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ABSTRACT

An improved nonlinear circuit model for IMPATT diodes is presented for which
each element bears a simple relationship with the physical operating mechanisms
inside the device. The model contains lumped nonlinear elements as well as lumped
and distributed linear elements. In its most general form it incorporates various
second-order effects heretofore neglected in other circuit models. These include
the effects due to unequal hole and electron ionization rates, unequal hole and
electron drift velocities, and carrier diffusion.
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I. INTRODUCTION

The purpose of this paper is to present a nonlinear circuit model for IMPATT

diodes (an acronym for IMPact Avalance Transit-Time). These semiconductor

devices exhibit dynamic negative resistance at microwave frequencies. IMPATT

diodes are utilized in microwave oscillators and amplifiers.

The circuit model for a given device has several uses. It is primarily an

aid in designing and analyzing networks containing the device. An accurate circuit

model would lead to realistic computer simulation of prototype circuit designs,

thereby obviating or minimizing the need for carrying out expensive breadboarding

analysis in the laboratory. Also, a good circuit model can offer insight into

the device's operating mechanism. Such a model can serve as a useful tool in device

design. The nonlinear circuit model presented in this paper is an improvement over

those given previously in the literature [1,2,3] since each element in our basic model

corresponds in a natural fashion to some physical operating mechanism inside the

device. Furthermore, our model includes second-order effects heretofore neglected

in other circuit models. These include effects due to unequal hole and electron

ionization rates, unequal hole and electron drift velocities, and carrier diffusion.

Our circuit model contains linear and nonlinear lumped elements, as well as

linear distributed elements. The avalanche region model is based on the analysis

of Kuvas and Lee [4,5,6,7], which can be viewed as a more exact version of Read's
[8] original analysis. It is composed entirely of lumped elements and contains

the only nonlinearities in the model. The drift region is modeled with linear

lumped and distributed elements. Under additional assumptions, our model reduces
to one which is mathematically similar to those given previously [1,2,3]. However,

there are differences which occur because our model is based on a more exact

analysis.

Outlining the paper, in Section II we describe our general circxiit model.

We derive the quantitative aspects of this model in Sections III and IV. The

evaluation of the model parameters is discussed in Section V. After making some

simplifying assumptions, we obtain a first-order circuit model which is presented
in Section VI.

II. THE GENERAL CIRCUIT MODEL

In this section we present our general circuit model and describe the

physical significance of each of its basic elements.

To analyze the IMPATT diode, we divide its active portion into two regions.
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There is a narrow "avalanche region" where the electric field is strong enough

to cause carrier multiplication by impact ionization. Adjacent to the avalanche
region* on one or both sides* is a longer "drift region.

The circuit model given in this section is based on the following assumptions:

(a) the diode has a uniform cross-sectional area and can be treated as a one-
dimensional device; (b) the time variations of the physical variables are "slow"
compared to the carrier transit time in the avalanche region; (c) recombination and
thermal generation of carriers is negligible; (d) the carriers travel at saturated
velocities; and (e) the diffusion constants are not functions of any physical
variables such as the electric field.

At this point* it is appropriate to define our notation. We use p and n for
the hole and electron densities* respectively. The other symbols we use are listed
in Table I. We attach the subscript p or n to D* v, or a to denote the corresponding
quantity for holes or electrons* respectively.

In Fig. 1 the general circuit model of a single-drift region (SDR) IMPATT
diode is shown. A partial derivation of the model is given in Appendix A; other
details are given in Sections III and IV. This paper will deal only with the SDR
diode* but as we shall see our model can be extended easily to the double—drift
region (DDR) diode.

We shall begin our description of the model by considering the avalanche region.
Assumption (b) is a key assumption which allows us to use a quasistatic approximation
to obtain a nonlinear ordinary differential equation relating I^^ to V^. The
derivation of this equation is the subject of Section III. Thus our model of the
avalanche region consists of two basic elements. There is a lumped* dynamic*
nonlinear one-partthrough which the particle current I^ flows. In parallel
with is a linear capacitor through which the displacement current flows.

C is simply the geometrical capacitance of the avalanche region.
Figure 2(a) shows how the nonlinear one-port (JU can be modeled for simulation

on a computer circuit analysis program. The circuit utilizes a linear inductor
and a nonlinear controlled voltage source. In Fig. 2(b) we have shown how the

equations can be rewritten so that a nonlinear inductor appears in place of the
linear inductor. The constants b and <f)Q associated with the nonlinear inductor
are arbitrary since they always drop out in the final network equations. Hence
for convenience* we can choose b=l and ^q=0. However* if we choose
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b = - dV^ \ M(V )k(V^)t(V^)
a \ ^ O O

V =0
a

then for moderate signal amplitudes it turns out that the voltage across the

nonlinear controlled voltage source is relatively small. Thus, we

can prove the often made intuitive statement that to a first-order

approximation, the particle current in the avalanche region behaves as though

it were flowing through a nonlinear inductor.

The drift region is modeled as the parallel combination of a linear capacitor

and a controlled current source I^. The displacement current can be viewed as
flowing through capacitor C^, which is simply the geometrical capacitance of the
drift region. Also, with the drift region extending from x=0 to x=W^, the
definition of I is (see (A-4))

e

I (t)
e

W

"dJo
I^(x,t) dx. (1)

It is evident that is simply the spatial average of the particle current in

the drift region. By assumption (b), the particle current injected into the drift

region is approximately I . Thus, under the listed assumptions it turns out that
Si

I_ is the convolution of !_(•) with a function h(') which is given by
G ' ' ' SL

h(X) = 0 , A < 0 ,

A 1

2
erfl

^W^-vX^

+-/tV / ttA
exp

+ erf(2.^
-V

4D
AI - exp'

^-(W^-vA)
^ 4DA

A > 0

(2a)

(2b)

This is shown in Section IV. Hence, if we can synthesize a linear, distributed

one-port with a current impulse response h(.)» then we can model the drift region

as shown in Fig. 3.

At this point it is appropriate to note that a DDR diode can be modeled by

simply adding the equivalent circuit of the second drift region in series.

The constant sources Iq and are the terminal current and voltage,
respectively, under static conditions. 1^ is simply the value of the bias current
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when the bias is derived from a constant current source, which is the usual

case. Note that the parameter does not affect the RF performance of the

device.

Finally, we remark that our model is valid only when the total terminal

current I is positive.

III. details of the avalanche region model

In this section we discuss the differential equation for the nonlinear one-

port associated with the avalanche region model (see Fig. 1). The results given
here are based on the work of Kuvas [4]. Most of the results in [4] were published

in three papers by Kuvas and Lee [5,6,7].

The derivation of the differential equation for oW is lengthy and is given in
Appendix B. There it is shown to have the following form (see (A-39)):

dl I (t)+I. I r 1

dt^ M(V )k(V )t(V ) ° k(V )t(V ) dt
a a a a a

where M(0» <(•), t('), n(')» and p(0 are nonlinear functions of V^. To obtain
these functions it is necessary to know the doping profile in the avalanche region.

The procedure for calculating these functions is given in Appendix B, and in general
they must be evaluated numerically.

We shall now consider the special case of a PIN doping profile at low current

density. Most analyses are based on this assumption, and it is iii5)ortant here

because closed—form expressions can be obtained for the nonlinear functions appearing

in (3). In this case, the electric field used in evaluating the ionization integrals

is independent of the spatial variable x and is given by

E°(t) = E + E (t) = E + V (t)/W (4)
^ c a c a

where Wis the width of the high-field intrinsic region (compare (A-30)). With

the electric field independent of x, it turns out that

pCVg) = 1 (5)

and the expressions for (x) ^ and (Mx) ^ are
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1 Z(v+V ) /, . 2W
± „ n p I l+re
T 1+r \ zW ,

\e -1

- (v +v ) (a -a
1 _ n V n p /

Mt

where

zW ,
e -1

r = I /I
ns ps

z = a - a
n p

(6)

(7)

(8)

(9)

In the limit as z ->• 0, which corresponds to the low-field limit or the case of

equal ionization rates, (t) ^ becomes

lim

z-K)

, V +v
J. _ n p
T W

(10)

Using (7) and (10), it can be seen that for the case of equal ionization rates.

a =a =a
n p

= 1 - Wa (11)

The expressions for k and n in the PIN case can be obtained by straightforward

but tedious calculations using the equations given in Appendix B. The resulting

expressions are lengthy, and we shall take the liberty of correcting any errors we

have found in the work of Kuvas [4]. Our results are as follows. We divide k into

two terms.

K = K + K,._- ,
dr diff

where

K = 1 +
dr

1^1 -zW
— + — e
V V

_£ n

_ (i-.'") j

it" \) ["(""WJ" (""-S

f/a V+a V) /W- ) - VWzl[\nppn/\ z / pj
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and

V z V ze
-zW

—P H / a V +a V \
_ -zW - -zW \ n p p n/
1-e 1-e L V Wz2 /

(13)

- We

V^ -ZW
D ®

_E l-exp(-(z.^)w)
_£

P-

D
S. +

-zW S 2
1-e •p (i-

(a V +a V )
n p p n

V

P

1 - exp|-(z +^ IW|

V +v
n p

^ [l-exp^- -^w]V zw

-zW
1-e

—P -(av+avW
- -zW \ n p P n/ \
1-e '

-J P

L
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-zW
e -expl-

1-exp (- (z +^)w)

n

n

D

P

D
n

v^W
n

1 - exp

1-expl- ^Wj n 1-e-zW

V

A

(14)

The significance of Kj.^^ is that it goes to zero in the absence of diffusion.
airr

In the limit as z -»• 0, which corresponds to the low-field limit or the case of

equal ionization rates, the above expressions reduce to

lim

z-K)
dr

K^n)'
6v V

P n

lim K

z-K)
diff

1 +

1 +

(15)

- 1

V W

D
exp - 1 (16)

To find the expression for n = s^/kW, we must now calculate s^ (see Appendix B)
The complete expression for s^ including diffusion terms is very lengthy. For
simplicity, we shall follow Kuvas [4] and calculate s^ assuming zero diffusion.
As mentioned by Kuvas [4], the effect of the term involving n in the differential

equation is usually small, and furthermore, there is reason to suspect that

higher-order corrections (i.e., corrections due to non-zero carrier transit time)

will contribute significantly to Thus there is little reason to worry about

the small diffusion correction. Under these conditions, our expression for q

is as follows:

n =

(»>p)(v +v„) fv^ze
kW 1-e

—zW

we
—zW

z\ 1-e
-zW \z 2/ 2
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V z

+ --e-
-zW

l-e
3

z W

(a V +a V )
\ n p p n/

„2 -zW
W e

we-'" /^^w\ eZ!
X-e-^W \ - y -

( -.W) _2(l-e-'")
(17)

The primes denote differentiation with respect to the electric field (see Table I)

For the case of equal ionization rates, it turns out that

n = 0 .
'a =a

n p

(18)

Although we did not show it explicitly, the expressions given in (6), (7),

(11), (13), (14), and (17) are functions of the avalanche region variational

voltage V . This arises because a and a , and hence z, are functions of the
® a P ^

electric field, which is a function of V by (4).

Once the material parameters are specified, the functions Mx, k, and n are

parameterized by W. Also, the function x is parameterized by Wand r = Ij^g/lpg*
Hence, for a given material one could build up a library of these curves,

parameterized by W and r. Note that in order to completely specify the circuit

model for the PIN avalanche region, the parameters A and I are also needed. The
s

evaluation of model parameters is discussed in Section V.

The expressions given above, which were derived for the PIN case at low

current density, should be approximately correct for other doping profiles if the

parameter W is properly chosen. This is discussed further in Section V.

The static field is determined by W as follows. From (11), the static

multiplication factor for the case of equal ionization rates is ^l-Wa(E^)^ thus

1 - Wa(E^) = I^/Iq . (19)

For all practical purposes this may be replaced by the condition that the

multiplication factor goes to infinity, i.e.,

1 - Wa(E^) = 0 . (20)

For the case of unequal ionization rates, the condition for an infinite multiplication

factor is seen from (7) to be
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We shall now present a numerical example. The material is assumed to be

silicon with the following parameter values:

V = V =10^ —, D = 39 — , D = 16 — .
n p sec n sec p sec

The ionization rate functions are as follows [9]:

ci^{E) =3.8-10^ exp/- .«p(E) =2.25-10^ exp^-
here E is in volts/cm and a and a are in (cm) We shall also assume that

n p

r =1 (i.e., I =!„„= ^ I„), W=6.9-10"^ cm.
ns ps z s

This value of Wgives a critical field of E = 3.76*10^ — . The static voltage
° c cm

across the avalanche region is WE^ ~ 26 volts. Recall that our analysis is
based on the assumption of saturated carrier velocities. This requires a minimum

electric field of about 3'10^ volts/cm. Thus our equations remain valid for a
negative voltage perturbation of approximately -24 volts.

In Figs. 4 and 5 we have plotted the expressions for this example for a

range of V from -16 to +16 volts. Note that with the assumed low^field values
a

for the diffusion constants, the diffusion correction to k is small, around 10%.

IV. A DERIVATION OF THE DRIFT REGION MODEL

In this section we derive and discuss our drift region model. Recall from

assumption (d) that the carrier velocities are assumed to be saturated. This

implies that the diode remains "punched through" for the entire RF cycle.

Consider a p-type drift region extending from x=0 to x=W^, with holes
injected from the avalanche region at x=0. Note that in a p-type drift region

the electron current is spatially and temporally constant with value Thus

the total particle current is I_(x,t) = I (x,t) + I , where I (x,t) is the hole
D p ns p

current. The current continuity equation is

q

and the hole current is given by

-10-
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Y I = qv p - qD . (23)A p ^ p ^ p 3x

From (22) we obtain

1
— P = - n ° P (24)
A 2 ^ 9x3t '

9x

and (23) gives

,31 . .2
1 —E = a„ - qD . (25)
A 9t p 9t p 3t9x

Combining (22), (24), and (25), we obtain

9^1 V 91 ,31
^ - —TT^ = 0 . (26)

- 2 D 3x D 9t
9x p p

It can be shown that in an n-type drift region, the electron current satisfies

an equation similar to (26) with and replaced by and D^, respectively.
Now consider the boundary conditions. It is assumed that the injected

particle current Iy^(*) satisfies I^(t) = Iq t _< 0. Thus for t _< 0 the drift
region is in a steady state and the boundary conditions are

I (x,t) = In-I « for t j< 0, (27)
p u ns —

I (0,t) = I,(t)-I . (28)
p A ns

It is convenient to rewrite (26), (27), and (28) in terms of I^(x,t) - Ijj(x,t)-lQ
and I^(t) = l^(t) •" Iq* The mathematical problem can then be stated as follows:

3^1, „ 31. , 31.
•i ' = 0 (29)

- 2 D 9x D 9t
dX

Ij(x,t) =0 for t ^ 0^ (30)

1^(0"^,t) =I^(t) (31)

where I (•) is continuous and I (t) = 0 for t < 0. We set v = v and D = D
a a^ — p p

for a p-type drift region; for an n-type drift region we set v = v^ and D = D^.
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To obtain a solution to (29), (30), and (31) we define a function g : H ]R as

follows:

g(x,X) = 0 for A < 0

A X

Iv^rDA^
exp

(x-vA)
4DA

for A > 0.

Then the desired solution to the above problem is

Id(x ,t) =
Jo

I (t-A) g(x,A) dA .
a

Recall the definition of I (see (A-4)):
e

I_(t)
"d Jo

I^(x,t) dx.

(32a)

(32b)

(33)

(34)

If we substitute (33) into (34) and interchange the order of integration (this can

be rigorously justified), we obtain the following result:

e "^d 3o
I^(t-A) h(A) dA

where

and where h(*) is given by"

h(A) =0 for A £ 0,

A 1

2 \2M /

for A > 0.

V

A.
irA

expl- — A)-expl

(35)

(36)

(37a)

2(w^j-vA)
4DA

(37b)

1 A 2 -a
Recall that erf(y) = — I e da. Note that erf(*) is an odd function, i.e.,

/rr Jo
erf(-y) = - erf(y).
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The Laplace transform of (37) Is

H(s) = ^

+
V

''d / ,v
iS

+

/"d- "d / ^ v2l-exp(---/s.^

4D

(38)

It is clear from (38) that H(») cannot be the impedance of a (linear) lumped

network. This justifies our statement in connection with Fig. 3 that the one-

port shown there must be a linear distributed network.

Of special interest is the case of zero diffusion. From (37) we have

limiT(X) = 1,

=0.

0 < A < T ,
d

A < 0, A > T

(39a)

(39b)

A graph is shown in Fig. 6(a). For this case, the controlled current source

I becomes
e

lim I (t)
"^d 'o

I (t-A) dA
a "^d )t-

I (s) ds.
a

(40)

In Section VI we shall show how (40) can be realized using controlled sources and
a lossless, nondispersive transmission line.

We shall not attempt to provide a circuit model for the drift region in the

case of nonzero diffusion. However, we have given two examples of h(«) for the

case of nonzero diffusion in Figs. 6(b) and (c). Figure 6(b) shows h(0 for a
—3

silicon n-type drift region with length = 10 cm. This corresponds to an

approximate operating frequency of 5 GHz. Figure 6(c) is similar except that

Wj = 10~^ cm, corresponding to an operating frequency of about 50 GHz. It can
be seen that the effects of diffusion are more pronounced in shorter length

(higher frequency) drift regions. The fact that diffusion effects in the drift
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region can be important at millimeter wave frequencies has been discussed
previously in the literature [10,11].

V. THE EVALUATION OF THE MODEL PARAMETERS

In this section we will discuss the evaluation of the model parameters. The
parameters Iq and were discussed in Section II and will not be considered further.
As in all IMPATT circuit models, we have assumed a uniform cross-sectional area A.
The proper value to use for Amust be obtained or estimated from information supplied
by the manufacturer. Once the material is specified and Ais known, our model of
the avalanche region depends upon the doping profile and three parameters: the
width L, r = ~ ^ns ^ps* Similarly, our model of the drift region
is characterized by the single parameter W^.

The total depletion layer capacitance, C = eA/(L+W,), can be measured as
A

described by Dunn and Dalley [12]. With Aknown, this immediately gives d = L+W^.
If one chooses the general model corresponding to an arbitrary doping profile,

then the associated doping profile must either be supplied by the manufacturer or
obtained by measurement via standard methods such as the capacitance-voltage
measurement technique [13]. With this information, one can solve for the static

current distribution in the diode and estimate the avalanche width L as described
by Schroeder and Haddad [14]. With L known, we then obtain W^ = d-L.

The standard method of measuring the reverse saturation current 1^ is to

measure the diode current when it is biased below breakdown. There does not appear

to be any discussion in the literature concerning the measurement of r = I^g^^ps*
However, this can be estimated from the standard pn junction theory [9]. Note

that only the functions p and 1^/{<r) require the two parameters 1^ and r, and
usually these functions have only a small effect on the differential equation
describing the nonlinear one-port

An approximate but more practical method for utilizing our model is to treat

the avalanche region as though it has a PIN doping profile and use the expressions

given in Section III. This requires the choice of an "effective value" for the
parameter W. Recall that once the parameters 1^ and r are fixed (usually, these
parameters have only a small effect) the response of the one—port cAlis
characterized by Wfor the PIN case. Thus for each value of Wthe small-signal

2
admittance of our model can be obtained. By comparing these curves with the

^Each value of Waffects not only the nonlinear one-port oM and the capacitor
C = —, but it affects the drift region model also since W, = d-W.

a W ^
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measured small-signal admittance, an effective value of Wcan be chosen. This

is essentially the method used by Schroeder and Haddad 114].

Finally, we note that our model is valid only for the active region of the
IMPATT diode. In any actual computer simulation, circuit elements accounting

for series resistance and package parasitics must be added.

VI. A FIRST-ORDER NONLINEAR CIRCUIT MODEL

In this section we shall present a first—order nonlinear circuit model.
Mathematically, our model is similar to (but not exactly the same as) those
given by Quang [1,2] and Gupta [3]. It is based on the following assumptions
which are in addition to those given previously: (i) The avalanche region has a

PIN doping profile and is biased at a low current density, so that the expressions
given in Section III apply; (ii) The ionization rates are the same for holes and
electrons, i.e., o = ot —ot; (iii) Carrier diffusion effects are negligible.

Under the conditions listed above, n(V ) = 0 (see (18)) and k(*) and t(0 are
cl

constants, which we shall denote by and t^, respectively. From (10) and (15) we have
w/v 4v ]

K T =
e e 6v V

p n

Hence, the differential equation (3) reduces to

"a , ,
U (v ) ^ -

dt ^ a K T K T
e e e e

(42)

where, from (11),

,(V^) ^Wa(Ec+^) - 1•
Equation (42) is basically the same as Read's [8] equation for the avalanche
particle current except for the generalization to unequal carrier drift velocities
and the inclusion of the constant k^, which is a correction for space-charge effects
We can rewrite (42) as follows:

"(V = ft h(^a«o)] -
Expanding y(-) in a Taylor series and retaining terms up to the second order, we
have
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li(VJ =p(0) + m'(0) V, ++ ...
.a a ^ a

a"(E) ,
= Wa(E^) - 1 + a'(E^) ••• (^5)

Substituting (45) into (44) and recalling that 1 -Wa(E ) = I /l^ (see (19)), we
c s u

obtain the following result:

^ ^ . (46)2Wa'(E„) a *
c

The terms on the right-hand side of (46) can be interpreted as follows.

Evidently, the first term is the voltage across a nonlinear inductor whose

(|)-i curve is given by

K T

c

where (p^ is an arbitrary constant. The second term is the voltage across a
nonlinear resistor whose v-i curve is given by

I

In In+IL 0 0 a

(48)

Finally, the last term is a nonlinear voltage-controlled voltage source.

Recall that we are ignoring diffusion effects, so the controlled current

source is described by (40). The nonlinear circuit model based on (40) and

(46) is shown in Fig. 7.

There are two comments to be made concerning Fig. 7. First, the controlled

voltage source V is included to simulate nonlinearities in the avalanche process
N

vdiich can cause low-frequency instabilities when the IMPATT diode is used as an

oscillator. The mechanism by which this occurs was described by Brackett [15].

Also, we have shown how the controlled current source I can be realized using
e

controlled sources and a lossless, nondispersive transmission line having a

characteristic impedance and a delay of t^/2. To see that the given circuit
does in fact realize I^, note the current at the input to the transmission
line has a forward component and a reflected component which is totally absorbed

in the 2-terminal lumped impedance Z^, thus

Il(t) = I^(t) -
-16-



3
and therefore

=-('Cjt-T
I^(s) ds.

i

C^V
Hence, it follows that — . The use of transmission lines in the modeling

of transit-time devices was suggested by Quang [1,2,16].

Finally, in the small-signal limit our avalanche region model reduces to the

circuit shown in Fig. 8(a). In Fig. 8(b) is shown the model of Hulin, Claassen,

and Harth [17] which is based on a more exact, nonquasistatic, small-signal

analysis. For the case of equal ionization rates, both models are identical

except for a parallel negative resistance in Hulin's model which is proportional

to the inverse of the dc bias current. Recall, however, that our model was

derived assuming a "small" dc bias current. Thus we have shown that our model is

consistent with the more exact small-signal model of Hulin.

VII. GENERAL COMMENTS AND SUMMARY

There are several comments that need to be made concerning our model. First,

the reader has probably noticed that we have not included a simulation example.

This was believed to be unnecessary since our model is based on well-established

equations and several of the cited references contain simulation examples.

Also, we have not discussed noise models since (small-signal) noise models have

been discussed previously in the literature [16,18]. Finally, our model of the

drift region is based on the assumption of saturated carrier velocities. This

assumption implies that the diode remains "punched through" for the entire RF

cycle. Thus our model cannot simulate effects such as the "premature collection

mode" described by Kuvas and Schroeder [19].

The main contributions of this paper are as follows. We have shown how the

transport equations for an IMPATT diode can be written in such a way as to

produce a topologically simple circuit model where each element corresponds to

some physical operating mechanism inside the device. Our model of the avalanche
O

region is based on the quasistatic analysis of KuvAs and Lee [4,5,6,7], and

3
It is assumed that l3(t) = 0 for t _< 0 and that = 0 at t = 0.
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includes the effects of unequal ionization rates, unequal carrier drift

velocities, and carrier diffusion. Also, we have shown how diffusion effects

in the drift region can be included in the model. These features have not been

available in previous circuit models. Finally, we have given explicit equations

(which have not been available previously in the literature) for calculating

the nonlinear functions associated with the avalanche region model for arbitrary

doping profiles.
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APPENDIX

A. TOPOLOGY OF THE GENERAL CIRCUIT MODEL

In this appendix we derive the topology of the circuit model shown in Fig. 1.

Symbols which are not defined here are defined in Table I. Consider first the drift

region which extends from x = 0 to x = W^. The total current I at each point, which
is the sum of the particle current and the displacement current, is independent of x

and is given by 3
I(t) = Ip(x,t) + eA— . (A-1)

If (A-1) is integrated from x = 0 to x = W,, we have
W, .W

I(t) = ( I-(x.t)dx + i E(x,t)dx. (A-2)
"d •'o " "d 'o °

Observing that the total drift region voltage is = J Ej^(x,t)dx, (A-2)
can be rewritten

1

I(') =WT )„ [VI^(x.t)]dx + =Iq +IJt) + (A-3)
d 0

A cA
where C, = — , I^ is the static current, and

d w, u

"d

The analogous equation for the avalanche region is
dV

where C = eA/L. Note that we have written (A-3) and (A-5) in terms of the voltages
a

V, and V , which are the variations of the drift region and avalanche region voltages,
d a

respectively, from their static values. If we denote the sums of the two static

voltages by Vq, then the total terminal voltage is given by

V(t) = + V (t) + V,(t). (A-6)
U a d

Thus if we take V, to be the voltage across the controlled current source I , then
Cl . ^

it is clear that (A-3) and (A-5) represent KCL, and (A-6) represents KVL, for the

circuit shown in Fig. 1.

B. A DERIVATION OF THE DIFFERENTIAL EQUATION FOR THE NONLINEAR ONE-PORT lAI

Our first step is to discuss some physical variables and present a differential

equation which relates them. For convenience, we shall use the symbol J for current
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density, e.g., spatially-averaged avalanche region particle current

density. We define our coordinate system so that impact ionization occurs only

between x = 0 and x = L. Note that this is not the same as the coordinate system

used in Appendix A. For 0 x ^ L, define

f *
E (x) = E +^l N(x-)dxT (A-7)i c e Jq 1 1

where E is the electric field at x = 0 under static conditions and N(0 is the net
c

doping density. Similarly, define

A r* nEsc(x»t) J t)-n(x^,t) ]dx^ - ^ j J [p(x^, t)-n(x^,t) ]dx^dx. (A-8)
0 0

Note that E satisfies the condition
sc

L

E (x,t)dx = 0 (A-9)
0(

as can be easily verified by integrating (A-8). Finally, define

E^(t) = ^ J [p(x^,t)-n(x^,t) ]dx^dx (A-10)
where E (•) is the variation of the electric field at x = 0 from its static value E .

y c

Evidently, the total electric field E is then

E(x,t) = E/x) + E (t) + E (x,t). (A-11)
X d SC

The total voltage across the avalanche region is V (t) = 1 E(x,t)dx. If we separate
A J 0

into its static part, V^, and its variational part, V , then it follows from (A-9)A £ A a

and (A-11) that V. = i E.(x)dx and
^ •'o

V (t) = LE (t). (A-12)
a a

The total current J is independent of x and is given by

9E (x,t) dE (t)
J(t) = J (x.t) + J^(x,t) + e

From (A-13) it is clear that the quantity J^, defined below, is a function of t only:
3E^^(x,t)

JA(t) =Jp(x, t) +J^(x,t) +e . (A-14)

Integrating (A-14) and using (A-9), we obtain
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JaCO ==M'^ Jo
[Jp(x,t)+J^(x,t)]dx. (A-15)

Thus we see that J^, defined in (A-14), is in fact the spatially-averaged particle
current.

For convenience, we define the following multiplication factors and time constants:
L

Mp = II

A 1 \Cr
P %% )o l3o " P 1

=—x:— ( exp ft (a -a )dx,
n v+vJ-'^M pn 1

n p '0 I 'x

M= ^[M J +M J ]
J n ns p ps

s

T ^ J
J J
ns ps

T T
n p

-1

The following relationships can be shown in a straightforward manner:

T r fL

Tp- = —^ = exp I 1 (a -a )dx
% \ IJq " p

M T = M T = Mt,
n n p p

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

(A-22)

(A-23)

We shall assume that holes are traveling in the positive x direction. It follows

that the boundary conditions for J and J are
p n

J (0,t) = J
P ps

J (L,t) = J .
n ns

(A-24)

(A-25)

4
Under these conditions, KuvSs [4] has derived the following differential equation:

^We have corrected the third term on the right-hand side of (A-26). KuvSs [4] shows a
factor of (a V +a V ), or in his notation, (av +3v ). This term was given correctly in

n n p p P

a paper by KuvSs and Lee [5], although this paper ignored diffusion effects.
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fA.
dt Mt t (v +v )t

n

n p p

dE

3E^^(0,t)
e— +

3t

3^E
sc

(v +v )t
n p n

3E^^(L,t)
3t

1 (
3,(v +V , . Jf.

n p n "'0
(a V +a V )e

n p p n 3t
- e- ;xhli (a -a )dx-

p n 1
dx

ioK 3t3x °p (a -a )dx-Idx.
p n ir

(A-26)

Recall from (A-8) that E is a functional of p and n. Thus all the "correction
sc

terms" on the right-hand side of (A-26) require a solution for p and n. If we assume

that the time variations are "slow" enough (compared to the carrier transit time across

the avalanche region), then we may use the following quasistatic approximations for p

and n:

o, . X A^ ' nsqp°(x,t) = exp ^(x-L)| + exp[^(x-x^)|dx^
P J p-'x *-p •*

J (t) J /-V \ ^ fX rv
(x,t) = ^ ^) - F" expl^(x^-x)

n n \n/ n-'O'^ *-n
qn

where

J®(x,t) = J exp
p ps

I \ (a -a )dxT
IJo P " 1

(ap-a_^)dx2 dXi

£*»'"• Ii, (a -a )dx-Idx
P n 1

J.(t)-J -J exp
A ns ps (So^vV'"')]

(A-27)

(A-28)

(A-29)

The superscript zero signifies a static approximation for a dynamic variable. Here

the time dependence of J® arises both from J,(t) and the fact that a and a are
p A p n

functions of the time-dependent electric field. The approximate electric field used

in evaluating all ionization integrals is

E®(x,t) = E^(x) + E (t) + E (x)
X a s

(A-30)

where E (x) is some sort of low-order correction for the space-charge field E (x,t)

(compare with (A-11)). Usually, we assume that the current density is small enough

so that E may be ignored,
s

If we use the quasistatic carrier densities given in (A-27) and (A-28) to
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evaluate the correction terms on the right-hand side of (A-26) and if we ignore the

second-order time derivative (this is consistent with the assumption of "slow" time

variations) then after some straightforward calculations it is found that (A-26) can

be written in the form

dJ, j^(t)

a a

We shall give expressions for s^, 62» and s^* First, however, we must make the
following definitions:

X I ^x

J dJ dE dE

^ M(E )t(E ) " t(E )

f.(x,E ) =
1 a

Sa exp II (a -a )dx„ldx-0" 13x^ p " ^
7l ni ^

3oVP [

f2(x,E^) fi Jp^expfJ (a -a„)dx] ( (o'-o')dx, —
Uo P ° Ho P " ^ 1.JoVP 1J^(

• \ •^ps®''P

J +J exp
ns ps Sol"n+"n

la exp I I (a -a )dx«|dx-
dxi \ + ^ —

"1 J [j^a„exp (j^(ap-a„)dxjdx ^

• |J +J exp
' ns ps

•exp [J^(ap-a^)dxJ dx

-23-
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fjCx.E^) =

SoV''p[i. (a -a )dxTIdxp n 1

5}"'IS^ (ap-a„)dX2|dXi

is;exp I ^ (a^-a^)dx |̂dx.

U">n S

(A-34)

For convenience, we define the following function 6(*)i

6(1) ^ 1

6(2) = 6(3) = 0.

Next, we define

(A-35a)

(A-35b)

and

IV 1 V̂x^^(x-Dj fi(xi
p J n •'0

n •'x *• n J

ri(x,Ea) = -6 (i)exp|7;^(x-L) I +

p 'x

h^(x,Ea) = 6(i)< exp -^(x-L) - ^
V •• p -I V L

P P

D

,Ea)exp|̂ (x^-x) [dx^
n

for i = 1,2,3;

l-expCE .
n

(A-36)

+ 1 V-i"! -LSa-x)f^(x.E^)dx
n p «• 0 U •'

";ri exp(^(x-Xj^))f^(x^,E^)dXj^n •'q ^ n ' p •'x p

x)-l]f^(x,E^)dx
V L •'O*- p ' J

for i = 1,2,3. (A-37)

Finally, s^, s^, and are given by
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nppa npna

-;—ir~k—TITT ( (a V+Di V)h (x,E )expf \ (a -a )dx-]dx
^0 nP P" i a 13^, P ti IJ

+7—Zr~T—7FT ( r (x,E )exp [ I (o -a )dx-]dx, for 1=1,2,3.
(A-38)

The functions Mand t can be expressed equally well in terms of = LE^
(see (A-12)). By a slight abuse of notation, we shall denote these quantities by

M(V^) and x(V^) . Equation (A-31) can then be rewritten in terms of and = AJ^
as follows:

+ X . ... s = ... > + n(v )(i.-p(v.)i,):j-^ (a-39)dt M(V )k:(V )t(V ) ic(V )t(V ) a'^ A a s dt
21 d d 21

where

=Li^Vr ^slir) (A-Ai)
a

-S (^)
P(vJ=-%^, . (A-42)

if)

ic(v ) = 1
a

J
s 3^

Finally, we should note that KuvSs [4] and Kuv&s and Lee [5] have shown that

the precise choice of the avalanche zone boundaries (0 and L) is not critical as long

as all significant impact ionization is included between these boundaries and L is

small enough to justify the quasistatic approximation.
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FIGURE CAPTIONS

Fig. 1. The general circuit model for an SDR IMPATT diode. The function h(*) is given

in (2), and t, = W./v, where v is the velocity of the majority carriers in the
d d

drift region. A derivation of the circuit model's structure is given in

Appendix A. See Sections III and IV for other details.

Fig. 2. (a) Circuit model of the avalanche region utilizing a linear inductor and a

nonlinear controlled voltage source.

(b) Circuit model equivalent to (a) which utilizes a nonlinear inductor. The

constants b and (j)^ are arbitrary.
Fig. 3. An illustration showing how the controlled current source I^ can be modeled

using a linear, distributed one-port with current impulse response h(0*

Fig. 4. The functions ic for a silicon PIN avalanche region of width

W= 6.9x10 ^cm.
(a) vs. V^.
(b) vs. V^.
(C)< = vs. V^.

Fig. 5. The various nonlinear functions associated with (3) for a silicon PIN avalanche

region of width W= 6.9x10 ^cm. Recall from (5) that p(V ) E1 in this case.
(a) (kt) vs. V , assuming r = 1.

(b) n vs. V .
a

(c) (Mkt)""1 vs. V .
a

Fig. 6. Graphs of the function h(*) given in (37).

(a) h(*) in the limit of no diffusion.
-3

(b) h(') for a silicon n-type drift region of length = 10 cm. Here

V = lO^cm/sec, D = 39 cm^/sec, and t- = W,/v = 10 ^^sec.
n n . u a n

(c) Similar to (b) with W, = 10 cm and t, = 10~^^sec.
d d

Fig. 7. A first-order nonlinear circuit model for an SDR IMPATT diode, =o e e

W(v +v )/(6v V ) and t, = W,/v, where v is the velocity of the majority
p n P n d d

carriers in the drift region. In the upper right is shown an open-circuited

transmission line of impedance Zq and delay Tj/2. The impedance Zq and the
capacitance can be any convenient values.

Fig. 8. (a) The small-signal model of the avalanche region based on Fig. 7. Here

.. W(— +
I K T V V

« s ee npC = eA/W, R.r = ~"o > and L = n ^ , t /p \t •
!„«•(£ ) ^ ° 6a(E^)Io

u c



(b) The small-signal avalanche region model of Hulin, Claassen, and Harth [17]

For equal ionization rates, all elements have the same values as in (a). In

addition,

R=(i) ''a V a'(E^)Io '

where y is a constant near unity.



TABLE I. LIST OF SYMBOLS

A cross-sectional area

D diffusion constant

E electric field in the avalanche region

E = V /L (see V and L below)
a a a

E^ static electric field in a PIN avalanche region

Ejj electric field in the drift region

1 terminal current

spatially-averaged particle current in the avalanche region

P drift region particle current

d ° ^d"^o ^0
Q terminal current under static conditions

1 electron current incident on the avalanche region
ns

1 hole current incident on the avalanche region
ps

1=1+1
s ns ps

L width of the avalanche region

q electronic charge

r = 1 /I
ns ps

V carrier velocity

V terminal voltage

variation of the avalanche region voltage from its static value

variation of the drift region voltage from its static value

Vq terminal voltage under static conditions

W width of a PIN avalanche region

W, width of the drift region
d

A
z = a -a

n p

a ionization coefficient

a' = da(E)/dE

a" = d^a(E)/dE^

e dielectric permittivity of the semiconductor
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