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ABSTRACT

Simple group-theoretic concepts are used to develop a rigorous and comprehen

sive theory of symmetry for nonlinear multiport and multiterminal resistors which

do not rely on geometrical arguments or other ad hoc techniques normally invoked

in such studies. This theory unifies all forms of symmetry, including rotation,

reflection, and complementary symmetry, into a single framework. It also includes

all known nonlinear symmetry principles as special cases. Moreover, a general

method for identifying all symmetry characteristics possessed by a nonlinear

multiport and multiterminal element is given.

The main results of this paper are:

(1) Several algorithms for synthesizing a nonlinear multiport or multiterminal

element having any prescribed form of symmetry are presented. In particular,

various examples are given which illustrate how these algorithms can be used to

derive well-known symmetrical nonlinear circuit modules such as push-pull amplifiers,

complementary-symmetric amplifiers, rectifiers, modulators, etc.

(2) A reduction algorithm is presented which allows a complicated symmetric

element to be analyzed by a much simpler reduced element.

(3) A general principle is derived for applying symmetry to achieve frequency

separation in nonlinear communication circuits where the even harmonic components

are separated from the odd harmonic components.
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Year as a Miller Research Professor. The second author was initially supported by
a NATO grant.

Department of Electrical Engineering and Computer Sciences and the Electronics
Research Laboratory, University of California, Berkeley, CA 94720. J. Vandewalle
is presently on leave from the Katholieke Universiteit Leuven, Belgium on a Rotary
Foundation Fellowship.
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I. INTRODUCTION

Many useful results [1-7] have been obtained for symmetric linear circuits.

Most of these results rely on the superposition principle and are therefore not

valid for nonlinear circuits. The absence of analogous nonlinear results, however,

has not prevented engineers from designing symmetric nonlinear circuits — such as

push-pull amplifiers, parametric amplifiers, rectifiers, modulators, detectors, etc.,,

— using intuition and other ad hoc techniques [8]. In fact, a new form of symmetry

having no counterpart in linear circuits has been used extensively in the design -,

of complementary symmetric circuits composed of complementary symmetric elements,

such as npn and pnp transistors, n-channel and p-channel FETfs, etc. The need for

developing a unified theory for nonlinear circuits has been recognized for some

time. Two interesting contributions have appeared recently [9-10]. The concept

of complementary symmetry for resistive nonlinear networks was formally defined

in [9] and shown to be rather useful. Some general results and symmetrical dynamic

nonlinear networks have been obtained in [10] using a group-theoretic approach.

However, nothing of a unified nature is presently available. Our objective in this

paper is to develop such a theory for resistive multiport and multiterminal

elements. This theory will be generalized for resistive nonlinear networks in

another paper [11].

To motivate the need for a unified theory, let us review some well-known

results derived by ad hoc techniques. A multiport or multiterminal resistor R

is said to be symmetric with respect to an "axis of symmetry" a if it remains

geometrically and electrically invariant upon a rotation of 8 degrees about a.

If a lies on the plane of R and 0 = 180°, then R is said to exhibit reflection

symmetry. If d is a line perpendicular to the plane of R, then R is said to

exhibit 0-degree rotational symmetry. A multiport or multiterminal resistor R

characterized by f(v,i) = 0 is said to be complementary symmetric if f(v,i) = 0

° J(-v,-i) = 0* For example* tne 2-port resistor R shown in Fig. 1(a) exhibits

reflection symmetry, the 3-terminal resistor K shown in Fig. 1(b) exhibits

120"-rotational symmetry, and the dc circuit model of the OP AMP shown in

Fig. 1(c) exhibits complementary symmetry. Observe that the OP AMP can be con

sidered either as a grounded 3-port resistor, or as a 4-terminal resistor. The

following three propositions are among the few general symmetry results on non

linear networks which have been derived by ad hoc techniques:

Proposition 1 [8]. The driving-point plot across two identical nonlinear resistors

connected back-to-back in series (see Fig. 2(a)), or back-to-front in parallel
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(see Fig. 2(b)) is always odd symmetric.

Proposition 2. Consider the basic nonlinear "bridge" 2-port resistor R shown in

Fig. 3. Suppose R is voltage-controlled; i.e., each pair of applied voltages v-

and v« gives rise to a unique pair of currents i- and i«. If v., has no even

harmonics (dc, 2-nd harmonic,..., etc.), and v? has no odd harmonics (fundamental,

3-rd harmonic,..., etc.) then also i. has no even harmonics and i« has no odd

harmonics.

Proposition 3 [9]. The driving-point and transfer characteristic plots of any

network containing complementary symmetric resistors are odd symmetric.

Propositions 1, 2, and 3 are derived in [8,9,12] by redrawing the network into

various geometrical configurations, corresponding to various point transformations,

and then showing that certain invariance is achieved. This ad hoc technique is

not satisfactory because it depends on being able to draw a network in a particular

way so that it "looks" symmetrical to the eyes of the beholder. This "inspection"

technique is useful only for simple networks exhibiting simple types of symmetries.

However, as we will see shortly, it is possible for an n-port resistor to exhibit

up to 2nn! distinct forms of symmetry, many of them are in fact so subtle that they

could not be detected by inspection. Moreover, symmetry is an intrinsic property of

an element or network and should not depend on how it is drawn geometrically. Our

objective therefore is to develop a unified theory of symmetry which depends only on

algebraic techniques. Among other things, such a theory should systematically

detect, say using a computer, all forms of symmetry possessed by an element or

network. It should be completely general in the sense that all known symmetry

results and circuits can be derived as special cases. For example, we will show

how various symmetrical configurations such as push-pull amplifiers, complementary

symmetric amplifiers, nonlinear bridges, etc., can be systematically generated,
even though the original circuits must have been discovered with great insights.

The mathematical tools needed to develop this theory are presented in section II

They are not deep and in fact represent only simple extensions of well-known
results on permutations, permutation matrices and groups as described in standard
textbooks such as [13]. The key notion is the directed permutation of a set of
objects having orientations. The fundamental technique used throughout this paper
involves the decomposition of a directed permutation into cyclic components.

^"This proposition is a rigorous reformulation of some observations given by
Penfield [12],
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In section III general definitions and properties of -rr-permuted and 7r-symmetric

multiport resistors are given. They include all known types of symmetry as special

cases. An algorithm for detecting all symmetries possessed by a multiport resistor

is given in Appendix A. The main result in this section consists of a general

algorithm for synthesizing multiports having any prescribed form of symmetry.

Many symmetrical circuit configurations can be generated using this approach.

Multiterminal resistors can be handled in almost the same way as multiport

resistors. In section IV, we investigate the basic differences and present several

useful applications.

In section V two types of applications are obtained concerning the response of

symmetric multiport and multiterminal resistors under certain excitations. First,

symmetry is used to reduce the computations involved in the analysis of symmetric

multiport and multiterminal resistors under symmetric excitations. Next, the

concept of a "time-shifted" symmetric excitation is used to derive various inter

esting symmetry properties of the response waveforms. The use of symmetry for

frequency separation turns out to be a natural consequence of these properties.

II. RELEVANT MATHEMATICAL CONCEPTS AND METHODS

Our objective in this section is to present the mathematical tools necessary

for developing a unified theory of symmetry for nonlinear circuits, which do not

involve any "visual" inspection of the network topology. Most of these results

represent straightforward generalizations and applications of well-known concepts

from group theory — which are concerned with "unoriented" objects — to allow

objects having orientations. In particular, each directed object, by definition,

can assume one of two distinct orientations. We define the complement "x" of a

directed object "x" to be the same object having the opposite orientation.

2
Definition 1. A directed permutation it of a set of n (finite) directed objects

(also called oriented objects) is a transformation obtained by first permuting

these objects and then complementing some of them. (Note the order of these

operations.) In particular, suppose object i is transformed into object if and

object j is transformed into the complement of object j1, then we will denote

this transformation by it =/"'' i *'* ** *" *\ ,where the "bar" above j' denotes
its complement. \... i*... j'...

Except for the identity permutation I, we will denote "directed permutations"
by lower case Greek letters.
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Since it is a one-to-one onto function, we can write i1 = ir(i) and j1 = 7r(j) .

Observe that the sequence of the numbers in the upper row need not be consecutive
(123\ /3 1 2\
13 2/ and I2 I 3/are identical•The

composition of two directed permutations it and a is the directed permutation
3

obtained by performing first a and then ir, and will be denoted by ttoo* • The

inverse directed permutation, denoted by tt , of a directed permutation

^=/... i... j...\ ±s defined b -1 /... i1... y-"). observe that

tt o ir = ir o tt-1 = I, where 1=1, 0 "" /is the identity permutation. If a
\1 L ... n/

directed permutation tt has a smallest positive integer %^ 0 such that

ir «/rr o tt ... o tt = I, then %is called the order of it. The complemented

I times

permutation, denoted by ir, of a directed permutation it = I'" ±i[\\ "xi'/m])

is defined by it =["' i, *".,"" ). Observe that ir oo =ir oo and tt = tt.

Proposition 4. The set P of all directed permutations of n directed objects

forms a finite group (with "composition" as binary operation) containing 2 n!

elements.

Proof: There are 2nn! directed permutations because we can permute n objects and

reverse the orientation of each object by complementation. The composition of any

two directed permutations it, and tt. is a directed permutation. The composition is

associative and ir • I a I • ir = ir for all tt. Moreover, given any directed
-1 -1

permutation ir, there exists a directed permutation ir such that tt « n =
-1 n

TT o TT =1.

Corollary. Any directed permutation on n symbols has a finite order fe.

Proof: This follows from the closure property of P . h

Definition 2. Given a directed permutation tt on n objects ^-y9^!9'' #,in' we
call it a cyclic directed permutation if for some object i., we have the properties

TTk(i.) £ i and irk(i.) t i ,whenever 0 <k <n. Moreover, if Trn(i.) = i. for
3 3 J J j j

some i., then tt is called a cyclic directed permutation of normal-order, and if

7rn(i ) = i for some i., then it is called a cyclic directed permutation of double-

30ur notation differs from that adopted in several textbooks on algebra [13,14J
where the so-called natural order (which is opposite to ours) is used.
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order*

The reason for choosing these terminologies will soon be obvious. Let us

consider some examples first: The directed permutation it = j _ _J is not cyclic,

2 -
because tt (1) » ir(3) =1, 2 < n, and tt(2) = 2, :

following two directed permutations are cyclic:

\3 2 1/
2 -

because tt (1) » ir(3) =1, 2 < n, and tt(2) =2, 1 < n. On the other hand the

(1 2 3 4 5\ /l 2 3 4 5\

x U 5 2 3 1/ \4 5 2 3 1/

The first is of normal-order since tt- (1) =1, while the second is of double-order
5 x

since tt«(1) = 1. Let us rearrange the columns of tt- and ir. to emphasize its

cyclic nature:

*1=(14325V *2 =(14325,1± \4 3 2 5 1/ \4 3 2 5 1/

From this we may infer that in the case of normal-order cycles, a repeated appli

cation of tt on any object i. does not return to i. until all objects have been

exhausted. In contrast to this, in the case of double-order cycles, a repeated

application of tt on i. always gives i. after n iterations. This observation

may be visualized by displaying along a circle the objects, that are obtained

by repeated application of ir on the object 1, as shown in Figs. 4(a) and (b),

respectively. In general we have the following property.

Proposition 5. (a) Given any cyclic directed permutation tt on n objects

il*^2' ••*»*• »then for any m=l,2,...,n, we have the properties ^(i )^i
and ir*(i ) ?fe i , whenever 0 < k < n. (b) Moreover, tt is either of normal-order

mm

or of double-order. If ir is of normal-order, then irn(i ) = i for any m, and
m m "•

consequently tt is of order n. If tt is of double-order, then Trn(i ) = i for
m m

any m, and consequently tt is of order 2n.

Proof: (a) In order to prove part (a) we first show that relative to the

object i. inferred to in Def. 2, the elements of the associated sequence
3 n—1

S = (i ,Tr(i.),.. .,tt (i.)} do not duplicate themselves, i.e., for any m, either

i or i appears in the sequence S. Since there are precisely n elements in S,

it suffices to show that it is impossible for i or i to appear more than once,

or for both i and i to appear jointly in S. This can be shown by contradiction.

For example, suppose that i and i belong to S, then there exist a k- and k2
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kl„ ,t k2such that i = tt (i.) and i = tt (i.), with 0 < k- < n, 0 < k0 < n. It follows
m 1 m. 1 i. £.

kl ^2 - kl~k2 - I.that tt (i.) = tt (i.) or tt' (i )=i with 0< \\-^ < n# But this
clearly contradicts Def. 2. In order to show (a), let us show that it is

k k -
impossible to find a k such that tt (i ) = i or tt (i ) = i where 0 < k < n.

* m m m m

Consider, for example, tt (i ) = i , then since i or I appears once in the
* ki m m i,+k m ki m ksequence S, say i =tt (i.), then tt *(! )= ir 1(i.) or * (i^) =i^ for

0 < k < n. This contradicts Def. 2.

(b) Let us show first that the element Trn(i ) is either i. or i . Suppose the
contrary that this element is another object, say, ±m or im (m£j). Since im or
i appears in S as tt(i.) for some k with 0 < k < n, we have Tr (i ) = tt (i )
m« j nk _JJ
or irn(i )« tt (i,). This implies that tt " (1.) = i. or i^, which contradicts
Def. 2. Next, let us show that Trn(i.) = i. implies ^(i ) = i for all
m=1,2, ...,n. Since for any im there is ak such that either tt (i^) = iffl or im
where 0<k<n, we have Tr"k+n(im) =^"k(im) or AiJ =im- ^±s implies that
the order of tt is equal to n. Analogously it can be proven that tt (i_.) = i^ implies
Trn(i ) = i for m = l,2,...,n, and that the order of tt is 2n. a

m m

It follows from Prop. 5 that any cyclic directed permutation of normal-order

may be denoted unambiguously by the cyclic notation (k^...^), where k^+1 =^(k^),
j = l,2,...,n-l, and k- = *(k ). ^Y cyclic permutation of double-order is then
denoted by (^^...kj^kj. ..kn) where kj+1 =Tr(k..), j=l,2,...,n-l and kx =7r(kn).
Observe that there may exist several distinct but equivalent cyclic notations.

For example, we can denote our preceding examples t^ and t^ as follows:

tt = (1 4 3 2 5) = (4 3 2 5 1) = (3 2 5 I 4) - ... etc.

tt =(143251432 5) = (4 32514325 1) = (3 251432514)
— ... ecc *

To simplify our subsequent discussion, we will henceforth assume that the first
element in our cyclic notation is not complemented. There is no loss of generality
in this assumption since we can always complement every element if necessary. For

example, (4 3 2 5 1) - (4 3 2 5 1).
Observe that every cyclic permutation tt which involves no complementation of

its elements has normal-order. In this case, our definition of cyclic permutation
reduces to the conventional definition for non-oriented permutations. The
importance of "cyclic directed permutations" in our study of circuit symmetry is

-7-



due to the following basic theorem, which is a generalization of a classic result

from group theory [13,14]:

Theorem 1. Every directed permutation can be decomposed uniquely into a collection
of cyclic directed permutations operating on disjoint (mutually exclusive) sets

of objects.

Proof: Let tt be a directed permutation on a finite number n of objects. Choose

any object from 1 to n and call it ny Applying the directed permutation tt once,
we obtain m2 »tt^),where m2 is chosen from the n objects followed possibly by
a complementation. By repeating this process we obtain m^n^m^,... where
m. . = ir(m ). Since there can be at most 2n distinct oriented objects some of

the first 2n+l elements in the sequence {m^rn^ ... »m2n+i» •••* must be e<lual to
each other. Let m and m with 0< i< j< 2n+l be two equal elements of this

sequence such that m, ^ m for all k such that i < k < j. Since tt has a unique

inverse, iT^m.) = iT^m.) and hence m -=m. ,. Repeating this operation (i-1)
i 3 l—J. 3 •*•

times we obtain m . = m-. Thus the effect of tt on {m1,m2,...,m } constitutes
a cyclic directed permutation. Let us delete the objects associated with

{m-.m^,...^. } from the set of n objects. Observe that there are j-i such
deleted objects in the case of a normal-order cyclic directed permutation, and

(j-i)/2 in the case of a double-order cyclic directed permutation. Repeating the

above algorithm on the remaining objects, we obtain another cyclic directed

permutation. An iteration of this algorithm must terminate since n is finite.

Hence we have succeeded in decomposing the "n" objects into a unique collection

of mutually exclusive sets such that tt is a cyclic directed permutation on each

set.

The resulting cyclic directed permutations are called the cyclic components

of tt and the collection of these cyclic directed permutations are said to be a

decomposition of tt into cyclic components. We denote it by

(i)

where (i£J)... ±^) and (if} ... ±<£)i<*}... i££))denote anormal-order and
a double-order cyclic component, respectively.
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Example. Let us decompose tt =[ ] into cyclic components:
\4 2751863 9/

Starting with 1 we obtain the cycle (14 5). Choosing next the element 2 we

obtain the cycle (22). Choosing next the element 3, we obtain the cycle

(37683768). Choosing next the element 9, we obtain the cycle (9). This

exhausts all elements. Hence tt is decomposed into 4 cyclic components. The

cyclic decomposition of tt is then: tt = (1 4 5) (2 2) (3 7 6 8 3 7 6 8) (9) . This

basic technique is simple and will be used frequently in the following sections to

derive many symmetry properties in nonlinear circuits.

Corollary. The order A of a directed permutation tt is the least common multiple of

the orders of its cyclic components.

ki
Proof: Let k. be the order of the i-th cyclic component, then ir (j) = j and

tt (j) ^ j» 0 < m < k. for any object j of the i-th cycle. Thus the least common
1 k

multiple of the k 's is the smallest integer k such that tt (j) = j for all objects

J- o

Under certain operations many aspects of the decomposition (1) of a directed

permutation tt are preserved. A useful operation is the similarity transformation

X ° tt © x where x is an arbitrary directed permutation.

Proposition 6. Let (1) be the decomposition of tt into cyclic components, then for

any arbitrary directed permutation x> the decomposition of x ° tt « x into cyclic

components is given by:

x*...x- (...l-fx-OT-x-1^))-

(2)

Proof: Consider first the j-th normal-order cyclic component (i. ... i j.
n3

Then i£j| =tt (i5j)) , k<n. and i£j) =ttMJ)). This implies that x"1 (i^i) =
3 IV.

X_1 •tt ox(x'V^)) ,k<n. and x_1 (i<j)) =x"1 °tt ox(x'V^))• From
these relations we obtain the j-th normal-order cyclic component in (2). A

similar derivation applies to the double-order cyclic components in (2).
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A particular choice of x yields the following interesting result:

Corollary 1. Let x be the following directed permutation which transforms the

set of integers {12 ... n} into the elements of the cyclic decomposition (1) of tt:

(1) (1) (m)

x =I 1 2 3 \ <3>
* V ,(1) .CD ,(m)

xi H ••• j
m

m; = i +
3

where k. = j + yjn., then

1 i=1

tt ox=(l2 ...)... (l +£ *m ... £ nm)...
x ' v m=l m=l

/ £-1 I l-l I \ / \

[1 + S n •••52n l+Sn ••• E n )...(... J

(4)

Applying this corollary to the preceding directed permutation

tt = (1 4 5)(2 2)(3 7 6 8 3 7 6 8)(9), we obtain

/l 2345678 9\X = ( ] and
71 \1 4523768 9/

x"1 o tt o x = (1 2 3) (4 4) (5 6 7 8 5 6 7 8) (9) = / ! 2 3 4 5 6 7 ^ 9\
77 * \2 3146785 9/

Observe that the entries in each normal-order cyclic component in (4) are

just integers arranged in an increasing consecutive order. A similar observation

applies also to double-order cyclic components, except that the entries are followed

by their complements to produce twice as many entries. The action of the composition

X ° tt © x in (4) is simply to reorder the columns of the permutation tt so that

the entries in the resulting cyclic components are arranged in a consecutive order.

For reasons that will be obvious soon, two directed permutations tt and o

having (1) and (2) as their cyclic decomposition will henceforth be called similar.

Corollary 2. For any two similar directed permutations tt and a, there exists a

directed permutation \\i such that \\i o tt o tJ> = a.

Proof: Choose y of (2) for Ui.
n

Our next objective is to show that there is a one-to-one relationship

between the group of directed permutations and a set of associated matrices.

-10-
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This property will be used to derive a number of useful symmetry results.

Definition 3. A directed permutation matrix is a square matrix whose entries are

all zero except one entry in each column and one in each row, which is +1 or -1.

A one-to-one relationship between a "directed permutation" tt and a "directed

permutation matrix" P(tt) can be established as follows:

TT =
<=> P(tt) =

... \J ... x

• *

... -L ... U

j'

if

(5)

This nxn matrix P(tt) transforms an nxl vector x into an nxl vector P(tt)x in

accordance with the following rules: The i-th component of x is the i'-th

component of P(tt)x, and the j-th component of x is minus the j'-th component of

P(tt)x. Observe that if a directed permutation tt does not involve any complementa

tion of its objects, the associated matrix P(tt) reduces to the conventional

permutation matrix with +1 as its only non-zero entries.

(1 2 3\_Jwe find

P(tt) =

-10 0

0 0-1

0 10

2. The "normal-order" cycle tt = (1 2 3) has the permutation matrix

J(tt)

3. The "double-order" cycle tt = (1 2 3I 2 3) has the directed permutation matrix

POO =

0 0 1

10 0

0 10

0 0-1

10 0

0 10

Proposition 7. The collection of all nxn directed permutation matrices form a

group (with matrix multiplication as binary operation) isomorphic to the group Pn
of directed permutations on "n" objects (with composition as binary operation).

Proof: The map defined in (5) is one-to-one. Furthermore it is easy to check

that POt^t^) = P(tt2)P(tt1). n
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Corollary 1. The collection of all nxn permutation matrices form under matrix

multiplication a group isomorphic to the group of all permutations on "n" objects

under the composition operation.

Corollary 2. Every directed permutation matrix is orthogonal; namely,

PT(tt)P(tt) = P(tt)PT(tt) = 1 ,

where 1 denotes the unit nxn matrix.
~n

Proof: It follows from Prop. 7that P(ifSfOO =P(tt" °tt) =P(I) =1.
Moreover the map defined in (5) implies that P(tt ) = P (tt) .

(6)

Corollary 3. Given any directed permutation ir and its associated directed

permutation matrix P(tt), there exists a directed permutation x^ and its associated
directed permutation matrix P(x ) such that

+1

1 0

P1(Xir)P(TT)P(Xir) -
r0 +1

.1 OJ

+1

is a block-diagonal matrix.

Proof: This is simply the matrix version of Cor. 1 of Prop. 6.

(7)

Observe that each cyclic component in tt gives rise to one and only one,

diagonal block in (7). In particular, a normal-order cyclic component gives

rise to a +1 in the upper right corner of the block, and a double-order cyclic

component gives rise to a -1. For example, corresponding to tt and x given

earlier (following Cor. 1 of Prop. 6), we have:

-12-



1 0

0 0

0 0

0 -1

0 0

0 0

0 -1

0 0

0

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0 -1

0 0

0 0

0 0 0

0 0 0

10 0

0 0 0

0 0 0

0 -1

1 0

0

0

0

0

0

0

0

0-10

0 0 1

0 0

0 0

0 0

0 0

0 0-10

0 0 0 1

r
000010000

0-10000000

000000010

-100000000

000-1000 0 0

000000-100

0 0 10 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

10 0 0

0 0 0 1

[-1]
0 -1

0 0

0 0

1 0

(8)

[1]

In section V we will need the eigenvectors of P(tt) associated with the
Teigenvalue +1. Since P(x ) is orthogonal, the matrices P (X^POOPCx^) and

P(tt) are similar. Hence, it suffices to investigate the eigenvectors of the

similar block-diagonal matrix given in (7).

Proposition 8. The i-th n.xn. submatrix of (7) has an eigenvalue +1 iff the

upper right-hand entry is +1. The corresponding unique (apart from a scaling

constant) eigenvector is given by [1 1 ... 1] .

Proof: The eigenvectors of the n.xn. submatrix
r

+1 are the solutions

'I 0

n
i -rof the polynomial equation A ^ + 1 = 0. Hence X = 1 is a solution iff the

upper right-hand entry is +1. Consequently, the eigenvector associated with
TA = 1 is given by x = ^ *2 ... xn ] ,where ^ = x2 = .

x= k[l 1 ... 1]T.

= x = k. Hence,

Corollary. The directed permutation matrix P(tt) has an eigenvalue +1 iff tt
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has a cycle of normal-order.

Proof: This corollary follows directly from Cor. 3 of Prop. 7 and Prop. 8. n

It follows from this corollary that the eigenvectors associated with the

eigenvalue +1 are related to the cyclic components of normal-order. To derive

this relationship, we will define first an nxm matrix S(tt) associated with the

collection of all m cyclic components of normal-order, and then show that the

eigenvectors associated with the eigenvalue +1 are linear combinations of

columns of S(tt) .

Definition 4. Let the directed permutation tt have in its decomposition "m"

cyclic components of normal-order: ij L ... i J.•. (i- i2 ... i ).
1 m

The matrix S(tt) is an nxm matrix, whose k-th column is derived from the k-th

cyclic component (i5 *2 ** /in accordance with the following rule: If
(k)

i; is not complemented, place a +1 in the i-th row. Otherwise, place a -1.

Repeat for j == 1,2,...,il. Set all other entries in column k equal to zero.

Example. Consider once again the directed permutation tt = (1 4 5) (2 2) •

(3 7 6 8 3 7 6 8)(9). The normal-order cyclic components are (1 4 5) and (9).

.T

Hence n = 9, m = 2, and S(tt) =
1 0 0 -1 1 0 0 0 0

0 0 0 0 0 0 0 0 0
Observe that each

column of S(tt) can be derived from a cyclic component of normal-order by

inspection.

Proposition 9. Every eigenvector of P(tt) associated with eigenvalue +1 is a

unique linear combination of columns of S(tt), and vice versa.

Proof. Since P(x ) is orthogonal, P(tt)S(tt) = S(tt) can be rewritten in the form
••——•••"~~~ ~ TT ** "* **

[pT(x )P(tt)P(x )]pT(x )S(tt) «PT(x )S(tt). Hence it suffices to show that the
TT- ~.TTmTT~ ~ TT~

eigenvectors of P (x )P(tt)P(x ) associated with the eigenvalue +1 are unique
TT ~ ~ TT m

linear combinations of the columns of P (x )S(tt). By Cor. 3 of Prop. 7,
m TT ~

P (x )P(tt)P(x ) assumes the block-diagonal form (7). It follows from the
TT ~ - TT

definition of S(tt) and x that for each submatrix of (7) corresponding to a
** Tl m

cycle of normal-order, the block-diagonal matrix P (x )P(tt)P(x ) has a set of lfs
m ~ TT "" II

in P (x )S(tt); namely,
~ TT -

-14-



P (Xw)P(tt)P(xw) -
TT ~ TT

0

1*.

*1 0

•n1xn1

0

0
rn xn
$, m m

0 1

1\

1 0

nx.Jsw =

mo
*-n xl

J.

n xl-*
m

0

(9)

The column subvector containing all unit entries in P (x )S(tt) is precisely the

eigenvector associated with the eigenvalue 1 of the corresponding submatrix
T(Prop. 8). Since the submatrices on the diagonal of P (X7r)P(Tr)P(x7r) are disjoint,

T
so are the columns of P (x )S(tt). Hence the columns of S(tt) are linearly

independent eigenvectors of P(tt) associated with +1. n

Corollary. Let n. be the order of the i-th normal-order cyclic component of tt ,

then

n.

Sx(tt)S(tt) =

0 \
Proof: From (9) we have

ST(tt)S(tt) =[PT(X1T)S(TT)]T[PT(x7r)S(Tr)] =
"'.,0

(10)

(11)

n

III. tt-PERMuTED AND tt-SYMMETRIC MULTIPORT RESISTORS

A 2n-terminal element is called an n-port if the terminals can be grouped

into n pairs ll'2 2f... nn' such that the current entering one terminal i of each

pair is constrained to leave the other terminal if — henceforth called the port

constraint —. Each pair i,iT of terminals is called a port i. Let the ports be
—————— m

labelled consecutively from 1 to n and let v= [•]_••«vn3 denote the vector of
port voltages, and i=[i-i-"1^ the vector of port currents, where the associated
reference convention is adopted for each pair (vj>ij) of Port variables, as shown
in Fig. 5. An n-port R is said to be an n-port resistor if it is completely

^Throughout this paper, a multiport resistor will be denoted by a Roman R, and
a multiterminal resistor will be denoted by a script <-R.
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characterized by a set S of admissible pairs (v,i), henceforth called its

constitutive relation.

A. Properties of TT-permuted and Tf-symmetric multiport resistors

Definition 5. Given a directed permutation tt on n objects and an n-port

resistor R, we define the associated Tr-permuted n-port resistor R by the set of

admissible pairs (v,|) such that v = P(tt)v, i = P(ir)i, where (y,i) is any

admissible pair of R.

It follows from Def. 5 that R is obtained from R by first relabelling the

port numbers in accordance with the rule defined by tt, and then interchanging

the terminals in each port where a complementation is called for by the directed
(1 2 3 \), then the Tr-permuted
13 2/

3-port resistor is shown in Fig. 6. Observe that a tt-permuted resistor R

is in general distinct from the resistor R and should be treated as a different

multiport resistor, when embedded in a circuit. It follows from Prop. 4

that each n-port resistor R induces a total of 2nn! possibly distinct TT-permuted

n-port resistors. Let us now consider three common special cases:

/I 2 ... n\
1) Complementary n-port resistor. This is obtained by choosing tt = ( I-

\1 2 ... n/

I, henceforth referred to as the complementary transformation. In this case, R is

simply obtained by transposing the terminals of all ports of R.

2) Rotated n-port resistor. This is obtained by choosing the cyclic directed

permutation of normal-order tt = (1 2 ... n). In this case, R is simply obtained

by relabelling each port j of R by j+1, j = l,2,...,n-l, and by changing port n

into port 1.

3) Involuted n-port resistor. This is obtained by choosing a directed permutation

tt having the "self-inverse" property tt =TroTr=I;i.e. tt =tt. This class of

directed permutations includes three common transformations as special cases;

namely 1) reflection, 2) 180°-rotation and 3) complementation. By definition,

the order of an involution tt is 2. It follows then from Cor. of Thm. 1 that the

decomposition of an involution tt contains only cyclic components of order equal

to one or two. This is still a fairly large class, and includes the two port

shown in Fig. 3, where tt = (1 1) (2) .

Since a Tr-permuted n-port resistor R is obtained from R by merely a port

relabelling and/or a complementation operation, it is not surprising to expect

that many circuit-theoretic properties of R are inherited by R. Indeed, we have

-16-



the following properties:

Proposition 10. If a multiport resistor R is characterized by a constitutive

relation R(y,i) =» 0, then its -rr-permuted resistor R is characterized by

|(y,i) ft ?(pT<»)y.PT<»)|) =9- (12)
Proof: Let (v,l) & (P(ir)v,P(ir)i) be an admissible pair of R (Def. 5). Then it
———— -» - „,«.-. ~ / T t\/T
follows from the orthogonality of P(tt) that R^P (tt)v»P (tt)£J = R^P (tt)P(tt)v,
PT(Tr)P(Tr)i) =R(v,i) =0. n
Proposition 11. If the constitutive relation of R is C -parameterizable [15],

in the sense that it is characterized by y = v(p) and i = i(p), where v(-) and
. k

i(.) are C -functions, then the Tr-permuted resistor is also C -parameterizable.

Furthermore, the dimensions of R and R are identical, and R is reciprocal

(resp., antireciprocal) iff R is reciprocal (resp., antireciprocal) .

Proof: Using Def. 5 it easily follows that y = P(Tr)y(o;) and i = P(Tr)i(p) is a

parameterization of R. This implies that

rank|- [y(e),i(e)] =rank |^- (P(tt) [v(p) ,i(p)]}. (13)
Hence, R and R have identical dimension [15]. The remaining assertion follows
from the definition of reciprocity and antireciprocity [15] and the orthogonality

of P(tt). n

Proposition 12. If R is a non-energic (or energic or passive or active) multiport

resistor, then so is the ir-permuted resistor R.

Proof: These invariant properties all follow from the fact that the powers

associated with two corresponding admissible pairs (v,i) of Rand (P(Tr)y,P(Tr)ij
of R are equal to each other; namely,

<V,i> =VTi =VTpT(TT)P(TT)i = <P(TT)V,P(TT)i>. (14>
n

Definition 6. Two multiport resistors R and R are said to be identical if every
admissible pair (v,i) of R is also an admissible pair of R, and vice versa. Two
multiport resistors R and R are said to be isomorphic if there exists a directed
permutation tt such that for any admissible pair (y,i) of R, (p(Tr)y,P(Tr)i) is
admissible pair of R, and conversely for every admissible pair (v,i) of R,
(pT(TT)y,PT(Tr)|) is an admissible pair of R.

It follows from Def. 6 that every Tr-permuted multiport resistor R is

isomorphic to R.

-17-
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Definition 7. A multiport resistor R is said to be ir-symmetric iff R is

identical to its ir-permuted resistor R; i.e. if (v,i) is an admissible pair of

R, then (P(Tr)y,P(Tr)i) is also an admissible pair.
The following properties are useful for checking whether a multiport

resistor is ir-symmetric or not.

Proposition 13. A multiport resistor R with constitutive relation R(v,i) = 0

is TT-symmetric iff

R(y.i) =Q° R(pT(7r)Y»?T(7r>i) =Q-
Proof: It follows directly from Prop. 10 and Def. 7.

(15)

Example 1. A 1-port nonlinear resistor is bilateral iff f(v,i) = 0 ^ f(-v,-i) - 0.
It follows from (15) that every bilateral resistor exhibits complementary symmetry

with tt = (1 I).

Example 2. Referring back to the dc nonlinear OP AMP circuit model shown in

Fig. 1(c), we conclude that it too exhibits complementary symmetry with

tt = (1 1) (2 2) (3 3).

In the common special case where a multiport resistor can be characterized by

a hybrid representation [15], we have a unique response to a mixture of current

and voltage excitations at the ports. The mixed vectors are defined as follows.

Let A and B be nxn diagonal matrices satisfying the condition that either a^ . = 1

and b. =0, or b±i =1and a±± =0, where A= [a^] and B= [b^]. If we
define the excitation vector x and the response vector y by

A B

B A

ii

(16)

then R is said to be characterized by a hybrid representation if x and y are

related by

v-h(x), <17)

where h(0 is a function from IRn to ]Rn. We say that the excitation x and the
response y are compatible with a directed permutation tt if the permuted variables
are of the same type; i.e. if rr(i) =j or rr(i) = j, then x± and x^ are both
voltages or both currents. More formally, this compatibility condition is
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equivalent to the conditions:

P(tt)A = A P(tt), P(tt)B = B P(tt) . (18)

Proposition 14. If the excitation x and the response y of the hybrid representation

y = h(x) of a multiport resistor R are compatible with a directed permutation tt,

then R is ir-symmetric iff

h(.) -PT(Tr)h(p(Tr).). (19)
Proof: It follows from (16) and (18) that

P(tt)x

P»y

P(tt)A P(tt)B

P(tt)B P(tt)A

y

i

A B

B A

?00y

P(TT)i

Then it follows from Def. 7 that R is ir-symmetric iff

y = h(x) o P(Tr)y = h(P(Tr)x).

Finally (19) and (21) are equivalent by the orthogonality of P(tt) .

(20)

(21)

Observe that our definition of ir-symmetry is based on admissible pairs and

is independent of any particular hybrid representation. Hence, it suffices to

check (19) for any particular representation compatible with tt in order to

prove or disprove the ir-symmetry for a given resistor.

Corollary. A linear multiport resistor described by the hybrid equation y = Hx,

which is compatible with tt, is ir-symmetric iff

H « PT(tt) H P(tt) (22)

Equation (22) imposes certain definite structural properties for hybrid

matrices exhibiting various forms of Tr-symmetry. A general algorithm for

computing the canonical form of a Tr-symmetric hybrid matrix (22) is described
in Appendix A. Let us consider here some of the more common symmetries of

practical interest.

1. Cyclic (rotational) symmetry. The symmetric directed permutation is

Observe that P(tt) 4 permutes the non-zero rows of A among themselves as well as
the zero rows among themselves. Observe also that P(tt) A Pt(tt) permutes the
non-zero columns of P(tt)4 among themselves, as well as the zero columns among
themselves. Since P(tt) A Pt(tt) is a positive semi-definite diagonal matrix^
the compatibility property""implies that P(tt) A Pt(tt) = A, and hence P(tt) A -
A P(tt). A similar reasoning shows that P(tt) B = B P(ir) .

-19-



tt = (1 2 ... n). The associated cyclic permutation matrix and the structure of

a hybrid matrix are easily found to be:

structure of H

A. A A - ... A0
1 n n-1 2

P(tt) =

TT-permutation

0 0 0 • • • 1

1 0 0 0

0 1 0 • • • 0

0 0 0. .1 0

H =

n

A A - A n
n n-1 n-2

(23)

It is easy to check that (22) is satisfied. An examination of H in (23) shows

that the "last" entry in any column j is identical to the "first" entry in

column j+1. A simple example of a cyclic symmetric hybrid matrix is given by

the 3-port circulator:

0 R -R

-R 0 R

R -R 0

(24)

2. Block cyclic symmetry. Consider the block-cyclic permutation:

tt =(l k+1 2k+l ... (n-l)kfl) (2 k+2 2k+2 ... (n-l)k+2) ... (k 2k 3k ... nkj
It is easy to show that the hybrid matrix in this case assumes the same form

as (23), except that each A in (23) is replaced by a square kxk submatrix k± [5].

3. Involution symmetry. Since every involution permutation can be decomposed

into a collection of cyclic components of order 1 or 2, the general structure of

a hybrid matrix which exhibits involution symmetry can be derived by decomposing

H into various submatrices corresponding to the cyclic components, and then

analyzing the general structures of these submatrices. The following is a list

of all distinct combinations between two cyclic directed permutations of either

order 1 or 2. The structure of H which exhibits the corresponding symmetry is

shown on the right-hand side, where the entries A,B,C,D,E,F,G,K are fixed parametets

cyclic components

hii hij hik h±z

(i j)(k l) ?1"

h.. h.. h.. h..
Ji 33 Jk Jfc

hki \j \k \z

Ai hl3 hAkhM

-20-
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' A B G K

B A K G

E F C D

F E D C
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ir - (1 2)(3)(4 5)(6 6). Clearly the two cyclic components (1 2)(3) correspond

to tt« = (i j) (k) and hence the submatrix structure must be as specified in (25b) .

The two cyclic components (4 5) (6 6) correspond to tt_ = (i j)(k k) and hence the

submatrix structure must be specified by (25c). On the other hand if we pick the

two cycles (1 2) (4 5), then ir, applies and the corresponding columns and rows

of H must have the structural form specified by (25a) . Combining all these

observations, we obtain the following structural form for H:

H =

A B '
i

V I Q R i m

B A | V 1R Q -M

X

T

X '
-4-

U i

C

z

1 s s

E

0

L

U T | z I E D -L

P -P • 0
1

. N -N F

4. Additional examples of ir-permuted symmetry

Example 1. The gyrator (i1=Gv2,i2=-Gv1) exhibits ir-symmetry, where ir =I*

(12 1 2). This is easily verified as follows:

g! r o
-i

(26)

(27)

Observe that this type of symmetry is distinct from the other symmetries already

presented.

Example 2. The hybrid coil (Fig. 7) (used in the telephone system) is described

by the following hybrid matrix:

v.

v.

0 -1

0 -1

1

-1

v.

(28)

It is easy to verify that (22) is satisfied with tt =

4-port is tt-symmetric.

1 2 3 41

2 14 3,
Hence, this

Example 3. All linear multiports which can be described by a constitutive

relation

Cv = Di

-22-
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are complementary symmetric. This follows from the choice of tt = (1 1) (2 2) ... (n n)

and the observation that C(-y) = D(-i) . As a special case of this general

property, we conclude that all ideal n-port transformers, n-winding transformers,

n-port circulators, negative impedance converters, negative impedance inverters,

gyrators, etc., exhibit complementary symmetry.

The preceding examples show that a multiport resistor may exhibit more than

one type of Tr-permuted symmetries. In the next theorem we prove that all such

directed permutations form a group. This result is analogous to the well-known

property that all symmetry operations of an object form a group [13].

Proposition 15. The collection SR of all directed permutations with respect to
which a multiport resistor R is symmetric, form a group under the composition

operation.

Proof: The collection S.. forms a subset of the group P of all 2 n! directed
——— j$, n

permutations on n objects (Prop. 4). It contains the identity. If t^ G Sr and
tt G S , then so is tt- <> tt0 € S0, because if (v,i) is an admissible pair, then
2 R v 1ZR ~~

(P(TT2)y,P(Tr2)i) is also an admissible pair. Repeating this argument it follows
that (p(Tr1)P(Tr2)y,P(Tr1)P(Tr2)i) =(?(VTr2)y,P(VTr2)i), ±S alS° ** admissible
pair of R. n

Corollary, (a) If a multiport resistor is both Tr-symmetric and a-symmetric, then

it is also TTocj-symmetric. in particular, it is tt -symmetric, where &is any

integer, (b) A multiport is Tr-symmetric iff it is ir -symmetric.

Proof: (a) Since tt G Sr and aGSR, also ttocf belongs to this group SR (closure
property). If we let a=tt, then tt2 Gsr. Repeating this process, we obtain
ir* G S ,where £. is any integer, (b) Since every element of the group SR has a
finite order k, we have irk =I. It follows from tt^1 ott =Iand the uniqueness
of tt"1 that tt'1 =ir*"1. Hence tt"1 GS. Conversely, if ir" G SR, then (tt" ) =
ttGSr.

This corollary indicates that not all 2nn! directed permutations have to
be checked exhaustively in order to generate the symmetry group of an n-port
resistor. In fact, once a symmetry transformation tt is found, many others may
be found from tt using this corollary. Conversely, when the multiport resistor
is not symmetric with respect to a directed permutation tt, then many others may
be found with respect to which it is also not symmetric. Based on these observations
an algorithm is described in Appendix B for generating all symmetry transformations
of a multiport resistor using a minimum number of checks.
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B. Synthesis of Tr-symmetric multiport resistors

As will be clear in Section V, there are many communication and power

electronic circuits, which use symmetrical nonlinear multiports to achieve

various desirable results. Since few intrinsic multiports exhibit symmetry,

most symmetrical multiports used in practice are synthesized by a clever
interconnection of unsymmetrical components, often arrived at by ad hoc methods.
Our objective in this section is to present a unified approach for synthesizing
multiport resistors having any prescribed tt-symmetry. We will find the concept

and properties of tt-permuted multiports, presented earlier, to be crucial in this
undertaking. Our basic procedure consists of choosing two or more multiports,
then permuting their port numbers in an appropriate way, and possibly transposing
the terminals of some of the ports (complementation) and finally interconnecting

various sets of ports either in series or in parallel with each other. We assume

throughout this paper that isolation transformers have been inserted and embedded
within the component multiports, whenever necessary to preserve the port

(1) (2)
constraint property. For example, Fig. 8 shows two 2-port resistors R and R
with their first ports connected in series and their second ports connected in

parallel. Any isolation transformer is assumed to be embedded already within

R<" and R(2).
Two general synthesis algorithms will be presented for realizing any

prescribed tt-symmetric n-port resistor R. The algorithms differ from each other

in the choice of the building blocks: Algorithm 1 uses two or more identical

but unsymmetrical m-port resistors (where m <_ n) as building blocks, whereas

Algorithm 2 uses one Tr-symmetric m-port resistor R or two distinct multiport

resistors R(1) and R(2), where R(1) has m(1)-ports and exhibits tt -symmetry,
while R(2^ has m(2)-ports and exhibits it(2 -symmetry, where n£mor n£m +m
To demonstrate the generality and utility of these two algorithms, several well-

In Algorithm 1 the number "m" of ports of all building blocks are assumed to
be less than or equal to n for the sake of generality. One could alternately
assume m = n by introducing trivial "short circuited ports" whenever a series
connection is called for, and "open circuited ports" whenever a parallel
connection is called for. This artifice is useful from a pedagogical point of
view since it is more systematic. However, it involves drawing many unnecessary
ports and interconnections, which have to be removed later to obtain the final
multiport resistor R. Hence at the risk of some loss of clarity in the
presentation, we will adopt the more elegant and concise choice of m £ n.
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known symmetrical n-ports of practical interest will be systematically synthesized

Synthesis algorithm 1. Given any directed permutation f on n objects, the

following procedure will generate a family of n-port resistors having the

prescribed it-symmetry:

Step 1. Decompose ft into cyclic components (see Theorem 1)

t =(if>if»... if))...a<k>i<k>... i«,...(if'iW... i<p>>.
1 k p

Step 2. Determine the order "A" of ft. Recall that ft* = I and that "£" is the

least common multiple of the orders of the "p" cyclic components from Step 1.

(see Cor. to Thm. 1).

Step 3. Choose "&" identical m-port resistors R (m<n) and label them

R^ ,R ... R^ . Let fr(R^ ') denote the tH-permuted m-port resistor associated
(k) 1

with R , where ftJ - ft © ft o...° ft (j-times). If m < n, there will be more ob

jects to be permuted than there are ports, and ft(i) is not well-defined if

ft(i) > m, or if ft(i) > m. Therefore we will henceforth define:

ft^i) = <j>, if ft^i) >m or if ftj(i) >m,

where $ denotes the empty set. We will also define the series or parallel

connection between port "i" of one m-port resistor R^"' and port "<J>" of an m-port
resistor Tffc(R^) to be the original port "i".8

Step 4. The ft-symmetric n-port resistor R associated with R is realized by

connecting the corresponding ports of the "A" ir-permuted m-port resistors

ft°(R(1)) = R(1), ft"*1(R(2)),...,ft"*+1(R(*)) in series, or in parallel with each

n

The m-port resistor R is arbitrary and need not exhibit any form of symmetry.
Corresponding to^each chosen R, Algorithm 1 generates an associated Tr-symmetric
n-port resistor R. Hence the family of if-symmetric n-port resistors generated by
Algorithm 1 is very large indeed.

o

This is just a formal way of saying that the series (resp., parallel) connection

between port i of R^ and a short-circuited port (resp., open-circuited port) of
ftt(R^k)) is just port i itself.

-25-



other.9 The choice of series or parallel connection is arbitrary provided that
all ports of Rwhich belong to the same cyclic component of ir from Step 1have
the same method of connection. For example, if ft = (1 5 3) (4 2), then ports 1, 3
and 5 of R must be formed by the same method of connection, say all parallel
connection. Likewise, ports 2and 4must be formed by the same connection method,
say all be series connection.

Remark. Step 4 can be replaced by the following more explicit equivalent

statements:

Equivalent statement 1. The i-th port of Ris obtained by connecting the i-th
port of R(1), the ft(i)-th port of R(2)... and the ft^D-th port of R< in series,
or in parallel with each other, provided the choice of connection is the same for
all ports of R which belong to the same cyclic component of ft.

Equivalent statement 2. Referring to the cyclic decomposition of ft from Step 1,
realize the ports of R in the order listed in the cyclic decomposition as follows:
For each cyclic component k=l,2,...,p, choose either series or parallel as
the connection method: . .

1) Port i[k) of Ris realized by connecting port ±1 of R ,port i£ of
R(2),... and port i0(k) of R(*} together.
2) Port i£k) of Ris realized by connecting port ±2 of R ,port ig of
R<2\... and port i0(k) of R^ and port i<k) of R<*> together.

1 /I \

q)10 Port i0(k) of Ris realized by connecting port i^ of R ,port ±1 of
k k (k)R(2),..., and port i0(k> of R(*} together. Again if m<n, aport i of Ris

Ir

assumed to be * whenever i?° >m, or i<k) >m, where <j> is the empty set.

Before we prove that the n-port resistor R realized by synthesis algorithm 1
is indeed ft-symmetric, let us pause to consider some examples.

II oil90bserve that alternately, we can interconnect corresponding ports of the "£
ft^>-permuted m-port resistors ft°(R(1)) =R(1), *V2)) ,..., ft*V*}) in^erles, ,
or in parallel, with each other to obtain a ft -symmetric m-port resistor R'.
However, in view of the corollary of Prop. 15, R1 is also ft-symmetric. Moreover,
by permuting the resistor numbers of the identical resistors
R^...R**\ it is easy to see that both interconnection schemes in fact gave
rise to the same ft-symmetric m-port resistor R.

If the k-th cyclic component is a normal-order cycle, then «1 = \* If tne
k-th cyclic component is a double-order cycle, then q = ^k/2*
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Example 1. Synthesize a bilateral one-port resistor: ft « (=-) = (1 1) . In this

case, R is obtained by connecting two identical two terminal resistors R and
(2)

Rv ' "back-to-back" in series or "back-to-front" in parallel. The resulting two-

terminal resistor R is bilateral and we obtain Prop. 1 as a trivial application

of Algorithm 1.

Example 2. Synthesize a complementary symmetric 2-port resistor: ft = ( j=
\l 2/

(1 1)(2 2). Since ports 1 and 2 belong to distinct cyclic components,

Algorithm 1 may be used to generate four distinct 2-port resistors having

complementary symmetry; namely, (S^SJ, (S ,P2), (P^S^, and (P^P^, where
S. (resp., P.) denote that port i of R^ is connected in series (resp., in

(2)
parallel) with the transposed (complemented) port i of Rv . For example, the

2-port R corresponding to the (P.,,P2) connection is shown in Fig. 9(a). In
particular if we choose R to be the "biased" one-transistor 2-port resistor

shown in Fig. 9(b), we would obtain the complementary symmetric 2-transistor

2-port R shown in Fig. 9(c), where isolation transformers have been inserted to

guarantee that the port constraint property holds. Applying equivalent network

transformation techniques to R, we obtain the two well-known push-pull transistor

amplifier circuits [16] shown in Figs. 9(d) and 9(e), respectively. Hence, we

have demonstrated how well-known circuit configurations previously obtained by

intuitive or other ad hoc techniques can be systematically generated via

Algorithm 1.

321j -symmetric 3-port resistor: ft - (1 3)(2).

Since the order I of t? is equal to 2, we only need two identical m-port resistors

r(!) =r(2) = r, m£ 3. Let us choose m=2 to illustrate our earlier remark
about "empty ports." Suppose we choose "series" connection for the ports

belonging to the cyclic component (1 3) and choose "parallel" connection for

cyclic component (2). Then port 1 of 3-port R is obtained by connecting port

1of R^ in series with port ft(l) of R( ). But ft(l) = 3> 2, hence ft(l) «*
and port 1 of R is simply port 1 of R . Port 2 of R is obtained by connecting

port 2of R(1) in parallel with port ft(2) =2of R(2). Finally, port 3 of R
is obtained by connecting the empty port of R^ ' in series with port ft(3) = 1
of R^ ,which is just port 1 of R^ . The resulting ft-symmetric 3-port R is
shown in Fig. 10(a).
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/I 2 3\Example 4. Synthesize a (0 « 1)-symmetric 3-port resistor: ft = (12 3). Since

the order Z is equal to 3, we need three identical 3-port resistors R = R =
(3)R = R, m £ 3. Again let us choose m = 2. Since ft has only one cyclic

component, the same method of connection must be chosen for all three ports of

R. If we choose the series method, we obtain the ft-symmetric 3-port R shown

in Fig. 10(b). Observe that port 1 of R is obtained by connecting port 1 of

R(1) in series with port ft(l) =2of R(2) and port ft2(l) =4of R^3). Port 2 is
obtained by connecting port 2 of R in series with port ft (2) = (j> of R and

2 (3)
port ft (2) = 1 of Rv J. Finally, port 3 of R is obtained by connecting the

(1) (2} 2
empty port of Rv ' in series with port ft(3) =1 of RK J and port ft (3) = 2

(3)
of R

Proof of Algorithm 1. To describe the interconnection algebraically we specify

how the ports of R

C/ as follows:

-00

(k)
are connected relative to R by an nxm connection matrix

00
'ij

= 1, if port i of R contains port j of R in the interconnection,

= -1, if port i of R contains the transposed (complemented) port j of

R<k>,

=0, otherwise.

It follows from Step 4 that

00

(1) _

1 0 • • • 0

0 1 • • • 0

0 0 1

_ >

0 0 • • • 0

0 0 • • • 0

m

A C, C<2) = PT(ff)C, C(3) = PT(ft2)C, CU) = pT(a-l)c

n-m
(30)

Next, we let x, y denote hybrid n-vectors associated with R and we let x , y

denote the corresponding hybrid m-vectors associated with Rv , k = 1,2,...,£,

such that if port i of R is obtained by a series (resp., parallel) connection,
(k)then the i-th component of x and the j-th component of x represent voltages

(resp., currents) whenever c . ^0. Let the corresponding elements in y and
ij

y' ' denote the opposite variables; namely currents (resp., voltages). Since,

by assumption, all ports of R belonging to the same cyclic component are obtained
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by the same method of connection — series or parallel —, then corresponding

components of (P(Tf)x,P(ft)y) and (x,y) are of the same type. In terms of the
~ " ~ no

above notations the port variables of R and Rv ' are related as follows:

(31a)? =W1)+g(2y2) + .. . +gW5(i)
= Cx(1) + PT(ft)Cx(2) + ... +f^Cx^,

y(1) = CTy, y(2) = CTP(ft)y, ..., y = C P(ft )y (31b)

If we let (x,y) denote the port variables associated with the ft-permuted n-port

resistor R of R, then for each admissible pair (x,y) of R we have (x,y) =

(P(ft)x,P(ff)y). It follows from (31a) and (31b) that

x=P(ft)Cx(1) + Cx(2) + ... + PT(tT*"2)Cx(*) (32a)

y^ -CTPT(ft)y, y<2> - CTy, ..., y(k) «CTP(ft*"2)y (32b)

But since the order of ft is equal to £, and since P(ft) is orthogonal, we have

P(ft) = PT(ft*_1) and the right-hand sides of (31a) and (32a) (resp., left-hand
sides of (31b) and (32b)) are identical (recall that the "A" m-port resistors

are identical and hence the labels can be interchanged). Hence R and R are

identical and R is ft-symmetric (Def. 7). n

A multiport resistor may exhibit some Tr-symmetry as an intrinsic property.

If not, a suitable interconnection of the ports of two or more multiport

resistors in accordance with Algorithm 1 will give us a new multiport resistor

R which exhibits a ft-symmetry. In Algorithm 2, several additional techniques

for interconnecting the ports of a ir-symmetric m-port to obtain a new n-port

which exhibits a different form of symmetry will be presented. For the sake of

increased generality, we will first present a simple artifice for combining

several distinct but symmetric multiport resistors as one overall multiport

resistor: Given a tt ^-symmetric nr ^-port resistor R and a tt -symmetric

nT -port resistor R^ , then the composite m-port resistor R with m « nr + m
is obtained by retaining the port numbers l,2,...,nT ' of R^ ,and by relabelling
the port numbers of R(2) by m(1) + 1, m(1) +2, ..., m(1) +m(2) »m. Clearly,
R exhibits a TT-symmetry where tt acts on l,2,...,nr '• as ft does, and where

tt acts on m^ + 1, m^ +2, ..., m as tT2) does on l,2,...,m( ' . For example,
if ir^ .« (1 2) and tt^ = (13 2), then the composite resistor R is a 5-port
whose first two ports are identical to those of R^ ,and the remaining 3-ports
are identical to those of R^ ^ (after relabelling port numbers 1,2,3 of R
by 3,4,5). Clearly, R is Tr-symmetric, where tt = (1 2) (3 5 4).
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Synthesis algorithm 2. Given a Tr-symmetric m-port resistor R, then the following

port interconnection techniques allow us to generate a large variety of

ft-symmetric n-port resistors R with n £ m. Let the cyclic decomposition of tt

be given by tt = c c«....

(A) Direct interconnection of ports belonging to a cyclic component: Let

c, = (i, ±n ... i ... i ) be a cyclic component of tt of normal order. Let k
j l 2 s a
be any divisor of *, i.e. £ = ks. Using consistently a series or parallel inter

connection method, form a new n-port R (n=m-£+s) as follows: Port i1 of R is
realized by interconnecting ports i1, i ,,, ..., and i., -v - of R together,

where each "complemented" port is transposed before the connection is made.

Port i« of R is realized by interconnecting ports i2, i +2, ..., and */k_i\s+0

of R together. Iterate this procedure until port i of R is realized, by
s

interconnecting ports i , i2 , ..., i, of R together. Any other port i of R
belonging to the other cycles of tt remains unchanged and is simply labelled as

port i of R. The new n-port resistor R so realized has n = m - £ + s ports and

exhibits ir-symmetry, where ft = c.c2.. .c. -c,c.+,... and c. = (i-i^.-.i ) is the

new normal-order cycle.

(B) Alternately-transposed interconnection of ports belonging to a cyclic

component: Let c. be a cyclic component of tt satisfying one of the following

two properties: (1) c. = (i-i2...i ...i^) is a normal-order cyclic component

with Z= ks, where k is an even integer. (2) c. = (i-i2...i •. .i^i.i-*-»is'"^s?
is a double-order cyclic component with I = ks, where k is an odd integer.

Using consistently a series or parallel interconnection method, form a new

n-port R (n=m-&4-s) as follows: Port i, of R is realized by interconnecting

ports 11, is+1, i2s+r i3s+1, .... i(k.1)s+1 (resp., i(k_1)s+1 if k is odd) of

R together. Port 1, of R is realized by interconnecting ports ±2> ig+2'

hs^i, hs+2 ^k-Ds+a (resP- Vi)s+2 lf k is odd) of Rt08ether-
Iterate this procedure until port i of R is realized by interconnecting ports

i , i2 , ..., i. (resp., i,g if k is odd) of R together. The remaining m-Jl
ports of R remain unchanged and are simply assigned as ports of R. The new

n-port resistor R so realized has n = m - I + s ports and exhibits ft-symmetry,

where ft =c^.. .c.c.c.^... and c. =(i^*•••is^2***^s^ * Hence» the

The only difference from the preceding technique (A) is that every other port
index i, belonging to c. is complemented before the connection is made.
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resulting cyclic component c. is a double-order cycle.

(C) Interconnection of ports belonging to two compatible cyclic components:

Let c. and c. be any two cyclic components of tt which are compatible in the

sense that they have either both normal or both double order, and that they

have the same order; i.e., •c^ = (i-i2...i£) and c. = (jjj2-*9$s)» or ci °
(l1i2...ijli1i2...i£) and Cj «(j1j2...j£j1j2...j£). Using consistently aseries
or parallel interconnection method, form a new n-port R as follows: Port i^ of
R is realized by interconnecting ports ±1 and jx of R together. Port 2 of R
is realized by interconnecting ports i2 and j2 of R together. Iterate this
procedure I times until port i of R. is realized by interconnecting ports i.

At

and j0 of R. The remaining m-2A ports of R remain unchanged and are simply
Xr

assigned as ports of R. The new n-port resistor R so realized has n = m - &

ports and is ft-symmetric, where ft = c-c2». •c4_icici+i' ",ci-lci+l"" **

A cyclic component may have several distinct cyclic notations, for

example, (i^,.. .,i£), (i^, ...i^lj). (i^,...^) all describe the same
cyclic component. In general, a total of 2% distinct but equivalent cyclic

notationsmay be generated by simply shifting the indices consecutively, and by

taking their complements. Applying Technique (C) to each such equivalent cyclic

notation would result in a distinct ft-symmetric n-port. Hence, Technique (C)

alone would allow us to generate a large variety of symmetric n-ports. In general,

all three techniques may be combined and an even greater variety of symmetric

n-ports can be generated. For example, applying Technique (C) to a composite

n-port resistor, we obtain the following useful corollary:

Corollary. Given two distinct ir-symmetric n-port resistors R^ and R ,a
new ir-symmetric n-port resistor can be realized by connecting the corresponding

ports of R^ and R^ in series or in parallel, provided that corresponding
ports belonging to the same cyclic component of tt are connected in the same way.

The proofs for Techniques (A), (B), and (C) are similar and hence only

the proof for Technique (A) will be given. Before we present the proof, it is

instructive to consider the following examples.

Example__l. Consider a ir -symmetric 3-port resistor R^ ' and a tt^ ''-symmetric
(2)

3-port resistor R , where:

,(D ./I 23) =(1 I)(2 j), ,<2> -(\ll) -a 2X3).
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The composite 6-port resistor R is Tr-symmetric, where

Tr=r23456]= (1 I) (2 3) (4 5) (6). Since the cyclic components (2 3)
\1 3 2 5 4 6/

and (4 5) have the same order 2 and are both of normal order, we can apply

Technique (C): Connect ports 2 and 4 of R in parallel and label it as port 2

of R. Next we connect the "transposed" port 3 of R in parallel with port 5 of

R and label it as port 3 of R. Since the remaining cyclic components (1 1) and

(6) have different orders, we cannot connect ports 1 and 6. The resulting

4-port resistor R, shown in Fig. 11, clearly exhibits ir-symmetry where

ft = (1 1)(2 3)(6) .

Example 2. The 4-port resistor R in Fig. 12(a) exhibits two distinct symmetries,

namely,

ir(1) -A 234\ =(l 1)(2)(3 4), tt(2) =[1 234\ =(1)(2 2)(3 3) (4 4).
\1 243/ \1 1 3l)

Applying Technique (A) to the normal-order cyclic component (3 4) of tt^ , we

connect ports 3 and 4 of R in parallel and label the resulting port as port 3

of R. Ports 1 and 2 of R remain unchanged and are simply labelled as ports 1

and 2 of R, respectively. The resulting 3-port resistor R. shown in Fig. 12(b)

is iT ^-symmetric, where tt ' = (1 I) (2) (3). Let us next check whether the
(2)

second symmetry tt is destroyed or preserved by this interconnection. Since
(2)

ports 3 and 4 belong to different cycles of ttv , only Technique (C) can be

used. Since both cycles (3 3) and (4 4) have identical double order, it
(2) (2) - -

follows from Technique (C) that R is ftv -symmetric with ftv y = (1)(2 2)(3 3).

Example 3. Consider the same 4-port resistor R as in Example 2 (see Fig. 12(a)).

Since the cycle (3 4) of tt ' operates an even number of objects, Technique (B)

can be applied. Connect ports 3 and 4 in series and call it port 3 of R as

shown in Fig. 12(c) (port 4 is obtained by transposing the two terminals of

port 4). Ports 1 and 2 of R remain unchanged and are simply labelled as

ports 1 and 2 of R. The resulting 3-port resistor R is Tn '-symmetric, where

iP1' = (1 I)(2)(3 3). The effect of this interconnection on ir^ ' can be
(2)

analyzed by first writing the last cyclic component of tt in the equivalent

cyclic notation (4 4) . It follows then from Technique (C) that R is ft

symmetric, where ft(2) = (1)(2 2)(3 3). The 3-port synthesized in this example
coincides with the AT1' and tT '-symmetric network presented by Penfield [12].
Our algorithm demonstrates how this circuit can be systematically synthesized.
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Proof of Technique (A) of Algorithm 2. To simplify our algebra, let us relabel
7l 2 ... A .. .^ to obtain a

W V" *A •
the ports of R by introducing the permutation p

p-permuted resistor R. Since R is Tr-symmetric, it follows from Prop. 6 that
-1

s <

C =

1 0 0 ... 0

0 1 0 ... 0

0 0 1 ... 0

10 0

0 10

0 0 1

0 0 0 1 I0 0 0

R is ir-symmetric, where i « p J' oT op= c^c2... and c^ - (12 ... A) or
c- « (1 2 ... A I 2 ... A) depending on whether c is a normal or a double

order cycle. Applying Technique (A) to this Tr-symmetric resistor R, we obtain

a new n-port R, where port 1 of R is realized by interconnecting ports 1, s+1, ...,
(k-l)s+l of R together. Port 2of I is realized by interconnecting ports 2,
s+2, ..., (k-l)s+2 of R together. Iterating this procedure until port s of R
is realized by interconnecting ports s, 2s, ..., ks = A of R. together. All
remaining ports j > A of R remain unchanged and are simply labelled as port j
of I. Observe that ports s+1, s+2, ..., A of R are missing after the inter
connection and will be treated as empty ports as before. We will prove that

the (m-A+s)-port resistor Ris Tr-symmetric, where ft « c^^... and ^ = (12 ... s)
or L = (12 ... s 1 2 ... s) depending on whether c.. is a normal-order or a
double-order cycle. Deleting the empty ports, we obtain the following (m-A+s) xm

connection matrix C: k sxs blocks

0

0

0

10 0

0 10

0 0 1

• • •

0 0 0

0«

0'

ll (33)

By direct computation, it is easy to verify that

P(ft) C= C P(t>), (34)

where the rows and columns corresponding to empty ports of R have been eliminated
in P(tt). Let (v,i) be an admissible pair for R, and let (v,l) be an admissible
pair for fi, where again the empty ports are omitted in y and I. Then in terms
of the above notations the admissible pairs are related as follows (assuming a

series method of interconnection):

(35)
C v,

T -
i = C i.
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In the case of the parallel interconnection the variables y, y and i, i are

simply interchanged. Now it follows from (35), (34) and the Tr-symmetry of R

that (P(Tr)v,P(Tr)i) is also an admissible pair of R. This proves that R is

Asymmetric.

IV. TT-PERMUTED AND tt-SYMMETRIC MULTITERMINAL RESISTOR

An n-terminal resistor ^(c is an element with n terminals 12 ... n, which

is completely characterized by a set o of admissible pairs (v,i) where
T •v = [v, v0 ... v 1 is the vector of the terminal voltages, and i = [i.. i0 ... i ]'

~ 1 2 n ~izn

is the vector of the terminal currents, such that for any admissible pair (y,i)

of c>, the following consistency conditions are satisfied:

1) KCL is satisfied
n

: El -
j-l 3

2) KVL is satisfied: ([v-j-Vq, ... »v -vQ] ,i) is an admissible pair for any
arbitrary reference voltage v..

We assume as in the n-port case that the "associated reference convention"

is chosen (see Fig. 13(a)). In terms of this convention, condition 1 follows

from the fact that the "n" terminals form a cut set, while condition 2 follows

from the observation that the datum potential is arbitrary. Consequently, we

refer to the collection 2 of admissible pairs as an "indefinite representation"
(since no one terminal is singled out as datum) .

In many practical situations a simpler representation can be derived from

a given indefinite representation by choosing one terminal as a datum node

(say terminal n)(Fig. 13(b)). In this case, v* = 0 and the n-terminal resistor

^K is completely characterized by the reduced set c> of admissible pairs (y'.i1)

where v1 = [v',vl,...,v' JT and i1 = [i*,il,...,if n]T are the voltages and the
± z n—± " ± L n—± ^.f

currents at the first n-1 terminals. Since terminal n is now fixed, o is called

the definite representation.

A multiterminal resistor ^~Q can be transformed from the "indefinite" to

the definite representation, and vice versa, by using the following two nx(n-l)

matrices:

hm
\0

0 0...0

and 42 =
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1) The transformation from the definite representation to the indefinite

representation is given by:

i=J2it, y^y' (37)
2) The transformation from the indefinite representation to the definite
representation is given by

i'-&. Yf-& (38>
Obseryejthat the transformation from the definite (resp., indefinite)
representation to the indefinite (resp., definite) representation, and then
back again produces the same set i> (resp., o )•

In practice it is useful to list the indefinite (resp., definite) set of
admissible pairs by the solutions of aset of algebraic equations H2(y,i) =0
(resp., <^,(y,,i,)=a0) called the indefinite (resp., definite) constitutive
relation of He.

Proposition 16. The transformation from the definite constitutive relation
Q' to the indefinite constitutive relation ^ is given by:

<R(y4> k i1+i2+...+in
= 0

(39)

The transformation from the indefinite constitutive relation <£ to the definite
constitutive relation tf£ is given by:

<P<y',i'> k c&}j*''lli') =?' (40>
Proof; The proof follows directly from (37) and (38). n

A. Properties of Tr-permuted and Tr-symmetric multiterminal resistors

Contrary to many other situations, the indefinite representation is most
convenient for studying the symmetry properties of multiterminal resistors,
because it treats all terminals alike. Many results of Section III can now be
easily rephrased for multiterminal resistors characterized by an indefinite
representation. However, not all directed permutations are allowed for n-
terminal resistors because consistency condition 1would clearly be violated
if we permute the terminals while changing the sign of some, but not all,
terminal currents.

Definition 8. Given an n-terminal resistor <£ and adirected permutation «,
which -n-,1..—tt. all r. objects, or none, we define the Tr-permuted n-terminal
resistor <£ by the set of admissible pairs (v.I) such that v=P(ir)v, i-?<*)!
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where (v,i) is any admissible pair of H2.

Observe that £Q is an n-terminal resistor since he is already an n-terminal

resistor and since the two consistency conditions are satisfied for H3 . H2

can be easily obtained by permuting the terminals of ^k in accordance with tt,

and by using a phase-inverting ideal transformer whenever a terminal is to be

complemented. For example, Fig. 14 shows a Tr-permuted 3-terminal resistor H2 »
(12 3\

\ is implemented by three phase-inverting ideal transformers.

i3~2' CDProposition 17. Given a multiterminal resistor ^K characterized by a definite

representation and a directed permutation tt, which inverts all terminals or

none, then the set of definite admissible pairs of H^is given by

(vM') =(jJpWJiy'^Jpwy) , (41)
where (y1,!*) is any definite admissible pair of (-J5.

Proof. Let (y*,!1) be an admissible pair of ^te. Applying transformation (37)
and Def. 8,we obtain (P(T^)J1y,,P(Tr)J2i,) as admissible pair of ^ (indefinite
representation). Equation (41) then follows upon applying the inverse

transformation (38).

Corollary. If tt leaves the grounded terminal n invariant; i.e. if ir(n) = n

or ir(n) = n, then (41) reduces to

(yM1) =(?(V?''?(V^) (42)
where ttq is simply the directed permutation tt restricted to the first n-1
terminals.

In the case where He is characterized by a definite constitutive
relation ^R. ,we have the following more explicit property:

Proposition 18. Given a multiterminal resistor H2 characterized by a definite

constitutive relation S?(yf,if) = 0 and a directed permutation tt, which
complements all terminals or none, then the ir-permuted multiterminal resistor H^

is characterized by the definite constitutive relation

<$$',V) A<g(?j?Mi1?.J*?Wi2i<) =o. (43)
Proof: Similar to that of Prop. 17 but using transformations (39) and (40).

a

Corollary. If tt leaves the grounded terminal invariant, then

<£'(v',i') A CgVp^Ov'.P1^)!') =0 (44)
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where Trfi is simply the directed permutation ir restricted to the first n-1

terminals.

Definition 9. A multiterminal resistor K is said to be Tr-symmetric iff ^K

is identical to its Tr-permuted resistorH^ ; i.e. if (v,i) is an indefinite
admissible pair of ^k, then also (P(Tr)v,P(Tr)i) is an indefinite admissible

pair.

Proposition 19. A multiterminal resistor He characterized by a definite

constitutive relation He is Tr-symmetric iff

CR,(Y,4,> a9 ° ^(f2fMh^^lfMi2^) =9- (45)
Proof. Follows from Def. 9 and Prop. 18. n

Corollary 1. If tt leaves the grounded terminal invariant, then (45) reduces to

<£'(y',i») =0 ~ ^(f^V^^Vi1) =?• (46)
Corollary 2. (a) Let Je be a voltage-controlled resistor characterized by

the definite representation if = f'Cv1), then He is Tr-symmetric iff

ff(v») =AdJJJ'ljydJlv') for all v1. (47)

(b) Let ^R be a current-controlled resistor characterized by the definite

representation vf = h^i1), then le is Tr-symmetric iff

h'd1) «J^PdOJ, h'ljh^MJ^') for all i1. (48)

Proof: (a) It follows from Prop. 19 that He is Tr-symmetric iff

J^PT(Tr)J2f,(yl) -^J^CiOJjv') for all y1 . (49)
But

(lffMi2)(&Wh)m(&™h){£?Mh) "ln-1* (50)
implies

(jJPGO^)"1 =J^PT(tt)J2.
Hence (47) follows from (49).

Assertion (b) follows by duality. H

Example 1. Let ^R be a 3-terminal resistor characterized by the definite

representation:

(v|-v2)2 -v^2 +i22 =0 (51a)

vj2 -v22 +±[ +i2 =0 (51b)
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It is difficult to see at first glance that (51) exhibits rotational symmetry

i.e. TT-symmetry where tt = (13 2). However, applying Prop. 19 we merely have

to check whether (45) is satisfied:

4i

V2

0 -1

1 -1

0 0

1 0

0 0 1*

1 0 0

.0 1 0.

"0 0 1"

1 0 0

.0 1 0.

"1

0

0"

1
V

_„

' -2 "
.0 0. hJ L-1—2 J
"1 0"

0 1
V J 1

-ii-i-"

.-1 -1. hu I _iu

(52a)

(52b)

Substituting each variable in (51) by the transformed variable defined in (52),

we obtain

.i2
Vl " (VI"V2} + *! =°

v22 -(Vi-vp2 -i2 0

(53a)

(53b)

Observe that (53b) is identical to (51a). Moreover, the difference between (53a)

and (53b) is identical to (51b). Hence (45) is satisfied and ^ is (1 32)-
symmetric.

Example 2. The dc OP AMP circuit model shown earlier in Fig. 1(c) is a 4-terminal

resistor characterized by the following definite representation:

ij = vi/Rd + (vi-vp/R(

i2 = v2/Rd + (v2-vp/R

vl = f(v:-v») + R_il,
'2 *v 2 "1

where f(x) = -E_

= A x
v

= E
0

V0*3S

x < "E0/Av

lxl < VAv

x > E0/Av

(54a)

(54b)

(54c)

(54d)

It is easy to verify that the OP AMP is complementary symmetric i.e. it is
ir-symmetric with tt =( _ V This can be checked using (45), i.e. (54)

\I 2 3 4/
remains invariant when all voltage and current variables are multiplied by

minus 1.

Most of the properties of Tr-permuted and Tr-symmetric multiport resistors

derived in Section III remain valid, mutatis mutandis, for multiterminal

resistors. In fact, if one considers an n-terminal resistor as a grounded
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(n-1)-port resistor, then the properties from Section III become directly

applicable. The disadvantage of resorting to this ad hoc technique is that

all properties derived for such an (n-1)-port resistor are valid with respect

to the same grounded terminal "n," and therefore do not reflect the intrinsic

properties of the n-terminal resistor, where all terminals are treated in the

same way. In other words, the theory developed in this section is essential for

deriving symmetry properties of multiterminal resistors, which are independent

of the choice of the datum terminal.

B. Synthesis of ir-symmetric multiterminal resistors

The techniques presented in Section III can be used, after appropriate

modifications, to synthesize multiterminal resistors ^K having any prescribed
TT-symmetry, where f complements all objects or none. For example, both

„(1) B/12 3\ and ff(2) /l 2 3\ satlsfy this condition. On the other hand,
\3 12/ \3 I 2/

„<3) J12 3\ ft(4) J12 3\ and .(5) = /l 2 3\ do nQt satisfy this condition.
\3 12/ \3 I 2/ \3 1 2/

The reason for imposing this rule is to guarantee that the consistency conditions

defined earlier are satisfied.

Since a separate voltage and current variable are associated with each

terminal of a multiterminal resistor, it no longer makes sense to talk about

series and parallel connection, as in the case of multiport resistors. Here,

two or more terminals are simply connected with each other, resulting in a

single terminal. Hence, if we connect the corresponding terminals of "k"

n-terminal resistors (-R^1\ ^2\..., ^K ,we would obtain a new n-terminal
resistor ^ whose terminal voltages and currents satisfy:

v-yW-yW -...-!« (55a)

i- £ i(j), (55b)
where all voltages are measured with respect to the same datum. If the datum

is chosen to be terminal "n" for each element, then pc and K for j = 1,2,...,k

can be described by a definite representation, otherwise we need the indefinite

representation.

Two general synthesis algorithms will be presented for realizing a

if-symmetric n-terminal resistor. The algorithms differ from each other in the
choice of the building blocks: Algorithm 1' uses two or more identical but
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unsymmetrical m-terminal resistors (where m*n) as building blocks, whereas

Algorithm 2f uses one Tr-symmetric m-terminal resistor Se, or two distinct
multiterminal resistors ^R^ and H^^ ,where ^-Qr has vr terminals and
exhibits ir^-symmetry and (3e^ ' has nr ' terminals and exhibits ir -symmetry,
where n <_ m or n _< m + m .

Synthesis algorithm 1'. Let tT be any prescribed directed permutation of n

objects which complements all objects, or none. Determine the order "A" of tt;
hence if* - I. Let Q00, (B(2), ..., ^l) denote "A" identical m-terminal
resistors and let ^(Q^) denote the ff^-permuted resistor associated with
^P/k^.12 Then the n-terminal resistor ^K obtained by connecting the corres
ponding terminals of the resistors if^1^^), j=1,2,...,£-1, is Tr-symmetric

The proof that ^ exhibits the prescribed Tf-symmetry is similar to the
proof of Algorithm 1 and will not be given here. We will now illustrate this

algorithm by four examples:

Examp_le_l. Synthesize a bilateral 2-terminal resistor; i.e., let ff = (1 2) be
prescribed. Since I = 2 we need two identical two-terminal resistors. Applying
Algorithm 1', we obtain the well-known result that the "back-to-front" parallel
connection of two identical 2-terminal resistors always leads to a bilateral

resistor (see Prop. 1, Fig. 2(b)).

Example 2. Consider the following collection of all directed permutations

on three objects which complement all three objects or none:

/l 2 3\ . /l 2 3
order 2

order 3

The Tf-symmetric 3-terminal resistors corresponding to the above five directed
permutations are synthesized as shown in Fig. 15(a)-15(e). The symbol K;
denotes the complement of CB(1), obtained by multiplying all terminal voltages
and currents of ^^ by minus 1. Such an element can be realized with the help

12If m < n, there will be more objects to be permuted than there are terminals.
Therefore we define Tf3(i) = <J>, if itf (i) > m, or if ffJ (I) > m, where * denotes the
empty set. We also define the connection between terminal "i" of one m-terminal
resistor (^(j) and terminal "c|>" of an m-terminal resistor Tft(Cg(k)) to be the
original terminal "i."

13Up to a relabelling of the three oriented objects.
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of phase-inverting ideal transformers (see Fig. 14, for example). However our

choice of complementary symmetric elements as building blocks is motivated by

the availability of many such physical elements in intrinsic form. For example,

the complement of a 2-terminal resistor is obtained by transposing its terminals.

The complement of a pnp transistor is an npn transistor having an identical

(apart from a negative sign in v. and i.) set of characteristics. The complement

of a p-channel FET is an n-channel FET, etc. As a concrete application of

Algorithm l1, let us choose a_"biased" npn transistor for H& '. Then ^Wr
is identical to t2^ ', and H5 is the "complementary biased" pnp transistor
in the if -symmetric circuit of Fig. 15(a). The resulting 3-terminal resistor

^R shown in Fig. 15(f) coincides with the well-known complementary-symmetric
push-pull amplifier circuit.

Example 3. Synthesize aff-symmetric 4-terminal resistor ^-R, where ff "(234l)*
Since if4 = I, we need four identical resistors ^^, ^(2\ Q^ and &4>.
By interconnecting the four identical 2-terminal resistors we obtain the if-sym-

metric 4-terminal resistor shown in Fig. 16(a). Observe that terminal 1 of K

is obtained by connecting terminals 1of ^ ,ff(l) = 2 of ^ ,tt (1) =» 4>
of Q^ and f3(l) = $ of ^^ together, or in short, by connecting terminals
1of ^^ and 2of ^$2* together. Similarly, terminal 2of ^ is obtained by
connecting terminals 2of^^ and 1of Q^' together, etc. It follows from
an analogous version of Prop. 15 for multiterminal resistors that Kc is also
2 3

if - and if -symmetric.

Example 4. Let if -[ j be a prescribed symmetry permutation of a 4-terminal
rr\ \2 3 4 1/

resistor ^2. Again %= 4 and choosing four identical 2-terminal resistors as in
Example 3, we obtain the ff-symmetric 4-terminal resistor shown in Fig. 16(b).

In Algorithm 21 several techniques will be described for making inter

connect!6nsbetween terminals of a Tr-symmetric m-terminal resistor ^e in order to

obtain a if-symmetric n-terminal resistor ^K with n _< m. This algorithm can
also be applied to several symmetric multiterminal resistors by considering them

as one overall symmetric multiterminal resistor as follows: Given a tt -

symmetric m -terminal resistor Ic ' and a ir -symmetric m -terminal
resistor ^(<r ,we form the composite m-terminal resistor He* with m = m + m
by retaining the terminal numbers 1,2, ...,nT ' of ^ ', and by relabelling the
terminal numbers of ^2^ by m^+1, m^+2,.. ..m^+m^2^ =m. Clearly, ^
exhibits a Tr-symmetry where tt acts on 1,2, ...,nr as tt does, and where tt
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acts on m(1)+l, m(1)+2,...,m as tt(2) does on 1,2,... ,m(2). Since subsequent
operations on ^ may involve complementations of all or of none of the terminals
of &, either one or both of the resistors Q^1' and ^ can be complemented
before forming the composite resistor. This results jLn four cases for the

composite^esistor; namely, (1) <$(1) ,_<E<2), W<&». <&*> , (3) <$(1).«(2>.
and (4) ^J^1}^2*• since ^^ and^^ have the same symmetry group all
four composite resistors exhibit ir-symmetry. Observe that since a composite

resistor is made up of two or more uncoupled and unconnected resistors, our

earlier requirement that tt must either complement all or no terminals can be

relaxed. For example, ir may complement all terminals of k: , while *
may not. However, since the cyclic components of tt originate either from ir
or i/2\ ir must complement all terminals, or no terminals of each cycle of tt.
Consequently, the cyclic representation of each cycle of ir must have one of
three possible general forms: Let i.,i0,...,i« denote the original (i.e.,

(D (2)uncomplemented) terminals in a cycle of irv ' or iT y. If this cycle is not

complemented in the associated composite permutation ir, then this cycle must

have the general form (i^...^) and can clearly only be anormal-order cycle.
If ir complements all terminals of the cycle, then the cycle is a normal-order
cycle (i i2i3i,i ...i£) if £is even, or adouble-order cycle (i^i^...
i0i.,i,>i i,...i ) if ft is odd. The above observations may be summarized by
* 1 2 3 4 ft p u

saying that each cycle of the composite permutation tt may assume one of the

following three types of cyclic notation: Type 1: (i^...^), Type 2:

(i1i2i3i4i5.•.i£>•and Type 3: (i^V••ViWa*'*V ' We *™ U™
ready to present Algorithm 2\ which parallels that presented in the preceding

section.

Synthesis Algorithm 2f. Given a ir-symmetric m-terminal resistor k, then the

following terminal interconnection techniques allow us to generate a large

variety of if-symmetric n-terminal resistors ^B with n£ m. Let the cyclic
decomposition of tt be given by tt = c-c2...,

(A) Interconnection of terminals belonging to a cyclic component of normal-
order (type 1 or 2). Let c. be a cyclic-component of tt of normal-order with
cyclic notation: (1) c -(i^.. .ig.. .i^) where ft «ks and (2) cj =
(i-dL...! i -...1J, where ft = ks is an even integer with s even. We form
aif-symmetric resistor <$ (n=m-ft+s) as follows: Terminal ±1 of <£ is realized
by connecting terminals ±v±s+v•••,i(w)stl of ^ together. Terminal i2
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of & is realized by connecting terminal i2»is+2'* **,:L(k-l)s+2 of together.
Iterate this procedure until terminal i of H2 is realized by connecting
terminals i ,i9 ,...,i, of ^together. Any other terminal iof^belonging

S ^S KS

to the other cycles of tt remains unchanged and is simply labelled as terminal

i of^ . The new resistor ^P so realized has n = m - ft + s terminals and

exhibits ff =cic2*",ci-l£jCj+l** *and' dj = ^ili2,,"±s) lf Cj =^lV*^s' *'V'
or Cj =(i^...^) if Cj =(iiV-'Vs+r-'V-
(B) Interconnection of terminals belonging to a cyclic component of Type 2
or Type 3: Let c, be a cyclic component of tt satisfying one of the following

two properties: (1) c has a type 2 cyclic-notation c = (ii12" *,isis+l" '^S? *
where ft = ks is an even integer, with k even and s odd. (2) c.. has a

type 3cyclic notation Cj =(i^.. -±a±M-•-h1!1!'' "Vs+l"' *Ift) »where *=kS
is an odd integer with k odd and s odd. Under the above assumptions, we can

form aA-symmetric n-terminal resistor ^(n-m-ft+s) as follows: Terminal i1
of ^ is realized by connecting terminals ^9^a+19'*,,:L(k-l)s+l of
together. Terminal i2 of ^ is realized by connecting terminals 12»is+2,,,,,
i„ 1N 0of ^ together. Iterate this procedure until terminal i of <Q is
(kr1)8+2 ,-r*

realized by connecting terminals V^s''' #,±ks of ^ together. Any other
terminal i of Q belonging to the other cycles of tt remains unchanged and is
simply labelled as terminal iof <£ . The new resistor <$> so realized has
n = m - ft + s terminals and exhibits if-symmetry, where if = cic2'-"cj-icjcj+l'* *'
and c. = (i-i9...i i-i9...i ). Hence, the resulting cyclic component e. has a

j X tm S 1 fa S

double order.

(C) Interconnection of terminals belonging to two compatible cyclic components.
Let c and c. be any two cyclic components of tt which are compatible in the
sense that they have the same order, and have the same type of cyclic notation;

namely, (1) type 1notation c± =(i-^-•-i^) and c.. =(J-^***V' (2) typG 2
notation c± -(i^^i,,...y and Cj =(jl32j_3V *'V' where £±S 6Ven'
(3) type 3notation c± =(i^...i^i.^.. .1^) and cj =(jiV'^ft^lV**V where
ft is odd. Under the above assumptions, we can form a if-symmetric n-terminal

resistor ^ (n=m-ft) as follows: Terminal ±1 of^is realized by connecting terminals
i and j of ^ together. Terminal i2 of He* is realized by connecting terminals i2
and j9 of ^-R together. Iterate this procedure ft times until terminal i& of Ke is
realized by connecting terminals i£ and j£ of ^ together. Any other terminal
i of ^ belonging to the other cycles of tt remains unchanged and is simply
labelled as terminal i of ^. The new resistor ^ so realized has n=m - ft
terminals and is if-symmetric, where if <= c^* *,ci-lcici+l*" *Cj-lCj+l"*" *
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Just as in the n-port case, a large variety of distinct Tr-symmetric n-

terminal resistors may be generated from the same cyclic components having

distinct but equivalent cyclic notation. However since the complements of the

terminals are not available in the multiterminal case only "ft" distinct

interconnection schemes are generated. A combination of Techniques (A), (B)

and (C) would give rise to an even larger variety of Tr-symmetric n-terminal

resistors. For example, the following well-known corollaries follow directly

from Technique (C):

Corollary 1. Given two distinct Tr-symmetric n-terminal resistors He and

^P , then the n-terminal resistor H8 obtained by interconnecting corresponding

terminals of le and ^K is also Tr-symmetric.

Corollary 2. Let ^ denote a complementary symmetric nrJ -terminal resistor,

j = 1,2,...,k. Let ^ be an n-terminal resistor obtained by interconnecting
terminals of crP(1), <13(2) ,... &(k) with each other. Then ^ is also
complementary symmetric.

Remark: Proposition 3 is a special case of Cor. 2.

The proof of the validity of Techniques (A), (B), and (C) of Algorithm 2f

is analogous to the proof of Algorithm 2 and will not be given. Instead, we will

illustrate the application of Algorithm 2? with an example:

Example. Let ^-ft be a Tr-symmetric m-terminal resistor, where ir = (1 2 3 4) (5 6)

(7 8 9 iO 11 12) and m = 12. We will apply Techniques (A), (B), and (C) to

synthesize a if-symmetric n-terminal resistor fce where if = (1 2) (3 4 5 3 4 5)

and n = 5: Applying first Technique (A) to the first normal-order cyclic

component (12 3 4), we connect terminals 1 and 3 together and label it as

terminal 1 of vc. Similarly, we connect terminals 2 and 4 together and label

it as terminal 2 of fe . The resulting cycle is (1 2). Next, let us apply

Technique (B) to the third cyclic component (7 8 9 15 11 12) which has a Type 2

cyclic representation. Let us choose s = 3 and obtain a new double-order

cycle (7 8 9 7 8 9) by connecting terminals 7 with 10, 8 with 11, and 9 with 12,

and relabelling them as terminals 7, 8, and 9, respectively. Applying

Technique (C) to the second cyclic component (5 6) of ir, and the reduced first

component (1 2), we connect terminals 1 with 5, and 2 with 6, and relabel them

as terminals 1 and 2 of He , respectively. Finally, we relabel terminals 7, 8,

and 9 by 3, 4, and 5, respectively to obtain the 5-terminal resistor C-R.
Clearly, <-j2 is if-symmetric, where t = (1 2) (3 4 5 3 4 5) .
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V. SOME APPLICATIONS OF SYMMETRY IN NONLINEAR CIRCUITS

When a Tr-symmetric multiport or multiterminal resistor is driven by an
arbitrary excitation x, then in general the response y has no special properties.
However if the excitation x(t) is periodic of period T, and Tr-symmetric in the
sense that P(ir)x(t) = x(t) for all t, or time-shifted Tr-symmetric in the sense
that P(ir)x(t) - x(t+kT/ft) for all t, where k and ft are integers, then we will
show that under rather mild conditions, the response ?(t) also exhibits the same
symmetry property. This property can be exploited to simplify the analysis, or
to derive some frequency separation properties. In fact, many communication
circuits make implicit use of such frequency separation properties.

A* Application 1: Simplifications under ir-symmetric excitations

Under the additional standing assumption that the response is unique, we
will show that asymmetric excitation x(t) (p(Tr)x(t)=x(t)) implies asymmetric
response (Prop. 20), namely P(Tr)y(t) = y(t) . This latter constraint imposes
additional relationships that must be satisfied by the components of y.
Consequently, only a subset of components of y need be determined by circuit
analysis. The remaining components are then obtained by direct substitution.
This approach greatly reduces the computational complexity of the analysis
problem. Since the vectors x and y are eigenvectors of P(tt) associated with the
eigenvalue 1, the matrix S(tt) of all linearly independent eigenvectors associated
with the eigenvalue 1 (Def. 4), comes into play in a natural way. In particular,
a symmetrically reduced resistor having fewer ports or terminals can be defined

with the help of S(ir). We will show that the analysis of the original n-terminal
resistor under the Tr-symmetric excitation x(t) can be reduced to the analysis
of the reduced m-terminal resistor (m<n) driven by a reduced set of excitations.

Some of the results in the following discussion have been derived earlier

by Desoer and Lo [10] using group representation theory. Our approach here is
more direct and simpler in the sense that only elementary properties of the
directed permutation tt derived earlier in Section II are used. Moreover our
computational method is much easier.

Proposition 20. If a Tr-symmetric multiport (resp., multiterminal) resistor R
(resp., <-C) has aunique response y(t) to aTr-symmetric excitation x(t),
namely P(ir)x(t) = x(t), where the hybrid vectors x and y are compatible with
the directed permutation ir, then the response y(t) is also ir-symmetric in the
sense that P(u)y(t) = y(t) for all t.
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Proof: It suffices to consider one instant of time. Let (x,y) be an admissible

pair of R. Then R is Tr-symmetric implies that (P(ir)x,P(Tr)yj is also an

admissible pair. It follows from the Tr-symmetry that (x,P(Tr)y) is an admissible

pair. But the response is unique by hypothesis, hence we must have P(7r)y = y.
•

Definition 10. Given a Tr-symmetric n-port resistor R (resp., n-terminal resistor

<P), let (x,y) denote any hybrid admissible pair compatible with ir. We define

the associated Tr-symmetrically reduced m-port resistor Rq (resp., m-terminal
resistor ^P ), m < n, to be characterized by a corresponding collection of
admissible pairs such that (x ,y )is an admissible pair of Rq (resp., CRo) iff
(s(7r)xo,S(Tr)(ST(TT)S(Tr))"1yo) is an admissible pair of R(resp.,^).
Proposition 21. If a. Tr-symmetric multiport resistor R (resp., multiterminal

resistor (|J) is characterized by a constitutive relation F(x,y) = 0, where (x,y)
are mixed variables compatible with tt, then the associated Tr-symmetrically

reduced resistor R (resp., &o) is characterized by the constitutive relation

F(x ,y )=F(S(Tr)xrt,S(Tr)(ST(Tr)S(Tr))"1yo) =Q (56)

Proof: Follows directly from Def. 10. n

Observe that the power input to both Rand RQ (resp., ^ and ^) are the same,
T T

because x y = x y in view of Def. 10.
~ I ~oio

Proposition 22. If a Tr-symmetric multiport resistor R (resp., multiterminal

resistor Q) ,has a unique response y to a Tr-symmetric excitation x(t) and
x(t) and y(t) are compatible with tt, then the response y(t) is also Tr-symmetric

and is given explicitly by:

y(t) =S(Tr)(ST(Tr)S(Tr))"1yo(t), (57)
where y (t) is the response of the Tr-symmetrically reduced resistor Rq (resp.,
<X) ) to the excitation x (t), where x (t) is related to x(t) by x(t) = S(Tr)xQ(t)(

Proof: It suffices to consider one instant of time. Since x is an eigenvector

of P(tt) associated with the eigenvalue 1, it follows from Prop. 9 that x is a
unique linear combination of the columns of S(tt). Hence, there exists an xq
such that x=S(ir)xo. By Prop. 20, the unique response yof R(resp.,4?) to the
excitation x is also Tr-symmetric and hence y is also an eigenvector of P(ir) with

14Recall from (10) that ST(tt)S(tt) is an mxm nonsingular diagonal matrix. Hence,
its inverse exists. The~reason for introducing this scaling matrix will soon
become clear.

-46- '



eigenvalue 1. It follows from Prop. 9 again that y is a linear combination of

the columns of S(tt); namely y = S(tt)w, where w is a unique m-vector. Now since

S (ir)S(ir) is a nonsingular diagonal constant matrix we can choose

w& [S^iOSWr1^, (58>
where y is an m-vector. Observe that y is uniquely determined because w is

•o ~o ~

unique and S(tt) depends only on tt. Substituting (58) into y » S(tt)w, we obtain

(57). Hence, we have shown that

(x,y) A(s(Tr)xo,S(TT)(ST(Tr)S(Tr))"1yo) (59)
is an admissible pair of R (resp.,^). It follows from Def. 10 that (xQ,yo)
is an admissible pair of the Tr-symmetrically reduced resistor Rq (resp.,^pQ).

n

Proposition 22 is very useful because it allows us to solve a higher

dimensional problem involving n variables by solving an equivalent lower

dimensional problem involving only m < n variables, where m is the number of

distinct cyclic components of normal order of the directed permutation tt. The

algorithm for implementing Prop. 22 is as follows:

Symmetry reduction algorithm. Given a TT-symmetric n-port resistor R (resp.,

n-terminal resistor Q), driven by a Tr-symmetric excitation x(t). Given also
that there exists a unique response y(t), where (x,y) is a mixed pair of

variables compatible with tt.

1. Decompose ir into cyclic components. Identify the normal-order cyclic

components and label them consecutively: c^,c2»...cm.

2. Form the nxm matrix S(ir) by inspection (using Def. 4).

3. Find the constitutive relation of the Tr-symmetrically-reduced resistor Rq

(resp., £Q ) using (56).
4. Find the unique m-vector excitation xQ(t) by inspection from x(t) = §(Tr)xQ(t)
5. Apply the excitation x (t) to R (resp., Q) and compute the m-vector

response yo(t)»
6. Substitute y (t) into (57) to obtain the n-vector response y(t) of R

(resp., ^P).

An example illustrating this algorithm is described in Appendix C.
It follows from the preceding algorithm, that the less normal-order cyclic

components there are in ir, the less computations are involved. In the special
case where tt is block-cyclic; i.e., tt =(l m+1 ... (k-l)m+l)... (m 2m 3m ... kmj
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the analysis of the n-port resistor R(resp., n-terminal resistor^) where
n =km reduces to the analysis of a m-port resistor Rq (resp., m-terminal
resistor ^D ).

°The preceding algorithm is strictly algebraic. Much insight concerning

symmetry can be gained by deriving a corresponding physical interpretation. Let
us first consider Steps 1-5 for a Tr-symmetric n-port resistor. In order to

satisfy P(ir)x(t) - x(t), all ports of R belonging to the same cyclic component
c. of tt must be excited by identical sources with appropriate polarity (i.e.,
the polarity must be reversed for a complemented port) . Remember that the
mixed variables x and y are assumed to be compatible with tt, which implies that
all variables of one cycle are either all voltages or all currents. Hence if c^
is driven by voltage sources (resp., current sources), then all ports belonging
to c. may be connected in parallel (resp.. in series), provided the terminals in
each complemented port are transposed, thereby reducing the n.. ports belonging to
c into a single port. How about the ports belonging to double-order cycles?
Suppose tt contains adouble-order cycle cr =(i^...i^i^- \) >then it: follows
from Prop. 4 that Ris also Trk-symmetric. But Trk contains the double-order
cyclic component ak, which is easily seen to be decomposable into
ak =(ii)(lL)...(lik). In other words, each port belonging to adouble-
order cyclic component of tt also exhibits complementary symmetry. Since the
complement of a voltage source (resp., current source) is only identical to the
original source if it is a0-volt voltage source (resp., 0-ampere current source)
it follows from P»x(t) = x(t) and P(ir)v(t) = y(t), that under the conditions
of Prop. 22, each port of Rbelonging to adouble-order cyclic component of tt
must have zero port voltage and zero port current and hence must be terminated

by a nullator in order to obtain RQ.
For example, suppose the 7-port resistor R shown in Fig. 17(a) is Tr-symmetric

with tt = (1 45)(2 2)(3 6)(7). To derive Rq, we identify 3normal-order cyclic
components (1 4 5)(3 6) and (7) and a double-order component (2 2). Suppose
ports 1,4,5,7 are driven by Tr-symmetric current sources, and ports 2, 3and 6
are driven by Tr-symmetric voltage sources. Our preceding analysis shows that
this excitation is Tr-symmetric only if the voltage source across port 2 has
zero voltage. Hence RQ is a3-port resistor as shown in Fig. 17(a). Observe
that port 1of R is a°current-driven port obtained by connecting ports 1, 4
(transpose of port 4), and 5in series; port 2is avoltage-driven port obtained
by connecting ports 3and 6(transpose of port 6) in parallel; and port 3is a
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current-driven port consisting of port 7 by itself. Observe that port 2 of R

is terminated in a nullator and embedded within RQ.
A similar interpretation can be given for ^ associated with an n-terminal

resistor tc. Since there is only one possible connection for two terminals, in

contrast with the two possibilities (series or parallel) for ports, the reduced

resistor ^ given in Def. 10 has an even simpler physical interpretation if

it is voltage driven (x=v). Here the terminals belonging to the same normal-

order cyclic component of ir are connected together, assuming a phase-inverting
transformer has been inserted for each complemented terminal. Each terminal

belonging to a double-order cyclic component is likewise connected to one

terminal of a nullator (the second terminal is connected to the common datum) .

For example, suppose that the voltage-driven 5-terminal resistor le* shown
in Fig. 17(b) is Tr-symmetric, where ir - (1 2) (3 3) (4 5). Since terminal 3
belongs to a double-order cycle, its terminal voltage and current are identically
zero and it is therefore terminated by a nullator. Since there are only 2

normal-order cyclic components, ^ is a 2-terminal resistor shown in Fig. 17(b).
Consider Step 6 of the symmetry reduction algorithm. In view of the

Tr-symmetry of R(resp.,^) and our preceding interpretation of RQ (resp., ^kJ >
it follows that the response voltage (resp., current) of each port (resp., terminal)
belonging to each normal order cyclic component c. of order n^ is equal to 1/n^
times the voltage (resp., current) response of the corresponding port in RQ

(resp., terminal in <B )• But this is precisely the response obtained from (57),
using Cor. of Prop. 9.

For example, referring again to Fig. 17(a), it follows that the voltages
across ports 1, 4 and 5 are equal to 1/3 of the voltage across port 1 of RQ.
Similarly, the currents in ports 3 and 6 of R are equal to 1/2 of the current
of port 2of R. For the 5-terminal resistor ^ shown in Fig. 17(b), we found
the response current of terminals 1and 2of ^ are identical to 1/2 of the
current of terminal 1 of <£ . Similarly, the response currents of terminals 4

and 5are equal to 1/2 of the current of terminal 2of CRQ-
The usefulness of Prop. 22 motivates our search for analogous reduction

techniques involving an excitation symmetry other than P(ir)x(t) = x(t). Since
the preceding algorithm depends crucially on the property that x(t) is an
eigenvector of P(ir), and since for nonlinear elements, only real excitations
make sense, it follows that any analogous technique would require at the very
least, that the excitation vector x(t) be a real eigenvector of P(ir). But
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since P(tt) is a directed permutation matrix, by (7) all the eigenvalues of

P(ir) are roots of unity and thus the only real eigenvectors are those associated

with an eigenvalue +1 or -1. Hence, the only possible analogous case requires

an anti—ir-symmetric excitation vector x(t); i.e., P(ir)x(t) = -x(t). Under this

condition, a careful analysis of our preceding derivation would show that the

response y(t) is also anti—ir-symmetric in the sense that P(ir)y(t) - -y(t),

provided that in addition to being Tr-symmetric, the n-port resistor R (resp.,

n-terminal resistor ^-R) is also complementary symmetric; i.e., symmetric with

respect to I = (1 I) (2 2)... (n n). It follows from Prop. 4 that R (resp., ^R)

is then also ff-symmetric, where ft = tt © I = tt. But the directed permutation

matrix P(ff) = P(tt) = -P(ir) and hence P(ft)x(t) = x(t). We will summarize the

above observations as follows:

Proposition 23. If R (resp., £j2) is both Tr-symmetric and complementary symmetric

(i.e., I-symmetric), and if the excitation x(t) is anti-ir-symmetric, then both R

(resp., ^-Jcv and the excitation x(t) are Tr-symmetric.

Proposition 23 guarantees that our earlier symmetry reduction algorithm

is also applicable for anti-Tr-symmetric excitations. Hence, there is no need

to develop a separate algorithm for handling anti-Tr-symmetric cases. Proposition

23 has the following physical interpretation: If an n-port resistor R (resp.,

n-terminal resistor <-{2) is excited by anti—rr-symmetric sources, then by

transposing the terminals of some of the sources, the excitations can always

be made to exhibit ir-symmetry, provided R (resp., H2) exhibits tt- and I-symmetry.

It follows from the preceding, observations that our symmetry reduction algorithm

is in fact the most general method that can be derived for nonlinear multiport and

15
multiterminal resistors.

B. Application 2: Frequency separation under time-shifted Tr-symmetric excitations

Many communication circuits make use of symmetry configurations so that the

odd and even harmonic components of various waveforms are separated and extracted

at separated ports. Although the network may contain inductors and capacitors

[12], the frequency separation is achieved solely by symmetry properties and not

15For linear R,L,C elements, phasors may be used in the frequency domain and
hence complex eigenvectors of P(tt) are allowed. In this case, additional symmetry
reduction techniques may be derived. The well-known method of symmetrical
components widely used in analyzing linear power circuits is a case in point [1,3].
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by any filtering operation. For this reason, to uncover the mechanisms which
led to this frequency separation phenomenon, it is convenient to eliminate all
irrelevant inductors and capacitors, or to replace them by resistors.

Now suppose the n-port resistor R (resp., n-terminal resistor 4c) is
Tr-symmetric, where tt has order ft. Suppose the excitation satisfies the property
P(Tr)x(t) - x(t + mf/m) for all t, where m and m1 are integers. Then we have

?*(Tr)x(t) -x(t + m'ft/m) =x(t), for all t (60>

since P*(ir) ° 1 • Hence x(t) must be periodic and mfft/m must be amultiple of
the period T of x(t) or k'T = m'ft/m. Therefore the most general form of tlme-
shifted symmetry for the excitation vector x(t) is given by

P(ir)x(t) = x(t + kT/ft), for all t (61)

where 0 < k < ft is satisfied by a suitable choice of m" Ink' - m"i = k.

Theorem 2. Let R (resp., <£) be a Tr-symmetric time-invariant n-port (resp.,
n-terminal) resistor. Let the mixed pair of hybrid variables x and y be
compatible with tt, and let the response y(t) be unique for each excitation
x(t). If the excitation x(t) is T-periodic and satisfies (61) ,where ft is the
order of tt, then the response y(t) exhibits the same time-shifted symmetry;

namely,

?Or)y(t) - y(t + kT/ft), for all t. (62)

Proof: Let (x(t),y(t)) be an admissible pair, then (x(t +kT/ft) ,y(t +kT/OJ
is an admissible pair since R(resp., Q) is time invariant. Since R(resp.,^)
is Tr-symmetric, (p(ir)x(t),P(ir)y(t)) is also an admissible pair. Now, if x(t)
satisfies (61), then (x(t +kT/ft),P(Tr)y(t)) is also an admissible pair. It
follows from the uniqueness of the response that y(t) must satisfy (62).

Q

Corollary 1. If a bilateral voltage (resp., current) controlled one-port

resistor is driven by an odd-symmetric voltage source v(t + T/2) = -v(t)
(resp., current source i(t +T(2) =-i(t)) ,then the current (resp., voltage)
response is also odd symmetric.

Proof: Choose P(tt) = -1, k = 1, and ft = 2 in Thm. 2. Q

Corollary 2. Let R be a voltage-controlled Tr-symmetric 2-port resistor,

where tt =/* 2^ : Let the excitation voltages satisfy
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v1(t + T/2) = -v^t), for all t (63a)

v2(t + T/2) = -v2(t), for all t. (63b)

Then the current response must satisfy the same property:

ix(t + T/2) =-i^t), for all t (64a)

i2(t + T/2) =-i2(t), for all t. (64b)

Proof: Choose P(ir) =
-1 0

0 1
k = 1 and ft = 2 in Thm. 2.

Observe that (63a) and (64a) imply that v^t) and i^t) contain only odd
harmonics, whereas (63a) and (64b) imply that v2(t) and i2(t) contain only even
harmonics. Hence ports 1 and 2 separate the frequencies into odd and even harmonic

components, respectively. An example of a 2-port resistor having this property

is shown earlier in Fig. 3. In fact, Prop. 2 in Section I is a direct conse

quence of Cor. 2. Observe that this frequency separation property is taken

advantage of implicitly in the full-wave rectifier circuit obtained by replacing

each resistor in Fig. 3 by a diode. If we excite port 1 with an ac voltage

waveform and port 2 with a dc voltage, then the current in port 1 will not

contain any even harmonic components and the current in port 2 will not

contain any odd harmonic components.

Another 2-port resistor R that exhibits the same Tr-symmetry where

is characterized by:-G!)
v2 + i2 = 1 (65a)

v2 +i2 =1 (65b)
If we excite ports 1 and 2by v^t) =sin tand v2(t) = sin 2t then i^t) =
sin t- cos t and i9(t) = cos t constitute a possible response. Observe that
v1(t) and v2(t) satisfy (63) and i^t) and i£(t) do not satisfy (64). This
paradox can be resolved by observing that (65) does not not give a unique

solution to the excitation. This example clearly shows that our standing

uniqueness assumption is in fact necessary for the various symmetry properties

to hold.

Corollary 3. Let R be a complementary symmetric (i.e., a (1 1)(2 2)-symmetric)
two-port resistor characterized by a hybrid representation i1 =h^v^i^ and

T
i0 = hn(v,,i0). If the excitation x = [v- i„] satisfies
2 2 1 Z x £.
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v1(t +T/2) =-v^t) (66a)

i2(t +T/2) =-i2(t), (66b)
then the response y = [i1 v2] must satisfy the same symmetry property:

i^t + T/2) = -i-^t)

v2(t +T/2) --v2(t). (67b)

Proof: Choose P(ir) » "J _J ,k«1and ft =2in Thm. 2. H

As an application of Cor. 3, let i2(t) =0 for all t. Then Cor. 3 implies
that if v,(t) contains only odd harmonics, so do i^t) and v2(t). For example,
the push-pull amplifier circuits shown in Figs. 9(c), (d) and (e) and Fig. 15(f)
are all designed using this arrangement. The absence of even-order harmonics

at both input and output ports make these amplifier configurations superior to
other nonsymmetric configurations in terms of both harmonic distortion and

dynamic range.

VI. CONCLUDING REMARKS

The concepts of "directed permutation" and its decomposition into cyclic
components play a dominant role in this paper. While these concepts are new,

they are really simple generalizations of classical concepts from group theory.

These results provide us with the natural tools for studying symmetry in

nonlinear circuits, and should be equally useful in future works in this area

[11]. Although this paper considers only multiterminal and multiport resistors,

all results also hold, mutatis mutandis, for inductors, capacitors, and memristors,
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APPENDIX

APPENDIX A: GENERAL FORM FOR THE HYBRID MATRIX OF A LINEAR ir-SYMMETRIC RESISTOR

Our objective in this section is to identify the general structure of

the hybrid matrix H associated with a Tr-symmetric n-port resistor R (resp.,

n-terminal resistor ^R) which is compatible with the hybrid vectors x, and y.
It follows from (22) that our problem reduces to that of finding a general nxn

matrix solution H to the equation

P(tt)H = HP(tt) . (A-l)

An algorithm for finding the general nxn matrix solution X to the matrix

equation AX = XA for an arbitrary nxn matrix A is described by Gantmacher [17]

and is therefore applicable to our problem. However, by taking advantage of

the special properties of the directed permutation matrix P(ir), we will derive

a more practical algorithm.

Using the directed permutation x defined in (3) and defining Hf =

?(X )§P(x )» we obtain the following expression upon substituting H =

PT(Tr)HP(ir) from (A-l):
-1,H? = tr^)?XWP(X7r)][P(X7rX)HP(X7r)3[?i(X7r)P(Tr)P(X7r)]

A „TNow defining P(a) = P 0^)?00?(X ) and making use of (7), we obtain
—

•1 n
0 \J

•

Hf
•

**

' 0 1

+1 0

•

•

0 +1

1'.
• • n

• •

"l'O

•

0 '~0 +1

u 1 0

0 1

+1

H' = VL(o)K'?(o) =

(A-20

A -1where the cyclic decomposition of a = x ° * ° X^ is given by a - c^...cfc,
where c. = (s+1 s+2 ... s+ftj or c. = (s+1 s+2 ... s+ft. s+I s+2 ... s+ft.) and

3 j J J J

s = V ft . In terms of H* (A-l) now assumes the form P(a)Hf = H'P(a), a
i=l
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much simpler equation to solve in view of the special structure of P(o) . Once

H» is determined, we can recover H=P(x )HfPT(x_). To find Hf, let us partition
the matrix H1 into t blocks, corresponding to the "t" diagonal blocks of P(a),

or to the "t" cycles of a. Since the matrix P(a) is block diagonal, each block

H1 in (A-2) is obtained by premultiplying VL'±. by the j-th diagonal block of
P(a) and postmultiplying by the transposed of the i-th diagonal block of P(a).
Hence the structure of H* can be determined by identifying the structure of each

block H . separately. An analysis of (A-2) will reveal that only 5 cases need
be considered and we will denote these 5 "prototype" blocks by 1^, H2> H3, H^

and H-, respectively.

Case 1. H- is a diagonal mxm block made up of columns s+l...s+m and rows

s+l...s+m of Hf, and a has a normal-order cycle (s+1 s+2 ... s+m) . In this

case, the structure of H- in (A-2) must satisfy the condition:

0 1

?1S 'I

0

Si
•i o

Case 2. H9 is a diagonal mxm block made up of columns s+1

s+1 ... s+m of Hf, and a has a double-order cycle (s+1 s+2

(A-3)

s+m and rows

s+m s+1 s+2

s+m). In this case, the structure g2 in (A-2) must satisfy the condition:

0 1 -1

H2 = ?2
(A-4)

-1 l'O

Case 3. H is an off-diagonal kxm block made up of columns s+1 ... s+m and

rows q+1 ... q+k of H1, and a has two normal-order cycles (s+1 ... s+m) and

(q+1 ... q+k). In this case the structure of H3 in (A-2) must satisfy the
condition:

0 1

53 s3 '1

•o

H. (A-5)

' 1*0

where the left permutation matrix has dimension kxk and the right permutation

matrix has dimension mxm.

Case 4. H, is an off-diagonal kxm block made up of columns s+1 ... s+m and

rows q+1 ... q+k of H1, and a has a normal-order cycle (s+1 ... s+m) and a
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double-order cycle (q+1 ... q+k q+1 ... q+k). In this case, the structure of

H, in (A-2) must satisfy the condition:

0 1

?4
-1

'1

0

?4
1 0

Case 5. H_ is an off-diagonal kxm block made up of columns s+1

rows q+1 ... q+k of Hf, and a has two double-order cycles (s+1

(A-6)

s+m and

s+m s+1

s+m) and (q+1 ... q+k q+1 .

must satisfy the condition:

q+k). In this case the structure of H_ in (A-2)

0 1

h =
-1

'. '1

'0

-1

"5
(A-7)

1 0

Solutions to equations((A-3)-(A-7))can be easily found by analyzing the effect

of a right multiplication of H with the matrix P = : •. -

right entry is + 1, then a right multiplication of matrix H. with P implies a

cyclic rotation of the columns of H., i.e. the first column is shifted into the

second position, the second column is shifted into the third position, ..., and

the last column is shifted into the first position. If the upper right entry

of P is -1, then a right multiplication of H. with P performs the same cyclic

rotation except that the last column of H. is multiplied by -1 before being
T

shifted into the first position. A left multiplication of H, with P operates

analogously on the rows. Let us now derive the solutions of (A-3)-(A-7):

Case 1: The general solution to (A-3) is easily found to have m free parameters

a- ... a , and is in fact just the cyclic matrix obtained earlier in (23):

Si

m

m m-1

m

* 1 «*• o
m-1 m-2

If the upper

(A-8)

Case 2: The general solution to (A-4) is easily found to have m free parameters

ala2 .. a , and assumes the following form:
m
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52 =

a- -a
1 m "am-l*-"a2

m

a- -a
1 m

-a.

a_ ... —a •
1 4

a i a n... a_
m-1 m-2 1

(A-9)

Case 3: The general solution to (A-5) is not as simple as in cases 1 and 2 since

the cyclic rotation of the k rows and the m columns can generate several distinct

patterns depending on the greatest common divider of k and m, henceforth denoted

by gcd (k,m) . The effect of a cyclic shift of the rows and the columns onL

can be more easily visualized by forming the following mkxmk square matrix C

made up of mk identical blocks, namely, H0.
*i •*- ~3

m columns —'

k rows <

-V
m blocks *

k blocks

H0 H« H0
~J -3 ~3

h h ?3
H0 H« H0
~j ~j -3

ki_

h : : : • 1
ai ! . ;

ai| ! •

; ai ; ;
i ^ !

IBi 1

I • ! ai
L : ! . \

(A-10)

Now let us investigate the effect of shifting all columns of C_ to the right by

one position, and then shifting all rows of the resulting matrix from top to

bottom by one position. Since C^ is a square matrix, the structure of C» must
be cyclic as in H-. This implies that all diagonal elements of C^ must be
identical and that all elements located on a line parallel to the diagonal line

of C0 must also be identical. Moreover, since C. contains mk identical blocks,
-3 -3

(A-5) requires that after the above shifting transformations, the corresponding

mk blocks remain identical to each other.

We first consider the special case that k and m are coprime or gcd(k,m) = 1.

In this case, a careful analysis of (A-10) will reveal that the diagonal entries

of C3 actually pass through all entries of H. in the sense that if we cut out
all entries of H„ located along each -45°-line (parallel to the diagonal line)

and line them up, we would obtain precisely the diagonal entries of C^. In
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other words, the diagonal entries of C are made up of a union of the entries

of H3 located along each of the (m+k-1) lines parallel to the diagonal line of
H3. It follows from the above observations that if gcd(k,m) = 1, then all entries
of H3 must be identical.

In the general case, an analogous analysis of (A-10) will reveal that the

diagonal entries of C3 pass through only km/gcd(k,m) entries of H ,where each
entry is passed over gcd(k,m) times. If we repeat the above analysis on the

entries along each -45°-line parallel to the diagonal line of C~, we will find

that they too pass through only km/gcd(k,m) entries of H , where each entry is

passed over gcd(k,m) times. It follows from the above observations that in

general g^ contains gcd(k,m) free parameters located in such a way that (A-5)
is satisfied. For example, let k = 6, m = 4, and let the corresponding

normal-order cycles be (1 2 3 4 5 6) and-(7 8 9 10). In this case, H is a 6x4

matrix and gcd(6,4) = 2. Hence £3 is a 24x24 square matrix whose diagonal entries
are made up of a union of 24/2 = 12 entries of H.. An analysis of this matrix

shows that H must be given as follows:

al a2 al a2

h

~C4 =
m blocks

a2 a± a2 &1

al a2 al a2

a2 al a2 al

al a2 al a2

J*2 al a2 al

Case 4: The general solution H, of (A-6) can be determined as before by analyzing

the effect of the column and row shifting transformations imposed by (A-6), which

differs from that of (A-5) only in the additional operation where the last row

of H. is multiplied by minus 1 before it is shifted into the first row of H..
~*t ~4

To analyze the structure of H,, it is convenient to form the following mkxmk

square matrix C,:

k rows

k blocks

H. H. H.•••
~4 ~4 ~4

—H. —H. —H,•••
-4 ~4 ~4

H. H. H,...
~4 -4 ~4

m columns

ala
+ al +

A. _
+ 4-

31
_ai

ai_
- 31

—

+ +
31

• 4- iai 4-
ai

A-5

(A-ll)
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Observe that C, contains k identical "block" columns made up of an alternation
~4

of H, and -H, blocks. To emphasize this sign alternation property, each block

in (A-12) is indicated by a plus or a minus sign. It follows from (A-5) and

the above construction that all diagonal entries of C, must be identical to

each other; say a-. This condition may conflict with the condition that the

(1,1) entry of all H,fs of C,, are equal to a-. Depending on the least common

multiple of k and m, henceforth denoted by ftcm(k,m) there are two possibilities

to consider: (1) ftcm(k,m)/k = odd integer. In this case, a careful analysis

of C, will reveal that the (1,1) element of C. is identical to the (1,1) element

of H,, whereas the (p,p) element C^ is identical to the (1,1) element of -H4>
where p « ftcm(k,m) + 1. But since the diagonal elements are identical, the (1,1)

element of H. and -H. must be zero. A similar analysis on the other elements of
~4 ~4

C, shows that if ft,cm(k,m)/k is odd, then all entries of H, are identically zero.

(2) ftcm(k,m)/k = even integer. In this case, a similar analysis of C^ shows that
H, contains gcd(k,m) free parameters. For example, let k = 6, m « 4 and let the

corresponding cycles be (1 2 3 4 5 6 I 2 3 4 5 6) and (7 8 9 10). Since

ftcm(6,4)/6 = 2 and gcd(6,4) = 2, H, contains two free parameters. The structure

of H, can be determined by imposing the cyclic conditions on C, and is found to

be as follows:

al "a2 ~al a2

54 =
-a.

al "a2 ~"al

1 "2

-a„ -a,

al_a2

al "a2 "al

a2 al-a2_al

(A-14)

Case 5: The general solution H_ of (A-7) can be determined by the same technique

as before. In this case, we form the following mkxmk square matrix C,:

~5 -5 ?5

S5 =
-?5 95 -95

H, •15 S5

(A-15)

It follows from (A-7) and our construction of C_ that the diagonal entries of

C. are all equal to each other. Again, to determine the structure of H5, two

A-6



possibilities involving the following condition must be considered:

ftcm(k,m) , ftcm(k,m) /K .., >
> * f = even and N ? f = even, (A-16a)
k. m

*cm(k,m) . odd and ta.(k,m) . (A_16b)
k m

(1) Neither (A-16a) nor (A-16b) is satisfied. In this case, all entries of

H_ must be identically zero. For example, let k = 6, m = 4, and let the corres

ponding cycles be given by (1 2 3 4 5 6 I 2 3 4 5 6) and (7 8 9 10 7 8 9 15).
Then *cm(6>4) - 2 and *cm<6>4) =3 imply that neither (A-16a) nor (A-16b) is

6 4

satisfied and we have H_ = 0.

(2) Either (A-16a) or (A-16b) is satisfied. In this case, H5 contains gcd(k,m)
free parameters.

We will close this section by presenting two examples for illustrating the

application of the preceding five cases:

Example 1. Determine the general structure of the hybrid matrix H of a

j. The step-by-
4 2 6 5 13 7/

step procedure is as follows:

1) Find the cyclic decomposition of it: tt = (1 4 5) (2 2) (3 6) (7) .

] to transform tt into a,
„ o n,,, ,wC .w-„ 14 5 2 3 6 7/

where a = (1 2 3)(4 4)(5 6)(7).

3) Since a has 4 cycles, there are 16 blocks in Hf. The diagonal blocks from

the top left to bottom right location are easily found as follows:

"a c b"
r 1 e r

8b a c

c b a

e f

f e

4) Determine the structure of the off-diagonal blocks below the diagonal line

a) The cycles (1 2 3) and (4 4) give rise to a 1x3 matrix of type

H. = [0 00] since [ftcm(3,l)]/3 = 1 = odd. .
-4 I Vi Vi Vi
b) The cycles (1 2 3) and (5 6) give rise to a 2x3 matrix 53 = h h h

containing one free parameter h since gcd(3,2) =1.

c) The cycles (1 2 3) and (7) give rise to a 1x3 matrix H3 = [t t t].
d) The cycles (4 4) and (5 6) give rise to a 2x1 matrix of type H^ = [a -a]
since [ftcm(2,l)]/l = 2 = even.

1 fi
Those above the diagonal line are found by analogous methods.

A-7



e) The cycles (4 4) and (7) give rise to a lxl matrix of H, = [0] since

[ftcm(l,l)]/l = 1 = odd.

f) The cycles (5 6) and (7) give rise to a 1x2 matrix H~ = [w w].

5) Collecting the preceding submatrices together, we obtain the following

general structure for H1.

t _H1 -

a c b J0 ' p p [s
b a c • 0 ' p p s

c b a i 0 ' p p • s

0 0 0 i d ' r -r ' 0

h h h , q i e f i u

h h h ]-q if e , u

t t t, 0 i w w ] g
—

(A-17)

6) Finally, we obtain the general structure of the desired hybrid matrix H

by using the following inverse transformation on H*:

H-P(XJH'P^xJ »
~ - "ir ~ - TT

1 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 -1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 -1 0

0 0 0 0 0 0 1

a 0 p -c b -P s

0 d r 0 0 r a

h q e -h h -f u

-b 0 -P a -c P -s

c 0 P -b a -P s

-h q -f h -h e -u

t 0 w -t t -w g

— ~<

a

b

C

a

b

c

0" p

o1, p
p ' s

J
P | s

c b a o|p P \ s
0 0 0 d l r

_ j_ _
-r 1 0

h h h q I e f l u

h h h -q|f e - u

t
Sr

t t 0 i w w ! g

1 0 0 0 0 0 0

0 0 0 -1 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 -1 0

0 0 0 0 0 0 1

Example 2. To demonstrate the complete generality of our results, we will

rederive the structure of the hybrid matrix of a 6-port resistor R first

derived by Dorfman [18] which is symmetrical with respect to the following
17

three unoriented permutation matrices :

(A-18)

17
It follows from the closure property of the symmetry group that R is also symmetric

with respect to the group of 12 permutations generated by tt-, tt2, and tt via the
composition operation. /
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'I'illlHi)-**™**- »2 =ft
*3-6l35 46)"a2><3><*«<6>-

2 3 4 5 6

5 6 12 3 )' (1 4)(2 5)(3 6),

1) It is easy to see that the TT,-symmetry of H requires that H assumes the
following structure:

H =

a c b'
J

ft n m

b a cl m ft n

c b al n m ft

8 k h1
1

d f e

h g ki e d f

k h «! f e d

(A-19)

2) For the it--symmetric hybrid matrix H in (A-19) to be also ir^-symmetric,

we must have d = a, e = b, f^ = c, ft = g, m - h, and n = k; namely

a c b g k h

H =

b

c

g

h

k

a

b

k

g

h

k

g

b

c

a

3) Finally for ti and 7r2-symmetric hybrid matrix H in (A-20) to be also
tt -symmetric, we must further require b = c and k = h; namely,

b b g h h

H =

This hybrid matrix is precisely the one derived by Dorfman via a much more

involved method.

A-9
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APPENDIX B: ALGORITHM FOR FINDING THE SYMMETRY GROUP OF AN n-PORT RESISTOR

Let R be an n-port resistor. Let G denote the collection of all directed

Tr-permutations such that R is Tr-symmetric. Then Prop. 4 shows that G forms a

subgroup of the group P of all 2nn! directed permutations. Let B denote the

complement of G, hence ttG B^tt £ G. Clearly G can be generated by exhaustively

checking each directed permutation ttG P . The following algorithm makes use of

simple group-theoretic concepts to generate G in a much more efficient way. Our

algorithm is based on the following properties of composition between two directed
18

permutations:

(1) If tt € G and a G G,

then tt GG, (tt0o) G G, (qott) € Gand p GGwhenever p = tt1 (i GZ) .
(2) If tt G B and a G G,

then tt G B, (ttoct) G B, (o<»tt) G B and p G B, whenever p1 = Tr(iGZ).
These properties can be easily verified using the "closure" property of a group.

For example, to prove that (iroa) G B in (2), suppose the contrary, then

(ttoo) G G. This implies ((Tr°a)°cT ) G G and hence tt G G, a contradiction.

It follows from properties (1) and (2) that G is a group, and B is a union of

some cosets of G[13-14].

The flow chart for our algorithm is shown in Fig. 18. We start with G

containing the identity permutation I, and B being equal to the empty set <J>.

For each tt G (B U g), we check whether tt G G, or tt G b. In the former case, we

use property (1) to generate the following family

{TT^ala e G, iGN} U {qott1^ GG, iG N}

(where N denotes the set of nonnegative integers) and place them in G.

Simultaneously, we use property (2) to generate the following family

{(P°a)j|p G B, aG G, j=+1}

and place them in B. On the other hand, if tt £ B, then we use property (2) to

generate the following family

18
As a mnemonic tool, we choose G and B to stand for Good or Bad subsets of P

Property (1) has been used in [19] for finding partial symmetries of Boolean n
functions.

19 1
If p = tt where i £ Z (Z denotes the set of all natural numbers), we say p

is an i-th order root of tt.
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{p°a|a e G, p1 = tt, 1G z} U {aop|a G G, p1 = tt, iG z} U b

and call this the updated set B. The next step is to count the total number of

elements present in G and B. If #G + #B = 2nn!, where #G and #B denote the number

of elements in G and B, respectively, we are done. Otherwise, return to

step (2) and choose another directed permutation belonging neither to G nor B,

and repeat steps (3) and (4).

Clearly, the choice of the new element in step (2) affects the efficiency

of this algorithm in a significant way. If tt G G and is of a high order, then

many new elements of both G and B will be efficiently generated. If tt GB has

a high-order root p such that p = tt, then many new elements in B will be

efficiently generated. Hencei a good strategy is to choose a new element tt
ft ft

which has either a high order (ft » 1, tt = I), or has many roots (ft » 1, p = tt) .

Unfortunately, these two criteria often represent conflicting requirements.

Let us now consider a specific example:

Example. Let R be a 2-port resistor characterized by:

v =i3
1 x2

v =-i3
2 xl

Since n = 2, there are eigjit possible directed permutations. (1) Initialization:

G= jL 2)| ,B={<j>}. (2) Choose adirected permutation tt =( ^). (3) We
check and find t^ £ G. Hence ir., Gband B=ill 1)f • We return to (2) and
choose tt2 =/* 2\ . We check and find ir2 GG. Hence G=i\l 2), (* *Yl and

B=<[2 -J, | VL Since #G + #B =4, we return to (2) and choose tt =[ _).

We check and find tt3 £G. Hence B=Ul ^J, /* ^\, I1 \ (]_ 2U . Since #G +

#B = 6, we return to (2) and choose tt, = ( |. We check and find tt, G g.
4 \2 1/ 4

Hence G-• jQ 2\ (* 2\, f1 ^Y (* *Yl . Since #B +#6 =8, Gis the symmetry
group of the 2-port resistor R.
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APPENDIX C: EXAMPLE ILLUSTRATING THE SYMMETRY REDUCTION ALGORITHM

To illustrate the application of the symmetry reduction algorithm, consider

the following hybrid matrix

a 0 p -c b -p s

0 d r 0 0 r 0

h q e -h h -f u

H. o -b 0 -p a -c p -s (C-1)

c 0 p -b a -p s

-h q -f h -h e -u

t 0 w -t t -w g

The structure of H in (C-1) has been derived earlier in (A-18) for a Tr-symmetric

7-port resistor R, where tt = ( j. If we drive R with the Tr-symmetric
\4 2 6 5 1 3 7/

T Texcitation x = [x- x2 x^ x, x5 x, x_] =[102-11-23] = POOx, we would
obtain by direct substitution the response y = [y- y. y_ y. y_ y, y_] , where

~ i Z o 4 .) o /

y-L = -y4 = y5 = a + b + c+ 4p + 3s, y2 = 0, y3 = -yg = 2(e+f) + 3(h+u), and

y, = 3(t4g) + 4w. To obtain y using the reduction algorithm, we proceed as

follows:

1) Decompose tt into cyclic components: tt = (1 4 5) (2 2) (3 6) (7) .

2) Form the 7x3 matrix:

S(tt) =
10 0-1100

0 0 10 0-10

0 0 0 0 0 0 1

3) Form the 3x3 reduced hybrid matrix:

'3(a+b+c) 6p

HQ = S/OOHSOO =

4)

x = S(Tr)xQ; namely, xQ = [1 2 3] .
5) Calculate the 3x1 ir-reduced response:

"3(a+b+c) + 12p + 9s"
6h + 4(e+f) + 6u
3(t+g) + 4w

?0 = 50xo =

3s

6h 2(e+f) 2u

3t 2w g J

Form the 3x1 Tr-reduced excitation x_, by inspection, such that

6) Recover the original response £ by using (57):
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y. - §(tt)

1/3 0 0

0 1/2 0

L 0 0 1
y0 = ~(7r)

a + b + c + 4p + 3s

6h + 4(e+f) + 6u

.3(t4g) + 4w

Hence indeed the same response is obtained. Observe the savings in computation

could be quite significant if the dimension of the hybrid matrix H is large and

if the response due to several different Tr-symmetric excitations are to be

computed. Observe also that in many cases, H_ is either known or can be easily

obtained by inspection of the reduced resistor.

Now suppose the response y of the above resistor R due to an anti-Tr-symmetric

excitation x = -P(tt)x is desired. Since R is linear, H is complementary symmetric

and it follows from Prop. 23 that R is Tr-symmetric, where

), and the response of R to an anti-Tr-symmetric excitation is
4 2 6 5 13 7/

identical to the response of R to a Tr-symmetric excitation. To verify this,
— T

consider the 7x1 Tr-symmetric excitation x = [x.. x« x0 x, x_ x. x,] = [0120020].
•1 234 5 6 7-,

By direct substitution, we calculate £ = Hx = [y-, y2 Yo Yl Yc. Yc. y?] >where
yx = y4 = y5 = y1 = 0, y2 = 4r + d, and y3 = y& = g + 2(e-f) . Now using the
reduction algorithm, we proceed as follows:

1) I = (1 4 5 1 4 5) (2) (3 6) (7 7)

r> *(Z\ - f0'1 0 0 0 0 01 T
2) §(ir) -lo 0 1 0 0 1 oj

3) H0 =STWHSft)= [2dg 2(e2ff)]
4) x0 = [1 2]
5) yQ = [d+4r 2g+4(e-f)]x

6) I- §W [o1/2 JX0 =&i y2 y3 y4 y5 y6 y7]T'
Again, the same response is obtained, as it should be.
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APPENDIX D: SYMMETRY CONDITIONS IN TERMS OF GENERALIZED COORDINATES

In many cases the obvious port variables (resp., terminal variables)

voltage v and current 1 are often not the most convenient choices. It is

sometimes desirable to introduce a pair of generalized coordinates (|»n) which

include as special cases the hybrid variables consisting of a mixture of both

currents and voltages, as well as the scattering variables consisting of the

incident and reflected voltages. Our objective in this section is to derive

the conditions which guarantee that the results obtained in the preceding

sections in terms of the variables y and i can be translated in terms of |

and n by simply substituting (|,n) for (y»l)»

Definition Dl. Given the voltage n-vector v and the current n-vector 1, the

generalized coordinate variables £ and n are n-vectors defined by the linear

transformation

a b

him: in:
la

n

(D-l)

where ft is a 2nx2n non-singular real constant matrix.
20

Since ft is invertible the inverse transformation is given by

£1
= ft

-1 (D-2)

This is a very general transformation which includes many interesting special

cases. For example, the previously defined mixed variables (16) form an

interesting special case of generalized coordinates. From (16) we see that in

this case

-1 IA B
ft = ft

B A

Another interesting case applicable for linear n-port or n-terminal

resistors is the complex coordinate transformation

ft = H-
where

r + — r (z-z*;
2 *

-1/2
-r

1/2 1 -1/2, „*."
r - "o £ (g-5*)

-1/2

20In the case of linear resistors even a complex ft is allowed

D-l
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z =

21 •. 0"
0 \

ri+jxi

0

r2+3x2 0
(D-5)

:n+jxn

and where (r+jx) = r - jx and r. _> 0, for 1 <_ i < n. The complex number z.

is called the normalization port number (resp., terminal number). The inverse

coordinate transformation is

1 -1/2

ft
-1 2?

2 E
-1/2 1 -1/2

2?r
(D-6)

The corresponding generalized coordinate variables defined by (D-l) are called

the incident voltage vector n, and the reflected voltage vector £, respectively.

Since there is in general a one-to-one relationship between the vectors

(v,i) and the vectors (£,n)> any multiport resistor R (resp., multiterminal

resistor ^-R)is characterized by a set S* of generalized admissible pairs (§,n),
obtained by substituting the admissible pairs (v,i) of (D-l) into (D-2).

Using equations (D-l), (D-2) and Def. 7 it is possible to check whether a

resistor characterized by a set S* of generalized admissible pairs is ir-symmetric,

However, all algebraic results (which have been expressed in terms of v and i) of

this paper can be translated in terms of £ and n if the Tr-symmetry can be

verified by simply checking

(g,n) €sf «(p(ir)5,P(ir)n) GS'. (D-7)
Observe that (D-7) consists of a simple substitution of the variables y, i of

Def. 7 by £, r\ and is therefore much easier to check. Conditions on ft

guaranteeing (D-7) are given in Prop. Dl.

Proposition Dl. Let tt be a directed permutation and let ft be a coordinate

transformation matrix such that

P(tt) 0

0 P(tt)
ft = ft

P(tt) 0

0 P(tt)
(D-8)

Then an n-port resistor R (resp., n-terminal resistor ^Je)is Tr-symmetric iff

(D-7) is satisfied. In other words, (|»n) is a generalized admissible pair of

R iff (p(tt)|,P(tt)ti) is a generalized admissible pair of R.
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Proof: From (D-l), (D-2) and Def. 7we see that R(resp.,^) is Tr-symmetric
iff

(§,n) g s» «> (|,fj) G s»

where

-1
ft

-1
= ft

*P(tt)

9 ?<*)

Using (D-8) we can reduce (D-10) to |=P(7r)§ and fj =PWrj.

In the "mixed variable" case, i.e., when ft is given by (D-3), it is
easily checked that (D-8) is equivalent to

P(tt)A = APGr)

P(tt)B - BP(Tr).

Observe that (D-ll) is precisely the condition derived earlier in (18) which
requires that the mixed variables be compatible with ,. as it should be.

In the "scattering variable" case defined by ((D-4)-(D-6)), we can simplify
(D-8) by first recasting it into the following equivalent form:

'P(tt) 0

9 ?(ir)

ft

n

"P(tt) 0 ]
ft .

.9 ?(ir)J ~

Since P(tt) and rare real matrices, (D-8') is equivalent to the following:
\ finv(^ =Id^.-1/2~ r "' ?(ir) = j P(Tr)r"

\ zfUhM =\ P(TT)zf1/2,

(D-9)

(D-10)

(D-lla)

(D-llb)

(D-81)

(D-12a)

(D-12b)

Substituting (D-12a) into (D-12b) we obtain

zP(tt) - P(tt)z.
- - (D-13)

It is easy to check that (D-12a) and (D-12b) are equivalent to (D-13). Using
the cyclic decomposition of adirected permutation, (Section II) we can interpret
(D-13) as follows: The normalization w, n„mwQ (resp., terminal number^
associated with the ports (resp., terminals) belonging to the same cyclic
component of tt must be the same.

It follows from Prop. Dl that if (D-8) is satisfied, then Prop. 13, 14 and the
Cor. of Prop. 14 can be immediately rephrased in terms of generalized coordinates.
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Corollary. Given a pair of generalized coordinate variables § and n, a

generalized coordinate transformation matrix ft, and a directed permutation tt

satisfying (D-8). Then we have the following equivalent symmetry conditions:

1) A multiport resistor R with constitutive relation R(£,n) = 0 is Tr-symmetric

iff

R(£,n) = O^R(P(Tr)§,P(Tr)n) = 0. (D-14)

2) A mutliport resistor R with constitutive relation § = h(n) is Tr-symmetric

iff

h(0 = PA(Tr)h(P(Tr).). (D-15)

3) A linear multiport resistor R with constitutive relation g = An (A is called

the constitutive matrix) is Tr-symmetric iff

AP(tt) = P(ir)A. (D-16)

To illustrate this Corollary, let us apply (D-16) to the scattering matrix

of a circulator. To derive the scattering matrix from the current controlled

representation y = Zi given in (24), we choose the normalization port numbers

z « z2 = z« = R in ((D-4)-(D-6)). The generalized coordinate transformation
matrix is

-R1'2 13

-R_1i3
The incident and reflected voltages £ and n are given by:

1

2
=i R-1/2(y-Ri)

n=\ R"1/2(y+Ri)
The scattering representation is then given by

5=[Z-R13] [Z+R^]"1^

"0 0-1

-1 0 0

0 -1 0J

D = §n

(D-17a)

(D-17b)

(D-18)

where S is the scattering matrix of the circulator, whose current controlled

representation has been shown in Section III to be Tr-symmetric,- where

tt = (12 3). Substituting P(ir) and ft into (D-8), we can verify that this

equation is satisfied; namely,
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"0 0 1 I 0 0 0" V 2 o o 'r1/2 0 0 "

1 0 0 ' 0 0 0 0 R1/2 0 !o R1/2 0
0 1 0 ' 0 0 0 0 0 R1/2!0 0 R1/2
0 0 0 1 0 0 1 -R"1/2 0 0 IR~1/2 0 0

0 0 0 ' 1 0 0 0 -R-1/20 lo R"1/20
-0 0

1

0 J 0 1 0_ ^ 0 0 -R-^0 0 R-1/2

~R1/2 0 0 'R1/2 0 0 1'0 0 1 l 0 0 0"

0 R1/2 0 10 R1/2 0 10 0 10 0 0

0 0 R1/2|0 0 R1/2 0 10,0 0 0

-R~1/2 0 0 ,R~1/2 0 0 0 0 0|0 0 1

0 -R"1/20 [o R-1/20 0 0 0 ll 0 0

^00 -R"1/2! 0 0 R"1/2 .0 0 0 10 1 o.

(D-19)

The TT-symmetry of the circulator can be proved by substituting S for A in (D-16);

namely,

0 0-1 "0 0 1" "0 0 1]
-10 0 10 0 = 10 0

L 0 -1 0. .0 1 0. .0 1 oj

D-5

0 0-1

-10 0

L o -l oj
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FIGURE CAPTIONS

Fig. 1. (a) A reflection-symmetric 2-port resistor R, (b) a 120°-rotational

symmetric 3-terminal resistor Ic and (c) a 4-terminal or grounded

3-port OP AMP, whose dc circuit model exhibits complementary symmetry.

Fig. 2. (a) Back-to-back series connection and (b) back-to-front parallel

connection.

Fig. 3. A nonlinear bridge circuit as a symmetric 2-port.

Fig. 4. Geometric interpretation of the two types of cyclic directed permutations

(a) normal-order cycle and (b) double-order cycle.

Fig. 5. An n-port resistor R with port variables satisfying the associated

reference convention.

(1 2 3\
I -permuted 3-port resistor R associated with R.

13 2/

Fig. 7. A hybrid coil.

Fig. 8. Example of interconnection of two 2-port resistors: port 1 of R

is connected in series with port 1 of r , and port 2 of R is
(2)

connected in parallel with port 2 of Rv '.

Fig. 9. Synthesis of a I \ -symmetric 2-port resistor which gives rise to a
\1 2/

push-pull amplifier.

Fig. 10. Synthesis of a Tr-symmetric 3-port resistor R by interconnecting

identical 2-port resistors R^ ,R^ and/or R^ using Algorithm 1.
(12 3 6\ ~

j-symmetric 4-port resistor R, obtained by interconnecting
13 2 6/

(1 2 3\ (1) /l 2 3\|-symmetric 3-port resistor R and a L 1 ,,1 -symmetric

(2)
3-port resistor Rv ' using Algorithm 2.

Fig. 12. (a) A 4-port resistor which exhibits (1 1)(2)(3 4)- and (1)(2 2)(3 3)(4 4)

symmetry, (b) and (c), two possible interconnections of ports 3 and 4

of (a) using Algorithm 2.

Fig. 13. (a) An n-terminal resistor K and (b) a grounded n-terminal resistor

(c, both with terminal variables satisfying the associated reference

convention.

Fig. 14. A Tr-permuted resistor (c associated with a 3-terminal resistor He,

where -n-1 ].
\1 3 2/



Fig. 15. Synthesis of a ir-symmetric 3-terminal resistors by interconnection of

identical 3-terminal resistors using Algorithm l1.

Fig. 16. Synthesis of symmetric 4-terminal resistors from identical 2-terminal

resistors using Algorithm l1.

Fig. 17. Example of a Tr-symmetrically reduced 3-port resistor R of a 7-port
o

resistor R and (b) an example of a Tr-symmetrically reduced 2-terminal

resistor ^ of a 5-terminal resistor &.
o

Fig. 18. Algorithm for finding the symmetry group of an n-port resistor R.
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