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PRUF - A MEANING REPRESENTATION LANGUAGE FOR NATURAL LANGUAGES
L.A. Zadeh™*

Abstract

PRUF -- an acronym for Possibilistic Relational Universal Fuzzy -- is
a meaning representation language for natural languages which departs from
the conventional approaches to the theory of meaning in several important
respects.

First, a basic assumption underlying PRUF is that the imprecision that
is intrinsic in natural langquages is, for the most part, possibilistic
rather than probabilistic innature. Thus, a proposition such as "Richard
is tall" translates in PRUF into a possibility distribution of the variable
Height(Richard), which associates withveach value of the variable a number
in the interval [0,1] representing the possibility that Height(Richard)
could assume the value in question. More generally, a proposition, p,
translates into a procedure, P, which returns a possibility distribution, Hp,

with P and 1P representing, respectively, the meaning of p and the

information conveyed by p. In this sense, the concept of a possibility

distribution replaces that of truth as a foundation for the representation
of meaning in natural languages.

Second, the logic underlying PRUF is not a two-valued or multivalued
logic, but a fuzzy logic, FL, in which the truth-values are linguistic,

that is, are of the form true, not true, very true, more or less true,

not very true, etc., with each such truth-value representing a fuzzy subset
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of the unit interval. The truth-value of a proposition is defined as its
compatibility with a reference proposition, so that given two propositions
p and r, one can compute the truth of p relative to r.

Third, the quantifiers in PRUF -- 1like the truth-values -- are allowed

to be linguistic, i.e., may be expressed as most, many, few, some, not very

many, almost all,etc. Based on the concept of the cardinality of a fuzzy

set, such quantifiers are given a concrete interpretation which makes it pos-
ble to translate into PRUF propositions exemplified by "Many tall men are
much taller than most men," "A11 tall women are blonde is not very true,"”
etc.

The translation rules in PRUF are of four basic types: Type I - per-
taining to modification; Type II - pertaining to composition; Type III -
pertaining to quantification; and Type IV - pertaining to qualification
and, in particular, to truth qualification, probability qualification and
possibility qualification.

The concepts of semantic equivalence and semantic entailment in PRUF
provide a basis for question-answering and inference from fuzzy premises.
In addition to serving as a foundation for approximate reasoning, PRUF
may be employed as a language for the representation of imprecise knowledge
and as a means of precisiation of fuzzy propositions expressed in a natural

Tanguage.



PRUF - A MEANING REPRESENTATION LANGUAGE FOR NATURAL LANGUAGES
L.A. Zadeh "

1. Introduction

In a decade or so from now -- when the performance of natural lanauage
understanding and question-answering systems will certainly be much more
impressive than it is today -- it may well be hard to comprehend why 1in-
guists, philosophers, loaicians and cognitive scientists have been so reluc-
tant to come to grips with the reality of the pervasive imprecision of
natural lanquages and have persisted so Tona in trying to fit their theories
of syntax, semantics and knowledge representation into the riaid concentual
mold of two-valued 1ogic.]

A fact that puts this issue into a sharper perspective is that almost
any sentence drawn at random from a text in a natural language is likely to
contain one or more words that have a fuzzy2 denotation -- that is, are labels
of classes in which the transition from membership to nonmembership is

gradual rather than abrupt. This is true, for example, of the italicized

words in the simple propositions "John is tall," "May has dark hair," and

*
To Professor I.M. Gel'fand, who had suggested--a decade ago--the applica-
tion of the theory of fuzzy sets to natural lanquages.
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]?n ingisive discussion of this and related issues may be found in Gaines
1976).

2A]though the terms fuzzy and vaaue are frequently used interchangeably in
the literature, there is, in fact, a siagnificant difference between them.
Specifically, a proposition, p, is fuzzy if it contains words which

are labels of fuzzy sets; and n is vaque if it is both fuzzy and insuffi-
ciently specific for a particular purpose. For example, "Bob will be back
in a few minutes" is fuzzy, while "Bob will be back sometime" is vague if
it is insufficiently informative as a basis for a decision. Thus, the
vaqueness of a proposition is a decision-dependent characteristic whereas
its fuzziness is not.




"May is much younger than John," as well as in the somewhat more complex and

yet commonplace propositions exemplified by: "Most Frenchmen are not blond,"

"It is very true that many Swedes are tall," "It is quite possible that many

wealthy Americans have high blood pressure," and "It is probably quite true

that most X's are much larger than most Y's."

The numerous meaning representation, knowledge representation and query
representation languages which have been described in the ]iterature3 -
prominent among which are semantic networks, predicate calculi, relation
algebra, Montague grammar, conceptual dependency graphs, logical networks,
AIMDS, ALPHA, CONVERSE, DEDUCE, DILOS, HAM-RPM, HANSA, ILL, KRL, KRS, LIFER,
LSP, LUNAR, MAPL, MEANINGEX, MERLIN, OWL, PHLIQAI, PLANES, QUEL, REL, REQUEST,
SAM, SCHOLAR, SEQUEL, SQUARE, and TORUS -- are not oriented toward the represen-
tation of fuzzy propositions, that is, propositions containing labels of
fuzzy sets, and hence have no facilities for semantic -- as opposed to syn-
tactic -- inference from fuzzy premises.4 However, facilities for the repre-
sentation and execution of fuzzy instructions are available in the program-
ming languages FUZZY (LeFaivre, 1974), FLOU and FSTDS (Noguchi, Umano,
Mizumoto & Tanaka, 1976, 1977) and in the system modelling lanauage of
Fellinger (1974).

To clarify this remark, it should be noted that, although a fuzzy
proposition such as "Herb is tall," may be -- and frequently is -- represented
in predicate notation as Tall(Herb), such a representation presupposes that
Tall is a predicatg which partitions a collection of individuals, U,

into two disjoint classes: those for which Tall(Herb) is true and those

3A list of representative papers and books dealing with the subject of
meaning representation languages and related issues is presented in the
appended bibliography.

4Semantic inference differs from syntactic inference in that it involves
the meaning of premises while syntactic inference involves only their
surface structure.



for which Tall(Herb) is false. One could, of course, interpret Tall as a
predicate in a multivalued logic -- in which case the extension of Tall
would be a fuzzy subset of U -- but even such more general representations
cannot cope with quantified or qualified propositions of the form "Most tall
men are fat," "It is very tfue that X is much larger than Y," "It is quite
possible that if X is large then it is very likely that Y is small," etc.

In earlier papers (Zadeh, 1973, 1975abc, 1976ab; Bellman and Zadeh, 1976),
we have argued that traditional Togical systems are intrinsically unsuited
for the manipulation of fuzzy knowledge -- which is the type of knowledge
that underlies natural languages as well as most of human reasoning -- and
have proposed a fuzzy logic, FL, as a model for approximate reasoning. In
this logic, the truth-values are linguistic, i.e., of the form true, not

true, very true, not very true, more or less true, not very true and not

very false, etc., with each truth-value representing a fuzzy subset of the

unit interval. In effect, the fuzziness of the truth-values of FL provides
a mechanism for the association of imprecise truth-values with imprecise
propositions expressed in a natural language, and thereby endows FL with a
capability for modeling the type of qualitative reasoning which humans
employ in uncertain and/or fuzzy environments.

More recently, the introduction of the concept of a possibility distribu-
tion (Zadeh, 1977ab) has clarified the role of the concept of a fuzzy
restrictions in approximate reasoning, and has provided a basis for the

development of a meaning representation language named PRUF (an acronym for

5A fuzzy restriction is a fuzzy set which serves as an elastic constraint
on the values that may be assigned to a variable. A variable which is
associated with a fuzzy restriction or, equivalently, with a possibility
distribution, is a fuzzy variable.




_P_ossibﬂistic6 Relational Universal Fuzzy) in which -- in a significant
departure from tradition -- it is the concept of a possibility distribution,
as opposed to truth, that plays the primary role.

The conceptual structure of PRUF is based on the premise that, in sharp
contrast to formal and programming languages, natural languages are intrin-
sically incapable of precise characterization on either the syntactic or
semantic level. In the first place, the pressure for brevity of discourse

tends to make natural languages maximally ambiquous in the sense that the

Tevel of ambiguity in human communication is usually near the limit of what
is disambiguable through the use of an external body of knowledge which
is shared by the parties in discourse.

Second, a significant fraction of sentences in a natural lanquage can-
not be characterized as strictly grammatical or ungrammatical. As is well
known, the problem of partial grammaticality is accentuated in the case of
sentences which are partially nonsensical in the real world but not necessarily
in an imaginary world. Thus, a realistic grammar for a natural language
should associate with each sentence its degree of grammaticality -- rather
than merely generate the sentences which are completely grammatical. The
issue of partial grammaticality has the effect of greatly complicating the
problem of automatic translation from a natural language into a meaning
representation language -- which is an important aspect of Montague-type
grammars (Montague, 1974; Partee, 1976b).

Third, as was alluded to already, a word in a natural language is
usually a summary of a complex, multifaceted concept which is incapable of

precise characterization. For this reason, the denotation of a word is
6

The term "possibilistic" was coined by Gaines and Kohout (1975). The con-
cept of a possibility distribution is distinct from that of nossibility in
modal logic and related areas (Hughes and Cresswell, 198; N. Rescher,
1975).



generally a fuzzy -- rather than nonfuzzy -- subset of a universe of dis-
course. For example, if U is a collection of individuals, the denotation
of the term young man in U is a fuzzy subset of U which is characterized

by a membership function u U -+ [0,1], which associates with each

young man’
individual u in U the degree -- on the scale from 0 to 1 -- to which u

is a young man. When necessary or expedient, this degree or, equivalently,

the grade of membership, “young(u)’ may be expressed in linguistic terms such as
as high, not high, very high, not very high, low, more or less low, etc.,

with each such term representing a fuzzy subset of the unit interval. In
this case, the denotation of young man is a fuzzy set of Type 2, i.e., a
fuzzy set with a fuzzy membership function.7

In essence, PRUF bears the same relation to FL that predicate calculus
does to two-valued logic. Thus, it serves to translate a set of premises
expressed in a natural language into expressions in PRUF to which the rules
of inference in FL (or PRUF) may be applied, yielding other expressions in
PRUF which upon retranslation become the conclusions inferred from the original
premises. More generally, PRUF may be used as a basis for question-answering
systems in which the knowledge-base contains imprecise data, i.e., proposi-
tions expressed in a natural or synthetic language which translate into a
collection of possibility and/or probability distributions of a set of
variables.

Typically, a simple proposition such as "John is young," translates in

PRUF into what will be referred to as a possibility assignment equation of

the form

7Expositions of the relevant aspects of the theory of fuzzy sets may be
found in the books and papers noted in the bilioaraphy, especially
Kaufmann (1975), Negoita and Ralescu (1975), and Zadeh, Fu, Tanaka &
Shimura (1975). !



HAge(John) = YOUNG (1.1)

in which YOUNG -- the denotation of young -- is a fuzzy subset of the interval
[0,100], and HAge(John) is the possibility distribution of the variable
Age(John). What (1.1) implies is that, if on the scale from 0 to 1, the
degree to which a numerical age, say 30, is compatible with YOUNG is 0.7,
then the possibility that John's age is 30 is also equal to 0.7. Equiva-

lently, (1.1) may be expressed as

JOHN[I, _ =YOUNG] (1.2)

Age

in which JOHN is the name of a relation which characterizes John, and Age is
an attribute of John which is particularized by the assignment of the fuzzy
set YOUNG to its possibility distribution.

In general, an expression in PRUF may be viewed as a procedure which
acts on a set of possibly fuzzy relations in a database and computes the
possibility distribution of a set of variables. Thus, if p is a proposi-
tion in a natural language which translates into an expression P in PRUF,
and 1 is the possibility distribution returned by P, then P may be

interpreted as the meaning of p while m° is the information conveyed by

p.8 The significance of these notions will be discussed in greater detail
in Section 3.

The main constituents of PRUF are (a) a collection of translation rules,
and (b) a set of rules of inference.’ For the present, at least, the trans-

lation rules in PRUF are human-use oriented in that they do not provide a

81n effect, P and TI° are the counterparts of the concepts of intension and
extension in language theories based on two-valued logic (Cresswell, 1973;
Linsky, 1971; Miller and Johnson-Laird, 1976).

9The rules of inference in PRUF and their application to approximate reason-
ing are described ina companion paper (Zadeh, 1977b).

(14



system for an automatic translation from a natural language into PRUF. How-
ever, by subordinating the objective of automatic translation to that of
achieving a greater power of expressiveness, PRUF provides a system for the
translation of a far larger subset of a natural language than is possible
with the systems based on two-valued logic. Eventually, it may be possible
to achieve the goal of machine translation into PRUF of a fairly wide variety
of expressions in a natural language. It is not likely, however, that this
goal could be attained through the employment of algorithms of the conven-
tional type in translation programs. Rather, it is probable that recourse
would have to be made to the use of fuzzy logic for the renresentation of
imprecise contextual knowledge as well as for the characterization and exe-
cution of fuzzy instructions in translation alqgorithms.

At present, PRUF is still in its initial stages of development, and
hence our exposition of it in the present paper is informal in nature, with
no pretense at definiteness or completeness. Thus, our limited aim in what
follows is to explain the principal ideas underlying PRUF: to describe a set
of basic translation rules which can serve as a point of departure for the
development of other, more specialized, rules; and to illustrate the use of
translations rules by relatively simple examples. We shall not consider
the translation of imperative propositions nor the issues relating to the
implementation of interactive connectives, reserving these and other impor-
tant topics for subsequent papers.

In the following sections, our exposition of PRUF begins with an out-
Tine of some of the basic properties of the concept of a possibility distribu-
tion and its role in the representation of the meaning of fuzzy propositions.
In Section 3, we consider a number of basic concepts underlying PRUF, among

them those of possibility assianment equation, fuzzy set descriptor,
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proposition, question, database, meaning, information, semantic equivalence,
semantic entailment, and definition.

Section 4 is devoted to the formalization of translation rules of Type I
(modification), Type II (composition), and Type III (quantification). In
addition, a translation rule for relations is derived as a corollary of
rules of Type II, and a rule for forming the negation of a fuzzy proposition
is formulated.

The concept of truth is defined in Section 5 as a measure of the compa-
tibility of two fuzzy propositions, one of which acts as a reference propo-
sition for the other. Based on this conception of truth, a translation rule
for truth-qualified propositions is developed in Section 6. In addition,
translation rules for probability-qualified and possibility-qualified propo-
sitions are established, and the concept of semantic equivalence is employed
to derive several meaning-preserving transformations of fuzzy propositions.
Finally, in Section 7 a number of examples illustrating the application of

various translation rules -- both singly and in combination -- are presented.
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2. The Concept of a Possibility Distribution and Its Role in PRUF

A basic assumption underlying PRUF is that the imprecision that is
intrinsic in natural languages is, in the main, possibilistic rather than
probabilistic in nature.

As will be seen presently, the rationale for this assumption rests on
the fact that most of the words in a natural language have fuzzy rather than
nonfuzzy denotation. A conspicuous exception to this assertion are the
terms in mathematics. Even in mathematics, however, there are concepts that
are fuzzy, e.g., the concept of a sparse matrix, stiff differential equation,
approximate equality, etc. More significantly, almost all mathematical con-
cepts become fuzzy as soon as one leaves the idealized universe of mathematical
constructs and comes in contact with the reality of pervasive ill-definedness,
irreducible uncertainty and finiteness of computational resources.
10 4t 4s
1

To understand the relation between fuzziness and possibility,

convenient to consider initially a simple nonfuzzy proposition such as
p & X is an integer in the interval [0,5]

Clearly, what this proposition asserts is that (i) it is possible for
any integer in the interval [0,5] to be a value of X, and (ii) it is not
possible for any integer outside of this interval to be a value of X.

For our purposes, it is expedient to reword this assertion in a form
that admits of extension to fuzzy propositions. More specifically, in the

absence of any information regarding X other than that conveyed by p, we

shall assert that: p induces a possibility distribution Hx which
]OA more detailed account of this and other issues related to the concept of
a possibility distribution may be found in Zadeh (1977a).

The symbol 8 stands for "is defined to be" or "denotes."

11
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associates with each integer u 1in [0,5] the possibility that u could

be a value of X. Thus,

Poss{X = u}

1 for D<uc<b
and

0 for u<O0Ooru>5

Poss{X = u}

where Poss{X=u} is an abbreviation for "The possibility that X may assume
the value u." For the proposition in question, the possibility distribution
HX is uniform in the sense that the possibility-values are equal to unity
for u in [0,5] and zero elsewhere.

Next, let us consider a proposition q which may be viewed as a fuzzi-

fied version of p, namely,

q 2 X is a small integer

where "small integer" is the label of a fuzzy set defined by, say,]2

SMALL INTEGER = 1/0+1/1+0.8/2+0.6/3+0.4/4+0.2/5 (2.1)

in which + denotes the union rather than the arithemtic sum, and a fuzzy
singleton of the form 0.6/3 signifies that the grade of membership of the
integer 3 in the fuzzy set SMALL INTEGER -- or, equivalently, the compati-
bility of 3 with SMALL INTEGER -- is 0.6. |

At this juncture, we can make use of the simple idea behind our inter-

pretation of p to formulate what might be called the possibility postulate

-- a postulate which may be used as a basis for a possibilistic intepreta-

tion of fuzzy propositions. In application to gq, it may be stated as:
12

To differentiate between a label and its denotation, we express the
latter in uppercase symbols. To simplify the notation, this convention
will not be adhered to strictly where the distinction can be inferred
from the context.
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Possibility Postulate. In the absence of any information regarding X

other than that conveyed by the proposition q 2 X is a small integer, q
induces a possibility distribution HX which equates the possibility of X
taking a value u to the grade of membership of u in the fuzzy set SMALL

INTEGER. Thus

Poss{X =0} = Poss{X=1} =1
Poss{X=2} = 0.8
Poss{X=3} = 0.6
Poss{X=4} = 0.4
Poss{X=5} = 0.2
and
Poss{X=u} =0 for u<Ooru>5.

More generally, the postulate asserts that if X 1is a variable which

takes values in U and F is a fuzzy subset of U, then the proposition
qlXisF (2.2)

induces a possibility distribution Iy which is equal to F, i.e.,

m, = F (2.3)
implying that
Poss{X=u} = uF(u) , ue€eu (2.4)

where uet U= [0,1] is the membership function of F, and uF(u) is the
grade of membership of u in F.

In essence, then, the possibility distribution of X is a fuzzy set
which serves to define the possibility that X could assume any specified

value u in U. The function Ty U -+ [0,1] which is equal to Mp and
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which associates with each u € U the'possibility that X could take u

as its value is called the possibility distribution function associated with

X. Inthisconnection, it is important to note that the possibility distribu-
tion defined by (2.3) depends on the definition of F and hence is purely
subjective in nature.

We shall refer to (2.3) as the possibility assignment equation because

it signifies that the broposition "X is F" translates into the assiqgnment of
a fuzzy set F to the possibility distribution of X. More generally, the
possibility assignment equation corresponding to a proposition of the form
"N is F," where F is a fuzzy subset of a universe of discourse U, and N
is the name of (i) a variable, (ii) a fuzzy set, (iii) a proposition, or

(iv) an object, may be expressed as

HX(N) = F (2.5)
or, more simply,

m, = F (2.6)

where X ds either N itself (when N 1is a variable) or a variable that
is explicit or implicit in N, with X taking values in U. For example,
in the case of the proposition "Nora is youna,"” N & Nora, X = Age(Nora),

U = [0,100] and

Nora is young — ) = YOUNG (2.7)

HAqe(Nora

where the symbol — stands for "translates into."
Since the concept of a possibility distribution is closely related to

that of a fuzzy set,]3 possibility distributions may be manipulated by the

]3Strict1y speaking, the concept of a possibility distribution is coexten-
sive with that of a fuzzy restriction rather than a fuzzy set (Zadeh,
1973, 1975b).

”“o
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rules applying to such sets. In what follows, we shall discuss briefly some
of the basic rules of this kind, focusing our attention only on.those aspects

of possibility distributions which are of direct relevance to PRUF.

Possibility vs. Probability

Intuitively, possibility relates to our perception of the degree of
feasibility or ease of attainment, whereas probability is associated with
the degree of likelihood, belief, frequency or proportion. Al1l possibilities
are subjective, as are most probabi]ities.]4 In general, probabilistic
information is not as readily available as possibilistic information and is
more difficult to manipulate.

Mathematically, the distinction between probability and possibility
manifests itself in the different rules which govern their combinations,
especially under the union. Thus, if A is a nonfuzzy subset of U, and
HX is the possibility distribution induced by the proposition “N is F,"

15

then the possibility measure, m(A), of A 1is defined as the supremum of

Mg over A, i.e.,
M(A) & Poss{X €A} = Sup, cp wp(u) (2.8)
and, more generally, if A is a fuzzy subset of U,
m(A) = Poss{X is A} = Supu(uA(u) AuF(u)) (2.9)

where u, is the membership function of A and A 8 min.

]4There are eminent authorities in probability theory (DeFinetti, 1974)

who maintain that all probabilities are subjective.

]5The possibility measure defined by (2.8) is a special case of the more

general concept of a fuzzy measure defined by Sugeno (1974) and Terano
and Sugeno (1975).
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From the definition of I(A), it follows at once that the possibility

measure of the union of two arbitrary subsets of U is given by
m(AuUB) = 1(A) vi(B) (2.10)

where V & max. Thus, possibility measure does not have the basic additivity

property of probability measure, namely,
P(AUB) = P(A) +P(B) if A and B are disjoint

where P(A) and P(B) are the probability measures of A and B, respec-
tively, and + 1is the arithmetic sum.

An essential aspect of the concept of possibility is that it does not
involve the notion of repeaﬁed or replicated experimentation and hence is
nonstatistical in nature. Indeed, the importance of the concept of possi-
bility stems from the fact that much -- perhaps most -- of human decision-
making is based on information that is possibilistic rather than probabilistic

in natur‘e.]6

Possibility Distributions vs. Fuzzy Sets

Although there is a close connection between the concept of a possi-
bility distribution and that of a fuzzy set, there is also a significant
difference between the two that must be clearly understood.

To illustrate the point by a simple example which involves a nonfuzzy

set and a uniform possibility distribution, consider a variable labeled
16

In many realistic decision processes it is impracticable or impossible to
obtain objective probabilistic information in the quantitative form that
is needed for the application of statistical decision theory. Thus, the
probabilities that are actually used in much of human decision-making are
(a) subjective, and (b) linguistic (in the sense defined in Zadeh (1975)).
Characterization of linguistic probabilities is related to the issue of
probability qualification, which is discussed in Section 6. A more
?$g?gl§d discussion of linguistic probabilities may be found in Nguyen

a).
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Sister(Dedre) to which we assign a set, as in
Sister(Dedre) = Sue + Jane + Lorraine (2.11)
or a possibility distribution, as in

HSister(Dedre) = Sue + Jane + Lorraine (2.12)

where + denotes the union. Now, the meaning of (2.11) is that Sue, Jane
and Lorraine are sisters of Dedre. By contrast, the meaning of (2.12) is
that the sister of Dedre is Sue or Jane or Lorraine, where or is the exclu-
sive or. In effect, (2.12) signifies that there is uncertainty in our know-
ledge of who is the sister of Dedre, with the possibility that it is Sue
being unity, and likewise for Jane and Lorraine. In the case of (2.11), on
the other hand, we are certain that Sue, Jane and Lorraine are all sisters
of Dedre. Thus, the set {Sue, Jane, Lorraine} plays the role of a possi-
bility distribution in (2.12) but not in (2.11).

Usually, it is clear from the context whether or not a fuzzy (or non-
fuzzy) set should be interpreted as a possibility distribution. A diffi-
culty arises, however, when a relation contains a possibility distribution,

as is exemplified by the relation RESIDENT whose tableau is shown in Table 2.1.

Table 2.1
RESIDENT || Subject Location

Jack New Rochelle
Jack White Plains

Ralph New Rochelle
Ralph Tarrytown
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In this case, the rows above the dotted line represent a relation in
the sense that Jack resides both in New Rochelle and in White Plains. On
the other hand, the rows below the dotted line represent a possibility dis-
tribution associated with the location of residence of Ralph, meaning that
Ralph resides either in New Rochelle or in Tarrytown, but not hoth. It
should be noted parenthetically that there is no provision for dealing with
this kind of ambiguity in the conventional representations of relational
models of data because the concept of a possibility distribution and the
related issue of data uncertainty have not been an object of concern in the

analysis of database management systems.

Representation by Standard Functions

In the manipulation of possibility distributions, it is convenient to
be able to express the membership function of a fuzzy subset of the real line
as a standard function whose parameters may be adjusted to fit a given
- membership function in an approximate fashion. A standard function of this
type is the S-function, which is a piecewise quadratic function defined by

the equations:

S(usa,B,y) = 0 for u<a (2.13)
| = 2(5{%92 a<u<8B
=1 -2(%5%)2 for B<u<y
=1 for u >y
oty

in which the parameter B8 é-—?— is the crossover point, i.e., the value of
u at which S(usa,B,y) = 0.5. Other types of standard functions which are

advantageous when the arithmetic operations of addition, multiplication and
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division have to be performed on fuzzy numbers, are (i) piecewise linear
(triangular) functions, and (ii) exponential (bell-shaped) functions. A
discussion of these functions and their applications may be found in Nahmias
(1976), and Mizumoto and Tanaka (1976).

There are two special types of possibility distributions which will be
encountered in later sections. One is the unity possibility distribution,

which is denoted by I and is defined by
nI(u) =1 for ueuy (2.14)

where m is the possibility distribution function of I. The other, which
is defined on the unit interval, is the unitary possibility distribution (or

the unitary fuzzy set or the unitor, for short), which is denoted bv 1 and

is defined by
@l(v) =v for v e€/[0,1]. (2.15)

In the particular case where a truth-value in FL is the unitary fuzzy
set, it will be referred to as the unitary truth-value. On denoting this

truth-value by u-true, we have

A
MytpgeW) 8V, velo]. (2.16)

Projection and Marginal Possibility Distributions

The possibility distributions with which we shall be concerned in the
following sections are, in general, n-ary distributions denoted by

i » Wwhere X.,...,X are variables -- or, equivalently, attributes
(X."...’Xn) 1 n —_— T

17

-- taking values in their respective universes of discourse U],...,Un

As a simple example in which n = 2, consider the proposition "John is a
17

When it is necessary to place in evidence that X takes values in U (i.e.,
the domain of X is U), we shall express the domain of X as U(X) or, where
no confusion can arise, as X. (See (2.23).)
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big man," in which BIG MAN is a fuzzy relation F defined by Table 2.2,

with the variables Height and Weight expressed in centimeters and kilograms,

respectively.
Table 2.2
BIG MAN || Height | Weight u
165 60 0.5
170 60 0.6
175 60 0.7
170 65 0.75
180 70 0.9
175 75 0.9
180 75 0.95
180 80 1
185 75 1

The relation in question may also be expressed as a linear form
BIG MAN = 0.5/(165,60) +0.6/(170,60) + --- +1/(180,80) + -- - (2.17)

in which a term such as 0.6/(170,60) signifies that the grade of member-
ship of the pair (170,60) in the relation BIG MAN -- or, equivalently, its
compatibility with the relation BIG MAN -- is 0.6.

The possibility postulate implies that the proposition “John is a big
man" induces a binary possibility distribution H(Weight(John),Height(John))
whose tableau is identical with Table 2.2 except that the label of the last
column is changed from p to = in order to signify that the compatibility-
values in that column assume the role of possibility-values. What this means

is that, by inducing the possibility distribution H(Height(dohn),Neight(dohn))’
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the proposition "John is a big man" implies that the possibility that John's
height and weight are, say, 170 cm and 60 kg, respectively, is 0.6.

It should be noted that, in general, the entries in a relation F need
not be numbers, as they are in Table 2.2. Thus, the entries may be pointers
to -- or identifiers of -- physical or abstract objects. For example, the

u's in the relation CUP shown in Table 2.3

Table 2.3
cup Identifier u
u] 0.8
U, 0.9
us 1.0
Uy 0.2

may be pictures of cups of various forms. In this case, given the relation
CUP, the proposition "X is a cup" induces a possibility distribution HX
such that Poss{X==u1} = 0.8, and likewise for other rows in the table.

In the transiation of expressions in a natural language into PRUF, there
are two operations on possibility distributions (or fuzzy relations) that

play a particularly important role: projection and particularization.

Specifically, let X 2 (Xs-..sX,) be a fuzzy variable which is asso-
ciated with a possibility distribution H(X X_) or, more simply, Hx,
-l,.-o, n
with the understanding that HX is an n-ary fuzzy relation in the cartesian

product, U = U]x--; XUn, of the universes of discourse associated with
X],...,Xn. We assume that Ty is characterized by its possibility distribu-

tion function -- or, equivalently, membership function -- X X ) (or
'l:---, n

Tys for short).
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A variable of the form

X(s) 4 (X, ,...,x].k) , (2.18)

1
where s & (i],...,ik) is a subsequence of the index sequence (1,...,n),
constitutes a subvariable of X 4 (X],...,Xn). By analogy with the concept

of a marginal probability distribution, the marginal possibility distribution

associated with X(s) is defined by

Hx(s) = ProjU(S)H(xl’...,Xn) (2.19)

where U(s) A Ui X e XUi , and the operation of projection is defined --
1 k
in terms of possibility distribution functions -- by

“X(S)(u(s)) = Supu(s') ﬂx(u],...,un) (2.20)

A A (y.
where us) £ (ui],...,uik) and Uggry 2 (uJ1
the index sequence complementary to s (e.g.,if n=5 and s = (2,3),

see.sls ), with s' denoting
g

then (s') = (1,4,5)). For example, for n=2 and s = (2), (2.16) yields
7, (u,) = Sup 7 (uqsus,) (2.21)
X, 2 up o (XsXp)T1T2
as the expression for the marginal possibility distribution function of X2.
The operation of projection is very easy to perform when HX is

expressed as a linear form. As an illustration, assume that U] = U2 = a+b,

or, more conventionally, {a,b}, and

il = 0.8aa + 0.6ab+ 0.4ba + 0.2bb (2.22)
(X15X5)

in which a term of the form 0.6ab signifies that
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Poss{X] =a, X2=b} = 0.6 .

To obtain the projection of Hx on, say, U2 it is sufficient to

replace the va]ueof'X] in each term in (2.22) by the null string A. Thus]8

j = U.8a+0.6b+0. .
PrOJU2 H(X],Xz) 0.8a+0.6b+0.4a+0.2b

0.8a+0.6b .

To simplify the notation, it is convenient -- as is done in SQUARE

(Boyce et al, 1974) -- to omit the word Proj in (2.15) and interpret U(S)

as Xi X oo xxi (see (2.19) and f. 17). Thus,
1 k

Proj,, I 4 i A i (2.23)
U(S) (x],...,xn) U(S) (x1,...,x ) T X, xeeoxX, (xl,...,xn)

n 'I-I k

In some applications, it is convenient to have at one's disposal not

only the operation of projection, as defined by (2.20), but also its dual,

19

conjunctive projection, ° which is defined by (2.20) with Sup replaced by

Inf. It is easy to verify that the latter can be expressed in terms of the

former as

B?Gib(s) “(x],...,xn) = (Proju(s) Htxl""’xn))l (2.24)

in which Proj stands for conjunctive projection and ' denotes the comple-
ment, where the complement of a fuzzy set F in U 1is a fuzzy set F'

defined by

]Slf r and s are two tuples and o and B are their respective possibilities,
then ar+8r = (aV B)r. Additional details may be found in Zadeh (1977a).

]gA more detailed discussion of conjunctive projections may be found in
Zadeh (1966). It should be noted that the concept of a conjunctive pro-
jection is related to that of a conjunctive mapping in SQUARE (Boyce
et al., 1974) and to universal quantification in multivalued logic
(Rescher, 1969).
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wpr(u) = T-p(u) , weu. (2.25)

Particularization

Informally, by the particularization of a fuzzy relation or a possi-

bility distribution which is associated with a variable X & (X],...,Xn),
is meant the effect of specification of the possibility distributions of one
or more subvariables of X. In the theofy of nonfuzzy relations, the result-
ing relation is commonly referred to as a restriction of the original rela-
tion; and, in the particular case where the values of some of the consti-
tuent variables are specified, the degenerate restriction becomes a section
of the original relation.

Particularization in PRUF may be viewed as the result of forming the
conjunction of a proposition of the form "X is F," where X is an n-ary
variable, X & (X],...,Xn), with particularizing propositions of the form
"X(s) is G," where X(S) is a subvariable of X, and F and G are fuzzy
subsets of U 2 Upx---xU  and U(s) = Ui]x--- ink, respectively.

More specifically, let m, 4 H(XI""’Xn) = F and

) i = G be the possibility distributions induced by the
X(S) ()(,i seeesXs )

1 v -
propositions "X is F" and "X(s) is G," respectively. By definition, the

particularization of My by X(s) =G (or, equivalently, of F by G)

is denoted by HX[HX =G] (or F[HX( )==G]) and is defined as the inter-

section™ of F and G, i.e.,

HX[ =G] = FNG (2.26)

I
X(s)

zolf A and B are fuzzy subsets of U, their intersection is defined by

“AﬂB(u) = uA(u)/\uB(u), u€U. Thus, ugalup,..ou ) = uF(u],...,un) A
uG(u11,...,uik). Dually, the union of A and B is denoted as A+B {or AUB)
and is defined by up p(u) & up(u) vig(u). (v 2 max and A 4 min.)
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where G is the cylindrical extension of G, i.e., the cylindrical fuzzy
set in U] X oo XUn whose projection on U(s) is G and whose membership
function is expressed by

]JG(U] [ ,un) é uG(u-

11;...,u. ) . (u],...,un) € U1x--~ U . (2.27)

Tk

As a simple i11ustration, assume that U.l = U2 = U3 = a+b and

H(X]’XZ’XB) = 0.8aab+ 0.6baa +0.1bab + 1bbb (2.28)
and
H(X],XZ) = G = 0.5aa+0.2ba+0.3bb
In this case
G = 0.5aaa+ 0.5aab + 0.2baa + 0.2bab + 0.3bba + 0.3bbb

FNG = 0.5aab + 0.2baa + 0.1bab + 0.3bbb
and hence

n(xl’XZ’XB)[H(XI’XZ)::G] = 0.5aab+ 0.2baa +0.1bab + 0.3bbb

As will be seen in Section 4, the right-hand member of (2.26) represents
the possibility distribution induced by the conjunction of "X is F" and
"X(s) is G," that is, the proposition "X is F and X(s) is G." It is for
this reason that the particularized possibility distribution HX[HX . = G]
may be viewed as the possibility distribution induced by the proposition
"X is F and X(S) is G."

In cases in which more than one subvariable is particularized, e.g.,

the particularizing propositions are "X(S) is G," and "X(r) is H," the
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particularized possibility distribution will be expressed as

I

[n =G; I =H] . (2.29)
X X(r)

X(s)
Furthermore, particularization may be nested, as in

HX[HX =G[HY =J]] (2.30)

(s) (t)

where the particularizing relation G 1s, in turn, particularized by the
proposition "Y(t) is J," where Y(t) is a subvariable of the variable
associated with G.

It is of interest to observe that, as its name implies, particulariza-
tion involves an imposition of a restriction on the values that may be
assumed by a variable. However, by dualizing the definition of particulariza-
tion as expressed by (2.26), that is, by replacing the intersection with the
union, the opposite effect is achievéd, with the resulting possibility
distribution corresponding to the disjunction of "X is F" and "X(S) is G."
We shall not make an explicit use of the dual of particularization in
the present paper.

As a simple illustration of particularization, consider thg proposition
p A John is big, where BIG is defined by Table 2.2, and assume that the
particularizing proposition is q 2 John is tall, in which TALL is defined

by Table 2.4.
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Table 2.4
TALL § Height u
165 0.6
170 0.7
175 0.8
180 0.9
185 1

The assertion "John is big" may be expressed equivalently as "Size(John)
is big," which is of the form "X is F," with X 2 Size(John) and F A BIG.
Similarly, "John fs tall" may be expressed as "Height(John) is tall," or,
equivalently, Y is G, where Y & Height(John) and G & TALL.

Using (2.26), the tableau of the particularized relation

BIG[I =TALL] 1is readily found to be given by Table 2.5.

Height
Table 2.5
BIG[HHeight==TALL] Height | Weight v

165 60 0.5
170 60 0.6
175 60 0.7
170 65 0.7
180 70 0.9
175 75 0.8
180 75 0.9
180 80 0.9
185 75 1

The value of u for a typical row in this table, say for (Height=180,

Weight =75), 1is obtained by computing the minimum of the values of yu for
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the corresponding rows in BIG and TALL (i.e., (180,75) in BIG and (180) in
TALL). As is pointed out in Section 4, this mode of combination of u's

corresponds to noninteractive conjunction, which is assumed to be a standard

default definition of conjunction in PRUF. However, PRUF allows any defini-
tion of conjunction which is specified by the user to be employed in place
of the standard definition.

As an additional example, consider the particularized possibility

distribution (see (2.23))

PROFESSOR[Name = Simon; Sex =Male; (2.31)

it APPROXIMATELY[Agel = 451]

Age ~ uxAge?

which describes a subset of a set of professors whose name is Simon, who
are male and who are approximately 45 years old. In this case, the possi-
bility distribution of the variable Age 1is a particularized relation
APPROXIMATELY in which the first variable, Agel, is set equal to 45,
and which is projected on the cartesian product of U(u) and U(Age2), yield-
ing the fuzzy set of values of Age which are approximately equal to 45.

It should be noted that some of the attributes in (2.31) (e.g., Name)
are assigned single values, while others -- whose values are uncertain --
are associated with possibility distributions. As will be seen in the
following sections, this is typical of the particularized possibility
distributions arising in the translation of expressions in a natural lanquage
into PRUF.

Expressions of the form (2.31) are similar in appearance to the commonly
employed semantic network, query language and predicate calculus representa-
tions of propositions in a natural language. An essential difference, how-

ever, lies in the use of possibility distributions in (2.31) for the
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characterization of the values of fuzzy variables and in the concrete speci-
fication of the manner in which possibility distributions and fuzzy relations
are modified by particularization and other operations which will be

described in_Sections 4 and 6.
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3. Basic Concepts Underlying Translation Into PRUF

The concept of a possibility distribution provides a natural point
of departure for the formalization of many other concepts which underlie
the translation of expressiomns in a natural language into PRUF. We shall
present a brief exposition of several such concepts in this section, without
aiming at the construction of an embracing formal framework.

In speaking somewhat vaguely of expressions in a natural language,
what we have in mind is a variety of syntactic, semantic and pragmatic forms
exemplified by sentences, propositions, phrases, clauses, questions, commands,
exclamations, etc. In what follows, we shall restrict our attention to
expressions which are (i) fuzzy propositions (or assertions); (ii) fuzzy

questions; and (iii) what will be referred to as fuzzy set descriptors or

simply descriptors.

Propositions

Basically, a fuzzy proposition may be regarded as an expression which
translates into a possibility assignment equation in PRUF. This is analo-
gous to characterizing a nonfuzzy proposition as an expression which trans-
Jates into a well-formed formula (or, equivalently, a closed sentence) in
predicate calculus.

The types of fuziy propositions to which our analysis will apply are
exemplified by the following. (Italics place in evidence the words that

have fuzzy denotation.)

Ronald is more or less young (3.1)

Miriam was very rich (3.2)

Harry loves Ann | (3.3)
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X ismuch smaller than Y (3.4)
X and Y are approximately equal (3.5)
If X is large then Y is small (3.6)
Most Swedes are blond (3.7)
Many men are much taller than most men (3.8)
Most Swedes are tall is not very true (3.9)

The man in the dark suit is walking slowly toward the door (3.10)

Susanna gave several expensive presents to each of her

(3.11)

close friends
If X is much greater than Y then (Z is small is ( \
3.12

very probable)
If X is much greater than Y then (Z is small is ( )
3.13

quite possible)

In these examples, propositions (3.9), (3.12) and (3.13) are, respec-
tively, truth qualified, probability qualified and possibility qualified;
propositions (3.7), (3.8), (3.9) and (3.11) contain fuzzy quantifiers; and

proposition (3.10) contains a fuzzy relative clause.

Fuzzy Set Descriptors

Informally, a fuzzy set descriptor or simply a descriptor is an expres-
sion which is a label of a fuzzy set or a characterization of a fuzzy set

in terms of other fuzzy sets. Simple examples of fuzzy set descriptors in
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English are

Very tall man (3.14)
Tall man wearing a brown hat (3.15)
The dishes on the table (3.16)
Small integer (3.17)
Numbers which are much larger than 10 (3.18)
Most (3.19)
All (3.20)
Several (3.21)
Many tall women (3.22)
~ Above the table (3.23)
Much taller than (3.24)

A descriptor differs from a proposition in that it translates, in
general, into a fuzzy relation rather than a possibility distribution or
a possibility assignment equation. In this connection, it should be noted
that a nonfuzzy descriptor (i.e., a description of a nonfuzzy set) would, in
general, translate into an open sentence (i.e., a formula with free variables)
in predicate calculus. However, while the distinction between open and
closed sentences is sharply drawn in predicate calculus, the distinction
between fuzzy propositions and fuzzy set descriptors is somewhat blurred

in PRUF.
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Questions

For the purposes of translation into PRUF, a question will be assumed
to be expressed in the form B is ?A, where B is the body of the question
-- e.g.,How tall is Vera -- and A indicates the form of an admissible
answer, which might be (i) a possibility distribution or, as a special case,
an element of a universe of discourse; (ii) a truth-value; (iii) a proba-
bility-value; and (iv) a possibility-value. To differentiate between these
cases, A will be expressed as 1 1in (i) and, more particularly, as o
when a numerical value of an attribute is desired; as T in (ii); as A
in (iii); and as w 1in (iv).

To simplify the treatment of questions, we shall employ the artifice
of translating into PRUF not the question itself but rather the answer to

it, which, in general, will have the form of a fuzzy proposition. As an

illustration,
How tall is Tom ?I -- Tom is 2T (3.25)
How tall is Tom ?a — Tom is %o tall (3.26)
Where does Tom live — Tom lives in %o (3.27)
Is it true that Fran is blonde —— Fran is blonde is ?t (3.28)
Is it Tikely that X is small -— X is small is ‘?A (3.29)

Is it possible that (Jan is tall is false) —
‘ (3.30)

(Jan s tall is false) is 7w
In this way, the translation of questions stated in a natural lanquage

may be carried out by the application of translation rules for fuzzy propo-

sitions, thus making it unnecessary to have separate rules for questions.
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Possibility Assignment Equations

The concept of a possibility assignment equation and its role in the
translations of propositions in a natural language into PRUF have been
discussed briefly in Section 2. In what follows, we shall focus our atten-
tion on several additional aspects of this concept which relate to the
translation rules which will be formulated in Sections 4 and 6.

As was stated earlier, a proposition of the form p & N is F in which
N 1is the name of (i) a variable, (ii) a fuzzy set, (iii) a proposition, or
(iv) an object, and F is a fuzzy subset of a universe of discourse U,

translates, in general, into a possibility assignment equation of the form

HX(N) = F (3.3])
or, more simply,

My = F (3.32)

where X 1is a variable taking values in U, with X being either N itself
(when N 14s a variable) or a variable that is explicit or implicit in N.
To place in evidence that (3.32) is a translation of "N is F," we

write

ne>
"
-n

NisF—TI (3.33)

and, conversely,

]
m

pANisF«n (3.34)

X

with the left-hand member of (3.34) referred to as a retranslation of its

right-hand member.
In general, the variable X 1is an n-ary variable which may be expressed

as X 4 (x X)), with Xp,...X varying over Ug,....U, respectively.

-l’-c
In some instances, the identification of the Xi and F 1is quite straight-

forward; in others, it may be a highly nontrivial task requiring a great
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21 For this reason, the identification of the

deal of contextual knowledge.
Xi is difficult to formulate as a mechanical process. However, as is
usually the case in translation processes, the problem can be greatly sim-
plified by a decomposition of p into simpler constituent expressions,
translating each expression separately, and then combining the results.
The translation rules formulated in Sections 4 and 6 are intended to serve
this purpose.

In general, a constituent variable, Xi’ has a nested structure of

the form
Xi = Attribute name(Part name(Part name---(N))) (3.35)

which is similar to the structure of selectors in the Vienna Definition

Language (Lucas et al., 1968; Wegner, 1972). As a simple illustration,

Myrna is blonde — 1 = BLONDE (3.36)

Color(Hair(Myrna))

where Color(Hair(Myrna)) is a nested variable of the form (3.35) and
BLONDE is the fuzzy denotation of blonde in the universe of discourse
which is associated with the proposition in question.

A problem that arises in some cases relates to the lack of an appro-
priate attribute name. For example, to express the translation of “Manuel
is kind," in the form (3.33), we need a designation in English for the
attribute which takes "kind" as a value. When such a name is not available

.in a language, it will be denoted by the symbol A, with a subscript if
necessary, to indicate that "kind" is a value of A. However, what is really

needed in cases like this is a possibly algorithmic definition of the

2]In one form or another, this problem arises in all meaning representation
languages. However, it is a much more difficult problem in machine-
oriented languages than in PRUF, because in PRUF the task of identifying
the Xi is assumed to be performed by a human.
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concept represented by A which decomposes it into simpler concepts for
which appropriate names are available.

In the foregoing examples, N represents the name of an object, e.g.,
the name of a person. More generally, N may be a descriptor, which is

usually expressed as a relative clause, as in
The man standing near the door is tall. (3.37)
N may also be a proposition, as in
Lucia is tall is false (3.38)

In (3.37), N 2 The man standing in the door, while in (3.38),
N 8 Lucia is tall and X(N) is the truth-value of the proposition "Lucia
is tall."

An important point concerning propositions of the form "N is F" which
can be clarified at this juncture, is that "N is F" should be regarded not
as a restricted class of propositions, but as a canonical form for all
propositions which admit of translation into a possibility assignment

22

equation. Thus, if p 1is any proposition such that

p—Ty =F (3.39)

then upon retranslation it may be expressed as "X is F," which is of the
form "N is F."
As an illustration, the proposition "Paul was rich," may be translated

as
22

This is equivalent to saying that "N is F" is a canonical form for all
propositions which can be expressed in the form "N is F" through the
application of a meaning-preserving transformation. Such transformations
will be defined later in this section in connection with the concept of
semantic equivalence.
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Paul was rich — H(Wealth(Paul),Time) = RICH x PAST (3.40)

where (Wealth(Paul),Time) ds a binary variable whose first component is
the wealth of Paul (expressed as net worth) and the second component is the
time at which net worth is assessed; RICH is a fuzzy subset of U(Wealth);
PAST is a fuzzy subset of the time—interva] extending from the present

into the past; and RICH x PAST is the cartesian product23 of RICH and PAST.

Similarly, the proposition "X and Y are approximately equal," where

X and Y are real numbers, may be translated as
X and Y are approximately equal —a-n(x Y) © APPROXIMATELY EQUAL  (3.41)

where APPROXIMATELY EQUAL is a fuzzy relation in R2. Upon retranslation,

(3.41) yields the equivalent proposition
(X,Y) is approximately equal (3.42)

which, though ungrammatical, is in canonical form.

A related issue which concerns the form of possibility assignment
equations is that, in general, such equations may be expressed equiva-
lently in the form of possibility distributions. More specifically, if we
have

Nis F— My = F (3.43)

then the possibility assignment equation in (3.43) may be expressed as a
possibility distribution (labeled N) of the variable X(N), with the

tableau of N having the form:

23If A and B are fuzzy subsets of

and V, respectively, their cartesian
product is defined by quB(u,v)

uA(u)'\uB(v), ue Uy, vev.

ne>c
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Table 3.1

NI X(N) | =
o I
Uy m,
Un n

where the m; are the possibility-values of the U -

As a simple illustration, in the translation

Brian is tall — ) TALL (3.44)

HHeight(Bm‘an
where TALL is a fuzzy set defined by, say,
TALL = 0.5/160+0.6/165+0.7/170+0.8/175+0.9/180+ 1/185 (3.45)

the possibility assignment equation may be replaced by the possibility

distribution
BRIAN || Height m
160 0.5
165 0.6
170 0.7
175 0.8
180 0.9
185 1.0

which in turn may be expressed as the particularized possibility distribution
Br1an[HHeight=:TALL] (3.46)

on the understanding that, initially,
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Topiany = 1 (3.47)

that is, BRIAN is a unity possibility distribution with

“BRIAN(U) =1 for u€euyU. (3.48)

It is this equivalence between (3.44) and (3.46) that forms the basis for

the statement made in Section 1 regarding the equivalence of (1.1) and (1.2).

Definition
A11 natural languages provide a mechanism for defining a concept in
terms of other concepts and, more particularly, for designating a complex
descriptor by a single label. Consequently, it is essential to have a
facility for this purpose in every meaning representation language, includ-
ing PRUF.24
A somewhat subtle issue that arises in this connection in PRUF relates

25 the translation of the definiens into

to the need for normalizing
PRUF. As an illustration of this point, suppose that the descriptor

middle-aged is defined as
middle-aged 2 not young and not old . (3.49)

Now, as will be seen in Section 5, the translation of the right-hand member

of (3.49) is expressed by

24Concept definition plays a particularly important role in conceptual

dependency graphs (Schank, 1973), in which a small number of primitive con-

cepts are used as basic building blocks for more complex concepts. ~
25A fuzzy set F is normal if and only if Supu uF(u) = 1. If F is subnormal,
it may be normalized by dividing ug by Sup, uF(u). Thus, the membership

function of normalized F, Norm(F), is given by

Myorm(F) (W) 8 up(u)/sup, ug(u)
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not young and not old — YOUNG' N OLD' (3.50)

where YOUNG and OLD are the translations of young and old, respectively,
and ' denotes the complement. Consequently, for some definitions of
YOUNG and OLD the definition of middle-aged by (3.49) would result in a
subnormal fuzzy set, which would imply that there does not exist any
individual who is middle-aged to the degree 1.

While this may be in accord with one's intuition in some cases, it may
be counterintuitive in others. Thus, to clarify the intent of the defini-

tion, it is necessary to indicate whether or not the definiens is to be

norma]ized.26 For this purpose, the notation
definiendum 2 Norm(definiens) (3.51)
e.g.,
middle-aged & Norm(not young and not old) (3.52)

may be employed to indicate that the translation of the definiens ought to

be normalized.

Expressions in PRUF

Expressions in PRUF are not rigidly defined, as they are in formal,
programming and machine-oriented meaning representation languages.
Typically, an expression in PRUF may assume the following forms:

(a) A label of a fuzzy relation or a possibility distribution.
Examples: CUP, BIG MAN, APPROXIMATELY EQUAL.

(b) A particularized fuzzy relation or a possibility distribution.

26The'need for normalization was suggested by some examples brought to the

author's attention by P. Kay (U.C., Berkeley) and W. Kempton (U.T., San
Antonio). (See Kay (1975).) :
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Examples:

cup[n =red; Weight=35 gr] (3.53)

Color

CAR[Make = Ford; HSize(Trunk)::BIG; |
= . 1 ] =

HWeight LlxweightzAPPROXIMATELY[JJeIthT 1500 kg]]

(c) A possibility assignment equation. Examples:

r[’*‘31'9ht(Va1en’cina) = TALL (3.54)

My = CuP[n = red; Weight=35 gr]

Color

(d) A definition. Examples:

FAH+alm =k] (3.55)
(s)
where + denotes the union, H is a fuzzy relation and G[HX( )= K]
S
is a particularized fuzzy relation.
A - . -
F £ HOUSE[HCo]or GREY; HPrice HIGH] (3.56)

which defines a fuzzy set of houses which are grey in color and high-priced.
(e) A procedure -- expressed in a natural, algorithmic or programming
language -- for computing a fuzzy relation or a possibility distribution.

Examples: Examples (t), (u) and (v) in Section 7.

In general, a fuzzy set descriptor will translate into an expression
of the form (a), (b) or (d), while a fuzzy proposition will usually trans-
late into (b), (c) or (d). 1In all these cases, an expression in PRUF may

be viewed as a procedure which -- given a set of relations in a database
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-- returns a fuzzy relation, a possibility distribution or a'possib11ity

assignment equation.27

Database, Meaning and Information

By a relational database or, simply, a database in the context of

PRUF is meant a collection, D, of fuzzy, time-varying relations which
may be characterized in various ways, e.g., by tables, predicates,
recognition algorithms, generation algorithms, etc. A simple self-
explanatory example of a database, D, consisting of fixed (i.e., time-
invariant) relations POPULATION, YOUNG and RESEMBLANCE is shown in

Table 3.2. What is implicit in this representation is that each of the
variables (i.e., attributes) which appear as column headings, is associated
with a specified universe of discourse (i.e., a domain). For example, the
universe of discourse associated with the variable Name in POPULATION

is given by
U(Name) = Codd + King + Chen + Chang (3.57)

In general, two variables which have the same name but appear in different
tables may be associated with different universes of discourse.
The relations YOUNG and RESEMBLANCE in Table 3.2 are purely

extensiona128 in the sense that YOUNG and RESEMBLANCE are defined directly
27

It should be noted that an expression in PRUF may also be interpreted as a
probability -- rather than possibility -- manipulating procedure. Because
of the need for normalization, operations on probability distributions are,
in general, more complex than the corresponding operations on possibility
distributions.

In the theories of language based on. two-valued logic (Linsky, 1971; Quine,
1970a; Cresswell, 1973) the dividing line between extensional and inten-
sional is sharply drawn. This is not the case in PRUF -- in which there
are levels of intensionality (or, equivalently, levels of procedural gener-
ality), with pure extensionality constituting one extreme. This issue will
be discussed in qreater detail in a forthcoming paper.

28




POPULATION || Name

Codd
King
Chen
Chang
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Table 3.2
RESEMBLANCE | Namel | Name2 u
Codd King 0.8
Codd Chen 0.6
Codd Chang | 0.6
King Chen 0.5
Chang | Chen 0.8
YOUNG | Name u
Codd 0.7
King 0.9
Chen 0.8
Chang | 0.9

as fuzzy subsets of POPULATION and not through a procedure which would

allow the computation of YOUNG and RESEMBLANCE for any given POPULATION.

To illustrate the point, if POPULATION and YOUNG were defined as shown in

Table 3.3, then it would be possible to compute the fuzzy subset YOUNG

of any given POPULATION by employing the procedure expressed by

YOUNG =11 x Name POPULATION[HAge==YOUNG]
Table 3.3
POPULATION Name | Age YOUNG || Age y

Codd 45 30 0.8
King 31 31 0.75
Chen 42 32 0.70
Chang 33 33 0.60

42 0.4

45 0.3

(3.58)
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where YOUNG in the right-hand member is a fuzzy subset of U(Age), and u

is implicit in POPULATION.

Since an expression in PRUF is a procedure, it involves, in general,
not the relations in the database but only their jggmgg.zg In addition, an
expression in PRUF may involve the names of universes of discourse and/or
their cartesian products; the names of some of the relation elements; and
possibly the values of some attributes of the relations in the database
(e.g., the number of rows).

As an illustration, the frame of the database shown in Table 3.2 (i.e.,

the collection of frames of its constituent relations) is comprised of:

POPULATION u Name l »  YOUNG " Name | u !

RESEMBLANCE " Namel l Name2 I u

Correspondingly, an expression in PRUF such as

1« x Name] RESEMBLANCE[Name2 = King] (3.59)

represents a procedure which returns the fuzzy subset of POPULATION com-
prising names of individuals who resemble King.

Ultimately, each of the symbols or names in a database is assumed to
be defined ostensively (Lyons, 1968) or, equivalently, by exemplification;
that is, by pointing or otherwise focusing on a real or abstract object
and indicating the degree -- on the scale from 0 to 1-- to which it is com-
patible with the symbol in question. In this sense, then, a database may

viewed as an interface with an external world which might be real or abstract
29

By the frame of a relation is meant its name and column headings (i.e.,
the names of variables or, equivalently, attributes). The rest of the
relation (i.e., the table without column headings) is its body.
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or a combination of the two.30

In general, the correspondence between a database and an external world
is difficult to formalize because the universe of discourse associated with
an external world comprises not just a model of that world, say M, but
also the set of fuzzy subsets of M, the set of fuzzy subsets of fuzzy
subsets of M, etc. To illustrate this point, it is relatively easy to
define by exemplification the denotation of red, which is a fuzzy subset of
M; much more difficult to define the concept of color, which is a subset
of P(M), the set of fuzzy subsets of M; and much much more difficult to
define the concept of attribute, which is a subset of P(P(M))} (Zadeh, 1971b).

Viewed in this perspective, the issues related to the correspondence
between a database and an external world are similar to those which arise
in pattern recognition and are even harder to formulate and resolve within
a formal framework. As a direct consequence of this difficulty, a complete
formalization of the concept of meaning does not appear to be an attainable
goal 1in the foreseeable future.

In the context of PRUF, the concept of meaning is defined in a some-
what restricted way, as follows.

Let e be an expression in a natural language and let E be its

translation into PRUF, i.e.,

e —E (3.60)
and, more particularly,
p— P (3.61)

if e 1is a procedure; and
30

In this sense, the concept of a database is related to that of a possible
world in possible world semantics and modal logic (Kripke, 1963; Hughes
and Cresswell, 1968; Partee, 1976a).
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d —0D (3.62)
if e idis a descriptor. To illustrate:

cup — CUP (3.63)

red cup — CUP[HC0]0r==RED] (3.64)
George is young — II = YOUNG (3.65)

Age(Georqe)

or, equivalently,
George is young — GEORGE[HAge==YOUNG] (3.66)

Stated informally, the procedure, E, may be viewed as the meaning
of e in the sense that, if e £ d, then for any given database 0 on
which D is defined, D computes (or returns) a fuzzy relation Fd which
is a fuzzy denotation (or extension) of d 1in its universe of discourse
(which may be different from D). Similarly, if e & p, then P is a
procedure which, for any given database ? on which P is defined, com-
putes a possibility distribution . This distribution, then, may be

31 In particular, if P s

regarded as the information conveyed by p.
the possibility distribution of a variable X and X(s) is a subvariable

of X, then the information conveyed by p about X(s) is given by the

projection of TP on U(S). When it is necessary to indicate that 1P
is the result of acting with P on a particular database D, m° will be
referred to as the possibility distribution induced by p (or the infor-

mation conveyed by p) in application to O.
31

It should be noted that a nonprobabilistic measure of information was
introduced by Kampe de Feriet and Forte (1967,1977). In the present
paper, however, our concern is with the information itself, which is
represented by a possibility distribution, rather than with its measure,
which is a real number.
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As an illustration, consider the proposition

4

p & Mike recently lived near Boston (3.67)

which in PRUF translates into

RESIDENCE[Subject = Mike; T o = RECENT PAST;

Tim (3.68)

HLocation=11xc1ty] NEAR[City2 = Boston]]

where NEAR is a fuzzy relation with the frame NEAR“City]'CityZ'u ,

RECENT PAST is a fuzzy relation with the frame RECENT PAST“Time|u[

(in which Time is expressed in years counting from the present to the past),

and NEAR[City2 =Boston] is the fuzzy set of cities which are near

uxCityl ,
Boston. Given a database, D, (3.68) would return a possibility distribu-

tion such as shown (in a partially tabulated form) in Table 3.4, 1in which

Table 3.4

RESIDENCE || Subject Location Time T

Mike Cambridge 1 1

Mike Cambridge 2 0.8
Mike Cambridge 3 0.6
Mike Wayland 1 0.9
Mike Wayland 2 0.8

the third row, for example, signifies that the possibility that Mike lived
in Cambridge 3 years ago is 0.6. In this example, (3.68) constitutes the
meaning of p, while the possibility distribution whose tableau is given

by Table 3.4 1is the information conveyed by p.
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In addition to representing the meaning of an expression, e, in a
natural language, the corresponding expression, E, in PRUF may be viewed

as its deep structure -- not in the technical sense employed in the litera-

ture of linguistics (Chomsky, 1965, 1971) -- but in the sense of being
dependent not on the surface structure of e but on its meaning. This
implies that the form of E is independent of the natural language in
which e 1is expressed, thus providing the basis for referring to PRUF as a
universal language. The same can be said, of course, of most of the mean-
ing representation languages that have been described in the literature.
Another characteristic of PRUF that is worthy of mention is that it is
an intentiona]32 language in the sense that an expression in PRUF is sup-
posed to convey the intended rather than the literal meaning of the corres-
ponding expression in a natural language. For example, if the proposition
p 4 John is no genius is intended to mean that q 2 John is dumb, then
the translation of p into PRUF would be that of q rather than p
itself. As an example illustrating a somewhat different point, consider

the proposition
p 4 Alla has red hair (3.69)
In PRUF, its translation could be expressed in one of two ways:
(a) Alla has red hair — HCo]or(Hair(A]]a)) = ¢ (3.70)

where ¢ 1is an identifier of the color that is commonly referred to as

red in the case of hair; or

32A thorough discussion of the concept of intentionality may be found in

Grice (1968) and Searle (1971).
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f

(p) Alla has red hair — HCo]or(Hair(A]]a)) = RED (3.71)

in which the superscript f (standing for footnote) points to a nonstan-
dard definition of RED which must be used in (3.71). The same convention
is employed, more generally, whenever a nonstandard definition of any entity

in an expression in PRUF must be employed.

Semantic Equivalence and Semantic Entailment

The concepts of semantic equivalence and semantic>entailment are two
closely related concepts in PRUF which play an important role in fuzzy
logic and approximate reasoning.

Informally, let p and q be a pair of expressions in a natural
language and let ™ and 19 be the possibility distributions (or the

fuzzy relations) induced by p and q in application to a database 7.

Then, we shall say that p and g are semantically equivalent, expressed
as

if and only if m° = 19. Furthermore, if (3.72) holds for all databases,33

the semantic equivalence between p and q is said to be strong.34 Thus, the
definition of strong semantic equivalence implies that p and q have
the same meaning if and only if they are strongly semantically equivalent.

In this sense, then, any transformation which maps p into q is

33Genera11y, "all databases" should be interpreted as all databases which
are related in a specified way to a reference database. This is analo-
gous to the role of the alternativeness relation in possible world
semantics (Hughes and Cresswell, 1968).

34The concept of strong semantic equivalence as defined here reduces to
that of semantic equivalence in predicate logic (see Lyndon, 1966) when
p and q are nonfuzzy propositions.
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meaning-preserving.

To illustrate, as will be seen in Section 6, the propositions

o
ne>

Jeanne is tall is true (3.73)

and

0
[

Jeanne is not tall is false (3.74)
in which false is the antonym of true, i.e.,
UFALSE(V) = UTRUE(]"V) s v € [0,1] (3'75)

are semantically equivalent no matter how TALL and TRUE are defined. Conse-
quently, p and gq are strongly semantically equivalent and hence have

the same meaning. On the other hand, the propositions

o
>

Jeanne is tall is very true (3.76)

and

Kol
ne>

Jeanne is very tall (3.77)

can be shown to be semantically equivalent when TRUE is the unitary fuzzy

set (see (2.15)), that is

wrpoet¥) = v > v eE[0,1]

but not when TRUE is an arbitrary fuzzy subset of [0,1]. Consequently,
p and q are not strongly semantically equivalent.

Usually, it is clear from the context whether a semantic equivalence
is or is not strong. When it is necessary to place in evidence that a
semantic equivalence is strong, it will be denoted by s+ Correspond-

ingly, if the equality between P and 19 s approximate in nature, the
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approximate semantic equivalence between p and q will be expressed as
p a< q.
While the concept of semantic equivalence relates to the equaltiy of

possibility distributions (or fuzzy relations), that of semantic entailment

relates to 1nc]usion.35 More specifically, on denoting the assertion
"p semantically entails q (or q is semantically entailed by p)," by

p+—> g, we have
p—gq iff 1P cnd (3.78)

where TP and 19 are the possibility distributions induced by the propo-
sitions p and q, respectively.

As in the case of semantic equivalence, semantic entailment is strong
if the relation +— holds for all databases. For example, as will be
seen in Section 4, the possibility distribution induced by the proposition
"Gary is very tall" is contained in that induced by "Gary is tall" no

matter how TALL is defined. Consequently, we can assert that
Gary is very tall s— Gary is tall (3.79)

where s— denotes strong semantic entailment. On the other hand, the

validity of the semantic entailment
Gary is very tall — Gary is not short (3.80)

depends on the definitions of tall and short, and hence (3.80) does not

represent strong semantic entailment.

351f A and B are fuzzy subsets of U, then A C B iff uA(u) S_UB(U), u €.
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As was stated earlier, the concepts of semantic equivalence and
semantic entailment play an important role in fuzzy logic and approximate
reasoning (Zadeh, 1977b). In the present paper, we shall make use of the
concept of semantic equivalence in Sections 4 and 6 to derive several

useful meaning-preserving transformations.
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4. Translation Rules of Types I, II and III

. To facilitate the translation of expressions in a natural language into
PRUF, it is desirable to have a s£ock of translation rules which may be
applied singly or in combination to yield an expression, E, 1in PRUF,
which is a translation of a given expression, e, in a natural language.

The translation rules which apply to descriptors may readily be deduced
from the corresponding rules for propositions. Consequently, we shall
restrict our attention in the sequel to the translation of propositions.

The translation rules for propositions may be divided into several
basic categories, the more important of which are:

Type I. Rules pertaining to modification.

Type II. Rules pertaining to composition.

Type III. Rules pertaining to quantification.

Type IV. Rules pertaining to qualification.

Simple examples of propositions to which the rules in question apply

are the following

Type 1. X is very small (4.7)
X is much larger than Y (4.2)
Eleanor was very upset (4.3)
The man with the blond hair is very tall (4.4)

Type II. X is small and Y is large (conjunctive composition) (4.5)

X is small or Y is large (disjunctive composition) (4.6)

If X is small then Y is large (4.7)
(conditional composition)

If X is small then Y is large else Y is very large (4.8)

(conditional and conjunctive composition)
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Type III. Most Swedes are tall (4.9)
Many men are much taller than most men (4.10)
Most tall men are very intelligent _ (4.11)

Type IV.  Abe is young is not very true (truth qualification) (4.12)

Abe 1is young is quite probable (4.13)
(probability qualification)

Abe 1is young is almost impossible (4.14)

(possibility qualification)

Rules of Types I, II and III will be discussed in this section.
Rules of Type IV will be discussed in Section 6, following an exposition
of the concepts of consistency, compatibility and truth in Section 5.

Translation rules in PRUF are generally expressed in a conditional

format exemplified by

If p—P (4.15)

then p+ —*-P+

where p+ and P+ are modifications of p and P, respectively. In
effect, a rule expressed in this form states that if in a certain context

p translates into P, then in the same context a specified modification

of p, p+, translates into a specified modification of P, P*. In this
way, the rule makes it explicit that the translation of a modified propo-
sition, p+, depends on the translation of p. The simpler notation

employed in (4.28) conveys the same information, but does so less explicitly.
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Rules of Type I

A basic rule of Type I is the modifier rule, which may be stated as

follows.
If the proposition
pANSIisF (4.16)

translates into the possibility assignment equation (see (3.31))

I = F (4.17)
(X1""’Xn)
then the translation of the modified proposition
+ A .
p 2N ismF (4.18)

where m is a modifier such as not, very, more or less, quite, extremely,

etc., is given by

N is mF — H(X]’.'.,xn) = F (4.19)

where F' s a modification of F induced by m. In particular,

(i) If m2 not, then F' = F' & complement of F ; (4.20)
(ii) If m 2 very, then FHo= F2, where36 (4.21)
s [ B s (4.22)

U
(iii) If m 2 more or less, then F¥ = /F where (4.23)

36The "integral" representation of a fuzzy set in the form F = f uF(u)/u
U

signifies that F is a union of the fuzzy singletons uF(u)/u, u€euy,
where uc is the membership function of F. Thus, (4.22) means that the
membership function of F2 is the square of that of F.
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F = | At s (4.24)
u
or, alternatively,
F o= IUuF(u)K(u) (4.25)

where K(u) is the kernel of more or ]ess.37

As a simple illustration of (4.21), let p be the proposition "Lisa
is young," where young is a fuzzy subset of the interval [0,100] whose
membership function is expressed in terms of the S-function (2.13) as

(omitting the arguments of u and S):

MraLL = 1 - 5(25,35,45) . (4.26)

Then, the translation of "Lisa is very young" is given by

Lisa is very young — 1II = YOUNG2 (4.27)

Age(Lisa)
where
b, = (1-5(25,35,45))°
YOUNG

Note that we can bypass the conditional format of the translation

rule (4.16) and assert directly that
. _ 2
Lisa is very young — HAge(Lisa) = YOUNG (4f28)

on the understanding that YOUNG is the denotation of young in the context

in which the proposition "Lisa is very young" is asserted. As was stated

37!“‘I01r‘e detailed discussions of various types of modifiers may be found in
Zadeh (1972a,1975c), Lakoff (1973ab), Wenstop (1975,1976), Mizumoto et al
(1977), Hersh and Caramazza (1976), and other papers listed in the ~— —
bibliography. It is important to note that (4.21) and (4.23) should be
regarded merely as standardized default definitions which may be
replaced, if necessary, by the user-supplied definitions.
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earlier, the conditional format serves the purpose of making this understand-
ing more explicit.
In some cases, a modifier such as very may be implicit rather than

explicit in a proposition. Consider, for example, the proposition
p 4 Vera and Pat are close friends (4.29)
As an approximation, p may be assumed to be semantically equivalent to
q =.Vera and Pat are friend52 (4.30)

so that (using (4.22)) the translation of p may be expressed as (see

(7.21))
m(FRIENDS) “ FRIENDSZ[Name1==Vera; Name2 = Pat] (4.31)

where w(FRIENDS) 1is the possibility of the relation FRIENDS in D. Thus,
what (4.31) implies is that the relation FRIENDS in D is such that

M, = 12 (4.32)
where

X éu FRIENDS[Namel = Vera; Name2 = Pat] (4.33)

and 1 is the unitor defined by (2.15).

Rules of Type Il
 Translation rules of Type II pertain to the translation of propositions

of the form
p = q*r (4.34)

where * denotes an operation of composition, e.g., conjunction (and),

disjunction (or), implication (if...then), etc.
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Under the assumption that the operation of composition is noninter-
active (Bellman and Zadeh, 1976),38 the rules in question may be stated

as follows.

If
A J -
geMis F—1 = F
(x],...,xm)
and - (4.35)
A .
r8NisG—1 = G
(Y'Is -sYn)
then
(a) Mis Fand Nis G— 1 = FNG (4.36)
(X'l""’xm’Y1""’Yn)
= FxG
(b) Mis ForNis G— 1 = F+6 (4.37)
(x], o XpaYgse ,vn)
and .
(c]) If M is F then N is G — H"‘]"--’Xm’Yr'--’Yn) =F'eG (4.38)
or
(c2) If M is F then N is G — "(x],...,x ’Y’I’”"Yn) = FxG+ F'xV
(4.39)

where F and G are fuzzy subsets of U2 U] x e xU and V = Vyxooex Vs

respectively; F' and G are the cylindrical extensions of F' and G,

i.e.,

-
]
-
X
<

(4.40)

G=UxG; (4.41)

381nforma11y, a binary operation * on real numbers u, v is noninteractive

if an increase in the value of u (or v) cannot be compensated by a
decrease in the value of v (or u). It should be understood that the non-
jnteractive definitions of and and or in (4.36) and (4.37) may be
replaced, if necessary, by user-supplied interactive definitions.
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FxG 1is the cartesian product of F and G which may be expressed as

FNG and is defined by
quG(u,v) = uF(u);\uG(v) s, ueu, vev; (4.42)
+ 1is the union and ® 1is the bounded-sum, i.e.,
UFI ® G(u3v) =1 A (1 = HF(U) +UG(V)) (4°43)

where u A (Ugsenesu )y v A (Vyseeesv )y A 8 min, + £ arithmetic sum
and - 2 arithmetic difference.39 Note that there are two distinct rules

for the conditional composition, (cl) and (c2). 0f these, (c]) is consis-
tent with the definition of implication in Lukasiewicz's LA]eph] logic
(Rescher, 1969), while (c2) -- in consequence of (4.53) -- corresponds to the

relation expressed by the table

Table 4.1
M N
F G
F' v

As a very simple illustration, assume, as in Zadeh (1977b), that

U=V=1+2+3, M&x, N2y,

F O small 2 1/1+0.6/2+0.1/3 (4.44)

and
39

If the variables X 2 (Xq,...,%n) and Y & (Y1,...,Yn) have a subvariable,
say Z, in common, i.e., X & (S,Z) and Y & (T,Z), then F and G should be
interpreted as cylindrical extensions of F and G in U(S) xU(T) x U(Z)
rather than in U(X) xU(Y), where U(S), U(T) and U(Z) denote, respectively,
the universes in which S, T and Z take their values.
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G targe 2 0.1/1+0.6/2+1/3 (4.45)
Then (4.36), (4.37), (4.38) and (4.39) yield

X is small and Y is large — (4.46)
H(X Y) = 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.1/(2,1) + 0.6/(2,2)
+ 0.6/(2,3) + 0.1/(3,1) + 0.1/(3,2) + 0.1/(3,3)

X is small or Y is large — (4.47)
H(X Y) = 1/(1,1) + 1/(1,2) + 1/(1,3) + 0.6/(2,1) + 0.6/(2,2)
+1/(2,3) + 0.1/(3,1) + 0.6/(3,2) + 1/(3,3)

If X is small then Y is large — (4.48)
H(X,Y) = 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.5/(2,1) + 1/(2,2)
+1/(2,3) + 1/(3,1) + 1/(3,2) + 1/(3,3)

If X is small then Y is large — (4.49)
H(X Y) = 0.1/(1,1) + 0.6/(1,2) + 1/(1,3) + 0.4/(2,1) + 0.6/(2,2)
+ 0.6/(2,3) + 0.9/(3,1) + 0.9/(3,2) + 0.9/(3,3)

The rules stated above may be employed in combination, yielding a
variety of corollary rules which are of use in the translation of more
complex forms of composite propositions and descriptors. Among the basic

rules of this type are the following.

(d) If M is F then N is G else N is H (4.50)

— 1 = (F'leG)N(FeH)
(x-’ IR ,meY-l S0 e ,Yn)

where Fcy 2 Upx-o-xy  and 6, HCV A ViyxeoxV . This rule follows

from the semantic equivalence
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If M is F then N is G else N is H (4.51)
<~ (If M is F then N is G) and (If M is not F then N is H)

and the application of (a) and (c]).

(e) Translation Rule for Relations

Consider a relation, R, whose tableau is of the form shown in Table 4.2

Table 4.2
R X] X2 Xn
Fii | Fyz n
Fm] ’ : an

in which the Fij are fuzzy subsets of the Uj, respectively. On cinter-

preting R as

R = X; is Fy; and X, is F;, and ... and X s F, or (4.52)
X1 is F21 and X2 is F22 and ... and Xn is F2n or ... or
X1 is le and X2 is sz and ... and Xn is an

it follows from (a) and (b) that
R— Fyqx+eexFo + e + F  xeeoxF (4.53)

11 In ml mn

which will be referred to as the tableau rule. This rule plays an impor-

tant role in applications to pattern recognition, decision analysis, medical
diagnosis and related areas, in which binary relations are employed to

describe the features of a class of objects (Zadeh, 1976ab).
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As a simple illustration, consider the relation defined by Table 4.3

Table 4.3

X Y

small large
very small | not very large
not small very small

in which X and Y are real-valued variables and

small — SMALL
large — LARGE

where SMALL and LARGE are specified fuzzy subsets of the real line.
First, by the application of (4.20) and (4.21), we have

very small — SMALLZ (4.54)
not small — SMALL' (4.55)
not very large — (LARGE)" (4.56)

Then, on applying (4.53), we obtain
R — SMALL x LARGE + (SMALL2)><(LARGE2)' + SMALL' xSMALL2

which is the desired translation of the relation in question.

Linguistic Variables

The modifier rule in combination with the translation rules for con-
Junctive and disjunctive compositions provides a simple method for the

translation of linguistic values of so-called linguistic variables (Zadeh,

1973,1975¢).
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Informally, a linguistic variable is a variable whose linguistic values

are words or sentences in a natural or synthetic language, with each such
value being a label of a fuzzy subset of a universe of discourse. For exam-
ple, a variable such as Age may be viewed both as a numerical variable rang-
ing over, say, the interval [0,150], and as a Tinguistic variable which

can take the values young, not young, very young, not very young, quite

young, old, not very young and not very old, etc. Each of these values may

be interpreted as a label of a fuzzy subset of the universe of discourse
U = [0,150], whose base variable, u, is the generic numerical value of Age.
Typically, the values of a linguistic variable such as Age are built

up of one or more primary terms (which are the labels of primary fuz;xﬁsets40),

together with a collection of modifiers which allow a composite linguistic
value to be generated from the primary terms through the use of conjunctions
and disjunctions. Usually the number of primary terms is two, with one
being an antonym of the other. For example, in the case of Age, the primary

terms are young and old, with old being the antonym of young.

Using the translation rules (4.20), (4.21), (4.36) and (4.37) in
combination, the linguistic values of a linguistic variable such as Age may
be translated by inspection. To illustrate, suppose that the primary terms

young and old are defined by

UYOUNG = 1-5(20,30,40) (4.57)
and
HoLp = 5(40,55,70) (4.58)
Then
not very young — (YOUNGZ)' (4.59)
40

Such sets play a role which is somewhat analogous to that of physical
units. .
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and
not very young and not very old — (YOUNGZ)'rW(OLDZ)'
and thus ,
. _ 2y,
John is not very young — nAge(John) = (YOUNG™)
where

y o = 1- (1-5(20,30,40))°
(YOUNG®)*

(4.60)

(4.61)

(4.62)

The problem of finding a linguistic value of Age whose meaning approxi-

mates to a given fuzzy subset of U is an instance of the problem of

linguistic approximation (Zadeh, 1975c; Wenstop, 1975; Procyk, 1976).

We

shall not discuss in the present paper the ways in which this nontrivial

problem can be approached, but will assume that linguistic approximation is

implicit in the retranslation of a possibility distribution into a proposi-

tion expressed in a natural language.

Rules of Type III

Translation rules of Type III pertain to the translation of proposi-

tions of the general form

e

QN are F

(4.63)

where N ds the descriptor of a possibly fuzzy §et, Q .is a fuzzy quanti-

fier (e.g., most, many, few, some, almost all, etc.) and F is a fuzzy

subset of U. Simple examples of (4.63) are:
Most Swedes are tall
Many tall men are fat

Some men are much taller than most men

(4.64)

(4.65)

(4.66)
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In general, a fuzzy quantifier is a fuzzy subset of the set of integers,

the unit interval or the real line. For example, we may have

1>

SEVERAL 2 0.2/3+0.6/4+1/5+1/6+0.6/7+0.2/8 (4.67)

">

1
MOST f S(u30.5,0.7,0.9)/u (4.68)

0
(which means that MOST is a fuzzy subset of the unit interval whose member-

ship function is given by $(0.5,0.7,0.9)) and
LARGE NUMBER & J (1+ (3578 (4.69)
0

In order to be able to translate propositions of the form (4.63), it
is necessary to define the cardinality of a fuzzy set, i.e., the number (or
the proportion) of elements of U which are in F. Strictly speaking, the
cardinality of a fuzzy set should be a fuzzy number, which could be defined
as in Zadeh (1977b). It is simpler, however, to deal with the power of a
fuzzy set (Deluca and Termini, 1972), which in the case of a fuzzy set with

41 42

a finite support’ 1is defined by

|F| & Z “F(ui) s u; € Support of F (4.70)
i

where “F(ui)’ i=1,...,N, is the grade of membership of us in F and

] denotes the arithmetic sum. For example, for the fuzzy set SMALL defined

by
J'§]

The support of a fuzzy subset F of U is the set of all points in U at which
uF(u5 > 0.

42For some applications, it is necessary to eliminate from the count those
elements of F whose grade of membership falls below a specified threshold.
This is equivalent to replacing F in (4.70) with FNT, where T is a fuzzy
or nonfuzzy set which induces the desired threshold.
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SMALL 4 1/0+1/1+0.8/2+0.6/3+0.4/4+0.2/5 (4.71)
we have

|F] = 1+1+0.8+0.6+0.4+0.2 = 4

In the sequel, we shall usually employ the more explicit notation

Count(F) to represent the power of F, with the understanding that F

43

should be treated as a bag = rather than a set. Furthermore, the notation

Prop(F/G) will be used to represent the "proportion" of F in G, i.e.,

A Count(FNG)
Prop{F/G} & Count(G (4.72)

and more explicitly
1Z(u,:(ui) Aug(u,))
Prop{F/G} = (4.73)
g: UG(uj)

where the summation ranges over the values of i for which
U € Support of F N Support of G. In particular, if G 8y 2 finite non-

fuzzy set, then (4.73) becomes

Prop{F/U} =-%.
i

ne—=
—

”F(ui) (4.74)

where N 1is the cardinality of U. For convenience, the number Prop{F/U}

will be referred to as the relative cardinality of F and expressed as

Prop(F) 2 Prop{F/u} = uelug) (4.75)

Hes=

1
N2y

As N increases and U becomes a continuum, the expression for the

power of F tends in the 1imit to that of the additive measure of F

43The elements of a bag need not be distinct. For example, the collection

of integers {2,3,5,3,5} is a bag if {2,3,5,3,5} # {2,3,5}.
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(Zadeh, 1968; Sugeno, 1974), which may be regarded as a continuous analog
of the proportion of the elements of U which are "in" F. More specific-
ally, if p(u) is a density function defined on U, the measure in ques-

tion is defined by44

Prop(F) = Jup(u)uF(u)du (4.76)

For example, if p(u)du 1is the proportion of Swedes whose height lies in

the interval [u,u+du], then the proportion of tall Swedes is given by

200 :
Prop(tall Swedes) J p(u)uTALL(u)du (4.77)
0

where MTALL is the membership function of tall and height is assumed to
be measured in centimeters.
In a similar fashion, the expression for Prop{F/G} tends in the

1imit to that of the relative measure of F in G, which is defined by

p(u,v) (up(u) Aug(v))dudv
prop(F/6) & 29XV (4.78)
va(V)uG(V)dv

where p(u,v) 1is a density function defined on UxV and

p(v) = Jup(u,V)du (4.79)

For example, if F & TALL MEN and G 8 FAT MEN, (4.78) becomes

44We employ the notation Prop{(F) even in the continuous case to make
clearer the intuitive meaning of measure.
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PlusV g aqq(U) Aug, (V) dudy
[0,200]x[0,100] tall fat

Prop{tall men/fat men} =

,[0’]Oo]p(v)ufat(v)dv (4.80)

where p(u,v)dudv 1is the proportion of men whose height lies in the interval
[u,u+du] and whose weight lies in the interval [v,v+dv].

The above definitions provide the basis for the quantifier rule for

the translation of propositions of the form "QN are F." More specifically,
assuming for simplicity that N is a descriptor of a nonfuzzy set, the
rule in question may be stated as follows.

If U= {u],...,uN} and

NisF—1, =F (4.81)
then
ON are F — HCodnt(F) =(Q (4.82)
and, if U 1is a continuum,
QN are F — HProp(F) = ( (4.83)
which implies the more explicit rule
N are F — n(p) = uQ(JUp(u)uF(u)du) (.84)

where p(u)du 1is the proportion of X's whose value lies in the interval
[u,u+du], m(p) 1is the possibility of p, and Mg and up are the
membership functions of Q and F, respectively.

As a simple illustration, if MOST and TALL are defined by (4.68) and

HralL = $(160,170,180), rgspectively, then
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JZOO

Most men are tall — m(p) = S( o(u)S{u;160,1970,180)du;0.5,0.7,0.9)

(4.85)

where p{u)du is the proportion of men whose height (in cm) is in the
interval [u,u+du]. Thus, the proposition "Most men are tall" induces a
possibility distribution of the height density function p which is expressed

by the right-hand member of (4.85).

Modifier Rule for Propositions

The modifier rule which was stated earlier in this section (4.16)
provides a basis for the formulation of a more general modifier rule which
applies to propositions and which leads to a rule for transforming the nega-
tion of a proposition into a semantically equivalent form in which the
negation has a smaller scope.

The modifier rule for propositions may be stated as follows:

If a proposition p translates into a procedure P, i.e.,
p— P (4.86)

and P returns a possibility distribution m° in application to a database
D, then mp, where m is a modifier, is semantically equivalent to a

retranslation of mP, i.e.,

mp «— @ (4.87)
where

q < mP (4.88)

In (4.88), mP is understood to be a procedure which returns (in applica-

tion to D):



70

(mP)' if m A not (4.89)

(mP)2 if m

>

very (4.90)
and

ne>

(I[p)o'5 if m 2 more or less (4.91)

For simplicity, the possibility distribution defined by (4.89), (4.90) and
(4.91) will be denoted as mnP.

On applying this rule to a proposition of the form .p AN is F and
making use of the translation rules (4.20), (4.21), (4.22), (4.36), (4.37)
and (4.87), we obtain the following general forms of (strona) semantic

equivalence:
(a) m(N is F) «— N is mF (4.92)

and, in particular,

not(N is F) <— N is not F (4.93)

very(N is F) «<— N is very F (4.94)

more or less(N is F) «— N is more or less F (4.95)

(b) m(M is F and N is G) «— (X,Y) is m(F xG) (4.96)

and, in particular (in virtue of (4.20), (4.36) and (4.37)),

not(M is F and N is G) «—— (X,Y) is (FxG)' (4.97)
«— (X,Y) is F' +@' (4.98)
<« M is not F or N is not G (4.99)

very(M is F and N is G) «— M is very F and N is very G (4.100)
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more or less(M is F and N is G)

< M is more or less F and N is more or less G (4.101)
and dually for disjunctive composition.
(¢) m(QN are F) <— (mQ)N are F (4.102)
and, in particular,
not(QN are F) «<— (not Q)N are F (4.103)

which may be regarded as a generalization of the standard negation rules in

predicate calculus, viz.
— (¥x)F(x) +— (3x) ~F(x) (4.104)
= (Ix)F(x) «— (¥x) = F(x) (4.105)

To see the connection between (4.104), say, and (4.102), we first note

that, in consequence of (4.84), we can assert the semantic equivalence
QN are F «— ant Q are not F (4.106)
where ant (Q, the antonym of Q, is defined by
Mant Q(v) = uQ(1-v) , velo,1] (4.107)
Thus, on combining (4.103) and (4.106), we have
not(QN are F) «— (ant(not 0))N are not F (4.108)
which for Q & all gives

not(all N are F) <— (ant(not al1))N are not F (4.109)
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Then, the right-hand member of (4.109) may be expressed as
not(all N are F) «— some N are not F (4.10)
if we assume that
some 2 ant(not al1) (4.11)

In a similar fashion, the modifier rule for propositions may be
employed to derive the negation rules for qualified propositions of the
form q 2 p is y, where vy is a truth-value, a probability-value, or a

possibility-value. Rules of this type will be formulated in Section 5.
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5. Consistency, Compatibility and Truth

Our aim in this section is to lay the groundwork for the translation
of truth-qualified propositions: of the form "p is *," where T is a lin-
guistic truth-value. To this end, we shall have to introduce two related
concepts -- consistency and compatibility -- in terms of which the relative
truth of a proposition p with respect to a reference proposition r may
be defined.

The concept of truth has traditionally been accorded a central place
in logic and philosophy of language. In recent years, it has also come
to play a primary role in the theory of meaning -- especially in Montaque
grammar and possible world semantics.

By contrast, it is the concept of a possibility distribution rather
than truth that serves as a basis for the definition of meaning as well as
other primary concepts in fuzzy logic and PRUF. Thus, as we shall see in
the sequel, the concept of truth in PRUF serves in the main as a mechanism
for assessing the consistency or compatibility of a pair of propositions
rather than -- as in classical logic -- as an indicator of the correspondence

between a proposition and "reality."

Consistency and Compatibility

Let p and q be twopropositions of the form p & N is F and

q &4 N is G, which translate, respectively, into

|
-n

(5.1)

©
It

ANisF—1b =
(X]Q---axn)
and

|
@D

AN is G—»H?X (5.2)

0
I}

1""’Xn)

where (X],...,Xn) takes values in U. Intuitive considerations suggest
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that the consistency of p with q (or vice-versa) be defined as the
possibility that "N is F" given that "N is G" (or vice-versa). Thus,

making use of (2.9), we have

1>

Cons{N is F, N is G} £ Poss{N is F|N is G} (5.3)

Sup (ue(u) Aug(u))

ueuy

where u 2 (u1,...,un) denotes the generic value of (X],...,Xn), and He
and Mg are the membership functions of F and G, respectively.

As a simple illustration, assume that

p 4 N is a small integer (5.4)
q & N is not a small integer (5.5)

where
SMALL INTEGER 2 1/0+1/1+0.8/2+0.6/3+0.4/4+0.2/5 . (5.6)

In this case, Cons{p,q} = 0.4.

As a less simple example, consider the propositions

p 2 Most men are tall (5.7)
and

>

Most men are short (5.8)
which translate into (see (4.84))

200
(o) = “MOST[JO p(“)“TALL(“)d“] (5.9)

and

200
79(p) = “MOST[JO o(u)uSHORT(u)du] . (5.10)

L 4



75

In this case, assuming that HMoST is a monotone function, we have

200

200
Cons(p,q) = uMOST[SuPp[(JO p(u)upp  (u)du) A (JO p(U)uSHORT(U)dUJJJ (5.11)

If q is assumed to be a reference proposition, which we shall denote
by r, then the truth of p relative to r could be defined as the consis-
tency of p with r. It appears to be more appropriate, however, to define

the truth of p relative to r through the concept of compatibility rather

than consistency. More specifically, assume that the reference proposition

r is of the form
rdNidsu (5.12)
where u is an element of U. Then, by definition,
Comp{N is u/N is F} & uc(u) (5.13)

which coincides with the definition of Poss{X is u|N is F} (see (2.4))

as well aswith the definition of the consistency of "N is u" with "N is F."
However, when the reference proposition is of the form r 8N is G, the
definitions of compatibility and consistency cease to coincide. More

specifically, by employing the extension principle, 5.13) becomes

Comp{N is G/N is F} uF(G) (5.14)

[[0 ]]uG(U)/uF(U)

b

45The extension principle (Zadeh (1975¢c)) serves to extend the definition of
a mapping f:U > V to the set of fuzzy subsets of U. Thus, f(F) 4

J uF(u)/f(u), where f(F) and f(u) are, respectively, the images of F and
U

uinV.



76

in which the right-hand member is the union over the unit interval of the
fuzzy singletons uG(u)/uF(u). Thus, (5.14) signifies that the compatibility
of "N is G" with "N is F" is a fuzzy subset of [0,1] defined by (5.14).

The concept of compatibility as defined by (5.14) provides the basis
for the following definition of Truth. .

Truth. Let p be a proposition of the form "N is F," and let r be a
reference proposition, r AN is G, where F and G are subsets of U.

Then, the truth, T, of p relative to r is defined as the compatibility

of r with p, i.e.,

T 8 Tr{N is F/N is G} & Comp{N is G/N is F} (5.15)
ne(G)
ue (u) /uc(u)

L]

ne>

n>

It should be noted that t, as defined by (5.15), is a fuzzy subset of the
unit interval, implying that a linguistic truth-value may be regarded as a
1inguistic approximation to the subset defined by (5.15).
A more explicit expression for T which follows at once from (5.15)
is:
uT(v) = Max uG(u) , veIo0,1] (5.16)
subject to

up(u) = v .

Thus, if e is 1-1, then the membership function of T may be expressed

in terms of those of F and G as

u(v) = uG(u;](V)) . | (5.17)
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Another immediate consequence of (5.15) is that the truth-value of p

relative to itself is given by
u (v) =v
rather than unity. Thus, in virtue of (2.15), we have

Tr{N is F/N is F}

1 (5.18)

u-true .

As an illustration of (5.15), assume that

N is not small (5.19)

o
[Lig

and

-
He>

N is small (5.20)
where SMALL is defined by (5.6). Then, (5.15) yields
T=1/0+0.8/0.2+0.6/0.4+0.4/0.6+0.2/0.8 (5.21)

which may be regarded as a discretized version of the antonym of u-true

(see (4.107)). Thus,
Tr{N is not small/N is small} = ant u-true (5.22)

which, as will be seen later, is a special case of the strong semantic
equivalence

Tr{N is F/N is not F} = ant u-true . (5.23)

As can be seen from the foregoing discussion, in our definition of the
truth-value of a proposition p, T serves as a measure of the compatibility
of p with a reference proposition r. To use this definition as a basis
for the translation of truth-qualified propositions, we adopt the following

postulate.
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Postulate. A truth-qualified proposition of the form "p is T" is

semahtica]ly eqUiva]ent to the reference proposition, r, relative to which
Tr{p/r} =1 . (5.24)

- We shall use this postulate in the following section to establish

translation rules for truth-qualified propositions.
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6. Translation Rules of Type IV

Our concern in this section is with the translation of qualified
propositions of the form q 8 p is y, where y might be a truth-value, a
probability-value, a possibility-value or, more generally, the value of some
specified propositional function, i.e., a function from the space of pro-
positions (or n-tuples of propositions) to the set of fuzzy subsets of the
unit interval.

Typically, a translation rule of Type IV may be viewed as an answer to
the following question: Suppose that a proposition p induces a possi-
bility distribution mP. What, then, is the possibility distribution induced
by the qualified proposition q 4p is y?, where y is a specified truth-
value, probability-value or possibility-value. |

In what follows, we shall state the translation rules pertaining to
(a) truth qualification; (b) probability qualification; and (c) possibility
qualification. These are the principal modes of qualification which are

of more or less universal use in natural languages.

Rule for Truth Qualification

Let p be a proposition of the form
pANisF (6.1)
and let g be a truth-qualified version of p expressed as
glNisFist ‘ (6.2)

where T 1is a linguistic truth-value. As was stated in Section 5, q s

semantically equivalent to the reference proposition r, i.e.,

Nis FisTtT<+«—>Nis G (6.3)
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where F, G and T are related by
T =.uF(G) . (6.4)

Equation (6.4) states that T 1is the image of G under the mapping
wp: U - [0,1]. Consequently (Zadeh, 1965), the expression for the member-

ship function of G in terms of those of t and F is given by
ug(u) = u (u(w)) . (6.5)

Using this result, the rule for truth qualification may be stated

as follows.

If
N is F — Hx =F (6.6)
then
N is Fis 1 —1, = F' (6.7)
where
uF+(U) = u_(ue(u)) . - (6.8)

In particular, if T 1is the unitary truth-value, that is,

T = u-true (6.9)
where
Hy-trueV) = v s v e[0,1] (6.10)
then
N is F is u-true — N is F . : (6.11)

As an illustration of (6.5), if

q 4 N is small is very true (6.12)

where
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bgpeL = 1-5(5:10,18) , v € [0,%) (6.13)
and
brpyg = 5(0-6,0.8,1.0) (6.14)
then
g — my(u) = (1 -5(u35,10,15);0.6,0.8,1.0) . (6.15)

Rule for Probability Qualification

Let p be a proposition of the form (6.1) and let g be a probability-

qualified version of p expressed as
qANisFisa (6.16)

where A is a linguistic probability-value such as probable, very probable,
not very probable, or, equivalently, likely, very 1likely, not very likely, etc.

We shall assume that q is semantically equivalent to the proposition
Prob{N is F} is A (6.17)

in which p 2 N is F 1is interpreted as a fuzzy event (Zadeh, 1968) . More
specifically, let p(u)du be the probability that X € [u,u+du], where
X 4 X(N). Then

Prob{N is F} = J p(u)uF(u)du (6.18)
U
and hence (6.17) implies that

1l =\ . (6.19)
JUP(U)uF(u)du

Equation (6.19) provides the basis for the followina statement of the

rule for probability qualification.
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If
NisF—1, =F (6.20)
then
NisFisA—T = A (6.21)
[ plutup()as
U
or more explicitly
m(p(+)) = “AUUp(“)“F(“)d"] (6.22)

where w(p(+)) is the possibility of the probability density function p(-).

As an illustration of (6.22), assume that
q 2N is small is Tikely (6.23)
where LIKELY is defined by

W IKELY = (0.7,0.8,0.9) (6.24)

and SMALL is given by (6.13). Then
N is small is likely — w(p(-)) = J p(u) (1 - S(u;5,10,15))du . (6.25)
: 0

Note that in this case the proposition in question induces a possibility

distribution of the probability density of X & N.

Rule for Possibility Qualification

Our concern here is with the translation of possibility-qualified propo-

sitions of the form

qiNisFisw - (6.26)

where w is a linguistic possibility-value such as quite possible, very

X
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possible, almost impossible, etc., with each such value representing a fuzzy

subset of the unit interval.
By analogy with our interpretation of probability-qualified propositions,

qQ may be interpreted as

N is F is w «— Poss{X is F} is w (6.27)
which implies that

Tposs{N is F} ~ “ - (6.28)

Now suppose that we wish to find a fuzzy set G such that
Nis Fisw+—NisG . (6.29)
Then, from the definition of possibility measure (2.9), we have

Poss{N is FIN is 6} = Sup(ug(u) Aug(u)) (6.30)
u
and hence

N is F is w — ﬂ(uG(°)) = u Sup(uF(u)/\uG(u))} (6.31)
u

where By is the membership function of w. Note thatr(6.31) is analogous
to the translation rule for probability-qualified propositions (6.22).
Although the interpretation expressed by (6.31) is consistent with
(6.22), it is of interest to consider alternative interpretations which are
not in the spirit of (6.28). One such interpretation which may be employed
as a basis for possibility qualification is the following.
Assume that w & 1-possible (i.e., uw(v) =1 for v=1 and

uw(v) =0 for ve[0,1)), and let

467 more detailed discussion of this issue may be found in Zadeh (1977a).
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pANiSF—T, =F. (6.32)

X
Then

q & N is F is 1-possible — My = G (6.33)

where G 1is a fuzzy set of Type 247 which has an interval-valued membership

function defined by
wglu) = [ug(w),11, uwewu (6.34)

with the understanding that (6.34) implies that Poss{X=u} mayvbe any
number in the interval [uF(u),]].
More generally, if w & a-possible (i.e., uw(v) =a for v=1 and

uw(v) =0 for ve€I[0,1)), then

N is F is a-possible — My = G (6.35)
where G 1is a fuzzy set of Type 2 defined by
ng(u) = [oAug(u), oo (- (u)1, ueu (6.36)

and © denotes the bounded sum (see (4.43)). The rules expressed by (6.33)
and (6.35) should be regarded as provisional in nature, since further
experience in the use of possibility distributions may suggest other, more

appropriate, interpretations of the concept of possibility qualification.

Modifier Rules for Qualified Propositions

As in the case of translation rules of Types I, II and III, the modi-
fier rule for propositions may be applied to translation rules of Type IV

to yield, among others, the negation rule for gualified propositions. In

47A fuzzy set F is of Type 2 if, for each u € U, uF(u) is a fuzzy subset of
Type 1, i.e., Wy (u)’ [0,1] - [0,1].
F
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what follows, we shall restrict our attention to the application of this
rule to truth-qualified propositions.
Specifically, on applying the modifier rule for propositions to (6.7),

we obtain the following general form of strong semantic equivalence

m(N is F is 1) <= N is F is mt (6.37)
which implies that
not(N is F is 1) «— N is F is not 1 (6.38)
very(N is F is 1) «— N is F is very 7 (6.39)
and
more or less(N is F is 1) «— N is F is more or less T (6.40)

On the other hand, from (6.7) it also follows that
N is not F is T «— N is F is ant t (6.41)
where ant T 1is the antonym of t. Thus, for example,

false 2 ant true (6.42)

beLse () = brpge1Y) » v € [0.1] (5.43)

where FALSE and TRUE are the fuzzy denotations of false and true, respec-

tively. Similarly, from (6.7) it follows that

N is very F is T < N is F is 0>t (6.44)
where the "left square-root" of T is defined by
(V) du (v2) ., velo,] (6.45)

u
0.5T T

and, more qenerally, for a "left-exponent" «a,
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b ) £ ()L v e o) (6.46)

On applying these rules in combination to a proposition such as "Barbara
is not very rich," we are led to the following chain of semantically equiva-

lent propositions:

Barbara is not very rich (6.47)
Barbara is not very rich is u-true (6.48)
Barbara is very rich is ant u-true (6.49)
Barbara is ‘rich is 0'S(ant u-true) (6.50)
where
(v) = 1-v2 (6.51)

u
0'5(ant u-true)

If true is assumed to be approximately semantically equivalent to

u-true, the last proposition in the chain may be approximated by
Barbara is rich is not very true . (6.52)

Thus, if we know that "Barbara is not very rich," then by using the chain
of reasoningvrebresented by (6.48), (6.49), (6.50) and (6.52), we can assert
that an approximate answer to the question "Is Barbara rich?t" is "not very
true."

This example provides a very simple illustration of a combined use of
the concepts of semantic equivalence and truth qualification for the purpose
of deduction of an approximate answer to a given question, given a knowledge

base consisting of a collection of fuzzy propositions. Additional
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illustrations relating to the application of PRUF to approximate reasoning

may be found in Zadeh (1977b).
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7. Examples of Translation into PRUF

As was stated earlier, the translation rules formulated in the preced-
ing sections are intended to serve as an aid to a human user in the transla-
tion of propositions (or descriptors) expressed in a natural language into
PRUF. The use of the rules in question is illustrated by the following
examples, with the understanding that, in general, in the translation of
an expression, e, 1in a natural language into an expression, E, 1in PRUF,
E is a procedure whose form depends on the frame of the database and hence
is not unique.

For convenience of the reader, the notation employed in the examples
is summarized below.

In a translation e — E, if w is a word in e, then its corres-

pondent, W, 1in E 1is the name of a relation in D (the database).

F 4 fuzzy relation with membership function Mg
HX 4 possibility distribution of the variable X
my & possibility distribution function of N, (or X) (2.2 et seq.)
F[Hx(ss==G] & fuzzy relation F which is particularized by the proposition
"X(s) is G," where X(S) is a subvariable of the variable,
X, associated with F (2.26)
X - "‘xikF A Proj F on U1'1 X e ink, Uik 4 Uik(xik) (2.23)
F2 A square of F (4.21)
/F & square root of F (4.24)
+ & union or arithmetic sum
Vv & max
A 8 min
' 4

complement (2.25)
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2
>

intersection (footnote 23)

n>

x B cartesian product (footnote 25)

®

ne>

bounded sum (4.43)

>

1 4 unitor (2.15)

ne>

Count(F) & Cardinality (power) of F (4.70)

ne>

Prop(F)
Prop(F/G)

He>

Count(FNG)/Count(G) (4.73)

Name of ith

>

Namei object in a population

ne>

Support(F)
u(x)

set of all points u in U for which uF(u) >0

ne>

universe of discourse associated with X

Example (a)
Ed is 30 years old — Age(Ed) = 30

Ed is young — HAge(Ed) = YOUNG

Ed is not very young — HAge(Ed) = (YOUNGZ)' .

where the frame of YOUNG is YOUNGfAge|u|. Alternatively,

Ed is young — ED[m, = YOUNG]

Age
Example (b)

Sally is very intelligent — My = 12 .

where

X éu INTELLIGENT[Name = Sally]

(that is, X ds the degree of intelligence of Sally in the table
INTELLIGENT||Name|u|). Note that (7.5) implies that

a0 =, xer0,1]

Count(F)/Cardinality of universe of discourse (4.75)

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)
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Example (c)
Edith is tall and blonde —

T Height(Edith) ,Color(Hair(Edith)) = TALL x BLONDE

Alternatively,

Edith is tall and blonde —

EDITH[Q =TALL; T = BLONDE]

Height Color(Hair)

Example (d)

A man is tall — nHeight(X) =TALL

where X 1is the name of the tallest man in the relation

POPULATION||Name|Height|. Equivalently,

A man is tall — HHeight(Namel) = TALL
or IIHeight(Namez) B TALL,
or HHeight(NameN) TALL

Example (e)
A1l men are tall — HHeight(X) = TALL

where X 1is the name of the shortest man in the relation

POPULATION||Name |Height|. Equivalently,

ATl men are tall — HHeight(Name]) =

ooooooooooo

HHeight(NameN)

(7.8)

(7.9)

(7.10)

(7.11)

(7.12)

(7.13)
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Example (f)

Most men are tall

Case 1. The frame of D is comprised of

POPULATION|Name |u|

MOSTllp|u|

(7.14)

where M5 in POPULATION is the degree to which Namei is TALL, and My

in MOST is the degree to which pj is compatible with MOST. Then

Most men are tall —*'nProp(TALL) = MOST

where
Z " POPULATION[Name = Namei]

=1
Prop(TALL) Count(POPULATION)

Case 2. The frame of 0D 1is comprised of

POPULATION||Name |Height|

TALL||Height |u|

M0ST o u|

In this case, the translation is still expressed by (7.15), but with
Prop(TALL) given by

Z]JTALL[Height" POPULATION[Name==Namei]]

: “Height
Prop(TALL) = Count(POPULATION)

Example (q)

Three tall men — u(X)

Count(Support(X)) = 3

=0 otherwise

(7.15)

(7.16)

(7.17)

Ming u, for Name, € Support(X) and (7.18)



a2

where X 1is a fuzzy subset of POPULATION|Name|u|, and uy is the degree

to which Namei is tall. The left-hand member of (7.18) is a descriptor,

while the right-hand member defines the membership function of a fuzzy subset

of the fuzzy power set of POPULATION (4i.e., the set of all fuzzy

Name
subsets of the names of individuals in POPULATION).

More generally,

Several tall men — (7.19)

| u(X) = Min.u, AuSEVERAL(Count(Support(X))

where, as in (7.18), Mini is taken over all i such that

Name, € Support(X).

Example (h)
Expensive red car with big trunk — (7.20)
CAR[HPrice = EXPENSIVE; HColor = RED; HSize(TY‘unk) = BIG]
Example (i)
John loves Pat — My = L (7.21)
where
X éu LOVES (Namel = John; Name2 = Pat) , (7.22)
with the right-hand member of (7.21) implying that

m(X) = X | (7.23)

It should be noted that in the special case where LOVES is a nonfuzzy
relation, (7.21) reduces to the conventional predicate representation

LOVES(John,Pat).

)
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Example (j)

John loves someone — T, = 1 (7.24)
where
M QIJLOVES[Name1 = John; Name2==Namei] (7.25)
4 degree to which John Toves Name,
and
X & Max, u, (7.26)

1

Note that when LOVES is anonfuzzy relation, (7.24) reduces to (Sy)LOVES(John,y).

Example (k)
John loves everyone — Ty =1 (7.27)
where
x & Min. u, (7.28)

and  u; is expressed by (7.25).

Example (2)

Someone loves someone — HX =1 (7.29)
where

X = Maxi,j Mi (7.30)

and Mij is expressed by

I éllLOVES[Name1 = Name, ; Name2:=Namej] (7.31)
Example (m)
Someone loves everyone — HX =1 (7.32)
where
A N
X & Maxi M1nj Mi (7.33)

and My is given by (7.31).



Example (n)

Ji11 has many friends — I, = MANY (7.34)

X
where

x A cOum.-(‘1 FRIENDS (Namel = Ji11)) (7.35)

x Name2
Note that the argument of Count is the fuzzy set of friends of Jill.

Example (o)

The man near the door is young — nAqe(N) = YOUNG (7.36)

where

N = MAN N NEAR[Object2 = DOOR] (7.37)

u x 0bjectl

Implicit in (7.37) is the assumption that the descriptor "The man near the

door" identifies a man uniquely. The frame of MAN is MAN | Name | .

Example (P)

Kent was walking slowly toward the door — (7.38)

WALKING[Name = Kent; HSpeed =SLOW; I = PAST;

Time

HDirection = TOWARD(Object = DOOR) ]
Example (q)
Herta is not very tall is very true — (7.39)

=2 2
Theight(Herta) (W) = Mrrue (T - uga (W) > u € [0,200]

where the frames are TRUE[v|u|, TALLfHeight|u|, v € [0,1].

Example (r)

Carol is very intelligent is very likely (7.40)
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Let
vy A uINTELLIGENT[Name==Caro]] (7.81)

i.e., v is the degree to which Carol is intelligent, and the frame of

INTELLIGENT is assumed to be INTELLIGENT|Name|u|. Then (see (7.5))

Carol is very intelligent — m, = 12 (7.42)

in which the right-hand member is equivalent to

n(v) = v (7.43)

Next, let

1
X = J p(v)vZdv (7.24)
0

where p(v)dv 1is the probability that Carol's degree of intelligence falls
in the interval [v,v+dv]. Then, using the translation rule for probability

qualification, we obtain

2

(Carol is very intelligent) is very Tikely — HX = LIKELY (7.45)
in which the right-hand member is equivalent to
2 LN
ﬂ(P(')) = uLIKELY{Jop(V)V dV} (7-46)

and the frame of LIKELY is LIKELY|plu|, p € [0,1]. Expressed in this
form, the translation defines a possibility distribution of the probability

density function p(-).
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Example (s)

X is small is very true is likely —. (7.47)

m(p(-)) = uLIKELY[Izp(u)ugRUE(“SMALL(U)]du]

where U 2 [0,o) and p(u)du & Prob{X€[u,u+du]}. As in the previous
example, (7.47) defines a possibility distribution of the probability

density function of X.
Example (t)
Men who are much taller than most men — F (7.48)

where the fuzzy subset F of POPULATION is computed by the following
procedure. (For simplicity, the procedure is stated in plain English.)

Assume that the frame of ¥ 1is comprised of:

POPULATION [Name |

MUCH TALLER]Namel|Name?2 |u]

MOST[lp|u]
1. Compute
A =
Fi 2 uxNameZMUCH TALLER[Namel Namei]
A

fuzzy set of men in relation to whom Namei is much taller

2. Compute the relative cardinality of F;, i.e.,

Count(Fi)
Count{_ - .POPULATION) (7.49)

Prop(Fi) =

M



3. Compute

(7]
1}

4 HyosT(Prop(F)) (7.50)

4 degree to which Namei is much taller than most men
4. The fuzzy setofmen who are much taller than most men is given by
F = &,/Name, + s+ + 8y /Name, (7.51)

where + denotes the union and Name],...,NameN are the elements of
U(Name) in POPULATION. Alternatively, assume that the frame of D is
comprised of:

POPULATION||Name |Height |

MUCH TALLER[Height1|Height2|u]

MOST{p 1

In this case, the procedure assumes the following form.

1.  Compute
A . - =
hi = He1ght(Namei) = HeightPOPULATION[Name-—Namei] (7.52)
2. Compute
Yij © MUCH TALLER[Height1==hi; Height2==hj] (7.53)

A degree to which Namei is much taller than Namej

3. Compute the fuzzy set

-n
]

Yi]/Name]-F—o--ryiN/Name (7.54)

N

n>

fuzzy set of men in relation to whom Namei is much taller
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4. Same as Step 3 in previous proceduré.

5. Same as Step 4 1in previous procedure.

‘Example (u)

Many men are much taller than most men — w(POPULATION) = Mg

where Mg is computed by the following procedure.

Assume that the frame of D is comprised of

POPULATION f|Name |

MUCH TALLER|Namel|Name2|u|

MOSTlp|u]
MANYHp[u]
1. Compute F as in Example (t).
2. Compute
Y = Prop(F)

A Proportion of men who are much taller than most men
3. The possibility of the relation POPULATION is given by
w{POPULATION) = IJMANY[p==y]
in which the right-hand member defines Mg
Example (v)

Beth gave several big apples to each of her close friends —

m(GAVE) = Hg

(7.55)

(7.56)

(7.57)
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The following procedure computes Mg ON the assumption that the frame

of D 1is comprised of:

GAVE|Giver|Receiver|Object|
BIG|Object|u]
FRIEND|Name1|Name?2]u|

SEVERAL[p|u|

1. Compute

G GAVE[Giver =Beth; Receiver = Name,] . (7.58)

i ¢ Object
4 Set of objects received from Beth by Namei

2. Compute
H = BIG[Object = APPLE] (7.59)
4 fuzzy set of big apples
3. Compute
K = G NH (7.60)
D fuzzy set of big apples received from Beth by Namei
4. Compute
¥; = ,SEVERAL[p = Count (K)] (7.61)
4 degree to which Namei received several big apples from Beth
5. Compute
8; = uFRIENDZ[Name]:Beth; Name?2 = Name. ] (7.62)
A

degree to which Namei is a close friend of Beth
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6. Compute

O
ne>

1A (]-61+Yi) (7.63)
8 degree to which (If Name. is a close friend of Beth then

Namei received several big apples from Beth)
7. Compute

m(GAVE) 2 Min &, (7.64)
1

A degree to which all close friends of Beth received

from her several big apples

It should be noted that when the translation of a proposition, b,
into PRUF requires the execution of a procedure, P, which cannot be
expressed as a relatively simple expression in PRUF -- as is true of
Examples (t), (u) and (v) -- the relationship between p and P ceases to
be transparent. A higher degree of transparency in cases of this type may
be achieved through the introduction into PRUF of higher-Tevel constructions
relating to quantification, qualification, particularization and definition.
This and other issues concerning the translation of more complex proposi-

tions than those considered here will be treated in subseauent papers.
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8. Concluding Remarks

In essence, PRUF may be regarded as a relation-manipulatina lanquage
which serves the purposes of (a) precisiation of expressions in a natural
language; (b) exhibiting their logical structure; and (c) providing a system
for the characterization of the meaning of a proposition by a procedure
which acts on a collection of fuzzy relations in a database and returns a
possibility distribution.

By serving these purposes, PRUF provides a basis for a formalization
of approximate reasoning. More specifically, throuah the use of PRUF, a
set of imprecise premises expressed in a natural or synthetic lanquaae may
be translated into possibility distributions to which the rules of inference
in FL (or PRUF) may be applied, yielding other possibility distributions
which upon retranslation lead to approximate consequents of the original
premises. In this respect, PRUF plays the same role in relation to fuzzy
premises and fuzzy conclusions that predicate calculus does in relation to
nonfuzzy premises and nonfuzzy conclusions.

An important aspect of PRUF is a concomitant of its break with the long-
standing tradition in logic, linguistics and philosophy of lanquage -- the tradition
of employing the concept of truth as a foundation for theories of meaning.
By adopting instead the concept of a possibility distribution as its point
of departure, PRUF permits a uniform treatment of truth-qualification,
probability-qualification and possibility-qualification of fuzzy proposi-
tions, and thereby clarifies the roles played by the concepts of truth,
probability and possibility not only in logic and lanauaae theory, but also
in information analysis, decision analysis and related application areas.

As was stated in the Introduction, our exposition of PRUF in the

preceding sections is neither definitive nor comnlete. There are many
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issues that remain to be explored, the most complex of which is’that of

automatic translation from a natural lanquage into PRUF. However, to view

this issue in a proper perspective, it must be recognized that the existina

systems for automatic translation from a small subset of a natural lanauaqe

into a meaning representation language (and, especially, a query lanquage)

have very narrow versatility since they are limited in their use to highly

restricted domains of semantic discourse and human concept comprehension.
Although PRUF is still in its initial stages of develonment, its

somewhat unconventional conceptual framework puts into a different perspec-

tive many of the long-standing issues in language theory and knowledge

representation, especially those pertaining to vagueness, uncertainty and

inference from fuzzy propositions. By so doina, PRUF points a way toward

the conception of question-answering systems having the capability to act on

imprecise, incomplete or unreliable information which is resident in a

database. To implement such systems, however, we shall need (i) a better system

of linguistic modifiers than those that are available in natural languages,

and (ii) special-purpose hardware that is oriented toward the storace and mani-

pulation of fuzzy rather than nonfuzzy data.

Acknowledgement

I wish to thank Barbara Cerny, Christian Freksa and Lucia Vaina for
reading the manuscript and offering helpful criticisms. I also wish to
acknowledge stimulating discussions with Zoltan Domotor, Brian Gaines, Ellen
Hisdal, Paul Kay, Hung Mquyen, Elie Sanchez, Pat Suppes and Hans Zimmermann

on various issues related to those considered in this paper.



103

References

AIZERMAN, M.A. (1976). Fuzzy sets, fuzzy proofs and certain unsolved problems
in the theory of automatic control. Avtomatika i Telemehanika, 171-177.

ANDERSON, J. & BOWER, G. (1973). Human Associative Memory. Washington, D.C.:
Winston.

BALLMER, T.T. (1976). Fuzzy punctuation or the continuum of grammaticality.
Electronics Research Laboratory Memo M-590. University of California, Berkeley.

BAR-HILLEL, Y. (1964). Language and Information. Reading, Mass.: Addison-
Wesley.

BELLINGER, D. (1972). Degree Words. The Hague: Mouton.

BELLMAN, R.E. & GIERTZ, M. (1973). On the analytic formalism of the theory
of fuzzy sets. Information Sciences, 5, 149-156.

~

BELLMAN, R.E. & ZADEH, L.A. (1976). Local and fuzzy logics. Electronics
Research Laboratory Memorandum M-584. University of California,
Berkeley. In EPSTEIN, D., Ed., Modern Uses of Multiple-Valued Logic.
Dordrecht: D. Reidel, to appear.

BEZDEK, J.D. & DUNN, J.C. (1975). Optimal fuzzy partitions: a heuristic
for estimating the parameters in a mixture of normal distributions.
IEEE Transactions on Computers, C-24, 835-838.

~

BIERWISCH, M. (1970). Semantics. In LYONS, J., Ed., New Horizons in
Linguistics. Baltimore: Penguin.

BISS, K., CHIEN, K. & STAHL, F. (1971). R2--a natural language question-
answering system. Proceedings of the Fall Joint Computer Conference,
§§, pp. 303-308.

BLACK, M. (1963). Reasoning with loose concepts. Dialogue, 2, 1-12.

BOBROW, D.G. (1977). A panel on knowledge representation. Proceedings of the
FPifth Intermational Conference on Artificial Intelligence, M.1.T.,
Cambridge, Mass., pp. 983-992.

BOBROW, D. & COLLINS, A., Eds. (1975). Representation and Understanding.
New York: Academic Press.

BOBROW, D.G. & Winograd, T. (1977). An overview of KRL, a knowledge repre-
sentation language. Cognitive Seience, 1, 3-46.

BOYCE, R.F., CHAMBERLIN, D.D., KING, W.F. III & HAMMER, M.M. (1974).
Specifying queries as relational expressions. In KLIMBIE, J.UW. &
KOFFEMAN, K.L., Eds., Data Base Management. Amsterdam: North-Holland,
pp. 169-176.



104

BRACCHI, G., FEDELI, A. & PAOLINI, P. (1972). A multilevel relational model
for data base management systems. In KLIMBIE, J.W. & KOFFEMAN, K.L., Fds.,
Data Base Management. Amsterdam: North-Holland, pp. 211-223.

BRACHMAN, R.J. (1977). What's in a concept: structural foundations for ¢
semantic networks. Imternational Journal of Man-Machine Studies, 9,
127-152. ¥

BRIABRIN, V.M. & POSPELOV, D.A. (1977). DILOS - Dialog system for information
retrieval, computation and logical inference. In MICHIE, D., Ed., 'S
Machine Intelligence, 19. New York: American Elsevier.

BRIABRIN, V.M. & SENIN, G.V. (1977). Natural languaqe processing within a
restricted context. Proceedings of the Intermational Workshop on
Natural Language for Interactions with Data Bases, IIASA, Vienna.

-

CARBONNELL, J.R. & COLLINS, A.M. (1973). Natural semantics in artificial
intelligence. Proceedings of the Third Joint Conference on Artificial
Intelligence, Stanford University, Stanford, pp. 344-351.

CARLSTROM, I.F. (1975). Truth and entailment for a vague quantifier.
Synthese, 30, 461-495.

CARNAP, R. (1937). The Logical Syntax of Language. New York: Harcourt,
Brace & World.

CHAMBERLIN, D.D. & BOYCE, R.F. (1974). SEQUEL: a structured English auery
language. Proceedings of the ACM SIGMOD Workshop on Data Description,
Access and Control, pp. 249-264.

CHANG, C.L. (1975). Interpretation and execution of fuzzy proarams. In
ZADEH, L.A. et al. (1975), op. cit., pp. 191-218.

CHANG, C.L. (1976). DEDUCE - a deductive query language for relational data
bases. In CHEN, C.H., Ed., Pattern Recognition and Artificial Intelli-
gence. New York: Academic Press, pp. 108-134.

CHANG, S.K. & KE, J.S. (1976). Database skeleton and its application to
fuzzy query translation. Dept. of Information Engineering, University
of I1linois, Chicago,I1linois.

CHANG, S.S.L. (1972). Fuzzy mathematics, man and his environment. IEEE
Transactions on Systems, Man and Cybermetics, SMC-2, 92-93.

~ o~

CHARNIAK, E. (1972). Toward a model of children's story comprehension.
ATTR-266. Artificial Intelligence Laboratory, M.I.T., Cambridge, Mass.

CHARNIAK, E. (1973). Context and the reference problem. In RUSTIN, R. (1973), a
op. cit.

CHARNIAK, E. (1975). Organization and inference in a frame-like system of
common sense knowledge. In SCHANK, R. & NASH-YEBBER, B.L., Eds.,
Theoretical Issues in Natural Language Processing. Cambridqge.

CHOMSKY, N. (1957). Syntactic Structures. The Hague: Mouton.



105

CHOMSKY, N. (1965). Aspects of the Theory of Syntax. Cambridge, Mass.:
M.I.T. Press.

CHOMSKY, N. (1971). Deep structure, surface structure, and semantic inter-
pretation. In STEINBERG, D.D. & JAKOBOVITS, L.A., Eds., Semantics:
An Interdisciplinary Reader in Philosophy, Linguistics, and Psychology.
Cambridge: Cambridge University Press.

CLIFF, N. (1959). Adverbs as multipliers. Psychology Review, §§, 27-44 .

CODD, E.F. (1971). A data base sublanguage founded on the relational
calculus. Proceedings of the ACM SIGFIDET Workshop on Data Descriptiom,
Access and Control, pp. 35-68.

CoDD, E.F. (1974). Seven steps to rendezvous with the casual user. In
KLIMBIE, J.W. & KOFFEMAN, K.L., Eds., Data Base Management. Amsterdam:
North-Holland, pp. 179-199.

CRESSWELL, M.J. (1973). Logics and Languages. London: Methuen.

DAMERAU, F.J. (1975). On fuzzy adjectives. Memorandum RC 5340. IBM Research
Laboratory, Yorktown Heights, N.Y.

DAVIDSON, D. (1964). The method of extension and intension. In SCHILPP
Ed., The Philosophy of Rudolf Carmap. La Salle, I1linois: Open Court,
pp. 311-350.

DAVIDSON, D. (1967). Truth and meaning. Synthese, 17, 304-323.
DeFINETTI, B. (1974). Probability Theory. New York: Wiley.

DeLUCA, A. & TERMINI, S. (1972a). A definition of a nonprobabilistic
entropy in the setting of fuzzy sets theory. Information and Control,
20, 301-312.

DeLUCA, A. & TERMINI, S. (1972b). Algebraic properties of fuzzy sets.
Journal of Mathematical Analysis and Applications, 40, 373-386.

DIMITROV, V.D. (1975). Efficient governing hymanistic systems by fuzzy
instructions. Third International Congress of General Systems and
Cybernetics, Bucarest.

DREYFUSS, G.R., KOCHEN, M., ROBINSON, J. & BADRE, A.N. (1975). On the
psycholinguistic reality of fuzzy sets. In GROSSMAN, R.E., SAN, L.J.
& VANCE, T.J., Eds., Functionalism. Chicago, I1linois: University of
Chicago Press.

DUDA, R.0., HART, P.E., NILSSON, N. & SUTHERLAND, G.L. (1977). Semantic
network representations in rule-based inference systems. Technical
Note 136. Artificial Intelligence Center, Stanford Research Institute,
Menlo Park, Calif. WATERMAN, D.A. & HAYES-ROTH, F., Eds., Pattern-
Directed Inference Systems. New York: Academic Press, to appear.



106

EVANS, G. & McDOWELL, J. (1976). Truth and Meaning. Oxford: Clarendon Press.

FELLINGER, W.L. (1974). Specifications for a fuzzy systems modelling
language. Ph.D. thesis. Oregon State University, Corvallis.

FILLMORE, C.J. (1968). The case for case. In BACH, E. & HARMS, R.T., Eds.,
Universals in Linguistic Theory. New York: Holt, Rinehart & Winston.

FINE, K. (1975). Vagueness, truth and logic. Synthese, 30, 265-300.
FODOR, J.A. (1975). The Language of Thought. New York: Crowell.

FODOR, J.A. & KATZ, J.J., Eds. (1964). The Structure of Language: Readings
in the Philosophy of Language. Englewood C1iffs, N.J.: Prentice-Hall.

FREDERIKSEN, C. (1975). Representing logical and semantic structure of
knowledge acquired from discourse. Cognitive Psychology, 7, 371-458.

GAINES, B.R. (1976a). General fuzzy logics. Proceedings of the Third
European Meeting on Cybernetics and Systems Research, Vienna.

GAINES, B.R. (1976b). Foundations of fuzzy reasoning. International Jourmal
of Man-Machine Studies, 6, 623-668.

GAINES, B.R. & KOHOUT, L.J. (1975). Possible automata. Proceedings of
International Symposium on Multiple-Valued Logic, Bloominaton,
Indiana, pp. 183-196.

GAINES, B.R. & KOHOUT, L.J. (1977). The fuzzy decade: a biblioaraphy of
fuzzy systems and closely related topics. International Journal of
Man-Machine Studies, 9, 1-68.

GILES, R. (1976). Lukasiewicz logic and fuzzy set theory. International
Journal of Man-Machine Studies, §, 313-327.

GOGUEN, J.A. (1969). The logic of inexact concepts. Synthese, 19, 325-373.

GOGUEN, J.A. (1974). Concept representation in natural and artificial
languages: axioms, extension and applications for fuzzy sets.
International Jourmal of Man-Machine Studies, 6, 513-561.

GOLDSTEIN, I. & PAPERT, S. (1977). Artificial intelligence, language, and
the study of knowledge. Cognitive Science, 1, 84-123.

~

GOTTINGER, H.W. (1973). Toward a fuzzy reasoning in the behavioral science.
Cybernetica, 2, 113-135.

~

GREENWOOD, D. (1957). Truth and Meaning. New York: Philosophical Library.

GRICE, H.P. (1968). Utterer's meaning, sentence-meaning, and word-meaning.
Foundations of Language, ﬁ, 225-242.



107

HAACK, S. (1974). Deviant Logic. Cambridge: Cambridae University Press.

HAACK, S. (1976). The pragmatist theory of truth. British Journal of the
Philosophy of Science, g7, 231-249. _

HAMACHER, H. (1976). On logical connectives of fuzzy statements and their
affiliated truth functions. Proceedings of the Third European Meeting
on Cybermetics and Systems Research, Vienna.

HARRIS, J.I. (1974a). Fuzzy implication--comments on a paper by Zadeh.
DOAE Research Working Paper, Ministry of Defense, Byfleet, Surrey,
u.K.

HARRIS, J.1. (1974b). Fuzzy sets: how to be imprecise precisely. DOAE
Research Working Paper, Ministry of Defense, Byfleet, Surrey, U.K.

HELD, G.D. & STOMEBRAKER, M.R. (1975). Storage structures and access methods
in the relational data base management system INGRES. Proceedings of
ACM Pacifie Meeting 1975, pp. 26-33.

HELD, G.D., STONEBRAKER, M.R. & WONG, E. (1975). INGRES--a relational data
base system. Proceedings AFIPS-National Computer Conference, 44,
pp. 409-416. o

HENDRIX, G.G. (1975). Expanding the utility of semantic networks through
partitioning. Advance Papers of the Fourth Intermational Joint
Conference on Artificial Intelligence, Thilisi, 1975, pp. 115-121.

HENDRIX, G.G. (1977). The LIFER Manual. Technical Note 138. Stanford
Research Institute, Menlo Park, California.

HENDRIX, G.G., THOMPSON, C.W. & SLOCUM, J. (1973). Language processing via
" canonical verbs and semantics models. Proceedings of the Third Joint

International Conference on Artificial Intelligence, Stanford,
pp. 262-269.

HERSH, H.M. & CARAMAZZA, A. (1976). A fuzzy set approach to modifiers and
vagueness in natural language. Journal of Experimental Psychology,
105, 254-276.

~ o~

HINTIKKA, J. (1967). Individuals, possible worlds, and epistemic logic,
Nous, 1, 33-62.

HUGHES, G.E. & CRESSWELL, M.J. (1968). An Introduction to Modal Logic.
London: Methuen.

INAGAKI, Y. & FUKUMURA, F. (1975). On the description of fuzzy meaning of
context-free language. In ZADEH, L.A. et al. (1975), op. cit.,
pp. 301-328.



108

JACOBSON, R., Ed. (1961). On the Structure of Language and Its Mathematical
Aspects. Providence, R.I.: American Mathematical Society.

JOSHI, A.K. & ROSENSCHEIN, S.J. (1976). Some problems of inferencing:
relation of inferencing to decomposition of predicates. Proceedings of
International Conference on Computational Linguistics, Ottawa, Canada.

JOUAULT, J.P. & LUAN, P.M. (1975). Application des concepts flous a la
programmation en languages quasi-naturels. Inst. Inf. d'Entreprise,
C.N.A.M., Paris.

RAMPE de FERIET, J. (1977). Mesure de 1'information fournie par un
évenement. In PICARD, C.F., Ed., Structures de 1'Information. Paris:
Centre National de 1a Recherche Scientifique, University of Pierre
and Marie Curie, pp. 1-30.

KAMPE de FERIET, J. & FORTE, B. (1967). Information et probabilité. Comptes
Rendus, Academy of Sciences (Paris), 265A, 142-146, 350-353.

~n

KATZ, J.J. (1964). Analyticity and contradiction in natural language. In
FODOR, J.A. & KATZ, J.J. (1964), on. cit.

KATZ, J.J. (1966). The Philosophy of Language. New York: Harper & Row.

KATZ, J.J. (1967). Recent issues in semantic theory. Foundations of
Language, 3, 124-194.

KAUFMANN, A. (1973). Introduction to the Theory of Fuzzy Subsets, Vol. 1.
Elements of Basie Theory. Paris: Masson and Co. English translation.
New York: Academic Press.

KAUFMANN, A. (1975a). Introduction to the Theory of Fuzzy Subsets, Vol. 2.
Applications to Linguistics, Logic and Semantics. Paris: Masson and Co.

KAUFMANN, A. (1975b). Inmtroduction to the Theory of Fuzzy Subsets, Vol. 3.
Applications to Classification and Pattern Recognition, Automata and
Systems, and Choice of Criteria. Paris: Masson and Co.

KAY, P. (1975). A model-theoretic approach to folk taxonomy. Social Science
Information, 14, 151-166.

KELLOGG, C.H., BURGER, J., DILLER, T. & FOGT, K. (1971). The CONVERSE
natural language data management system: current status and plans.
Proceedings of ACM Symposium on Information Storage and Retrieval,
University of Maryland, College Park, pp. 33-46.

KHATCHADOURIAN, H. (1965). Vagueness, meaning and absurdity. American
Philosophical Quarterly, g, 119-129.

@



109

KLEIN, S. (1973). Automatic inference of semantic deep structure rules in
generative semantic arammars. Technical Report No. 180. Computer
Science Department, University of Wisconsin, Madison.

KLING, R. (1974). Fuzzy PLANNER: reasoning with inexact concepts in a
procedural problem-solving lanquage. Journal of Cybermetics, 4,
105-122. . ~

KNEALE, W.C. (1972). Propositions and truth in natural languages. Mind, 81,
225-243. -

KNUTH, D.E. (1968). Semantics of context-free languaaes. Mathematical
Systems Theory, 2, 127-145.

KOCHEN, M. & BADRE, A.N. (1974), On the precision of adjectives which
denote fuzzy sets. Jowurnal of Cybermetics, 4, 49-59.

KRIPKE, S. (1963). Semantical analysis of modal loaic I. Zeit. fur
Mathematische Logik und Grundlagen der Mathematik, g, 67-96.

KRIPKE, S. (1971). Naming and necessity. In DAVINSON, D. & HARMAN, G., Eds.,
Semantics of Natural Languages. Dordrecht, Holland: D. Reidel.

KUHNS, J.L. (1967). Answering questions by computer. Memorandum RM-5428-FR.
Rand Corporation, Santa Monica, California.

LABOV, W. (1973). The boundaries of words and their meanings. In BAILEY,
C.-J.N. & SHUY, R.W., Eds., New Ways of Analyzing Variation in English,
Vol. 1. Washington: Georgetown University Press.

LAKOFF, G. (1971). Linguistics and natural logic. In DAVIDSON, D. &
SARQAN& ?., Eds., Semantics of Natural Languages. Dordrecht, Holland:
. Reidel.

LAKOFF, G. (1973a). Hedges: a study in meaning criteria and the logic of
fuzzy concepts. Journal of Philosophical Logic, 2, 458-508. In
HOCKNEY, D., HARPER, W. & FREED, B., Eds., Contemporary Research in
Philosophical Logic and Linguistic Semantics, Dordrecht, Holland:
D. Riedel, pp. 221-271.

LAKOFF, G. (1973b). Fuzzy grammar and the performance/competence termino-

logy game. Proceedings of Meeting of Chicago Linguisties Society,
pp. 271-291.

LAMBERT, K. & VAN FRAASSEN, B.C. (1970). Meaning relations, possible objects
and possible worlds. Philosophical Problems in Logic, 1-19.

LEE, E.T. (1972). Fuzzy languages and their relation to automata. Ph.D.
thesis, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley.



110

LEE, E.T. & CHANG, C.L. (1971). Some properties of fuzzy logic. Information
and Control, lg, 417-431.

LEE, E.T. & ZADEH, L.A. (1969). Note on fuzzy lanquages. Information
Seiences, 1, 421-434.

~

LeFAIVRE, R.A. (1974a). FUZZY: a programming lanquage for fuzzy problem
solving. Technical Report 202. Department of Computer Science,
University of Wisconsin, Madison.

LeFAIVRE, R.A. (1974b). The representation of fuzzy knowledge. Journal of
Cybernetics, 4, 57-66.

LEHNERT, Y. (1977). Human and computational question answerina. Cognitive
Seience, 1, 47-73.

LEWIS, D.K. (1970). General semantics. Synthese, 22, 18-67.

LEWIS, P.M., ROSENKRANTZ, D.J. & STEARNS, R.E. (1974). Attributed transla-
tions. Journal of Computer and System Sciences, 9, 279-307.

LINSKY, L. (1971). Reference and Modality. London: Oxford University Press.

LUCAS, P. et al. (1968). Method and notation for the formal definition of
programming languages. Report TR 25.087. 1BM Laboratory, Vienna.

LYNDON, R.C. (1966). Notes on Logic. New York: D. Van Nostrand.

LYONS, J. (1968). Introduction to Theoretical Linguistics. Cambridge:
Cambridge University Press.

MACHINA, K.F. (1972). Vague predicates. American Philosophical Quarterly,
9, 225-233. :

MAMDANI, E.H. (1976b). Advances in the linguistic synthesis of fuzzy
controllers. International Journal of Man-Machine Studies, 8, 669-678.

MAMDANI, E.H. & ASSILIAN, S. (1975). An experiment in linguistic synthesis
with a fuzzy logic controller. International Journal of Man-Machine
Studies, 7, 1-13.

MARINOS, P.N. (1969). Fuzzy logic and its application to switching systems.
IEEE Transactions on Electronic Computers, EE:1§,343-348.

MARTIN, W.A. (1973). Translation of English into MAPL using Winograd's
syntax, state transition networks, and a semantic case grammar.
M.I.T. APG Internal Memo 11. Project MAC, M.I.T., Cambridge, Mass.

McCARTHY, J. & HAYES, P. (1969). Some philosophical problems from the
standpoint of artificial intelligence. In MICHIE, D. & MELTZER, B.,
Eds., Machine Intelligence 4. Edinburgh University Press, pp. 463-502.

e



-

111

McDERMOTT, D.V. (1974). Assimilation of new information by a natural
language-understanding system. AI TrR-291. M.I.T.

MESEGUER, J. & SOLS, I. (1975). Fuzzy semantics in higher order logic and
universal algebra. University of Zaragoza, Spain.

MILLER, G.A. & JOHNSON-LAIRD, P.N. (1976). Language and Perception.
Cambridge: Harvard University Press.

MINSKY, M. (1975). A framework for representina knowledge. In WINSTON, P.,
Ed., The Psychology of Computer Vision. New York: McGraw-Hill.

MISHELEVICH, D.J. (1971). MEANINGEX - a computer-based semantic parse
approach to the analysis of meaning. Proceedings of Fall Joint Computer
Conference, §g, pp. 271-280.

MIZUMOTO, M., UMANO, M. & TANAKA, K. (1977). Implementation of a fuzzy-set-
theoretic data structure system. Third International Conference on
Very Large Data Bases, Tokyo, Japan, October 6-8, 1977. ACM Trans-
actions on Data Base Systems, to appear.

MIZUMOTO, M. & TANAKA, K. (1976). Algebraic properties of fuzzy numbers.
Proe. Inter. Conf. on Cybermetics and Society, Washington, D.C.

MOISIL, G.C. (1975). Lectures on the logic of fuzzy reasoning. Scientific
Editions, Bucarest.

MONTAGUE, R. (1974). Formal Philosophy (Selected Papers). New Haven:
Yale University Press.

MONTGOMERY, C.A. (1972). Is natural language an unnatural query language?
Proceedings of ACM National Conference, New York, pn. 1075-1078.

MOORE, J. & NEWELL, A. (1973). How can MERLIN understand? In GRERG, L., Ed.,
Knowledge and Cognition. Hillsdale, N.J.: Lawrence Erlbaum Associates.

MYLOUPOULOS, J., BORGIDA, A., COHEN, P., ROUSSOPOULOS, N., TSOTSOS, J. &
WONG, H. (1976). TORUS: a step towards bridgina the gap between data
bases and the casual user. Information Systems, 2, 49-64.

MYLOUPOULOS, J., SCHUSTER, S.A. & TSICHRITZIS, D.C. (1975). A multi-level
relational system. Proceedings of AFIPS-National Computer Conference,
ﬁﬁ, pp. 403-408.

NAGAO, M. & TSUJII, J.-I. (1977). Programs for natural language processing.
Information Processing Society of Japan, 18:1, 63-75.

NAHMIAS, S. (1976). Fuzzy variables. Technical Report 33. Department of
Industrial Engineerina, Systems Management Engineering and Operations
Research, University of Pittsburgh.



12

NALIMOV, V.V. (1974). Probabilistic Model of Language. Moscow: Moscow State
Un1vers1ty

NASH-WEBBER, B. (1975). The role of semantics in automatic speech under-
stand1nq In BOBROW, D.G. & COLLINS, A.M. (1975), op. cit.
pp. 351-383.

NEGOITA, C.V. & RALESCU, D.A. (1975). Applications of Fuzzy Sets to Systems
Analysis. Basel, Stuttaart: Birkhauser Verlaa.

NEWELL, A. & SIMON, H.A. (1972). Hwman Problem Solving. Enolewood Cliffs, N.J.:

Prentice-Hall.

NGUYEN, H.T. (1976a). On fuzziness and linguistic probabilities. Memorandum
M-595. Electronics Research Laboratory, University of California,
Berkeley.

NGUYEN, H.T. (1976b). A note on the extension principle for fuzzy sets.
Memorandwn M-611. Electronics Research Laboratory, University of
California, Berkeley.

NOGUCHI, K., UMANO, M., MIZUMOTO, M. & TANAKA, K. (1976). Implementation
of fuzzy artificial intelligence language FLOU. Technieal Report on
Automation and Language of IECE.

NORMAN, D.A., RUMELHART, D.E. & the LNR RESEARCH GROUP. Explorations in
Cognition. San Francisco: Freeman.

PAL, S.K. & MAJUMDAR, D.D. (1977). Fuzzy sets and decision-making approaches
in vowel and speaker recognition. IEEE Transactions on Systems, Man,
and Cybernetics, SMC-7, 625-629.

~rv s

PARSONS, C. (1974). Informal axiomatization, formalization and the concent
of truth. Synthese, 27, 27-47.

PARTEE, B. (1976a). Possible world semantics and linguistic theory.
Department of Linguistics, University of Massachusetts, Amherst.
Monist, to appear.

PARTEE, B. (1976b). Montague Grammar. New York: Academic Press.

PARTEE, B. (1977). Montague grammar, mental representations, and reality.
Proceedings of the Symposium on Philosophy and Grammar, University of
Uppsala, Uppsala, Sweden, to appear.

PETRICK, S.R. (1973). Semantic interpretation in the REQUEST system. IBM
Research Report RC4457. IBM Research Center, Yorktown Heights, New
York.

PROCYK, T.J. (1976). Linguistic representation of fuzzy variables. Fuzzy
Logic Working Group, Queen Mary College, London, U.K.

PUTNAM, H. (1975). The meaning of "meaning." In GUNDERSON, K., Ed., Language,
Mind and Knowledge. Minneapolis, Minn.: University of Minnesota Press.

(29

o~ ~"



113

PUTNAM, H. (1976). Meaning and Truth. Sherman Lectures, University College,
London, U.K.

PYOTROVSKII, R.G., BEKTAYEV, K.B. & PYOTROVSKAYA, A.A. (1977). Mathematical
Linguistics. Moscow: Higher Education Press.

QUILLIAN, M.R. (1968). Semantic memory. In MINSKY, M., Ed., Semantic
Information Processing. Cambridge: M.I.T. Press.

QUINE, W.V. (1970a). Philosophy of Logic. Englewood C1iffs, N.J.: Prentice-
Hall.

QUINE, W.V. (1970b). Methodological reflections on current linguistic
theory. Synthese, 21, 387-398.

RESCHER, N. (1969). Many-Valued Logic. New York: McGraw-Hill.

RESCHER, N. (1973). The Coherence Theory of Truth. Oxford: Oxford University
Press.

RESCHER, N. (1975). Theory of Possibility. Pittsburgh: University of
Pittsburgh Press.

RIEGER, B. (1976). Fuzzy structural semantics. Proceedings of Third European
Meeting on Cybermetics and Systems Research, Vienna.

RIEGER, C. (1976). An organization of knowledge for problem solvina and
language comprehension. Artificial Intelligence, 7, 89-127.

RODDER, W. (1975). On "and" and "or" connectives in fuzzy set theory.
Institute for Operations Research, Technical University of Aachen.

ROSCH, E. (1973). On the internal structure of perceptual and semantic
categories. In MOORE, T.M., Ed., Cognitive Development and the
Acquisition of Language. New York: Academic Press.

ROSCH, E. (1975). Cognitive representations of semantic categories. Journal
of Experimental Psychology: General, 104, 192-233.

~n~

ROSS, J.R. (1970). A note on implicit comparatives. Linguistic Inquiry, 1,
363-366. )

ROUSSOPOULOS, N.D. (1976). A semantic network model of data bases. Department
of Computer Science, University of Toronto, Canada.

RUSTIN, R., Ed. (1973). Courant Computer Science Symposium 8: Natural
Language Processing. New York: Algorithmics Press.

SAGER, N. (1977). Natural language analysis and processing. In BELZER, J.,
HOLZMAN, A.G. & KENT, A., Eds. New York: Marcel Dekker. To appear.

SANCHEZ, E. (1974). Fuzzy relations. Faculty of Medicine, University of
Marseille, France.



114

SANCHEZ, E. (1977). On possibility qualification in natural lanauages. Electronics
Research Laboratory Memorandum M77/28. University of California, Berkeley.

SANDEWALL, E. (1970). Formal methods in the design of question-answering
systems. Report No. 28. Uppsala University, Sweden.

SANFORD, D.H. (1975). Borderline logic. American Philosophical Quarterly,
12, 29-39.

SANTOS, E. (1970). Fuzzy algorithms. Information and Control, 17, 326-339.

SCHANK, R.C. (1973). Identification of conceptualizations underlying natural
language. In SCHANK, R. & COLBY, K., Eds., Computer Models of Thought
and Language. Englewood Cliffs, N.J.: Prentice-Hall.

SCHANK, R.C., Ed. (1975). Conceptual Information Processing. Amsterdam:
North-Holland.

SCHOTCH, P.K. (1975). Fuzzy modal logic. Proceedings of Intermational
Symposium on Multiple-Valued Logic, University of Indiana,
Bloomington, pp. 176-182.

SCHUBERT, L.K. (1972). Extending the expressive power of networks.
Artifieial Intelligence, 2, 163-198.

SEARLE, J., Ed. (1971). The Philosophy of Language. Oxford: Oxford
University Press.

SHAUMJAN, SK (1965). Structural Linguistics. Moscow: Nauka.

SHIMURA, M. (1975). An approach to pattern recognition and associative
memories using fuzzy logic. In ZADEH, L.A. et al. (1975), op. cit.,
pp. 449-476.

SHORTLIFFE, E. (1976). MYCIN: Computer-based Medical Consultations. New
York: American Elsevier.

SHORTLIFFE, E.H. & BUCHANAN, B.G. (1975). A model of inexact reasoning in
medicine. Mathematical Biosciences, 23, 351-379.

SIMMONS, R.F. (1973). Semantic networks, their computation and use for
understanding English sentences. In SCHANK, R. & COLBY, K., Eds.,
Computer Models of Thought and Language. Englewood Cliffs, N.J.:
Prentice-Hall, pp. 63-113.

SIMON, H.A. (1973). The structure of i11 structured problems. Artificial
Intelligence, 4, 181-201.

SIMON, H.A. & SIKLOSSY, L. (1972). Representation and Meaning: Experiments
with Information Processing Systems. Englewood C1iffs, N.J.: Prentice-
Hall.



AR

115

SIY, P. & CHEN, C.S. (1974). Fuzzy logic for handwritten numerical character
recognition. IEEE Transactions on Systems, Man and Cybernmetics, SMC-4,
570-575. T

SLOMAN, A. (1971). Interactions between philosophy and artificial intelli-
gence: the role of intuition and nonlogical reasoning in intelligence.
Artificial Intelligence, 2, 209-225.

* SRIDHARAN, M.J. (1976). A frame-based system for reasoning about actions.
Technical Report CBM-TM-56. Department of Computer Science, Rutgers
University, New Brunswick, N.J.

STAAL, J.F. (1969). Formal logic and natural lanquaaes. Foundations of
Language, 5, 256-284.

STALNAKER, R. (1970). Probability and conditionals. Philosophical Science,
37, 64-80.

STITCH, S.P. (1975). Loaical form and natural language. Philosophical
Studies, gg, 397-418.

STONEBRAKER, M.R., WONG, E. & KREPS, P. (1976). The design and implementa-
tion of INGRES. ACM Transactions on Database Systems, 1, 189-222.

SUGENO, M. (1974). Theory of fuzzy integrals and its applications. Ph.D.
thesis, Tokyo Institute of Technology, Japan.

SUGENO, M. & TERANO, T. (1977). A model of learning based on fuzzy informa-
tion. Kybernetes, 6, 157-166.

~

SUPPES, P. (1974a). The axiomatic method in the empirical sciences. In
HENKIN, J., Ed., Proceedings of the Tarski Symposium. Rhode Island:
American Mathematical Society.

SUPPES, P. (1974b). Probabilistic metaphysics. Filofiska Studier nr. 22.
Uppsala University, Sweden.

SUPPES, P. (1976). Elimination of quantifiers in the semantics of natural
languages by use of extended relation algebras. Revue Intermationale
de Philosophie, 117-118, 243-259.

~—~ A

SUSSMAN, G. (1973). 4 Computational Model of Skill Acquisition. Amsterdam:
North-Holland.

TAMURA, S. & TANAKA, K. (1973). Learning of fuzzy formal lanquage. IEEE
Transactions on Systems, Man and Cybermetics, SMC-3, 98-102.

~ A A

TARSKI, A. (1956). Logic, Semantics, Metamethmatics. Oxford: Clarendon
Press.

TERANO, T. & SUGENO, M. (1975). Conditional fuzzy measures and their
applications. In ZADEH, L.A. et al. (1975), op. cit., pp. 151-170.



116

THOMPSON, F.P., LOCKEMANN, P.C., DOSTERT, B.H. & DEVERILL, R. (1969). REL:
a rapidly extensible language system. Proceedings of the 24th ACM
National Conference, New York, pp. 399-417.

THORNE, J.P., BRATLEY, P. & DEWAR, H. (1968). The syntactic analysis of
English by machine. In MICHIE, D., Ed., Machine Intelligence 3.
New York: American Elsevier.

ULLMANN, S. (1962). Semantics: An Introduction to the Science of Meaning.
Oxford: Blackwell.

URAGAMI, M., MIZUMOTO, M. & TANAKA, K. (1976). Fuzzy robot controls.
Journal of Cybernetics, §, 39-64.

VAN FRAASSEN, B.C. (1971). Formal Semantics and Logic. New York: Macmillan.

WALTZ, D.L. (1977). Natural language interfaces. SIGART Newsletter, 61,
16-65. ' ~

WASON, P.C. & JOHNSON-LAIRD, P.N. (1972). Psychology of Reasoning: Structure
and Content. Cambridge, Mass.: Harvard University Press.

WECHSLER, H. (1975). Applications of fuzzy logic to medical diagnosis.
Proceedings of Internmational Symposium on Multiple-Valued Logic,
University of Indiana, Bloomington, pp. 162-174.

WEGNER, P. (1972). The Vienna definition language. ACM Computing Surveys,
4, 5-63.

WENST@P, F. (1975). Application of linguistic variables in the analysis of
organizations. Ph.D. thesis, School of Business Administration,
University of California, Berkeley.

WENST@PP, F. (1976). Deductive verbal models of organizations. Intermational
Journal of Man-Machine Studies, 8, 293-311.

WHEELER, S.C. (1975). Reference and vagueness. Synthese, 30, 367-380.

WILKS, Y. (1974). Natural language understanding systems within the AI
paradigm. SAIL Memo AIM-237. Stanford University.

WINOGRAD, T. (1972). Understanding Natural Language. New York: Academic
Press.

WINSTON, P. (1975). Learning structural descriptions from examples. In
WINSTON, P., Ed., The Psychology of Computer Vision. New York:
McGraw-Hi11.

WOODS, W.A. (1973). Progress in natural lanquage understanding--an applica-
tion to lunar geology. Proceedings AFIPS-National Computer Conference,
42, pp. 441-450.

3. &



117

WooDS, W.A. (1975). What is a Tlink: foundations for semantic networks. In
BOBROW, D.B. & COLLINS, A. (1975), op. cit., pp. 35-82.

WOODS, W.A., KAPLAN, R.M. & NASH-WEBBER, B. (1972). The lunar sciences
natural language information system. Cambridge, Mass.: Bolt, Beranek
* & Newman.

#

e WRIGHT, C. (1975). On the coherence of vague predicates. Synthese, 30,
325-365. ~

ZADEH, L.A. (1966). Shadows of fuzzy sets. Probl. Transmission Inf. (din
Russian), 2, 37-44.

ZADEH, L.A. (1968a). Probability measures of fuzzy events. Journal of
Mathematical Analysis and Applications, 2%, 421-427.

ZADEH, L.A. (1968b). Fuzzy algorithms. Information and Control, 1%, 94-102.

ZADEH, L.A. (1971a). Similarity relations and fuzzy orderings. Information
Seiences, 3, 177-300.

ZADEH, L.A. (1971b). Quantitative fuzzy semantics. Information Sciences, 3,
159-176. N

-, ZADEH, L.A. (1972a). A fuzzy-set-theoretic interpretation of linquistic
hedges. Journal of Cybernetics, g, 4-34.

ZADEH, L.A. (1972b). Fuzzy lanquages and their relation to human and
machine intelligence. Proceedings of International Conference on
Man and Computer, Bordeaux, France, pp. 130-165. Basel: S. Karger.

ZADEH, L.A. (1973). Outline of a new approach to the analysis of complex
systems and decision processes. IEEE Transactions on Systems, Man
and Cybernetics, SMC-3, 28-44.

ZADEH, L.A. (1975a). Fuzzy logic and approximate reasoning (In memory of
Grigore Moisil). Synthese, 30, 407-428.

ZADEH, L.A. (1975b). Calculus of fuzzy restrictions. In ZADEH, L.A. et al.
(1975), op. cit., pp. 1-39.

ZADEH, L.A. (1975c). The conceptof a linquistic variable and its applica-
tion to approximate reasoning, Part I. Information Sciences, 8,
199-249; Part II. Information Sciences, 8, 301-357; Part I11.7
0y Information Sciences, 9, 43-80. ~

g ZADEH, L.A. (1976a). A fuzzy-algorithmic approach to the definition of
complex or imprecise concepts. International Journal of Man-Machine
Studies, 8, 249-291.

“A.



118

ZADEH, L.A. (1976b). Fuzzy sets and their application to pattern classifi-
cation and cluster analysis. Memorandum M-607. Electronics Research
Laboratory, University of California, Berkeley.

ZADEH, L.A. (1977a). Fuzzy sets as a basis for a theory of possibility.
Memorandum M77/12. Electronics Research Laboratory, University of
California, Berkeley. Fuzzy Sets and Systems, to appear.

ZADEH, L.A. (1977b). A theory of approximate reasoninq. Memorandum M77/58.
Electronics Research Laboratory, University of California, Berkeley.

ZADEH, L.A., FU, K.S., TANAKA, K. & SHIMURA, M. (1975). Fuzay Sets and
Their Application to Cognitives and Decision Processes. New York:
Academic Press.

ZIMMERMANN, H.J. (1974). Optimization in fuzzy environments. Institute for
Operation Research, Technical University of Aachen.



	Copyright notice 1977
	ERL-77-61

