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I. INTRODUCTION
The purpose of this paper is to present a nonlinear circuit model for IMPATT

diodes (an acronym for IMPact Avalance Transit-Time). These semiconductor
devices exhibit dynamic negative resistance at microwave frequencies. IMPATT
diodes are utilized in microwave oscillators and amplifiers.

The circuit model for a given device has several uses. It is primarily an
aid in designing and analyzing networks containing the device. An accurate circuit
model would lead to realistic computer simulation of prototype circuit designs,
thereby obviating or minimizing the need for carrying out expensive breadboarding
analysis in the laboratory. Also, a good circuit model can offer insight into
the device's operating mechanism. Such a model can serve as a useful tool in device
design. The nonlinear circuit model presented in this paper is an improvement over
those given previously in the literature [1,2,3] since each element in our basic model
corresponds in a natural fashion to some physical operating mechanism inside the
device. Furthermore, our model includes second-order effects heretofore neglected
in other circuit models. These include effects due to unequal hole and electron
ionization rates, unequal hole and electron drift velocities, and carrier diffusion.

Our circuit model contains linear and nonlinear lumped elements, as well as
linear distributed elements. The avalanche region model is based on the analysis
of Kuvds and lee [4,5,6,7], which can be viewed as a more exact versioﬁ of Read's
[8] original analysis. It is composed entirely of lumped elements and contains
the only nonlinearities in the model. The drift region is modeled with linear
lumped and distributed elements. Under additional assumptions, our model reduces
to one which is mathematically similar to those given previously [1,2,3]. However,
there are differences which occur because our model is based on a more exact
analysis.

Outlining the paper, in Section II we describe our general circuit model.
We derive the quantitative aspects of this model in Sections III and IV. The
evaluation of the model parameters is discussed in Section V. After making some
simplifying assumptions, we obtain a first-order circuit model which is presented

in Section VI.

II. THE GENERAL CIRCUIT MODEL
In this section we present our general circuit model and describe the

physical significance of each of its basic elements.
To analyze the IMPATT diode, we divide its active portion into two regions.
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There is a narrow "avalanche region" where the electric field is strong enough
to cause carrier multiplication by impact ionization. Adjacent to the avalanche
region, on one or both sides, is a longer "drift region."

The circuit model given in this section is based on the following assumptions:
(a) the diode has a uniform cross-sectional area and can be treated as a one-
dimensional device; (b) the time variations of the physical variables are slow"
compared to the carrier transit time in the avalanche region; (c) recombination and
thermal generation of carriers is negligible; (d) the carriers travel at saturated
velocities; and (e) the diffusion constants are not functions of any physical
variables such as the electric field.

At this point, it is appropriate to define our notation. We use p and n for
the hole and electron densities, respectively. The other symbols we use are listed
in Table I. We attach the subscript p or n to D, v, or a to denote the corresponding
quantity for holes or electrons, respectively. V

In Fig. 1 the general circuit model of a single-drift region (SDR) IMPATT
diode is shown. A partial derivation of the model is given in Appendix A; other
details are given in Sections III and IV. This paper will deal only with the SDR
diode, but as we shall see our model can be extended easily to the double-drift
region (DDR) diode.

We shall begin our description of the model by considering the avalanche region.
Assumption (b) is a key assumption which allows us to use a quasistatic approximation
to obtain a nonlinear ordinary differential equation relating I, to Va' The
derivation of this equation is the subject of Section III. Thus our model of the
avalanche region consists of two basic elements. There is a lumped, dynamic,
nonlinear one-partL)U through which the particle current Ia flows. In parallel
withcdkiis a linear capacitor C through which the displacement current flows.

C is simply the geometrical capacitance of the avalanche reglon.

Figure 2(a) shows how the nonlinear one-port bA’can be modeled for simulation
on a computer circuit analysis program. The circuit utilizes a linear inductor
and a nonlinear controlied voltage source. In Fig. 2(b) we have shown how the
equations can be rewritten so that a nonlinear inductor appears in place of the
linear inductor. The constants b and ¢0 associated with the nonlinear inductor
are arbitrary since they always drop out in the final network equations. Hence

for convenience, we can choose b=1 and ¢0=0. However, if we choose



b= d 1
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then for moderate signal amplitudes it turns out that the voltage across the
nonlinear controlled voltage source is relatively small. Thus, we
can prove the often made intuitive statement that to a first-order

approximation, the particle current in the avalanche region behaves as though

it were flowing through a nonlinear inductor.

The drift region is modeled as the parallel combination of a linear capacitor
Cd and a controlled current source Ie. The displacement current can be viewed as
flowing through capacitor Cd’ which is simply the geometrical capacitance of the
drift region. Also, with the drift region extending from x=0 to x=wd, the
definition of Ie is (see (A-4))

1)

lsd (x,t) (1)
- I.(x,t) dx.
Wd 0 d

lic>

Ie(t)

It is evident that Ie is simply the spatial average of the particle current in
the drift region. By assumption (b), the particle current injected into the drift
region is approximately Ia' Thus, under the listed assumptions it turns out that

Ie is the convolution of Ia(-) with a function h(:) which is given by

e

h()) 20, A <0, , (2a)

1 Wd—vl
B [%rf + erf(—z— /ii]
2vbx 2/b
9
2 -(W_-v})
+% /“—FA [exp(%‘ l) - e@(—'—?ﬁ—)] s A>0. (2b)

This is shown in Section IV. Hence, if we can synthesize a linear, distributed

>

one-port with a current impulse response h(.), then we can model the drift region
as shown in Fig. 3.

At this point it is appropriate to note that a DDR diode can be modeled by
simply adding the equivalent circuit of the second drift region in series.

The constant sources I0 and V0 are the terminal current and voltage,

respectively, under static conditioms. I0 is simply the value of the bias current

-
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when the biag is derived from a constant current source, which is the usual
case. Note that the parameter V0 does not affect the RF performance of the

device.
Finally, we remark that our model is valid only when the total terminal

current I is positive.

III. DETAILS OF THE AVALANCHE REGION MODEL

In this section we discuss the differential equation for the nonlinear omne-

port<¢A‘associated with the avalanche region model (see Fig. 1). The results given
here are based on the work of Kuvas [4]. Most of the results in [4] were published
in three papers by Kuvas and Lee [5,6,7].

The derivation of the differential equation for‘gA]is lengthy and is given in

Appendix B. There it is shown to have the following form (see (A-39)):

av

dI I (t)+I I
2 a0 A RO A e €)
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a MO )V )V k(U )TV

where M(-), «(+), ©(:), n(+), and p(+) are nonlinear functions of Va. To obtain
these functions it is necessary to know the doping profile in the avalanche region.
The procedure for calculating these functions is given in Appendix B, and in general
they must be evaluated numerically.

We shall now consider the special case of a PIN doping profile at low current
density. Most analyses are based on this assumption, and it is important here
because closed-form expressions can be obtained for the nonlinear functions appearing
in (3). 1In this case, the electric field used in evaluating the ionization integrals

is independent of the spatial variable x and is given by

Eo(t) =E + Ea(t) =E_ + Va(t)/W ' (4)

where W is the width of the high-field intrinsic region (compare (A-30)). With

the electric field independent of x, it turns out that

p(V) =1 (5)

and the expressions for (-r)"l and (Mr)’-1 are



1 Z(ﬁfo) 1+rezw
T 1+r (6)
e ~1

A1 __"n p’\'np
Mt zW (7
-1
where .
4
r= Ins/Ips (8 2.
80 ~a . (9)

In the limit as z -+ 0, which corresponds to the low-field limit or the case of

equal ionization rates, (1')-1 becomes

lim % = —Enw . (10)
z-0

Using (7) and (10), it can be seen that for the case of equal ionization rates,

= =1 - Wa. (11)

The expressions for Kk and n in the PIN case can be obtained by straightforward
but tedious calculations using the equations given in Appendix B. The resulting
expressions are lengthy, and we shall take the liberty of correcting any errors we

have found in the work of Kuvis [4]. Our results are as follows. We divide « into

two terms,
K= Xae Y Raifs (12)
where 1 1 =-zW
— + —— e . -
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The significance of « is that it goes to zero in the absence of diffusion.

diff
In the limit as z + 0, which corresponds to the low-field limit or the case of

equal ionization rates, the above expressions reduce to

!v +vn)2
lim Kdr = — (15)

20 6vpvn

Vn+vp Dn 1 Dn 2 de VAJ
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+ v ‘va -2—+ va l+Dp exp-Dpw - 1} ). (16)

To find the expression for n = S3/KW, we must now calculate Sy (see Appendix B).
The complete expression for Sq including diffusion terms is very lengthy. For
simplicity, we shall follow Kuvas [4] and calculate 4 assuming zero diffusion.

As mentioned by Kuvas [4], the effect of the term involving n in the differential
equation is usually small, and furthermore, there is reason to suspect that
higher-order corrections (i.e., corrections due to non-zero carrier tramsit time)
will contribute significantly to n. Thus there is little reason to worry about
the small diffusion correction. Under these conditions, our expression for n

is as follows:

1 1

i)+ ) foae [ o)
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The primes denote differentiation with respect to the electric field (see Table I).

For the case of equal ionization rates, it turns out that

n| =0 . (18)

Although we did not show it explicitly, the expressions given in (6), (7),
(11), (13), (14), and (17) are functions of the avalanche region variational
voltage Va. This arises because ap and e s and hence z, are functions of the
electric field, which is a function of Va by (4).

Once the material parameters are specified, the functions Mt, k, and n are
parameterized by W. Also, the function t is parameterized by W and r 4 Ins/Ips'
Hence, for a given material one could build up a library of these curves,
parameterized by W and r. Note that in order to completely specify the circuit
model for the PIN avalanche region, the parameters A and IS are also needed. The
evaluation of model parameters is discussed in Section V.

The expressions given above, which were derived for the PIN case at low
current density, should be approximately correct for other doping profiles if the
parameter W is properly chosen. This is discussed further in Section V.

The static field E. is determined by W as follows. From (11), the static

multiplication factor for the case of equal ionization rates is (l—Wa(Ec))-l, thus

1- Wa(E) = IS/IO . - (19)

For all practical purposes this may be replaced by the condition that the

multiplication factor goes to infinity, i.e.,
1-Wa(E) =0 . (20)

For the case of unequal ionization rates, the condition for an infinite multiplication

factor is seen from (7) to be



an(E) - o () exp[(an(Ec) - ap(Ec))WI -0 . 21)

We shall now present a numerical example. The material is assumed to be

silicon with the following parameter values:

2 2
' 7 cm = 99 SO = 1¢ SB°
YnT V% T 10 sec’ D, = 39 sec °’ Dp 16 sec

The ionization rate functions are as follows [9]:

6 6
= 3.8.100 axo . L:75:10 e 2.95.107 exo~ 3:26:10°
an(E) = 3.8-10 exp< H >, ap(E) 2.25-10 exp< |E| )

here E is in volts/cm and o and ap are in (cm)—l. We shall also assume that

I), W= 6.9-10"° cm.

(Y[

r = ; (i.e., Ins=Ips=

5 ¥ The static voltage

. This value of W gives a critical field of Ec = 3.76°10
across the avalanche region is WEc ® 26 volts. Recall that our analysis is
based on the assumption of saturated carrier velocities. This requires a minimum
electric field of about 3-104 volts/cm. Thus our equations remain valid for a
negative voltage perturbation of approximately -24 volts.

In Figs. 4 and 5 we have plotted the expressions for this example for a
range of Va from -16 to +16 volts. Note that with the assumed low-field values

for the diffusion constants, the diffusion correction tok is small, around 107%.

IV. A DERIVATION OF THE DRIFT REGION MODEL

In this section we derive and discuss our drift region model. Recall from

assumption (d) that the carrier velocities are assumed to be saturated. This
implies that the diode remains "punched through' for the entire RF cycle.
Consider a p-type drift region extending from x=0 to x=Wd, with holes
injected from the avalanche region at x=0. Note that in a p-type drift region
the electron current is spatially and temporally constant with value Ins' Thus
the total particle current is ID(x,t) = Ip(x,t) + Ins’ where Ip(x,t) is the hole

current. The current continuity equation is

ol
sp .1 " p _
935 + A % 0 (22)

and the hole current is given by

-10-
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From (22) we obtain

1 0 1 a2
A a2 R T Y (24)

and (23) gives

g 22
a5t~ 9Vp e ~ 9P Beax (25)

> |-

Combining (22), (24), and (25), we obtain

821 v_ 9l oL

—p__p_p_L1 _p_g4 . (26)
2 D 3x D 3t

ox P P

It can be shown that in an n-type drift region, the electron current In satisfies
an equation similar to (26) with vp and Dp replaced by v and Dn’ respectively.

Now consider the boundary conditions. It is assumed that the injected
particle current IA(-) satisfies IA(t) =1, for t < 0. Thus for t < 0 the drift
region is in a steady state and the boundary conditions are

Ip(x,t) =I,-I _ for t <0, (27)

1 0,t) = IA(t)-InS . (28)

It is convenlent to rewrite (26), (27), and (28) in terms of Id(x t) I (x,t)- I
and I (t) IA(t) - I, The mathematical problem can then be stated as follows:

aId-XEEé_l.?i‘l=o (29)
2 D 3x - D at
9x
+
Id(x,t) =0 for t <0 (30)
T,00%,t) = 1_(p) (31)
d ’ a
where Ia(-) is continuous and Ia(t) =0 for t < 0. We set v = vp and D = Dp
for a p~type drift region; for an n-type drift region we set v = v and D = Dn'

-11-



To obtain a solution to (29), (30), and (31) we define a function g: IRZ + R as

follows:
g(x, ) 4 0 for A <0 . (32a)
A (x=v1) 2
= exp | -~ for A > 0. (32b)
3 4D
2V/7DA

Then the desired solution to the above problem is

\

t
I,(x,t) =S I (t-1) g(x,A) dA . (33)
0 a

Recall the definition of Ie (see (A-4)):
W

I (t) 4 ;L-s ‘ I.(x,t) dx (34)
e Wgdg T4 '

If we substitute (33) into (34) and interchange the order of integration (this can

be rigorously justified), we obtain the following result:

t
1
I(t) = T—S I_(t-1) h(}) dA (35)
d J0
wherg
4 4 wd/v (36)

and where h(-) is given by1

e

h(}) 0 for A <0, (37a)

2
Wi—VA 2 W ,—VA)
% erf( :1/_) + erf(-v? /)T> +% exp<— -Z—D A)- exp<- %——
2VDA 2vD

for A > 0. (37b)

e

YN

1
Recall that erf(y)

>

y _.2
JL‘S e ® do. Note that erf(+) is an odd function, i.e.,
/r Jo
erf(-y) = - erf(y).

-12-
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The Laplace transform of (37) is

r .

& Vg v2> v

exp\mo— - — /s + o= —

ey ~L[1_ N2 BT/ o
2| 2 2 /T 2
y_ y v y_
VAJ’AD(%’W;D 25) /¢ * W

—

/D .
= |1-e —S‘—\:-E‘l/saﬂ’—2 (38)
/'— *P\ 2D /D 4D | °
] A
S+4D

It is clear from (38) that H(:) cannot be the impedance of a (linear) lumped

3%

network. This justifies our statement in connection with Fig. 3 that the one-
port shown there must be a linear distributed network.

Of special interest is the case of zero diffusion. From (37) we have

1, 0<Ax<r= (39a)

d
= 0, A<0, A>T (39p)

ST 1im eA)
D0

4 -

A graph is shown in Fig. 6(a). For this case, the controlled current source

Ie becomes

‘ - L
lim Ie(t) =7

d 1 (t
lim p S ,Ia(t—)x) dx = 'T—-S Ia(s) ds. (40)

0 d t=T4

In Section VI we shall show how (40)can be realized using controlled sources and
a lossless, nondispersive transmission line.

We shali not attempt to provide a circuit model for the drift region in the
case of nonzero diffusion. However, we have given two examples of h(.) for the
case of nonzero diffusion in Figs. 6(b) and (c). Figure 6(b) shows h(-) for a
silicon n-type drift region with length Wd = 10.3 cm. This corresponds to an
approximate operating frequency of 5 GHz. Figure 6(c) is similar except that
Wd = 10-4 cm, corresponding to an operating frequency of about 50 GHz. It can
be seen that the effects of diffusion are more pronounced in shorter length

(higher frequency) drift regions. The fact that diffusion effects in the drift

-13-



region can be important at millimeter wave frequencies has been discussed

previously in the literature [10,11].

V. THE EVALUATION OF THE MODEL PARAMETERS

In this section we will discuss the evaluation of the model parameters. The

parameters I0 and V0 were discussed in Section II and will not be considered further.
As in all IMPATT circuit models, we have assumed a uniform cross—-sectional area A.
The proper value to use for A must be obtained or estimated from information supplied
by the manufacturer. Once the material is specified and A is known, our model of

the avalanche region depends upon the doping profile and three parameters: the
width L, r 4 Ins/Ips’ and Is A Ins + Ips. Similarly, our model of the drift region
is characterized by the single parameter wd.

The total depletion layer capacitance, CT = eA/(L+W ), can be measured as
described by Dunn and Dalley [12]. With A known, this immediately gives d = L+Wd
1f one chooses the general model corresponding to an arbitrary doping profile,
then the associated doping profile must either be supplied by the manufacturer or
obtained by measurement via standard methods such as the capacitance-voltage
measurement technique [13]. With this information, one can solve for the static
current distribution in the diode and estimate the avalanche width L as described
by Schroeder and Haddad [14]. With L known, we then obtain W& = d-L.

The standard method of measuring the reverse saturation current IS is to
. measure the diode current when it is biased below breakdown. There does not appear
to be any discussion in the literature concerning the measurement of r 4 Ins/Ips
However, this can be estimated from the standard pn junction theory [9]. Note
that only the functions p and Is/G<T) require the two parameters IS and r, and
usually these functions have only a small effect on the differential equation
describing the nonlinear one-portg)U.

An approximate but more practical method for utilizing our model is to treat
the avalanche region as though it has a PIN doping profile and use the expressions
given in Section III. This requires the choice of an "effective value" for the
parameter W. Recall that once the parameters I and r are fixed (usually, these
parameters have only a small effect) the response of the one—portg}“ is
characterized by W for the PIN case. Thus for each value of W the small-signal

admittance of our model can be obtained.2 By comparing these curves with the

2Each value of W affects not only the nonlinear one—port(JM and the capacitor

Ca =-%%, but it affects the drift region model also since Wd = d-W.

14—
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measured small-signal admittance, an effective value of W can be chosen. This
is essentially the method used by Schroeder and Haddad [14].

Finally, we note that our model is valid only for the active region of the
IMPATT diode. In any actual computer simulation, circuit elements accounting

for series resistance and package parasitics must be added.

VI. A FIRST-ORDER NONLINEAR CIRCUIT MODEL

In this section we shall present a first-order nonlinear circuit model.

Mathematically, our model is similar to (but not exactly the same as) those
given by Quang [1,2] and Gupta [3]. It is based on the followiﬁg assumptions
which are in addition to those given previously: (i) The avalanche region has a
PIN doping profile and is biased at a low current density, so that the expressions
given in Section III apply; (ii) The ionization rates are the same for holes and
electrons, i.e., a = ap = q; (iii) Carrier diffusion effects are negligible.

Under the conditions listed above, n(Va) = 0 (see (18)) and () and t(-) are
constants, which we shall denote by Ko and Tg respectively. From (10) and (15) we have

W!v,+vn!
K T = . (41)

ee 6vpvn

Hence, the differential equation (3) reduces to

d1_ (Ia(t)-}-IO) 2 "
& M) T T (42)
e e e e
where, from (11),
(V)Qw (E +y£) -1 (43)
wiva *\"c W :

Equation (42) is basically the same as Read's [8] equation for the avalanche
particle current except for the generalization to unequal carrier drift velocities
and the inclusion of the constant Ke, which is a correction for space-charge effects.

We can rewrite (42) as follows:

I

= 4 - S
uv)) = K 1. 3¢ [1n(1a+10)] T, (44)

Expanding p(+) in a Taylor series and retaining terms up to the second order, we

have

-15-



_ ] u"go) 2
HEV)) = (0 +u (0) V, + ="V + ...

all (Ec)
2w

2
= - A\l
Wa(Ec) 1+ a (Ec) va + Va + ... (45)

Substituting (45) into (44) and recalling that 1 —iJa(Ec) = IS/I0 (see (19)), we
obtain the following result:

K T I "(E))

d s 1 1 o c 2
v =—2e ¢ [1nI+I ]+———{——— ]— _ ve o, (46)
a o (Ec) dt ( a 0) a'(EC) I, Ia+;0 2wo (Ec) a

The terms on the righﬁ—hand side of (46) can be interpreted as follows.
Evidently, the first term is the voltage across a nonlinear inductor whose

¢—-i curve is given by

KT
=—c €
o) = e In(Iy) + ¢, (47)
where ¢0 is an arbitrary constant. The second term is the voltage across a

nonlinear resistor whose v-i curve is given by

e R L I S W (48)
R "a a'(E)[IO 10+Ia] ’
Finally, the last term is a nonlinear voltage-controlled voltage source.

Recall that we are ignoring diffusion effects, so the controlled current
source Ie is described by (40). The nonlinear circuit model based on (40) and
(46) is shown in Fig. 7.

There are two comments to be made concerning Fig. 7. First, the controlled
voltage source VN is included to simulate nonlinearities in the avalanche process
which can cause low-frequency instabilities when the IMPAIT diode is used as an
oscillator. The mechanism by which this occurs was described by Brackett [15].
Also, we have shown how the controlled current source Ie can be realized using
controlled sources and a lossless, nondispersive transmission line having a
characteristic impedance Z0 and a delay of Td/Z. To see that the given circuit
does in fact realize Ie, note the current I1 at the input tothe transmission
line has a forward component and a reflected component which is totally absorbed

in the 2-terminal lumped impedance ZO’ thus

Il(t) = Ia(t) - Ia(t-Td)
-16-
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and therefore3

1 t
V., == [I (8)-I_(s-1 )] ds
1 Cl 0 a a d

t
= E]-'- s Ia(s) ds,
1/7¢t-1

d

c.,v
Hence, it follows that Ie = % 1 . The use of transmission lines in the modeling

of transit-time devices was suggested by Quang {1,2,16].

Finally, in the small-signal limit our avalanche region model reduces to the
circuit shown in Fig. 8(a). 1In Fig. 8(b) is shown the model of Hulin, Claassen,
and Harth [17] which is based on a more exact, nonquasistatic, small-signal
analysis. For the case of equal ionization rates, both models are identical
except for a parallel negative resistance in Hulin's model which is proportional
to the inverse of the dc bias current. Recall, however, that our model was
derived assuming a ''small" dc¢ bias current. Thus we have shown that our model is

consistent with the more exact small-signal model of Hulin.

VII. GENERAL COMMENTS AND SUMMARY

There are several comments that need to be made concerning our model. First,

the reader has probably noticed that we have not included a simulation example.
This was believed to be unnecessary since our model is based on well-established
equations and several of the cited references contain simulation examples.

Also, we have not discussed noise models since (small-signal) noise models have
been discussed previously in the literature [16,18]. Finally, our model of the
drift region is based on the assumption of saturated carrier velocities. This
assumption implies that the diode remains "punched through" for the entire RF
cycle. Thus our model cannot simulate effects such as the ''premature collection
mode" described by Kuvas and Schroeder [19].

The main contributions of this paper are as follows. We have shown how the
transport equations for an IMPATT diode can be written in such a way as to
produce a topologically simple circuit model where each element corresponds to
some physical operating mechanism inside the device. Our model of the avalanche
region is based on the quasistatic analysis of Kuvas and Lee [4,5,6,7]), and
3

It is assumed that I (t) =0 for t < 0 and that V; =0 at t = 0.

-17~



includes the effects of unequal ionization rates, unequal carrier drift
velocities, and carrier diffusion. Also, we have shown how diffusion effects

in the drift region can be included in the model. These features have not been
available in previous circuit models. Finally, we have given explicit equations
(which have not been available previously in the literature) for calculating

the nonlinear functions associated with the avalanche region model for arbitrary

doping profiles.
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APPENDIX

A. TOPOLOGY OF THE GENERAL CIRCUIT MODEL

In this appendix we derive the topology of the circuit model shown in Fig. 1.
Symbols which are not defined here are defined in Table I. Consider first the drift
region which extends from x = 0 to x = Wd. The total current I at each point, which
is the sum of the particle current and the displacement current, is independent of x

and is given b
glven by 9E) (%, )
I(t) = ID(x,t) + eAmi——

™ . (A-1)

If (A-1) is integrated from x = 0 to x = Wd, we have

W Wd

€A d Ey (x, t)dx. (A-2)

a’o Wy dt ) W

d
Observing that the total drift region voltage is VD(t) = s ED(x,t)dx, (A-2)
0

I(t) = 1

d
T S I (x,t)dx + —

can be rewritten W

1 s d dVD d
I(t) = E . [T+, (x,t) Jdx + Cae =Lt I (t) + ¢3¢ (a-3)
A €A
where C, = =— , I  is the static current, and
d Wd 0
A 1 d
I (t) = ——-s I,(x,t)dx. (A-4)
e W d
d°0
The analogous equation for the avalanche region is
dav
- a -
I(t) = I, + I (t) + G5 (A-5)

where Ca 8 €A/L. Note that we have written (A-3) and (A-5) in terms of the voltages
Vd and Va’ which are the variations of the drift region and avalanche region voltages,
respectively, from their static values. If we denote the sums of the two static

voltages by VO’ then the total terminal voltage is given by

V(E) = Vo +V_(£) +V (b). ‘ (A-6)

0

Thus if we take Vd
it is clear that (A—3) and (A-5) represent KCL, and (A—6) represents KVL, for the

to be the voltage across the controlled current source I » then

circuit shown in Fig. 1.

B. A DERIVATION OF THE DIFFERENTIAL EQUATION FOR THE NONLINEAR ONE-PORT L}U

Our first step is to discuss some physical variables and present a differential

equation which relates them. For convenience, we shall use the symbol J for current

-19-



density, e.g., JA

density. We define our coordinate system so that impact ionization occurs only

= IA/A is the spatially-averaged avalanche region particle current

between x = 0 and x = L. Note that this is not the same as the coordinate system

used in Appendix A. For 0 < x <L, define

X
E, (x) 4 E, + —g-s N(xl)dxl (A-7)

0
where Ec is the electric field at x = 0 under static conditions and N(:) is the net
doping density. Similarly, define

X L .x
Esc‘(x,t) c gsolp(xl,t)-n(xl,t)]dxl - EQL" s S [p(xl,t)-n(xl,t)]dxldX- (A-8)
: 0 O

Note that ESc satisfies the condition

L
[ E (x,t)dx = 0 (4-9)
0 SC

as can be easily verified by integrating (A-8). Finally, define
A q Lex
Ea(t) = Ev(t) + 3 Sc’So[p(xl,t)-n(xl,t)]dxldx (A-10)

where Ev(-) is the variation of the electric field at x = 0 from its static value Ec'
Evidently, the total electric field E is then

E(x,t) = Ei(x) + Ea(t) + Esc(x,t). (A-11)

L

The total voltage across the avalanche region is VAﬁt) = s E(x,t)dx. If we separate
0

VA into its static part, V;, and its variational part, Va, then it follows from (A-9)

L
and (A-11) that V; = s Ei(x)dx and
20
'Va(t) = LEa(t). (A-12)

The total current J is independent of x and is given by

9E_ (x,t) dEa(t)

-— Sc A -—
J(t) = Jp(x,t) + Jn(x,t) +¢€ 5T +¢e T . (A-13)

From (A-13) it is clear that the quantity JA, defined below, is a function of t only:

3E_ (x,t)

4 8¢ A-14
JA(t) = Jp(x,t). + Jn(x,t) +e—=5¢ . ( )

‘Integrating (A-14) and using (A-9), we obtain

-20-
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» L )
NGRS so[Jp(x,t)wn(x,c)]dx. (A-15)

Thus we see that J,, defined in (A-14), is in fact the spatially-averaged particle

A’
current.

For convenience, we define the following multiplication factors and time constants: .

A L x ]-1
M S |1- - -
> _l Soapexp(s O(c.n ap)dxl)de (A-16)
A [ L L 1-1
Mn = |1- Soanexp (S (ap—an)dxl>dx (A-17)
L X J
A 1 L [ X
T_= exp S (¢ -a )dx, |dx (A-18)
P vn+vp 0 o M P 1.
A 1 L L T
T TR S exp [S (ap-an)dx1 dx (A-19)
n p -0 X :
M2 Lms g ] (A-20)
Js nns p ps
Jns J s !
N [——— + B2 (a-21).
sl 1

The following relationships can be shown in a straightforward manner:

Mn ‘:é L

M—p = = = exp lso(an-ap)dx] (A-22)

Mt =M1 = M. (A-23)
nn PP

We shall assume that holes are traveling in the positive x direction. It follows

that the boundary conditions for Jp and Jn are

J (A-24)
PSs

J . (A-25)
ns

Jp(O,t)

Jn(L,t)

Under these conditions, Kuvds [4] has derived the following differential ggp§pion:4

4We have corrected the third term on the right-hand side of (A-26). Kuv8s [4] shows a

factor of (anvn+apvp), or in his notation, (avn+va). This term was given correctly in
a paper by Kuvds and Lee [5], although this paper ignored diffusion effects.
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dJ J (t) ‘Js v BE (0 t) YP BEsc(L,t)

A
- + - —=
dt >
T (vn+-vp) 'rp at (vn-s-vp) T 3t
S oE sc 9 Esc L
(a v +a v ) - ex S o - d d
(vn-l-vp)rn np pn - dt € th P[ x( P Gn) x, [dx
(v T S [ n acax D, Btax]exP[S (a,-a,)dx ]dX- (A-26)

Recall from (A-8) that Esc is a functional of p and n. Thus all the "correction
terms" on the right-hand side of (A-26) require a solution for p and n. If we assume
that the time variations are "slow'" enough (compared to the carrier transit time across
the avalanche region), then we may use the following quasistatic approximations for p

and n:

JA(t)—Jns 1 (F v 1.
qp°(x,t) = exp —B(x-L) + =\ J°(x%,,t) exp L(x-x.)|dx (A-27)
v D D Pl | D 1 1
P p P X P '
JA(t) J s —Vn ’vn 1
° — R u - — —_ -

qn®(x,t) = p» v SXP\ 7 X J (xl,t) ethD (xl-x) dxl (A-28)

n n n n )

where

p.d L
J;(x,t) = Jpsexp [So(ap—an)dxll + [JA(t)—Jns—Jpsexp( So(ap—an)dx)]
x x
Soanexp [ Sx (ap-an) de]dxl
1

L L
Soanexp [ sx(ap-an) dxll dx

The superscript zero signifies a static approximation for a dynamic variable. Here

the time dependence of J; arises both from JA(t) and the fact that ap and o« are

(A-29)

functions of the time-dependent electric field. The approximate electric field used

in evaluating all ionization integrals is
E°(x,t) = Ei(x) + Ea(t) + Es(x) (A-30)

where Es(x) is some sort of low-order correction for the space-charge field Esc(x,t)

(compare with (A-11)). Usually, we assume that the current density is small enough

so that ES may be ignored.
If we use the quasistatic carrier densities given in (A-27) and (A-28) to
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evaluate the correction terms on the right-hand side of (A-26) and if we ignore the
second-order time derivative (this is consistent with the assumption of "slow" time

variations) then after some straightforward calculations it is found that (A-26) can

be written in the form

dJ A, J,(0) Jg dJ, dE_ dE_
g ac T H(E, )T(E y = vy FaElae t et sE W (a-31)

» We shall give expressions for sl, 8y» and s3. First, however, we must make the

following definitions:

x X
soanexp lsx (ap-an)dxz]dxl

' A
£ (E) = — - (A-32)
soanexp [sx(ap-an)dxlldx
f( E)é ( -q_J)dx x( '—a!)dx, — 1
2\ %05, s¥P 0 % % 0 el S | L L

.SoanexP [Sx(ap'an)dxlldx

L L X b4

. - . 1ot -

Jpsexp( So(ap an)dx) O(ap an)dx Soanexp[ Sx (ap an)dledxl
1

L X X
+ [JnS+Jpsexp( So(ap—an)dx)]° So[an+an Sxiap—an)dle
a exp[vs (a -a )dx ] %,
+
[S @ exp (S (a -a, )dx )dx]z
L L L
2 | . [Jns+JpSexp ( so (ap‘an) dx)] Solan-i-an Sx(ap—an)dxll

L
’exp[‘s (ap—an)dxlldx (A-33)

X

X
-exp[ S (ap-an)dledx1
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X x X
' LI | -
Solanﬂn . (ap an)dleexp[ Sx(ap “n)de]dxl
. 1 1

f3(x,E ) = L T L
soanexp[ x(ap-an)dxlldx
X X
8 Soanexp[ Sx(ap - )dx ]
- L l S [ (a G ) ]
[S a exp( (a P )dx ] -
0
L 9
*exp [S (¢ -o )dxlldx. (A-34)
x P B

For convenience, we define the following function 6§(°):

. 5(]_) 4 1 (A-35a)
$ (2) §(3) 0. (A-35b)

nw>

Next, we define

v VX v
r,(xE) = -G(i)exP[BR(x-L)] + D—“S fi(xl,Ea)exp[D—n(xl-x)]dxl
p n’0 n »
\'4 L v ]
-3 S fi(xl,Ea)exp[BR(x—xl) dx; for 1 = 1,2,3; (A-36)
P X P .
™ b eind % wleen] - % e )] L 1
hi(x’Ea) = §(1) 5 exp[D (x—L)] -3 l-exp B L)+ T(EL-X)
v v L| P n
P P
1 L
+ (—— + —) [S £ (x »E)dx; - T SO(L-X)fi(x,Ea)dx]
1 (¥ Va 1 L ZR )
- v—s Q,XP(F(Xl-x)) fi(xl’Ea)dxl + v exp(D (x-xl) fi(xl’Ea)dxl
n n P7x P
D LT v
+ 2 s l-exp —E(x-L) f,(x,E )dx
2 D i*™"a
v L 0 n
n A
D L -v
+ —22- s exp(——R x)-l]f (x,E_)dx for 1 = 1,2,3. (A-37)
D i a
vpL ot p

Finally, sl, 8y and 53 are given by
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T

V v

-
T )T ) " 1(0-E)) + @ )T (E)

si(Ea) hi(L’ Ea)

. . )
1
(vn+vp)rn(Ea) So(anvp+up?n)hi(x’Ea)exP[_Sx(“p an)dxlldx

(v o )r E) S r (x E )exp [ S (a -a )dx ]dx, for i = 1,2,3.
n p n ' a
(A-38)
8
The functions M and T can be expressed equally well in terms of Va = LEa
(see (A-12)). By a slight abuse of notation, we shall denote these quantities by
M(Va) and~t(Va). Equation (A-31) can then be rewritten in terms of Va and ]'.A = AJ

A
as follows:

dIA IA(t) IS dva
T MV )k (V )T(V,) - W )T (V) + V) (I (V RN e (A-39)
where
A Va
K(Va) =] - Sl(i—) (A—l}O)
) & ot o :2)
Wal T Ik °3\L (A~41)
=)
-s -2
A "2\L (4et2)

D(va) =S -
: a
JSSB(E_)

Finally, we should note that Kuvds [4] and Kuvds and Lee [5] have shown that
the precise choice of the avalanche zone boundaries (0 and L) is not critical as long
as all significant impact ionization is included between these boundaries and L is
small enough to justify the quasistatic approximation.
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Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS

The general circuit model for an SDR IMPATT diode. The function h(:) is given

in (2), and 3

drift region. A derivation of the circuit model's structure is given in

4 Wd/v, where v is the velocity of the majority carriers in the

Appendix A. See Sections III and IV for other details.
(a) Circuit model of the avalanche region utilizing a linear inductor and a

nonlinear controlled voltage source.

(b) Circuit model equivalent to (a) which utilizes a nonlinear inductor. The b
constants b and ¢0 are arbitrary. '
An illustration showing how the controlled current source Ie can be modeled
using a linear, distributed one-port with current impulse response h(-).
The functions Kdr’ Kdiff’ and k for a silicon PIN avalanche region of width
W= 6.9x10-5cm.
(a) Kqr VS Va'
(b) Kqieg VS Va'
(¢) kK = Kar + Kqifg VS Va.
The various nonlinear functions associated with (3) for a silicon PIN avalanche
region of width W = 6.9x10-5cm. Recall from (5) that p(Va) =1 in this case.
(a) (KT)-l vs. Va’ assuming r = 1.
(b) n vs. Va'
(e) (Mk1)~1 vs. Va.
Graphs of the function h(-) given in (37).
(a) h(+) in the limit of no diffusion.
(b) h(-) for a silicon n-type drift region of length Wy = 10-3cm. Here
v, = 107cm/sec, Dn = 39 cm2/sec, and Tq = Wd/vn = 107 W0gec.
(c) Similar to (b) with W, = 10 “cm and 7, = 10-11sec.
A first-order nonlinear circuit model for an SDR IMPATT diode. KaTa =
W(vp+vn)/(6vpvn) and T4 = wd/v, where v is the velocity of the majority
carriers in the drift region. In the upper right is shown an open-circuited .
transmission line of impedance Z0 and delay Td/2. The impedance Z0 and the
capacitance C1 can be any convenient values. *
(a) The small-signal model of the avalanche region based on Fig. 7. Here
- Iy ‘e Te VW(éi'+'€i)
c,6 = cA/W, RIS = ;g;:z;:; » and L = “'(EC)IO = 6a'(EC)IO



A\

“(b) The small—signal avalanche region model of Hulin, Claassen, and Harth [17].

For equal ionization rates, all elements have the same values as in (a) In

addition,

1 5 .
R = (=) 0 s
a Yy a (EC)I0

where vy 1s a constant near unity.
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TABLE I. LIST OF SYMBOLS

cross-sectional area
diffusion constant

electric field in the avalanche region
V /L (see V_ and L below)

a a

static electric field in a PIN avalanche region
electric field in the drift region

terminal current

spatially-averaged particle current in the avalanche region
IA—I0 (see I0 below)
drift region particle current

ID-I0 (see I below)

terminal current under static conditions
electron current incident on the avalanche region
hole current incident on the avalanche region

I +I
ns ps
width of the avalanche region

electronic charge

Ins/Ips
carrier velocity

terminal voltage
variation of the avalanche region voltage from its static value
variation of the drift region voltage from its static value
terminal voltage under static conditions
width of a PIN avalanche region
width of the drift region

a —a

n p

ionization coefficient

da(E) /dE

dza(E)/dE2

dielectric permittivity of the semiconductor
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