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PRUF - AMEANING REPRESENTATION LANGUAGE FOR NATURAL LANGUAGES*

L.A. Zadeh**

Abstract

PRUF — an acronym for Possibilistic Relational (Universal Fuzzy -- Is

a meaning representation language for natural languages which departs from

the conventional approaches to the theory of meaning in several important

respects.

First, a basic assumption underlying PRUF is that the imprecision that

is intrinsic in natural languages is, for the most part, possibilistic

rather than probabilistic in nature. Thus, a proposition such as "Richard

is tall" translates in PRUF into a possibility distribution of the variable

Height(Richard), which associates with each value of the variable a number

in the interval [0,1] representing the possibility that Height(Richard)

could assume the value in question. More generally, a proposition, p,

translates into a procedure, P, which returns a possibility distribution,

with P and representing, respectively, the meaning of p and the

information conveyed by p. In this sense, the concept of a possibility

distribution replaces that of truth as a foundation for the representation

of meaning in natural languages.

Second, the logic underlying PRUF is not a two-valued or multivalued

logic, but a fuzzy logic, FL, in which the truth-values are linguistic,

that is, are of the form true, not true, very true, more or less true,

not very true, etc., with each such truth-value representing a fuzzy subset

To Professor I.M. Gel'fand, who had suggested--a decade ago--the applica
tion of the theory of fuzzy sets to natural languages.

Computer Science Division, Department of Electrical Engineering and
Computer Sciences and the Electronics Research Laboratory, University of
California, Berkeley, CA 94720. Research supported by National Science
Foundation Grant MCS77-07568 and Naval Electronic Systems Command
Contract N00039-77-C-0022.
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of the unit interval. The truth-value of a proposition is defined as its

compatibility with a reference proposition, so that given two propositions

p and r, one can compute the truth of p relative to r.

Third, the quantifiers in PRUF -- like the truth-values — are allowed

to be linguistic, i.e., may be expressed as most, many, few, some, not very

many, almost all,etc. Based on the concept of the cardinality of a fuzzy

set, such quantifiers are given a concrete interpretation which makes it pos-

ble to translate into PRUF propositions exemplified by "Many tall men are

much taller than most men," "All tall women are blonde is not very true,"

etc.

The translation rules in PRUF are of four basic types: Type I - per

taining to modification; Type II - pertaining to composition; Type III -

pertaining to quantification; and Type IV - pertaining to qualification

and, in particular, to truth qualification, probability qualification and

possibility qualification.

The concepts of semantic equivalence and semantic entailment in PRUF

provide a basis for question-answering and inference from fuzzy premises.

In addition to serving as a foundation for approximate reasoning, PRUF

may be employed as a language for the representation of imprecise knowledge

and as a means of precisiation of fuzzy propositions expressed in a natural

language.



PRUF - A MEANING REPRESENTATION LANGUAGE FOR NATURAL LANGUAGES*

L.A. Zadeh

1. Introduction

In a decade or so from now --when the oerformance of natural lanquage

understanding and question-answering systems will certainly be much more

impressive than it is today --it may well be hard to comprehend why lin

guists, philosophers, logicians and cognitive scientists have been so reluc

tant to come to grips with the reality of the pervasive imprecision of

natural languages and have persisted so long in trying to fit their theories

of syntax, semantics and knowledge representation into the rigid conceptual

mold of two-valued logicJ

A fact that puts this issue into a sharper perspective is that almost

any sentence drawn at random from a text in a natural language is likely to

contain one or more words that have a fuzzy denotation--that is, are labels

of classes in which the transition from membership to nonmembership is

gradual rather than abrupt. This is true, for example, of the italicized

words in the simple propositions "John is tall," "May has dark hair," and

To Professor I.M. Gel'fand, who had suggested—a decade ago—the applica
tion of the theory of fuzzy sets to natural languages.

'fc'fc

Computer Science Division, Department of Electrical Engineering and
Computer Sciences and the Electronics Research Laboratory, University of
California, Berkeley, CA 94720. Research supported by National Science
Foundation Grant MCS77-07568 and Naval Electronic Systems Command Contract
N00039-77-C-0022.

^An incisive discussion of this and related issues may be found in Gaines
(1976).
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Although the terms fuzzy and vague are frequently used interchangeably in
the literature, there is, in fact, a significant difference between them.
Specifically, a proposition, p, is fuzzy if it contains words which
are labels of fuzzy sets; and o is vague if it is both fuzzy and insuffi
ciently specific for a particular purpose. For example, "Bob will be back
in a few minutes" is fuzzy, v/hile "Bob will be back sometime" is vague if
it is insufficiently informative as a basis for a decision. Thus, the
vagueness of a proposition is a decision-deoendent characteristic whereas
its fuzziness is not.



"May is much younger than John," as well as in the somewhat more complex and

yet coimionplace propositions exemplified by: "Most Frenchmen are not blond,"

"It is very true that many Swedes are tall," "It is quite possible that many

wealthy Americans have high blood pressure," and "It is probably quite true

that most X's are much larger than most Y's."

The numerous meaning representation, knowledge representation and query
3

representation languages which have been described in the literature --

prominent among which are semantic networks, predicate calculi, relation

algebra, Montague grammar, conceptual dependency graphs, logical networks,

AIMDS, ALPHA, CONVERSE, DEDUCE, DILOS, HAM-RPM, HANSA, ILL, KRL, KRS, LIFER,

LSP, LUNAR, MAPL, MEANINGEX, MERLIN, OWL, PHLIQAI, PLANES, OUEL, REL, REOUEST,

SAM, SCHOLAR, SEQUEL, SQUARE, and TORUS — are not oriented toward the represen

tation of fuzzy propositions, that is, propositions containing labels of

fuzzy sets, and hence have no facilities for semantic --as opposed to syn-
4

tactic--inference from fuzzy premises. However, facilities for the repre

sentation and execution of fuzzy instructions are available in the program

ming languages FUZZY (LeFaivre, 1974), FLOU and FSTDS (Noguchi, Umano,

Mizumoto & Tanaka, 1976, 1977) and in the system modelling language of

Fellinger (1974).

To clarify this remark, it should be noted that, although a fuzzy

proposition such as "Herb is tall," may be—and frequently is—represented

in predicate notation as Tall(Herb), such a representation presupposes that

Tall is a predicate which partitions a collection of individuals, U,

into two disjoint classes: those for which Tall(Herb) is true and those
_

A list of representative papers and books dealing with the subject of
meaning representation languages and related issues is presented in the
appended bibliography.

4
Semantic inference differs from syntactic inference in that it involves
the meaning of premises while syntactic inference involves only their
surface structure.



for which Tall(Herb) is false. One could, of course, interpret Tall as a

predicate in a multivalued logic -- in which case the extension of Tall

would be a fuzzy subset of U -- but even such more general representations

cannot cope with quantified or qualified propositions of the form "Most tall

men are fat," "It is very true that X is much larger than Y," "It is quite

possible that if X is large then it is very likely that Y is small," etc.

In earlier papers (Zadeh, 1973, 1975abc, 1976ab; Bellman and Zadeh, 1976),

we have argued that traditional logical systems are intrinsically unsuited

for the manipulation of fuzzy knowledge — which is the type of knowledge

that underlies natural languages as well as most of human reasoning — and

have proposed a fuzzy logic, FL, as a model for approximate reasoning. In

this logic, the truth-values are linguistic, i.e., of the form true, not

true, very true, not very true, more or less true, not very true and not

very false, etc., with each truth-value representing a fuzzy subset of the

unit interval. In effect, the fuzziness of the truth-values of FL provides

a mechanism for the association of imprecise truth-values with imprecise

propositions expressed in a natural language, and thereby endows FL with a

capability for modeling the type of qualitative reasoning which humans

employ in uncertain and/or fuzzy environments.

More recently, the introduction of the concept of a possibility distribu

tion (Zadeh, 1977ab) has clarified the role of the concept of a fuzzy
5restriction in approximate reasoning, and has provided a basis for the

development of a meaning representation language named PRUF (an acronym for
"5 ;

A fuzzy restriction is a fuzzy set which serves as an elastic constraint
on the values that may be assigned to a variable. A variable which is
associated with a fuzzy restriction or, equivalently, with a possibility
distribution, is a fuzzy variable.
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£ossibilist1c Relational Universal £uzzy) in which -- in a significant

departure from tradition — it is the concept of a possibility distribution,

as opposed to truth, that plays the primary role.

The conceptual structure of PRUF is based on the premise that, in sharp

contrast to formal and programming languages, natural languages are intrin

sically incapable of precise characterization on either the syntactic or

semantic level. In the first place, the pressure for brevity of discourse

tends to make natural languages maximally ambiguous in the sense that the

level of ambiguity in human communication is usually near the limit of what

is disambiguable through the use of an external body of knowledge which

is shared by the parties in discourse.

Second, a significant fraction of sentences in a natural language can

not be characterized as strictly grammatical or ungrammatical. As is well

known, the problem of partial grammaticality is accentuated in the case of

sentences which are partially nonsensical in the real world but not necessarily

in an imaginary world. Thus, a realistic grammar for a natural language

should associate with each sentence its degree of grammaticality--rather

than merely generate the sentences which are completely grammatical. The

issue of partial grammaticality has the effect of greatly complicating the

problem of automatic translation from a natural language into a meaning

representation language -- which is an important aspect of Montague-type

grairmars (Montague, 1974; Partee, 1976b).

Third, as was alluded to already, a word in a natural language is

usually a summary of a complex, multifaceted concept which is incapable of

precise characterization. For this reason, the denotation of a word is

The term "possibilistic" was coined by Gaines and Kohout (1975). The con
cept of a possibility distribution is distinct from that of oossibility in
modal logic and related areas (Hughes and Cresswell, 1968; N. Rescher,
1975).



generally a fuzzy — rather than nonfuzzy — subset of a universe of dis

course. For example, if U is a collection of individuals, the denotation

of the term young man in U is a fuzzy subset of U which is characterized

by a membership function U [0,1], which associates with each
^ youny inari

, individual u in U the degree -- on the scale from 0 to 1 -- to which u

is a young man. When necessary or expedient, this degree or, equivalently,

the grade of membership, ^young^" '̂ expressed in linguistic terms such as
as high, not high, very high, not very high, low, more or less low, etc.,

with each such term representing a fuzzy subset of the unit interval. In

this case, the denotation of young man is a fuzzy set of Type 2, i.e., a

fuzzy set with a fuzzy membership function.

In essence, PRUF bears the same relation to FL that predicate calculus

does to two-valued logic. Thus, it serves to translate a set of premises

expressed in a natural language into expressions in PRUF to which the rules

of inference in FL (or PRUF) may be applied, yielding other expressions in

PRUF which upon retranslation become the conclusions inferred from the original

premises. More generally, PRUF may be used as a basis for question-answering

systems in which the knowledge-base contains imprecise data, i.e., proposi

tions expressed in a natural or synthetic language which translate into a

collection of possibility and/or probability distributions of a set of

variables.

Typically, a simple proposition such as "John is young," translates in

^ PRUF into what will be referred to as a possibility assignment equation of

the formA

Expositions of the relevant aspects of the theory of fuzzy sets may be
found in the books and papers noted in the biliography, especially
Kaufmann (1975), Megoita and Ralescu (1975), and Zadeh, Fu, Tanaka &
Shimura (1975).



%e(Oohn) = young (1.1)

in which YOUNG — the denotation of young -- is a fuzzy subset of the interval

[0,100], and n^ge(john) possibility distribution of the variable
Age(John). What (1.1) implies is that, if on the scale from 0 to 1, the

degree to which a numerical age, say 30, is compatible with YOUNG is 0.7,

then the possibility that John's age is 30 is also equal to 0.7. Equiva-

lently, (1.1) may be expressed as

JOHNCn^ge=young] (1.2)

in which JOHN is the name of a relation which characterizes John, and Age is

an attribute of John which is particularized by the assignment of the fuzzy

set YOUNG to its possibility distribution.

In general, an expression in PRUF may be viewed as a procedure which

acts on a set of possibly fuzzy relations in a database and computes the

possibility distribution of a set of variables. Thus, if p is a proposi

tion in a natural language which translates into an expression P in PRUF,

and is the possibility distribution returned by P, then P may be

interpreted as the meaning of p while is the information conveyed by
g

p. The significance of these notions will be discussed in greater detail

in Section 3.

The main constituents of PRUF are (a) a collection of translation rules,

and (b) a set of rules of inference. For the present, at least, the trans

lation rules in PRUF are human-use oriented in that they do not provide a
Q n

In effect, P and II^ are the counterparts of the concepts of intension and
extension in language theories based on two-valued logic (Cresswell, 1973;
Linsky, 1971; Miller and Johnson-Laird, 1976).

9
The rules of inference in PRUF and their application to approximate reason
ing are described ina companion paper (Zadeh, 1977b).



system for an automatic translation from a natural language into PRUF. How

ever, by subordinating the objective of automatic translation to that of

achieving a greater power of expressiveness, PRUF provides a system for the

translation of a far larger subset of a natural language than is possible

with the systems based on two-valued logic. Eventually, it may be possible

to achieve the goal of machine translation into PRUF of a fairly wide variety

of expressions in a natural language. It is not likely, however, that this

goal could be attained through the employment of algorithms of the conven

tional type in translation programs. Rather, it is probable that recourse

would have to be made to the use of fuzzy logic for the representation of

imprecise contextual knowledge as well as for the characterization and exe

cution of fuzzy instructions in translation algorithms.

At present, PRUF is still in its initial stages of development, and

hence our exposition of it in the present paper is informal in nature, with

no pretense at definiteness or completeness. Thus, our limited aim in what

follows is to explain the principal ideas underlying PRUF; to describe a set

of basic translation rules which can serve as a point of departure for the

development of other, more specialized, rules; and to illustrate the use of

translations rules by relatively simple examples. We shall not consider

the translation of imperative propositions nor the issues relating to the

implementation of interactive connectives, reserving these and other impor

tant topics for subsequent papers.

In the following sections, our exposition of PRUF begins with an out

line of some of the basic properties of the concept of a possibility distribu

tion and its role in the representation of the meaning of fuzzy propositions.

In Section 3, we consider a number of basic concepts underlying PRUF, among

them those of possibility assignment equation, fuzzy set descriptor.
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proposition, question, database, meaning, information, semantic equivalence,

semantic entailment, and definition.

Section 4 is devoted to the formalization of translation rules of Type I

(modification). Type II (composition), and Type III (quantification). In

addition, a translation rule for relations is derived as a corollary of

rules of Type II, and a rule for forming the negation of a fuzzy proposition

is formulated.

The concept of truth is defined in Section 5 as a measure of the compa

tibility of two fuzzy propositions, one of which acts as a reference propo

sition for the other. Based on this conception of truth, a translation rule

for truth-qualified propositions is developed in Section 6. In addition,

translation rules for probability-qualified and possibility-qualified propo

sitions are established, and the concept of semantic equivalence is employed

to derive several meaning-preserving transformations of fuzzy propositions.

Finally, in Section 7 a number of examples illustrating the application of

various translation rules — both singly and in combination — are presented.
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2. The Concept of a Possibility Distribution and Its Role in PRUF

A basic assumption underlying PRUF is that the imprecision that is

intrinsic in natural languages is, in the main, possibilistic rather than

probabilistic in nature.

As will be seen presently, the rationale for this assumption rests on

the fact that most of the words in a natural language have fuzzy rather than

nonfuzzy denotation. A conspicuous exception to this assertion are the

terms in mathematics. Even in mathematics, however, there are concepts that

are fuzzy, e.g., the concept of a sparse matrix, stiff differential equation,

approximate equality, etc. More significantly, almost all mathematical con

cepts become fuzzy as soon as one leaves the idealized universe of mathematical

constructs and comes in contact with the reality of pervasive ill-definedness,

irreducible uncertainty and finiteness of computational resources.

To understand the relation between fuzziness and possibility,^^ it is

convenient to consider initially a simple nonfuzzy proposition such as^^

p ^ X is an integer in the interval [0,5]

Clearly, what this proposition asserts is that (i) it is possible for

any integer in the interval [0,5] to be a value of X, and (ii) it is not

possible for any integer outside of this interval to be a value of X.

For our purposes, it is expedient to reword this assertion in a form

that admits of extension to fuzzy propositions. More specifically, in the

absence of any information regarding X other than that conveyed by p, we

shall assert that: p induces a possibility distribution IT which
X

^^A more detailed account of this and other issues related to the concept of
a possibility distribution may be found in Zadeh (1977a).

^Vhe symbol ^ stands for "is defined to be" or "denotes."
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associates with each integer u in [0,5] the possibility that u could

be a value of X. Thus,

Poss{X = u} = 1 for 0 £ u £ 5

and

Poss{X = u} = 0 for u < 0 or u > 5

where Poss{X = u} is an abbreviation for "The possibility that X may assume

the value u." For the proposition in question, the possibility distribution

is uniform in the sense that the possibility-values are equal to unity

for u in [0,5] and zero elsewhere.

Next, let us consider a proposition q which may be viewed as a fuzzi-

fied version of p, namely,

q ^ X is a small integer

12
where "small integer" is the label of a fuzzy set defined by, say,

SMALL INTEGER = 1/0+1/1+0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (2.1)

in which + denotes the union rather than the arithemtic sum, and a fuzzy

singleton of the form 0.6/3 signifies that the grade of membership of the

integer 3 in the fuzzy set SMALL INTEGER -- or, equivalently, the compati

bility of 3 with SMALL INTEGER - is 0.6.

At this juncture, we can make use of the simple idea behind our inter

pretation of p to formulate what might be called the possibility postulate

— a postulate which may be used as a basis for a possibilistic intepreta-

tion of fuzzy propositions. In application to q, it may be stated as:
— —

To differentiate between a label and its denotation, we express the
latter in uppercase symbols. To simplify the notation, this convention
will not be adhered to strictly where the distinction can be inferred
from the context.

P '
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Possibility Postulate. In the absence of any information regarding X

other than that conveyed by the proposition q ^ X is a small integer, q

induces a possibility distribution 11^^ which equates the possibility of X

taking a value u to the grade of membership of u in the fuzzy set SMALL

INTEGER. Thus

Poss{X = 0} = Poss{X = l} = 1

Poss{X = 2} = 0.8

Poss{X = 3} = 0.6

PossCX = 4} = 0.4

Poss{X = 5} = 0.2

and

Poss{X = u} = 0 for u < 0 or u > 5

More generally, the postulate asserts that if X Is a variable which

takes values in U and F is a fuzzy subset of U, then the proposition

q § X is F (2.2)

induces a possibility distribution which is equal to F, i.e..

= F (2.3)

implying that

Poss{X =u} = yp(u) , uGU (2.4)

where Ppi U-»• [0,1] is the membership function of F, and ]jp(u) is the

grade of membership of u in F.

In essence, then, the possibility distribution of X is a fuzzy set

which serves to define the possibility that X could assume any specified

value u in U. The function tTj^: U [0,1] which is equal to Pp and
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which associates with each u G U the possibility that X could take u

as its value is called the possibility distribution function associated with

X. In this connection, it is important to note that the possibility distribu

tion defined by (2.3) depends on the definition of F and hence is purely

subjective in nature. '

We shall refer to (2.3) as the possibility assignment equation because

it signifies that the proposition "X is F" translates into the assignment of

a fuzzy set F to the possibility distribution of X. More generally, the

possibility assignment equation corresponding to a proposition of the form

"N is F," where F is a fuzzy subset of a universe of discourse U, and N

is the name of (i) a variable, (ii) a fuzzy set, (iii) a proposition, or

(iv) an object, may be expressed as

IIx(N) = F (2.5)
or, more simply,

= F (2.6)

where X is either N itself (when N is a variable) or a variable that

is explicit or implicit in N, with X taking values in U. For example,

in the case of the proposition "Nora is young," N ^ Nora, X = Age(Nora),

U = [0,100] and

Nora is young = YOUNG (2.7)

where.the symbol stands for "translates into." 5

Since the concept of a possibility distribution is closely related to

13 ^that of a fuzzy set, possibility distributions may be manipulated by the
T3 ; ;

Strictly speaking, the concept of a possibility distribution is coexten
sive with that of a fuzzy restriction rather than a fuzzy set (Zadeh,
1973, 1975b).
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rules applying to such sets. In what follows, we shall discuss briefly some

of the basic rules of this kind, focusing our attention only on those aspects

of possibility distributions which are of direct relevance to PRUF.

Possibility vs. Probability

Intuitively, possibility relates to our perception of the degree of

feasibility or ease of attainment, whereas probability is associated with

the degree of likelihood, belief, frequency or proportion. All possibilities

14
are subjective, as are most probabilities. In general, probabilistic

information is not as readily available as possibilistic information and is

more difficult to manipulate.

Mathematically, the distinction between probability and possibility

manifests itself in the different rules which govern their combinations,

especially under the union. Thus, if A is a nonfuzzy subset of U, and

IIj^ is the possibility distribution induced by the proposition "N is F,"
15

then the possibility measure, n(A), of A is defined as the supremum of

Up over A, i.e.,

n(A) ^ PossIXeA} =Sup^^^ Up(u) (2.8)

and, more generally, if A is a fuzzy subset of U,

n(A) = PossiX is A} = Sup^(u^(u) Aup(u)} (2.9)

where is the membership function of A and A ^ min.

^^There are eminent authorities in probability theory (DeFinetti, 1974)
who maintain that all probabilities are subjective.

^^The possibility measure defined by (2.8) is a special case of the more
general concept of a fuzzy measure defined by Sugeno (1974) and Terano
and Sugeno (1975).
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From the definition of n(A), it follows at once that the possibility

measure of the union of two arbitrary subsets of U is given by

n(AUB) = n(A) VII(B) (2.10)

where Vi max. Thus, possibility measure does not have the basic additivity

property of probability measure, namely,

P(AUB) = P(A)+P(B) if A and B are disjoint

where P(A) and P(B) are the probability measures of A and B, respec

tively, and + is the arithmetic sum.

An essential aspect of the concept of possibility is that it does not

involve the notion of repeated or replicated experimentation and hence is

nonstatistical in nature. Indeed, the importance of the concept of possi

bility stems from the fact that much -- perhaps most -- of human decision-

making is based on information that is possibilistic rather than probabilistic

in nature.

Possibility Distributions vs. Fuzzy Sets

Although there is a close connection between the concept of a possi

bility distribution and that of a fuzzy set, there is also a significant

difference between the two that must be clearly understood.

To illustrate the point by a simple example which involves a nonfuzzy

set and a uniform possibility distribution, consider a variable labeled

16
In many realistic decision processes it is impracticable or impossible to
obtain objective probabilistic information in the quantitative form that
is needed for the application of statistical decision theory. Thus, the
probabilities that are actually used in much of human decision-making are
(a) subjective, and (b) linguistic (in the sense defined in Zadeh (1975)).
Characterization of linguistic probabilities is related to the issue of
probability qualification, which is discussed in Section 6. A more
detailed discussion of linguistic probabilities may be found in Nguyen
(1976a).
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Sister(Dedre) to which we assign a set, as in

Sister(Dedre) = Sue + Jane + Lorraine

or a possibility distribution, as in

"sister(Dedre) = ^ ^ ""Orraine

(2.11)

(2.12)

where + denotes the union. Now, the meaning of (2.11) is that Sue, Jane

and Lorraine are sisters of Dedre. By contrast, the meaning of (2.12) is

that the sister of Dedre is Sue ^ Jane ojr Lorraine, where ^ is the exclu

sive or. In effect, (2.12) signifies that there is uncertainty in our know

ledge of who is the sister of Dedre, with the possibility that it is Sue

being unity, and likewise for Jane and Lorraine. In the case of (2.11), on

the other hand, we are certain that Sue, Jane and Lorraine are all sisters

of Dedre. Thus, the set {Sue, Jane, Lorraine} plays the role of a possi

bility distribution in (2.12) but not in (2.11).

Usually, it is clear from the context whether or not a fuzzy (or non-

fuzzy) set should be interpreted as a possibility distribution. A diffi

culty arises, however, when a relation contains a possibility distribution,

as is exemplified by the relation RESIDENT v;hose tableau is shown in Table 2.1

Table 2.1

RESIDENT Subject Location

Jack New Rochelle

Jack White Plains

Ralph New Rochelle

Ralph Tarrytown
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In this case, the rows above the dotted line represent a relation in

the sense that Jack resides both in New Rochelle and in V/hite Plains. On

the other hand, the rows below the dotted line represent a possibility dis

tribution associated with the location of residence of Ralph, meaning that

Ralph resides either in New Rochelle or in Tarrytown, but not both. It

should be noted parenthetically that there is no provision for dealing with

this kind of ambiguity in the conventional representations of relational

models of data because the concept of a possibility distribution and the

related issue of data uncertainty have not been an object of concern in the

analysis of database management systems.

Representation by Standard Functions

In the manipulation of possibility distributions, it is convenient to

be able to express the membership function of a fuzzy subset of the real line

as a standard function whose parameters may be adjusted to fit a given

membership function in an approximate fashion. A standard function of this

type is the S-function, which is a piecewise quadratic function defined by

the equations:

S(u;a,3>Y) = 0 for u £a (2.13)

= 2(—a < u < 6

=1-2(^)^ for 31u<Y
= 1 for u ^ Y

in which the parameter 3 & is the crossover point, i.e., the value of

u at which S(u;a,3,Y) = 0-5. Other types of standard functions which are

advantageous when the arithmetic operations of addition, multiplication and
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division have to be performed on fuzzy numbers, are (i) piecewise linear

(triangular) functions, and (ii) exponential (bell-shaped) functions. A

discussion of these functions and their applications may be found in Nahmias

(1976), and Mizumoto and Tanaka (1976).

There are two special types of possibility distributions which will be

encountered in later sections. One is the unity possibility distribution,

which is denoted by I and is defined by

7rj(u) = 1 for u e U (2.14)

where ttj is the possibility distribution function of I. The other, which

is defined on the unit interval, is the unitary possibility distribution (or

the unitary fuzzy set or the unitor, for short), which is denoted by i and

is defined by
Trj^(v) = V for Ve [0,1] . (2.15)

In the particular case where a truth-value in FL is the unitary fuzzy

set, it will be referred to as the unitary truth-value. On denoting this

truth-value by u-true, we have

%-true'*'' ~ ^ ^ • (2.16)

Projection and Marginal Possibility Distributions

The possibility distributions with which we shall be concerned in the

following sections are, in general, n-ary distributions denoted by

^(X^,...,X )' X-j,...,X^ are variables -- or, equivalently, attributes
— taking values in their respective universes of discourse U-,,.. ,U

1 ' n*

As a simple example in which n = 2, consider the proposition "John is a
JT

When it is necessary to place in evidence that Xtakes values in U (i.e.,
the domain of X is U), we shall express the domain of Xas U(X) or, where
no confusion can arise, as X. (See (2.23).)
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big man," in which BIG MAN is a fuzzy relation F defined by Table 2.2,

with the variables Height and Weight expressed in centimeters and kilograms

respectively.

Table 2.2

BIG MAN Height Weight y

165 60 0.5

170 60 0.6

175 60 0.7

170 65 0.75

180 70 0.9

175 75 0.9

180 75 0.95

180 80 1

185 75 1

The relation in question may also be expressed as a linear form

BIG MAN = 0.5/(165,60 +0.6/(170,60) + ••• +1/(180,80) + ••• (2.17)

in which a term such as 0.6/(170,60) signifies that the grade of member

ship of the pair (170,60) in the relation BIG MAN — or, equivalently, its

compatibility with the relation BIG MAN — is 0.6.

The possibility postulate implies that the proposition "John is a big

man" induces a binary possibility distribution

whose tableau is identical with Table 2.2 except that the label of the last

column is changed from y to ir in order to signify that the compatibility-

values in that column assume the role of possibility-values. What this means

is that, by inducing the possibility distribution
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the proposition "John is a big man" implies that the possibility that John's

height and weight are, say, 170 cm and 60 kg, respectively, is 0.6.

It should be noted that, in general, the entries in a relation F need

not be numbers, as they are in Table 2.2. Thus, the entries may be pointers

to — or identifiers of — physical or abstract objects. For example, the

u's in the relation CUP shown in Table 2.3

CUP

Table 2.3

Identifier

may be pictures of cups of various forms. In this case, given the relation

CUP, the proposition "X is a cup" induces a possibility distribution

such that Poss{X =u-j} = 0.8, and likewise for other rows in the table.

In the translation of expressions in a natural language into PRUF, there

are two operations on possibility distributions (or fuzzy relations) that

play a particularly important role: projection and particularization.

Specifically, let X^ (X^,...,X^) be a fuzzy variable which is asso
ciated with a possibility distribution j or, more simply, 11^^,

with the understanding that 11^^ is an n-ary fuzzy relation in the cartesian

product, U= U^ X•.• xU^, of the universes of discourse associated with

X,,...,X . We assume that lly is characterized by its possibility distribu-
1 n A

tion function -- or, equivalently, membership function — tt

Tiy, for short).

(or
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A variable of the form

i (X. X. ) , (2.18)is; 1^ i|^

where s ^ (i^,...,ij^) is a subsequence of the index sequence (l,...,n),
constitutes a subvariable of X4 (X^,...,X^). By analogy with the concept

of a marginal probability distribution, the marginal possibility distribution

associated with X^^j is defined by

Hw = PrOj,, n/y y X (2.19)
^(s) "(s) ^Xp...,X^)

where U/ \ ^ U. x--* xu. , and the operation of projection is defined --{S} 1,^
in terms of possibility distribution functions -- by

''X(3/"(s)) = (2.20)

where U/^\ ^ (u. ,...,u. ) and U/ ,x ^ (u. ,...,u. ), with s' denotingKS) i|^ vs ; j-j

the index sequence complementary to s (e.g., if n = 5 and s = (2,3),

then (s') = (1,4,5)). For example, for n = 2 and s = (2), (2.16) yields

%("2^ = ^X.,.X2)("r"2) (2.21)

as the expression for the marginal possibility distribution function of X^.

The operation of projection is very easy to perform when is

expressed as a linear form. As an illustration, assume that U.| = U2 = a +b,

or, more conventionally, {a,b}, and

Il/y Y \ = O.Saa +0.6ab +0.4ba +0.2bb (2.22)

in which a term of the form 0.6ab signifies that
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Poss{X^ =a, X2 =b} = 0.6 .

To obtain the projection of on, say, U2 it is sufficient to
18

replace the value of X^ in each term in (2.22) by the null string A. Thus

Projy j = 0.8a +0.6b +0.4a +0.2b

= 0.8a + 0.6b .

To simplify the notation, it is convenient -- as is done in SQUARE

(Boyce et al, 1974) --to omit the word Proj in (2.15) and interpret

as X. x***xX. (see (2.19) and f. 17). Thus,

In some applications, it is convenient to have at one's disposal not

only the operation of projection, as defined by (2.20), but also its dual,

conjunctive projection,^^ which is defined by (2.20) with Sup replaced by

Inf. It is easy to verify that the latter can be expressed in terms of the

former as

Proj,, n,,. „ V= (Proj,, J' (2.24)

in which Proj stands for conjunctive projection and ' denotes the comple

ment, where the complement of a fuzzy set F in U is a fuzzy set F'

defined by
To

If r and s are two tuples and a and 3 are their respective possibilities,
then ar+3r = (aV 3)r. Additional details may be found in Zadeh (1977a).

19A more detailed discussion of conjunctive projections may be found in
Zadeh (1966). It should be noted that the concept of a conjunctive pro
jection is related to that of a conjunctive mapping in SQUARE (Boyce
et ^., 1974) and to universal quantification in multivalued logic
iRescher, 1969).
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yp,(u) = 1-Up(u) , u e U. (2.25)

Particularization

Informally, by the particularization of a fuzzy relation or a possi

bility distribution which is associated with a variable X ^ (X,, X )
1 ' n' *

is meant the effect of specification of the possibility distributions of one

or more subvariables of X. In the theory of nonfuzzy relations, the result

ing relation is commonly referred to as a restriction of the original rela

tion; and, in the particular case where the values of some of the consti

tuent variables are specified, the degenerate restriction becomes a section

of the original relation.

Particularization in PRUF may be viewed as the result of forming the

conjunction of a proposition of the form "X is F," where X is an n-ary

variable, X^ (X^,...,X^), with particularizing propositions of the form
"X(s) is G," where X^^j is a subvariable of X, and F and G are fuzzy
subsets of U^ U| X—x(j^ and =U.j x—xu^. , respectively.

More specifically, let ^ X) " ^

^X/ = ^(X. ,...,X. ) ~ ^ possibility distributions induced by the

propositions "X is F" and is G," respectively. By definition, the

particularization of ^ X^^j =G (or, equivalently, of F by G)
is denoted by HyClTy =G] (or FClIy =G]) and is defined as the inter-

. 20 (^1 (s)
section of F and G, i.e.,

nyCn„ =G] = fog (2.26)

10If A and B are fuzzy subsets of U, their intersection is defined by
Apg(u), ue U. Thus, yppg(u^,. _ ,u^) =Pp(u^,... ,u^) A

^^(ui^,... ,u-i|̂ ). Dually, the union of Aand Bis denoted as A+B(or AUB)
and is defined by yy^+g(u) ^ y^(u) Vyg(u). (v ^ max and A^ min.)
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where G Is the cylindrical extension of G, i.e., the cylindrical fuzzy

set in X ••• whose projection on is G and whose membership

function is expressed by

Ug(u^,...,u^) 4 ug(u^ ,...,u^ ) , (u^,...,u^) e X... xu^ . (2.27)
1 k

As a simple illustration, assume that = U2 = = a +b and

Jl/y Y Y ^ ~ O.Saab + 0.6baa + 0.1 bab + Ibbb (2.28)\^19^2' 3'

and

n(x X) ^ 0.5aa +0.2ba +0.3bb .

In this case

G = O.Saaa+ O.Saab+ 0.2baa +0.2bab+ 0.3bba+O.Sbbb

FHG = O.Saab + 0.2baa + 0.1 bab + 0.3bbb

and hence

H/y Y Y y \=G] = O.Saab + 0.2baa + O.lbab + 0.3bbb .
1* 2' 3 »^2'

As will be seen in Section 4, the right-hand member of (2.26) represents

the possibility distribution induced by the conjunction of "X is F" and

"X(s) is G," that is, the proposition "X is F and X^^j is G." It is for
this reason that the particularized possibility distribution nyCllv = G]

* ''(s)
may be viewed as the possibility distribution induced by the proposition

"X is F and X# x is G."
Cs)

In cases in which more than one subvariable is particularized, e.g.,

the particularizing propositions are is G," and is H," the
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particularized possibility distribution will be expressed as

~ ^3 • (2.29)
* "(s) ''(r)

Furthermore, particularization may be nested, as in

=G[nY =J]] (2.30)
^ ^(s) Y(t)

where the particularizing relation G is, in turn, particularized by the

proposition is J," where is a subvariable of the variable

associated with G.

It is of interest to observe that, as its name implies, particulariza-

tion involves an imposition of a restriction on the values that may be

assumed by a variable. However, by dualizing the definition of particulariza-

tion as expressed by (2.26), that is, by replacing the intersection with the

union, the opposite effect is achieved, with the resulting possibility

distribution corresponding to the disjunction of "X is F" and is G."

We shall not make an explicit use of the dual of particularization in

the present paper.

As a simple illustration of particularization, consider the proposition

p § John is big, where BIG is defined by Table 2.2, and assume that the

particularizing proposition is q 4 John is tall, in which TALL is defined

by Table 2.4.



27

Table 2,4

TALL Height P

165 0.6

170 0.7

175 0.8

180 0.9

185 1

The assertion "John is big" may be expressed equivalently as "Size(John)

is big," which is of the form "X is F," with X ^ Size(John) and F ^ BIG.

Similarly, "John is tall" may be expressed as "Heinht(John) is tall," or,

equivalently, Y is G, where Y A Height(John) and G § TALL.

Using (2.26), the tableau of the particularized relation

BIG[n^g^.gP^^ =TALL] is readily found to be given by Table 2.5.

Table 2.5

Height Weight P

165 60 0.5

170 60 0.6

175 60 0.7

170 65 0.7

180 70 0.9

175 75 0.8

180 75 0.9

180 80 0.9

185 75 1

The value of u for a typical row in this table, say for (Height = 180,

Weight=75), is obtained by computing the minimum of the values of y for
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the corresponding rows in BIG and TALL (i.e., (180,75) in BIG and (180) in

TALL). As is pointed out in Section 4, this mode of combination of u's

corresponds to noninteractive conjunction, which is assumed to be a standard

default definition of conjunction in PRUF. However, PRUF allows any defini

tion of conjunction which is specified by the user to be employed in place

of the standard definition.

As an additional example, consider the particularized possibility

distribution (see (2.23))

PROFESSOR[Name=Simon; Sex =Male; (2.31)

%e =yxAge2 APPROXIMATELY[Agel =45]]

which describes a subset of a set of professors whose name is Simon, who

are male and who are approximately 45 years old. In this case, the possi

bility distribution of the variable Age is a particularized relation

APPROXIMATELY in which the first variable, Agel, is set equal to 45,

and which is projected on the cartesian product of U(y) and U(Age2), yield

ing the fuzzy set of values of Age which are approximately equal to 45.

It should be noted that some of the attributes in (2.31) (e.g.. Name)

are assigned single values, while others -- whose values are uncertain --

are associated with possibility distributions. As will be seen in the

following sections, this is typical of the particularized possibility

distributions arising in the translation of expressions in a natural language

into PRUF.

Expressions of the form (2.31) are similar in appearance to the commonly

employed semantic network, query language and predicate calculus representa

tions of propositions in a natural language. An essential difference, how

ever, lies in the use of possibility distributions in (2.31) for the
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characterization of the values of fuzzy variables and in the concrete speci

fication of the manner in which possibility distributions and fuzzy relations

are modified by particularization and other operations which will be

described in Sections 4 and 6.
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3. Basic Concepts Underlying Translation Into PRUF

The concept of a possibility distribution provides a natural point

of departure for the formalization of many other concepts which underlie

the translation of expressions in a natural language into PRUF. We shall

present a brief exposition of several such concepts in this section, without

aiming at the construction of an embracing formal framework.

In speaking somewhat vaguely of expressions in a natural language,

what we have in mind is a variety of syntactic, semantic and pragmatic forms

exemplified by sentences, propositions, phrases, clauses, questions, cormiands,

exclamations, etc. In what follows, we shall restrict our attention to

expressions which are (i) fuzzy propositions (or assertions); (ii) fuzzy

questions; and (iii) what will be referred to as fuzzy set descriptors or

simply descriptors.

Propositions

Basically, a fuzzy proposition may be regarded as an expression which

translates into a possibility assignment equation in PRUF. This is analo

gous to characterizing a nonfuzzy proposition as an expression which trans

lates into a well-formed formula (or, equivalently, a closed sentence) in

predicate calculus.

The types of fuzzy propositions to which our analysis will apply are

exemplified by the following. (Italics place in evidence the words that

have fuzzy denotation.)

Ronald is more or less young (3.1)

Miriam was very rich (3.2)

Harry loves Ann (3.3)
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Xismuch smaller than Y (3.4)

X and Y are approximately equal (3.5)

If X is large then Y is small (3.6)

Most Swedes are blond (3.7)

Many men are much taller than most men (3.8)

Most Swedes are tall is not very true (3.9)

The man in the dark suit is walking slowly toward the door (3.10)

Susanna gave several expensive presents to each of her

close friends

If X is much greater than Y then (Z is small is

very probable)

If X is much greater than Y then (Z is smal1 is

quite possible)

(3.11)

(3.12)

(3.13)

In these examples, propositions (3.9), (3.12) and (3.13) are, respec

tively, truth qualified, probability qualified and possibility qualified;

propositions (3.7), (3.8), (3.9) and (3.11) contain fuzzy quantifiers; and

proposition (3.10) contains a fuzzy relative clause.

Fuzzy Set Descriptors

Informally, a fuzzy set descriptor or simply a descriptor is an expres

sion which is a label of a fuzzy set or a characterization of a fuzzy set

in terms of other fuzzy sets. Simple examples of fuzzy set descriptors in
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English are

Very tall man (3.14)

Tall man wearing a brown hat (3.15)

The dishes on the table (3.16)

Small integer (3.17)

Numbers which are much larger than 10 (3.18)

Most (3.19)

All (3.20)

Several (3.21)

Many tall women (3.22)

Above the table (3.23)

Much taller than (3.24)

A descriptor differs from a proposition in that it translates, in

general, into a fuzzy relation rather than a possibility distribution or

a possibility assignment equation. In this connection, it should be noted

that a nonfuzzy descriptor (i.e., a description of a nonfuzzy set) would, in

general, translate into an open sentence (i.e., a formula with free variables)

in predicate calculus. However, while the distinction between open and

closed sentences is sharply drawn in predicate calculus, the distinction

between fuzzy propositions and fuzzy set descriptors is somewhat blurred

in PRUF.
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Questions

For the purposes of translation into PRUF, a question will be assumed

to be expressed in the form B is ?A, where B is the body of the question

-- e.g.. How tall is Vera — and A indicates the form of an admissible

answer, which might be (i) a possibility distribution or, as a special case,

an element of a universe of discourse; (ii) a truth-value; (iii) a proba

bility-value; and (iv) a possibility-value. To differentiate between these

cases, A will be expressed as IT in (i) and, more particularly, as a

when a numerical value of an attribute is desired; as t in (ii); as A

in (iii); and as oj in (iv).

To simplify the treatment of questions, we shall employ the artifice

of translating into PRUF not the question itself but rather the answer to

it, which, in general, will have the form of a fuzzy proposition. As an

illustration.

How tall is Tom ?II —> Tom is ?IT (3.25)

How tall is Tom ?a Tom is ?a tall (3.26)

'Where does Tom live —> Tom lives in ?a (3.27)

Is it true that Fran is blonde Fran is blonde is ?t (3.28)

Is it likely that X is small X is small is TA (3.29)

Is it possible that (Jan is tall is false)

(Jan is tall is false) is Tw
(3.30)

In this way, the translation of questions stated in a natural language

may be carried out by the application of translation rules for fuzzy propo

sitions, thus making it unnecessary to have separate rules for questions.
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Possibility Assignment Equations

The concept of a possibility assignment equation and its role in the

translations of propositions in a natural language into PRUF have been

discussed briefly in Section 2. In what follows, we shall focus our atten

tion on several additional aspects of this concept which relate to the

translation rules which will be formulated in Sections 4 and 6.

As was stated earlier, a proposition of the form p ^ N is F in which

N is the name of (i) a variable, (ii) a fuzzy set, (iii) a proposition, or

(iv) an object, and F is a fuzzy subset of a universe of discourse U,

translates,in general, into a possibility assignment equation of the form

''x(N) "
or, more simply.

nj( = F (3.32)

where X is a variable taking values in U, with X being either N itself

(when N is a variable) or a variable that is explicit or implicit in N.

To place in evidence that (3.32) is a translation of "N is F," we

write

p^N1sF->nj, = F (3.33)
and, conversely,

p ^ N is F = F (3.34)

with the left-hand member of (3.34) referred to as a retranslation of its

right-hand member.

In general, the variable X is an n-ary variable which may be expressed

as X4 (X^,...,X^), with X^,...,X^ varying over U-|,...,U^, respectively.

In some instances, the identification of the X.. and F is quite straight

forward; in others, it may be a highly nontrivial task requiring a great
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deal of contextual knowledge.For this reason, the identification of the

is difficult to formulate as a mechanical process. However, as is

usually the case in translation processes, the problem can be greatly sim

plified by a decomposition of p into simpler constituent expressions,

translating each expression separately, and then combining the results.

The translation rules formulated in Sections 4 and 6 are intended to serve

this purpose.

In general, a constituent variable, X^., has a nested structure of

the form

X^ =Attribute name(Part name(Part name---(N))) (3.35)

which is similar to the structure of selectors in the Vienna Definition

Language (Lucas 1968; Wegner, 1972). As a simple illustration,

Myrna is blonde

where Color(Hair(Myrna)) is a nested variable of the form (3.35) and

BLONDE is the fuzzy denotation of blonde in the universe of discourse

which is associated with the proposition in question.

A problem that arises in some cases relates to the lack of an appro

priate attribute name. For example, to express the translation of "Manuel

is kind," in the form (3.33), we need a designation in English for the

attribute which takes "kind" as a value. When such a name is not available

•in a language, it will be denoted by the symbol A, with a subscript if

necessary, to indicate that "kind" is a value of A. However, what is really

needed in cases like this is a possibly algorithmic definition of the

^^In one form or another, this problem arises in all meaning representation
languages. However, it is a much more difficult problem in machine-
oriented languages than in PRUF, because in PRUF the task of identifying
the X. is assumed to be performed by a human.
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concept represented by A which decomposes it into simpler concepts for

which appropriate names are available.

In the foregoing examples, N represents the name of an object, e.g.,

the name of a person. More generally, N may be a descriptor, which is

usually expressed as a relative clause, as in

The man standing near the door is tall. (3.37)

N may also be a proposition, as in

Lucia is tall is false (3.38)

In (3.37), NA The man standing in the door, while in (3.38),

N = Lucia is tall and X(N) is the truth-value of the proposition "Lucia

is tall."

An important point concerning propositions of the form "N is F" which

can be clarified at this juncture, is that "N is F" should be regarded not

as a restricted class of propositions, but as a canonical form for all

propositions which admit of translation into a possibility assignment

22
equation. Thus, if p is any proposition such that

p -5- = F (3.39)

then upon retranslation it may be expressed as "X is F," which is of the

form "N is F."

As an illustration, the proposition "Paul was rich," may be translated

as

22
This is equivalent to saying that "N is F" is a canonical form for all
propositions which can be expressed in the form "N is F" through the
application of a meaning-preserving transformation. Such transformations
will be defined later in this section in connection with the concept of
semantic equivalence.
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Paul was rich n(weaUh(Paul),Tine) = "ICHxRAST (3.40)

where (Wealth(Paul),Time) is a binary variable whose first component is

the wealth of Paul (expressed as net worth) and the second component is the

time at which net worth is assessed; RICH is a fuzzy subset of U(Wealth);

PAST is a fuzzy subset of the time-interval extending from the present

23
into the past; and RICHxPAST is the cartesian product of RICH and PAST.

Similarly, the proposition "X and Y are approximately equal," where

X and Y are real numbers, may be translated as

Xand Yare approximately equal —11^^^ y) APPROXIMATELY EQUAL (3.41)

2
where APPROXIMATELY EQUAL is a fuzzy relation in R . Upon retranslation,

(3.41) yields the equivalent proposition

(X,Y) is approximately equal (3.42)

which, though ungrammatical, is in canonical form.

A related issue which concerns the form of possibility assignment

equations is that, in general, such equations may be expressed equiva-

lently in the form of possibility distributions. More specifically, if we

have

N is F = F (3.43)

then the possibility assignment equation in (3.43) may be expressed as a

possibility distribution (labeled N) of the variable X(N), with the

tableau of N having the form:

23 ~ ~~
If A and B are fuzzy subsets of U and V, respectively, their cartesian
product is defined by u^^g(u,v) ^ u^(u) '̂ yg(v), ue U, v€ V.
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Table 3.1

N X(N) IT

"l
"2 "2

"n TT
n

where the are the possibility-values of the

As a simple illustration, in the translation

Brian is (3.44)

where TALL is a fuzzy set defined by, say,

TALL = 0.5/160 + 0.6/165 + 0.7/170 + 0.8/175 + 0.9/180+ 1/185 (3.45)

the possibility assignment equation may be replaced by the possibility

distribution

BRIAN Height IT

160 0.5

165 0.6

170 0.7

175 0.8

180 0.9

185 1.0

which in turn may be expressed as the particularized possibility distribution

Brian [nHeight =tall] (3.46)

on the understanding that, initially.
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''bRIAN " ^ ' (3-47)

that is. BRIAN is a unity possibility distribution with

"brIAH^"^ =1 fo»" u6 U. (3.48)

It is this equivalence between (3.44) and (3.46) that forms the basis for

the statement made in Section 1 regarding the equivalence of (1.1) and (1.2)

Definition

All natural languages provide a mechanism for defining a concept in

terms of other concepts and, more particularly, for designating a complex

descriptor by a single label. Consequently, it is essential to have a

facility for this purpose in every meaning representation language, includ-
24ing PRUF.^^

A somewhat subtle issue that arises in this connection in PRUF relates

25 ...
to the need for normalizing the translation of the defimens into

PRUF. As an illustration of this point, suppose that the descriptor

middle-aged is defined as

iddle-aged ^ not young and not old (3.49)mi

Now, as will be seen in Section 5, the translation of the right-hand member

of (3.49) is expressed by

^^Concept definition plays a particularly important role in conceptual
dependency graphs (Schank, 1973), in which a small number of primitive con
cepts are used as basic building blocks for more complex concepts.

^^A fuzzy set Fis normal if and only if Sup^ iJp(u) =1. If Fis subnormal,
it may be normalized by dividing Up by Sup^ yp(u). Thus, the membership
function of normalized F, Norm(F), is given by

'̂ Nonn{F)(") =
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not young and not old —YOUNG' n OLD' (3.50)

where YOUNG and OLD are the translations of young and old, respectively,

and ' denotes the complement. Consequently, for some definitions of

YOUNG and OLD the definition of middle-aged by (3.49) would result in a

subnormal fuzzy set, which would imply that there does not exist any

individual who is middle-aged to the degree 1.

While this may be in accord with one's intuition in some cases, it may

be counterintuitive in others. Thus, to clarify the intent of the defini

tion, it is necessary to indicate whether or not the definiens is to be

26
normalized. For this purpose, the notation

definiendum = Norm(definiens) (3.51)

middle-aged ^ Norm(not young and not old) (3.52)

e.g..

may be employed to indicate that the translation of the definiens ought to

be normalized.

Expressions in PRUF

Expressions in PRUF are not rigidly defined, as they are in formal,

programming and machine-oriented meaning representation languages.

Typically, an expression in PRUF may assume the following forms:

(a) A label of a fuzzy relation or a possibility distribution.

Examples: CUP, BIG MAN, APPROXIMATELY EQUAL.

(b) A particularized fuzzy relation or a possibility distribution.
__

The need for normalization was suggested by some examples brought to the
author's attention by P. Kay (U.C., Berkeley) and W. Kempton (U.T., San
Antonio). (See Kay (1975).)
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Examples:

CUP[ncoiorWeight =35 gr] (3.53)

CAR[Make = Ford; = BIG;

"weight xWeight2 APPR0XimTELY[Weight1 =1500 kg]]

(c) A possibility assignment equation. Examples:

"Height(Valentina) " (3.54)

Hjj = '-^A't'̂ Color°=35 gr]

(d) A definition. Examples:

F ^ H+ G[nv =K] (3.55)
^(s)

where + denotes the union, H is a fuzzy relation and GCiTw = K]
^s)

is a particularized fuzzy relation.

Fi HOUSE[n(,g^jj^ =GREY; np^^^g =HIGH] (3.56)

which defines a fuzzy set of houses which are grey in color and high-priced

(e) A procedure -- expressed in a natural, algorithmic or programming

language -- for computing a fuzzy relation or a possibility distribution.

Examples: Examples (t), (u) and (v) in Section 7.

In general, a fuzzy set descriptor will translate into an expression

of the form (a), (b) or (d), while a fuzzy proposition will usually trans

late into (b), (c) or (d). In all these cases, an expression in PRUF may

be viewed as a procedure which -- given a set of relations in a database
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— returns a fuzzy relation, a possibility distribution or a possibility

27
assignment equation.

Database, Meaning and Information

By a relational database or, simply, a database in the context of

PRUF is meant a collection, V, of fuzzy, time-varying relations which

may be characterized in various ways, e.g., by tables, predicates,

recognition algorithms, generation algorithms, etc. A simple self-

explanatory example of a database, V, consisting of fixed (i.e., time-

invariant) relations POPULATION, YOUNG and RESEMBLANCE is shown in

Table 3.2. What is implicit in this representation is that each of the

variables (i.e., attributes) which appear as column headings, is associated

with a specified universe of discourse (i.e., a domain). For example, the

universe of discourse associated with the variable Name in POPULATION

is given by

U(Name) = Codd + King + Chen + Chang (3.57)

In general, two variables which have the same name but appear in different

tables may be associated with different universes of discourse.

The relations YOUNG and RESEMBLANCE in Table 3.2 are purely

extensional^^ in the sense that YOUNG and RESEMBLANCE are defined directly

^^It should be noted that an expression in PRUF may also be interpreted as a
probability — rather than possibility —manipulating procedure. Because
of the need for normalization, operations on probability distributions are,
in general, more complex than the corresponding operations on possibility
distributions.

^^In the theories of language based on. two-valued logic (Linsky, 1971; Quine,
1970a; Cresswell, 1973) the dividing line between extensional and inten-
sional is sharply drawn. This is not the case in PRUF — in which there
are levels of intensionality (or, equivalently, levels of procedural gener
ality), with pure extensionality constituting one extreme. This issue will
be discussed in greater detail in a forthcoming paper.
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Table 3.2

POPULATION Name RESEMBLANCE Namel Name2 y

Codd Codd King 0.8

King Codd Chen 0.6

Chen Codd Chang 0.6

Chang King Chen 0.5

Chang Chen 0.8

YOUNG Name y

Codd 0.7

King 0.9

Chen 0.8

Chang 0.9

as fuzzy subsets of POPULATION and not through a procedure which would

allow the computation of YOUNG and RESEMBLANCE for any given POPULATION.

To illustrate the point, if POPULATION and YOUNG were defined as shown in

Table 3.3, then it would be possible to compute the fuzzy subset YOUNG

of any given POPULATION by employing the procedure expressed by

=U XName POPULATIONCn^g^ =YOUNG]

Table 3.3

POPULATION Name Age YOUNG Age y

Codd 45 30 0.8

King 31 31 0.75

Chen 42 32 0.70

Chang 33 33 0.60

42 0.4

45 0.3

(3.58)
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where YOUNG in the right-hand member is a fuzzy subset of U(Aqe), and y

is implicit in POPULATION.

Since an expression in PRUF is a procedure, it involves, in general,

not the relations in the database but only their frames.In addition, an

expression in PRUF may involve the names of universes of discourse and/or

their cartesian products; the names of some of the relation elements; and

possibly the values of some attributes of the relations in the database

(e.g., the number of rows).

As an illustration, the frame of the database shown in Table 3.2 (i.e.,

the collection of frames of its constituent relations) is comprised of:

POPULATION Name YOUNG Name

RESEMBLANCE Namel Name2

Correspondingly, an expression in PRUF such as

XNamel RESEMBLANCE[Name2 =King] (3.59)

represents a procedure which returns the fuzzy subset of POPULATION com

prising names of individuals who resemble King.

Ultimately, each of the symbols or names in a database is assumed to

be defined ostensively (Lyons, 1968) or, equivalently, by exemplification;

that is, by pointing or otherwise focusing on a real or abstract object

and indicating the degree —on the scale from 0 to 1 — to which it is com

patible with the symbol in question. In this sense, then, a database may

viewed as an interface with an external world which might be real or abstract

29By the frame of a relation is meant its name and column headings (i.e.,
the names of variables or, equivalently, attributes). The rest of the
relation (i.e., the table without column headings) is its body.
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30
or a combination of the two.

In general, the correspondence between a database and an external world

is difficult to formalize because the universe of discourse associated with

an external world comprises not just a model of that world, say M, but

also the set of fuzzy subsets of M, the set of fuzzy subsets of fuzzy

subsets of M, etc. To illustrate this point, it is relatively easy to

define by exemplification the denotation of red, which is a fuzzy subset of

M; much more difficult to define the concept of color, which is a subset

of P(M), the set of fuzzy subsets of M; and much much more difficult to

define the concept of attribute, which is a subset of P(P(M)) (Zadeh, 1971b)

Viewed in this perspective, the issues related to the correspondence

between a database and an external world are similar to those which arise

in pattern recognition and are even harder to formulate and resolve within

a formal framework. As a direct consequence of this difficulty, a complete

formalization of the concept of meaning does not appear to be an attainable

goal in the foreseeable future.

In the context of PRUF, the concept of meaning is defined in a some

what restricted way, as follows.

Let e be an expression in a natural language and let E be its

translation into PRUF, i.e..

(3.60)

and, more particularly.

(3.61)

if e is a procedure; and

30
In this sense, the concept of a database is related to that of a possible
world in possible world semantics and modal logic (Kripke, 1963; Hughes
and Cresswell, 1968; Partee, 1976a).
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d ^ D (3.62)

if e is a descriptor. To illustrate:

cup CUP (3.63)

red cup = RED] (3.64)

George is young -> = YOUNG (3.65)

or, equivalently,

George is young —>• GEORGECn^g^ =YOUNG] (3.66)

Stated informally, the procedure, E, may be viewed as the meaning

of e in the sense that, if e ^ d, then for any given database V on

which D is defined, D computes (or returns) a fuzzy relation which

is a fuzzy denotation (or extension) of d in its universe of discourse

(which may be different from V), Similarly, if e ^ p, then P is a

procedure which, for any given database V on which P is defined, com

putes a possibility distribution II^. This distribution, then, may be
31 nregarded as the information conveyed by p. In particular, if II^ is

the possibility distribution of a variable X and is a subvariable

of X, then the information conveyed by p about X^^j is given by the
projection of II'̂ on When it is necessary to indicate that II'̂

is the result of acting with P on a particular database V, will be

referred to as the possibility distribution induced by p (or the infor

mation conveyed by p) in application to V.
31 ~ ~

It should be noted that a nonprobabilistic measure of information was
introduced by Kampe de Feriet and Forte (1967,1977). In the present
paper, however, our concern is with the information itself, which is
represented by a possibility distribution, rather than with its measure,
which is a real number.
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As an illustration, consider the proposition

p ^ Mike recently lived near Boston

which in PRUF translates into

RESIDENCE[Subject = Mike; = RECENT PAST;

"location =yxCity! NEAR[City2 =Boston]]

where NEAR is a fuzzy relation with the frame NEAR!Cityl|City2

RECENT PAST is a fuzzy relation with the frame RECENT PAST Time

(3.67)

(3.68)

(in which Time is expressed in years counting from the present to the past),

and Cityl ^2 =Boston] is the fuzzy set of cities which are near
Boston. Given a database, V, (3.68) would return a possibility distribu

tion such as shown (in a partially tabulated form) in Table 3.4, in which

Table 3.4

RESIDENCE Subject Location Time TT

Mike Cambridge 1 1

Mike Cambridge 2 0.8

Mike Cambridge 3 0.6

Mike Wayland 1 0.9

Mike Wayland 2 0.8

• • * •

the third row, for example, signifies that the possibility that Mike lived

in Cambridge 3 years ago is 0.6. In this example, (3.68) constitutes the

meaning of p, while the possibility distribution whose tableau is given

by Table 3.4 is the information conveyed by p.
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In addition to representing the meaning of an expression, e, in a

natural language, the corresponding expression, E, in PRUF may be viewed

as its deep structure — not in the technical sense employed in the litera

ture of linguistics (Chomsky, 1965, 1971) — but in the sense of being

dependent not on the surface structure of e but on its meaning. This

implies that the form of E is independent of the natural language in

which e is expressed, thus providing the basis for referring to PRUF as a

universal language. The same can be said, of course, of most of the mean

ing representation languages that have been described in the literature.

Another characteristic of PRUF that is worthy of mention is that it is

32an intent!onal language in the sense that an expression in PRUF is sup

posed to convey the intended rather than the literal meaning of the corres

ponding expression in a natural language. For example, if the proposition

p § John is no genius is intended to mean that q ^ John is dumb, then

the translation of p into PRUF would be that of q rather than p

itself. As an example illustrating a somewhat different point, consider

the proposition

p § Alia has red hair (3.69)

In PRUF, its translation could be expressed in one of two ways:

(a) Alia has red hair ^ (3.70)

where is an identifier of the color that is commonly referred to as

red in the case of hair; or

32 ;
A thorough discussion of the concept of intentionality may be found in
Grice (1968) and Searle (1971).
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(b) Alia has red hair ^

in which the superscript f (standing for footnote) points to a nonstan-

dard definition of RED which must be used in (3.71). The same convention

is employed, more generally, whenever a nonstandard definition of any entity

in an expression in PRUF must be employed.

Semantic Equivalence and Semantic Entailment

The concepts of semantic equivalence and semantic entailment are two

closely related concepts in PRUF which play an important role in fuzzy

logic and approximate reasoning.

Informally, let p and q be a pair of expressions in a natural

language and let and be the possibility distributions (or the

fuzzy relations) induced by p and q in application to a database V.

Then, we shall say that p and q are semantically equivalent, expressed

as

p q , (3.72)

33
if and only if = II^. Furthermore, if (3.72) holds for all databases,

34
the semantic equivalence between p and q is said to be strong. Thus, the

definition of strong semantic equivalence implies that p and q have

the same meaning if and only if they are strongly semantically equivalent.

In this sense, then, any transformation which maps p into q is

^^Generally, "all databases" should be interpreted as all databases which
are related in a specified way to a reference database. This is analo
gous to the role of the alternativeness relation in possible world
semantics (Hughes and Cresswell, 1968).

^^The concept of strong semantic equivalence as defined here reduces to
that of semantic equivalence in predicate logic (see Lyndon, 1966) when
p and q are nonfuzzy propositions.
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meaning-preserving.

To illustrate, as will be seen in Section 6, the propositions

p 4 Jeanne is tall is true (3.73)

and

q 4 Jeanne is not tall is false (3.74)

in which false is the antonym of true, i.e.,

''FALSE^^^ ° ^ ^ (3.75)

are semantically equivalent no matter how TALL and TRUE are defined. Conse

quently, p and q are strongly semantically equivalent and hence have

the same meaning. On the other hand, the propositions

p 4 Jeanne is tall is very true (3.76)

and

q ^ Jeanne is very tall (3.77)

can be shown to be semantically equivalent when TRUE is the unitary fuzzy

set (see (2.15)), that is

Ptrue^^) = V, VG[0,1]

but not when TRUE is an arbitrary fuzzy subset of [0,1]. Consequently,

p and q are not strongly semantically equivalent.

Usually, it is clear from the context whether a semantic equivalence

is or is not strong. When it is necessary to place in evidence that a

semantic equivalence is strong, it will be denoted by s-*-^. Correspond

ingly, if the equality between and TI^ is approximate in nature, the
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approximate semantic equivalence between p and q will be expressed as

p a-^ q.

While the concept of semantic equivalence relates to the equaltiy of

possibility distributions (or fuzzy relations), that of semantic entailment

35
relates to inclusion. More specifically, on denoting the assertion

"p semantically entails q (or q is semantically entailed by p)," by

p I—> q, we have

p q iff nP C (3.78)

where and n" are the possibility distributions induced by the propo-

sitions p and q, respectively.

As in the case of semantic equivalence, semantic entailment is strong

if the relation holds for all databases. For example, as will be

seen in Section 4, the possibility distribution induced by the proposition

"Gary is very tall" is contained in that induced by "Gary is tall" no

matter how TALL is defined. Consequently, we can assert that

Gary is very tall s»—> Gary is tall (3.79)

where s^-^ denotes strong semantic entailment. On the other hand, the

validity of the semantic entailment

Gary is very tall Gary is not short (3.80)

depends on the definitions of tall and short, and hence (3.80) does not

represent strong semantic entailment.

35If Aand Bare fuzzy subsets of U, then Ac Biff u^(u) £ Pg(u), u g U.
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As was stated earlier, the concepts of semantic equivalence and

semantic entailment play an important role in fuzzy logic and approximate

reasoning (Zadeh, 1977b). In the present paper, we shall make use of the

concept of semantic equivalence in Sections 4 and 6 to derive several

useful meaning-preserving transformations.
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4. Translation Rules of Types I, II and III

. To facilitate the translation of expressions in a natural language into

PRUF, it is desirable to have a stock of translation rules which may be

applied singly or in combination to yield an expression, E, in PRUF,

which is a translation of a given expression, e, in a natural language.

The translation rules which apply to descriptors may readily be deduced

from the corresponding rules for propositions. Consequently, we shall

restrict our attention in the sequel to the translation of propositions.

The translation rules for propositions may be divided into several

basic categories, the more important of which are:

Type I. Rules pertaining to modification.

Type II. Rules pertaining to composition.

Type III. Rules pertaining to quantification.

Type IV. Rules pertaining to qualification.

Simple examples of propositions to which the rules in question apply

are the following

Type I. X is very small (4.1

X is much larger than Y (4.2

Eleanor was very upset (4.3

The man with the blond hair is very tall (4.4

Type II. X is small and Y is large (conjunctive composition) (4.5

X is small or Y is large (disjunctive composition) (4.6

If X is small then Y is large (4.7

(conditional composition)

If X is small then Y is large else Y is very large (4.8)

(conditional and conjunctive composition)
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Type III. Most Swedes are tall (4.9)

Many men are much taller than most men (4.10)

Most tall men are very intelligent (4.11)

Type IV. Abe is young is not very true (truth qualification) (4.12)

Abe is young is quite probable (4.13)

(probability qualification)

Abe is young is almost impossible (4.14)

(possi bi1i ty qua1i fi cati on)

Rules of Types I, II and III will be discussed in this section.

Rules of Type IV will be discussed in Section 6, following an exposition

of the concepts of consistency, compatibility and truth in Section 5.

Translation rules in PRUF are generally expressed in a conditional

format exemplified by

then

If p P (4.15)
+

where p^ and are modifications of p and P, respectively. In

effect, a rule expressed in this form states that if in a certain context

p translates into P, then in the same context a specified modification

of p, p^, translates into a specified modification of P, P^. In this

way, the rule makes it explicit that the translation of a modified propo

sition, p^, depends on the translation of p. The simpler notation *

employed in (4.28) conveys the same information, but does so less explicitly.
i. -
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Rules of Type I

A basic rule of Type I is the modifier rule, which may be stated as

follows.

If the proposition

p ^ N is F (4.16)

translates into the possibility assignment equation (see (3.31))

"(X^,...,X^) " ^ (4.17)

then the translation of the modified proposition

p^ i Nis mF (4.18)

where m is a modifier such as not, very, more or less, quite, extremely,

etc., is given by

" x„) = (4.19)

where F is a modification of F induced by m. In particular.

(i) If m^ not, then F^ = F' 4 complement of F ;

+ 2(ii) If m ^ very, then F = F , where

F^ = yp(u)/u

.36

(iii) If m^ more or less, then F^ = where
36The "integral" representation of a fuzzy set in the form F =

(4.20)

(4.21)

(4.22)

(4.23)

Uc(li)/u
U

signifies that F is a union of the fuzzy singletons [ip(u)/u, u GU,
where ""S the membership function of F. Thus, (4.22) means that the

2
membership function of F is the square of that of F.
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vCTuT/u ; (4.24)
U

yc(u)K(u) (4.25)
U

37
where K(u) is the kernel of more or less.

As a simple illustration of (4.21), let p be the proposition "Lisa

is young," where young is a fuzzy subset of the interval [0,100] whose

membership function is expressed in terms of the S-function (2.13) as

(omitting the arguments of y and S):

Ptall " " 5(25,35,45) . (4.26)

Then, the translation of "Lisa is very young" is given by

Lisa is very young %e(Lisa) " ^OUNG^ (4.27)
where

p , = (1 - 5(25,35,45))^
YOUNG

Note that we can bypass the conditional format of the translation

rule (4.16) and assert directly that

Lisa is very young "AgeCLisa) ^ (4-28)

on the understanding that YOUNG is the denotation of young in the context

in which the proposition "Lisa is very young" is asserted. As was stated
37 ; ; ~~~~~~~~~

More detailed discussions of various types of modifiers may be found in
Zadeh (1972a,1975c), Lakoff (1973ab), Wenstop (1975,1976), Mizumoto et al
(1977), Hersh and Caramazza (1976), and other papers listed in the
bibliography. It is important to note that (4.21) and (4.23) should be
regarded merely as standardized default definitions which may be
replaced, if necessary, by the user-supplied definitions.
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earlier, the conditional format serves the purpose of making this understand

ing more explicit.

In some cases, a modifier such as very may be implicit rather than

explicit in a proposition. Consider, for example, the proposition

p ^ Vera and Pat are close friends (4.29)

As an approximation, p may be assumed to be semantically equivalent to

2
q = Vera and Pat are friends (4.30)

so that (using (4.22)) the translation of p may be expressed as (see

(7.21))

Tr(FRIENDS) = FRIENDS^[Namel =Vera; Name2 =Pat] (4.31)

where Tr(FRIENDS) is the possibility of the relation FRIENDS in V. Thus,

what (4.31) implies is that the relation FRIENDS in V is such that

I[j( = (4.32)

where

X=^ FRIENDS[Namel =Vera; Name2= Pat] (4.33)

and 1 is the unitor defined by (2.15).

Rules of Type II

Translation rules of Type II pertain to the translation of propositions

of the form

p = q*r (4.34)

where * denotes an operation of composition, e.g., conjunction (and),

disjunction (or), implication (If...then), etc.
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Under the assumption that the operation of composition is noninter-

38
active (Bellman and Zadeh, 1976), the rules in question may be stated

as follows.

If

q ^ Mis F R/y Y ^ f

and (4.35)

r = N is 6 —>• R/w y \ = G

then

(a) Mis F and N is G R/y y y y x = FHG (4.36)Ui,...,A^,Yi,...,Yn;
= FxG

(b) Mis F or N is G R/y y y y x = F+ G (4.37)

and

(cJ If Mis F then N is GR/y y y yx = F'©G (4.38)1 ^A^,...,Aj^,Y^,...,Y^;

or

(Co) If M is F then N is G R/y y y y x = F x G + F' x vZ U^,...,Am,Yi,...,Y^;
(4.39)

where F and G are fuzzy subsets of U^ x••• xu^ and V= x••• xv^,
respectively; F' and G are the cylindrical extensions of F' and G,

i.e.,

F' = F' XV (4.40)

G = UxG ; (4.41)

oo ...

Informally, a binary operation * on real numbers u, v is nomnteractive
if an increase in the value of u (or v) cannot be compensated by a
decrease in the value of v (or u). It should be understood that the non-
interactive definitions of and and ^ in (4.36) and (4.37) may be
replaced, if necessary, by user-supplied interactive definitions.
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FxG is the cartesian product of F and G which may be expressed as

FHG and is defined by

PpxG^"'̂ ^ = yp(u) Ayg(v) , u GU, Ve V; (4.42)

+ is the union and © is the bounded-sum, i.e.,

" 1A0 - UpCu)+ yg(v)) (4.43)

where u ^ (u.|,... ,u^), v § (v-j,... ,v^), A§ min, + = arithmetic sum
A 39

and - M arithmetic difference. Note that there are two distinct rules

for the conditional composition, (c^) and (C2). Of these, (c.j) is consis

tent with the definition of implication in Lukasiewicz's Ly^-jgp|̂ loqic
(Rescher, 1969), while (C2) -- in consequence of (4.53) -- corresponds to the

relation expressed by the table

Table 4.1

M N

F G

F' V

As a very simple illustration, assume, as in Zadeh (1977b), that

U = V = l+2 + 3, M^x, nIy,

F ^ small ^ 1/1+0.6/2 + 0.1/3 (4.44)

and

If the variables X= (Xi,...,Xn) and Y^ (Yi,...,Yn) have a subvariable,
say Z, in common, i.e., X^ (S,Z) and Y^ (T,Z), then F and G should be
interpreted as cylindrical extensions of F and G in U(S) xu(T) xu(Z)
rather than in U(X)xU(Y), where U(S), U(T) and U(Z) denote, respectively,
the universes in which S, T and Z take their values.
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G^ large § 0.1/1+0.6/2 +1/3 (4.45)

Then (4.36), (4.37), (4.38) and (4.39) yield

X is small and Y is large —> (4.46)

^(X,Y) " 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.1/(2,1) + 0.6/(2,2)
+ 0.6/(2,3) + 0.1/(3,1) + 0.1/(3,2) + 0.1/(3,3)

X is small or Y is large —(4.47)

n(x,Y) = V(l,l) +1/(1,2) +1/(1,3) + 0.6/(2,1) + 0.6/(2,2)
+ 1/(2,3) + 0.1/(3,1) + 0.6/(3,2) + 1/(3,3)

If X is small then Y is large —(4.48)

n(x,Y) = 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.5/(2,1) + 1/(2,2)
+ 1/(2,3) + 1/(3,1) + 1/(3,2) + 1/(3,3)

If X is small then Y is large —> (4.49)

^(X,Y) " 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.4/(2,1) + 0.6/(2,2)
+ 0.6/(2,3) + 0.9/(3,1) + 0.9/(3,2) + 0.9/(3,3)

The rules stated above may be employed in combination, yielding a

variety of corollary rules which are of use in the translation of more

complex forms of composite propositions and descriptors. Among the basic

rules of this type are the following.

(d) If M is F then N is G else N is H (4.50)

^ Il/y Y V

where F CU 4 UtX***xU and G, HcV^V, x---xV . This rule fol lows
1 m In

from the semantic equivalence
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If M is F then N is G else N is H (4.51)

(If M is F then N is G) and (If M is not F then N is H)

and the application of (a) and (c^).

(e) Translation Rule for Relations

Consider a relation, R, whose tableau is of the form shown in Table 4.2

Table 4.2

R "1

X
ro

• ><0

"^11 "^12 • •^in

• •

mn

in which the F.. are fuzzy subsets of the U., respectively. On winter-
• O w

preting R as

R= is F^^ and X2 is F^2

Xi is F21 and X2 is F22 and

is and is and

it follows from (a) and (b) that

R F„x X F, +
In

. and X is Fi„ or
n In

(4.52)

. and X i s F,„ or ... or
n 2n

. and X„ is F„„
n mn

•'ml'' X F
mn

(4.53)

which will be referred to as the tableau rule. This rule plays an impor

tant role in applications to pattern recognition, decision analysis, medical

diagnosis and related areas, in which binary relations are employed to

describe the features of a class of objects (Zadeh, 1976ab).
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As a simple illustration, consider the relation defined by Table 4.3

Table 4.3

X Y

small large

very small not very large

not small very small

in which X and Y are real-valued variables and

small —> SMALL

large —»• LARGE

where SMALL and LARGE are specified fuzzy subsets of the real line.

First, by the application of (4.20) and (4.21), we have

very small —^ SMALL^ (4.54)

not small SMALL' (4.55)

not very large —(LARGE^)' (4.56)

Then, on applying (4.53), we obtain

R SMALL Xlarge + (SMALL^)x(LARGE^)' + SMALL' xSMALL^

which is the desired translation of the relation in question.

Linguistic Variables

The modifier rule in combination with the translation rules for con

junctive and disjunctive compositions provides a simple method for the

translation of linguistic values of so-called linguistic variables (Zadeh,

1973,1975c).
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Informally, a linguistic variable is a variable whose linguistic values

are words or sentences in a natural or synthetic language, with each such

value being a label of a fuzzy subset of a universe of discourse. For exam

ple, a variable such as Age may be viewed both as a numerical variable rang

ing over, say, the interval [0,150], and as a linguistic variable which

can take the values young, not young, very young, not very young, quite

young, old, not very young and not very old, etc. Each of these values may

be interpreted as a label of a fuzzy subset of the universe of discourse

U= [0,150], whose base variable, u, is the generic numerical value of Age.

Typically, the values of a linguistic variable such as Age are built
40x

up of one or more primary terms (which are the labels of primary fuzzy sets },

together with a collection of modifiers which allow a composite linguistic

value to be generated from the primary terms through the use of conjunctions

and disjunctions. Usually the number of primary terms is two, with one

being an antonym of the other. For example, in the case of Age, the primary

terms are young and old, with old being the antonym of young.

Using the translation rules (4.20), (4.21), (4.36) and (4.37) in

combination, the linguistic values of a linguistic variable such as Age may

be translated by inspection. To illustrate, suppose that the primary terms

young and old are defined by

'YOUNG °

and

UqLD =5(40,55,70) (4.58)
Then

not very young —(YOUNG^)' (4.59)

^^Such sets play a role which is somewhat analogous to that of physical
units.
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and

not very young and not very old —»• (YOUNG^)' n(OLD^)' (4.60)
and thus

John is not very young —> n^ge(john) ^ (YOUNG^)' (4.61)
where

U , =1- (1 - 5(20,30,40))^ (4.62)
(YOUNG*^)"

The problem of finding a linguistic value of Age whose meaning approxi

mates to a given fuzzy subset of U is an instance of the problem of

linguistic approximation (Zadeh, 1975c; Wenstop, 1975; Procyk, 1976). We

shall not discuss in the present paper the ways in which this nontrivial

problem can be approached, but will assume that linguistic approximation is

implicit in the retranslation of a possibility distribution into a proposi

tion expressed in a natural language.

Rules of Type III

Translation rules of Type III pertain to the translation of proposi

tions of the general form

p ^ QN are F (4.63)

where N is the descriptor of a possibly fuzzy set, Q is a fuzzy quanti

fier (e.g., most, many, few, some, almost all, etc.) and F is a fuzzy

subset of U. Simple examples of (4.63) are:

Most Swedes are tall (4.64)

Many tall men are fat (4.65)

Some men are much taller than most men (4.66)
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In general, a fuzzy quantifier is a fuzzy subset of the set of integers,

the unit interval or the real line. For example, we may have

SEVERAL ^ 0.2/3 + 0.6/4 + 1/5 + 1/6+0.6/7 + 0.2/8 (4.67)

•1

MOST ^ S(u;0.5,0.7,0.9)/u (4.68)
0

(which means that MOST is a fuzzy subset of the unit interval whose member

ship function is given by S(0.5,0.7,0.9)) and

LARGE NUMBER ^ ^(1 + (4.69)

In order to be able to translate propositions of the form (4.63), it

is necessary to define the cardinality of a fuzzy set, i.e., the number (or

the proportion) of elements of U which are in F. Strictly speaking, the

cardinality of a fuzzy set should be a fuzzy number, which could be defined

as in Zadeh (1977b). It is simpler, however, to deal with the power of a

fuzzy set (DeLuca and Termini, 1972), which in the case of a fuzzy set with
41 . 42

a finite support is defined by

|F| ^^Vip(u^) , u^. GSupport of F (4.70)

where Up(u^.), i =1,...,N, is the grade of membership of u^. in F and
I denotes the arithmetic sum. For example, for the fuzzy set SMALL defined

by
^^The support of a fuzzy subset F of Uis the set of all points in Uat which

yp(u) >0.
^^For some applications, it is necessary to eliminate from the count those

elements of F whose grade of membership falls below a specified threshold.
This is equivalent to replacing F in (4.70) v/ith F^r, where r is a fuzzy
or nonfuzzy set which induces the desired threshold.
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SMALL ^ 1/0 + 1/1 +0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 (4.71)

we have

|F| =1 + 1 +0.8 + 0.6 + 0.4 + 0.2 = 4

In the sequel, we shall usually employ the more explicit notation

Count{F) to represent the power of F, with the understanding that F

43
should be treated as a bag rather than a set. Furthermore, the notation

Prop(F/G) will be used to represent the "proportion" of F in G, i.e.,

A (4.72)

and more explicitly

I(Mp(u^) Apg(u.))
Prop{F/G} = (4.73)

I Pg(Uj)
3

where the summation ranges over the values of i for which

u^. G Support of F n Support of G. In particular, if G= U= finite non-

fuzzy set, then (4.73) becomes

1 ^
Prop{F/U} = (4.74)

where N is the cardinality of U. For convenience, the number Prop{F/U}

will be referred to as the relative cardinality of F and expressed as

1 NProp(F) AProp{F/U} = J Up(u^) . (4.75)

As N increases and U becomes a continuum, the expression for the

power of F tends in the limit to that of the additive measure of F
43

The elements of a bag need not be distinct. For example, the collection
of integers {2,3,5,3,5} is a bag if {2,3,5,3,5} ^ {2,3,5}.

^ -
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(Zadeh, 1968; Sugeno, 1974), which may be regarded as a continuous analog

of the proportion of the elements of U which are "in" F. More specific

ally, if p(u) is a density function defined on U, the measure in ques-

44
tion is defined by

Prop(F) = p(u)ur:(u)du (4.76)
U ^

For example, if p(u)du is the proportion of Swedes whose height lies in

the interval [u,u+du], then the proportion of tall Swedes is given by

(-200
Prop(tall Swedes) = p(u)iJi-y|̂ |_|̂ (u)du (4.77)

where v^jp^n is the membership function of tall and height is assumed to
be measured in centimeters.

In a similar fashion, the expression for Prop{F/G} tends in the

limit to that of the relative measure of F in G, which is defined by

p(u.v)(]jp(u) Apg(v)}dudv
Prop(F/G) ^ — (4.78)

p(v)yp(v)dv
Jv ^

where p(u,v) is a density function defined on UxV and

p(v) = p(u,v)du (4.79)

For example, if F 6 TALL MEN and Gk FAT MEN, (4.78) becomes

^^We employ the notation Prop(F) even in the continuous case to make
clearer the intuitive meaning of measure.
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p(u,v)ii. T,(u) Ay. . (v)dudv
Prop{tall men/fat men} = [Q»200]^[0»^00]

p(v)y. .(v)dv
J[0,100]

where p(u,v)dudv is the proportion of men whose height lies in the interval

[u,u+du] and whose weight lies in the interval [v,v+dv].

The above definitions provide the basis for the quantifier rule for

the translation of propositions of the form "QN are F." More specifically,

assuming for simplicity that N is a descriptor of a nonfuzzy set, the

rule in question may be stated as follows.

If U= {u^.. ,U|̂ } and

N is F = F (4.81)

then

QN are F = q (4.82)

and, if U is a continuum,

QN are F^ np^op(p) =Q (4.83)

which implies the more explicit rule

QN are F Tr(p) = y^( p(u)yp(u)du) (4.84)
w Ju f

where p(u)du is the proportion of X's whose value lies in the interval

[u,u+du], Tr(p) is the possibility of p, and y^ and yp are the
membership functions of Q and F, respectively.

As a simple illustration, if MOST and TALL are defined by (4.68) and

y-j-^j^l^ = 3(160,170,180), respectively, then
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f200
Most men are tall —7r(p) = S( p(u)S(u;160,1970,180)du;0.5,0.7,0.9j

° (4.85)

where p(u)du is the proportion of men whose height (in cm) is in the

interval [u,u+du]. Thus, the proposition "Most men are tall" induces a

possibility distribution of the height density function p which is expressed
by the right-hand member of (4.85).

Modifier Rule for Propositions

The modifier rule which was stated earlier in this section (4.16)

provides a basis for the formulation of a more general modifier rule which
applies to propositions and which leads to a rule for transforming the nega

tion of a proposition into a semantically equivalent form in which the

negation has a smaller scope.

The modifier rule for propositions may be stated as follows:

If a proposition p translates into a procedure P, i.e.,

p P (4.86)

and P returns a possibility distribution in application to a database

V, then mp, where m is a modifier, is semantically equivalent to a

retranslation of mP, i.e.,

mp -<—q (4.87)

where

q —mP (4.88)

In (4.88), mP is understood to be a procedure which returns (in applica

tion to V):
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(n'̂ )' if m^ not (4.89)

(nP)2 if ni ^ very (4.90)
and

(j^P)0.5 ^ ^ (4.91)

For simplicity, the possibility distribution defined by (4.89), (4.90) and

(4.91) will be denoted as mTlP.

On applying this rule to a proposition of the form p 4 N is F and

making use of the translation rules (4.20), (4.21), (4.22), (4.36), (4.37)

and (4.87), we obtain the following general forms of (strong) semantic

equivalence:

(a) m(N is F) —>- N is mF (4.92)

and, in particular,

not(N is F) •<—N is not F (4.93)

very(N is F) N is very F (4.94)

more or less(N is F) —»- N is more or less F (4.95)

(b) m(M is F and N is 6) (X,Y) is m(FxG) (4.96)

and, in particular (in virtue of (4.20), (4.36) and (4.37)),

not(M is F and N is G) (X,Y) is (FxG)' (4.97)

^ (X,Y) is P +G' (4.98)

•(—M is not F or N is not G (4.99)

very(M is F and N is G) M is very F and N is very G (4.100)
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more or less(M is F and N is 6)

Mis more or less F and N is more or less G (4.101)

and dually for disjunctive composition.

(c) m(QN are F) (mQ)N are F (4.102)

and, in particular,

not(QN are F) -<—>- (not 0)N are F (4.103)

which may be regarded as a generalization of the standard negation rules in

predicate calculus, viz.

^ (Vx)F(x) ^ (3x)-.F(x) (4.104)

(3x)F(x) ^ (Vx)-. F(x) (4.105)

To see the connection between (4.104), say, and (4.102), we first note

that, in consequence of (4.84), we can assert the semantic equivalence

QN are F > ant Qare not F (4.106)

where ant Q, the antonym of Q, is defined by

Uant " viqC-v) , vg [0,1] (4.107)

Thus, on combining (4.103) and (4.106), we have

not(QN are F) (ant(not n))N are not F (4.108)

which for Q ^ all gives

not(all Nare F) > (ant(not all))N are not F (4.109)
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Then, the right-hand member of (4.109) may be expressed as

not(all N are F) some N are not F (4.10)

if we assume that

some i ant(not all) (4.11)

In a similar fashion, the modifier rule for propositions may be

employed to derive the negation rules for qualified propositions of the

form q ^ p is Y, where y is a truth-value, a probability-value, or a

possibility-value. Rules of this type will be formulated in Section 5.
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5. Consistency, Compatibility and Truth

Our aim in this section is to lay the groundwork for the translation

of truth-qualified propositions, of the form "p is t," where t is a lin

guistic truth-value. To this end, we shall have to introduce two related

concepts -- consistency and compatibility -- in terms of which the relative

truth of a proposition p with respect to a reference proposition r may

be defined.

The concept of truth has traditionally been accorded a central place

in logic and philosophy of language. In recent years, it has also come

to play a primary role in the theory of meaning — especially in Montague

grammar and possible world semantics.

By contrast, it is the concept of a possibility distribution rather

than truth that serves as a basis for the definition of meaning as well as

other primary concepts in fuzzy logic and PRUF. Thus, as we shall see in

the sequel, the concept of truth in PRUF serves in the main as a mechanism

for assessing the consistency or compatibility of a pair of propositions

rather than — as in classical logic ~ as an indicator of the correspondence

between a proposition and "reality."

Consistency and Compatibility

Let p and q be two propositions of the form p ^ N is F and

q ^ N is G, which translate, respectively, into

p4 Nis F ^ ,X )
and

q ^ Nis G n9w V \ (5.2)

where (X^,...,X^) takes values in U. Intuitive considerations suggest
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that the consistency of p with q (or vice-versa) be defined as the

possibility that "N is F" given that "N is G" (or vice-versa). Thus,

making use of (2.9), we have

Cons{N is F, Mis G} &Poss{N is F|N is G}

= Sup (y_(u) Ayp(u))
ueu ^ ^

(5.3)

where u^ (u^,...,u^) denotes the generic value of (X^,...,X^), and yp
and yg are the membership functions of F and G, respectively.

As a simple illustration, assume that

p 4 N is a small integer (5.4)

q ^ N is not a small integer (5.5)

where

SMALL INTEGER ^ 1/0+1/1+0.8/2 + 0.6/3 + 0.4/4 + 0.2/5 . (5.6)

In this case, Cons{p,q} = 0.4.

As a less simple example, consider the propositions

and

p ^ Most men are tall

q &Most men are short

which translate into (see (4.84))

7rP(p) = y
MOST U

200

p(u)yTALL(")^"

and

Tr^(p) = y
MOST

200

(5.7)

(5.8)

(5.9)

(5.10)
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In this case, assuming that y|v]Q5j is a monotone function, we have

Cons(p,g) - j[( p(u)yj^^^(u)clu) A(
J 0 •'0

If q is assumed to be a reference proposition, which we shall denote

by r, then the truth of p relative to r could be defined as the consis

tency of p with r. It appears to be more appropriate, however, to define

the truth of p relative to r through the concept of compatibility rather

than consistency. More specifically, assume that the reference proposition

r is of the form

r i N is u (5.12)

where u is an element of U. Then, by definition,

Comp{N is u/N is F) ^ yp(u) (5.13)

which coincides with the definition of Poss{X is u|N is F} (see (2.4))

as well as with the definition of the consistency of "N is u" with "M is F."

However, when the reference proposition is of the form r ^ N is G, the

definitions of compatibility and consistency cease to coincide. More

45specifically, by employing the extension principle, (5.13) becomes

Comp{N is G/N is F) = yp(G) (5.14)

y^(u)/yp(u)
[0,1] ^

A ^he extension principle (Zadeh (1975c)) serves to extend the definition of
a mapping f:U ^ V to the set of fuzzy subsets of U. Thus, f(F) ^

yc(u)/f(u), where f(F) and f(u) are, respectively, the images of F and
u

u in V.
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in which the right-hand member is the union over the unit interval of the

fuzzy singletons yQ(u)/yp(u). Thus, (5.14) signifies that the compatibility

of "N is G" with "N is F" is a fuzzy subset of [0,1] defined by (5.14).

The concept of compatibility as defined by (5.14) provides the basis

for the following definition of Truth. .

Truth. Let p be a proposition of the form "N is F," and let r be a

reference proposition, r ^ N is G, where F and G are subsets of U.

Then, the truth, t, of p relative to r is defined as the compatibility

of r with p, i.e.,

T 4 Tr{N is F/N is G} 4 Comp{N is G/N is F} (5.15)

^ Uf(g)
k f Pg(u)/Pp(u)

It should be noted that t, as defined by (5.15), is a fuzzy subset of the

unit interval, implying that a linguistic truth-value may be regarded as a

linguistic approximation to the subset defined by (5.15).

A more explicit expression for t which follows at once from (5.15)

is:

y^(v) = Max^ yg(u) , v e [0,1] (5.16)

subject to

yp(u) = V.

Thus, if Up is 1-1, then the membership function of x may be expressed

in terms of those of F and G as

-1y^(v) =ug(p;'(v)) . (5.17)
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Another immediate consequence of (5.15) is that the truth-value of p

relative to itself is given by

vi^(v) = V

rather than unity. Thus, in virtue of (2.15), we have

Tr{N is F/N is F} = 1 (5.18)

= u-true .

As an illustration of (5.15), assume that

p ^ N is not small (5.19)
and

r 4 N is small (5.20)

where SMALL is defined by (5.6). Then, (5.15) yields

T = 1/0 +0.8/0.2 +0.6/0.4 +0.4/0.6 +0.2/0.8 (5.21)

which may be regarded as a discretized version of the antonym of u-true

(see (4.107)). Thus,

Tr{N is not small/N is small} = ant u-true (5.22)

which, as will be seen later, is a special case of the strong semantic

equivalence

Tr{N is F/N is not F} = ant u-true . (5.23)

As can be seen from the foregoing discussion, in our definition of the

truth-value of a proposition p, t serves as a measure of the compatibility

of p with a reference proposition r. To use this definition as a basis

for the translation of truth-qualified propositions, we adopt the following

postulate.
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Postulate. A truth-qualified proposition of the form "p is t" is

semantically equivalent to the reference proposition, r, relative to which

Tr{p/r} = T . (5.24)

We shall use this postulate in the following section to establish

translation rules for truth-qualified propositions.
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6. Translation Rules of Type IV

Our concern in this section is with the translation of qualified

propositions of the form q = p is y, where y might be a truth-value, a

probability-value, a possibility-value or, more generally, the value of some

specified prepositional function, i.e., a function from the space of pro

positions (or n-tuples of propositions) to the set of fuzzy subsets of the

unit interval.

Typically, a translation rule of Type IV may be viewed as an answer to

the following question: Suppose that a proposition p induces a possi

bility distribution n^. What, then, is the possibility distribution induced

by the qualified proposition q ^ p is y?, where y is a specified truth-

value, probability-value or possibility-value.

In what follows, we shall state the translation rules pertaining to

(a) truth qualification; (b) probability qualification; and (c) possibility

qualification. These are the principal modes of qualification which are

of more or less universal use in natural languages.

Rule for Truth Qualification

Let p be a proposition of the form

p^NisF (6.1)

and let q be a truth-qualified version of p expressed as

q^NisFiST (6.2)

where t is a linguistic truth-value. As was stated in Section 5, q is

semantically equivalent to the reference proposition r, i.e.,

N is F is T N is G (6.3)
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where F, G and t are related by

T =.yp(G) . (6.4)

Equation (6.4) states that t is the image of G under the mapping

lip: U [0,1]. Consequently (Zadeh, 1965), the expression for the member

ship function of G in terms of those of t and F is given by

yg(u) =y^(yp(u)) . (6.5)

Using this result, the rule for truth qualification may be stated

as follows.

If

N is F = F (6.6)

then

W 1 c F 1 c T —

where

Nis F is T-H- Hy = F"^ (6.7)

y +(u) = y (yc(u)) . (6.8)
F ^ ^

In particular, if t is the unitary truth-value, that is,

T = u-true (6.9)

where

then

N is F is u-true —^-NisF. (6.11)

As an illustration of (6.5), if

q ^ N is small is very true (6.12)

where
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= 1 -3(5,10,15) , u e [0,") (6.13)

Utrue =5(0.6,0.8,1.0) (6.14)

then

q-»• Trj((u) =3^(1-S(u;5,10,15) ;0.6,0.8,1.0) . (6.15)

Rule for Probability Qualification

Let p be a proposition of the form (6.1) and let q be a probability-

qualified version of p expressed as

q ^ N is F is X (6.16)

where X is a linguistic probability-value such as probable, very probable,

not very probable, or, equivalently, likely, very likely, not very likely, etc

We shall assume that q is semantically equivalent to the proposition

Prob{N is F} is X (6.17)

in which p ^ N is F is interpreted as a fuzzy event (Zadeh, 1968) . More

specifically, let p(u)du be the probability that XG [u,u+du], where

X ^ X(N). Then

Prob{N is F} =

and hence (6.17) implies that

p(u)yp(u)du (6.18)
U ^

Rr = X . (6.19)
p(u)yp(u)du

U

Equation (6.19) provides the basis for the following statement of the

rule for probability qualification.
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If

N is F = F (6.20)

N is F is X —> Hi- = a (6.21)
p(u)yc(u)du

u

or more explicitly

7^(p(-)) = Uy p(u)yp(u)du
AUu F

(6.22)

where 7r(p(«)) is the possibility of the probability density function p(-)

As an illustration of (6.22), assume that

q = N is small is likely (6.23)

where LIKELY is defined by

^LIKELY ~ (0.7,0.8,0.9) (6.24)

and SMALL is given by (6.13). Then

•00

N is small is likely•7r(p(-)) = p(u) (1 - S(u;5,10,15))du . (6.25)
'0

Note that in this case the proposition in question induces a possibility

distribution of the probability density of X ^ N.

Rule for Possibility Qualification

Our concern here is with the translation of possibflity-qualified propo

sitions of the form

q ^ N is F is (D (6.26)

where w is a linguistic possibility-value such as quite possible, very
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possible, almost impossible, etc., with each such value representing a fuzzy

subset of the unit interval.

By analogy with our interpretation of probability-qualified propositions,

q may be interpreted as

N is F is 0) —»- Poss{X is F} is co (6.27)

which implies that

Tin fM • ri = (A) • (6.28)Poss{N IS F}

Now suppose that we wish to find a fuzzy set 6 such that

N is F is 0) N is 6 . (6.29)

Then, from the definition of possibility measure (2.9), we have

Poss{N is F|N is 6} =Sup(iJp(u) Apg(u)) (6.30)
and hence

Nis Fis 0) —> 7r(yQ(*)) = Sup(yp(u) Ayg(u)) (6.31)

where u is the membership function of w. Note that (6.31) is analogous
(A)

to the translation rule for probability-qualified propositions (6.22).

Although the interpretation expressed by (6.31) is consistent with

(6.22), it is of interest to consider alternative interpretations which are

not in the spirit of (6.28). One such interpretation which may be employed

as a basis for possibility qualification is the following.

Assume that w = 1-possible (i.e.j ~ ^ v = 1 and

y (v) = 0 for v e [0,1)), and let
0)

^^A more detailed discussion of this issue may be found in Zadeh (1977a).
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p^NisF->nY = F. (6.32)
7

Then

q ^ Nis F is 1-possible llj^ =G (6.33)

where G is a fuzzy set of Type 2^^ which has an interval-valued membership

function defined by

yQ(u) = [up(u),l] , u e u (6.34)

with the understanding that (6.34) implies that Poss{X=u} may be any

number in the interval [iJp(u),l].

More generally, if w § a-possible (i.e., y (v) = a for v = 1 and
Cl)

U (v) = 0 for V G [0,1)), then
(0

N is F is a-possible —^ = G (6.35)

where G is a fuzzy set of Type 2 defined by

Pq(u) = [aAyg(u), a® (l-yp(u))] , uGU (6.36)

and © denotes the bounded sum (see (4.43)). The rules expressed by (6.33)

and (6.35) should be regarded as provisional in nature, since further

experience in the use of possibility distributions may suggest other, more

appropriate, interpretations of the concept of possibility qualification.

Modifier Rules for Qualified Propositions

As in the case of translation rules of Types I, II and III, the modi

fier rule for propositions may be applied to translation rules of Type IV ^

to yield, among others, the negation rule for qualified propositions. In

fuzzy set F is of Type 2 if, for each u e U, yp(u) is a fuzzy subset of
Type 1, i.e., [0,1].
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what follows, we shall restrict our attention to the application of this

rule to truth-qualified propositions.

Specifically, on applying the modifier rule for propositions to (6.7),

we obtain the following general form of strong semantic equivalence

m(N is F is t) N is F is mt (6.37)

which implies that

not(N is F is t) Nis F is not t (6.38)

very(N is F is t) Nis F is very t (6.39)
and

more or less(N is F is t) ^ Nis F is more or less t (6.40)

On the other hand, from (6.7) it also follows that

N is not F is t > N is F is ant x (6.41)

where ant x is the antonym of x. Thus, for example,

false ^ ant true (6.42)

i.e.

^FALSE^^^ ^ ' vG[0,1] (6.43)

where FALSE and TRUE are the fuzzy denotations of false and true, respec

tively. Similarly, from (6.7) it follows that

0 5N is very F is x N is F is ' x (6.44)

where the "left square-root" of x is defined by

Uo 5 (v) &U^(v^) j Ve [0,1] (6.45)
X

and, more generally, for a "left-exponent" a.
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P„ (v) 4u^(v''/") . VS [0,1] (6.46)
T

On applyinq these rules in combination to a proposition such as "Barbara

is not very rich," we are led to the followinq chain of semantically equiva

lent propositions:

Barbara is not very rich (6.47)

Barbara is not very rich is u-true (6.48)

Barbara is very rich is ant u-true (6.49)

0 5Barbara is rich is * (ant u-true) (6.50)

where

Un q (v)=l-v2 (6.51)
(ant u-true)

If true is assumed to be approximately semantically equivalent to

u-true, the last proposition in the chain may be approximated by

Barbara is rich is not very true . (6.52)

Thus, if we know that "Barbara is not very rich," then by using the chain

of reasoning represented by (6.48), (6.49), (6.50) and (6.52), we can assert

that an approximate answer to the question "Is Barbara rich?!" is "not very

true."

This example provides a very simple illustration of a combined use of

the concepts of semantic equivalence and truth qualification for the purpose

of deduction of an approximate answer to a given question, given a knowledge

base consisting of a collection of fuzzy propositions. Additional
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illustrations relating to the application of PRUF to approximate reasoning

may be found in Zadeh (1977b).
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7. Examples of Translation into PRUF

As was stated earlier, the translation rules formulated in the preced

ing sections are intended to serve as an aid to a human user in the transla

tion of propositions (or descriptors) expressed in a natural language into

PRUF. The use of the rules in question is illustrated by the following

examples, with the understanding that, in general, in the translation of

an expression, e, in a natural language into an expression, E, in PRUF,

E is a procedure whose form depends on the frame of the database and hence

is not unique.

For convenience of the reader, the notation employed in the examples

is summarized below.

In a translation e —> E, if w is a word in e, then its corres

pondent, W, in E is the name of a relation in V (the database).

F§ fuzzy relation with membership function pp
i possibility distribution of the variable X

iT^ § possibility distribution function of ITj^ (or X) (2.2 et seq.)

Ffllv =G] ^ fuzzy relation F which is particularized by the oroposition
"(s)

"Xjgj is 6," where X^^j is a subvariable of the variable,

X, associated with F (2.26)

y v...vV F ^ Proj F on U. x...xU. , U. 4 U. (X. ) (2.23)
\ \ \ \

^ square of F (4.21)

# ^ square root of F (4.24)

+ ^ union or arithmetic sum

V ^ max

A ^ min

' 4 complement (2.25)
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n ^ intersection (footnote 23)

X ^ cartesian product (footnote 25)

e ^ bounded sum (4.43)

1 4 unitor (2.15)

Count(F) i Cardinality (power) of F (4.70)

Prop(F) ^ Count(F)/Cardinality of universe of discourse (4.75)

Prop(F/G) k Count(FnG)/Count(G) (4.73)

Name^. kName of i '̂̂ object in a population
Support(F) k set of all points u in Ufor which yp(u) > 0

U(X) k universe of discourse associated with X

Example (a)

Ed is 30 years old —^ Age(Ed) = 30 (7.1)

Ed is young nAge(Ed)

Ed is not very young —» ^^gp^pH) " (YOUNG^)' , (7.3)

where the frame of YOUNG is YOUNG||Age|p|. Alternatively,

Example (b)

where

Ed is young —> ED= YOUNG] (7.4)

2

Sally 1s very intelligent —» 11^ = J- , (7.5)

XI INTELLIGENT[Name=Sally] (7.6)

(that is, X is the degree of intelligence of Sally in the table

INTElLIGENTllNamelul). Note that (7.5) implies that

Tr(X) = X^ , Xe [0,1] (7.7)
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Example (c)

Edith is tan and blonde —»• (7.8)

'''(Height(Edith),Color(Hair(Edith)) TALL xBLONDE

Alternatively,

Edith is tall and blonde —»• (7.9)

= = BLONDE]

Example (d)

Aman is tall ^Height(X) (7.10)

where X is the name of the tallest man in the relation

POPULATION II Name IHeight I. Equivalently,

"Height(Name^) =^^L (7.11)
''Height(Name2) ^

^Height(Namej^) "

Example (e)

All men are tall "Height(X) =^LL (7.12)

where X is the name of the shortest man in the relation

POPULATION||Name|Height|. Equivalently,

All men are tall - ^ =TALL (7.13)

''Height(Name„) =̂ ^L A
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Example (f)

Most men are tall (7.14)

Case 1. The frame of V is comprised of

POPULATION||Name|u|

MOSTIpIpI

where y. in POPULATION is the degree to which Name, is TALL, and y.
1 I j

in MOST is the degree to which p. is compatible with MOST. Then
J

Most men are tall —= MOST (7.15)

where

I ^POPULATION[Name =Name.]
Prop(TALL) = Count(POPULATION)

Case 2. The frame of V is comprised of

POPULATION||Name|Height|

TALL||Height|y|

MOST||p|y|

In this case, the translation is still expressed by (7.15), but with

Prop(TALL) given by

I^TALL[Height POPULATION [Name =Name^.]]
Prop(TALL) =- C^t( POPULATION"]

Example (q)

Three tall men —y(X) = Min^ y^ for Name^. GSupport(X) and (7.18)
Count(Support(X)) = 3

= 0 otherwise
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where X is a fuzzy subset of POPULATION||Name|u|, and is the degree

to which Name^. is tall. The left-hand member of (7.18) is a descriptor,

while the right-hand member defines the membership function of a fuzzy subset

of the fuzzy power set of POPULATION (i.e., the set of all fuzzy

subsets of the names of individuals in POPULATION).

More generally.

Several tall men —» (7.19)

y(X) = Min^.y^.

where, as in (7.18), Min^. is taken over all i such that

Name. G Support(X).

Example (h)

Expensive red car with big trunk —» (7.20)

CAR[np^.ce =expensive; n(.^^^^ =RED; =BIG]

Example (i)

John loves Pat —= 1 (7.21)

where

X LOVES(Namel =John; Name2=Pat) , (7.22)

with the right-hand member of (7.21) implying that

tt(X) = X (7.23)

It should be noted that in the special case where LOVES is a nonfuzzy

relation, (7.21) reduces to the conventional predicate representation

LOVES(John,Pat).
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Example (j)

John loves someone —> = 1 (7.24)

where

^^LOVES[Namel =John; Name2 =Name^.] (7.25)
6 degree to which John loves Name^.

and

X 4 Max. y. (7.26)
11

Note that when LOVES isanonfuzzy relation, (7.24) reduces to (3y)L0VES(John,y)

Example (k)

John loves everyone —^-11^^=1 (7.27)
where

X= Min^. y^. (7.28)

and y^. is expressed by (7.25).

Example (&)

Someone loves someone —= i (7.29)

where

X = Max. . y.. (7.30)
i,J iJ

and y.. is expressed by
^ 0

y.. ^ LOVES[Namel =Name.; Name2 =NameJ (7.31)
ij "y 1 J

Example (m)

Someone loves everyone —^ = 1 (7.32)

where

X ^ Max. Min . y.. (7.33)

and y .. is given by (7.31).
• sJ
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Example (n)

Jill has many friends ITj^ = MANY (7.34)

where

X̂ Count(^ |̂̂ g^g2™E'̂ °S(Namel =Jin)) (7.35)

Note that the argument of Count 1s the fuzzy set of friends of Jill.

Example (o)

The man near the door is young —>

where

Implicit in (7.37) is the assumption that the descriptor "The man near the

door" identifies a man uniquely. The frame of MAN is MAN|Name|.

Example (p)

Kent was walking slowly toward the door —» (7.38)

WALKING[Name =Kent; n5pggj =SL0W; nj.^g =PAST;

"Direction

Example (q)

Herta is not very tall is very true —(7.39)

''Height(Herta)^"^ ^ '̂ TRUE^^ ^ [0,200]

where the frames are TRUE|v|y|. TALLjHeiqhtlul. v e [0,1],

Example (r)

Carol is very intelligent is very likely (7.40)
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Let

V̂ ^INTELLIGENT[Nanie =Carol] (7.41)

i.e., V is the degree to which Carol is intelligent, and the frame of

INTELLIGENT is assumed to be INTELLIGENT||Name|y|. Then (see (7.5))

2
Carol is very intelligent —^ \ (7.42)

in which the right-hand member is equivalent to

•ir(v) = (7.43)

Next, let

X = p(v)v dv (7.44)
0

where p(v)dv is the probability that Carol's degree of intelligence falls

in the interval [v,v+dv]. Then, using the translation rule for probability

qualification, we obtain

2
(Carol is very intelligent) is very likely -^11^^ = LIKELY (7.45)

in which the right-hand member is equivalent to

w(p(-)) = plikely
fl

0

p(v)v^dv (7.46)

and the frame of LIKELY is LIKELY||p|y |, p g [0,1]. Expressed in this

form, the translation defines a possibility distribution of the probability

density function p(«)-



96

Example (s)

X is small is very true is likely —> (7.47)

Tr(p(-)) =PlIKELy(|qP^"'̂ 'tRUE^MALl'"^ '̂'"

where U 4 [0,~) and p(u)du = Prob{XG[u,u+du]}. As in the previous

example, (7.47) defines a possibility distribution of the probability

density function of X.

Example (t)

Men who are much taller than most men —F (7.48)

where the fuzzy subset F of POPULATION is computed by the following

procedure. (For simplicity, the procedure is stated in plain English.)

Assume that the frame of V is comprised of:

POPULATION IIName I

MUCH TALLERllNamel |Name2|p|

MOSTIIpIpI

1. Compute

i =yxName2""CHTALLER[Namel=Name.]

§ fuzzy set of men in relation to whom Name^. is much taller

2. Compute the relative cardinality of F^, i.e.,

Count(F.)
Prop(F.) =Count(|̂ g^gPOPULATION)
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3. Compute

^ (7-50)
4 degree to which Name, is much taller than most men

4. The fuzzy set of men who are much taller than most men is given by

F = 6^/Name^ +•••+6j^/Name|̂ (7.51)

where + denotes the union and Name^,... ,Namej^ are the elements of

U(Name) in POPULATION. Alternatively, assume that the frame of V is

comprised of:

POPULATION IIName IHeight I

MUCH TALLERllHeightl |Height2|y|

"ostIIpIuI

In this case, the procedure assumes the following form.

1. Compute

h. ^ Height(Name^.) = ^POPULATION[Name =Name^.] (7.52)

2. Compute

y.. = MUCH TALLER[Heightl =h.; Height2 = h.] (7.53)
• J ' J

^ degree to which Name, is much taller than Name.
1 J

3. Compute the fuzzy set

F^. = Y^.-,/Name.j +••• +Y^.|̂ /Namej^ (7.54)

^ fuzzy set of men in relation to whom Name^. is much taller
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4. Same as Step 3 in previous procedure.

5. Same as Step 4 in previous procedure.

Example (u)

Many men are much taller than most men tt(POPULATION) = (7.55)

where is computed by the following procedure.

Assume that the frame of V is comprised of

POPULATIONlNamel

MUCH TALLERllNamel |Name2|y|

MOST||p|y|

MANY||p|y|

1. Compute F as in Example (t).

2. Compute

Y = Prop(F)

^ Proportion of men who are much taller than most men

3. The possibility of the relation POPULATION is given by

7r( POPULATION) =^MANY[p =y] (7.56)

in which the right-hand member defines yg.

Example (y)

Beth gave several big apples to each of her close friends —> (7.57)

7r(6AVE) = yg
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The following procedure computes Ug on the assumption that the frame

of V is comprised of:

GAVE II Gi ver | Receiver |Object |

BIGlObjectlul

FRIENDlNamel|Name2|y|

SEVERAL Hp Iyi I

1. Compute

Gi 4Qi^jg^^GAVE[Giver =Beth; Receiver =Name^] (7.58)
^ Set of objects received from Beth by Name.

2. Compute

H= BIG[Object= APPLE] (7.59)

^ fuzzy set of big apples

3. Compute

K = G. hh (7.60)

^ fuzzy set of big apples received from Beth by Name.

4. Compute

y. =^SEVERAL[p =Count(K)] (7.61)
^ degree to which Name^ received several big apples from Beth

5. Compute

6. = FRIEND^[Namel =Beth; Name2 =Name.l (7.62)
1 U T

^ degree to which Name^. is a close friend of Beth
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6. Compute

6. 4 1 A(1-6>y,.) (7.63)
4 degree to which (If Name, is a close friend of Beth then

Name^. received several big apples from Beth)

7. Compute

Tr(GAVE) = Min 6. (7.64)
i ^

4 degree to which all close friends of Beth received

from her several big apples

It should be noted thatwhenthe translation of a proposition, p,

into PRUF requires the execution of a procedure, P, which cannot be

expressed as a relatively simple expression in PRUF — as is true of

Examples (t), (u) and (v) -- the relationship between p and P ceases to

be transparent. A higher degree of transparency in cases of this type may

be achieved through the introduction into PRUF of higher-level constructions

relating to quantification, qualification, particularization and definition.

This and other issues concerning the translation of more complex proposi

tions than those considered here will be treated in subsequent papers.

(
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8. Concluding Remarks

In essence, PRUF may be reqarded as a relation-manipulatinn language

which serves the purposes of (a) precisiation of expressions in a natural

language; (b) exhibiting their logical structure; and (c) providing a system

for the characterization of the meaning of a proposition by a procedure

which acts on a collection of fuzzy relations in a database and returns a

possibility distribution.

By serving these purposes, PRUF provides a basis for a formalization

of approximate reasoning. More specifically, through the use of PRUF, a

set of imprecise premises expressed in a natural or synthetic language may

be translated into possibility distributions to which the rules of inference

in FL (or PRUF) may be applied, yielding other possibility distributions

which upon retranslation lead to approximate consequents of the original

premises. In this respect, PRUF plays the same role in relation to fuzzy

premises and fuzzy conclusions that predicate calculus does in relation to

nonfuzzy premises and nonfuzzy conclusions.

An important aspect of PRUF is a concomitant of its break with the long

standing tradition in logic, linguistics and philosophy of language — the tradition

of employing the concept of truth as a foundation for theories of meaning.

By adopting instead the concept of a possibility distribution as its point

of departure, PRUF permits a uniform treatment of truth-qualification,

probability-qualification and possibility-qualification of fuzzy proposi

tions, and thereby clarifies the roles played by the concepts of truth,

probability and possibility not only in logic and language theory, but also

in information analysis, decision analysis and related application areas.

As was stated in the Introduction, our exposition of PRUF in the

preceding sections is neither definitive nor comolete. There are many
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issues that remain to be explored, the most complex of which is that of

automatic translation from a natural lanquaoe into PRUF. However, to view

this issue in a proper perspective, it must be recognized that the existing

systems for automatic translation from a small subset of a natural lanquage

into a meaning representation language (and, especially, a query lanquage)

have very narrow versatility since they are limited in their use to highly

restricted domains of semantic discourse and human concept comprehension.

Although PRUF is still in its initial stages of development, its

somewhat unconventional conceptual framework puts into a different perspec

tive many of the long-standing issues in language theory and knov/ledge

representation, especially those pertaining to vagueness, uncertainty and

inference from fuzzy propositions. By so doing, PRUF points a way toward

the conception of question-answering systems having the capability to act on

imprecise, incomplete or unreliable information which is resident in a

database. To implement such systems, however, we shall need (i) a better system

of linguistic modifiers than those that are available in natural languages,

and (ii) special-purpose hardware that is oriented toward the storage and mani

pulation of fuzzy rather than nonfuzzy data.
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