

Copyright © 1978, by the author(s).

All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to

lists, requires prior specific permission.

Distributed Query Processing in a

Relational Data Base System

by

Robert Epstein

Michael Stonebraker

Eugene Wong

Memorandum No. UCB/ERL M78/18

17 April 1978

Electronics Research Laboratory

College of Engineering

University of California, Berkeley

94720

Distributed Query Processing Page 1

Distributed Query Processing in a

Relational Data Base System

by

Robert Epstein

Michael Stonebraker

Eugene Wong

Electronics Research Laboratory

College of Engineering

University of California, Berkeley

94720

Abstract

In this paper we present a new algorithm for retrieving
and updating data from a distributed relational data base.
Within such a data base, any number of relations can be dis

tributed over any number of sites. Moreover, a user sup

plied distribution criteria can optionally be used to
specify what site a tuple belongs to.

The algorithm is an efficient way to process any query

by "breaking" the qualification into separate "pieces" using
a few simple heuristics. The cost criteria considered are
minimum response time and minimum communications traffic.
In addition, the algorithm can optimize separately for two
models of a communication network representing respectively

ARPANET and ETHERNET like networks. This algorithm is being
implemented as part of the INGRES data base system.

Research sponsored by the U.S. Army Research Office Grant
DAAG29-76-G-0245, and the Joint Services Electronics Program

Contract F44620-76-C-0100.

Distributed Query Processing Page 2

I Introduction

In this paper we are concerned with algorithms for pro

cessing data base commands that involve data from multiple
machines in a distributed data base environment. These
algorithms are being implemented as part of our work in
extending INGRES [HELD75, ST0N76] to manage a distributed
data base. As such, we are concerned with processing
interactions in the data sublanguage, QUEL. The specific

data model that we use is discussed in Section II. Some of

our initial thoughts on these subjects have been presented

elsewhere [STON77, W0NG77].

We are not concerned here with control of concurrent

updates or multiple copies [TH0M75, LAMP76, ROTH77, CHU76].
Rather we assume that these are handled by a separate

mechanism or can be integrated into our algorithms.

This paper is organized as follows: In section II we

formalize the problem by indicating our view of a distri
buted data base and the interactions to be solved. Then, in

section III we discuss our model for the computer network.

In section IV a detailed algorithm is presented for handling

the decomposition of queries in a distributed environment.

There are a few complications concerning updates and aggre

gates in a distributed data base which are covered in sec

tions V and VI. Lastly, in section VII we draw some conclu

sions.

Distributed Query Processing Page 3

II The Distributed Data Base Model.

We adopt the relational model of data [C0DD70, CHAM76]

and assume that users interact with data through the non

procedural query language, QUEL [HELD75]. Algorithms for

processing QUEL in a single machine environment (so called

"decomposition") have been presented in [STON76, W0NG76].

New algorithms or extensions are needed in a distributed

environment. Some familiarity with the notion of decomposi

tion will be helpful in understanding this paper.

The data base is assumed to consist of a collection of

relations R„, R_,...,R . Each relation, R., may be at a
1 2 n i

unique site or may be spread over several sites in a com

puter network.

We shall refer to a relation as being "local" if it is

stored entirely at one site, and "distributed" if portions

of it are stored at different sites. By default relations

will be assumed to be local unless explicitly stated to be

otherwise. They can be explicitly created (or extended) to

be distributed on all or a subcollection of the sites in the

computer network. Call the sites S-, S^,...,S . At a given
1 2 n

site S. there may be a portion (or fragment [ROTH77]) of R. .

Call the portion R'?.

We shall assume that each fragment is in fact a subre-

lation, i.e., a subset of the tuples, of a given relation.

Hence there is no notion of fragments being projections of a

given relation [R0TH77]. Supporting those more general
fragments is infeasible given the current structure of

INGRES.

A distribution criterion, which determines how tuples

are to be allocated to fragments, may be optionally associ

ated with each relation. If no distribution criterion

exists, then tuples will be placed at the site where they

happen to be processed. Figure 1 indicates one collection

of relations, the fragments that are actually stored and

their distribution criteria. An example query for such a

data base is to find the job numbers supplied by the sup

plier named XYZ. In QUEL this is expressed as:

range of s is supplier

range of y is supply

Distributed Query Processing Page 4

retrieve into w(y.jno) where

y.sno = s.snp

and

s.sname = "X.YZ"

Note that this query involves fragments at all three sites

Distributed Query Processing Page 5

Figure 1

(A sample distributed data base)

The users view: supplier (sno, sname, city)

project (jno, jname, city)

supply (sno, jno, amount)

The distribution of Fragments:

project

supplier where supplier.city = "Berkeley"

supply
supplier where
supplier.city = "San Jose"

site

1

site

3

supplier where supplier.city != "Berkeley"
and supplier.city != "San Jose"

III Communications Network Model.

We are primarily concerned with two types of communica

tion networks namely site-to-site and broadcast networks.

In a site-to-site network we assume that there is a fixed

cost to send one byte of data from any site to any other

site. In a broadcast network we assume that the cost of

Distributed Query Processing Page 6

sending data from one site to all sites is the same as that

of sending the same data from one site to a single other

site.

Our site to site model of a network is motivated by the

ARPANET [ROBE70] with one important simplification. In

ARPANET the actual cost to communicate between two arbitrary

sites will depend on what route the data must travel i.e. on

the topology of the network.

Our broadcast model is similar to the ETHERNET [METC76]

with two important simplifications. We assume that every

site is always free to accept new messages. Thus a message

will never have to be retransmitted because a site was too

busy to accept the message. The ETHERNET restricts the

recipient of a message to be either one site or every site.

We assume a more general addressing scheme where anywhere

from one to all sites can be addressed in a message.

Regardless of which network model is used, we shall

assume that it is desirable to present large blocks of data

to the network for transmission. In other words, bulk

transmission is more efficient.

It will be shown that a broadcast (or ETHER) network is

particularly well suited to a relational data base environ

ment. The query processing algorithm can take explicit

advantage of the broadcast capability of such a network.

However, it is our intention to have INGRES support a data

base on either type of network.

Distributed Query Processing Page 7

IV Query Decomposition.

INGRES supports four different data manipulation com

mands: retrieve, append, delete, and replace. As mentioned

in [STON76], all update commands (append, delete, and

replace) are actually processed by converting them to

retrieve commands (to discover what to do) followed by low

level file manipulation operations. Thus, the algorithm to

decompose queries on a distributed system can be independent

of the whether it is an update or retrieval until the very

end. For this reason, we shall restrict our discussion here

to "retrieves" and cover the relevant problems of updates in

the next section.

Optimization Criteria.

Minimizing response time and minimizing network traffic

will be taken to be the two main optimization criteria in a

distributed data base environment. Minimizing response time

involves minimizing the amount of processing needed to solve

a query and using as much parallelism as possible from the

various computer sites. Minimizing network traffic involves

transmitting only the minimum data needed to solve the

query. These two criteria are not unrelated. An increase

in network traffic will improve response time if it results

in greater parallel processing.

Network Decomposition Algorithm.

We first present the skeleton of the basis algorithm.

We subsequently discuss the detailed optimization tactic

involved.

The algorithm to decompose a query has the following

inputs:

1) the conjunctive normal form of the query (i.e. the

qualification is a collection of clauses separated by

AND's; each clause containing only OR and NOT).
2) the location of each fragment and its cardinality.

3) the network type (site-to-site or broadcast).

The algorithm is presented within the flowchart in Figure 2.

The particular site where the query originates is called the

Distributed Query Processing Page 8

"master" INGRES site. The master INGRES communicates with

one "slave" INGRES at each site that is involved in process
ing the query. These "slaves" can be created by the "mas
ter" when appropriate. There are two types of commands that
a master INGRES can give to a slave INGRES.

1) run the (local) query Q.
2) move the (local) fragment R. of relation R to a sub
set of the sites in the network, S-. S0, ..., S .

' 1' 2' ' m

The algorithm proceeds as follows:

(1) Do all one variable sub-queries. This has been shown
in [YOUS78] to be almost always a good idea for non-
distributed data bases. It should be equally true for dis
tributed data bases.

Note that in the example query from section II, we have
a one-variable subquery:

range of s is supplier

retrieve into temp(s.sno) where s.name = "XYZ"

In step (1) the master INGRES at the site where the query
originated instructs a slave at each of the three sites to

run the above subquery. The result is a fragment of temp at
each site. The original query now becomes:

range of t is temp

range of y is supply

retrieve into w(y.jno) where y.sno = t.sno

Before actually running such a subquery, if the rela

tion has a distribution criterion, check to see if a clause
in the distribution criterion at site i contradicts a clause

in the subquery. In general this requires a propositional
calculus theorem prover. However, there are some simple
cases for which contradiction is easily determined. For

example, if the user's query includes a clause such as

... and supplier.city = "San Francisco"

examining the distribution criterion for site i might show

Distributed Query Processing

yes

Figure 2

start

Do all 1 variable

queries on all sites

Eliminate sites if

possible.

i

v

Was there a 1 variable
•query which was false on
all sites?

i
i

I no
v

Apply reduction algorithm
i
j
i
i

none v

< Choose "next piece"
of query,

i
i

v

Can "piece" be done yes
on single sites?

i
i

! no
v

Select processing sites
and

variables to transmit

•<•

Transmit variables

Run Query(ies)

All False?.

! yes

i

i
i

v

Done

no

Page 9

Distributed Query Processing Page 10

supplier where supplier.city = "Berkeley"

Thus without actually running the sub-query on site i, the
portion of supplier on site i can be eliminated from the

query.

(2) If there is a sub-query that was not satisfied on any
site in (1), the entire query is false and we are done.
This would happen in our example if temp had no tuples at
all sites.

(3) Apply the reduction algorithm [WONG76] to the query.
This will recast the original query into a sequence of com
ponent queries, each of which is processed in order,
independently.

Consider a query Q(x1,x2,- -.,x) in QUEL where each
variable xi references a relation R.. Q is said to be redu
cible if it can be replaced by a sequence of two queries
(Q'» Q") that overlap on only one variable, i.e.,

Q(xr x2, xn) > Q'(xm, xn+1, xn)

followed by

Q"(x1 x ..., x')
1,2, m

where the range of x' is the result relation of Q'. For
example the query:

range of s is supplier

range of y is supply

range of j is project

retrieve (s.sname) where s.sno = y.sno
and y.jno = j.jno

can be reduced to two components namely:

retrieve into temp (y.sno)

where y.jno = j.jno

followed by

Distributed Query Processing Page 11

range of t is temp

retrieve (s.sname) where s.sno = t.sno

It is shown in [WONG76] that the irreducible components

of a query are unique, and an intuitive argument is

presented which indicates that these components form an

advantageous sequence of subqueries. To test this

hypothesis, .experimentation with actual data was recently

undertaken by [YOUS78] and the results were convincingly
affirmative. It should be equally advantageous in a distri

buted system.

This step will perform the reduction algorithm and

arrange the irreducible components of the query in their

unique sequence. We can then consider the subqueries

independently.

The example query from section II is not reducible so

this step has no effect.

(4) Choose the "next piece" of the query to process. A
query consists of a target list and a qualification (which

is in conjunctive normal form). We define a "piece" as one

or more clauses and their associated target lists.

Based on the query structure and the size and location

of the fragments, the next "piece" of the query to be pro
cessed is selected. The algorithm to do this will be

explained shortly. In our example there is only one remain

ing clause, which therefore must be the next piece.

(5) If the piece to be run can be done on individual sites

without moving portions of the relations, then we proceed to

step (9). In our example temp is at three sites and supply
is at one. Hence, data must be moved in order to proceed.

(6) Select the site(s) that will process the next piece of
the query. Depending on the number of sites, and whether it

is a site-to-site or broadcast network, anywhere from one to

all possible sites may be chosen. Suppose for our example
that all three sites are chosen.

(7) The sub-query must be two variable or more in order to

reach this step. In order to process an n variable

subquery, fragments from n - 1 relations must be moved, and

the remaining relation will remain fragmented. Each site

Distributed Query Processing Page 12

that does processing must have a complete copy of the n - 1

relations. If processing is done on a single site, it must

have copies of all n relations.

For our example we can broadcast supply to all sites.

Each site will then have all of supply and a fragment of

temp and will process the query producing a local fragment

w. The answer to the query is the distributed relation w.

Alternatively, we can choose to broadcast temp to all

sites involved in the query. Here we can view supply as

distributed but with zero tuples on two of the three sites.

Hence, fragments of temp will be sent to site 2. Site 2

then processes the same local query as above to produce a w;

while sites 1 and 3 have no work to do.

Lastly, we can choose to equalize the distribution of

the tuples in the relation that remains fragmented so as to

guarantee that all processing sites have the same amount of

work to do. This requires sending each site a complete copy

of temp, and moving one-third of the supplier tuples to each

of the other two sites before proceeding as above.

(8) Move the selected relation fragments to the selected

sites. Each site will be directed, in turn, to send a copy

of its selected fragments to the sites selected in step (6).

An optimization here is to have each site send only the

domains needed in the query. Thus a fragment can be pro

jected and duplicates removed.

This step can take full advantage of a broadcast net

work since we are often broadcasting from one site to many

sites.

(9) The master INGRES now broadcasts the query to the

selected sites and waits for all sites to finish. Once the

query has been transmitted, this step involves only local

processing.

If no site finds the qualification to be true, then we

know the query is false and no further processing need be

done. Otherwise the clauses just run are removed from the
query and the new range of the remaining variables is

changed if necessary.

Distributed Query Processing Page 13

(10) Go to step (4)

The Optimization Problem.

As outlined in the flowchart, the processing algorithm

that we have chosen involves several decisions: (1) What is

the "next piece" of the query that should be processed? (2)
Which sites should take part in the processing of that

piece? (3) If the number of participating site is greater

than one, which of the relations should be left fragmented?
(4) Should the fragmented relation be equalized in size

among the processing sites?

Choosing the "Next Piece".

We have chosen to solve a query by "divide and con

quer". That is, a query will be broken into one or more

parts and each part will be processed in turn. The algo
rithm we pursue can justifiably be called a "greedy" algo

rithm. We will try to optimize each step, individually,

without explicitly looking ahead to examine the global

consequences. A possible refinement is to consider the

structure of the residual query when deciding what should be

done. The trade off between cost and benefit remains to be

studied.

Results from decomposition on a single site have shown

that reducing a query into its irreducible components is a

good heuristic. Thus, after all one variable subqueries
have been removed, the reduction algorithm will be used to

transform the original query into its irreducible components

which overlap on none, or one variables.

Q -» Kr K2, ..., K±

We could stop at this point and simply execute each com

ponent in order, which is what we do on a single site. How
ever, since any one component may span multiple sites, it

may be desirable to subdivide further. Every component con

tains one or more clauses:

Ki = C.. , Cp» •.•» C.

The question is whether we should process the entire com

ponent at once or subdivide it? The answer is to subdivide

Distributed Query Processing Page 14

only if the size of the result relation from subdividing is

smaller than the communication cost of transmitting the

source relations needed to process it. Here is an example

to intuitively illustrate what can be achieved.

Consider the database from section II with relations:

supplier (sno, sname, city)

project (jno, jname, city)

supply (sno, jno, amount)

and the query: "find the names of supplier-project pairs

such that the supplier supplies the project and the two are

in the same city." In QUEL this can be stated as:

range of s is supplier

range of j is project

range of y is supply

retrieve (s.sname, j.jname)

where s.city = j.city

and s.sno = y.sno

and j.jno = y.jno

This query is irreducible and involves three variables.

There is only one irreducible component (namely the entire

query) and it involves three clauses. To keep the example

simple we shall ignore site 3 from Figure 1 and pretend

there are only two sites, which have:

site 1 site 2

project (200 tuples) supply (400 tuples)
supplier (50 tuples) supplier (50 tuples)

Assume that the tuples of the three relations have the same

width. Now consider the costs and benefits of subdividing

the component.

We need to examine the four possible choices:

(Q1) retrieve into temp(s.sname, s.city, y.jno)

where s.sno = y.sno

Distributed Query Processing Page 15

(Q2) retrieve into temp(s.sname, s.sno, j.jname, j.jno)
where s.city = j.city

(Q3) retrieve into temp(j.jname, j.city, y.sno)

where j.jno = y.jno

(Q4) retrieve (s.sname, j.jname)

where s.city = j.city and s.sno = y.sno

and j.jno = y.jno

These are the only possible alternatives. Choosing any two

clauses would be tantamount to Q4 since any two clauses

involve all three relations.

Q4 would require moving 200 project tuples and 50 sup

plier tuples at which point we could complete the query.

Therefore, any subdivision will have to do better than that.

Suppose we choose to do Q1. This would require moving

50 supplier tuples. The result relation would have to be

moved in order to process the remaining query:

range of t is temp

range of j is project

retrieve (t.sname, j.jname)
where t.city = j.city

and j.jno = t.jno

If s.sno were a unique identifier for supplier and each sup

plier supplied only one job, then the result from Q1 would

be at most 50 tuples. Thus the total network cost would be

moving 50 supplier tuples followed by at most 50 tuples of

temp.

But also consider the worst case. Suppose that sno is

not unique and the entire cross-product of supplier and sup

ply if formed. It would have 50 * 400 = 20,000 tuples! The

decision whether to subdivide a component must be based on

the expected size of the result relation. Some method for

estimating the result size is needed.

But suppose the worst happens and the result size

explodes geometrically. We can throw the result away and

simply revert to running the whole component. In that case

Distributed Query Processing Page 16

we would lose the time spent processing the abandoned query.

The accuracy of estimating the result size depends on a

careful examination of the semantic content of the query

(e.g., whether a clause involves an equality), on informa

tion concerning the distribution of values of the domains,

(e.g., sno may be a primary key for the supplier relation

with no more than one tuple for each possible value), and on

the number of variables in the target list and their sizes.

While compiling and keeping extensive statistics is imprac

tical, a value indicating whether a domain is nearly a pri

mary key or not may be both useful and easy to keep.

Determining How to Process the "Next Piece".

The second part of the optimization problem is how to

process a given subquery. That is, which sites should be

used as processing sites and which relation fragments should

be moved. The more sites involved, the greater the paral

lelism. However, using more sites may involve greater com

munication costs and delays.

Presumably we will want to make decisions which minim

ize some application dependent cost function which might

look something like:

F(c1 * network_communication + c2 * processing__time)

To do this we will need to know how to calculate the amount

of network traffic involved, the relative processing time,

and the cost/benefits of equalizing the fragmented relation.

We will now proceed to explain how to determine each of

these. Notationally, we know there are:

N total sites in the network

n relations referenced in the "next piece"

We need to choose:

K sites to be processing sites

R as the relation to be left fragmented

Let's number the processing sites so that 1 <= j <= K.

Furthermore, let's define M. as the number of sites where R.

Distributed Query Processing Page 17

has data stored

involving

At each processing site j we have a query

Qj = Q(R1, R2' •'•^p' ' ,R)
' n

Determining Network Cost Given R and K.

Assuming that one relation R is left fragmented, and K

sites (out of N) participate in processing, then the frag

ments of R. have to be moved as follows:

for a processing site j, R^ is moved to K - 1 other
sites.

for a non-processing site j, Rv is moved to K other

sites and any fragments of R^ are moved to any one
processing site.

The total communication cost is given by

comm =

K

2 c

J=1
K-1 '[_i^p

!RJ! !
ill !CKLT_i-i

J=K+1L |i*P

IRji"j
l 3-I

C- iiR i|f
1 l_l P 1-1 l

n
i i J l i L.

where C„ (x) denotes the cost of sending x bytes of data to

K sites, a cost that depends on the network that is used.

Estimating Relative Processing Time.

Define proc(Q) to be the time required to process the

query Q if it were done on a single site. If K is greater

than one then the processing time of a query, Q, can be

improved from proc(Q) to max. proc(Q.). In other words, the

processing time for the whole query is equal to the process

ing time of the site j with the most processing to be done.

It is reasonable to assume that the processing time at each

site is given by

prociQ .i
i J i

i

Jl

iR
proc

so that the overall processing time is

r n

Distributed Query Processing

1 n itRJ i

max proc jQ.| = max"1—tiL proc ,Qj
j !r !
J ! P!

1 " 1'

Page 18

r ~i

i i

assuming that all sites are of approximately equal process

ing speed.

Cost for Equalization.

If each fragment of R was the same size, then the

overall processing time would be given by 1/K proc(Q), since

each fragment would have (1/K) of the data. (This assumes,

again, that all computer sites are of approximately equal

speed.) This is the motivation for equalization.

To determine the cost of equalizing, let us define the

function pos(x) to be:

if x > 0 then pos(x) = x

if x <= 0 then pos(x) r 0

The amount of data to be moved in equalizing the fragments

of R is given by

N

2 pos | |RJ| - i R j
L i Pi NJ p |.

j=1

This added network
iRJ

improvement from -

trade some network

cessing time.

R
P
CO'

cost would result in processing

to j7. Thus it may be desirable to

st for an improvement in overall pro-

We now know how to compute network communication cost,

relative processing time, and the cost and benefit of equal

izing R We will now use this knowledge to minimize some

example cost functions

Minimizing Communication Costs.

For the moment let's assume that the overall optimiza

tion criteria is to minimize communication costs. It is

important to treat site-to-site and broadcast networks

separately. We will first consider using a broadcast

Distributed Query Processing Page 19

network and solving for K and R .

For a broadcast network CK(x) = C^x) for all K >= 1.
By examination of the communication cost function given on
page 17 it can be seen that the communication cost function
is always minimized by K = 1 or K > M . To see this observe
that the cost function has three terms. The first term will
be zero if K = 1. The third term will be zero if every site
which has part of R is a processing site. Thus K must be
> M , where M is the number of sites where R_ is present.
- p' p P

If we assume that C^x) is linear in x and rearrange
some terms then

rCOMMl. aHna .=cJslR,] - lWA\ for K=1L J broadcast 1 - l} ^i 11|

ICOMMi j J. = cj5»R.'-'R'! for K=NLUU1,UJ broadcast 1jfj i|. | P|j
L. -I

Hence, the decision rule for minimizing communication in the
broadcast network case is given by

If max SiR^i > max»R.|, choose K = 1 and choose the
1 i' 1| i I '

processing site (site 1) to be the one containing
the most data. In this case there is no R . In

other words, if one site has more data than the
largest relation, then K = 1 and choose that site.

If max 2iR-i < max|R.j, choose Rrt to be the relation
J il ll i ! Xi P

containing the most data and choose K=M .

The situation for site-to-site networks is quite dif

ferent. For that case we shall assume C^(x) = k Cj(x) and
that C-(x) is again linear in x. We note that, independent
of K the choice of R that minimizes communications is the

P i 'relation with the most data, i.e., max jR.]. Once R is

chosen, the value of K that minimizes communications is
determined as follows:

Let the sites be arranged in decreasing order of

?|R^i. Then, choose K to be 1 if
i1 ll

Distributed Query Processing Page 20

1 i Rj - lR-!i > \K\

otherwise choose K to be the largest j such that

2 i R, - IR^I! < iR^i
1 I 1 l-J I P Ii^p •i i

The interpretation of this decision rule is as follows. A
site should be chosen as a processing site if and only if

the data that it is to receive as a processing site is less

that the additional data that it would have to send as a

nonprocessing site.

If minimization of communication cost is the sole cri

terion of optimization, then the best choices for both K and

R have been completely determined for both broadcast and
p

site-to-site networks. We expect the following exceedingly

simple rule to be reasonable for choosing the number of pro

cessing sites:

Choose R to be the largest relation.
P

if N = 2 and n = 2 then K = 2

if N £ 2 then K = M for broadcast network

K = 1 for site-to-site network

Minimizing Processing Time.

Suppose for the moment that our goal was only to minim
ize processing time and we were willing to ignore any net
work costs or delays. In this case we would want K = N so

that we could distribute the work among all sites. We would

still need to choose one relation to remain fragmented. The

actual processing time will be independent of whatever rela
tion we choose. To see this notice that when we equalize

the fragmented relation the processing time goes from
i RJ i
' n' 1max. J—tLLproc(Q) to - proc(Q), which is independent of R .

J Sr ! K y
! P!

Distributed Query Processing Page 21

Since we can choose any R our choice for R should be

the relation which minimizes network traffic. Thus we are

looking for R which minimizes:
P

2 c | 2 |rJ|j + 2 pos! |rJ| - i/njrd; !
j=1 N-1i_i*p' 1,j j=1 "- ' p» i pi J

Summary.

The true optimal solution cannot be determined without

knowing the precise relationships between processing time

and communication costs, the distribution of data among the

N sites, and the true processing time for each site. Any

optimal solution would have to consider the possibility of

using any value of K from 1 to N.

Exactly how to choose R and K is an open ended ques

tion until the cost criteria have been specified. We have

shown solutions at two extremes (minimum network traffic and

minimum processing time).

Note the similarity between the "next piece" decision

and the next tuple variable to be chosen for substitution in

single site decomposition. The same inability to achieve a
true optimum is present in both cases.

Just as refinement of the decision making process was

presented in [YOUS78] for decomposition, we plan to do
experimentation concerning cases where each possible algo
rithm is best.

Distributed Query Processing Page 22

V Updates.

INGRES will be expanded to allow distributed relations

with optional distribution criteria. When inserts occur

they can cause tuples to be placed on specific sites. In

the case of a replace command, they can cause tuples to be

moved from one site to another.

We will assume that a distribution criterion maps a

tuple to a unique site or to no site at all. It is possible

that a criterion disallows certain values. Since the dis

tribution criterion is related to an integrity constraint

[STON75], tuples which cannot belong to any site could be

treated as a violation of an integrity constraint.

With a distribution criterion we will guarantee that

the collection of all the fragments of a relation contains

no duplicates. Without a distribution criterion, any one

fragment will contain no duplicates, but the collection of

all sites can contain duplicates. To support any other rule

seems too costly.

The processing of an update will proceed as follows:

(1) At the end of the query decomposition, one or more

sites will have a portion of a temporary relation that

holds the changes to be made to the result relation.

(2) Each site performs the updates specifically desig

nated for it.

(3) The remaining updates (if any) are sent directly to

their correct sites.

(4) Each site completes any new updates received.

The decomposition algorithm can help the update pro

cessing by never moving the result relation. For example,

in the query:

range of p is project

range of s is supplier

delete p where p.city = s.city

decomposition has the choice of moving either p or s. By

Distributed Query Processing Page 23

always choosing NOT to move p (the result relation vari

able), we optimize the update processing. This is because

step (3) above will then have no tuples for other sites.

However, choosing not to move the result relation, may be a

poor tactic during decomposition. The trade-off cannot

readily be determined without advance knowledge of how many

tuples of the result relation satisfy the qualification.

We will now identify what must be done for each update

command, with or without a distribution criterion.

For an append command, each tuple to be appended is put

into a temporary relation and then split according to steps

(1) to (4) above. If there is no distribution criterion,
the tuples can be appended directly instead of going through

a temporary relation.

For a delete command, the temporary relation consists

of a tuple identifier (TID) and machine identifier (MID).

The algorithm is the same regardless of the distribution

criterion. Note that if we guarantee that the result rela

tion is not moved during decomposition, we do not need the

MID. The set of TIDs is only for the machine in which they

reside. In fact, if the result relation is not moved during
decomposition, the temporary relation is not needed. The

deletes can be done directly.

For a replace command, the TID, MID, and the new tuple

must be saved. If the relation does not have a distribution

criterion the replace command is processed in the same

manner as a delete. With a distribution criterion, it is

possible that a tuple will have to be moved from its current

site to another. If this happens, it must be deleted at the

current site and marked to be appended at its new site. If

decomposition moves the result relation and a tuple has to
change sites because of a replace, steps (3) and (4) must be

repeated twice.

In order to provide for recovery from a system crash

during an update, updates are not done directly, instead we

use a "deferred update" file [STON76]. The deferred update

file will contain a full image of all changes that must
occur before any actual updates take place. The deferred

update mechanism is hidden below the mechanism we have been

discussing.

Distributed Query Processing Page 24

All update processing is controlled by the master

INGRES. The individual sites can all perform the updates in

parallel. If the result relation is never moved during

decomposition, additional network costs can only occur in

append, and replace commands where the distribution cri

terion forces the tuples to be moved to a new site.

Distributed Query Processing Page 25

VI Processing of Aggregates.

The current implementation of INGRES processes aggre

gates (min, max, avg, sum, and count) first and then decom
poses the remaining aggregate-free query. Although this is
not always optimal, it typically is and it is a simple query

processing strategy.

For distributed INGRES we also plan to process all

aggregates first. Some optimization specific to aggregates
can be done. For example, aggregates that range over only

one relation, and are done without removing duplicates are

processed on individual sites and the aggregated results are
transmitted back to the master site where they are combined

to produce the final result.

Aggregates which involve more than one relation or
which require duplicates to be removed, are processed by
first retrieving the values to be aggregated into a distri

buted temporary relation, and then aggregating on that tem
porary relation. If the aggregate requires duplicates to be
removed, then the temporary relation will have to be col

lected onto a single site in order to remove duplicates.

Other optimization techniques such as processing as

many aggregates as possible in the same pass through the

relation, and optimizing the by-domains references in aggre

gate functions, will continue to be performed.

Distributed Query Processing Page 26

VII Conclusions.

The model we propose for a distributed data base is

very flexible. Portions of a relation can exist at any
number of sites and an optional distribution criteria can be

used to assign tuples to specific sites.

The algorithm for decomposing a query involves examin

ing the structure of a query's qualification. The query is
processed by choosing for processing one or more clauses of

the qualification at a time. It is inevitable that some

data will have to be moved from site to site in order to

process a query. The algorithm tries to move only the smal

lest amount of data, and tries to get the maximum amount of

parallel processing possible. In addition, by trying to
avoid moving the result relation, we help to optimize the

update processing. During query processing it is frequently
desirable to broadcast data from one site to several other

sites, which makes a broadcast network extremely desirable.

Distributed Query Processing Page 27

REFERENCES

[CHAM76] Chamberlin, D.D.; "Relational Data Base Manage
ment: A Survey," Computing Survey, Vol. 8, no.

1, March 1976.

[CHU76] Chu, Wesley W. ; "Performance of File Directory
Systems for Data Bases in Star and Distributed

Networks," AFIPS Conference Proceedings, vol. 45,
1976.

[CODD70] Codd, E.F.; "A Relational Model of Data for Large
Shared Data Banks," CACM vol. 13, no. 6, June

1970.

[HELD75] Held, G.D., M.R. Stonebraker, and E. Wong;
"INGRES - A Relational Data Base System," Proc.

NCC vol. 44, 1975.

[LAMP76] Lamport, L.; "Time, Clocks and Ordering of Events
in a Distributed System," Mass. Computer Associ

ates Report CA-7603-2911, March 1976.

[METC76] Metcalf, R. M. and D. R. Boggs, "Ethernet: Dis
tributed Packet Switching for Local Computer Net

works," CACM, vol. 19, no. 7, July 1976.

[ROBE70] Roberts, L. and Wessler, B., "Computer Network
Development to Achieve Resource Sharing," Proc.
SJCC, 1970, AFIPS Press.

[ROTH77] Rothnie, J.B. and N. Goodman; "An Overview of the
Preliminary Design of SDD-1: A System for Dis

tributed Databases," 1977 Berkeley Workshop on
Distributed Data Management and Computer Net

works, Lawrence Berkeley Laboratory, May 1977.

[STON75] Stonebraker, M.R.; "Implementation of Integrity
Constraints and Views by Query Modification",
University of California, Electronics Research

Laboratory, Memorandum ERL-M514, March 1975.

Distributed Query Processing Page 28

[STON76] Stonebraker, M.R., E. Wong, P. Kreps and G.D.

Held; "Design and Implementation of INGRES," ACM

Trans. Database Systems, vol. 1, no. 3, Sept.

1976.

[ST0N77] Stonebraker, M.R. and E. Neuhold; "A Distributed
Database Version of INGRES," 1977 Berkeley

Workshop on Distributed Data Management and Com

puter Networks, Lawrence Berkeley Laboratory, May

1977.

[TH0M75] Thomas, R.H.; "A Solution to the Update Problem

for Multiple Copy Databases Which Use Distributed

Control," BBN Report 3340, Bolt Beranek and New

man Inc., Cambridge, Mass., July 1975.

[W0NG76] Wong, E. and K. Youssefi; "Decomposition - A
Strategy for Query Processing," ACM Trans. Data

base Systems, vol. 1, no. 3, Sept. 1976.

[W0NG77] Wong, E. ; "Retrieving Dispersed Data from SDD-1:
A System for Distributed Databases," 1977 Berke

ley Workshop on Distributed Data Management and

Computer Networks, Lawrence Berkeley Laboratory,

May 1977.

[Y0US78] Youssefi, K. ; "Query Processing for a Relational
Database System," Ph.D Dissertation, University

of California, Berkeley, 1978, Electronics

Research Laboratory, Memorandum UCB/ERL M78/3,

January 6, 1978.

	Copyright notice 1978
	ERL-78-18

