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ABSTRACT

Let(,A’be an autonomous dynamic nonlinear network. Let RG be the associated

resistive subnetwork obtained by open-circuiting. all capacitors and short-circuiting
all inductors. The following main results are proved: (i) Suppose thathURG has
only isolated operating points. Then(,A’has only isolated equilibria‘if, and only

if, "there are no capacitor-only cut sets and inductor-only loops.'" (Condition A)
(ii) If Condition A is violated, then there are a continuum of equilibria even if
the operating points are isolated. (iii) Let M be the set of equilibria. Then
each trajectory is constrained to lie on an affine submanifold M*, which depends
on the initial state, such that M N M* has only isolated points. Hence each |
trajectory behaves as if it has only isolated equilibria. The space M*, because
of its nature, can be considered as the minimal state space of the dynamics.
It is shown that the results can be generalized to nonautonomous networks.

Finally an application of the results to eventually passive networks is given.
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1. Introduction

Consider an autonomous network (i.e., no time-dependent sources) described by

%= Fw, F:R® xRS > R" @

For a fixed "dc" bias u, a point X € R™ is called an equilibrium if

F(xu) = Q. @

Now, open all capacitors and short all inductors. Call the resulting resistor-
independent source networkc)URG. The purpose of this paper is to show the following.
(i) Suppose thatLJURG has only isolated operating points. Then (1) has only
isolated equilibria if, and only if, the following holds:
Condition A. There are no capacitor-only cut sets and no inductor-only loops.
(ii) 4if condition A is violated, then there are a continuum of equilibria even
if operating points are isolated. Call the set of equilibria M.

(iii) Each trajectory is constrained to lie on an affine submanifoldlM*, whichl
depends on the initial state, such that M N M* consists only of isolated points.
Hence each trajectory behaves as if it has only isolated equilibria. (See Fig. 1)
The dimension of M* is the dimension of the state space minus the number of linearly
independent capacitor-only cut sets and inductor-only loops. In this sense M* might
be considered as the minimal state space.

The above results are generalizations of the phenomena depicted in the

following example:

Example 1.
Consider the circuit of Fig. 2(a) with the resistor constitutive relation as

shown in Fig. 2(b). Let the capacitors be linear. Now at equilibria (i=0) , KVL implies

vy + v2 = E 3)
or
q q
1 2
—=+ —=E {
g, e, (4)
1

An affine submanifold is a translate of a linear subspace. An affine submanifold

does not necessarily contain the origin of the ambient space, whereas a linear subspace
does contain the origin. A function £(x) S Ax + b is called affine if A is a matrix
and b is a constant vector. It is called linear if, in addition, b = 0. In electrical
networks, the term "affine" is usually more appropriate than "]inear" because the
constant vector b is usually present in view of dc sources or initial conditionms.
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Hence, in the (ql,qz)-space, the set of equilibria M defined by (4) constitutes
an affine submanifold. (See Fig. 3). Applying, next, KCL at the capacitor-only

cut set, we obtain
a - 1, = 3,00 - 4,(® £ e (5)

so that the trajectory must stay in the set M* defined by (5), where M* is
parameterized by Q(0). Corresponding to any value Q(0), the intersection M N M* is
necessarily a single point if Cl’ C2 > 0. Thus, once the initial state is specified,
the trajectory behaves like it has a unique equilibrium.

A dual example involving an inductor-only loop can be found in [1]. Several
arguments concerning the significance of capacitor-only cut sets and inductor-only
loops have appeared in the literature [2-4]. None of the authors, however, has
examined this subject from the geometrical poiﬁt of view which we believe is
essential in obtaining a clear understanding of the many hidden subtleties.

Remark. In the following, we will sometimes be inconsistent in the use of our
notation for a vector and its transpose, in order to save space. There will be no

confusion, however.

2. Relation between Equilibria of a Dynamic Nonlinear Network and the Operating

Points of the Associated Resistive Subnetwork

Given a network gAjlet us form its resistive subnetworkL)URG by open-circuiting
all capacitors and short-circuiting all inductors. We will assume the following

standing hypotheses throughout this paper:

Assumption 1. There are no couplings among elements of different kinds.

Assumption 2. InLJU, independent current sources do not form cut sets with themselves

and/or with capacitors, while independent voltage sources do not form lobps with
themselves and/or with inductors. Or equivalently, ing)UkG, independent current
sources do not form cut sets with themselves, and independent voltage sources do
not form loops with themselves.

By Assumption 2 we can choose a C-normal tree T for(,A’such that the following

decomposition of variables is possible: (TE denotes cotree)
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Let the capacitors be characterized by the constitutive relation
2(n 4n )
(VoY 90dg) €A O R °©° (14

where AC is an nb+m§ dimensional Cl submanifold, and let the inductors be characterized
by the constitutive relation

2(annr)
where AL is an nt+nr dimensional C1 submanifold. By Assumption 1, one can assume

that the resistors are characterized by the constitutive relation

2(ann )
(vpsYgoipsig) € fpg © R ° (16)

where ARG is an annG dimensional C1 submanifold. Observe that (14), (15) and (16)
imply that elements of the same type may be coupled to each other. Hence, multi-
terminal elements and multiports are allowed since they can be represented as

coupled two-terminal elements.

Theorem 1. Suppose that the dynamics of (1) is defined in terms of x = (Yc,gL)
and suppose that“)URG has only isolated operating points. Then()U has only isolated

equilibria if, and only if, Condition A holds.




Remark. Note the "if and only if" nature of the result. Hence, if there are
capacitor-only cut sets and/or inductor-only loops, then there are a continuum of

equilibria even ifLJURG has a unique operating point.

Proof.
Necessity. Suppose there is a capacitor-only cut set. Let (Vl,...,V ) and
(1 120" ,1 ) be the voltages and the currents of the capacitors in the cut set.

Decompose gAlinto three parts as in Fig. 4(a). At an equilibrium

I = = o=
1 12 .ee IY 0

HenceLJ“RG will look like as in Fig. 4(b), whereg)UlRG

) be the voltages across the external

andLJUZRG consist only of
memoryless elements. Let (Vl 2,..., 2Y 1,2y
terminal ofg)“ and‘,A[ at an operating point on)URG Then the equivalent network
outside of the capacitors is as shown in Fig. 5(a). Insert two independent voltage
sources E as in Fig. 5(b). Apply v-shift theorem [5] to obtain the network of

Fig. 5(c). Since the network of Fig. 5(c) is equivalent to that of Fig. 5(a), if
(Vl, . ,vy)
is a solution, so is

w l+E,v 2+E, cee ’VY+E)

for all E € R. Since, at least one of Vl""’vY

continuum of equilibria. A dual argument implies the existence of a continuum of

belongs to TC, one gets a

equilibria when there are inductor-only loops.

Sufficiency. Suppose that Condition A holds. Let bk be the branch denoting
the k-th capacitor and let A be the remaining set of capacitor branches and let
B be the rest of the branches of the network. By assumption, bk does not form
a cut set exclusively with branches of set A. Hence, by Colored Arc Lemma [6],
bk forms a loop exclusively with branches of set B, i.e., by forms a loop exclusively
with resistors, inductors and independent sources. At an equilibrium, the voltages
across inductors are zero so that the voltages across capacitors are uniquely

determined by an operating point of&)URG. A similar argument applies to inductors.

=}

Corollary 1. Under the same setting as Theorem 1 supposeLJURG has a unique
operating point. Then LAJhas a unique equilibrium if, and only if, Condition A
holds.
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Corollary 2. Under the same setting as Theorem 1 except that the dynamics is

linear; namely,

X = Ax + Bu an”n
Then

det A# 0 (18)
if, and only if, Condition A holds.

Remark. If y is a set of variables in the network such that y = g(g), where V¥ is
a diffeomorphism, i.e., y is any other coordinate system, then the theorem still
holds. There are, however, cases that cannot be taken care of by Theorem 1. The

following is a case in point.

Example 2. Consider the circuit of Fig. 6(a) which consists of a 1 ohm linear
resistor and a Josephson Junction device, characterized by

i =k, sink,¢ 21 (o)

L 1 2'L L'Y'L

where kl and k2 are constants. The state equation in this case cannot be written

in terms of iL. But it can be written in terms of ¢L; namely

by = -1Gep)-

At equilibria, v = iL = 0 and
T 27
¢L =0, e A e TR
2 2

are the set of isolated equilibria. The circuit clearly satisfies Condition A.
Now, if the inductor constitutive relation is replaced by that of Fig. 6(c),
then the set

¢L = {0,[a,b] ,cl

of equilibria constitutes a continuum of points, even though Condition A holds.
Observe that this phenomenon occursbecause the curve iL(¢L) contains a flat
portion which coincides with part of the ¢L-axis,

Now, let the constitutive relation of the Josephson Junction device be
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defined by a one-dimensional curve A and let Ty be its natural projection onto
the i -axis. Then, roughly speaklng, LI is transversal to {0} if A has no
p01nts like those of [a, b]. This is a sort of non-tangency condltion. We will
formalize this concept and prove results with capacitor charges and inductor
fluxes chosen as the state variables. The mathematical tool for this purpose
turns out, not surprisingly, to be the transversality theory of functions and
manifolds which will be introduced in the following section.

3. Relevance of the Transversality Theory

The main objective of this section is to provide a quick review of the basic
results from transversality theory [7] which are relevant to the proof of
the results of section 4. We will also present a self-contalned introduction
to transversality theory for surfaces, i.e., submanifolds in I& in order to
emphasize its geometrical interpretation. Examples will be given to introduce
the somewhat unconventional notations used in transversality theory and to
illustrate the application of some of the main results.

First of all, a submanifold of R is nothing but a hlgher dimensional version
of a surface in ]R3 and a curve in IRZ or ]R3.

Transversality of two surfaces (submanifolds) in R" is essentially a non-
tangency condition. Consider two surfaces X and Y as in Fig. 7(a) where Y is a plane.
The intersection X N Y defines a nice l-dimensional curve T. This essentially comes
from the fact that X and Y intersect in "the right" manner. If, however, the two
submanifolds intersect in "a wrong" manner, the intersection can be a complicated
object. Because of difficulties in drawing pictures in ]RB, let us see what might
happen in ntz. Consider X and Y of Fig. 7(b). The intersection has two parts; one
is a finite line segment, while the other is a single point. Hence X NY is not
a submanifold. This comes from the fact that X and Y meet tangentially. So, in -
;higher dimensions, many bizarre situations could arise, if two objects meet
. tangentially even if each of them is a nice smooth surface. Now, how can we express .
" the non-tangency condition mathematically? Return to Fig. 7(a) and consider a
point x €EXNY. Let Tx X denote the plane tangent to X at x. (Called the tangent
space of X at x). Let T Y be defined similarly. Since Y is a plane T Y = Y. Now,

~

it is easy to see that

TX+TY-= ]KB =T 3{3
X X X

~ -~ ~

(19)

i.e., the tangent spaces span the tangent space of the ambient space ]13. Note that

(19) is a vector sum and not a direct sum. The left hand side means the set of all
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vectors of the form viw, where y € IXX, w€E TxY' Hence vectors belonging to Txx
and TxY need not be linearly indepenaent. Next, consider Fig. 7(b). It is clear
that

TX+TY=TY#T]R2.
X X x X

These observations naturally lead us to the following definition.

Definition 1. Let X and Y be two Cl submanifolds of another manifold Z. Then X

and Y are said to be transversal and is abbreviated as

X % Y » (20)

if
TX+TY=TZ - (21)
X X X

-~ ~

for all x eExnNy.

Fact A. If XL‘:E Y, then X NY is a submanifold and

codim(XY) = codim X + codim Y (22)
where

codim X = dim Z - dim X (23)
and similarly for other symbols. u

Codimension of a submanifold is simply the complementary dimension of the manifold
with respect to the ambient space. For example, X and Y in Fig. 7(a)-(c) have
codimension one.

Since codimension is defined by (23), if we take intersection of X and Y, we
should expect the codimension of X NY to be no less than codim X and codim Y. Why
are, then, the codimensions additive as in (22)? Now, codimension of a submanifold
in R" is roughly speaking, the number of redundant coordinates that can be eliminated
from the equations describing the submanifold in R™. For example, consider Fig. 7(c)
where the unit sphere S2 intersects with a plane P. Since 82 is described by

2 2 2 _
x1 + xz + x3 =1 (24)

one coordinate x; can be determined, given the other two, and is therefore redundant

and can be eliminated. Similarly, the plane P is described by
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= . 2
oax) +Bx, + 1x4 = 0, 2,8,y ER (25)

and hence one coordinate is redundant and can be eliminated, provided, of course,
that at least one of a,B and y is nonzero. Hence both have codimension one
relative to ]RB. Since 82 N P is described by (24) and (25), if (24) and (25) do .
not overlap each other, then, there should be two variables that can be eliminated,
and hence S2 N P has codimension two. But 82 h p precisely means that the two surfaces
described by (24) and (25) do not overlap each other.

Taking into account the above geometrical interpretations, one can show the

following [8, APPENDIX], which provides us with an easy way of checking transversality.

Fact B. Let F(x) be a C:L function on R" taking values in ]Rn—m; i,e.,
F: RE » RO, If

~

X = {x € R"|F(x) = 0, rank (DF), = n-m}

is nonempty, then X is an m-dimensional submanifold. Let

Y=1{x€ ]Rn|g(§) = 0, rank (Qg)x = n-%}

be nonempty, where G is a Cl function taking values in ]Rn—g'. 1f
@6,
rank ~ | = n-m + n-%
09),,
for all x €XNY, thenme. a

Let us check transversality for Fig. 7(c), by using Fact B. Let

F(g)éxi+x§+x§-l.

For simplicity, let P be the (xl,xz)—plane, i.e., let

A
G(x) = Xqe
Note that (xl,xz,x3) € S2 N P implies x3 = (0 and xi + x% = 1. Hence for x (S 82 Nnp
(DF) 2x, 2x, O
rank ¥ | = rank 1 2 = 2
(DG) 0 0 1
~ X X

so that S2 (-ﬁ P.

The concept of transversality can be extended to a more general situation
than that depicted by (21).
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Definition 2. Let X and Z be C1 manifolds and let

F:X~>2

be a C1 function. Let Y be a submanifold of Z. F is said to be transversal to Y
and is abbreviated as
rhy
if
Im(dF). + T Y =1T.2 26
m(~-)§ y v (26)

~

for all y = F(x) € Y, where (gg)x denotes the differential of F at x and Im(gg)x

denotes its image. —~
We use the symbol dF when the domain of F is a general manifold

while we use DF when the domain is an euclidean space. Observe that Def. 2 is a
generalization of Def. 1 because the subset F(X) C Z need not be a submanifold even
though both X and Z are submanifolds. For example, if we take X to be the one-
dimensional submanifold {¢L,klsin k2 ¢L} in Fig. 6(b) and choose F = LI the
projection of this curve into the it-axis, then F(X) = [—kl,kl], which is not a
(boundaryless) submanifold since it includes its end points. Transversality of F

is a natural generalization of (21) in the sense that TxX is replaced by

-~

Im(dF), = () (T .X) (27)

where the right side means the map (gg)x acting on the set Txx. Observe that since
F(X) Cz, Im(gg)x is a linear subspace of TF(x)Z' In particﬁlar if we take F to

be the inclusion~map:
FG) =x

then (26) coincides with (21), because Im(gg)x = TyX is just the tangent space at y.
Let us give simple examples. Consider the function F:R » H{Z defined by (see
Fig. 7(d))

F(x) = (x, sin x) (28)
Hence X = R, Z = IRZ. Take Y = {(yl,yz)ly2 = 0}. Then

F(x) NY = {(0,0), (#w,0), (*27,0),...}

For example, at (y;,y,) = (0,0),
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In(dp), = In(dF), = In([1 cos x]M)g = Ia(1l 11

{11 117 x|x € R} = {Ix %1 |x € R} (29)

Hence Im(dF) is just the tangent line to the curve ¥y = sin Y1 at the point (0,0)
~~ix
as shown in Fig. 7(d). On the other hand

= = 3
Hence (29) and (30) imply (26). But if we let

F(x) = (x, sinx + 1)
then

F(x) NY = {(53-15’2’—1—)—“—, 0) |k=4#1, %2,...}
and at (yl,yz) = (%l,;b),

Im(dF), = Im [1 cos x ].;,rn =1m [10]7 ={ (715¥) |y, = O}

2 2
In this case, the tangent line is just the yl-axis itself and hence (26) does

not hold.
Fact C. If F ) Y, then the preimage E-l(Y) is a submanifold and

codimxg'l (¥) = codim ¥ (31)

where the left hand side denotes the codimension with respect to X and the right

hand side denotes the codimension with respect to Z. H

Let us explain (31) by an example. Consider F of (28). Y is described by

f(yla}'z) =0
where f(yl,yz) =7, and hence it has codimension one in Z = ]RZ. Now, since
Flr) = {x|£eF(x) = 0} = {0,4m,427,...}

it has zero dimension and hence E-l(Y) has codimension one in X = R.

Remark. In this paper, whenever we write X m'Y, we assume that XN Y is nonempty.

Similarly, if we write F A Y, then we assume that F(X) N Y is nonempty. The empty

cases are trivial.
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4., The Minimal State Space of Dynamic Nonlinear Networks

Let M be the set of equilibria. As we have seen, if there are capacitor-only cut
sets and inductor-only loops, then M is a set of continuum even if operating points
are isolated. In this section, we will show that each trajectory is constrained

to stay on an affine submanifolde*, henceforth called the minimal state space,

such that M N M* consists only of isolated points. In other words, the minimal
state space M* is an invariant submanifold and hence, each trajectory behaves as if
there are only isolated equilibria. ‘

To do this we will have to impose stronger conditions on the capacitor and
inductor constitutive relations. We will also need to investigate some geometric
properties of nonlinear networks which we will give before stating our results.

Note first that under the standing assumptions 1 and 2, there is a tree TL
containing a maximum number of inductors and a minimum number of capacitors with

__the following properties:

(1) All independent voltage sources are contained in TL and all independent

current sources are contained in Tf (cotree of TL)'
2
(ii) KVL and KCL can be written in the following form :

Le
— . _ | *r
1000 : Bi1 0 0 0 Y1 (32)
010 01 B 0 v (33)
R A N VI S I oL 2 S
0 010 :].3.31 532 333 Q YLJ ¥ (34)
0 @ 9 LBy Bp B3 R4 | %o (33)
oy
| *ea |
%LI.T
_ . - *RL
T T T T | )
fu P B R 200 21 | % (36)
T T T
0 '522 532 _]}.42 : 0100 -Egi =0 (37)
o -BL. -BL. -BT.  'o 0 1 0 i - (38)
O "By B3z T3, % 2 o2 2 “LJ
_ 3
0 0 0 Eu100 01|ty (39)
1y
L_}C:I
2

Note that our present B matrix differs from that used in Section 2 because a
different tree is used here.

' m—— e ———— e - . [P S
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where the variables are decomposed as follows:

number of
elements voltage current elements
*
) inductors in '1‘L VLe iL z o,
o
. . *
g‘ resistors in TL VR2 i'R 2 nRi
O
independent current ¥r i, n,
sources in T{
" % .
capacitors in TL Yoz }Ci nci
inductors in TL v 7 i 7 n 4
. resistors in TL Yoo i‘G T nG g
@
H independent voltage Yy EV n,
sources in TL
capacitors in TL ch i cg N 4

In order to see that (i) is valid, observe that by Assumption 2, it is possible
to choose a tree such that it contains all independent voltage sources and the
associated cotree contains all independent current sources. Next maximize the
number of inductors and minimize the number of capacitors in the tree. We claim
that this is the desired tree, i.e., the requirement of (i) does not destroy the
maximality and the minimality of inductors and capacitors, respectively. Pick a

link inductor Ll' We claim that the fundamental loop defined by L, consists only

of inductors and hence the maximality property is retained. This ]i:s because by
Assumption ZQNRG has no voltage-source loops and hence LA' has no loops consisting
only of inductors and independent voltage sources. Thus if this fundamental loop
contains an independent voltage source, it must contain at least one capacitor or
resistor. This contradicts the maximality hypothesis. Similarly, minimality of

capacitors is retained. To see (ii) note that B and §24 are zero submatrices

12> 314
because of the choice of the tree. Again, by Assumption 2, Bi3 and -§§4 are zero
submatrices.

Next let n, and B‘L be the number of linearly independent capacitor-only cut

C
sets and the number of linearly independent inductor-only loops, respectively.
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Sincg fundamental cut sets and fundamental loops are always linearly

independent, it follows from (32) and (39) that

D, = Noy (40)

L

Lt D)

Remark. The tree TL is called an L-normal tree [4]. It is useful for deriving

some interesting properties concerning the eguilibrium points and invariant sub~
manifold as we will see in the sequel.

Let
nC-l-nS

Ev’ gq:Ac-r]R

be the projection maps defined by

and
= ‘ 43
Eq(Yc.’Ys’ﬂc’ﬁs) (90°9) (43)
respectively. Similarly, let

nI.. I
. -
Tos E¢°AL R

be defined by
gi(;L,iqn,gL,gr) = (1L,;P) (44)
and
R - 45
1‘:¢(1-L31-I,’QL’ QP) (?L,?I') (45)

respectively.

Recall (8) and (11). In this section, we will choose the generalized charge

: q

T T,|%
= - = — 46
179 Bk =1L B 9 (46)



and the generalized flux

¢
L
b=+ B =1L Brplle (47)

as the state variables [4].

Lemma 1. Let (v*,i*) denote an operating point of UURG' Then the set of equilibria .

for (.Nis given by

. (v*k,Ji*)M(v*’i*)’ “s
where |
0 0 |fr ox ! (verly,, 1D
My, 1%) -1 .1 T “9
1 Bip|fmyemy (HKerll -B;3D)

-1 -1 1 -
where T, () and LY (+) denote preimages, v~ is an (nc+nS) (ncJ +nC£ )-dimensional

vector orthogonal to the subspace Ker[]_?:44 1] and i.‘L is an (nL-PnT) = (ﬂLO' +nt£ )-
dimensional vector orthogonal to the subspace Ker[l -§‘]1_’1] . ( yt and 1."' depend on
@t 19.)

Proof. Note that (35) gives

B, 1 Ygz =0 -Byl jLz Ry Byl jv (50)
” ~LJ ~GJ
Let (y{;,gé 3') be the value at an operating point. Since we are considering
equilibria, let (y; . ’YL‘:J) = (0,0). Then (50) gives
3 Yy

[§44 1] 'Ycz = [—1}43 -1}42] Yég (51)
It follows from a standard result from linear algebra [9,p.159] that there is an
element

vt € (Rer[s,, 11" (52)
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such that

Tca L

M
is the solution set of (51), where the set in (52) is the orthogonal complement
of Ker[l}44 1]. Note that (39) implies that if there are capacitor-only cut sets,

then E is not a null matrix and hence (53) defines an affine submanifold of

44

dimension nc g = EC’ which is the number of linearly independent capacitor-only

cut sets. If there are no capacitor-only cut sets, then §44 is a null matrix and
(53) degenerates into a single point gl.

Now, without loss of generality, possibly by relabelling the branches, we can

assume that

) = (3,5%) | (54)

v
N ~S

c3’Yce

where Ve and Vg are the tree and cotree capacitor voltages relative to the

C-normal tree TC defined in Section 2. See APPENDIX 2 for an example illustrating
this point.

It follows from (46), (53) and (54) that the '"generalized charge" q at

equilibria are expressed by

_ T -1, 1
q =11 BocJ LA (v +Ker[§44 11) (55)
Similarly the "generalized flux" ¢ at equilibria are expressed by

_ 1 .1 T
¢ =1[1 ELI‘] 'f¢°111 (i™Ker(1 -Ell]) (56)
where

n ,
' € (Rer[1 -B,1) (57)
‘Here, we have assumed without loss of generality that (see APPENDIX 2)

(]"L;C ai—Lg) = (11":_1:,-[-) (58)
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Lemma 2. There is an affine submanifold M* such that(q(t), Q(t))e M* for all t
and M* is defined by

T ! L T
R 0 Q|| gKerll B4 R
M* = ' L (59)
0 0 1 Bir ¢ +Ker[l§11 1]

where ql is an (nc_a i-nc i)-dimensional vector orthogonal to the subspace
Ker([l —324] and ¢'L is an (nLS -I-an)—dimensional vector orthogonal to the subspace
Ker[§11 11. (ql depends on (gc(O), gS(O)) and ?l depends on (fL(O), fr(O)))

Proof. Equation (39) gives
Lo,

] =0
}QL

T
[l -By,

Integrating this equation with respect to time and making use of (54) we have3

a
1 Tl - (60)
(1 B, . %

~S

where 90 is uniquely determined by the initial condition ( qC(O),qs(O)). "It follows
from (60) that there is an element [9]

4 1
L T
g € (rerly -2,))

such that the set
dc n T

=q +Ker[l -B,] (61)
s

is the solution set for (60), i.e., (gc(t),gs(t)) is constrained to (61) for all t.
Similarly, there is an element

3O‘userve that since the two trees T, and T, are distinct, the number of capacitors
belonging to T is generally differént from that belonging to Ty,. However,

(TCUTé) = (T UT{‘.). Hence although the matrix multiplication indicated in (60) is
compatible, It‘he dimensions of q and qg, in general, do not correspond to that of

1 and -1}24, respectively.
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1 1
¢ € @erlz; D

such that
o N
= §+Ker[§1l 1] (62)
¢p
is the solution set of
3
(8, 1 =2, (63)
o

where 8, is uniquely deternined by (QL(O),?P(O)). Hence, (46), (47), (61) and (62)
imply (59). n

The following is the main result of this section.

Theorem 2. Assume the following:

(i) The dynamics of (1) is described in terms of x = (gq,¢), where q and ¢
denote the '"generalized charge" and the "generalized flux," respectively.
(ii) “NRG has only isolated operating points.
(iii) For each operating point (v*,i%) of ‘_NRG

(a) EVH;(YJ'-l-Ker[1§44 ;]) (64)
T E (i."'-!-Ker[l. —Q':{l]) (65)

where T, and m, are projection maps defined in (42) and (44), respectively.

-1 -1(.1 T )
(b) qugv (y""+l(er[l§44 1.]) and 114)031 (j_. +Ker[1l Ijll] are nca and n o

dimensional submanifolds, respectively, and

1‘q°‘~‘;1(‘~’l+Ker[§44 1) B (g merry -57,) (66)
rer (g wery ay) B (gtertny, ) 7

where qu and 7, are projection maps defined in (43) and (45), respectively.

¢
Then
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(1) Jj has only isolated equilibria if, and only if, Condition A holds.

ngtny,

(2) There is a minimal state space Mx C R which is parameterized by the

initial state x(0) = X, such that the trajectory :E(t;to,ijo) € M* for all t.
netny,

(3) The minimal state space M* is an affine submanifold of IR of dimension

m = (nC-ﬁC) + (nL—EL),where EC is the number of linearly independent capacitor-only
cut sets, and EL is the number of linearly independent inductor-only loops.
(4) M N M* consists only of isolated points. (See Fig. 1)

. nin
Remarks: 1. Note that relative to R ¢ L, M* is merely a translated copy of r".

Hence once the initial state %, is fixed, the network behaves as if it is in an
m-dimensional state space. Note also that (4) says the network behaves as 1f it has
only isolated equilibria.

2. Condition (iii) is automatically satisfied if the capacitor and inductor
constitutive relations are represented by uniformly-increasing functions. We will
show this later (see Theorem 3).

We need the following lemma which relates some of the properties of ‘I'C to those
of TL.

Lemma 3.
. T T
(1) Ker[l —544] 2 Ker[l f@sc] (68)
(ii) Ker[]§11 1] D Rer[1 ]}LP] ' (69)

Proof (i) Open-circuit all elements except. capacitors. Then (10) and (11) give

T
0 “Beyll | _ (10"
T -
1 -Bgell 1 (11')
whereas (36)-(39) give
p—— T'ﬂ
0 'l}z,]_ (36")
—-— T ' '
0 -3, te, (37"
T =0
- 1
T
1 -8 (39")
- 44 '
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Since the independent voltage sources are contained in TC N TL’ (10') and (38")

describe the same equations provided that (54) holds. Hence

T, _ T
Ker[0 -Bg,]l = Ker[Q0 -B,.]
and the remaining equations must define the same set; namely,

T - T I T
Ker[1l —~SC] = Ker[0Q ‘~4l] N Ker[0 042] N Ker[1 §44]

The last equation implies (68). (ii) Short-circuit all the elements except inductors.
Then a dual argument implies (69). B

Proof of Theorem 2.

(1) To prove sufficiency, assume Condition A. Then B,, in (49) becomes a null

44
matrix and

Rer[B,, 1] =1{01}

so that the set defined by (53) degenerates into a single point

1 Y.%
v =1[-B =Bl | o
43 42 vE g
n n.tag
Hence, v~ is a zero-dimensional submanifold of R . By condition (iii-a) and
by Fact C,
%
1 pLi \ .
7 - |[-B -B,.] CA (71)
v ~43 ~42 YGJ / c
is a submanifold and
% %
i Yy v
codim, 1« [-B -B,,] * = codim [-B,~» =B,,1 | & =n_ +n (72)
AC v 43 42 v g nC+nS 43 ~42 vE g (o] S

R

Hence the set defined in (71) is a zero-dimensional submanifold, i.e., it is a
set of isolated points. Hence
*
b

T -1
[1 -Bgel Fqer, {[Baz ~Byol 73)

*
%63

is a set of isolated points. A similar argument holds for inductors, by using
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(36). Since each M(Y*’i*) is a set of isolated points, the set defined by (48)
is also a set of isolated points.

Proof of necessity is slightly involved although the idea is fairly simple.
Here, we will give the idea of the proof with a figure (Fig. 8) which makes the
situation clear. A rigorous proof is given in'APPENDIX 3.

Suppose that Condition A is violated. First suppose that there is at least
one capacitor only cut set. Then §44 is not a null matrix so that YL + Ker[lj44 1]

is an Nog -dimensional affine submanifold, where Doy > 1. Let
A -1 ( 1 )
MC gqogv v -I-Ker[]}44 1]) .

Our initial step in the proof depends on the fact that the projectian ﬁc_of M,

onto_(Ker[1l —BzéiZf;consists of a continuum of points. : This follows from condition
(1i1-b) , as is shown in APPENDIX 3. Moreover, by (i) of Lemma 3,

(Ker[l. -13241)l C (Ker[; -::'s"c])l . %)

L
Next, the matrix [1 -ggcl maps (Ker[% -~§C]) onto its image space in a one-to-
one manner [9]. Hence [1 —QSC] MC has a continuum of points. Hence M(Y*’i*) in
(49) has a continuum of points. A similar argument holds when there are inductor-
only loops.

(2) This property follows from Lemma 2.
(3) First observe from (39) and (32) that

T,
dim Ker[1 —§44] = Doy (75)
dim Ker[ljll 1] = n g (76)

Moreover (59) implies
dim M*=dim{[1 -—BT ] Ker[l -BT Ip+ dimd[1l B_ _] Ker[B 1]
~ <8C S L44 ~ <LT ~11 [ °

Hence applying Fact E of APPENDIX 1, we obtain ‘

. _ LT a7 oI
dim M* = dim Ker[l -B,, ] - dim Ker[l -B,,] N Rer[1l Bgc!
- N
+ dim Ker[B;; 11 - dim Ker[B;; 1] NKer[l B, ]
= (ngg g + (a5 mp) — . an



where we have used Lemma 3, and the facts dim Ker[l -ggcl = ng dim Ker[l §LP] = fp.
Now since n. + ns = nCO + nCI and nL + nl_, = nLS + nL;L’ we can solve for

Dege ~Bg = T0g " Mgy Py ~Pp= 7, ~ Py (78)
Substituting (78) into (77)and making use of (40) and (41), we obtain

im M* = - - = -n -n
dim M n, - n.g to -0 (nC n.) + (FLL DL)
which is precisely what is to be proved

(4) By condition (iii-b) and by Fact A, the set
-1/ L ( L T )
N -
TeeTy (Y +Ker[B,, :L]) q +Ker[l -B,,] (79)
is a submanifold. Moreover, since
codim 7 °Tr_l(v'|'+Ker[B 1]) =n
~q ~v ~ "'44 ~ Ct
, L T _
codim (g +Ker[1 1344]) =N,

we have, by Fact A, that

codlm{gqo T, (v -I-Ker[léM 1] q +Ker[1 ~44] n., + 0.4 (80)
i.e., (79) is a zero-dimensional submanifold. Hence it consists of isolated points.
Similarly,
-1/.1 T ) ( L ) ‘
- N
L (j: +Ker[l -Bj,] ¢ +Ker[B,; 1] (81)

is a set of isolated points. Recall (49) and (59). Then, clearly

T @ -1/ 4 1 T
- N -
1_ gSC: Q 9 -quo ‘EY (Y +Ker[§44 .1.]) (g +Ker[1. 544])
M N M* = J (82)
(y*,1%) ' —1( 1 T ) A (ol )
0 0 11 ol wen; (£ er L ~B];] (Q +Rer[B; 1]

consists of a set of isolated points. Finally, since ‘A‘RG has only isolated
operating points, we conclude, by (48) that

M= U M M
(v*’i*) ( (Y*:i*) M)

has only isolated points. -23-




Remark. Note that M* depends on the initial state, whereas M does not. It is, now,
clear geometrically what Ohtsuki and Watanabe [4] have tried to do analytically.
They chose a coordinate system on the minimal state space M* and defined the dynamics
on it. The coordinate system, however, is dependent on the initial state.

Note that in the proof of the sufficiency of (1), we did not use condition (iii-b) -
Hence we have -the following.

Corollary 2. Assume Condition A, (i), (ii) and (iii-a) of Theorem 2. ThenLN has
only isolated equilibria. Moreover, (2), (3), (4) of Theorem 2 are trivially satisfied.
Example 2 of Section 2 can be taken care of by Corollary 2. Note that

ni(AL) N {0} = [_kl,kl] N {0} = {0}. Note also that in terma of the coordinate ¢,,

We have o T

AL = {(¢L’k1$in k2¢L) |¢L € ]R}, T"i@L) = Ak]_Sin k2¢L.

The tangent space of AL at 0 satisfies [10,p.4]

R - et o e e

Toh = Im{1l k;k,cos k2¢L] [ {[1 _-_l_-l<.1k2]x|x € m} =R.

o, =t
e - e e - 2 o _ ':_‘—"'"“‘ _
Hence
Im(dﬂi) k- {(klkzcos k2¢L) K xlx € ]R} = {iklklex ER}=R.
gy v
) 9 .
and
To({o}) = {0}.
Therefore
Im(dnilb; TO({O}) = TO(IR) (83)

which implies
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m h {o03. (84)

On the other hand, AL of Fig. 6(c) does not satisfy (84) because for d)L € [a,b],

(d1ri)¢ = 0 and hence Im(dvri)¢ is just the point {0}, thereby violating (83).
L L

Remark. In the special case where all capacitors and inductors are uncoup led

2-terminal elements, condition (iii-a) simply means that at each equilibrium

voltage v{z for capacitor C (resp., current ik for inductor L ), the tangent to

the Q. Vi curve (resp., ¢k Kk curve) is not parallel to the qk-a.xis (resp., ¢k -axis).
If we only need necessity part of (1) of Theorem 2, we can relax condition

(iii -b). In order to guarantee that the set (48) has a continuum of points,

-1 ) -1/.1 8T )
quyv (v -i-l(er[B44 l] and 1T¢ m. (i -l-Ker[l 11] do not have to be submanifolds
globally. If we check the proof, we can generalize the result in the following

manner.

Corollary 3. Assume that Condition A is violated and thathRG has at least one
operating point. Suppose that the follo%ng holds:
(1ii-b') There is a point (q q ) er © s (resp . (¢L,q>1.,) €ER

“L+nr)

and a

-1
nelghboxhoodw (resp., W ) of this point such that nqow '<v +Ker[B44 1])

-1
n . - .
WC (resp R 1r¢ (i -I-Ker[l §11]) L) is an n.q (resp., nL‘t)—dimensional
submanifold of W (resp., WL) and

-1f 1 L T
{yqogv (y +Ker[§44 1.]) N WC};E {(‘1 +Ker[1 -1344]) N WC}

-1f.1 T L
{Ed)ogi (1. +Ker[1 —gll]) N WL}FF {(? +Ker[§11 ;L]) N WL}

ThengN has a continuum of equilibria.

Proof. If we restrict the proof of the necessity part of (1) to WC and WL, we conclude

that the set (48) has a continuum of points. n

Remark. Recall that in Theorem 1 we did not need to impose conditions on A, and A .

We only required that x = (Yc’i'L) be chosen as the state variables. The reason we
needed the additional condition (iii) of Theorem 2 is that we have to map the
equilibria 1n the (VC’VS ir)—space into the (q,¢)-space.
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N3

Theorem.B. Assume (i), (ii) of Theorem 2 and the following condition:

(441 ") Capacitor and inductor constitutive relations are described by

Qpag) = £(vevg)
and

(?,L’ ?I’) = g(:":L’ %P)

where £ and g are uniformly increasing [6].

Then all the conclusions of Theorem 2 hold.

@) Mgx, i)

T
1 o-Bg 0 0)[E(v
My#,i%) {0 0 ' 1 B
o1 T|lo 0 11 By

(2) M

(Y*’}*)
gv-l
T T
" 1 'gsc: 0 0
M N = |
(w*, 19 0 0 i1 B,
g—l
n
where — . —
T .| %c
Fag a9 -1
[B,, 11~ (1o 99
L R
o |
B g
G, )4 -
ST el @ )
L -

Proof.
that (SQ?

PR

-

-~

has the following representation:

L+Ker[§44 }])
L T
g(terty -]

N M* is a unique point given by

gé) serves §§_3M§1oba1Acoo:d13ate for

-26-
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A .

v

We will show that (iii')implies (iii) of Theorem 2.

(85)
(86)
(87)
-

x ]

~V

%

GU__
(88)

.

TRt

*

i 1/
(89)
(90)

To this end, note first



-1 ngtm |
A= LE gy 99, 9 991 ap 39 ER © T (91)

Hence, in terms of this coordinate, we have

_ 1
1, = I (92)

Since f is uniformly increasing, it is a global diffeomorphism [6] and so is its
inverse g—l. Hence

4
A)YynNn
EV( C) (Y + Ker[§44 }])
is always nonempty. Next, in terms of the above coordinate

(dw_)

Df
~v (Yc’ Vg 4 (

-1
= (0f ) (93)
> 9) (450 9g) , ‘

c ~S

where the left hand side denotes the derivative map of T, evaluated at (YC’YS’qC’qS)

and gg’l denotes the Jacobian matrix of ﬁ_l(-). Moreover (91) impliesbthat the
tangent space of AC at (yc,ys,gc,gs) satisfies the following property [10,p.4]:

1 nc+nS
T A, = Im[(Df ) 11 =R : (94)
(Vor Y0 9c0 &) C ~~ (gg 9g) -
Hence, in terms of the above coordinate
d T A
@ w0 vg 300 390 (T Y50 300 390™0)
= of Inf @) 1] (95)
~-~ (gc’ ~S) ~ (Sca SS) ~

nc+n

But since D'f'-1 is always nonsingular, the right hand side of (95) is R . Hence

(dz ) (T A )
VL Yo 30 3P0 Ve Yoo 900 49 ¢
n_in
+ T (V-L+Ker[B l])=RC S .
(v, ¥\ ~44 =

Since transversality does not depend on a particular choice of coordinate, it follows
from (26) and (27) that (64) is satisfied. Similarly, we have (65).
To show (66) we first prove that (79) is nonempty. To this end note first that

Eﬁ is the identity map in terms of the coordinate (qc,gs). It follows from this
and (92) that :

Tq° % = f (96)
 Hence, the set (79) assumes the following simplified form:
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: T
f£(yt+ Rer[B,, 1D 0 (gt + Rer[l -B,, 1) (97)

It follows from (51), (53), (60) and (61) that "non-emptiness of the set defined by

(97)" is equivalent to saying that the following simultaneous equations have a

solution:
q
T ~C} _
(8,, 1l1f(q, q) = [-B (99)
~44 NP~ M2C’ S ~43
To this end, consider the function defined by (89). It follows from Fact D of
APPENDIX 1 and the assumption that f is uniformly increasing that the Jacobian
matrix '
[1 ]
~ 44 : .
oP = 4 _ (100)
2 Qe 99 | 8], 11 @D
~44 =7 Tes 7(gps gs)

is positive definite uniformly with respe‘ct to (qc',qs) and henceg is a global
diffeomorphism [6]. This implies that (98) and (99) have a unique solution and hence
(97) 1is nonempty. Since f is a global diffeomorphism, and since v-L+ Ker[BM 1] 1s
an dimen51ona1 affine submanifold f (v-L+ Ker[BaA l])is also an

Cg_/,w —2
oy dimensiongl submgn}_f._pld. In order to show the transversality property in (66),

note that

e S

£ + Rer[B,, 11) = {y ER | .0 (=0 o

where
B =3, 1 x-vb
By Fact B and (101), (66) holds if

. -1 -1

(of) (@f ) (B 1] (bf °)
rank | o (SC’QS) = rank <44 =7 Te- (gC’SS) = ngq + Dope
T CcL

T
“Ba4!
But the above matrix is precisely (Dg) ( 9c 9 y? whose rank has already been shown

9’

to be equal to ng g+ L For inductors, we consider (see (63) and (36))

——
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(B, 1 = 2 | (102)
iy
i*
T -1 T T ~RL
~1

and the function defined by (90). A similar argument is valid. Hence all conditions
of Theorem 2 are satisfied. Equation (87) follows from (49) and the fact that

gq ° n;l = f, and g¢ ° g;l = g. Equation (88) follows from (82), the fact that 97)
is given by the solution of (98) and (99), and the fact that

g(il + Ker[1  -BL D) N (¢l+ Ker[B; 1D

is given by the solution of (102) and (103). R
Remark. Under the conditions of Theorem 3 one might be tempted to pose the following

conjecture: Is the relationship
#(M N M*) = #(operating points ongURG)

valid, where # denotes the cardinality of a set? This is false, however. For,

both of them

%
suppose there are two operating points ( , VGO’ ) and (v GQ )
1 .
belonging to Ker[—l}43 —§42]. Then the above relatlonship does not hold because
* *
[-B -B,.,] le =0, [-B -B,,] le =0
~43 ~42 * ~ ~43 ~42 v* ~
YGJ]_ "GUZ

and hence they give rise to the same equilibrium point.

Corollary 4. Consider the same situation as Theorem 3 except thatL)URG has a unique
operating point. Then M N M* is a unique point.

Theorem 4. Consider the same situation as Corollary 4 except that the dynamics is
linear, i.e., it is described by (17). Then we have:

(i) rank A = (n, - n o+ (n, - nL)

(ii) The set of equllibrla M is an affine submanifold of dimension (n +n )

Proof. Note that the set of equilibria is given by
x4+ Ker A (104)

for some vector gl in (Ker é)lz But bx_(8723_this set must be given by
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0 0 ||cyb+ RerlB,, 1D
(105)

O

1 B g(§4‘+ Rer[l -§i1])

where C and L are the capacitance and inductance matrices, respectively. By Fact B
and Fact D, we have

T L
Rer[l -B,,] M cyl+Ker(B, 1D

and the intersection is a single point. Let

n_+n
. R c s

>(Rer (1 -B;, DT

x>

be the orthogonal projection. It follows from the above, that
f(c(yh+ Rer[B,, 11) (106)

is still an ﬁc-dimensional affine submanifold. It follows from (74) and the fact
that [1 -§§C] maps (Ker[l -§§C])L'onto its image injectively, that

[1 -Bg) G (vh+ Rer(B,, 1D

is an ﬁc-dimensional affine submanifold. A similar argument applies to inductors to
give an EL—dimensional affine submanifold. This and (104) give (i) and (ii).

Remark. The number (nc:- 5(9 + (nL - EL) coincides with the degrees of freedom in
the sense of Bers [2].

The set of equilibria M in Theorem 4 is an affine submanifold because the
associated state equation is linear. The set M in Corollary 4, however, need not be

a submanifold because the submanifold
L1
E(yt+ RerlB,, 1D
. L _aT
g+ Ker[l . -B ;1)
is projected into the (q,¢)-space by the matrix
0

Burl -

For example, think of a l-dimensional curve inﬁR? whose projection ontoimg is a curve
having self-intersections, which is not a submanifold. However, 1if LA‘contains

neither cag§citor-oq}ymloo?s nor ig@ggtoreon}y cut sets, then the above projection
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matrix reduces to an identity matrix. In this case we can state:
Corollary 5. Using the same setting as that of Corollary 4 and assuming thatLJU
contains neither capacitor-only loops nor inductor-only cut sets, then
(i) M is an (EC + EL)-dimensional submanifold.
(1) M M s,
The following fact is simple, yet important.
Corollary 6. Let y be any set of variables such that y= ?(§), where 14 is a global
diffeomorphism. Then the state equations can be written in terms of y and Theorems
2-4 and their corollaries are valid in terms of y.
Proof. Conditions required in the results are coordinate-free. Hence everything is
preserved under a diffeomorphism. ) H
As an application of Corollary 6, we note that if all capacitors are Cl, uniform-

ly increasing, and (YC’ gc) and (YS’ gs) are not coupled to each other, then the consti-
tutive relations of the capacitors can be written as qg = g (vg) and v, = Ve (90>

where as(-) and §C(o) are global diffeomorphisms.4 It follows from (6) and (46) that

-~ ~

T & ~
g = 9c - Bgg 3 © By Vo9 ~ By vy) L1405
Now, the Jacobian matrix
_ T o .
Dhg = 1 + Bgp[Ddg © D¥.(9.) I8¢

is positive definite uniformly with respect to 9 Hence QC(-) is uniformly increasing
and hence it is a global diffeomorphism. A dual argument applies of course to the

inductors. Hence, we conclude that if all capacitors and inductors are uniformly

increasing and if (yc, gc), (YS’qS)’ (¢L,1L) and (¢r, iP) are not coupled to each other,
then we can choose the more usual vector % ) (qC, QL) as the state variables and all
results alluded to above remain valid.

Remark. Our results in this paper can also be related to classical techniques from
theoretical mechanics where the number of dynamically independent coordinates is

minimized through the use of first integrals [11]. In particular, a real-valued

function E(g) on the state space is called a first integral for (1) if

dE(x(t))

It = 0 for all t.

4All the symbols here pertain to the C-normal tree in Section 2.
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In mechanics, quantities such as angular momentum and energy are first integrals. In
electrical networks, the energy stored in an L-C network is a first integral. Each

such first integral leads to a conservation principle. Now consider

T _Scs (’fﬂ
6(x) AL -B,,]
| %z @
915 ()]
HG) A [B, 11 | 7
_'?Lac )

Clearly, then G, (x) seees G (x), By (x),..., B (%) are all first integrals for
— =TT "z

(1). Each of these scalar functions has a clear physical meaning: Gk(x) is the net

capacitor charge in the k-th capacitor—only cut set, and Hk(x) is the net inductor

flux-linkage of the k-th inductor-only loop. Hence our corresponding conservation

principle now asserts that each of these quantities is conserved along a trajectory.
Observe that each first integral allows us to eliminate one state variable and hence
one degree of freedom.

Our next example shows that capacitor-only cut sets and inductor-only loops are
not the only situations of practical interest which give rise to an invariant affine
submanifold. |
Example 3. Consider the circuit of Fig. 9(a), where NR contains only memoryless

elements and the 2-port is an n:1 ratio ideal transformer. Clearly, then

i.=ni

2 1

and hence
q, - n q, = constant.

Theorem 5. Let the dynamics qfw(lldpe described in terms of x = (g, ¢). Letg}U

contain elements such that

EN
Pl =0
| &5 |
o
|| =0
| 7r |

where F and g are matrices.
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Then each trajectory is constrained to lie on an invariant affine submanifold

ﬂ, which depends on the initial state, such that
o T ,\L
dim M = dim(Ker[1 -§SC]) N Ker F
R
+ dim(Rer[1 BLP]) N Ker H .

Remark. The following example shows that one cannot generalize the above situation

by constraining capacitor charges and inductor fluxes to nonlinear submanifolds.

Example 4.

Consider the circuit of Fig. 9(b), where N0 is characterized by

ia = h(ib)

and h(:) is a nonlinear function. Then
t
qa(t) = qa(O) +](; h(:l.b(t))dt

and there is no obvious way of defining a nonlinear submanifold f(qa, qb) = 0.
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5. Nonautonomous Networks

Some of the results obtained in the previous sections do not depend crucially on
the time-invariance of the dynamics. In this section we will show how the results
are carried over to nonautonomous networks.

Consider the nonautonomous network.LAJdescribed by

24

= £(x,u(t)) (107)

i.e., the time-varying property comes only from independent sources. Recalling the
proof of Lemma 2 we see that the afflne submanifold M* does not depend on the fact
that u is constant. Since (x,t) €ER netept , we have the following result:
Theorem 6. Assume the state equation (107) exists with x = (q,¢) as the state variables,
where q and ¢ denote the "generalized charge" and "generalized flux" vectors, respec-
tively. Ifn:ﬁcand EL be the number of capacitor-only cut sets and inductor-only
loops, respectively. Then
noinptl

(1) there is an affine submanifold M*(xo,t ) CR which is parametrized by the

initial state (xo,t ) such that the trajectory (x(t, to,x ),t) € M* for all t.

(ii) M* is of dimension (n +nL+1) and is of the form M* = M* x R, where M* is an

(n +nL)—d1menslona1 affine submanifold of R c+nL. n
Y ncinp+Hl neing,
If we project everything from R onto R , then all the arguments of

the previous sections are valid except that we need an appropriate concept of equi-
librium for (107).
nghoy,

Definition 3. A vector x €R is called an equilibrium for (107) if

£(x,u(t)) =0 for all t.

Definition 4. Let(JU be obtained as before and let v and i be the voltages and the

currents associated witthU Then a constant vector (v*,i*) is called an operating
point ofL)UR if it satisfies the Kirchoff laws and constitutive relations for all t.
Theorem 7. With the new definitions of equilibria and operating points, all the
netoy,

Remark. The class of networks having the properties defined in Definitions 3 and 4,

results of the previous sections hold on the projected space R

is nonempty. In particular, the variational equation y = %(y,u(t)), associated with
(1) in a neighborhood of a particular solution %(t,to,go),~wﬁe;e g(t) A x(t)

- %(t,to,§0), has an equilibrium point y = Q. In fact, since our nonlinear resistors
may be coupled each other, i.e., controlled sources are allowed, it is easy to con- :
struct many nontrivial networks belonging to this class.

J

6. Eventual Passivity on M*

Eventual passivity plays important roles in electrical networks [6], [12-14].
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A sufficient condition which can be used to guarantee eventual passivity is given by

the Fundamental Topological Hypothesis: There are no cut sets and no loops consist-
ing only of capacitors and inductors.

Observe that this hypothesis excludes, among other things, capacitor-only
loops and cut sets, as well as inductor-only loops and cut sets. In this section,
we will show that this condition can be relaxed to allow capacitor-only cut sets and
inductor-only loops. The following definition is needed to state our relaxed topo;
logical hypothesis (Condition B).

Definition 5. A tree containing a minimum number of capacitors is called a C-minimal

tree. A cotree containing a minimum number of inductors is called an L-minimal co-
tree. '
Condition B

(i) there is a C-minimal tree containing no inductors.
(ii) there is an L-minimal cotree containing no capacitors.
Remark. Condition B allows capacitor-only cut sets and inductor-only loops although
it does not allow L-C cut sets and loops. Condition (i) is equivalent to (115)—(117),
while condition (ii) is equivalent to (122)-(124). See APPENDIX 2 for examples of (1)
and (ii) above.

In this section we consider nonautonomous network LA‘described by (107). In
order to avoid introducing complicated notations, however, we assume that independent
sources are imbedded within the constitutive relatioms of the nonlinear resistors.
Hence ARG in (16) depends on u = (yv, gI).

Defin;tion 6. The collection of all resistor constitutive relations ARG is said to

be eventually passive if there is a kRG > 0 such that

implies
T . T |
vr Ir + Ve i >0 (109)

uniformly with respect to u. It is said to be eventually strictly passive if the

strict inequality in (109) holds.

Next, let N be the composite n-port (representing the interconnected resistors)
seen by the capacitors and inductors [13], and let Yp and }p be its port voltages and
currents respectively.

Definition 7. N is said to be eventually passive if there is a kp > 0 such that

f i )l 11
(Yp, }p) _>_kp (110)
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implies

vT i >0 (111)
~p ~p —
uniformly with respect to u. It is said to be eventually strictly passive if the

strict inequality in (111) holds.
Although the constitutive relation ARG of most practical nonlinear resistors are

eventually strictly passive, it does not necessarily imply that the interconnected
n-port N is also eventually strictly passive. AAsufficient condition for guarantee-
ing this closure property is given by the Fundamental Topological Hypothesis, which
we will now relax. '
Theorem 8. Let(;&[ﬁe a nonautonomous network described by (107), where independent
sources are imbedded within ARG' Let M* be as defined in Section 4. Assume

the following:

1) Ape 1s eventually strictly passive.
(i1) Condition B.
(iii) Ao and A are described by

9 = £(v) and ¢; = g(i;)
respectively, where f and g are uniformly increasing.
(iv) State equation exists with x = (gc,?L) as the state variables.

Then every solution g(t) is eventually uniformly bounded [11l] on M*, i.e., there is
a bounded set K C M* such that x(t) € K for all sufficiently large t. (See Fig. 10)

Proof. Let E(g) be the energy stored in the memory elements. Then it follows from

Tellegen's theorem that

dE(x(t))
dt
We claim that in order to prove the theorem it suffices to prove that

= ~(va(0) 1) + va(®) 1,(®). (112)

F(ggs 90 > =, (qq, ¢;) €M (113)
implies °
Uvgs Voo g 31 + ' | (14)

In order to see this recall that the eventual strict passivity of ARG is uniform
with respect to u. Hence, if (113) implies (114), then the right hand side of (112)
is strictly negative outside a bounded set and hence the energy must keep decreasing

outside some bounded set K. The above condition is equivalent to saying that N is
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N

eventually strictly passive on the set (£, g)—l(M*), i.e.,
. . -1

eyg, i+ =, (yos 1)) € (£, g) ~(M%)

implies

“(YR’ YG’ 1-R9 EG)“ > @

Pick a C-minimal tree containing no inductors. Then KVL and KCL assume the

following special structures:5

1 0 0] By 0 | g | (115)

0 1 0ib 0 || ¥ |0 16)

_9 0 }:ECG }fcg §GU (117)
. e

B Be B 1o | he 1)

0 9 '@gc E ¢ 1 __i_QiC__ =0 (119)
Lo

where R and G denote resistors, C and L denote capacitors and inductors, respectively,
&L and J denote cotree and tree, respectively.

Pick an L-minimal cotree containing no capacitors. Then KVL and KCL assume the

following special structures:

v
| — - - -
1 01 By Bre Ege % 2 (120)
i = - -~
0 %: B, 9 0 Vi (121)
pZeks
¥cy

5'1‘0 distinguish the variables associated with the two trees, we attached a "+" to
all variables associated with the C-minimal tree, and a "-" to all variables
associated with the L~minimal cotree.
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— 1 —1 j'-Rx T
-T =T | -
-§RL -gLL : 100 _%93;_ =0 (122)
=T " = -
“Bpe ¢ : 010 g (123)
=T -
E]}Rc 0 : 0 0 :.I:_ 3‘(;3 (124)
Lica
where the notations have similar meanings as before. It follows from (119) and (121)
that
-85, 11g. =0 (125)
2cc 1% " %o
(1 Byl ep=2% (126)

where §0 and §0 depend only on x(0). Since M* does not depend on a particular choice

of a tree, M* of (59) must also be given by
6$'+ Ker[-ﬁgc 1]
M* = :_'_ ~ _ ~ (127)
?0 + Ker[1 QLL]
L 'l.e 4 .l
Bg 1)™ and &, (Rer[l B, 1.

In order to prove that (113) implies (114), we will first prove that

where gé'e (Ker[--ﬁT

~ AT

lgol » =, g € 0 + Ker[-By; 1) (128)
implies

“YGU | » o (129)
Recall (125) and (117):

AT = & '

[Bee 3139~ % (125")

- _ 3 N '

[1 Beel £7(9) = ~Bee Yog (117%)

It follows from a similar argument as that of the previous section that

T
[-B 1] q
~cc -7 ~C (130)

~

T | 70 T
_ [1 Bg.l £ 7(qp)

~

is a global diffeomorphism. Hence "30“ + o implies HE]kqC)ﬂ + o [15]. Now, if (128) -

~

holds, then the first component of Qgr(gc) is always constant for a fixed géi Hence

Iy Beed £ gl > = - (131)
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This and (117') imply that
“YG'J |+ o . (132)

Similarly, the dual analysis shows that

e gl B
lo 1~ = ¢ € g+ Rerll By )
implies
“iRJL" > (133)
Thus (132) and (133) prove that (113) implies (114). n

6. Concluding Remarks

Some of the implications of capacitor-only cut sets and inductor-only loops were
discussed. Firstly, supposing that the resistive subnetworkg)URG has only isolated
operating points, we showed that the network(Jk‘has only isolated equilibrié if, and
only if, there are no capacitor-only cut sets and no inductor-only loops. Hence, if
this condition is violated, there are a continuum of equilibria even if the operating
point is unique. Secondly, we showed that if there are capacitor-only cut sets and/
or inductor-only loops, then there is an invariant affine submanifold M* on which any
trajectory originating from it must remain on it for all times. In this sense, M*
can be thought of as the minimal state space for the network. The dimension of M*
is the number of the state variables minus the number of linggg}?;}gdependent
capacitor-only cut sets and inductor-only loops. This number turns out, in the
linear case, to be the same as the degrees of freedom in the sense of Bers. We also
showed that the intersection of M* with the set of equilibria consists only of
isolated points. Hence, the network behaves as if it has only isolated equilibria.
In Section 6, the result was applied to eventually passive networks. Transversality
theory for manifolds and functions has provided us with a powerful tool for the

proof of these results.
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APPENDIX 1
We will state and prove two facts needed in the proof of the theorems.

Fact D. Let P be an nxn positive definite matrix and let B be an (n-m)xm matrix,

n>m. Then the nxn matrix

L Bl

T

w
-3~ 1IP

=

is nonsingular, where } is the identity matrix of dimension (n-m).

Proof. Let x = (gl, ;52), X G]Rn-m, X, €R®., We will show that Wx =0 implies

x=0. Let

(1 B] 5l .
T - Q
(-B 112 [ %
Then
-8
-3 12| |x, =0
1
L-.
But P is positive definite implies
-3
3" 1p|°
1

is positive definite. Hence X, = 0 and X = —§§2 = 0, "
Fact E. Let A and B be linear maps with domain R%. Then
dim A(Ker B) = dim Ker B - dim(Ker B N Ker A)
Proof. For any linear map T : X - Y, we have the relation [9]

dim(InT) + dim(Rer T) = dim X
where X and Y are finite dimensional linear spaces. If we choose X = Ker B, T = Alx,
and Y = A(Ker B), then InT = A(Ker B) and Ker T = (Ker B) N (Ker A). The above

relationship then follows trivially. ]

APPENDIX 2
We will give an example which illustrates the validity of (54) and (58).
Consider the network of Fig. 11(a). Choose the bold branches as the C-normal

tree TC and choose the branches along the dotted path as the L-normal tree T.. Re-
N L 5

label the capacitor branches such that capacitors belonging to both TC and TL are

labelled first. Relabel the inductor branches such that inductors belonging to both
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* *
T, and TL are labelled first. Under this labelling convention, we have

C
TC = {cl, Cz’ c3, L3} and 'I‘L = {cl, Rl, L2, L3}. Then

(e 1% )= G Voo Vo3l Vo
WegiYee) = el Vorr Vo Ve
so that (54) holds. Similarly
(4, 1ip ) = Gy 101 i13)
(Upgitny) = Upl ipipy)
and hence (58) holds.

We will next give an example illustrating Condition B. Consider the network of

Fig. 11(b). TCmin é:{Cl, Rl’ R2, R3} is a C-minimal tree containing no inductors

%
and T, A {LZ’ R
min

APPENDIX 3

1’ R2’ R3} is an L-minimal cotree containing no capacitors.

To prove the necessity part of (1) of Theorem 2, suppose there are capacitor-
only cut sets. We will show that the set defined by (48) has a continuum of points.
To this end define the following orthogonal projection map:

. _al 1
T 3 MC-+ (Ker[l §44]) (A.1)
where

cr e L
M= T eT, (ut+ Ker(B,, 1D

Let
L T
y € MC'W (g~ + Ker[} -§44]).

It follows then from condition (iii-b) and (21) that:
n +n

L _al =r C S A.2

TyM +T¥ (g + Ker[1 1344]) R . (A.2)

-~

C

This implies that the projection of the tangent space must £ill up the orthogonal

complement:
= L _pY L
@ g - (1,0t vorts ELeD)

But since the tangent space of a translated linear subspace is identified with the
subspace itself, we have:

(r,a* + exll  -BpD) = ®erl -E D (4.4)

Substituting (A.3) into (A.4), we obtain
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T .l
(gg)z (TZMC) = (Rer{l -B,, 1) (A.5)

Now note that

dim TYMC = dim Mc = nC.‘?’ (A.6)
On the other hand
dim Ker([l ~44] = Doy
so that
T .1
dim(Ker [1 ~44]) = oy (A.7)
By (A.6) and (A.7) we have
' T .4
dim Tth = dim(Ker[l —344]) . (A.8)

It follows from (A.5) and (A.8) that (gg)Y is nonsingular. Hence 7 is a local
diffeomorphism at y. If there is at least one capacitor-only cut set, then

Moy 2 > 1, and hence Mt 4 T Mb has a continuum of points because a local diffeomor-
phism maps an open neighborhood onto an open neighborhood. By (74), we see that

T .4

C -
yMC_ (Ker[1 §SC])

Since the matrix [1 -B ] maps (Ker[1l -BgclyL onto its image space injectively,
we see that (49) has a continuum of points and hence (48) has a continuum of points.

A similar argument holds for inductor-only loops. R
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LIST OF FIGURE CAPTIONS

A continuum of equilibrium points M intersecting an affine

submanifold M* at isolated points.

A simple circuit containing a capacitor-only cut set made up

of Cl and CZ'

The capacitor-only cut set in Fig. 2 gives rise to a line of

equilibrium points ;AA. The minimal state space * is a

straight line (affine submanifold) which intersectSQJtlar only

one point.

A networkg)U containing a capacitor-only cut set joining two

subnetworks “JUI and L)U2° Replacing the capacitors by open

circuits at equilibrium, we obtain A/ RG LNlRG un 9RG"

A sequence of equivalent circuits used in proving Theorem 1.

A circuit containing a nonlinear inductor:

(a) inductor is characterized by Josephson-Junction characteristic

(b) inductor is characterized by ¢L-iL curve which overlaps
a portion of the ¢L-axis.

Transversality of surfaces and functions:

(a) X and Y are transversal

(b) X and Y are not transversal

(¢) X and Y are transversal

(d) F is transversal to the yl-axis.

A geometrical interpretation of M, and MC.

C
(a) An ideal-transformer circuit which also gives rise to an
invariant affine submanifold.

(b) A "nonlinear" transformer circuit does not give rise to a

nonlinear submanifold.



Fig. 10.

Fig. 11.

A geometrical interpretation of the motion of trajectories
along the minimal state space M* which converge toward the
compact set K C M*,

An illustration of a C-normal tree TC’ an L-normal tree TL’

*
a C~-minimal tree T and an L-minimal cotree T .
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