FL)

In a broad sense, fuzzy logic is the logic of approxinate reasoning,

that is, it bears the same relation to approximate reasoning that two-valued

logic does to precise reasoning.

In this section, we shall focus our attention on a particular fuzzy

logic, FL, whose truth-values are linguistic, i.e., are expressible as the

values of a linguistic variable Truth whose base variable takes values

in the unit interval. In this sense, the base logic for FL is Lukasiewicz s

L . logic whose truth-value set is the interval [0,1].
AI ©prii

The principal constituents of FL are the following: (i) Translation

rules; (ii) Valuation rules and (iii) Inference rules.

By translation rules is meant a set of rules which yield the transla

tion of a modified or composite proposition from the translations of its

constituents. For example, if p and q are fuzzy propositions which

translate into (see (2.8))

and

q "(Y Y ) "
m'

respectively, then the rule of conjunctive composition —which will be

stated at a later point in this section -- yields the translation of the

composite proposition "p and q."

By valuation rules is meant the set of rules which yield the truth-

value (or the probabi1ity-value or the possibility-value) of a modified or

composite proposition from the specification of the truth-values (or proba

bility-values or possibility-values) of its constituents. Atypical example
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of a valuation rule is the conjunctive valuation rule which expresses the

truth-value of the composite proposition "p and q" as a function of the

truth-values of p and q -- e.g., not very true and quite true,

respectively.

The principal rules of inference in FL are: (a) The projection prin

ciple; (b) The particularization/conjunction principle; and (c) The entail-

ment principle. In combination, these rules lead to the compositional rule

ojf inference which may be viewed as a generalization of the modus ponens.

In what follows, we shall discuss briefly only those aspects of fuzzy

logic which are of direct relevance to approximate reasoning. Amore

detailed discussion of FL may be found in Zadeh (1975) and Bellman and

Zadeh (1977).

Translation Rules

The translation rules in FL may be divided into several basic cate

gories. Among these are:

Type I. Rules pertaining to modification

Type II. Rules pertaining to composition

Type III. Rules pertaining to quantification

Type IV. Rules pertaining to qualification

Simple examples of propositions to which the rules in question apply

are the following:

Type I. X is very small.

Therese is highly intelligent.

Type II. X is small and Y is large.

If X is small then Y is large.



25

Type III. Most Swedes are tall.

Many men are taller than most men.

Type IV. John is tall is very true.

John is tall is not very likely.

John is tall is quite possible.

In combination, the rules in question may be applied to the translation

of more complex propositions exemplified by:

If ((X is small and Y is large) is very likely) then (Z is
very large is not very likely).

((Many men are taller than most men) is very true) is
quite possible.

Rules of Type I

A basic rule of Type I is the modifier rule, which may be stated as

follows.

Let X be a variable taking values in 11= (u), let F be a fuzzy

subset of U, and let p be a proposition of the form "X is F." If the

translation of p is expressed by

X is F ^ = F (^-3)

then the translation of the modified proposition "X is mF," where m is

a modifier such as not, very, more or less, etc., is given by

Xis mF -> n^ =F'̂ (4.4)

where F^ is a modification of F induced by m. More specifically.

^^ore detailed discussions of various types of modifiers may be found in
Zadeh (1972,1975), Lakoff (1973,1975), Wenstop (1975), McVicar-Whalen
(1975), Hersh and Caramazza (1976), and other papers listed in the
bibliography.
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where

where
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If m = not, then = F' L complement of F
+ 2If m = very, then F = F

F^ = Mp(u)/u
u •'

If m = more or less, then f"*" = /F

/F =

or, alternatively.

Vlr(u)K(u)
U

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

where K(u) is the kernel of more or less (see Zadeh, 1972) .

As a simple illustration, consider the proposition "X is small," where

small is defined by

small = 1/0 + 1/1+0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (4.11)

Then

Xis very small —> = F^ (4.12)

where

F'̂ = = 1/0 +1/1 +0.64/2 +0.36/3 +0.16/4 +0.04/5 (4.13)

It is Important to note that (4.6) and (4.8) should be regarded merely

as standardized default definitions which may be replaced by other definitions

^^he "integral" representation of a fuzzy set in the form F= Uc(u)/u sig-
U

nifies that F is a union of the fuzzy singletons Mp(u)/u, u G U, where pc
is the membership function of F. Thus, (4.7) means that the membership
function of F^ is the square of that of F.
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whenever they do not fit the desired sense of the modifier m. Another

point that should be noted is that X in (4.3) need not be a unary variable,

Thus, (4.3) subsumes propositions of the form "X and Y are F," as in "X and

Y are close," where CLOSE is a fuzzy binary relation in IJxU. Thus, if

X and Y are close —> = CLOSE (4.14)

then

Xand Yare very close —yj =CLOSE^ (4.15)

Rules of Type II

Compositional rules of Type II pertain to the translation of a proposi

tion p which is a composition of propositions q and r. The most com

monly exployed modes of composition are: conjunction, disjunction and con

ditional composition (or implication). The translation rules for these

20
modes of composition are as follows.

Let X and Y be variables taking values in U and V, respectively,

and let F and G be fuzzy subsets of U and V. If

X is F = F (4.16)

then

Yis G Hy = G (4.17)

(a) Xis Fand Yis G yj = FOQ (4.18)
= FxG

(b) Xis For Yis G yj =F+G (4.19)
and (c^) If Xis F then Yis G yj = F' f'G (4.20)
or (C2) If Xis F then Yis G—^ y^ = FxG+ F' xV (4.21)

where Il^j^ y^ is the possibility distribution of the binary variable (X,Y),
—

'• We are tacitly assuming that the compositions in question are noninteractfive
in the sense defined in Zadeh (1975).
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F and g are the cylindrical extensions of F and G, respectively, i.e..

F = Fxv

G = U xG ;

(4.22)

(4.23)

FxG is the cartesian product of F and G, which may be expressed as

fog and is defined by

= up(u) Ajjg(v) , u GU, Ve V;

+ is the union,and f is the bounded sum, i.e..

(4.24)

=1A0 -Mp(u)+vip^(v)] (4.25)

where + and - denote the arithmetic sum and difference. Note that

there are two interpretations of the conditional composition, (c^) and (C2).
Of these, (c,) is consistent with the definition of implication in L., .

' Aleph^
logic, while (C2) corresponds to the table

X Y

F G

F' V

As a very simple illustration, assume that U = V = 1+2 + 3

F ^ small ^ 1/1 +0.6/2 +0.1/3

G ^ large ^ 0.1/1 +0.6/2 +1/3

Then (4.18), (4.19), (4.20) and (4.21) yield

21

(4.26)

21To be consistent with our notation for fuzzy sets, a finite nonfuzzy set
U = {u,,...,u„} may be expressed as U = u, + ••• + u .

in In
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Xis small and Yis large —» = 0.1/(1,1) + 0.6/(1,2) + 1/(1,3)
+ 0.1/(2,1) + 0.6/(2,2) + 0.6/(2,3)

+ 0.1/(3,1) + 0.1/(3,2) + 0.1/(3,3)

Xis small or Yis large —• ll/jj yj =1/(1,1) 1/(1,2) +1/(1,3)
+ 0.6/(2,1) + 0.6/(2,2) + 1/(2,3)

+ 0.1/(3,1) + 0.6/(3,2) + 1/(3,3)

If Xis small then Yis large —!!,^ y^ =0.1/(1,1) +0.6/(1,2) +1/(1,3)
+ 0.5/(2,l) + l/(2,2) + l/(2,3)

+ l/(3,l)+l/(3,2) + l/(3,3)

If Xis small then Yis large —• ll/j^ yj =0.1/(1,1) +0.6/(1,2) +1/(1,3)
+ 0.4/(2,1)+0.6/(2,2)+ 0.6/(2,3)

+ 0.9/(3,l) +0.9/(3,2)+0.9/(3.3)

Rules of Type III

Quantificational rules of Type III apply to propositions of the general

p MX are F (4.27)

where Q is a fuzzy quantifier (e.g., most, many, few, some, almost al1,

etc.), X is a variable taking values in U, and F is a fuzzy subset

of U. Simple examples of (4.27) are: "Most X's are small," "Some X's are

small," "Many X's are very small." A somewhat less simple example is:

"Most large X's are much smaller than a," where a is a specified number.

In general, a fuzzy quantifier is a fuzzy subset of the real line.

However, when Q relates to a proportion, as is true of most, it may be

represented as a fuzzy subset of the unit interval. Thus, the membership
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function of Q4 most may be represented as, say,

%ost " (^-28)

where the S-functlon Is defined by (3.5).

In order to be able to translate propositions of the form (4.27), it

is necessary to define the cardinality of a fuzzy set, i.e., the number (or

the proportion) of elements of U which are in F. When U is a finite

set {u^,.... ,U|̂ }, a possible extension of the concept of cardinality of a

nonfuzzy set — to which we shall refer as fuzzy cardinality -- is the follow

ing. Let
F = I aF (4.29)

a

22be the resolution of F into its level-sets, that is.

F^ = {u|pp(u) >a} (4.30)

where aF^ is a fuzzy set defined by

P^p = otpp (4.31)
a a

and y denotes the union of the aF over aG [0,11. Let |F I denotei. a ' cx'
a

the cardinality of the nonfuzzy set F^. Then, the fuzzy cardinality of F

is denoted by |F|p and is defined to be the fuzzy subset of {0,1,2,...}

expressed by
|F|f = I a/|F^| <4.32)

a

As a simple example, consider the fuzzy subset small defined by (2.1).

In this case.

22A discussion of the resolution of fuzzy sets may be found in Zadeh (1971).
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"^1 = 0 + 1 iFil = 2

''0.8 " 0+1+2

cc

0
Ll.

= 3

II

0
U-

0+1+2+3 , 1^0.61 = 4

F =
•^0.4

0+1+2+3+4 1^0.4' = 5

''0.2 " 0+1+2+3+4+5 , 1^0.2! = 6

F|̂ = 1/2 +0.8/3 +0.6/4 +0.4/5 +0.2/6 (4.33)

Frequently, it is convenient or necessary to express the cardinality

of a fuzzy set as a nonfuzzy real number (or an integer) rather than as a

fuzzy number. In such cases, the concept of the power of a fuzzy set

(DeLuca and Termini, 1972) may be used as a numerical summary of the fuzzy

cardinality of a fuzzy set. Thus, the power of a fuzzy subset, F, of

U= {u.j,... ,U|̂ } is defined by

N

IF| ^ .I^Vip(Ui) (4.34)

where yp(u^) is the grade of membership of u^ in F and denotes

the arithmetic sum. For example, for the fuzzy set small defined by (2.1),

we have

1F| = 1 + 1 +0.8 + 0.6 + 0.4 + 0.2 = 4

For some applications, it is necessary to eliminate from the count

those elements of F whose grade of membership falls below a specified

threshold. This is equivalent to replacing F in (4.34) with For, where

r is a fuzzy or nonfuzzy set which induces the desired threshold.

As N increases and U becomes a continuum, the concept of the power

of F gives way to that of a measure of F (Zadeh» 1968; Sugeno, 1974) ,
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which may be regarded as a limiting form of the expression for the propor

tion of the elements of U v/hich are in F. More specifically, if p is a

density function defined on U, the measure in question is defined by

BFIl ^ p(u)iip(u)du (4.35)

where Pp is the membership function of F. For example, if p(u)du is

the proportion of men whose height lies in the interval [u,u+du], then

the proportion of men who are tall is given by

•CO

ntallll = p(u)p^^^^ (u)du (4.36)

Making use of the above definitions, the quantifier rule for proposi

tions of the form "QX are F" may be stated as follows.

If U= {u-j,... ,U|̂ } and

X is F = F (4.37)

then

QX are F n|p| =Q (4.38)

and,if U is a continuum,

QX are F—Rppj =Q (4.39)

which implies the more explicit rule

QX are F —»• ti(p) = p«( p(u)pr(u)du) (4.40)
^ •'U .

where p(u)du is the proportion of X's whose value lies in the interval

[u,u+du], 11(0) is the possibility of p, and pg and pp are the member
ship functions of Q and F, respectively.
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- As a simple illustration, if most and tall are defined by (4.28) and

Utaii " S(160,170,180), respectively, then

(•200
Most men are tall -> 7r(p) = S( p(u)S(u;160,170,180)du;0.5,0.7,0.9]

(4.41)

where p(u)du is the proportion of men whose height (in cm) is in the interval

[u,u+du]. Thus, the proposition "Most men are tall" induces a possibility

distribution of the height density function p which is expressed by the

right-hand member of (4.41).

Rules of Type IV

Among the many ways in which a proposition, p, may be qualified

there are three that are of particular relevance to approximate reasoning.

These are: (a) by a linguistic truth-value, as in "p is very true;"

(b) by a linguistic probability-value, as in "p is highly probable;" and

(c) by a linguistic possibility-value, as in "p is quite possible." Of

these, we shall discuss only (a) in the sequel. Discussions of (b) and

(c) may be found in Zadeh (1977).

As a preliminary to the formulation of translation rules pertaining

to truth qualification, it is necessary to understand the role which a

truth-value plays in modifying the meaning of a proposition. Thus, in FL,

the truth-value of a proposition, p, is defined as the compatibility

of a reference proposition, r, with p. More specifically, let

p ^ X is F
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where F is a subset of U, and let r be a reference proposition of the

special form

r 4 X is u (4.42)

where u is an element of U. Then, the compatibility of r with P is

defined as

Comp(X is u/X is F) ^ pp(u) (4.43)

or, equivalently (in view of (2.3)),

Comp(X is u/X is F) ^ Poss{X =u|X is F} (4.44)

To extend (4.43) to the case where r is a fuzzy proposition of the

form

r ^ X is G , G C U (4.45)

23we apply the extension principle to the evaluation of the expression yp(G),
yielding

CompfX is G/X is F) 6 pp(G) (4.46)

Ur(u)/pp(u)
[0,1]

in which the right-hand member is the union over the unit interval of the

fuzzy singletons **'yg(u)/up(u). Thus, the compatibility of "X is G" with
"X is F" is a fuzzy subset of [0,1] defined by (4.46).

In FL, the truth-value, t, of the proposition p ^ X is F relative to the

reference proposition r ^ X is G is defined as the compatibility of r

with p. Thus, by definition.

2^The extension principle (Zadeh (1975)) serves to extend the definition of
a mapping f: U -»• V to the set of fuzzy subsets of U. Thus,

•f(F) = Up(u)/f(u), where f(F) and f(u) are, respectively, the
•'U ^

images of F and u in V.
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T 4 Tr{x is F/X is G] § Comp{X is G/X is F} (4.47)

= yp(G)
yp(u)/yp(u)

which implies that the truth-value, t, of the proposition "X is F" rela

tive to "X is G" is a fuzzy subset of the unit interval defined by (4.47).

In this sense, then, a linguistic truth-value may be regarded as a linguistic

approximation to the fuzzy subset, i, represented by (4.47). (See Fig. 2.)

Amore explicit expression for r which follows at once from (4.47)

is the following. Let denote the membership function of t and let

V 6 [0,1]. Then

subject to

y (v) = Max y«(u) (4.48)
T U b

Up(u) =V (4.49)

In particular, if Up is 1-1, then (4.48) and (4.49) yield

n^(v) =Pe(y'̂ v)) , ve[0,l]. (4.50)

As a simple illustration, consider the propositions (see Fig. 3)

p ^ Xis F (4.51)

r ^ X is G where G = [a,b]

In this case, it follows from (4.50) that t is the interval given by

r = [yp(b),yp(a)]

The definition of the truth-value of p as the compatibility of a

reference proposition r with p provides us with a basis for the translation
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subset of [0,1]. Specifically, from the relation

T = Pp(G) (4.52)

which defines i as the image of G under the mapping U -»• [0,1], it

follows that the membership function of G may be expressed in terms of

those of T and Pp by (see Fig. 4)

Pq(u) = P^(up(u)) (4.53)

Now, if r^XisG is the reference proposition for p ^ X is F,

we interpret the truth-qualified proposition

q ^ X is F is T (4.54)

as the reference proposition r i X is G. This leads us, then, to the

following rule for truth qualification:

If

then

where

X is F -V = F (4.55)

X is F is T —»• = F^ (4.56)

Up+(u) = u^(pp(u)) (4.57)

In particular, if x is the unitary truth-value, that is

X = u-true (4.58)

where

then

Pu-true'̂ ^ = V, VG [0,1] (4.59)

X is F is u-true —>• X is F (4.60)
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As an illustration of (4.56), consider the proposition

p ^ Lucia is young is very true (4.61)

in which

M = 1 - S(25;35,45) (4.62)
^young \ » * / \ /

Ptrue " 5(0.6,0.8,1.0)
and y = 5^(0.6,0.8,1.0)very true \ » » /

On applying (4.56) to p, we obtain

P '"Age(Lucia)'"' ^S^(l -S(u;25,35.45);0.6,0.8,1.0) (4.63)
which may be roughly approximated by the proposition

p^ = Lucia is very young (4.64)

Similarly, for the proposition

q § Lucia is not young is very false (4.65)

where false ^ ant true, i.e.,

Pfalse^ '̂ = ^ ^ fO'l] (''•66)
= 1 - S(v;0,0.2,0.4)

we obtain

%e(Lucia) " 0-S(S(u;25,35,45) ;0,0.2,0.4))^ (4.67)
which, as can readily be verified, defines the same possibility distribution

as (4.63).

The translation rules described above provide us v/ith the necessary

basis for the formulation af the rules of inference in FL and the related
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notions of semantic equivalence and semantic entailment. We turn to tfiese

issues in the following section.

5
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5. Semantic Equivalence and Semantic Entailment

In this section, we shall consider two related concepts in fuzzy logic

that play an important role in approximate reasoning. These are the con

cepts of semantic equivalence and semantic entailment.

Informally, two propositions p and q are semantically equivalent

if and only if the possibility distributions induced by p and q are

equal. More specifically, if

P "(Xi X„) ^^
and

where 11^ and IT^ are the possibility distributions induced by p and q,

respectively, and X-j,...,X^ are the variables that are implicit or explicit
in p and q, then

p q iff X^) " "(X^.-.-.X^)

where denotes semantic equivalence.

When (5.1) holds for all fuzzy sets in p and q that have a context-

dependent meaning, the semantic equivalence will be said to be strong.

For example, the semantic equivalence

Adrienne is intelligent is true Adrienne is not intelligent is false

(5.2)

holds for all definitions of intelligent and true (false ^ antonym of true)

and hence is a strong equivalence. On the other hand, the semantic equivalence

^^The concept of strong semantic equivalence as defined here reduces to that
of semantic equivalence in predicate logic (see Lyndon, 1966) v/hen p and
q are nonfuzzy propositions.
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LucIq is young is very true Lucia is very young (5.3)

is not a strong equivalence because it holds only for some particular defi
nitions of young and true. (See (4.64) and (4.65) et ^.) Usually, a semantic
equivalence which is not strong is approximate in nature, as is true of (5.3).

Generally, it is clear from the context whether a semantic equivalence
IS or is not strong. Where it is necessary to place in evidence that a

semantic equivalence is strong, it will be denoted by s-^-, while approxi
mate semantic equivalence will be denoted by a*->-.

The concept of semantic entailment is weaker than that of semantic

equivalence in that p semantically entails q (or q is semantically
entailed by p) if and only if n? v i c nl ^ Thus, in
symbols,

rP r- TT^ (5.4)

where denotes semantic entailment and v and n9
^ r* *•' n' (X-j. ,X }are the possibility distributions induced by p and q, respectively.

As in the case of semantic equivalence, semantic entailment is strong

if (5.4) holds for all fuzzy sets in p and q that have a context-depen
dent meaning. As an illustration, the semantic entailment expressed by

X is very small X is small (5.5)

is strong since it holds for all definitions of small. On the other hand,

the validity of the semantic entailment expressed by

X is large X is not small (5.6)
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depends on the way in which large and small are defined, and hence (5.6)

is not an instance of strong semantic entailment.

In the case of propositions of the form p ^ X is F and q ^ X is 6,

it is evident that

> X is F X is G iff F c G (5.7)

From this and the definition of conditional composition (4.20), it follows

at once that

X is F X is G iff If X is F then X is G = U (5.8)

or equivalently

Xis F Xis G iff If Xis F then Xis G Xis U (5,9)

where is the possibility distribution of X and U is the universe

of discourse associated with X. Similarly, from the definition of conjunc

tive composition, it follows that

Xis F Xis G iff Xis Fand Xis G rij^ = F (5.10)

or equivalently

X is F X is G iff Xis F and X is G Xis F (5.11)

An intuitively appealing interpretation of (5.11) is that p semantically

entails q if the information conveyed by "p and q" is the same as the
¥

. information conveyed by p alone.

As a preliminary to applying the concepts of semantic equivalence and

semantic entailment to approximate reasoning -- which we shall do in Section 6

— it will be helpful to formulate several rules pertaining to the transformation
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of a given proposition, p, into other propositions that have the same

meaning as p, i.e., are strongly semantically equivalent to p.

A general rule governing such transformations may be stated informally

as follows.

If m is a modifier and p is a proposition, than mp is semantically

equivalent to the proposition which results from applying m to the possi

bility distribution which is induced by p.

Thus, on applying this rule to the case where m4 not and making use

of the translation rules (4.5), (4.56) and (4.40), we arrive at the follow

ing specific rules governing the negation of a proposition

a) not(X is F) ^ Y. is not F (5.12)

e.g.,

not(X is small) X is not small ; (5.13)

b) not(X is F is i) ^ Y is F is not t (5.14)

e.g.,

not(X is small is very true) X is small is not very true ; (5.15)

c) not(QX are F) (not Q)X are F (5.16)

e.g.,

not(many men are tall) (not many)men are tall (5.17)

Similarly, for m ^ very, we obtain

a) very(X is F) Y is very F (5.18)
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b) very(X is F is r) Xis F is very x (5.19)

c) very(QX are F) (very Q)X are F (5.20)

In addition, from the translation formulas (4.5), (4.40) and (4.56),

it follows at once that

X is F is T ^ X is not F is ant T (5.21)

and

QX are F (ant Q)X are not F (5.22)

where ant x and ant Q denote the antonyms of x and Q, respectively.

(See (4.66).) Similarly, for ni = very, we have

2
X is F is T X is very F is x (5.23)

where the "left-square" operation on r is defined by

^x = f u (v)/v^ , V£ [0,1] (5.24)
Jq

or equivalently

U2 " ^^('̂ ) (5.25)
X

where u is the membership function of x. However, as will be seen later,
X

when F is modified to very F in "QX are F," we can assert only the

semantic entailment -- rather than the semantic equivalence — expressed by

QX are F (^Q)F are very F (5.26)

where

or equivalently

•Q

2
Q = li^(v)/v^ (5.27)

0

^2 (v) =viq(vV) (5.30)
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It should be noted in closing that the negation rule expressed by
(5.16) appears to differ in form from the familiar negation rule in predi
cate calculus (see Lyndon, 1966) , which, when F is interpreted as a

nonfuzzy predicate, may be expressed as

not(an Xare F) some Xare not F (5.31)

However, by the use of (5.22), it is easy to show that the right-hand member

of (5.31) is semantically equivalent to that of (5.16). Specifically,

from (5.22) it follows that

(not all)X are F (ant(not all)X)are not F

and if some is defined as

some 4 ant(not all) (5.32)
then

(not all)X are F some Xare not F (5.33)

in agreement with (5.31).

Remark. It should be observed that most of the definitions made in

this and the preceding sections —especially in regard to the semantic

equivalence and semantic entailment of fuzzy propositions —are nonfuzzy

and, for the most part, quite precise. What should be understood, however,

is that all such definitions may be fuzzified, if necessary, by the use of

the following general convention.

Let U be a universe of discourse, with u denoting a generic

element of U. Aconcept, C, in U is a subset. A, of U (or u",

n > 1) which is defined by a predicate P such that P(u) is true if

u e A, i.e., u is an instance of C, and false otherwise. Assume that
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P(u) is of the form P(f(u)), where P(f(u)) is true if f(u) = 0 and

false if f(u) > 0. Then A -- and hence the concept C which is asso

ciated with it — may be fuzzified by defining the grade of membership of u

in A as a monotone function of f{u) v/hich assumes the value unity when

f(u) = 0. (The definition of such a function is, in general, application-

dependent rather than universal in nature.) In this sense, any definition

which has the format stated above may be viev/ed as providing a mechanism

for a fuzzification of the concept which it serves to define.

As an illustration of this convention, consider the concept of semantic

equivalence as defined by (5.1). In this case, the concept of semantic

equivalence may be fuzzified by defining the degree to which p and q

are semantically equivalent as a monotone function of the "distance"

between and with the distance function defined in a way that

reflects the specific nature of the domain of application. It should be

understood, of course, that the concept in question may also be fuzzified

in other ways which do not stem directly from its nonfuzzy definition.



46

6. Rules of Inference and Approximate Reasoning

As in any other logic, the rules of inference in FL govern the deduc

tion of a proposition, q, from a set of premises {p^ p^}. However,
in FL both the premises and the conclusion are allowed to be fuzzy proposi
tions. Furthermore, because of the use of linguistic approximation' in the

process of retranslation, the final conclusion drawn from the premises

P-|>---.Pp Is, in general, an approximate rather than exact consequence of
P"!»• ••

The principal rules of Inference In FL are the following.

!• Projection Principle

Let p be a fuzzy proposition whose translation 1s expressed as

Let denote a subvarlable of the variable X§ (X^...i,X^), I.e.,

^(s) (6.1)

where the Index sequence s ^ (1^....,1^) is a subsequence of the sequence
(l.....n}.

Let n„ denote the marginal possibility distribution of X,
(s) (s)

that Is,

•>(.) •
where U^., 1=l,...,n. Is the universe of discourse associated with X^.;

"(s) (6.3)

and the projection of F on defined by the possibility distribution

function
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7Ty (u. ) = Sup Up(u .,u ) (6.4)
^s) ^1 u. •" ' "

where s' ^ is the index subsequence which is complementary

to s, and Up is the membership function of F.

Let q be a retranslation of the possibility assignment equation

IT» = Proj,, F (6.5)
^s) U(s)

Then, the projection principle asserts that q may be inferred from p.

In a schematic form, this assertion may be expressed more transparently as

P(6.6)

*(s) "(s)

The statement of the projection principle assumes a particularly simple

form for n = 2. In this case, writing X, Y, U, V for , X2,

respectively, we have

P-^"(X,Y) = ^ (6.7)

q ^ = Projjj F (6.8)

and likewise for the projection on V.

A special case of (6.6) obtains when is the cartesian product

of normal fuzzy sets. Thus, if

P ll(X^Y) = (6.9)

then from p we can infer q and r, where
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q ^ " G (6.10)

^ = H (6.11)

As a simple illustration, if

p ^ John is tall and fat

then from p we can infer

q ^ John is tall
and

r ^ John is fat

2. Particularization/Conjunction Principle

Let p be a fuzzy proposition whose translation is expressed as

P ' FCU^x...xU^ (6.12)

Then from p we can infer r, where r is a retranslation of a particu-

larization of y Ue,,

r n {X^....,X^)f"X(jj ° (6-13)

where X^^j is a subvariable of X, G is a cylindrical extension of G,

Gc u, and denotes an n-ary possibility distribu-
l****'n (s)tion which results from particularizing X^^j to G. Equivalently, the

principle in question may be expressed in the schematic form
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P „ S = F (6.14)

^ "(X. ,...,x. ) " ^

For the special case of n = 2, the particularization principle may

be stated more simply as:

From

P ^ (X,Y) is F (6.15)
and

q X is G
we can infer

r ^ (X,Y) is pnr, (6.16)

Thus, for example, from

p ^ Xand Yare approximately equal (6.17)
and

q ^ X is small

we can infer (without the application of linguistic approximation)

r ^ Xand Y are (approximately equal n (small xV)) (6.18)

As stated above, the particularization principle may be viewed as a

special case of a somewhat more general principle which will be referred

to as the conjunction principle. Specifically, assume that

. V V ^ = F (6.19)^ ^(Y^,...,Y|̂ ,X|̂ ^^,...,X^)

q —»• n^Y Y Z 7 ) " ^ (6.20)
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where are variables which appear in both n'' and n^, and U^.,
Vj and are the universes of discourse associated with X., Y. and

let S be the smallest cartesian product of the U., V. and W

which contains the cartesian products V, x...xv. xu tX...xu and
' K k+1 n

Vi X••• xVj^xWk^l X xWm; and let F and G be, respectively, the cylin
drical extensions of F and G in S. Then, from p and q we can infer
r, where (in schematic form)

(6-21)

"(Y.Z) "

^/VV7\ HG(X.Y.Z)

and yUyy...,\), x^(x^^,.....x^) and Zi .... .Z^).
Aparticular but important case of (6.21) which we shall use at a

later point results when n = 3, and k = 1. For this case, (6.21) may
be expressed as

P^"?X,Y) ^ (6.22)
'' *~"?Y,Z) '

^(X YZ) ~ (F'̂ W)n(UxG)

Although the particularizatipn principle is subsumed by the conjunction

principle, it is simpler than the latter, is employed more frequently, and

has a somewhat greater intuitive appeal. For this reason, we use the

designation particularization/conjunction principle" to refer to the prin

ciple which, in most applications, is the particularization principle and,
25in some, the conjunction principle.

23 ;
It should be noted that, in predicate logic (Lyndon, 1966), this princi
ple implies the generalization rule.
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3. Entailment Principle

Stated informally, the entailment principle asserts that from any

fuzzy proposition p we can infer a fuzzy proposition q if the possi

bility distribution induced by p is contained in the possibility distrib

ution induced by q. Thus, schematically, we have

^ X^) = ^

For example, from p ^ Xis very large we can infer q ^ Xis large.

The Compositional Rule of Inference

In general, the inference principles stated above are used in sequence

or in combination. A combination that is particularly effective involves

an application of the particularization/conjunction principle followed by

that of the projection principle. This combination will be referred to as

the compositional rule of inference (Zadeh, 1973). As will be seen later,

the compositional rule of inference includes as a special case a generaliza

tion of the modus ponens.

For our purposes, it will be convenient to state the compositional rule

of inference in the following schematic form

P "(X.Y) " P

P "(Y,Z) "

"(X.Z) =
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where X, Y and Z take values 1n U, V and W, respectively; F is a

fuzzy subset of UxV, G is a fuzzy subset of VxW and RoG is the

composition of F and G defined by

^FoG^"''̂ ^ ^ Sup^(up(u,v) Aug(v,w)) (6.25)

where uEU, veV, weW and Up and are the membership functions
of F and G, respectively; and the dotted line signifies that, because

of the use of linguistic approximation in retranslation, r is, in general,
an approximate rather than exact consequence of p and

It is easy to demonstrate that the compositional rule of inference may
be regarded as a result of applying the particularization/conjunction

principle followed by the application of the projection principle. Speci
fically, on applying (6.21) to (6.24), we obtain

(6.26)

s ^(x YZ) ~ ^) ^ (UxG)

where

Next, on applying the projection principle to s and projecting n,y y ,,
\X,Y ,Z)

on U Xw, we have

~ ^ AMg(v,w))/(u,w) (6.28)

which upon comparison with (6.25) shows that the resulting proposition may

be expressed — in agreement with (6.24) — as
76It should be noted that the compositional rule of inference is analogous

to the rule which yields the probability distribution of Y from the
probability distribution of X and the conditional probability distribu
tion of Y given X.
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r^n(,,) = FoG (6.29)

An important special case of the compositional rule of inference

obtains when p anci q are of the form pSXisF, q^IfXisG then

Y is H. For this case, (4.20) and (6.24) yield the compositional modus

ponens:

p — = F (6.30)

r F»(G"5H)

which may be regarded as a generalization of the classical modus ponens,

with the latter corresponding to the special case of (6.30) in which F, G

and H are nonfuzzy and F = G. For this case, (6.30) reduces to

p -> = F (6.31)

q->H(Y_Y) - F'̂ R

r = Fo(F'f'H)

and since

Fo(F' ®H) = H

it follows that

Y is H

which means that from p = X is F and q i If X is F then Y is H we can

infer r ^ Y is H, in agreement with the statement of the modus ponens.

The rules of inference presented in the foregoing discussion provide

us with a basis for employing approximate reasoning for the purpose of

question-answering and inference from fuzzy propositions. We shall
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illustrate the use of the methods based on these rules by applying them to
several typical problems.

Semantic Equivalence

As a simple example^ assume that from the premise

p 4 Ellen is not very tall

we wish to deduce the answer to the question "Is Ellen tall ?t," where the

symbol ?t signifies that the answer to the question is expected to be of

the form

q § Ellen is tall is t

where t Is a linguistic truth-value.

To obtain the answer to the question, we shall require that p and q
be semantically equivalent. Implying that the possibility distribution
Induced by p is equal to that Induced by q.

Thus, by using the translation rules (4.5), (4.6) and (4.56), we

obtain

Ellen is not very tall - =l -^^(u) (6.32)

Ellen is tall is t ^HeightCEllen)^"^ ° \Kall("^)

where the membership function of tall. Is assumed to be given.

From (6.32) and (6.33), then, it follows that the desired membership func

tion satisfies the identity

"̂^Lll^"' =\^^tall^"^) ' uG[0,200] (6.34)
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from which we can conclude at once that is given by (see Fig. 5)

ij^(v) = 1- (6.35)

to which a rough linguistic approximation may be expressed as

T = not very true (6.36)

It is instructive to obtain the same result by a successive use of the

rules governing the application of negation, truth qualification and modi

fication (by very). Thus, we can assert that

John is not very tall

John is not very tall is u-true (by (4.60))

John is not very tall is u-true

John is very tall is ant(u-true) (by (5,21))

John is very tall is ant(u-true)

John is tall is '̂̂ ^(ant(u-true)) (by (5.23))

which implies that

T= '̂̂ ^(ant(u-true)) (6.37)

i.e., T is the "left-square root" of (ant(u-true)), and since

p ^ (v) = V (6.38)
u-true^ '

we have

u^='l-v^ (6.39)

in agreement with (6.35).
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Semantic Entailment

Assume that we wish to deduce from the premise

p i Most Swedes are tall

the answer to the question "How many Swedes are very tall?"

Translating p by the use of (4.40), we have

r200
Most Swedes are tall p(u)y^g^^(u)du) (6.40)

where p(u)du is the proportion of Swedes whose height is .in the interval

[u,u+du] and Hp is the possibility distribution function of p. (Note
that height is expressed in centimeters.)

Now, by (4.30) the proportion of Swedes who are very tall is given by

•200 2
QP(")Vtall^"'̂ " (6.41)Y =

Thus, our problem is to find the possibility distribution of y from the

knowledge of the possibility distribution of p — which is given by the

right-hand member of (6.40). In a variational formulation (which follows"

from (4.48)), this problem may be expressed as

7r(Y) = Max \i .[
p most''

subject to

•200

Y =

200

p(u)ytaii(")d") (6.42)

^ p(u)y^3ll(u)du (6.43)

The maximizing p for this problem is of the form (s^ Bellman and

Zadeh. 1977)
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p(u) = 6(u-a) (6.44)

where 6 is a 6-function and a is a point in the interval [0,200].

Thus, from (6.43) we have

Y = u
tall

(a)

and hence

^most '̂̂ ^

or equivalently (see (5.30))

fT(Y) = Uo (y)
most

(6.45)

(6.46)

(6.47)

and hence the desired answer to the question "How many Swedes are very tall?"

is (see Fig. 6)

q ^ most Swedes are very tall

To verify that p semantically entails q, we note that

r200 2
q —7T (p) = Up ( p(u)p. ,i(u)du)

^ Sost Jo

= P most

But, by Schwarz's inequality

r200

0

rlOO

p(u)p^ail(")^"

p(u)Ptaii(")^" - \
7m

p(u)utall

(6.48)

(6.49)

(6.50)

^^The 6-function density implies that all elements of the population have
the same value of the attribute in question.
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and since is a monotone function, it follows that

•^pfp) 1 ^q(p) i'or all p and

which implies that p semantically entails q, strongly.

Particularization and Projection Principles

An illustration of the application of the particularization and pro

jection principles is provided by the solution to the following simple

problem.

Suppose that the premises are

p = John is very big

q § John is tall

where big is a given fuzzy subset of U^v (i.e., values of Height (in cms)

^ values of Weight (in kg)) and tall is a given fuzzy subset of U. The

question is: "What is John's weight?"

Let us assume that the answer to the question is to be of the form

r ^ John is w, where w is a linguistic value of the weight of John (e.g.,
hea^, very heavy, not very heavy, etc.). Then, by employing the transla

tion rule (4.6), the particularization principle and the projection prin

ciple, we arrive at the retranslation relation

= (6.51)

which expresses the answer to the posed question.

In more concrete terms, assume that the (incompletely tabulated)

tables defining the fuzzy sets BIG, TALL and HEAVY are of the form



BIG Height Weight y

165 60 0.5

170 60 0.6

175 60 0.7

170 65 0.75

175 65 0.8

180 65 0.85

170 70 0.8

175 70 0.85

180 70 0.9

170 75 0.85

175 75 0.9

180 75 0.95

180 80 1

59

TALL Height y

165 0.7

170 0.8

175 0.9

180 1

185 1

HEAVY Weight y

60 0.7

65 0.8

70 0.9

75 0.95

80 1

85 1

On substituting these tables in (6.51), we obtain for the attribute

Weight a possibility distribution of the (approximate) form

^Weight " 0.5/60 +0.7/65 +0.8/70 +0.9/75 +1/80 (6.52)

which upon retranslation (and linguistic approximation) yields the, answer

r ^ John is very heavy

As an additional illustration, consider the following premises

p S Romy lives near a small city

q ^ Arnold lives near Romy

from which we wish to deduce an answer to the question "Where does Arnold

1ive?"
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Assume that the relations entering in p and q have the frames

shown below.

NEARp I Cityl | City2 Iu I NEARq | Cityl | City2 Iu I

SMALL CITY i City I u I

in which NEARp and NEARq refer to the relations NEAR in p and q,
respectively. In terms of these relations, the translations of p and q
may be expressed as

^ ^Location(Residence{Romy)) (6.53)
° Cityl "EARp[n^.^y2 =SMALL CITY]

(Locat1on(Residence(Roniy)},Location(Residence(Arno1d})
= NEARq

On substituting (6.53) in (6.54) and projecting on the attribute

Location(Residence(Arnold)), we obtain

'''"°JpxCity2 N '̂̂ Rlt^Cityl =''''°juxCityl "™P[''city2 =̂MALL CITY] ]
(6.55)

as an expression for the answer to the posed question.

Compositional Rule of Inference

The compositional rule of inference is particularly convenient to use

when the variables involved in the premises range over finite sets or can

be approximated by variables ranging over such sets.

As a simple illustration, consider the premises
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p ^ X is small

q ^ X and Y are approximately equal

In which X and Y range over the set U = 1+2 + 3 + 4, and small and

approximately equal are defined by

small

approximately equal

1/1 +0.6/2 + 0.2/3

l/((l,1) + (2.2) + (3,3) + (4.4))

+ 0.5/((l,2) + (2.1) + (2,3) + (3,2)

+ (3,4)+(4,3)}

In terms of these sets, the translations of p and q may be expressed as

p ^ n

q — n (X.Y)

= small

= approximately equal

and thus from p and q we may infer r, where

r Yj = smalloapproximately equal

(6.56)

(6.67)

The composition of smal1 and approximately equal can readily be per

formed by computing the max-min product of the relation matrices corres

ponding to smal1 and approximately equal. Thus, we obtain

[1 0.6 0.2 0]o

which implies that

1 0.5 0 0

0.5 1 0.5 0

0 0.5 1 0.5

0 0 0.5 1

= [1 0.6 0.5 0.2]

IIy = Y) = 1/1+0.6/2 +0.5/3 +0.2/4
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and which upon retranslation yields the linguistic approximation

r AYis more or less small Ry =1/1+0.6/2 +0.5/3 +0.2/4

Thus, from p ^ Xis small and q ^ Xand Yare approximately equal, we
can infer, approximately, that r Y is more or less small.

As a simple illustration of the compositional modus ponens, assume that,

as in Bellman and Zadeh (1977),

with

and

U=V=1+2+3+4

F = 0.2/2 + 0.6/3 + 0.5/4

G = 0.6/2+ 1/3 + 0.5/4

H = 1/2 + 0.6/3 + 0.2/4

p ^ X is F

q 4 If X is G then Y is H

nx = F

(X,Y)

r -t— Ry = Fo(6' e H)

= G' ® H

In this case.

and

G' ® R =

1111

0.4 1 1 0.6

0 1 0.6 0.6

_0.5 1 1 0.7

Fo(G' ®H) = [0 0.2 0.6 l]o

111 1

0.4 1 1 0.6

0 1 0.6 0.6

0.5 1 1 0.7

= [0.5 1 1 0.71

(6.58)
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Thus, from p and q we can infer that

r ^ Y is 0.5/1 +1/2 + 1/3 + 0.7/4

The above example is intended merely to illustrate the computations

involved in the application of the compositional modus ponens when X and

Y range over finite sets. Detailed discussions of practical applications

of the compositional rule of inference in the design of so-called fuzzy

logic controllers may be found in the papers by Mamdani and Assilian (1975),

Mamdani (1976), Kickert and van Nauta Lemke (1976), Rutherford and Bloore

(1975), and others. (See the appended bibliography.)
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7. Concluding Remark

The theory of approximate reasoning outlined in this paper may be

viewed as an attonpt at an accommodation with the pervasive imprecision of

the real world.

Based as it is on fuzzy logic, approximate reasoning lacks the depth

of universality of precise reasoning. And yet it may well prove to be

more effective than precise reasoning in coming to grips with the complexity

and ill-definedness of humanistic systems and thus may contribute to the

conception and development of intelligent systems which could approach the

remarkable capability of the human mind to make rational decisions in the

face of uncertainty and imprecision.
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