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ABSTRACT

Let be an autonomous dynamic nonlinear network. Let be the associated

resistive subnetwork obtained by open-circuiting all capacitors and short-circuiting

all inductors. The following main results are proved; (i) Suppose thatoM^^g has
only isolated operating points. Then Ji has only isolated equilibria if. and only
if, "there are no capacitor-only cut sets and inductor-only loops." (Condition A)

(ii) If Condition A is violated, then there are a continuum of equilibria even if

the operating points are isolated, (iii) Let M be the set of equilibria. Then

each trajectory is constrained to lie on an affine submanifold M*, which depends

on the initial state, such that M M* has only isolated points. Hence each

trajectory behaves as if it has only isolated equilibria. The space M*, because

of its nature, can be considered as the minimal state space of the dynamics.

It is shown that the results can be generalized to nonautonomous networks.

Finally an application of the results to eventually passive networks is given.
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1. Introduction

Consider an autonomous network (i.e., no time-dependent sources) described by

1r n

X = F(x,u), F:]R^xlR ^]R (1)

For a fixed "dc" bias u, a point x G is called an equilibrium if

F(x,u) = 0.

Now, open all capacitors and short all inductors. Call the resulting resistor-
independent source networkThe purpose of this paper is to show the following.

(i) Suppose thatcAlj^g has only isolated operating points. Then (1) has only
isolated equilibria if, and only if, the following holds:
Condition A. There are no capacitor-only cut sets and no inductor-only loops.

(ii) if condition Ais violated, then there are a continuum of equilibria even
if operating points are isolated. Call the set of equilibria M.

(iii) Each trajectory is constrained to lie on an affine submanifol(?" M*, which
depends on the initial state, such that M M* consists only of isolated points.
Hence each trajectory behaves as if it has only isolated equilibria. (See Fig. 1)
The dimension of M* is the dimension of the state space minus the number of linearly
independent capacitor-only cut sets and inductor-only loops. In this sense M* might
be considered as the minimal state space.

The above results are generalizations of the phenomena depicted in the

following example:

Example 1.

Consider the circuit of Fig. 2(a) with the resistor constitutive relation as

shown in Fig. 2(b). Let the capacitors be linear. Now at equilibria (i=0), KVL implies

Vi + V2 = E O)

or

i +^ = E w '

^An affine submanifold is a translate of a linear subspace. An affine submanifold
does not necessarily contain the origin of the ambient space, whereas a linear subspace
does contain the origin. A function f(x) = Ax + b is called affine if A is a matrix
and b is a constant vector. It is called linear if, in addition, b = 0. In electrical
networks, the term "affine" is usually more appropriate than "linear" because the
constant vector b is usually present in view of dc sources or Initial conditions.
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Hence, in the (qj^,q2)"Space, the set of equilibria Mdefined by (4) constitutes
an affine submanifold. (See Fig. 3). Applying, next, KCL at the capacitor-only
cut set, we obtain

qi - qj = qi(0) - q2(0) = Q(0)

so that the trajectory must stay in the set M* defined by (5), where M* is
parameterized by Q(0). Corresponding to any value Q(0), the intersection M M* is
necessarily a single point if C^, >0. Thus, once the initial state is specified,
the trajectory behaves like it has a unique equilibrium.

A dual example involving an inductor—only loop can be found in [1]. Several
arguments concerning the significance of capacitor—only cut sets and inductor—only
loops have appeared in the literature [2-4]. None of the authors, however, has
examined this subject from the geometrical point of view which we believe is

essential in obtaining a clear understanding of the many hidden subtleties.

RpmarV. In the following, we will sometimes be inconsistent in the use of our

notation for a vector and its transpose, in order to save space. There will be no

confusion, however.

2. Relation between Equilibria of a Dynamic Nonlinear Network and the Operating

Points of the Associated Resistive Subnetwork

Given a network uW let us form its resistive subnetwork by open-circuiting
all capacitors and short-circuiting all inductors. We will assume the following
standing hypotheses throughout this paper:

Ass""'ption 1. There are no couplings among elements of different kinds.

Assumption 2. InuW, independent current sources do not form cut sets with theniselves
and/or with capacitors, while independent voltage sources do not form loops with
themselves and/or with inductors. Or equivalently, inoWj^^, independent current
sources do not form cut sets with themselves, and independent voltage sources do

not form loops with themselves.

By Assumption 2we can choose a C—normal tree T^ for lAI such that the following
decomposition of variables is possible: (T* denotes cotree)
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elements voltage current
number of

elements

capacitors in T* V

~S
n

S

Cotree
resistors in T*

~R h "r

inductors in T* h. "l

independent current
sources in T* h "l

independent voltage
sources in T Yv iv "v

0)
0)

capacitors in V

~C
i
~C

n

C

H
resistors in Yg ~G ^G

inductors in Yr ~r

The KVL and KCL equations associated with assume the following

well-known form:

1 0 0 0 ?sv ?sc 0 P

0 1 p p
-RV ?RC ?RG 0

0 0 1 0 ?LV ?LC ?LG ?Lr
0 p p 1 ?IV ?IC ?IG ?ir

Ys

Yr

-L

V
-C

Yg

= 0
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~SV
-b'^?RV

T

-?LV -B^?IV

®sc -RC

T

"5lc -b"^5ic

g -B^
~RG

-B^5lg 5ig

g. g ?Lr -b^?ir

10 0 0

g 1 0. 0

9 9 19

0 0 0 1

iR

iL

= 0

iv

~c

~G

Let the capacitors be characterized by the constitutive relation

2(n +n )
(v,v,q,q)^A CI]R ^ ^
-C ~S ^ ~S C

(10)

(11)

(12)

(13)

(14)

where A is an n -l-n dimensional C submanifold, and let the inductors be characterized
C C S '

by the constitutive relation

2(nj^+np)

where A_ is an dimensional C submanifold. By Assumption 1, one can assume

that the resistors are characterized by the constitutive relation

2(cL+n«)

^ '̂ RG ®

where A is an n^+n- dimensional submanifold. Observe that (14), (15) and (16)
RG K. G

imply that elements of the same type may be coupled to each other. Hence, multi-

terminal elements and multiports are allowed since they can be represented as

coupled two-terminal elements.

Theorem 1. Suppose that the dynamics of (1) is defined in terms of x = (Yq»1l)

and suppose that has only isolated operating points. Then cAI has only isolated
RG

equilibria if, and only if. Condition A holds.

(15)
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Remark. Note the "if and only if" nature of the result. Hence, if there are

capacitor-only cut sets and/or inductor-only loops, then there are a continuum of

equilibria even if has a unique operating point.

Proof.

Necessity. Suppose there is a capacitor-only cut set. Let (V^,...,y^) and
be the voltages and the currents of the capacitors in the cut set.

Decompose tAl into three parts as in Fig. 4(a). At an equilibrium

I,=l2= ...1^=0

Hencewill look like as in Fig. 4(b), where andLAl2RG consist only of
memoryless elements. Let (V* 2****'̂ 2Y""1 be the voltages across the external
terminal of lAI^ and lAI2 at an operating point of Then the equivalent network
outside of the capacitors is as shown in Fig. 5(a). Insert two independent voltage

sources E as in Fig. 5(b). Apply v-shift theorem [5] to obtain the network of

Fig. 5(c). Since the network of Fig. 5(c) is equivalent to that of Fig. 5(a), if

(V^,...,V^)

is a solution, so is

(V^+E,V2+E,...,V^+E)

for all E ^ ]R . Since, at least one of V.,...,V belongs to T , one gets a
X y

continuum of equilibria. A dual argument implies the existence of a continuum of

equilibria when there are inductor-only loops.

Sufficiency. Suppose that Condition A holds. Let b|̂ be the branch denoting
the k-th capacitor and let A be the remaining set of capacitor branches and let

B be the rest of the branches of the network. By assumption, b^^ does not form
a cut set exclusively with branches of set A. Hence, by Colored Arc Lemma [6],

b^ forms a loop exclusively with branches of set B, i.e., bj^ forms a loop exclusively
with resistors, inductors and independent sources. At an equilibrium, the voltages

across inductors are zero so that the voltages across capacitors are uniquely

determined by an operating point of Ag- Asimilar argument applies to inductors.
•

Corollary 1. Under the same setting as Theorem 1 supposelAIj^q has a unique
operating point. Then tAlhas a unique equilibrium if, and only if. Condition A
holds.
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Corollary 2, Under the same setting as Theorem 1 except that the dynamics is

linear; namely,

X = Ax + Bu

Then

det A 5^ 0

if, and only if. Condition A holds.

ppmarlf. If y is a set of variables in the network such that y = ^(x), where ^ is

a diffeomorphism, i.e., y is any other coordinate system, then the theorem still
holds. There are, however, cases that cannot be taken care of by Theorem 1. The

following is a case in point.

Example 2. Consider the circuit of Fig. 6(a) which consists of a 1 ohm linear

resistor and a Josephson Junction device, characterized by

° ''l si" Vl=

where k^^ and k2 are constants. The state equation in this case cannot be written
in terms of i^. But it can be written in terms of namely

*

At equilibria, v^ = ij^ = 0

IT 2Tr

'•'l ~ i k '̂ - k '̂-"
are the set of isolated equilibria. The circuit clearly satisfies Condition A.

Now, if the inductor constitutive relation is replaced by that of Fig. 6(c),

then the set

— {0,[a,b3,c}

of equilibria constitutes a continuum of points, even though Condition A holds.
/V

Observe that this phenomenon occurs because the curve contains a flat

portion which coincides with part of the ^j^-axis.
Now, let the constitutive relation of the Josephson Junction device be
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defined by a one-dimensional curve and let u^be its natural projection onto
the i^-axis. Then, roughly speaking, is transversal to {0} if has no
points like those of [a,b]. This is a sort of non-tangency condition. We will
formalize this concept and prove results with capacitor charges and inductor
fluxes chosen as the state variables. The mathematical tool for this purpose

turns out, not surprisingly, to be the transversality theory of functions and
manifolds which will be introduced in the following section.

3. Relevance of the Transversality Theory

The main objective of this section is to provide a quick review of the basic
results from transversality theory [7] which are relevant to the proof of
the results of section 4. We will also present a self-contained introduction
to transversality theory for surfaces, i.e., submanifolds in in order to
emphasize its geometrical interpretation. Examples will be given to introduce
the somewhat unconventional notations used in transversality theory and to
illustrate the application of some of th^main results.

First of all, a submanifold of is nothing but a higher dimensional version
3 .2^3

of a surface in 3R and a curve in 3R or JR .

Transversality of two surfaces (submanifolds) in ]R^ is essentially a noi^
tangency condition. Consider two surfaces Xand Yas in Fig. 7(a) where Yis a plane.
The intersection XH Y defines a nice 1-dimensional curve T. This essentially comes
from the fact that X and Y intersect in "the right" manner. If, however, the two
submanifolds intersect in "a wrong" manner, the intersection can be a complicated
object. Because of difficulties in drawing pictures in H^, let us see what might
happen in ]R^. Consider Xand Yof Fig. 7(b). The intersection has two parts; one
is a finite line segment, while the other is a single point. Hence XHy is not
a submanifold. This comes from the fact that X and Y meet tangentially. So, in
higher dimensions, many bizarre situations could arise, if two objects meet
tangentially even if each of them is a nice smooth surface. Now, how can we express
the non-tangency condition mathematically? Return to Fig. 7(a) and consider a
point X^ Xn Y. Let T^ Xdenote the plane tangent to Xat x. (Called the tangent
space of Xat x). Let T^Y be defined similarly. Since Yis a plane T^Y = Y. Now,
it is easy to see that

TX + TY = ]R^ = T
XX X

3

i.e., the tangent spaces span the tangent space of the ambient space ]R . Note that
(19) is a vector sum and not a direct sum. The left hand side means the set of all
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vectors of the form v+w, where v G T X, w G T Y. Hence vectors belonging to T X

and T Y need not be linearly independent. Next, consider Fig. 7(b). It is clear
X

that

2
TX + TY = TY^T]R .

X X X X

These observations naturally lead us to the following definition.

Definition 1. Let X and Y be two submanifolds of another manifold Z. Then X

and Y are said to be transversal and is abbreviated as

XfR Y

if

TX + TY = TZ
X X X

(21)

for all X e X n Y.

Fact A. If X^ Y, then X^ Yis a submanifold and

codim(xnY) = codim X + codim Y

where

codim X = dim Z - dim X

and similarly for other symbols. °

Codimension of a submanifold is simply the complementary dimension of the manifold
with respect to the ambient space. For example, Xand Y in Fig, 7(a)-(c) have
codimension one.

Since codimension is defined by (23), if we take intersection of X and Y, we

should expect the codimension of X Y to be no less than codim X and codim Y. Why
are, then, the codimensions additive as in (22)? Now, codimension of a submanifold
in ]R^ is roughly speaking, the number of redundant coordinates that can be eliminated
from the equations describing the submanifold in ]R . For example, consider Fig. 7(c)
where the unit sphere intersects with a plane P. Since S is described by

2 . 2 . 2 _ - (24)xi + ^2 + X3 - 1 ^ ^

one coordinate x^ can be determined, given the other two, and is therefore redundant
and can be eliminated. Similarly, the plane P is described by
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0X1 +3X2 + YXj = 0> a,3>Y ^ ^ (25)

and hence one coordinate is redundant and can be eliminated, provided, of course,

that at least one of a,3 and y is nonzero. Hence both have codimension one

relative to Since H p is described by (24) and (25), if (24) and (25) do

not overlap each other, then, there should be two variables that can be eliminated,
and hence P has codimension two. But ^ P precisely means that the two surfaces
described by (24) and (25) do not overlap each other.

Taking into account the above geometrical interpretations, one can show the

following [8, APPENDIX], which provides us with an easy way of checking transversality.

Fact B. Let F(x) be a function on IR^ taking values in i.e.,
F: If

X= {x ^ ]R'̂ |f(x) =0, rank (DF)^^ ~

is nonempty, then X is an m-dimensional submanifold. Let

Y= {x € ]R |̂g(x) = 0, rank (D?)^^ ~ n-Jl}
1 ~ n—£

be nonempty, where G is a C function taking values in ]R .If

rank

(DF)

(DG)
L. — X J

= n-m + n-£

for all Xe Xn Y, then XJ Y. n
Let us check transversality for Fig. 7(c), by using Fact B. Let

T,/ N A 2 ^ 2 ^ 2 -F(x) = Xi + X2 + x^ - 1.

For simplicity, let P be the (Xi,X2)-plane, i.e., let

G(x) = x^.
2 2 2 2

Note that (Xt,x«,x-) ^ S ^ P implies x« = 0 and x- + x„ = 1. Hence for x G S Hp
i. Z J 0 12

rank = rank

2x^ 2X2 0

GDI

= 2

so that ^ P.
The concept of transversality can be extended to a more general situation

than that depicted by (21).
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Definition 2. Let X and Z be manifolds and let

F ; X Z

be a function. Let Y be a submanifold of Z. F is said to be transversal to Y

and is abbreviated as

F Y

if

Im(dF) + T Y = T Z (26)
y y

for all y = F(x) ^ Y, where (dF) denotes the differential of F at x and Im(dF)

denotes its imag^.—"

We use the symbol dF when the domain of F is a general manifold

while we use DF when the domain is an euclidean space. Observe that Def. 2 is a

generalization of Def. 1 because the subset F(X) C z need not be a submanifold even

though both X and Z are submanifolds. For example, if we take X to be the one-

dimensional submanifold {4>j^,k^sin ^2 in Fig. 6(b) and choose F = ir^, the
projection of this curve into the i^^-axis, then F(X) = [-kj|̂ ,kj^], which is not a
(boundaryless) submanifold since it includes its end points. Transversality of F

is a natural generalization of (21) in the sense that T^X is replaced by

Im(dF)^ = (dF)^ (T^X) (27)

where the right side means the map (dF) acting on the set T X. Observe that since

F(X) C z, Im(dF)^ is a linear subspace of In particular if we take F to
be the inclusion map:

F(x) = X

then (26) coincides with (21), because Im(dF) = T X is just the tangent space at y.
? X 2

Let us give simple examples. Consider the function F : ]R ->• ffi. defined by (see

Fig. 7(d))

F(x) = (x, sin x) (28)

Hence X= 3R , Z= IR . Take Y= {(y^,y2)|y2 = 0^-

F(x) riY = {(0,0),(j:Tr,0),(+2TT,0),...}

For example, at (y2>y2) = (0,0),
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T TIm(dF)^ = ImCdpQ =Im(Il cos x] )q = Im([l 1] )

= {[1 l]'̂ xlx G3R} = {[x x] |̂x S ]R} (29)

Hence Im(dF) is just the tangent line to the curve = sin at the point (0,0)
as shown in Fig. 7(d). On the other hand

Hence (29) and (30) imply (26). But if we let

F(x) = (x, sin x + 1)

then

F(x) n Y = 0) Ik = +1, ±2,... }

37rand at (y2^»y2) = ("^» 0)»

ImCdF)^^ =Im [1 cos x =Im [1 0]^ ={(y]^»y2^ ly2 ~
T T

In this case, the tangent line is just the y^-axis itself and hence (26) does
not hold.

Fact C. If F Y, then the preimage F ^(Y) is a submanifold and

codiiOj^F ^(Y) =codim^Y (^1)

where the left hand side denotes the codimension with respect to X and the right

hand side denotes the codimension with respect to Z. ^

Let us explain (31) by an example. Consider F of (28). Y is described by

f(yi»y2) = 0
2

where f(yi>y2^ ~ ^2 hence it has codimension one in Z = IR . Now, since

F"^(Y) = {x|foF(x) = 0} = {0,+ir,+2Tr,...}

it has zero dimension and hence F ^(Y) has codimension one in X= IR .

RgmarV. In this paper, whenever we write X Y, we assume that X H Y is nonempty,

similarly, if we write F Jfi Y, then we assume that F(X) HYis nonempty. The empty
cases are trivial.
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4. The Minimal State Space of Dynamic Nonlinear Networks

Let M be the set of equilibria. As we have seen, if there are capacitor-only cut

sets and inductor-only loops, then M is a set of continuum even if operating points

are isolated. In this section, we will show that each trajectory is constrained

to stay on an affine submanifold M*, henceforth called the minimal state space,

such that M n M* consists only of isolated points. In other words, the minimal

state space M* is an invariant submanifold and hence, each trajectory behaves as if

there are only isolated equilibria.

To do this we will have to impose stronger conditions on the capacitor and

inductor constitutive relations. We will also need to investigate some geometric

properties of nonlinear networks which we will give before stating our results.

Note first that under the standing assumptions 1 and 2, there is a tree T^^
containing a maximum number of inductors and a minimum number of capacitors with

Ae following properties:

(i) All independent voltage sources are contained in and all independent

current sources are contained in T* (.cotree of T^^).
(ii) KVL and KCL can be written in the following form :

^I

-LJ

-ca

-ca

1 q q q i ?ii g g g~
0 1 q q 1?21 -22 -23

0

0 g 1 g
' ~31 -32 -33

0

0 0 q 1 1?41 ?42 ^43 ®-44_

?11 -b'^?21 -B^?31 -B^?41 1 q q q

0
-22

-b'^
-32

T
-§42 g 1 g 0

«

g -B^?23 -b'^
-33 -§43 q q 1 q

g 0 q -§I4 q q q 1

= 0

il

ica

= 0

^Note that our present Bmatrix differs from that used in Section 2 because a
different tree is used here.

-13-

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)



where the variables are decomposed as follows:

elements voltage current

number of

elements

<u

inductors in T* "Li
<u
M
4J
0

resistors in T*
-Rat

0
independent current

sources in T*
JLi

"l

capacitors in T*
id °cjC.

inductors in T_
1j -LJ i-r -r

~L7 "La

(U

resistors in T
Li -Gjr "gct

0)
u

H
independent voltage

sources in T-
Li

Yv iv "v

capacitors in Tj^
~c:7 -ca "ca

In order to see that (i) is valid, observe that by Asstimption 2, it is possible

to choose a tree such that it contains all independent voltage sources and the

associated cotree contains all independent current sources. Next maximize the

number of inductors and minimize the number of capacitors in the tree. We claim

that this is the desired tree, i.e., the requirement of (i) does not destroy the

maximality and the minimality of inductors and capacitors, respectively. Pick a

link inductor L^. We claim that the fundamental loop defined by consists only
of inductors and hence the maximality property is retained. This is because by

Assumption has no voltage-source loops and hence Ji has no loops consisting
only of inductors and independent voltage sources. Thus if this fundamental loop

contains an independent voltage source, it must contain at least one capacitor or

resistor. This contradicts the maximality hypothesis. Similarly, minimality of

capacitors is retained. To see (ii) note that 1^2» §14 §24 zero submatrices
because of the choice of the tree. Again, by Assumption 2, "?34 zero
submatrices.

Next let n^ and n^ be the number of linearly independent capacitor-only cut
sets and the number of linearly independent inductor-only loops, respectively.
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Since fundamental cut sets and fundamental loops are always linearly

independent, it follows from (32) and (39) that

"g "ccr

"l =

Remark. The tree is called an L-normal tree 14]. It is useful for deriving

some interesting properties concerning the equilibrium points and invariant sub-

manifold as we will see in the sequel.

Let

TT , ir : -»• ]R
~v -q C

be the projection maps defined by

and

respectively. Similarly, let

IT., ir, : A E
~1 "(J) IJ

be defined by

and

(40)

(41)

(42)

(43)

(44)

(45)

respectively.

Recall (8) and (11). In this section, we xn.ll choose the generalized charge

S Sc "5sci ?SC^
3c

9s
(46)
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and the generalized flux

♦ = ?Lrir °

as the state variables [4].

♦r
(47)

Lennna 1. Let (v*,i*) denote an operating point of Then the set of equilibria

for is given by

M

where

M
(Y*,i*)

U M

(vM*)

1 -B
~SC

0 0

0 0

i ?Lr

TT Q-n ^ (v'̂ '+KerlB,, 1])
~q -V ~ "-44 ~

Tr(^ (i-^4Ker[l -B^^])

(48)

(49)

—1 —1 J.where tt (•) and it (•) denote preimages, v is an (n +n ) = (n„ +n„ )-dimensional
"•V "*1 ~ t D

vector orthogonal to the subspace Ker[B^^ 1] and i"^ is an (n^+Op) =
dimensional vector orthogonal to the subspace Ker[l "B^l^* depend on
(y*. t*).)
Proof. Note that (35) gives

[B44 1] -ca

-c;e
= [9 -B41]

-Li

)fLa
^H43 -?42l

-GJ

Let (Yy>Ygj ^ value at an operating point. Since we are considering

equilibria, let (Y^j '̂Y^^) ~ (9*9^* Then (50) gives

[B44 1]

V

-C J

v„
~CX

= t-543 -542I

V*
~V

V* —
-GO

(50)

(51) 5

It follows from a standard result from linear algebra [9,p.159] that there is an

element

v-^ e (KerlB^^ 1])-^ (52)
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such that

~CJ c^v-^-H-KertB^^ 1] (53)

is the solution set of (51), where the set in (52) is the orthogonal complement

of Ker[B^^ 1]. Note that (39) implies that if there are capacitor-only cut sets,
then B, is not a null matrix and hence (53) defines an affine submanifold of

'<•44

dimension n = n , which is the number of linearly independent capacitor-only
CG C

cut sets. If there are no capacitor-only cut sets, then B^^ is a null matrix and

(53) degenerates into a single point v"'".

Now, without loss of generality, possibly by relabelling the branches, we can

assume that

(v ,v ) = (v ,v ) (54)

where and v_ are the tree and cotree capacitor voltages relative to the
-vC

C-normal tree T defined in Section 2. See APPENDIX 2 for an example illustrating
C

this point.

It follows from (46), (53) and (54) that the "generalized charge" q at
equilibria are expressed by

3= [1 -!scl 1]) (55)

Similarly the "generalized flux" ^ at equilibria are expressed by

J = [1 (l-^-Ker[l -B^^^]) (56)
where

€ (Ker[l

Here, we have assumed without loss of generality that (see APPENDIX 2)

'-L7^ " (^L'-r^ n
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Lemma 2 There is an affine submanifold M* such that^q(t), M* for all t
and M* is defined by

.T

M* =

i "?SC

0 0 i ?Lf

q-^-4Ker[l -B^^]
^•'•+Ker[Bj^j^ 1 ] (59)

where is an (n^^ fn^^)-dimensional vector orthogonal to the subspace
Ker[l ^vector orthogonal to the subspace
Ker[B^^ 1]. ^q-®- depends on (q^(0), Sg(0)) t"*" depends on j^(0), ^^.(0)).)
Proof. Equation (39) gives

[1 -B44]
-Co

L-CjcJ

= 0

Integrating this equation with respect to time and making use of (54) we have

li -544]
?c

= 9o
(60)

where Qq is uniquely determined by the initial condition ^q^(0),qg(0)j. It follows
from (60) that there is an element [9]

9^ S(Ker[l -§^4])
such that the set

9c = +Ker[l -bJ^] (61)

Is the solution set for (60), i.e., /q^(t),qg(t)j is constrained to (61) for all t.
Similarly, there is an element

^Observe that since the two trees and are distinct, the number of capacitors
belonging to Tq is generally different from that belonging to Tl. However,
(TpUx*) = (Ty'-^T*). Hence although the matrix multiplication indicated in (60) is
compatible, the dimensions of q^ and qg, in general, do not correspond to that of
1 and -bJ^, respectively.
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such that

is the solution set of

>L

= {•'•+ Ker[B„ 1] (62)

C$11 V
<l>
-r

= (63)
~0

where is uniquely determined by ($^(0)>$p(0))• Hence, (46), (47), (61) and (62)
imply (59). °

The following is the main result of this section.

Theorem 2. Assume the following:

(i) The dynamics of (1) is described in terms of x = (g,t), where q and J

denote the "generalized charge" and the "generalized flux," respectively,

(ii) has only isolated operating points.

(iii) For each operating point (v*,i*) of Ag

(a) iii (v-^-«er[B^^ 1]) (6^)

if (i-'--HCer[l

where it and ir^ are projection maps defined in (42) and (44), respectively.

(b) Ij) °ca \i
dimensional submanifolds, respectively, and

I^.j;^(/-HCer[B^^ Ij) if (g-'-HCerEl -B^^]) (66)

n -B^j^l) if (♦•'■•HCer[Bj^j^ 1]) (67)

\diere ir and it, are projection maps defined in (43) and (45), respectively.
-q "ip

Then
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(1) oW has only isolated equilibria if, and only if, Condition Aholds.
np+nj

(2) There is a minimal state space M* C m which is parameterized by the
initial state x(0) =Xq such that the trajectory :x(t;tg,XQ) € M* for all t.

(3) The minimal state space M* is an affine submanifold of m of dimension
m= (n -n^) + (n^-ii^), where is the number of linearly independent capacitor-only
cut sets, and n^^ is the number of linearly independent inductor-only loops.
(4) M M* consists only of isolated points. (See Fig. 1)

n +n m

Rpmarks; 1. Note that relative to IR , M* is merely a translated copy of 3R .
Hence once the initial state is fixed, the network behaves as if it is in an
m-dimensional state space. Note also that (4) says the network behaves as if it has
only isolated equilibria.

2. Condition (iii) is automatically satisfied if the capacitor and inductor
constitutive relations are represented by uniformly-increasing functions. We will

show this later (see Theorem 3).

We need the following lemma which relates some of the properties of T^ to those
of

Lemma 3.

(1) Ker[l -BT.]2Ker[l -Bg ]

T

9 -5sv
T

i "9sc

k

is
= 0

whereas (36)-(39) give

.T

9 -?41

T

9 -!42
T

9 -543
T

1 -?44

icj

, ^ , (68)
;44-'- -sc-"

(11) KerlBj^j^ 1] 2 Ker[l By.] (69)

Proof (i) Open-circuit all elements except capacitors. Then (10) and (11) give

-20-
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Since the independent voltage sources are contained in H T^, (10*) and (38*)
describe the same equations provided that (54) holds. Hence

Ker[0 -Bgy] =Ker[0 -B^g]
and the remaining equations must define the same set; namely,

Ker[l -Bgj,] =Ker[0 -B^j^] n KerlO -8^2^ "SaaI

The last equation implies (68). (ii) Short-circuit all the elements except inductors

Then a dual argument implies (69). °

Proof of Theorem 2.

(1) To prove sufficiency, assume Condition A. Then in (49) becomes a null

matrix and

Ker[B^^ 1] = {Q }

SO that the set defined by (53) degenerates into a single point

^ =H43 -?42J

V*
~v

V*

1 ^c'*^s
Hence, v is a zero-dimensional submanifold of IR 'By condition (iii-a) and

by Fact C,

\V-?43 -?42]

is a submanifold and

V*
~V

-GO

1

codim. TT ^Ac -V [-B43 -§42]

V*
~V

V'''
-Ga

;-c

= "dm 1̂-B^3 -B^^]

V*
~V

V*
~GJ

= "c + "s

Hence the set defined in (71) is a zero-dimensional submanifold, i.e., it is a

set of isolated points. Hence

tl -4^ v41i-?43 -542J
V*
~v

V*

is a set of isolated points. A similar argument holds for inductors, by using

-21-
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(36). Since each Is a set of isolated points, the set defined by (48)
is also a set of isolated points.

Proof of necessity is slightly involved although the idea is fairly simple.

Here, we will give the idea of the proof with a figure (Fig. 8) which makes the

situation clear. A rigorous proof is given in APPENDIX 3.

Suppose that Condition A is violated. First suppose that there is at least

one capacitor only cut set. Then is not a null matrix so that v"^ + Ker[B^^ 1]
is an n^^ -dimensional affine submanifold, where n^^ ^ 1. Let

Our initial step in the proof depends on the fact that the projection of
T X

onto (Ker[l consists of a continuum of points. This follows from condition

(iii-b) , as is shown in APPENDIX 3. Moreover, by (i) of Lemma 3,

(Ker[l -8^4]) £(Ker[l -Bgg]) . (74)
T / T \"^Next, the matrix [1 ~BgQ3 maps (Ker[l -Bg^]j onto its image space in a one-to-

one manner [9]. Hence [1 ~Bg^] has a continuum of points. Hence in
(49) has a continuum of points. A similar argument holds when there are inductor-

only loops.

(2) This property follows from Lemma 2.

(3) First observe from (39) and (32) that

dim Ker[l -B^^J = (75)

dim Ker[Bj^^ IJ = nj^j (76)

Moreover (59) implies

dim M*=dlm|[l -Bg^] Ker[l -844]!+di1ir|ll Ker[Bj^j^ 1]| .
Hence applying Fact E of APPENDIX 1, we obtain

dim M* =dim Ker[l -bJ^] - dim Kerll -bJ^] HKer[l -Bg^]

+ dim Ker[B^^ IJ - dim KerlB^^ 1] ^ Ker[l B^^j,]

-22-
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where we have used Lennna 3> and the facts dim Ker[l ~ ^s* ~Lr^ ~

C • "S "C3 ' "C2C

•SC

Now since n^ + n„ = ^ ~ •*• solve for

- ^s = ^c " \3 > \3 - \

Substituting (78) into (77) and making use of (40) and (41), we obtain

dim M* = iij, - +n^- = (n^-H^) + (r^-Sj^)
which is precisely what is to be proved

(4) By condition (iii-b) and by Fact A, the set

il) ^ -5^^)
is a submanifold. Moreover, since

codim l]j =

codlm /g'''-HKer[l "544^) ~°cJ
we have, by Fact A, that

codimlirr o ^v"^-HCer[l]j ^q'̂ '+Kerfl -bJ^]^= nC«C "cj

(78)

(79)

(80)

i.e., (79) is a zero-dimensional submanifold. Hence it consists of isolated points.

Similarly,

TT o ^i"^-HCer[l "8^^]^ ^^•^+Ker[B^^ l]j

is a set of isolated points. Recall (49) and (59). Then, clearly

1 -B
SC

M, . ... n M* =
0 0

0 0

1 B
IT

V1]) (g^«er[l

j -?u]) (4'̂ +Ker[Bj^j 1]]

consists of a set of isolated points. Finally, since has only isolated

operating points, we conclude, by (48) tha^

M= U (u .
(y*,i*) \ (Y*.l*) I

has only isolated points. -23-
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Remark. Note that M* depends on the initial state, whereas Mdoes not. It is, now,
clear geometrically what Ohtsuki and Watanabe 14] have tried to do analytically.
They chose a coordinate system on the minimal state space M* and defined the dynamics
on it. The coordinate system, however, is dependent on the initial state.

Note that in the proof of the sufficiency of (1), we did not use condition (iii-b) '
Hence we have the following.

7. Assume Condition^, (1), dD and (iil-a) of Theorem 2. ThenoM has
only isolated equilibria. Moreover, (2). (3), (4) of Theorem 2are trivially satisfied.

Example 2 of Section 2 can be taken care of by Corollary 2. Note that
IT (A ) n {0} = [-k ,k ] '̂ {0} = {0} . Note also that in terms of the coordinate

i L -1—i - -
we have

=|(<|>j^,kj^sin 1<I>l ^ k^sin k2(J)j^.

The tangent space of at 0 satisfies [10,p.4]

TqA - Im[l kj^k^cos ^ =|[1 4^^k2]x|x Gml =m.

Hence

Im(dv ) ={(kikzcos _ kv ^ ^®̂ =
+ 17- ^ <Pt ^ IT"^ k^ - k^

and

Tq({0}) = {0}.

Therefore

m

Im(dr^)^^+To({0}) =To(®) (83)
K2

which implies
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n. ^ {0}.
1

On the other hand, A of Fig. 6(c) does not satisfy (84) because for (J)^ ^ [a,b],
Ju

(dir ) =0 and hence Iin(dir.). is just the point {0}, thereby violating (83).

Remark. In the special case where all capacitors and inductors are uncoupled
2-terminal elements, condition (iii-a) simply means that at each equilibrium

voltage V* for capacitor (resp., current i* for inductor Lj^), the tangent to
the curve (resp., curve) is not parallel to the q^-axis (resp., (|»^-axis).

If we only need necessity part of (1) of Theorem 2, we can relax condition
(iii —t)), In order to guarantee that the set (48) has a continuum of points,

5 1]) and do not have to be submanifolds
globally. If we check the proof, we can generalize the result in the following
manner.

Corollary 3. Assume that Condition Ais violated and thatc^^^^ has at least one
operating point. Suppose that the folloij^ng holds: ^'^r\
(iii- b*) There is a point Q-) ^ 3R ^ ^ /resp., ^ ^ ^

p - - . * .

neighborhood W^ (resp., W^) of this point such that ~/

nWc^resp., ^3 )-dimensional
submanifold of (resp., W^) and

{lq«5;V«er[B^^ ll)nwj |̂q-^«er[l "8^ WJ

Then^^ has a continuum of equilibria.

Proof. If we restrict the proof of the necessity part of (1) to and we conclude

that the set (48) has a continuum of points. °

Rpmark. Recall that in Theorem 1 we did not need to impose conditions on and A^.
We only required that x « (v-,i ) be chosen as the state variables. The reason we

** ^ V,/ '^Li

needed the additional condition (iii) of Theorem 2 is that we have to map the

equilibria in the (v^,Vg,ij^,ip)-space into the (q,j)-space.
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Theorem 3. Assume (i), (ii) of Theorem 2 and the following condition:

Ciii*) Capacitor and inductor constitutive relations are described by
<3c'9s) =

and

where f and § are uniformly increasing 16].
Then all the conclusions of Theorem 2 hold. Moreover

(1) M, ^ has the following representation:^ ^ (y )

(v*,i*)

T

i -?sc
0 0

M V M*=
(y*. i*)

where

9 (^L' !r> ^

0 0 1])

(2) n M* is a unique point given by

i ?Lr

5sc 0 0

I hv

tl -?4a1

[544 vr (3c 3s)

?c

3s

(5ii

tl -Bill?"' (^L 4r)

--1

♦l

tv

-1

9
-1

/

V

~0

t?n Sail

Yv

-GO

it

hat
it

h

(85)

(86)

(87)

(88)

(89)

(90)

Proof. We will show that (iii*) implies (iii) of Theorem 2. To this end, note first

that (q , q ) serves as a global coordinate for
" C S ""
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n^+n.

\ 3s>' 3c' Ss^KSc 3s>
Hence, in terms of this coordinate, we have

,r = (92)
-V

Since f is uniformly increasing, it is a global diffeomorphism [6] and so is its

inverse f Hence

is always nonempty. Next, in terms of the above coordinate

(dir ), s = (Df"^), V (93)
~s' ?c' ~s ^ Sc* 3s

where the left hand side denotes the derivative map of evaluated at (Yc'^s'Sc'Ss^
and Df~^ denotes the Jacobian matrix of f ^(.). Moreover (91) implies that the
tangent space of at (yc»Yg»Sc'Ss^ satisfies the following property [10,p.4]:

n +n

T, ^ A„ = Iiii[(Df"^), „ , 1] =m (94)%' Ys' 9c' 9s^ " ^Sc 9s) -
Hence, in terms of the above coordinate

<5lv)(Vc, Vg, q^,. qg)f(Vg, Vg. q^, qs)'̂ c)

.-1, ,_r „,-l.= (Df ), > Iiii[(Df ), , 1]
- (3c' 3s) ^9C' 3s) -

(95)

_1 "c"^s
But since Df~ is always nonsingular, the right hand side of (95) is ]R . Hence

(dV(v^. Vg, q^, 3s)(^(Yj,, Vg. q^,, qg)^^)

, y)(9^+^"[?44 i)) =
C ~S

Since transversality does not depend on a particular choice of coordinate, it follows

from (26) and (27) that (64) is satisfied. Similarly, we have (65).
To show (66) we first prove that (79) is nonempty. To this end note first that

TT is the identity map in terms of the coordinate ' It follows from this

and (92) that

IT o TT ^ = f . (96)

Hence, the set (79) assumes the following simplified form:

-27-
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f(v-^+ Ker[B^^ 1]) H Ker[l -544^^

It follows from (51), (53), (60) and (61) that "non-emptiness of the set defined by
(97)" is equivalent tp saying that the following simultaneous equations have a
solution::

3c
3s

= Q,

[?44 3s' = t-?43 •?42l

It

-GO

To this end, consider the function defined by (89). It follows from Fact D of

APPENDIX 1 and the assumption that f is uniformly increasing that the Jacobian

matrix

li -?44^
[5^4 11 (5r')(3^. 3g)

(97)

(98)

(99)

(100)

is positive definite uniformly with respect to (q^-qg) and hence is a global
diffeomorphism [6]. This Implies that (98) and (99) have a unique solution and hence
(97) is nonempty. Since f is a global diffeomorphism, and since v-^+ Ker[B^^ 1] is
an n^ -dimensional affine s^manifold, f(v'̂ + ^®^t?44
n^ -diierisional submanifold. In order ^^ow th^ _transversali^^^^^ in (66),cp

note that

"c-^sf(yl + Ker[B^^ l]) = {yem

where

J<?) =t?44 11 " 3^^
By Fact B and (101), (66) l^lds if

rank
(Oi) (5r')(g^.3^)
_11

= rank

I f . f"^ (?) = 0) (101)

[B44 U<??"')(9^.93)
"co •*" °cjf

.11 -544^

But the above matrix is precisely (?9^>(q , )» w^ose rank has already been shown
to be equal to n^^ + For inductors, we consider (a®® (63^3"'̂ <36))
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[?11
1] =

[1 -5nJ if) =tsL
~R;t

*

h

(102)

(103)

and the function defined by (90). A similar argument is valid. Hence all conditions
of Theorem 2 are satisfied. Equation (87) follows from (49) and the fact that
IT ir"^ = f, and IT , irT^ = g. Equation (88) follows from (82), the fact that (97)
~q ® ~ -.(|) -i w
is given by the solution of (98) and (99)5 and the fact that

g(i-^+ Ker[l ^ (*"^+
n

is given by the solution of (102) and (103).
Remark. Under the conditions of Theorem 3 one might be tempted to pose the following
conjecture: Is the relationship

//(M M*) = //(operating points of

valid, where # denotes the cardinality of a set? This is false, however. For,
suppose there are two operating points (Vy > ^ ^"V2' "032^ both of them
belonging to Ker[-B^3 "1^2^ *

[-B43 -542I
-V.

-cai

= 0 , [-B
43 -B42]

^v.

^GO.

= 0

and hence they give rise to the same equilibrium point.

Corollary 4. Consider the same situation as Theorem 3 except thatoW^^g has a unique
operating point. Then M M* is a unique point.

Theorem 4. Consider the same situation as Corollary 4 except that the dynamics is
linear, i.e., it is described by (17). Then we have:

(i) rank A= (n^ - n^) + (n^ - n^^)
(ii) The set of equilibria Mis an affine submanifold of dimension (n^ + n^).

Proof. Note that the set of equilibria is given by

x-^ + Ker A

for some vector x"^ in (Ker A)-'-. But by (87), this set must be given by

-29-
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M =

T

I -sL 0 0 C(v-^+ Ker[B^^ 1])
(105)

0 i Sir L(i-^+ Ker[l

where C and L are the capacitance and inductance matrices, respectively. By Fact B
and Fact D, we have

Ker[l -B^,] ^ 1])
'44

and the intersection is a single point. Let

j : m ®-»(Ker [1 -544I)''"
be the orthogonal projection. It follows from the above, that

jCCCv-*-!- Ker[B^^ 1])) (106)

is still an nQ-dimensional affine submanifold. It follows from (74) and the fact
that [1 maps (Ker[l -Bg^])"^ onto its image injectively, that

•SC

.T[1 -Bg^] C (v-^-^- Ker[B^^ 1])

is an np—dimensional affine submanifold. A similar argument applies to inductors to
give an n^-dimensional affine submanifold. This and (104) give (i) and (ii).

Remark. The number (n^, - + (n^ - ^) coincides with the degrees of freedom in
the sense of Bers [2].

The set of equilibria Min Theorem 4 is an affine submanifold because the
associated state equation is linear. The set Min Corollary 4, however, need not be

a submanifold because the submanifold

f(v-^+ Ker[B^^ 1])

g(l-'-+ Ker[l

is projected into the (q,^)—space by the matrix

.T

i -?sc

0 0

0 0

i ?Lr
3 2

For example, think of a 1-dimensional curve in ]R whose projection onto H is a curve
having self-intersections, which is not a submanifold. However, if (^contains
neither capacitor-only loops nor inductor-only cut sets, then the above projection
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matrix reduces to an identity matrix. In this case we can state:

Corollary 5. Using the same setting as that of Corollary 4 and assuming that lAI
contains neither capacitor-only loops nor inductor-only cut sets, then

(i) Mis an (ii^ + n^)-dimensional submanifold.
(ii) M rfl M*.

The following fact is simple, yet important.

Corollary 6. Let y be any set of variables such that y = where ^ is a global

diffeomorphism. Then the state equations can be written in terms of y and Theorems

2-4 and their corollaries are valid in terms of y.

Proof. Conditions required in the results are coordinate-free. Hence everything is

preserved under a diffeomorphism.

As an application of Corollary 6, we note that if all capacitors are C , uniform
ly increasing, and (v^, q^) and (Vg, qg) are not coupled to each other, then the consti
tutive relations of the capacitors can be written as qg = qg (Vg) and v^ - v^ (q^),
where q (•) and y„(.) are global dlffeomorphisms/ It follows from (6) and (46| that

..S "C

9 " 3c " 9s ®^"'?sc ~c^3c^ " ?sv V = -c^^c^
Now, the Jacobian matrix

i •*" ?sc^~3s ?-C^~C^^?SC

is positive definite uniformly with respect to q^. Hence h^(') is uniformly increasing
and hence it is a global diffeomorphism. A dual argument applies of course to the
inductors. Hence, we conclude that if all capacitors and inductors are uniformly

increasing and if (y^, q^,), (Ys'Ss '̂ coupled to each other,
then we can choose the more usual vector x ^ (q^* as the state variables and all
results alluded to above remain valid.

Remark. Our results in this paper can also be related to classical techniques from

theoretical mechanics where the number of dynamically independent coordinates is

minimized through the use of first integrals [11]. In particular, a real-valued
function E(x) on the state space is called a first integral for (1) if

dE(x(t)) ^ ^ ^
T = 0 for all t.
dt

^All the symbols here pertain to the C-normal tree in Section 2.
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In mechanics, quantities such as angular momentum and energy are first integrals. In
electrical networks, the energy stored in an L—C network is a first integral. Each

such first integral leads to a conservation principle. Now consider

T
9c 3 (x)

G(x) A [1

?Ci (x)

H(x) 4 1]
hi

hi.

(xf

(x)

Clearly, then G.(x),..., G (x), H-(x),..., H (x) are all first integrals for
^ " " ~ "

(1). Each of these scalar functions has a clear physical meaning:

capacitor charge in the k-th capacitor-only cut set, and H^(x) is the net inductor
flux-linkage of the k-th inductor-only loop. Hence our corresponding conservation

principle now asserts that each of these quantities is conserved along a trajectory.
Observe that each first integral allows us to eliminate one state variable and hence
one degree of freedom.

Our next example shows that capacitor-only cut sets and inductor-only loops are
not the only situations of practical interest which give rise to an invariant affine
submanifold.

Consider the circuit of Fig. 9(a). where contains only memoryless

elements and the 2-port is an n:l ratio ideal transformer. Clearly, then

and hence

q^ - n q^ = constant.

Theorem 5. Let the dynamics of (D be described in terms of x « (g, J). Let
contain elements such that

H

ic

h

~r

= 0

= 0

where F and H are matrices.
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Then each trajectory is constrained to lie on an invariant affine submanifold
A

M, which depends on the initial state, such that

dim M = dim(Ker[l ~

+ dim(Ker[l H Ker H .
~ JjI -V

Remark. The following example shows that one cannot generalize the above situation

by constraining capacitor charges and indu^ctor fluxes to nonlinear submanifolds.

Example 4.

Consider the circuit of Fig, 9(b), where is characterized by

a D

and h(*) is a nonlinear function. Then

q^(t) =q^(0) +J h(i^(t))dt
and there is no obvious way of defining a nonlinear submanifold ~ 0'
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5. Nonautonomous Networks

Some of the results obtained in the previous sections do not depend crucially on
the time-invariance of the dynamics. In this section we will show how the results

are carried over to nonautonomous networks.

Consider the nonautonomous network described by

X= f(x,u(t)) (107)

i.e., the time-varying property comes only from independent sources. Recalling the
proof of Lemma 2 we see that the affine submanifold M* does not depend on the fact

np+n-r+l
that u is constant. Since (x,t) ^ ^ , we have the following result:

Theorem 6. Assume the state equation (107) exists with x = (q,^) as the state variables,
where q and <|) denote the "generalized charge" and "generalized flux vectors* respec

tively. Let n^ and be the number of capacitor-only cut sets and inductor-only
loops, respectively. Then

^ nr+nL+i
(i) there is an affine submanifold M*(xQ,tQ) C®. which is parametrized by the

initial state (Xq'̂ o^ trajectory (x(t,tQ,XQ),t) ^ M* for all t.
(ii) M* is of dimension (n_+n_+l) and is of the form M* = M* x ]R., where M* is an

nc+tiL n
(n -hiL )-dimensional affine submanifold of M

C L nr+tiT+l i^cT^L
If we project everything from ]R onto ]R , then all the arguments of

the previous sections are valid except that we need an appropriate concept of equi
librium for (107).

np+UL
Definition 3. A vector x is called an equilibrium for (107) if

f(x,u(t)) = 0 for all t.

Definition 4. Let be obtained as before and let v and i be the voltages and the

currents associated withuW^^g. Then a constant vector (v*,!*) is called an operating
point of if it satisfies the Kirchoff laws and constitutive relations for all t.

R6

Theorem 7. With the new definitions of equilibria and operating points, all the
n^dTiL

results of the previous sections hold on the projected space H

Remark. The class of networks having the properties defined in Definitions 3 and 4,

is nonempty. In particular, the variational equation y = f(y>]3(t))» associated with
(1) in a neighborhood of a particular solution x(t,tQ,XQ), where y(t) 4 ?(^)
- x(t,t ,x ), has an equilibrium point y = 0. In fact, since our nonlinear resistors

- 0 —0 " "

may be coupled each other, i.e., controlled sources are allowed, it is easy to con
struct many nontrivial networks belonging to this class.

6. Eventual Passivity on M*

Eventual passivity plays important roles in electrical networks [6], [12-14].
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A sufficient condition which can be used to guarantee eventual passivity is given by

the Fundamental Topological Hypothesis; There are no cut sets and no loops consist

ing only of capacitors and inductors.

Observe that this hypothesis excludes, among other things, capacitor-only

loops and cut sets, as well as inductor—only loops and cut sets. In this section,

we will show that this condition can be relaxed to allow capacitor-only cut sets and

inductor-only loops. The following definition is needed to state our relaxed topo

logical hypothesis (Condition B).

Definition 5. A tree containing a minimum number of capacitors is called a C-minimal

tree. A cotree containing a minimum number of inductors is called an L-minimal co-

tree.

Condition B

(i) there is a C-minimal tree containing no inductors.

(ii) there is an L-minimal cotree containing no capacitors.

Remark. Condition B allows capacitor-only cut sets and inductor-only loops although

it does not allow L—C cut sets and loops. Condition (i) is equivalent to (115)—(117),

while condition (ii) is equivalent to (122)-(124). See APPENDIX 2 for examples of (i)
and (ii) above.

In this section we consider nonautonomous network described by (107). In

order to avoid introducing complicated notations, however, we assume that independent

sources are imbedded within the constitutive relations of the nonlinear resistors.

Hence in (16) depends on u = (v^, i^).
Definition 6. The collection of all resistor constitutive relations is said to

be eventually passive if there is a k^g > 0 such that

^G' Jr'
implies

iR + ^G iG - °
uniformly with respect to u. It is said to be eventually strictly passive if the

strict inequality in (109) holds.

Next, let N be the composite n-port (representing the interconnected resistors)
seen by the capacitors and inductors [13], and let v^ and i^ be its port voltages and
currents respectively.

Definition 7. Nis said to be eventually passive if there is a k^ > 0 such that

ll(v , i )ll > k (110)v«.p> _ p
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Implies

i > 0 (111)
-P -P -

uniformly with respect to u. It is said to be eventually strictly passive if the

strict inequality in (111) holds.

Although the constitutive relation of most practical nonlinear resistors are

eventually strictly passive, it does not necessarily imply that the interconnected

n-port N is also eventually strictly passive. A sufficient condition for guarantee

ing this closure property is given by the Fundamental Topological Hypothesis, which

we will now relax.

Theorem 8. Let Ji be a nonautonomous network described by (107), where independent
sources are imbedded within Let M* be as defined in Section 4. Assume

the following:

(i) Arjo is eventually strictly passive.R.(J

(ii) Condition B.

(iii) and are described by

5c ^L i^^L^

respectively, where f and g are uniformly increasing.

(iv) State equation exists with x = as the state variables.

Then every solution x(t) is eventually uniformly bounded [11] on M*, i.e., there is

a bounded set K C M* such that x(t) ^ K for all sufficiently large t. (See Fig. 10)

Proof. Let E(x) be the energy stored in the memory elements. Then it follows from

Tellegen's theorem that

dE(ac(t)) , „ „ V

~di (^^2)
We claim that in order to prove the theorem it suffices to prove that

"(Sc ^Sc
implies

In order to see this recall that the eventual strict passivity of A^^^ is uniform
with respect to u. Hence, if (113) implies (114), then the right hand side of (112)

is strictly negative outside a bounded set and hence the energy must keep decreasing

outside some bounded set K. The above condition is equivalent to saying that N is
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eventually strictly passive on the set (f, g) i.e.,

ll(v^, i^)ll ^~, (v^, i^) ^ (f, g) ^(M*)
implies

"^Yr' ^g' h' ic^" °
Pick a C—m^T>inifll tree containing no inductors. Then KVL and KCL assume the

following special structures:

1 0 0 ?RG 0
A

-IX

0 1 0
A

?LG 0

OI<>»1
1

0 0 1 ?CG ~cc

A

Yea

~ca

?RG

0

aT '^T

-?LG -?CG

0 -B^?cc

1 0

0 1

= 0

h,t
A

A

-GO
A

~ca

where R and G denote resistors, C and L denote capacitors and inductors, respectively,

jC and 0 denote cotree and tree, respectively.

Pick an L-minimal cotree containing no capacitors. Then KVL and KCL assume the

following special structures:

= 0

~ I 5rl Irg ?RC
i 1 111 9

I

.ikk.

-LCI

~Ga

~ca

= 0

0

(115)

(116)

(117)

(118)

(119)

(120)

(121)

^To distinguish the variables associated with the two trees, we attached a to
all variables associated with the C—minimal tree, and a — to all variables
associated with the L-minimal cotree.

-37-



that

1 hx

?RL
-T •

-?LL 1 i 9 0 hi
(122)

= 0

5rg 0 1 0 1 0 (123)

_5rc 0 loo
1 - "*

1 icj
(124)

1

o

1

the notations have similar meanings as before. It follows from (119) and (121)

''T

f"5cc 9c ~0
(125)

ti h =!o
(126)

where 5 and 4„ depend only on x(0). Since M* does not depend on a particular choice
^0 ~0

of a tree, M* of (59) must also be given by

M* =

A I AiP

9o + '^"[-?cc
li-+Ker[l

1]

where G(KerE-B^^, l])"'" and 4^ ^ (Ker[l Bj^]) •
In order to prove that (113) implies (114), we will first prove that

"3c'
implies

», Sc ^ 9o
-T

CC

"Yea" " "
Recall (125) and (117):

^"-cc 3c " ?o

[J ?cc^ = -?CG Ygj

1]

It follows from a similar argument as that of the previous section that

^(3c) At-?Jc 3c
?cc^ ~ ^3c^

(127)

(128)

(129)

(125»)

(117•)

(130)

is aglobal diffeomorphism. Hence Ilq^jU " implies "'0r(qc)'̂ ~US]. Now^ if (128)
holds, then the first component of ^ (Jq) Is always constant for a fixed Qq. Hence

(131)
?cc^ ? ^3c^ -> 00
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This and (117*) imply that

llv —8 ->• "» (132)
-Go

Similarly, the dual analysis shows that

l|<j>^ll 00 <{>j^ ^ ?lL^

implies

Hi ^ II ^ (133)
-Rjt

Thus (132) and (133) prove that (113) implies (114). °

6. Concluding Remarks

Some of the implications of capacitor-only cut sets and inductor-only loops were
discussed. Firstly, supposing that the resistive subnetworkhas only isolated
operating points, we showed that the network lAI has only isolated equilibria if, and
only if, there are no capacitor-only cut sets and no inductor-only loops. Hence, if
this condition is violated, there are a continuum of equilibria even if the operating
point is unique. Secondly, we showed that if there are capacitor-only cut sets and/
or inductor-only loops, then there is an invariant affine submanifold M* on which any
trajectory originating from it must remain on it for all times. In this sense, M*
can be thought of as the minimal state space for the network. The dimension of M*
is the number of the state variables minus the number of linearly-todependent
capacitor—only cut sets and inductor—only loops. This number turns out, in the
linear case, to be the same as the degrees of freedom in the sense of Bers. We also
showed that the intersection of M* with the set of equilibria consists only of

isolated points. Hence, the network behaves as if it has only isolated equilibria.
In Section 6, the result was applied to eventually passive networks. Transversality
theory for manifolds and functions has provided us with a powerful tool for the
proof of these results.
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APPENDIX 1

We will state and prove two facts needed in the proof of the theorems.

Fact D. Let P be an nxn positive definite.matrix and let B be an (n-m)xm matrix,
n>m. Then the nxn matrix

W A

Then

C-? 11?

is nonsingular, where 1 is the identity matrix of dimension (n-m).
Proof. Let x= (Xj^, x^). x^ em""", Xj e®". We will show that Wx =0 implies
X = 0 . Let

[1 Bl

[-B*^ 1]P
5l

?2

= 0

t-B^ 1]P
-B

1
52 = 9

But P is positive definite implies

. -B
[-B^ 1]P "

is positive definite. Hence X2 = 0 and x^^ = ""5X2 ~ 9* ^
Fact E. Let A and B be linear maps with domain "SP. Then

dim A(Ker B) = dim Ker B - dim(Ker B H Ker A)

Proof. For any linear map T : X -»• Y, we have the relation [9]
dim(lmCr) + dim(Ker T) = dim X

where Xand Yare finite dimensional linear spaces. If we choose X= Ker B, T = Ajx,
and Y = A(Ker B), then ImT = A(Ker B) and Ker T = (Ker B) H (Ker A). The above
relationship then follows trivially.

APPENDIX 2

We will give an example which illustrates the validity of (54) and (58).
Consider the network of Fig. 11(a). Choose the bold branches as the C-normal

tree and choose the branches along the dotted path as the L-normal tree T^. Re-
label the capacitor branches such that capacitors belonging to both T^ and T^^ are
labelled first. Relabel the inductor branches such that inductors belonging to both
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T* and T* are labelled first. Under this labelling convention, we have
0 J-i

Tq = {c^, C^, c^, L^} and = {C^, R^, L^, L^}. Then

(Yc I'Ys ) = ('ci 'C2' 'C3! 'C4)
^Yca lYc*) = ('cii 'C2' 'C3'

so that (54) holds. Similarly

-r ^ ^2l

5x3 ' ° ^2'^3^

and hence (58) holds.

We will next give an example illustrating Condition B. Consider the network of

Fig. 11(b). Tp A {C-, R-, R„, R,} is a C-minimal tree containing no inductors
^ ^TiidLii 1 X ^ o

and T, A {L„, R-, R«, K } is an L-minimal cotree containing no capacitors.
Ij . — 2 1 2 j

min

APPENDIX 3

To prove the necessity part of (1) of Theorem 2, suppose there are capacitor-

only cut sets. We will show that the set defined by (48) has a continuum of points.
To this end define the following orthogonal projection map:

j : (Ker[l (A.l)

where

M_ = TT o TT (v"'" + Ker[B. . 1])
C ~q ~v ~ -44 -

Let

y G n (^-^ + Ker[l "5441^*

It follows then from condition (iii-b) and (21) that:
n +n

Ty M^+ Ty (q-^ +Ker[l -B^^]) =H^ ^ (A.2)

This implies that the projection of the tangent space must fill up the orthogonal
complement:

But since the tangent space of a translated linear subspace is identified with the
subspace itself, we have:

(Ty(q^ +Ker[l -^ =(Ker[l (A.4)
Substituting (A. 3) into (A. 4), we obtain
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(dit)y (TyM^) =(Ker[l -8^4])'̂
Now note that

dim = dim (A.6)

On the other hand

dim Ker[l -B44] =

SO that

dlm(Ker[l -B44 ])•*•= (A-7)
By (A. 6) and (A. 7) we have

dim ® dim(Ker[l (A-8)

It follows from (A.5) and (A. 8) that nonsingular. Hence tt is a local

diffeomorphism at y. If there is at least one capacitor-only cut set, then

n^- > 1, and hence = tt has a continuum of points because a local diffeomor-
Cy — C C

phism maps an open neighborhood onto an open neighborhood. By (74), we see that

TT (Ker[l -Bg^])"^

Since the matrix [1 -Bg^] maps (liter[1 -Bg^,])"^ onto its image space injectively,
we see that (49) has a continuum of points and hence (48) has a continuum of points.

A similar argument holds for inductorronly loops. ^
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LIST OF FIGURE CAPTIONS

Fig. 1. A continuum of equilibrium points M intersecting an affine

submanifold M* at isolated points.

Fig. 2. A simple circuit containing a capacitor-only cut set made up

of and

Fig. 3. The capacitor-only cut set in Fig. 2 gives rise to a line of

equilibrium points The minimal state space is a

straight line (affine submanifold) which intersects at only

one point.

Fig. 4. A networked containing a capacitor-only cut set joining two

subnetworks (-Al2* Replacing the capacitors by open
circuits at equilibrium, we obtain = lAIirq ^

Fig. 5. A sequence of equivalent circuits used in proving Theorem 1.

Fig. 6. A circuit containing a nonlinear inductor;

(a) inductor is characterized by Josephson-Junction characteristic

(b) inductor is characterized by curve which overlaps

a portion of the <{»j^-axis.

Fig. 7. Transversality of surfaces and functions:

(a) X and Y are transversal

(b) X and Y are not transversal

(c) X and Y are transversal

(d) F is transversal to the y^-axis.
A

Fig. 8. A geometrical interpretation of M and M .

Fig. 9. (a) An ideal-transformer circuit which also gives rise to an

invariant affine submanifold.

(b) A "nonlinear" transformer circuit does not give rise to a

nonlinear submanifold.



Fig. 10. A geometrical interpretation of the motion of trajectories

along the minimal state space M* which converge toward the

compact set K C M*.

Fig. 11. An illustration of a C-normal tree T^, an L-normal tree T^,
*

a C~minimal tree T and an L-minimal cotree
min min
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