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ABSTRACT

Based on the interconnections and constitutive relations of

multiterminal and/or multiport resistors, a general and purely algebraic

definition of symmetry of a nonlinear network is given. Examples

show that the network geometry, although frequently useful in detecting

simple symmetries, can conceal or destroy more subtle forms of symmetries

The main results of this paper are based on group theory and on

the decomposition of a directed permutation introduced in [11]. These

results generalize many existing ad hoc techniques used for special

circuits having special symmetries:

(1) An algorithm is presented for checking whether a network

possesses any form of symmetry.

(2) It is shown that for a suitable choice of the reference nodes,

a symmetric network has a symmetric solution, provided the network has

a unique solution.
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(3) Techniques are described for creating terminal (resp., port)

entries in a symmetric network, in order to obtain a symmetric multiport

(resp., multiterminal) resistor.

(4) A reduction technique for symmetric networks is described,

which generalizes the well-known bisection technique and unifies various

algebraic and graphical reduction methods.
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I. INTRODUCTION

In linear circuit theory many powerful results [1-7] have been

obtained for symmetric circuits. All of these rely on the superposition

principle and are therefore not applicable for nonlinear networks. This,

however, has not prevented engineers from designing symmetric nonlinear

circuits by ad hoc methods [8] (push-pull and parametric amplifiers,

rectifiers, modulators and detectors). Also the evolution of solid

state technology and especially the production of complementary elements

pushed toward an essentially new type of symmetry, called complementary

symmetry. In short there is a lack of general results and systematic

approaches dealing with symmetry in nonlinear circuits. In this area a

few papers [9,10] have appeared recently. A unification of mirror and

complementary symmetry has been obtained in [9]. Using group representa

tions, Desoer and Lo [10] showed how to reduce the network equations

and how to simplify the stability conditions for periodic oscillations

in nonlinear dynamic networks. Our paper is the second of two papers,

dealing with symmetry in nonlinear elements and networks described by

algebraic equations. The first paper [11] is entitled, "A unified

theory of symmetry for nonlinear multiport and multiterminal resistors."

Our approach is unifying in the sense that it includes all types of

symmetry and that it generalizes many ad hoc results to arbitrary

symmetries. This approach also consolidates these ad hoc results by

giving precise and general definitions and rigorous proofs.

In order to give a feeling for the need for such an approach in

dealing with symmetry in nonlinear resistive networks, we review some

ad hoc results. Usually two kinds of symmetry are defined: geometric

symmetry and complementary symmetry [8].

-3-



A network N is said to be symmetric with respect to a transformation

T(') such as a rotation, a reflection or a translation if it can be

drawn such that after making the geometric transformation T(«), we obtain

a new network T(N) which is identical to N, except possibly for some

labellings, i.e., N and T(N) have identical topology and the corresponding

elements have identical constitutive relations. A network N is said

to be complementary symmetric if it is identical with its complementary

network N which is obtained by complementing all elements [8], i.e.,

multiplying all port voltages and currents in each element's constitutive

relation by minus 1. A network is said to be symmetric with respect

to both a complementation and a transformation if it is identical

with T(N). In Fig. 1(a) a network is given which is reflection symmetric

with respect to an axis drawn through nodes (D @ (7) • The network

in Fig. 1(b) exhibits complementary symmetry if the operational amplifier

is complementary symmetric [10-11] and if R* ,R ,and R^ are

bilateral. A two-terminal or one-port resistor is said to be bilateral

if it is identical with its complement. In Fig. 1(c) a complementary

reflection symmetric network is given, i.e., a network which is

symmetric with respect to a complementation followed by a reflection

about an axis through nodes ® Q) (f) ,provided that R^1' and R^ are

bilateral resistors.

Since this network is not planar a rigorous analysis of the symmetry
of this network should be done in the 3-dimensional space. This would
also solve the apparent difficulty in Fig. 1(a) where nodes @ and @
are not precisely reflected into each other. This observation demonstrates
one difficulty that could arise when checking the symmetry of a network
by inspection of its circuit diagram.
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If a port entry is made in a symmetric network between two suitably

chosen nodes of N, then the driving-point (DP) plot exhibits odd

symmetry. The case of a mirror symmetric, complementary, and

complementary mirror symmetric network has been dealt with in [11].

Proposition 1. DP plots of symmetric networks.

(a) The DP plot across a pair of driving-point terminals connected to

any pair of symmetrically located nodes of a reflection symmetric

network is odd symmetric.

(b) The DP plot across any pair of driving-point terminals connected to

any pair of nodes of a complementary symmetric network is odd symmetric.

(c) The DP plot across any pair of driving-point terminals connected

to any pair of nodes located along the symmetry axis of a complementary

reflection symmetric network is odd symmetric.

Examples of DP plots having properties (a), (b) , and (c) can be obtained

by making a "soldering-iron" entry across nodes @ and (5) in Fig. 1(a),

across any pair of nodes in Fig. 1(b), and across nodes (?) and (f) i-n

Fig. 1(c), respectively.

Proposition 2. v -versus-v. TC plots of symmetric networks:

(a) Let N be a reflection symmetric network having an input port across

two symmetrically located nodes. Then the v -vs.-v transfer characteristic

(TC) plot is odd symmetric if v is also measured across a pair of

symmetrically located nodes and is even symmetric if v is measured

across a pair of nodes located along the symmetry axis.

(b) Let N be a complementary symmetric network. Then any v -vs.-v.
o in

TC plot is odd symmetric.
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(c) Let N be a complementary reflection symmetric network having an

input port across two nodes located along the symmetry axis. Then

the v0-vs.-v±n TC plot is odd symmetric if v is also measured across

a pair of nodes located along the symmetry axis.

Examples of TC plots having properties (a), (b), and (c) can also be

constructed using the networks in Fig. 1. The TC plot of a

symmetrically-driven differential amplifier (Fig. 1(a)) whose output

terminals are also symmetrically situated is odd symmetric, (b) Any

TC plot associated with Fig. 1(b) is odd symmetric. (c) The TC plot of

the push-pull amplifier driven across nodes (T) - (5) and whose output

is measured across nodes '© - (5) is odd symmetric.

The next proposition shows that the symmetry of a network can be

exploited to reduce the complexity of the analysis [8],

Proposition 3. If the reflection symmetric network of Fig. 2(a) has

a unique solution, then this solution can also be derived from the

bisected network in Fig. 2(b). An analogous result applies for the 180°
2

rotational symmetric network of Fig. 2(c) and its bisected network

in Fig. 2(d).

For the symmetric lattice a special reduction technique has been

developed called the symmetric lattice property [8].

Proposition 4. If the symmetric lattice network (Fig. 3) with R ' =R^

and R = R has a unique solution, then the currents and voltages

associated with the identical resistors R^ ' and R^ are identical.

Similarly, those associated with resistors R( ' and R^ are also identical.

The network is invariant upon rotating it by 180° about an axis through node
(2) , perpendicular to the paper.
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The preceding definitions and results are not satisfactory in view

of the following observations:

1) The preceding definition of symmetry requires that the network

be drawn in a specific form. This definition is undesirable because

symmetry is an inherent property of a network and should not depend on

how it is drawn. Furthermore, since a symmetry transformation is one

Which leaves all structural relations undisturbed [12, p.144], a network

symmetry transformation should rely only upon the constitutive relations

and the interconnection of these elements. Since we deal with networks

with a finite number of nodes and resistors, these transformations can

be described by finite permutations. These ideas will lead to a more

general definition of symmetry in Section II.

2) No general results are available relating the properties of a

solution of a network to the symmetry properties of the network. Using the

algebraic definition of symmetry, we derive in Section III symmetry

properties of the unique solution of a symmetric network. This result

includes the symmetric lattice property (Prop. 4) as a special case.

3) The results of Prop. 1 and 2 are restricted to mirror symmetric

networks and to even and odd symmetries. In extending the line of results

of Prop. 2 one would expect in case (c) that an even symmetric TC plot

would be obtained by measuring v across a pair of nodes symmetric with

respect to the symmetry axis. This is indeed true and will be shown in

Section IV where we will deal with the general problem of making a

ir-symmetric multiport or multiterminal resistor from a symmetric

network by making suitable port (or terminal) entries in the network.

4) The preceding bisection technique (Prop. 3) is restricted to

reflection symmetric or 180° rotational symmetric networks where no
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resistors are located on the symmetry axis or on the rotation axis.

We will generalize this reduction technique in Section V to all

symmetries.

In this paper, we consider resistive networks obtained by inter

connecting multiterminal and multiport resistors. These resistors can

be described by a set of admissible pairs, by a constitutive relation,

or by a hybrid representation. We will denote the multiport resistors

by R and the multiterminal resistors by *-|2. Multiport resistors are

always assumed to be intrinsic (with internal isolation transformers

already imbedded if necessary) so that no problems arise in the

interconnection. All multiterminal resistors are assumed to be given

via their indefinite representation since we want to be able to find

all possible symmetries. If necessary it can always be recast into

this form using equations (39-40) given in [11]. Unless otherwise

mentioned, we always assume that associated reference directions are

chosen (Fig. 4). In general a rectangular box (resp., circular box)

represents a multiport (resp., two-terminal) resistors we use more

in the case of one-port (two-terminal) resistors we use more

frequently the conventional symbol (as in Fig. 3). This avoids the use

of too many terminal labels, because the terminal at the darkened edge

is then the primed terminal lf of the one-port or the terminal 2 of the

two-terminal element. If there is no darkened edge, then the one-port

(resp., two-terminal element) is bilateral.

The mathematical tools are mainly combinatorial and are described

in Section II of [11]. As before, the key notions are the directed

permutation and its decomposition into cyclic components [11] . To save

space, we refer all notations not defined explicitly in this paper
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to [11]. For the relevant mathematical techniques, we refer the

reader to [13].

II. TRANSFORMED AND SYMMETRIC RESISTIVE NETWORKS

A resistive network is obtained by interconnecting multiterminal

and/or multiport resistors. In circuit theory this interconnection

is usually given by a circuit diagram. However the particular

configuration in which the network is drawn is irrelevant as long as the

resistor terminals or ports are connected in the same way. In other words,

no other geometric aspects involved in the drawing of a network than the

network interconnection are relevant. Consequently, in this paper, we

give a rigorous and general definition of symmetry, which is only based

on the combinatorial aspects of the interconnection and the algebraic

aspects of the constitutive relations of the resistors. Our definition

is mainly graph-theoretic in nature and is in fact inspired by the

definition of isomorphic hypergraphs in [14, p.411].

A time invariant resistive network N is completely characterized

by the following three sets of information:

1) the time-invariant multiport resistors R^J ,j = l,...,m,

with ports [l,j], [2,j],...,[n.,j] and with terminals

(l>j) (l1 >j) .•.(n-j ,j) (n! ,j) and their associated sets of admissible
J

pairs (y^',i^) ,

2) the time-invariant multiterminal resistors ^-R ,

j = n^+1,.,.,111, with terminals (1,j) ,..., (n.,j) and their associated

sets of indefinite admissible pairs (y^,i^), and
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3) a set of nodeSo\J= {©,©,...;©} which is a

partition of the set of all resistor terminals into subclasses such

that all terminals belonging to a given subclass are connected together.

For example, the notation @ denoted by

© ={(i1»J1),i2,J2)...} (1)

implies that terminal ±± of resistor j^ terminal ±2 of resistor j ,

etc. are connected together and this terminal is called node © . In

short, anetwork N is completely specified by N=(R^\ *-R^,oAf).

The advantage of this characterization is that it is independent of

the drawings and thus ideally suited for computer analysis. It also

allows a general definition of a network permutation and a network

symmetry to be given devoid of irrelevant details. Observe that

the node interconnection equation (1) is just a formal way of specifying

the wiring instructions of a network; namely, join together terminal

±1 of resistor j^ terminal ±2 of resistor j2, etc., and call it node

© (Fig. 5).

To illustrate the preceding method for describing a network,

consider the network characterized by R^ ,r'2' ,r'3^ ,<Q^,R^

with constitutive relations R(1)(•,•), R^2)(•,•),...,R(5)(•,•), and
the following node interconnections:

© = {(1,1),(1,2)} © = {(l',3),(l,4)}

© = {(1\1),(1',2)} © = {(2,4),(1,5)} (2)

© = {(2,2),(1,3)} © = {(2\2),(3,4)(1',5)}

The circuit diagram corresponding to these specifications is shown in

Fig. 6. We say that terminal i of resistor j is connected to node ®

if (W G © •
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Observe that multiterminal and multiport resistors are denoted

and treated differently in this paper. The reason for this is that

the standard procedure of considering an n+1 terminal resistor as a

grounded n-port resistor may destroy some element symmetries as

observed in [11].

The interconnection can also be uniquely characterized by a generalized

incidence matrix A. This is a "port or terminal-node incidence" matrix

and not the common branch-node incidence matrix. The generalized

incidence matrix A has as many rows as there are nodes (©) , and as many

columns, as there are ports of R J or terminals of H2 »namely
m

r = ^ n.. Order the ports and terminal labels (i,j) and [i,j]
j=l **

lexicographically, i.e. (i^,j^ <(i2,j2) (resp. ,(i-j^J-J <(^2*J2/ '̂ 1^1^
< [i2,J2]or [i-^J-J < [i2,J2]) if ±1 < ±2 and j 1 J2- If terminal

(i,j) of a multiterminal resistor is connected to node © then a +1

placed in the©-th row of the column corresponding to (i,j). Repeat for

all terminals of the multiterminal resistors. In the column corresponding

to the port [i,j] we set a +1 in the ©-th. row if terminal (i,j) is

connected to node © and a -1 in the ©-th row if terminal (i'j) is

connected to node © . Repeat for all ports. Let the remaining entries

of A be zero. Conversely any interconnection of the resistors is

completely characterized by any © xrmatrix A such that each column

corresponding to a port has only two nonzero elements +1, -1, and each

column corresponding to a terminal has only one nonzero element +1.

For example, in Fig. 6, the generalized incidence matrix A is given

by:
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A =

" 1 1 0 0 0 0 0 o- ©

-1 -1 0 0 0 0 0 0 ©

0 0 1 1 0 0 0 0 ©

0 0 0 -1 1 0 0 0 ©

0 0 0 0 0 1 0 1 ©

_ 0 0 -1 0 0 0 1 -1_ ©

(3)

[1,1][1,2][2,2][1,3](1,4)(2,4)(3,4)[1,5]

Observe that there are 6 rows and 8 columns since there are 6 nodes,

3 terminals (corresponding to <^ ') and 5 ports (corresponding to

R j R , R and R . Observe also that even though a one-port

resistor can also be considered as a two-terminal resistor, the former

is preferred since it is represented by only one column, compared to two

in the latter case, in the generalized incidence matrix A. Hence, the

total number of columns of A is therefore smaller.

Since our network may contain both multiport and multiterminal

resistors, and may have several connected components, it may be

necessary to specify more than one reference node with respect to which

the port voltages are measured. Clearly, every connected component of

the network needs at least one reference node. However, several

reference nodes may be needed in one connected component since the

reference node for one port of a multiport resistor need not have any

relationship with the reference node for another port. For example, the

network of Fig. 6 needs two reference nodes, say nodes © and © .

The following algorithm shows how to assign reference nodes:

1) Replace all n-port resistors by n uncoupled one-port resistors.
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2) Identify the connected components of this new network. The

nodes of each connected component i in this new network form sets

(^L» 1 = 1>2,...,£, which we call connected sets of nodes. These I

connected sets of nodes form a partition of the nodes of N; namely,

(JU ^(-/\(. = <j) if i#jand U ^j. = <^l. Clearly, any multiterminal
J i=l X

resistor has all its terminals connected to nodes belonging to one

particular q_^J ..

3) For each connected set (^. of nodes, choose one node

(arbitrarily) and call it the reference node for^\|_.. The voltage at a

node is always measured with respect to the reference node associated with

the connected set of nodes. The terminal voltages of multiterminal

resistors connected to this same set of nodes are all measured with

respect to this reference node.

Definition 1. For a given set of references nodes, a solution of a network

N is any set of vectors (y,i,u), called the voltage and current distribution

v, i, and the node voltage u with

.(D* r±(in

v = l =

.(m) .(m)

, and u
u®

(4)

u.

such that the following conditions are satisfied:

1) (v,i) is an admissible pair of resistors of N, i.e. the

(v ,i ) is an admissible pair of resistor j of N,

2) KCL is. satisfied, i.e., the sum of the currents leaving any

node is zero,

3) KVL is satisfied, i.e., any port voltage of a multiport resistor

is equal to the difference between the node voltages at its terminals and
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any terminal voltage of a multiterminal resistor is equal to the node

voltage at this terminal.

A network may have no solution, one solution, or many solutions.

Using the generalized incidence matrix, KCL and KVL can easily be

formulated as follows

Ai = 0 (5a)

ATu =v (5b)

This can easily be proved using the definitions of A, y, i, u and noting

that associated reference directions are chosen. It is also easy to

show that the number of solutions is independent from the choice of

reference nodes.

A. Permuted network

A

Given a circuit diagram, let N and N be two networks associated

with the same circuit diagram, i.e., two networks N and N whose elements,

nodes, and port (resp., terminal) labels of each internal multiport resistor

are assigned in two different ways. Since the same circuit diagram

is involved, the two sets of solutions are clearly related by a one-to-one

transformation. Although these two networks are isomorphic to the

eyes of the beholder, it is far from a trivial task to establish their

isomorphic nature if N and N were described not by a circuit diagram,

but by the algebraic methods described above. In fact, the only way

a computer could claim that N and N are isomorphic is to produce a

one-to-one transformation between the relevant data describing N and N;

namely, the port (resp., terminal) labels, the resistor number and the node

number. When such a transformation exists in the sense to be defined

shortly, we say N is the permuted network associated with N. It turns
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out that a completely rigorous and unambiguous study of symmetry in

nonlinear networks requires that we define the notion of permuted network

in precise terms.

Our definition of a network permutation will be based upon the

notion of a ir-permuted multiport resistor and a ir-permuted multiterminal

resistor [11]. To simplify our discussion, let us first introduce

the phase-inverting ideal transformer (Fig. 7(a)) which is defined

by v^ = -v„ and i = -i (note the unconventional reference current

direction for i.) . In order to simplify this symbol, we will hence

forth drop the ground terminal and represent it by a small square box

(Fig. 7(b)). This element is a useful artifice for complementing the

voltage v. and the current i. of a terminal i of a resistor i
1 1 J

(Fig. 7(c)). The free terminal (i,j) is then at a voltage -v. and

carries a current -i. . Consequently, it makes sense to call (i,j)

the complemented terminal of (i,j). Observe that our choice of the

unconventional current reference for i_ in Fig. 7(a) is motivated by

this complementation operation. Clearly, two complementations applied

in tandem results in the original voltage and current i.e., (i,j) = (i,j).

Observe also that complementation of two terminals of a port which is

followed by the interchange of the two terminals (Fig. 7(d)) also

results in the original port. This equivalence will be useful in many

instances. Algebraically this implies that in the description of a network

the following two sets of ordered pairs are equivalent

{(i,j),(i',j)} <* {(i\j),(i,j)} (6)

Since we deal with many objects like currents, voltages, ports, terminals,

which have two possible orientations, the following notion of a
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"directed permutation" is indispensable in this paper. A directed

permutation it of "n" oriented objects is a transformation obtained

by first permuting some of these objects and then changing the

orientation (complementing) of some of them. The directed permutation

7T = ( - J transforms object i into object i- and object j into the
y...i1...j1.../ l

complement of object j- where i, j, i-, j- represent objects with the normal

orientation. We write i_ = ir(i) and j_ = 7r(j). Corresponding to the directed

permutation it we define the directed permutation matrix P(ir) by

: : -t

POO =

• • • \J • • • ~J- • • •

...l o...

1 (7)

*-h

T T
i j

Definition 2. Given an n-port resistor R characterized by a set S

of admissible pairs (v,i), and a directed permutation ir of n objects,

A

we define the associated ir-permuted n-port resistor R by the set of

admissible pairs (v,i) such that v = P(tOv> i = PC^i* where (v,i) is
A.

an admissible pair of R. We often denote R by tt(R). Given an n-terminal

resistor *-|3 characterized by a set 2 °f indefinite admissible pairs

(v,i) and a directed permutation tt which complements all n objects or

none, we define the ir-permuted n-terminal resistor^12 by the set of
A ^

indefinite admissible pairs (v,i) such that v = P(tt)v i = P(ir)i,

where (y,i) is an admissible pairH?. We often denoted by ir(SR).

Permuted resistors can he easily synthesized from the original

resistors by permuting ports or terminals and introducing some

complementations. Observe that the complementation of a port, which

implies the complementation of the port voltage and current, can be
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achieved in two different ways: by interchanging the port terminals,

or by complementing both terminals. If it transforms port i into port

i^ and port j into port j-, we denote this operation on the corresponding

pair of terminals i, i', and j, j' by

TT(i) = i1, 7r(i») = ij or tt(1) = ij, ir(if) = i (8a)

*(j) =lv *(j') =j{ or tt(j) =j», tt(j') =j1# (8b)

Note that we have abused our notation slightly by using the same

symbol it to denote the transformation of a port, as well as a terminal.

Recall that a terminal can be complemented by connecting a "complementation

element" to this terminal. For example, the [ j - permuted 3-port
- \2 3 1/

resistor R associated with a given resistor R can be synthesized as shown

in Fig. 7(e). Similarly, the( ]-permuted 3-terminal resistor ^
\2 3 1/

associated with a given resistor <Q is synthesized in Fig. 7(f).

Observe that in the special case where it = /_ ~...n\- ,the TT-permuted
\1 2...n/

multiterminal resistor, henceforth called the complementary multiterminal

resistor lk. « is obtained by simply complementing all terminals. Such

complementary elements, however, may also be available in intrinsic form,

as in the case of complementary transistors and FET's.

Since a resistive network N is characterized by a set of resistors

and a set of nodes, before introducing the notion of a permuted network
A

N, let us first define two permutations, one involving the set of

terminals and ports of the resistors, and the other involving the set

of nodes.

Definition 3. The couple (ir,a) is said to be a "port-terminal permutation"

of a set of m multiport or multiterminal resistors if
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i\ = r (1) (m)nT (-j)
J - l1T •**1T J where tt j/ is a directed permutation of the

terminals or ports of the j-th resistor,

2) a is a permutation of the resistors.

A directed permutation "p" which permutes and/or complements the nodes

of a network N is said to be a "node permutation". The complement of

anode © ={(i^) ,±rj£) ...(i^j^)}(Fig. 7(g)) is defined by

© ={(i1,j1),(i2,j2)...(in,j )} (9)

and is obtained by the complementation operation shown in Fig. 7(h).

Observe that ® = ©

We see that as a result of the terminal and port permutation (tt,o),

terminal (or port) i of resistor j is transformed into terminal (or port)

it (i), of resistor a(j), and is denoted by

Or.cXi.j) = 6r(j)(i),a(j))

or

(;,o)[i,j] = [7r(j)(i),a(j)].

The port-terminal permutation (it,a) can also be written as

/0-.1) ...U,j] ...A

(!,0) =\^i>..<»>.m.«W»]..J (10)
where the upper row is a list of all resistor terminals and ports.

Given two port-terminal permutations (ir ,a ) and (tt ,a ) such that

we can operate first with (tt ,a ) on a set of resistors and then with

(l!2>^2) on the resulting set of resistors, we define the

composition (^.o^) = ^2»a2^0 ^~i»ai^ t0 be the port-terminal

permutation obtained by first applying (tt ,o ) and then applying

(tj2 ,o"2) . This product is given by

(j) (al(j)) (j)
*3 = if2 07rl » a3 = CT2oai (lla)
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where

~k ~ lk * k ' i*2^ (lib)

and exists if tt.
K(j))

(j)2 and tt_j operate on the same number of objects for

all j. It follows from (11a) that the inverse of (ij,a) exists and is

unique. It is given by

(tt,o) = (tt1,o ) (12a)

with

.¥("«>>.'(wa>)-i. (12b)

We order the terminal and port labels (i,j) and [i,j] lexicographically.

According to this order they are mapped one-to-one into the integers

1,2,...,r. This allows us to define the rxr matrix P(ir,a) as follows

P(H,a)

r ;0;
o •P(ir(j)) O

iO

-«- a(j)-th block (13)

j-th block

The effect of the multiplication of a vector x by P(j,a) is to rearrange

variables of the ports and terminals of the old lexicographic order to that

of the new lexicographic order and then possibly complementing some of

them.

Before giving the formal definition of a permuted network, we will

first introduce this notion on a nontrivial network N (Fig. 6 and equation

(2)). Suppose we choose a "port-terminal permutation" (it,a) with
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0 = A 2 3 4 5\ . ., A „ /® © ® © © ©'
\2 3 4 5 1/ and node permutation" p = I

V© © © © ® ®,
above choice for (j,o) and pcompletely specifies the (;,o,p)-permuted

network N. The recipe for constructing N from N consists of 4 steps:

(1) Replace each resistor j of N (Fig. 6) by an equivalent

resistor in Fig. 8(a) as follows. Let R(ati» (reSp. <£(a'j)) denote the

tt 2 -permuted resistor of the resistor R(j) (.resp. CP(j) ). Then resistor R(j)

(resp.<£(:,)) is the (tt(j))^-permuted resistor of £(a(J>> (resp. <E(a(j))).
In Fig. 8(a) we synthesize resistor R(j) (resp. Q^) starting from
fi(a(j)) (r* <T)(c(j)X
* uresp. k ) using the above described procedure for making a

permuted resistor. Since N and this new network are equivalent, the

currents and voltages of Fig. 8(a) can be derived immediately from those

of Fig. 6. Observe also that this implies that terminal i of resistor

RJ (resp. Q">) becomes terminal ir(j)(i) of resistor iSaW>
(resp. 42 )• This map corresponds to the port terminal permutation

(j,a).

(2) Relabel each node © by p(©) (Fig. 8(a)). The only effect

of this operation on the solution is a directed permutation of the

node voltages.

(3) Looking carefully at the network of Fig. 8(a) and discarding

all lables related to the original network N we see that the new network

is composed of some phase-inverting ideal transformers and of the

resistors R(1>, R<2>, i«', fi<«>, <£<5) ^ R<D .R(5) >-(2) .R(l)>
R(3) -R(2>, »W =*<3V3)> .5(3)^(3) .,W((fiW)i 0bserve algo
that some nodes in Fig. 8(a) are complemented: © © ©© . These

-20-



complemented nodes can be eliminated as shown in Fig. 8(b) by using

the node complementation technique shown in Figs. 7(g) and 7(h).

(4) Using the fact that two complementations in tandem are

equivalent to a short circuit and the fact that the complementation of a

port can be accomplished by complementing both terminals or by

interchanging two terminals , we can eliminate all complementation

elements and obtain the network of Fig. 8(c) which is the (ir,a,p)-permuted

a.

network N.

Observe that an arbitrary choice of the port-terminal permutation

A,

(tt,o) and node permutation p may not necessarily result in a network N

without complementation elements. In order to have this property for a

permuted network we will have to impose some consistency conditions on the

triple (7r,a,p).

Observe also that the left part of this network N in Fig. 8(a) is

not complemented by (7r,a,p) although the right part is. Hence we have

here a transformation which is more general than the ones given in the

introduction. With this motivation we are ready to give algebraic

definitions of a network permutation and of a permuted network.

Definition 4. Given a resistive network N = (R J ,4t ,cAI) where

each node belonging to <JA = {©...©} is as defined in (1) . The triple

(ir,a,p) is said to be a network permutation if:

1) (tt,p) is a port-terminal permutation of the ports and terminals

of the resistors of N.

2) p is a directed permutation of the nodes of N.

3) the following consistency conditions are satisfied: (a) All

terminals of multiterminal resistors connected to any node © are either

all complemented by (ir,a) if ® is complemented by p or all are

uncomplemented by p if © is not complemented by p. (b) The two
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nodes associated with any port of a multiport resistor are either both

complemented by p, or both are uncomplemented. The (tt,a,p)-permuted

network N= (R(a(j)) ,̂ P^^^ )LA() is then defined by

1) R(a(j)) (or4>(a(j))) is the tt(j)-permuted resistor of R(j)
(or<£(j))

2) (M = {© ... ©} is the set of nodes resulting from

/ (j,) \ / (j2) \
P(®) ={[* U^.aCj^;, \tt (i2),a(j2)j,...} (14)

where eventually some complementations have to be removed by complementing

both sides of (12) using (9) and by using (6) at the ports.

Observe that the elimination of all complements in all nodes (14)

is always possible because of the consistency condition. Indeed condition

(3a) guarantees that an eventual complementation of (14) brings all

terminals of multiterminal resistors and p(©) into the uncomplemented

form. Similarly, condition (3b) guarantees that any pair of terminals

*(i)(i,j) and (iT,j) or port i of a multiport resistor R J appear as (i,j)

and (i?,j), or as (i,j) and (if,j) in nodes He.) nc^ ,or in nodes

(fT^S (£S and thus complemented port terminals can be eliminated using (6)

In terms of the incidence matrix, condition 3 of a network permutation

T
implies that (tt,o-,p) are such that P(p)AP(ir,a) is again an incidence

matrix. This is precisely the incidence matrix A of N or

A = P(p)AP(tt,0)T (15)

Let us now derive the (tt,a,p)-permuted network of N (Fig. 6), (2)

using definition 4 directly. Conditions 1) and 2) are obviously

satisfied for the above (Tr,a,p). The set of nodes from (14) is given by
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© = {(1,2),(1,3)}

® = {(1»,2),(1',3)}

© = {(2,3),(1',4)}

® = {(1,4)(2,5)}

© = {(3,5),(1,1)}

© = {(2',3),(l,5),(i;,l)}

(16)

Consistency condition 3(a) is satisfied'since only the complements

® » © » © »(ls5), (2,5), and (3,5) appear. Similarly, consistency

condition 3(b) is satisfied since (1,1), (l',l) appear in © , © ;

(1,2), (lf,2) appear in © , ® ; (2,3), (2',3) appear in © , © ;

and (lf,4)(l,4) appear in © , © . Using (6) and (9) to eliminate

all complements in (16) we obtain

© = {(2,3),(1,5),(1,1)} © = {(2',3),(1,4)}

© = {(1,2),(1,3)} © = {(1»,4),(2,5)} (17)

® = {(1\2),(1»,3)} ® = {(3,5),(1»,1)}

This node set together with the resistors IT1' =R ,IT2^ =R^,
R(3) .R(2)) R(4) ^(3)^(3)) .R(3) and ^(5) .,(4) (Cp(4)) define

precisely the network shown in Fig. 8(c).

The incidence matrix A of this new network N can be derived from

A using (15) and is

1 0 0 1 0 1 0 0

0 1 1 0 0 0 0 0

0 -1 -1 0 0 0 0 0

0 0 0 -1 1 0 0 0

0 0 0 0 -1 0 1 0

1 0 0 0 0 0 0 1 J

[1,1] [1,2] [1,3] [2,3] [1,4] (1,5) (2,5) (3,5)
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Our definition of a network permutation is very general and contains

many special cases.

1) Choose tt = I, a = I, then the network permutation performs a

relabeling of the nodes.

2) Choose a = I, p = I, then the network permutation performs a

relabeling of the terminals or ports.

3) Choose tt =I,a = I,p = I then the network permutation
A. mm

performs a complementation. N is the complemented network denoted by N.

4) If (tt,c0 is a port-terminal permutation of a network N and

p is a node permutation and if both do not involve any complementations

then condition 3 is automatically satisfied and (tt,o",p) is a network

permutation.

It is clear that condition 3) of Def. 4 requires a major subset of the

ports (terminals)and nodes of a network to be all or not complemented.

What is the smallest subset that is subject to this constraint? Our

next proposition shows that each such set of nodes is precisely a

connected set of nodes.
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Proposition 5. In any network permutation (ir,a,p) of a network N the

node permutation p either complements all or none of the nodes belonging

to a connected set of nodes. Conversely there exists a network

permutation, such that the node permutation p complements all nodes

of some connected sets of nodes and no other nodes.

Proof: From condition 3) it follows that terminals of multiterminal

resistors connected to one node have to be either all or not complemented

and that the two terminals of a port have to be either both complemented

or not complemented. From condition 1) it follows that terminals of the

same multiterminal resistor have to be either all or not complemented.

These facts imply that nodes belonging to a connected set of nodes

have to be either all or not complemented. Since there are no other

conditions there exist network permutations complementing only the nodes

of some prescribed connected sets of nodes. n

Proposition 6. (a) Given a network permutation (tt ,a ,p ) transforming

network N into network N and network permutation (ij2,a ,p ) transforming

N into N then the composition <IT2»a2,p2) ° (~l,ai»pi^ ls anetwork
permutation transforming N into N.

(b) Let N be a network containing m multiport and m multiterminal

resistors. Assume N has n nodes and these nodes are made up of a union

of I connected sets of nodes. Let the j-th resistor be an n -port

resistor for j = l,...,m, and an n.-terminal resistor for j = m +l,...,m,

where m » n^+n^. Then the collection of all distinct network permutations

contains exactly M elements, where

-25-



M=( n (nj!2%) ( n nj!) (m!)(n!)J
\j=l / Vj^+1 / 2 (19)

Proof: The composition of the two network permutations is

(~3,a3,p3) = (^2,a2,p2) ° (ll>ai>P{> (20a)
with

(j) _ <al(J)) (j)7T3 - TT2 OIT '̂ (20b)

a = a2 o a1, P3 = P2 o p± (20c)

and is easily seen to satisfy all conditions. The total number of

distinct network permutations is the product of the following items:

1) the number of permutations of the m multiport resistors, 2) the

number of permutations of the m2 = m-m multiterminal resistors not

involving complementations 3) the number of the permutations of the

resistors, 4) the number of the permutations of the nodes not

involving complementations, 5) the integer 2£ where I is the number

of connected sets of nodes. n

A.

The most important property of a permuted network N is that its

solution can be easily derived from that of the original network N.

Indeed, if we let y and i denote the voltages and currents of all

resistor ports and terminals, and let u denote the set of all

node-to-datum voltages, then we have the following:

Theorem 1. For any solution (y,i,u) of N, the associated (tt,a,p)-permuted

network N has a solution

<N *• <\

(Y»i»!p = (?(H>a)Y>?(£>a)£>?(p)u) (21)
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Proof. Since (v,i,u) is a solution of N

1) (v ,i ) is an admissible pair for the j-th resistor of N,

2) Ai = 0 and

3) A u = v.

Using the orthogonality of the directed permutation matrix, the definition

of the resistors of N, and (15), we obtain by applying the appropriate

directed permutations the following relations:

1} ($(•«»,j<«U») .(p^^U^U),^))..^ an admlssible
pair of the o(j)-th resistor of N,

2) Ai *fp(p)AP(l!»o)TjP(Tr,a)i =0, and
3) ATu =(p(H,a)ATP(p)Tjp(p)u =P(ir,p)y =v.

This implies that (21) is a solution of N where p relates the reference

node(s) of the solution of N to the reference nodes of the solution of

N. n

It should not be too surprising that the solution of permuted

networks can be derived from one another since a network permutation

involves only operations which permute and/or complement variables of

the solution. No operation destroys solutions or introduces new ones.

This implies that N and N have the same number of solutions.

Corollary: If (v,i,u) is a solution of a network N, then the complementary

network N has a solution (-y,-i,-u).

This corollary [8,9] is used extensively in logic circuits. It is a

common practice to obtain the solution of a circuit in negative logic

by complementing all currents and voltages of the solution of the

corresponding circuit in positive logic.
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As a result of this theorem it is easy to derive the solutions of

a permuted network N from those of N. So it makes sense to define

identical and isomorphic networks as follows.

Definition 5. Two networks N=(R(j) ,̂ (j) ,o\|) and N=(R(j),Q^ljl)
are said to be identical if

1) R(j)(resp. Q^) and R(j)(resp. Q^) are identical for all j.
2) the nodes of N and N are identical

Two networks N and N are said to be isomorphic if there is a network

permutation, so that N is identical with the permuted network of N.

In terms of network drawings two networks are identical if their

circuit diagrams can be made coincident such that corresponding nodes,

ports, terminals, and resistors have the same labels, and such that

the corresponding resistors are identical. That is, they are exact

duplicates in all aspects. On the other hand, if two networks differ

only by the labels assigned to the respective nodes, ports, terminals,

and resistors, then they are isomorphic to each other.

B. Symmetric network

Definition 6. A network N is (tt,a,p)-symmetric if N is identical to

its (ir,a,p)-permuted network.

Examples.

1) Our first example demonstrates that there exist symmetric

networks whose associated symmetry permutations (7r,a,p) has p = I.

In other words, the nodes are invariants of the transformations.

Consider the network N shown in Fig. 9(a), where we have considered

the two identical 1-0, resistors as two-terminal resistors (rather than

one-ports) in order to show the generality of the definition. This

network is described by
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(R^v^-v^ .IV, and ^,Wf -̂ =-if>, i=2,3;
®= {(1,1),(1,2),(1,3)} © = {(2,1),(2,2),(2,3)} (22)

It is easy to verify that N is invariant under an interchange of the

resistors He and ^K ,or more precisely, under the network permutation

(I...P> with ,«> =gfj for i=1>2,3 and..(12 3) and p=g> g).
2) Our next example demonstrates that there exist symmetries which

are of the form (I,I,p). Consider the network N in Fig. 9(b) where the

two distinct nonlinear resistors R^ and R( ' are considered as one-ports,

rather than two-terminal resistors. The two nodes are © = {(1,1),(1,2)},

© = {(l',l) ,(1* ,2)}. If we apply the network permutation (Tr,o,p)

with ,<« =,W =!.(]),a-I-(J 2) and p=/||\,we'would obtain
a new network N which is identical to the original. In fact this form of

symmetry always exists whenever the ports of two multiport resistors are

connected in parallel with each other.

3) Consider next the complementary mirror-synmetric "push-pull

amplifier" circuit shown in Fig. 10(a).

This network is described by

<£(1) :.ij"- «plES(e«p((v<1)-v<1>)/vT-l))-'lcs(«tp((v<1)^1>)/vT-l))
=f2(v<1>,v<1>,vf>)

4" =-IEs<exP«vi1)-v31))/vT-l)) +Vcs^PC^-v^V^-l))

if> +if +if) =o

qf*> :if .-f2(-v{2\-vf>,-vf), if =̂ f,-„f,-vf),
42) +if>+4«. o •
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<#3) : vO) . y(3) . 5V> .(3) . _.(3)

<£(4> : vf - vf - -5V, i<^ - -if>

<R(5) : vf> - vf> - lf> - -if) (23)
and

© = {(1,1),(1,2)}, © = {(3,1),(1,5),(3,2)}, © = {(2,1),(1,3)},

© = {(2,2),(1,4)}, © = {(2,3),(2,4),(2,5)}

The push-pull amplifier is symmetric with respect to the following

symmetry transformation (fr,a,p):

^-(\2_3),^-(123),^ =(12),^ J12),
.1 2 3/ \1 2 3/ \l 2/ \l 2/

'© © © © (DN

V© © ® © ©/
As an illustration of the algebraic nature of the definition of

symmetry, we check this symmetry without using the circuit diagram. First

it has to be shown that (tt,g,p) is a network permutation. The first

two conditions are obviously satisfied and the consistency condition

requires in this case that all terminals and all nodes are complemented.

The (tt,cf,p) transformed network N is given then as follows:

The resistors are

<#« =„<2)(qip) -#2>,<#» - ^W1)) -<$<»,
#3) . ,(4)^4), .-p(4)f #4) . ,(3)^3), .<pO)f

<#5>-,<5><#5>).q2<5\
and the nodes are
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© =P(®) ={(Tr(1)(l),a(l)),(ir(2)(l),a(2))} ={(1,2) ,(1,1)}

© =P(@) ={(Tr(1)(3),a(l),(Tr(5)(l),o(5)),(7r(2)(3),a(2))}

= {(3,2),(1,5),(3,1)}

© «P(©) ={(TT(2)(2),a(2)),(Tr(4)(l),a(4))} ={(2,1) ,(1,3)}

© =P(@) ={(Tr(1)(2),o(l)),(Tr(3)(l),a(3))} ={(2,2) ,(1,4)}

® =P(®) ={(Tr(3)(2),o(3)),(Tr(4)(2),a(4)),(Tr(5)(2),a(5))}

- {(2,4),(2,3),(2,5)}

The complements of the nodes and the complemented terminals can be

eliminated by using (9):

® = {(1,2),(1,1)}, © = {(3,2)(1,5),(3,1)}, © = {(2,1),(1,3)}

© = {(2,2),(1,4)}, ® = {(2,4),(2,3),(2,5)}

It is now easy to check that N and N are identical since Q^ ' =^$ '=^jj ,
Cp(2) =qj(2) =0^(1)^(3) =qj(3) ^(4)^(4) =qj(4) aqj)(3) ^

^(2 = ri = tc and since the nodes are the same.

It is important to note that apart from the interconnection the

presence of the above symmetry in the network depends critically on

three properties of the constitutive relations: (1) The resistor He

is the complemented resistor of^|5( ', i.e. Q^2* = c^1\ This implies

that CR is a pnp transistor which is the complement of the npn

transistor Q(1), (2) The voltage sources <£(3) and ^(4) are
the complement of each other, (3) The resistor H8-V is bilateral,

i.e., CR(5) = <^(5), which follows from the linearity of CR(5).
To provide additional insight we present a graphical verification

of this symmetry. This involves the determination of the (ir,a,p)

permuted network N of Fig. 10(a). A similar analysis as in Fig. 8

-31-



produces via Fig. 10(b) the permuted network N of Fig. 10(c). Observe

that ^-[c (resp. ^(2 ) is a an npn (resp. pnp) transistor. Again using

the above three properties of the constitutive relations it is easily

established that the networks of Fig. 10(a) and 10(c) are identical.

4) If a network is symmetric with respect to (1,1,1), we call it

complementary symmetric. This corresponds to the definition given in

Sec. 1. It is easy to verify that a network is complementary symmetric

iff every component is complementary symmetric. In particular this

shows that any linear network is complementary symmetric.

Observe that our definition of symmetry is extremely general

and contains as a special case the three ad hoc symmetries mentioned

in the introduction. It will be shown later that the definition of

geometric symmetry given in the introduction provides a useful

technique for detecting the presence of some form of symmetries in most

instances.

Let (ir,a,p) be a network permutation. Observe that when a permutes

two resistors which have a different number of terminals or ports, or

when p permutes nodes which are associated with a different number of

incident terminals, the resulting permuted network cannot be identical

to the original network.

Now consider a network N with n nodes ® — © and m resistors.

Let the nodes be made up of %connected set of nodes, and let the j-th

resistor be an n.-port resistor R J for i = l,...,m, , or an n.-terminal
J 1 3

resistor ^Q J for j = m-,+l,...,m. Let ^P be the set of all network

permutations (ir,a,p) of N which satisfy the following conditions:
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1) for j = l,...,m the resistors j and c(j) of N are either

both multiport resistors with the same number of ports, or both

multiterminal resistors with the same number of terminals,

2) for © = ©,...,©, the nodes © and p(®) of N both

have the same number of incident terminals.

Proposition 7. Given a network N, the set ^P forms a finite group

(with "composition" as binary operation) containing

"l n V m \
n (n.!2 J)l\ n n.!| s,s02 elements, where^=1 3 /\j=mi+1 3J 12

s- = (II number of i-port resistors) (II number of i-terminal resistors)
1 i i
s„ = II number of nodes having n incident terminals.
2 i

Proof: It is easy to check that ^P has indeed the predicted number of

elements. The composition (20) of two elements of r always exists and

is again an element of^P(closure law). The network permutation (1,1,1)
T

where I is the unit permutation and where I = [I,...,I] , is called the

unit network permutation. The composition of two network permutations

belonging to ^P is associative since the composition of permutations

in (20b,c)) is associative. By (12) and (20) every element of CP has

an inverse. This implies that ^P is a group. n

Now with regard to the network permutations of CP ,we can apply

all results obtained in Section II of [11]. Among them the cyclic

decomposition of a directed permutation is the most important. Since

^P is a finite group we call the smallest integer d such that

v = v o v o ... o v = (1,1,1) the order of the network permutation

V^t. Analogously we call the order e of a port-terminal permutation

(5,0*) of (tt,o,p) £ *-P the smallest integer e such that (ir,a) - (1,1).
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Proposition 8. Given a network permutation (tt,o,p) £ ^P , then we

have:

1) (j>£) can be written uniquely as a product of disjoint cycles

either of ports or of terminals,

(tt,o) = ((i ,j ),(i ,j )...(i j ))...( ). (24a)
o o l J. q—± q—1

2) a can be uniquely written as a product of cycles either of

multiport resistors where all resistors have the same number of ports,

or of multiterminal resistors where all resistors have the same number

of terminals, i.e.,

c = (JofJ^^f-jJg^) •••(•). (24b)

where s is a divider of q.

3) p can be uniquely written as a product of disjoint cycles

p- ((SxS)-"(Q>-< >* (24c)
such that all nodes of a cycle have the same number of incident terminals.

4) The order e of (tt,o) is a multiple of the order of a, and the

order d of (ij,a,p) is the least common multiple (£cm) of e and the

order of p.

Proof:

1) Since (tt,cf,p) ^4^the composition (tt,o) o (tt,o) exists and

performs a directed permutation of the set of ports and terminals. Hence,

(24a) follows from Theorem 1 of [11].

2) In (24a) we have from the definition of a port-terminal permutation

that (j ,j1,...,j _-) is obtained by repeatedly applying o to jQ. In

view of Theorem 1 of [11], the corresponding cycle of a must accordingly

be (j ,j1,...,j n), where s is a divider of q.
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3) (24c) can be obtained immediately by applying Theorem 1 of

[11].

4) The order e of (tt,o) is the smallest integer such that

e e
(tt,o) = (1,1). This implies a = I and thus e is a multiple of the

order of a. Analogously it is easy to prove that the order d of

(tt,o,p) is a multiple of e and of the order of p. Call

g = £cm(e, order of p) , then (ir,a,p) = (1,1,1) and thus g = d. n

We say that a terminal i of resistor j is "incident at 'or1 connected

to" node © if (i,j) G © or equivalently if (i,j) G ® . Using

the previous proposition, we obtain the following interesting property.

Proposition 9. Let N be the (tt,a,p)-permuted network of N with

(Tr,a,p) £ nP. If the i-th terminal of resistor j is connected to

node ® in N, then the tr J (i)-th terminal of resistor a(j) is

connected to node p(©) in N. In other words, corresponding to the

cycles ((g)(5) ...(Q )of p, «l0,l0><ll.J1>...<iq_1.Jq..1»
(it,a), and (jQj,,...,j ,) of o, if terminal i of resistor jfl is

connected to node (£^\ , then s is a divider of q. Moreover, for any

integer d, terminal i, of resistor j, is connected in N to node
dl d2

., . , where d.. (resp. d_,d_) is the remainder of the division of d

by q (resp. by s,p) i.e. d = qq1+d1 with d-,q integers and 0 <_ d. < q.

Proof: Apply the definition of a network permutation to N and use

Prop. 8. n

A network may exhibit many distinct forms of symmetry. Again all

these symmetry permutations form a group, henceforth called the symmetry

group of a network.
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Proposition 10: The set 2 of all network permutations with respect to

which a given network N is symmetric forms under the composition

operation a group, which is a subgroup of ^P.

Proof: It is easy to see that 2 c P . By an analogous proof as

in Prop. 14 in [11], it can be shown that 2 satisfies the closure

property and hence is a group. n

Corollary 1: a) Let v. and v_ be two symmetry network permutations of

a network N. Then v o v2 and v ,with I an integer, are symmetry

network permutations.

b) A network is v-symmetric iff it is v -symmetric.

Corollary 2: Let N be a (tt,a,p)-symmetric network. If the i-th

terminal of resistor j is connected to node ® in N, then also the

tt (i)-th terminal of resistor a(j) in N is connected to node p(©).

In other words, corresponding to the cycles ((IT^N (£?)... /k |) ) of p,

^i0,:i0^il,^l^,,**,^iq-l,:5q-l^ °f (?'a)» and ^o^l*'"^s-l^ °f °*
if terminal i of resistor j is connected to node (tcT\ , then s is a

divider of q and for any integer d, terminal i, of resistor j, is
®dl d2

, where d (resp. d ,d ) is the remainder of

the division of d by q (resp. s,p).

Let us now apply this corollary and the cyclic decomposition technique

to the symmetry permutation of the network of Fig. 10(a). The cyclic

decompositions are:

(Tj,a) = ((1,1) (1,2)) ((2,1)(2,2))((3,1)(3,2))((1,3)(1,4)) ((2,3)(2,4))
((1,5) (1,5)) ((2,5) (2,5))

p = (©©)(©©)(©©)(©©), a = (1 2)(3 4)(5).

The order of (tj,cf,p) is equal to 2, since the order of (tt,c0 and of p
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are both 2. The symmetry group consists of the urit permutation and the

above permutation. The predictions of Cor. 2 are that if terminal (1,1)

is connected to node © , then terminal (1,2) is connected to node

©, or terminal (1,2) is connected to ® . Analogous observations

can be made at other terminals. The cyclic decompositions of (tt,o)

a and p will also be useful in describing the symmetry properties of the

solution (Sec. 3) and in reducing a symmetric network (Sec. 5).

C. Useful techniques for detecting symmetries in a network

Often one is interested in the symmetry group of a network. This

problem can be attacked in essentially two different ways. The first

is the most common and is based on geometrical constructions: the

network is redrawn (on a plane or in the 3-dimensional space) such that

it completely coincides with itself (the graphs coincide and the resistors

are identical) after some geometric transformations (such as a reflection

or a rotation and/or some complementation. This is a useful technique

for detecting symmetries with pencil and paper for a simple network. It

is not suited for large networks where a computer must be used. This

geometric method gives also a justification for the ad hoc definition

of symmetry given in the introduction. However, this method is not

general enough. We will demonstrate later by an example that some

symmetries cannot be detected by this method. This is because the

3-dimensional space, and certainly the plane, does not possess enough

"rooms" for identifying certain symmetries. The second technique is

more algebraic since it relies directly on the algebraic definitions of

a network and of symmetry. Instead of checking all possible network

permutations, we first select all network permutations (a subgroup of ^P)

which leave the graph or the incidence matrix invariant, and then
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eliminate those resistors which are not identical and which are thus

electrically different. This technique is completely general and more

suited for computer detection of symmetries.

The geometric detection technique is based on the following result.

Proposition 11. Given a network N and its network diagram D in the plane

or in the 3-dimensional space. Apply the following operations: 1) Select

some connected sets ^± of nodes and complement all multiterminal

resistors and all ports of multiport resistors incident at these nodes.

2) Apply an isometric transformation (such as a rotation or reflection

or both) on the resulting network diagram. If the original network

diagram D and the new network diagram D coincide with each other, and

if corresponding resistors have identical constitutive relations, then

the network is symmetric with respect to (tt,cj,p), where v^\ a and p

are the directed permutations resulting from the complementation and the

matching of the coincident resistors (all nodes belonging to complemented

connected sets ^j± of nodes have undergone an implicit complementation

since all the incident terminals are complemented).

Proof: The set of directed permutations 7j,a,p form a network permutation

for N because Tj,a and p represent terminal (resp. port), resistor and node

(directed) permutations respectively, and since the consistency condition

is guaranteed by the fact that all resistors connected to nodes of ,AJ.

are complemented. It follows then that the (it,a,p)-permuted network

N coincides with N. a

We illustrate this technique first with the network diagram D of

Fig. 10(a). In our search for a symmetry we can either choose everything

to be complemented or nothing since there is only one connected set of

nodes. In complementing everything we obtain the new network diagram
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of Fig. 11(a). Observe that 1) the complementation of an npn transistor

£|5 is a pnp transistor identical with 42 , 2) the complementation

of a voltage source <~P is obtained by interchanging its terminals

and thus ^K( ' is identical with ^ ' and 3) the linear resistor ^^ ' is

identical with its complement lk • We reflect this network diagram

with respect to the axis © © ® while preserving the labellings

and obtain the diagram D of Fig. 11(b). Using the above three facts

we see that the network diagrams D and D of Fig. 10(a) and 11(b) coincide

and that the corresponding resistors have identical constitutive equations

and thus the network is symmetric. From the matching of the coincident

elements we obtain the symmetry network permutation (ij,a,p). The top

row contains the labels of D and the lower row contains the labels of D

including the eventual complementations of terminals, ports, or nodes:

/©©©©©>

\®®©@®>

/(l,1)(2,1)(3,1)(1,2)(2,2)(3,2)(1,3)(2,3)(1,4)(2,4)(1,5)(2,5)\
(I.P) =( )»

\(1,2)(2,2)(3,2)(1,1)(2,1)(3,1)(1,4)(2,4)(1,3)(2,3)(1,5)(2,5)/

which is the same symmetry as found before.

Remarks: 1) Since we only consider networks with a finite number of

nodes and resistors, the classification theorem of isometries in space

[15] shows that we only have to consider reflections and rotations and

a combination of both.

2) Observe that it may be necessary to draw the network in the

3-dimensional space in order to identify certain forms of symmetry.

For example, consider the network N of Fig. 11(c) as drawn in the

3-dimensional space. Let us apply Prop. 11 by complementing first
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all resistors connected to nodes of the sets ^1 and (_^f and then

rotating it about the x-axis by 180°. Since the two drawings coincide

with each other, and since the corresponding resistors are identical

N is symmetric. The associated node permutation is given by

_/© © © © © ©\ ,
p \ - - - - - -I • The a and ir permutations can also be

\© © © © © ©/
determined as soon as all resistors and terminals are labeled. Another

symmetry of the same network can be found as follows. First complement

everything that is connected to nodes ® and® i.e. to nodes of ^

Next make a mirror reflection with respect to the plane x-y. The two

drawings are identical. The corresponding node permutations is

_/©©©©© ©\

\© © © © © ©/

3) Observe also that it may be necessary to redraw a network

several times before uncovering any form of symmetry. For example,

(3)
the circuit shown in Fig. 11(d) with R linear does not seem to

exhibit any form of symmetry at all. However, after interchanging

the location of nodes © and © (Fig. 11(e)), the line connecting

nodes ® and @ clearly forms an axis of symmetry.

A major drawback of this technique for detecting symmetries is

that it does not guarantee that all symmetries can be found. To show

this, consider the network shown in Fig. 12, where the one-port resistors

{R(1V2V3>} (resp., (RW,R(5',R«)1R«}) (RW ,R<9) ,... ,R(19) }) are
assumed to be identical, but need not be bilateral. The node set is

given by:

-40-



© = {(1M),(1,2),(1M0),(1\11), (l',12),(l\13)}

® = {(l,,2),(l,3),(l,,14),(lf,15),(l»,16),(l,,17)}

© = {(l,l),(l»,3),(r,8),(l',9),(l',18),(l',19)}

© = {(1\4), (1,7), (1,9), (1,11),(1,14)} (25)

® = {(1,4),(1\5), (1,8), (1,10), (1,15)}

© = {(1,5),(1\6), (1,12), (1,17), (1,19)}

© = {(1,6),(1',7),(1,13),(1,16),(1,18)}

It can be easily verified that this network is (it,a,p)=symmetric with

tt(j) = I, j=1,...,19,

a =
= /l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19\

\2 3 1 5 6 7 4 12 10 17 15 16 14 8 19 9 18 11 13/ '

/®®@©®©@\ ___

andP*A@©®®©@©)=(®®@)(0®®®)- —-^
in drawing this network can be seen more clearly from the cyclic

decomposition of p. The two cycles imply that such a network diagram should

have two axes, one through the center of the triangle © © © and

the other through the center of the square © © © ©, and the network

should be invariant under a 120° rotation about the first axis followed by

a 90°-rotation about the second axis. A similar problem arises when one

wants to draw in the two or three-dimensional space a symmetric multi-

terminal or multiport resistor such that its symmetry can be derived

from an isometric operation. A simple example where this is impossible

is a (1 2 3)(4 5 6 7)-symmetric resistor.
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The other symmetry detection technique is directly based on the

definition of symmetry: A network permutation (ij,a,p) G ^-p is a

symmetry network permutation if and only if

1) P(p)APT(Tr,p) =A (26)
and

2) the resistor a(j) is the /^-permuted resistor of the resistor j
The problem of finding the group of all symmetry permutations can

be solved sequentially as follows.

1) First solve the combinatorial problem of finding the group

of all network permutations such that (26) is satisfied.

2) Then check the condition on the resistors. Not all cases need

be verified exhaustively since we can use the algorithm described in

Appendix B of [11]. The first problem is equivalent to finding the

group of symmetry operations of a directed hypergraph. In the case

of a planar graph Weinberg has described algorithms for finding the

symmetry group [16-17], His algorithms are based on canonical codes

for the planar graph. In the general case more exhaustive techniques

are unavoidable, although the structure of the problem and the use of

the algorithm of Appendix B in [11] allow great savings. We present

here such an algorithm. But first observe that (26) implies

P(p)AAT =AATP(p) (27)

Algorithm for finding the symmetry group 2 of a network N

Given anetwork N=(R(j), ^ ,cAI) find the group 2 of all

(7r,a,p) E lP such that the network is (irr,a,p)-symmetric.
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1) Find set M, of nodes which have the same number k of terminals

for k = 1,2,... . Find the set L (resp. L*) of multiport (resp.

multiterminal) resistors which have the same number k of ports (resp.

terminals) for k = 1,2,... . Find also the I connected sets of nodes

(^\L * k = !>•••>£• Then from the definition of ^P, (ir,a,p) has to be

such that p does not interchange elements of the M with different k, and a

does not interchange elements of the L (resp. L') with different k.

2) Find the group G of all permutations p such that (27) is
P

satisfied. Mowshowitz [18] has described an algorithm to find all

T T
solutions in two steps: first solve XAA = AA X fcr all complex X [19]

and then identify those solutions which are permutation matrices. Since

the second step is by nature exhaustive we prefer a direct exhaustive

T
procedure. Consider AA as the hybrid matrix of a linear multiport

resistor and find the group G of all symmetry permutations of this

resistor using the algorithm of Appendix B of [11]. Observe that

only the permutations which do not interchange elements of the sets M,

are valid candidates as elements of G , since this condition implies that
P

T
the diagonal of AA is invariant under p.

3) Find the group G of all permutations tt,o,p such that

(Tr,a,p) ^ <-P, P£G and P(-rr,a)A = AP(p). We use the Algorithm of
p ~ ~

Appendix B of [11] to find for a given p *= G all solutions of
P

P(tt,o) = AP(p) for (TT,a,p) £ ^P . Two important group theoretic

observations can greatly reduce the number pfs to be considered. If

for a given p.there is no solution then also for any pn such that

p = p for some integer m there is no solution. Second if the solutions

for any p- and p« are found then any solution for P,P9 can be found

by making the composition of the solutions for p and p .
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4) As a result of the previous steps we have a group G of

permutations which leave all graph theoretic aspects of the network

invariant. Since the symmetry operations can complement any of the

I connected parts of the network the group G has to be extended to a

group G? of 2 (//G) directed permutations. In other words, any permutation

contained in G gives rise to 2 directed permutations in G'.

5) Find the symmetry group 2 c G'. For any directed permutation

(irr,a,p) G G* check if the irJ -permuted resistor of the j-th resistor

and the a(j)-th resistor of N are identical, for all j. Again the

number of elements of G' to be checked can be reduced significantly by

the following two rules: First, if p Eg', p? § then for all

PQ € Gf and Pq =Pfor some integer m,p f- 2 . Second, if p € fi

and p2 e 2 ,then p± op2 €2 •

III. PROPERTIES OF SOLUTIONS OF A SYMMETRIC NETWORK

It will be proved in general in this section that if the solution

of a symmetric network is unique then this solution is symmetric if it

is measured with respect to suitable reference nodes. If we have

reference nodes which are invariant under the symmetry node permutation

p, this property follows almost immediately from Theorem 1 and is

stated in Theorem 2. We call a node © invariant under p if

p(®) - ® or p(0) = ® . Since it may not be possible in general

to find invariant nodes the remainder of this section is devoted to

a systematic procedure for introducing reference nodes and/or selecting

reference nodes such that the solution is symmetric*

Theorem 2. If the solution (v,i,u) of a (j,a,p)-symmetric network N

is "nlque and if the reference node(s) is (are) invariant under p, then
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P(Tr,a)v = v (28a)

P(Tr,a)i = i (28b)

P(p)u = u (28c)

Proof: From Thm. 1, the symmetry of N, and the invariance of the

reference node(s), we see that

(y,i,u) and (P(ir,a) v,P(Tr,p)i,P(p)u)

are solutions of N with respect to the same set of reference node(s).

The theorem now follows from the uniqueness of the solution. n

Corollary 1. Let N be a (it ,a,p)-symmetric network having a unique

solution and reference nodes which are invariant under p.

1) If p has a cyclic decomposition

p = ( ) ... ((^) (^2) ••-• (^7)) ••• ( )» then the voltages at all nodes

belonging to each cyclic component and having the same orientation in the

cycle, say /n. \ j/n/N ,•••> /"^\ are equal to each other. Similarly, the

voltages of the remaining nodes, say /nT\ ,/n. \ ,...,/nT\ , in the

same cyclic component (which must necessarily have the opposite

orientation) are equal to the negative of the voltage of the first

set of nodes.

2) Analogously for the cyclic decomposition

(7T,a) =[ J... ((i1,j1)(i2,j2) ... (ik,Jk)

the voltages at all resistor terminals belonging to each cyclic component

and having the same orientation are equal to each other. Similarly, the

voltages of the remaining resistor terminals in the same cyclic

component (which must necessarily have the opposite orientation) are equal

to the negative of the corresponding voltages of the first set of terminals.
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3) Analogous statements also apply to the resistor terminal

currents.

The symmetric lattice property (Prop. 4) in Sec. 1 can now be

proved with the help of Thm. 2 and the above Corollary. The one-port

resistors R and R^ (resp., R( ' and R(5^) in Fig. 3 are identical.

The node set is:

® = {(1,1),(1,2),(1,5)}, © = {(1',2),(1,4),(1,6)}

© = {(lf,l),(lf,3),(l',4)}, © = {(l,3),(l',5),(r,6)} .

The symmetry transformation is ttJ =( jfor j=1,...,6, and ,

„ _ (1 2345 6\ . /© © © ©\ ^
\1 3 2 5 4 6/ p =( - - 1 * Observe that no node

\® ® © ©/
is invariant under p. In order to apply Thm. 2 and Cor. 1, let us

introduce a phase-inverting ideal transformer (Fig. 7a), which is a

3-terminal resistor described by v][-v3 =v -v , ±1 = i2> i -i +i = 0.

By connecting this 3-terminal resistor to the symmetric lattice as shown

in Fig. 13, the symmetry is preserved and the currents and voltages

are not modified since terminal (3,7) does not carry any current.

Nodes @ @ and ® become

© = {(1',2),(1,4),(1,6),(1,7)}

© = {(1,3),(1',5),(1',6),(2,7)}

® = {(3,7)}

/© ®@©®\
and the node symmetry operation is p' = _ J . Observe that

VI) @ © d> ©/
node ® is now an invariant node and can be chosen as our reference

node. Since p1 = (®@)(®©)(®®), it follows from Cor. 1 that
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the voltages at nodes ® and © {resp., nodes ® and ©} are the

negative of each other. Since (7r,,ol) =([1,1]) ([1,2] [1,3]) ([1,4] [1,5])
([1,6]) ((1,7) (2,7)) ((3,7) (3,7)) , this implies, among other things,

(2) (3)
that the voltages and currents in resistors R and R are equal to

each other. This proves Prop. 4. As a result of this corollary we

see that the voltages of many nodes in the network are equal to each other,

or differ by a negative sign. The great advantage of the cyclic

decomposition is now obvious: it allows us to select these nodes

immediately. This observation will enable us to construct in Sec. V

a practical algorithm for simplifying a symmetric network.

Corollary 2. If a complementary symmetric network has a unique solution,

then all current and voltage solutions are zero.

Proof: Since tt^' = I, a = I, and p = I, we have P(p) = -1 and

P(H,o) «= -1 , it follows from Thm. 2 that y = -y, i = -i, u = -u. n

A general remark concerning Thm. 2 and its corollaries is that the

uniqueness of the solution is essential to guarantee the symmetry of

the solution. Counterexamples such as the Eccles-Jordan multivibrator

(Fig. 14) show that this condition cannot be relaxed.

We have already seen that a symmetric network (such as Fig. 3) may

not have an invariant node. An artifice was then introduced as in

Fig. 13 which allows such a node to be generated without affecting the

solutions of the original network. Another common situation of a

symmetric network having no invariant nodes is given by the class of

rotational symmetric networks. The network in Fig. 15 is a case in point.

We will now describe a general method for selecting reference nodes such

that the unique solution is symmetric. In order to do this, let us

first investigate the relationship between the connected sets of nodes
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lMi'LN29' '' * and tlie 3yTmetrY node operation p. Let p be called the

directed permutation of the connected sets of nodes and be defined by

p(uW±) ={P(®)|® e <Jl±}. (29)

The following proposition then shows that p is indeed a directed

permutation and is the directed permutation induced by p on the connected

sets of nodes.

Proposition 12. Given a (tt,a,p)-symmetric network N= (R^ ,̂ R^,^)

with connected sets of nodes 0\(1, ^2,..., then for any i there exists

a j such that

P(eAI±) =JUj or oWj (30)

Proof: Any two nodes /n^N /n^Nof ^\(. are interconnected via some ports

of multiport resistors and/or via some multiterminal resistors. Since

the network permutation preserves this interconnection, p((nT>\) and

pCfaT)) are in the same way interconnected in the permuted network and

thus belong to the same consistent set of nodes. Since the nodes of

(JvJ are either all or not complemented, we have

P~(u\fi) CJ. or J..

Applying the inverse permutation (tt,o,p)~ which is also a symmetry

permutation, and repeating the previous argument, we obtain

because p is the node symmetry permutation of (iT,a,p) . °

This proposition implies that the connected set of nodes determine an

equivalence relation in the set of nodes, which is invariant under p

[13,p.166].
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Corollary 1. p is a directed permutation of the connected sets of

nodes and can thus be written as

) (31)
Jl± Jlj "7

or by its cyclic decomposition

P = (uWiJvi —K )...( ). (32)

Corollary 2. Given a connected set of nodes ^AJ with cycle
i0

<oM, Jv, ...tjl. ), (33)
0 xl m-1

then any node /nTN ^ (^A(. has a cycle
\3/ 0

((%XS)'"" ^} (34)
whose order k is a multiple of m, and /n?\ ^ r^. ,where j. is the

remainder of the division of j by m.

Definition 7. Given a (tt,a,p)-symmetric network N we call a set of

reference nodes of N compatible with the symmetry permutation (T[,a,p) if

1) for all connected sets of nodes belonging to the same cyclic

component of p, the reference nodes also belong to the same cyclic

component of p, and

2) for any connected set of nodes ^j , the cycle of p, which

contains the reference node of ^j., only contains nodes which have

all the same orientation or which have all both orientations.

Constructively, these conditions imply the following. Choose

some cyclic components of p such that each connected set of nodes

qJ\) . has one or more node(s) appearing each in just one selected
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cyclic component of p. Then condition 1 is automatically satisfied,

if we choose the reference nodes among the nodes of the selected

components of p. Condition 2 requires additionally that for each

selected component y. and for each connected set of nodes ^\j., any

two different nodes (nM and hi'M of ^ appearing in y. can only

have the following orientations in this cycle (nM ,(?) ,or (tP) ,(?)

or (?) >(?)>(?) ,(?) • Thus the mixed cases (?) ,(?) and (?) ,(?)
are ruled out by condition 2. So for example if ®, ©, ® G o\l,,

© >© ,© £<JI2 and © ,© ,© G0\(3 and if

P = (© © © ©©©)(© © © © © ®) ,the component

(® ®®©®©) cannot contain reference nodes satisfying condition

2, while the component (@®®® © ®) can. In fact the nodes

® » ®» ® form a compatible set of references nodes.

Before showing that Thm. 2 can be extended to the case of a

network N with a set of reference nodes compatible with the symmetry,

we answer two important questions. Can a compatible set of reference

nodes always be found for any symmetry permutation and any network N?

And how can such a set of reference nodes be found? It is easy to see

that any set of reference nodes which is invariant under p is compatible

with the symmetry permutation and thus we are dealing with a larger

class than that of Thm. 2. However there exist networks which have

no set of reference nodes compatible with the symmetry permutation,

the network of Fig. 3 being a case in point. This difficulty has been

solved in Fig. 13 by adding a phase-inverting ideal transformer whose

terminal 3 is free. This does not modify the solution of the network

and preserves the symmetry. We now present a simple algorithm which
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extends this technique and shows that by adding some phase-inverting

ideal transformers a compatible set of reference nodes can always be

found.

Algorithm. Construction of a compatible set of reference nodes. Given

a (it,a,p)-symmetric network N introduce phase-inverting ideal transformers

in order to obtain an equivalent symmetric network and find a set of

reference nodes compatible with the symmetry.

1) Find the cyclic decomposition of p, the directed permutation

p of the connected set of nodes and its cyclic decomposition. The

assignment of reference nodes in each connected set of nodes and the

eventual introduction of phase-inverting ideal transformers are applied to

one cyclic component of p at a time. So step 2 has to be repeated for

all cycles of p.

2) Consider the cycle 3 = (^. <AJ. •••(AL ) of p. One can
10 Xl m-1

choose arbitrarily any cyclic component y = (/n/N/n/\ ... /n. \ ) of p

such that fn7\ e o\L . Then by Cor. 2 of Thm. 2 k is a multiple of

mor k=ms and fe\, fi\, fi\ ... fr,.^ Ŝ and
G (_^j and so on. If we

1

choose the reference nodes of ^|. .JM •.. rAL among the nodes
0 1 m-1

of y» condition 1 of Def. 7 is automatically satisfied. The condition 2

of Def. 7, however, requires some further analysis of the cycle (3.

It is clear that 3 can be of normal or of double order. If 8 is a normal-

Observe that (JV|. (resp. /nT"\) may as well stand for a complemented
&

connected set of nodes (resp. node) as for an uncomplemented set.
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order cycle then condition 2 is satisfied if we choose any node among

n. >. as reference nodes for /Af . and repeat
^ (s-l)m+lx xj

this for j - 0,1,...,m-1. If $ is a double-order cycle then m is even

and cAL = Jvl. for j = 0,l,...,m/2-l. Two cases have to be
xj m/2+j

considered according to the fact that /n7\ and /n. ^\ are the same
xo,

or not. a) If /nj^ =/0\ theniJ " Ti ,J Lnen ft\

and condition 2is satisfied if we choose the reference node for Jty.
^^ j

arbitrarily among ^n^ f£± ^ ... ^ _^^ and repeat this for
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we have then

^i^f^i i7^f0r a11 j=1»---»m/2-J and condition 2of Def. 7cannot

be satisfied. Therefore we introduce k/2 phase-inverting ideal

transformers T±, i = 0,1,...,k/2 as follows. Select two nodes

and (g) of Ysuch that g) GJj± and ^ eJ^. . Connect

terminals 1 and 2of Tq to nodes (£?) and (O and leave terminal

3of Tq open. Connect terminals 1and 2of T- to nodes p((/kT)) and

p(fk2P and ieave terminal 3open, and so on until terminals 1 and

2of Tk/2 are connected to nodes pk/2""1(^kT)) and pk/2"1((k?)) and
terminal 3 is left open. The new network has k/2 new nodes at the

third terminals of the T^ i= 0,...,k/2. Since no current is flowing

in the T. the solution of the old network can be immediately recovered

from the solution of the corresponding part of the new network. The

new network has also a symmetry permutation which acts on the old

part of the network as the old symmetry permutation did on the old

network. The node permutation contains a new double-order cycle of



of the new k/2 nodes. Thus condition 2 is satisfied if we choose the

m reference nodes among these k/2 nodes.

Example. We apply the algorithm to the network of Fig. 16(a) with the

following resistors: the 5-port resistor R which is

'l 2 3 4 5\
1 -symmetric,the complementary 3-terminai resistors

,12 4 5 3/

(transistors) (ty and ^^ ,the identical 2-terminal resistors

QW, Q(5) and Q(6). The node set is given by

® = {(1,1),(3,2),(3,3)} ® = {(4,1),(1,5)}

© = {(1»,1),(2,2),(2,3)} © = {(5,1),(1,6)}

© = {(1,2),(2,1)} ® = {(3\1),(2,4)}

® = {(1,3),(2',1)} ® = {(4',1),(2,5)}

® = {(3,1),(1,4)} (LO) = {(5\1),(2,6)}.

This network is (tt,a,p)-symmetric with

u(l) m/1 23*5\ i /j) J12 I) , i =2,3 and *(j) =I, j=4,5,6
\l 2 4 5 3/ \l 2 3/

© © © © © ©© ® © ©'

©©©©©©©©,
/12 34 5 6\ /®©Q

a= 132564)' p " - - -
\®©£

In step 1 of the algorithm we find the consistent sets of nodes

Jix- f®. ©. ©» ©>. oW2 ={©. ©>. oW3 - {©. <D>.

oW4 =f©. ©> •
The directed permutation of the consistent sets is

(.All 0W2 ^3 <-Af-4
vlAIi JVI3 Jv4 LAI2r
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The decompositions in cycles are

p- (®©)(@©)(®®)((D®@)(®@@),

In step 2 we try to find a reference node for (_^L with cycle

(U^l^Ny) ' We cnoose tne cyclic component (© ©) of p. Since

(cJUi uMi^ is a double-order cycle and since © ^ © we have to

introduce a phase-inverting ideal transformer between nodes ® and ©

(Fig. 16b). The reference node in ^\( is then the new node (ll) .

Observe that this voltage divider need not be introduced if we had

chosen cyclic component (© ©) . In step 2 for the cycle

(lAIooAKlA)/^ we searcn f°r reference nodes for the other consistent

sets. We choose a cyclic component (® © UO)) of p containing nodes

in (.A^oWslAU* Since (JK20W30W4) is anormal-order cycle, condition

2 is automatically satisfied if we choose © (resp. ®, Q-O)) as

reference node for ^ (resp. c^^'lAI^ •

It should be clear from this example that the number of phase-

inverting ideal transformers can be minimized by choosing as often as

possible the reference nodes in double-order cycles of p for connected

sets of nodes which appear in a double-order cycle of p.

Observe also that if no nodes are complemented by p no phase-

inverting transformers have to be introduced, since the cycles of p

and p contain no complements.

Theorem 3. Given a (tt,a,p)-symmetric network N with a set of reference

nodes compatible with the symmetry and with a unique solution (v,i,u)

then
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P(Tr,a)v = V

P(TT,a)i = i

P(p)u = u

(35a)

(35b)

(35c)

Proof. The main problem is to remove the asymmetry in the location of

the reference nodes. Consider any connected set of nodes ^\\. and its

cyclic component in p. Call r the number of connected sets of nodes

in this cycle. Then the order of the cycle is equal to r (resp. 2r) if

it is a normal-order cycle (resp. double-order cycle). Consider the

cyclic component $ of p which contains the reference node of (^A).. Now
r

p has a cyclic component y which is composed precisely of the nodes

of 3 contained in ^j.. Consider now the symmetry permutation (tt,o*,p) .
r

Since any cycle of p is composed of every r-th node of a cycle of p

XT
the chosen set of reference nodes is also compatible with (tt,c,p) . After

a relabelling of the nodes, node © is the reference node and this

cyclic component is y = (® @ ... © ) or y = (@ © ... @ © © •••n)

with n odd. Observe that (® © ... @) cannot appear since the

reference nodes are compatible with (ir,a,p) . In general, the node

vector contains the following part [0 u^-vu u /-^ ] . It follows©"©•••u®
from Thm. 1 and the symmetry of the network with the relabelled nodes

T
that P(y) [0 U/w\... u^->. ] is also a valid part of the node vector.

(2) (n)

But this solution has reference node @ . By making node © again

the reference node and using the uniqueness of the solution we obtain

0

-1 1

-1 1. P(Y) . = ..7 (36)
• *

-1

no 1 0

P(Y)
u©

• =

U®

u®
*— I—1

U®
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In the case y = (® © «••®) this reduces to

-1

1

-1

-1

r ->

\ -1-1
•

'I -2 Lu©

= 0

and in the case Y(®®.-.@© ©.-•©) with n odd we have

-1

-1

—

1

1

u@

-1 1

-1 0 r®

= 0.

(37a)

(37b)

Since matrix in (37) is of full rank, the only solution is

u©=u®--- =u®=0
This implies that nodes © © ..•® can be connected to each other

and so the asymmetry in the reference node © is removed. After

repeating this process for all connected sets we obtain a network with

invariant reference nodes. Hence the theorem follows from (28). a

Cor. 1 of Thm. 2 can also be extended to this case.

Corollary 1. If a (tt,a,p)-symmetric network N has a unique solution,

and if the reference nodes are compatible with the symmetry permutation,

then we have the following properties:

1) In any cycle y of the decomposition of p into cyclic components,

all nodes of y with the same orientation have the same voltage; nodes

with opposite orientations have opposite voltages.
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2) In any cycle 6 of the decomposition of (vto) into cyclic

components, all the terminals of 6 with the same orientation have the

same voltage and carry the same current; terminals with opposite

orientations have opposite voltages and currents.

In the case of cycles of double-order we arrive at the following

conclusion.

Corollary 2. If a (tt,a,p)-symmetric network N has a unique solution,

and if the reference nodes are compatible with the symmetry permutation,

then we have the following properties:

1) In any cycle of p of double-order, all nodes have zero

voltage.

2) In any cycle of (tt,o) of double-order all terminals have

zero current and zero voltage.

IV. SYNTHESIS OF A SYMMETRIC MULTIPORT OR MULTITERMINAL RESISTOR FROM

A RESISTIVE NETWORK.

In many practical situations, such as in signal processing, port

entries are made in a network and loaded with one-port resistors.

The transfer characteristic from one entry to another, or the voltage-

current driving-point characteristic at one entry, are analyzed

[8,pp.228-236]. Interesting frequency separation properties can be

obtained if there is some symmetry in the transfer characteristic [11].

Here we consider in general the problem of synthesizing a symmetrical

multiport or multiterminal resistor from a resistive network. For the

case where the network is already symmetric, or nearly symmetric, an

easy method is described.
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Let us describe first how port entries and terminal entries can

be made in a resistive network.

Definition 8. Let N be a resistive network, and let <Q be an operator

which selects n nodes of N where external terminals are attached

(Fig. 17). The set of admissible terminal voltages and currents at

these n terminals determine an equivalent n-terminal resistor ^(2 ,

henceforth called the n-terminal resistor He derived from the network

N by the operator ^B .

Observe that the "equivalence" applies only externally since there

need not be any relationship between the currents and voltages inside

two networks which give rise to the same multiterminal resistor.

Corresponding to the operator 45 we can construct a selection matrix B.

B has n rows and a number of columns equal to the number of nodes of N

and has a 1 at entry i,j if the node © of N is connected to terminal

i of ^R, and zero otherwise. With this selection matrix B we can

describe Q algebraically as follows: (v*,i*) is an admissible pair
m r (DT (m)T,T . . _ r.(l)T .(m)T,T

ofHe if there exist vectors y = [vv ...v ] and l - li ...i J

such that

1) (v,i) is an admissible pair of resistors of N

2) *i-?V (38)
3) ATu = v

4) v* = Bu

where A is the incidence matrix of N.

Port entries can be made in a network by two essentially different

methods: 1) The two terminals of the port can be soldered to an

arbitrarily chosen pair of nodes of the network. This entry is henceforth
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called a soldering-iron port entry. 2) On the other hand a port can

be inserted in series with an arbitrarily chosen terminal of a resistor.

This entry is henceforth called a pliers-type port entry.

Definition 9. Let N be a resistive network and lej C be an operator

which maps a subset of the union of all "node pairs" and of all resistor

"terminals" in a one-to-one manner onto "n" external ports. The

selected node pairs correspond to the external ports created by

soldering-iron entries, and the selected terminals correspond to the

ports created by pliers-type entries (Fig. 18). The set of all

admissible port voltages and currents at these n-ports determine an

equivalent n-port resistor <Qt called the n-port resistor derived

from the network N by the operator Q . The port current constraint can be

satisfied by connecting an isolation transformer, or by terminating the

port externally by a 2-terminal element.

Observe from the operator (^ we can construct selection matrices

C, and C« as follows:

1) The matrix C. has n rows and a number of columns equal to the

number of nodes of N, and has a +1 (resp. -1) at tbe entry i,j if node

© is connected to terminal i (resp. i*) of R, and a zero otherwise.

2) The matrix C« has n rows and a number of columns equal to the
m

sum r = 22 n of the number of terminals of multiterminal resistors
1=1

and ports of multiport resistors of N. As before we order these terminals

and ports lexicographically, a) If port k is made by a pliers-type

entry in terminal (i,j) i.e. the i-th terminal of the j-th multiterminal

resistor then a +1 or -1 is placed in the k-th row of the column

corresponding to (i,j) of C2. The sign ± depends on the polarity of the

port k. If terminal k1 is nearer to the multiterminal resistor than
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terminal k we have a +1, and -1 otherwise, b) Analogously if port k

is made by a pliers-type entry in either terminal of the port [i,j],

i.e., the i-th port of the j-th multiport resistor, then a + 1 or -1

is placed in the k-th row of the column corresponding to [i,j] of C?.

The sign ± depends on the polarity of the port k and on the terminal

of port [i,j] selected for port entry. If the new port k and the

port [i,j] are connected to each other with terminals k and (i',j), or

with terminals k' and (i,j), we have a +1, or a -1 respectively.

In the case where all port entries are of the soldering-iron type,

the admissible pairs (v*,i*) of R are described by the following equations:

1) (v,i) are admissible pairs for the resistors of N

(39)
2) Ai = C*i*

3) ATu = v

4) v* = C^u

In case there are only pliers-type entries, the admissible pairs

(v*,i*) of R are described by the following equations:

1) (v,i) are admissible pairs for the resistors of N

2) Ai =0

T . JL*
(40)

3) Axu = v + C^v'

4) i* = C2j

In the most general case where both types of entries are made, it is

desirable to use a hybrid pair of variables (x*,y*) in order to simplify

the algebraic formulations. The mixed vector x* consists of the voltages of

the soldering-iron type ports, and the currents of pliers-type ports.

The other mixed variable vector y* contains the remaining variables.
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The admissible pairs of R in terms of these hybrid variables are then

described by the following equations:

1) (y>i) are admissible pairs of the resistors of N.

2) Ai = C*y*
„* ~T ~~ T (*1>3) Au= v + C^y*

4) x* = CjU + c2i

A. Symmetric multiterminal resistor derived from a symmetric network.

Theorem 4. Given a (tt,a,p)-symmetric resistive network N and a terminal

selection operator CQ, the n-terminal resistor^ derived from the

network N by 4? is y-symmetric if at any selected node ©

<£(P(®)) = yo<£(®) (42)

where o denotes the composition operation, and where k = ^Q(®) is

equivalent to k = £Q( ® ).

Observe that (42) implies that BP(p) = P(y)B.

Proof: (v*,i*) is a solution of (38). Applying the network permutation

(H»o,p), we obtain a new network N and a resistor ^fc derived from N

described by:

1) (?(Ti>o)Y>P(Ti)o)l) is an admissible pair of the resistors of N,
2) (p(p)APT(7T,a)) (P0r,a)i) =P(p)BTi*,
3) (p(Tj,a)ATPT(p)) (p(p)u) =P(tj,o)v,
4) v* =(b?T(p))p(p)u

Using the symmetry of N and (42) , this becomes

1) (?(!I>oOy,P(TT,a)iJ is an admissible pair of the resistors of N,

2) AP(Tr,a)i = P(p)BTi* = BTP(y)i*,
N ~T ~ ~ <44>3) AxP(p)u = P(n,a)v,

4) v* = pT(u)BP(p)u or P(y)v* = BP(p)u.
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Comparing (44) and (38) we see that (p(v)v*,P(y)i) ls an admissible
pair of <^P.

Observe that (42) requires that only selected nodes of N

are permuted among each other by p. Examples of how this theorem can be

used to synthesize symmetric multiterminal resistors are given in Fig. 19.

The network in Fig. 19(a) is symmetric with p = (©©©)(©©©)(©)(©)

The selection operator is (© ® ®) -> (1 2 3) and the resulting 3-terminal

resistor is (1 2 3)-symmetric. Similarly, the resulting 4-terminal
/l 2 3 4\

resistor of Fig. 19(b) is { )-symmetric.
\2 3 4 1/

B. Symmetric multiport resistor derived from a symmetric network

Again it is easy to find a method to derive a symmetric multiport

resistor from a symmetric network by appropriately choosing the port

entries via the selection operator C•

Theorem 5. Given a (tt,a,p)-symmetric resistive network N, then the

multiport resistor, derived from N by the port selection operator Q,

is y-symmetric if at any selected soldering-iron port entry at node

pair ® © ,we have

C(P(®),P(©)) =y oC(@,®) (45a)

and at any selected pliers-type entry in port or terminal i of resistor

j, we have

C(*(j)(i),a(j)) =yo C(i.J)

or (45b)

0(j)(i),a(j)] =yo Cli,j).
Moreover, condition (45) now becomes
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C1P(p) = nv)C± (46a)

C2P(tt,o) = P(y)c2 (46b)

Proof: Using (41) and (46), the proof is analogous to that of

Theorem 4. n

Corollary 1. Given a (it,a,p)-symmetric resistive network <^ . Make a

soldering-iron port entry at nodes © and © , or make a pliers-type

port entry in a terminal of a two-terminal resistor whose terminals are

connected to nodes © and © . Then the equivalent one-port resistor

is complementary symmetric if the cyclic decomposition of p contains the

cycle (©©), or the cycles (©©)(©©)•

Since the set of admissible pairs (v,i) form the driving-point plot

(DP plot) of the one port, this results in an odd DP plot. From this

corollary Properties 22, 25 and 26 of [9] on DP plots and our Prop. 1 in

Sec. 1 can be easily derived. Among other things, this proves that any

one port resistor obtained by making a port entry in a network composed

of complementary symmetric elements is complementary symmetric.

The hypothesis of Cor. 1 is useful in many cases. We call it the

odd node conditions in the next definition.

Definition 10. Given a (tt,a,p)-symmetric network N, then two nodes ©

and © of N are said to satisfy the odd node conditions if either

1) © = P(©> ^d © = p(©) (47a)

or

2) © = p(©) and © = p(©) (47b)

They satisfy the even node conditions if either

1) © = P(®) and © = p(©) (48a)
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or

2) © = p(©) and © = p(©) (48b)

Corollary 2. Given a (tt,a,p)-symmetric resistive network. Let a port

be created via a soldering-iron entry across nodes © and © ,or

via a pliers-type entry in a terminal of a two-terminal resistor

connecting nodes © and (j). Let another port be created in the same

way but using nodes ® and © . Then the equivalent two-port resistor is

(_ _J -symmetric, or complementary symmetric, if 1) nodes © © of the

first port satisfy the odd node conditions and 2) also nodes © ©

of the second port satisfy the odd node conditions. The equivalent two-

port resistor is ly «) -symmetric if 1) nodes ® © of the first

port satisfy the odd node conditions and 2) nodes © © of the second

port satisfy the even node conditions.

Properties 23, 25 and 26 of [9] on TC plots, and our Prop. 2

in Sec. 1 follow from Cor. 2 as special cases: Two ports are extracted

and the first is driven by a voltage source v. , and the second by a

zero-valued current source. The voltage v at the second port is

measured as a function of v. (TC plot).
in

Many practical circuits make use of this corollary. The push-pull

amplifier discussed in [20] is a case in point. Another example is the

rectifier circuit shown in Fig. 20 with symmetric node permutation

P = (®@)(® ©)(©)(©)• Two P°rt entries are made in this

network via the operator Q: {(1,2),(® ©)} -> {1,2}. In other words a

pliers-type port entry is inserted through a terminal of R^ connected

to nodes © and ©. The second port entry is created via a soldering-

iron type across nodes © and ©. The quivalent two-port resistor is

•symmetric.(-: a -
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We will now pose the following problem to illustrate a nice

application of Cor. 2 of Thm. 5. Given a general bridge circuit

(Fig. 21) where two port entries are made via the operator Q :

{(©©),(©©)} •* {1,2}, find conditions on the resistors such
/I 2\

that the equivalent two-port resistor is Ir -I -symmetric. As a

result of Cor. 2, we see that this condition is satisfied, if there

exists a network symmetry permutation such that ® , © (resp. ©, ©)

satisfy the odd (resp. even) node conditions. Since the network

contains one connected set of nodes any network permutation either

complements all or no resistors and nodes. There are two possible

symmetry permutations. The first is tt^ =(t\ foi j=1,...,4,
n _ (1 2 3 4\ . /ffi ® (5) ©\
°" [214 3)'and p=(g^^n/ This results in the condition
Rj_ =R2 and R3 =R^ The second is tt(j) =(1) for j=1,...,4,

/12 3 4\ A /®®®®\
3 4 12 and p " ( ^ ^ ^ ^ )• This produces the second case

\®®®®/
Rx = R3 and R2 = R4# Zt can be checked that no other possibilities

exist.

In Thms. 4 and 5 symmetric multiterminal and multiport resistors

are derived from symmetric resistive networks by a suitable choice of

the terminal and port entries. It is however not necessary at all for

a network to be symmetric in order to be able to derive from it a

symmetric multiterminal or multiport resistor. A simple example is

given in Fig. 22. If we make a soldering-iron port entry to this network

we obtain a complementary symmetric one port.

In fact the definitions of a symmetric multiterminal and multiport

resistor derived from a network imply that the whole network can be

replaced by one equivalent symmetric resistor. In many cases, however,

it is not necessary to replace the entire network by one equivalent
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resistor. In other words, some equivalence at an intermediate level is

sufficient. Some parts of the network are replaced by their equivalent,

and the resulting network is symmetric, and hence Thms. 4 and 5 can be

applied.

To illustrate this idea, Fig. 23 shows a 2-port resistor which

exhibits (1 1)(2)-symmetry. The original network does not exhibit

a symmetry satisfying Def. 6. However, after the series connection of

branches © © and © © is replaced by one equivalent bilateral

resistor R, the network exhibits a symmetry with symmetry node permutation

(©)(©)(©©). If we now apply Thm. 5 it follows that the resulting

two-port is indeed (1 1)(2)-symmetric.

V. REDUCTION OF A SYMMETRIC NETWORK

By making use of the symmetry of a network, the computation for

obtaining the unique solution can be greatly simplified. Most of the

results in the literature are described for linear networks [l]-[7].

Essentially two techniques are applied in the nonlinear case. The

first [10] uses symmetry to reduce the number of network equations to

be solved. The second [8] derives from the given network a new network

whose solution is easier to compute. The solution of the original network

can then be derived from the solution of the new network. This second

technique is an adaptation of the bisection technique [2] for nonlinear

networks which is only valid for involution symmetric networks

2
(i.e. for v-symmetric networks with v =1). Here we unify the two

approaches and present a technique which applies to all possible

symmetries. As always, we assume that the network has a unique solution.

The procedure for finding the reduced network will be introduced

via simple examples.
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Network reduction examples

The network shown in Fig. 24(a) has a symmetry node permutation

P=(©©>(©)(©). Since it has aunique solution, it follows
from Thm. 5 that the node voltages are symmetric with respect to p.

So nodes © and © can be connected together and we obtain Fig. 24(b).
Now identical resistors which are in parallel can be replaced by an

equivalent resistor and we obtain Fig. 24(c). This network has the

_same^voltage distribution as Fig. 24(a), and a current which is doubled.

Fig. 24(c) is called the reduced network of Fig. 2A(a) and is clearly

easier to analyze. The other networks Fig. 24(d)(g)(j) can be

respectively reduced to Fig. 24(f)(i)(£) by observing that their

symmetry node permutations are given respectively by (©©)(©)(©),

(®®)(©©) and (©©)(©©). Observe that the reduced network

in many cases contains open branches (Fig. 24(c)) and hinged loops
(Fig. 24U)).

It is instructive to consider also an example (Fig. 25(a)) whose

symmetry operation involves some node complementations. From previous

derivations we know that the symmetry node operation is
/®®®®\

''[mm®)-'®®"®®'"* *'")""w-*"'•
Since nodes ® and © are not directly available, we introduce the

complementation artifice (Fig. 7(g,h))to obtain the network diagram

shown in Fig. 25(b). By introducing a phase inverting ideal transformer

we obtain a reference node (node ©) which is compatible with the

symmetry (Fig. 25(c)). By Thm. 5nodes © and © and nodes © and

© are at the same voltage and can thus be connected to each other

(Fig. 25(c)). Remember that the complementation element is connected
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to the reference node and thus the voltages at the two terminals

of any complementation element are symmetric with respect to the

zero reference voltage. This implies that the voltage at node ® ®

is V/2 and at node ©© it is E/2. Consequently, the voltage at node

©©is -E/2. If R(2) nad R(4) are described by i=f(2)(v) and
i=f(4)(v) respectively, we have i(2) = f(2) (V/2-E/2) and

±(4) = f(4) (V/2+E/2). The circuit diagram reduces to Fig. 25(d) where

R(2) = R^2)//Rv3) is the paraiiel connection of resistors R and R ;
o

and analogously for r!: . Observe that a different way of writing the

cyclic decomposition of p, such as (® © )(© ® ),would have produced

a slightly different reduced network. All possible reduced networks

can be obtained from each other by complementating some nodes (just complement

nodes ©© in the case of (® ©)(©©)).

We extend the definition of the "port or terminal - node incidence

matrix" of Section II as follows to include the case of complemented

terminals as in Fig. 25(d). The same rules as before apply, but if a

terminal is complemented we have an additional multiplication of the

entry by -1. This implies that if the terminals (i,j) and (i,j) of

multiport resistor j are connected to the same node ©, then the

entry corresponding to port [i,j] and node © is 2.

In general an sxt matrix A_ is an incidence matrix of a network

with s nodes, where t is the total number of ports and terminals (some

of the terminals may be complemented), if the following conditions

are satisfied: 1) Each column of A corresponding to a terminal contains

only one nonzero entry (either 1 or -1) and 2) In each column of Aq

corresponding to a port, the only nonzero entries consist of {1,-1},

or {1,1}, or {-1,-1}, or {2} or {-2}. It is easily seen that under

-68-



these conditions we can immediately derive from A the interconnections

and the eventual complementations of the terminals, and vice versa.

It is easy to check that KVL and KCL are given by the same equations (5),

where AQ replaces A. Call A (resp. A ) the incidence matrix of Fig. 25(a)

(resp. 25(d)), then we have

A =

110 0 10

-10-1-100

0-1 0 1 0 1

0 0 10-1-1

0 0 0 0 0 0

®

©

©

©

©

[2 1 1 o"l© ©
0 L0-1 x 2U®

The node voltages at © © and © © can be easily derived using An

and KVL: u^^ =V/2, u>^ ^ =E/2. The currents can be found using
the constitutive equations of R^2' and R^.

We will now describe in general the reduction technique algebraically,

thereby giving an algorithm for finding the incidence matrix A and the

constitutive relations of the resistors of the reduced network. It will

be shown that a reinterpretation of this algebraic reduction technique

allows us to devise a general combinatorial and graphical procedure for

obtaining the reduced network.

Definition 11. Given a (tt,a,p)-symmetric resistive network N characterized

by: 1) a set of admissible pairs (y,i) for the resistors i.e.

v-[v*1*..^1]1 and i-[l^.i.iWV „ith (y<3>,i<J>, a„
admissible pair of the j-th resistor and 2) an incidence matrix A.

Construct matrices S(p) and S(tt,o) from the cyclic decomposition of the

nodes and of the terminals (see Def. 4 of [11]). Observe that these

matrices are unique up to an unessential permutation of the columns
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and a multiplication of any column by -1. Then the reduced resistive

network NQ is characterized by: 1) the set of admissible pairs

(y0,iQ) for the resistors of Nn such that

(?(?'a)Y0»5(![»cf)[ST(7T,a)S(Tr,a)]""1i0j (49)
is an admissible pair of the resistors of N, and 2) the reduced incidence

matrix:

AQ =ST(p)AS(Tr,a)[ST(TT,a)S(Tr,a)]"1 (50)

Let us show that the reduced incidence matrix defined by (50) is

indeed the incidence matrix of a network containing multiport and multi-

terminal resistors where some terminals may be complemented. From (50)

we derive (using the fact that the columns of S (tt,p) are linearly independent)

A0ST(tt,c) =ST(p)A.
We claim that the right hand side of this equation satisfies the conditions

T
for such an incidence matrix. Indeed each column of S (p)A corresponding

to a port can only contain {1,-1}, or {1,1}, or {-1,-1}, or {2}, or {-2}

as nonzero entries, and each column corresponding to a terminal can only

contain {1} or {-1} as nonzero entry. It follows from the structure

T Tof S (tj,o) that the matrix Afl must inherit these properties from AnS (Tr,a).

The solution of the reduced network Nn is given by:

1) (yQ,i ) is an admissible pair for the resistors of Nn. (51a)

2) AQi0 = 0 (51b)

3> ^>uo=Yo <51c>

4 T
Observe that the matrix S (tt,0)S(tt,o-) is always invertible by Cor. of

Prop. 9 in [11].
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The most important property of the reduced network is that from

its solution we can obtain the solution of the original network.

Theorem 6. Let N be a (tt,a,p)-symmetric network and let the reference

nodes be compatible with the symmetry permutation. Let N have a unique

solution (y,i,u). Then also N has a unique solution (v ,i ,u ). The

solution of N can be derived from the solution of the reduced network

NQ by using

Y = 5<H>a>Yo (52a)

i=S(ir,o)[S(ir>a)TS(ir,o)]'1i (52b)

u = §<P>V (52c)

Proof. From Thm. 3 we know that the solution (y,i,u) of N satisfies

(35). This implies that v and i (resp. u) are eigenvectors of

P(jr,a) (resp. P(p)) associated with the eigenvalue 1. From Prop. 9 of

[11] the columns of the matrices S(p) (resp. S(tt,o)) form a complete

set of linearly independent eigenvectors of P(p) (resp; P(tt,o)) associated

with the eigenvalue 1. Thus there exists a unique set of vectors (v i
~0'~0

uQ) such that (52) is satisfied. Substituting (52) into (5) we see.

that (Yo'-O'-O^ satisfies (5D and thus is a solution of N . Suppose

on the contrary that there is a second solution (y'i'u») of N , then

(52) generates a second solution of N which is different from (v,i,u)

since the columns of S(p) and S(tt,o) are linearly independent. This

is clearly impossible. n

This theorem is very useful because it allows us to devise an

algorithm for solving a symmetric network by solving the reduced network

which has a smaller number of nodes, resistors and terminals.

Symmetry Reduction Algorithm. Given a (tt,a,p)-symmetric network N with
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admissible pairs (y,i) of the resistors v,i £ ~R and with nxr incidence

matrix A. It is also known that N has a unique solution (y,i,u).

1) Decompose (it,a) into cyclic components. Identify the normal-

order cyclic components and label them consecutively y~ ,y«>•••>Yf«

Analogously we find for the directed permutation p of the nodes the

cycles of normal order 6 ,6„,...,S .

2) Form the rxt matrix S(Tj,a) and the nxs matrix S(p) by

inspection using Def. 4 of [11] and the cyclic components Y-i >Y«» •••>Yt

and 6-,6«,..., <5 .
l z s

3) Find the set of admissible pairs of Nn, i.e. the set of

(yn,jn) with Y0»in ^ 3R satisfying (49) and the sxt reduced incidence

matrix AQ in (50).

4) Find the unique solution of the reduced network, i.e. find

the (y0,i0,uQ) satisfying (51).

5) Substitute the solution (v ,i-,u0) in (52) in order to obtain

the solution (v,i,u) of N.

Let us apply this algorithm to our previous example; namely, the

symmetric lattice network in Fig. 25(a).

1) From the previously derived symmetry permutation we obtain

the cyclic decompositions:

P = (©©)(©©)

Or,a) = ([1,1])([1,2],[1,3])([1,4],[1,5])([1,6])
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2) We find the matrices

S(p) =

~1
—J

0

-1 0

0 1

0 -1
-J

, S(tt,o) =

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

3) The set of admissible pairs (yn,in) of Nft is the set of

yQ,i £ "R such that

V

10 0 0

0 1/2 0 0

0 1/2 0 0

0 0 1/2 0

0 0 1/2 0

0 0 0 1

is an admissible pair of N. Observe that this is equivalent to a

parallel connection of two identical resistors R and R , and also

the parallel connection of two resistors R and R

incidence matrix A~ is the same as that found before.

4) The solution of the reduced network is given as follows:

T TFrom yQ.= AQu and the branch characteristics we obtain u = [V/2,E/2] .

From uQ all the branch voltages and currents can be determined.

5) The solution of the original network N can be found by using

(52).

Observe that it is often difficult to check the uniqueness condition,

In the case of two or more solutions one can easily prove that from any

solution (y0,i0,u0) of NQ, a solution (y,i,u) of N can be found via (52).

However the existence of a solution of Nn for any solution of N cannot

be guaranteed.
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Let us now derive from this algebraic procedure, a step-by-step

graphical reduction method which has already been introduced via the

examples at the beginning of this section. This technique is better

suited for graphical reduction of a symmetric network diagram, or for a

network whose combinatorial characterization (R , lc >cA|) is given.

Algorithm. Graphical and combinatorial construction of a reduced network.

Given a (tt,a,p)-symmetric network N, which has a unique solution (y,i,u),

find a reduced network N-..

1) Decompose the directed permutations p, (tt,o), and the permutation

a into cyclic components. Identify the normal-order cyclic components

of a as 0, ,0O,...,3 , those of (tt,cO as Y-, ,Y0> ••«>Y_ and those of p as
1 2 q ~ ± z t

61,S2,...,6g.

2) Make all nodes available as they appear in the cycles of p,

i.e., if a node appears complemented in a cycle of p then complement it

using Fig. 7(g,h). For each cycle of p interconnect the nodes to each

other in the form in which they appear in the cycle. This implies

among other things that the nodes of a double-order cycle are all

connected to each other and to their complement. Thus this implies that

these nodes are at the reference voltage of the corresponding connected

part(s).

3) As a result of step 2 and of the symmetry each cycle 6i of

a consists of identical resistors all connected to the same nodes with

the corresponding terminals. Let I. be the order of $ . Moreover all

terminals or ports of these resistors correspond to all terminals

or ports of some cycles in (tt,o). Call this set of cycles e.. Connect

all ports (resp. terminals) of these resistors which appear in

double-order cycles of e. to nullators (resp. via nullators to the
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reference voltage of the connected part). Let there be k. single-order

cycles in e. and let u be the directed permutation with these cycles

as cyclic components. We now replace the I multiport (resp. multiterminal)

resistors of 3 hy one equivalent resistor with k ports (resp. k.

terminals). This can happen in two simple steps. First replace the I

parallel connected identical resistors by one resistor. The new ports

(resp. terminals) can be labeled the same as those of any of the I.

resistors. This new resistor may have more than k ports (resp.

terminals). It is symmetric with respect to the directed permutation

u . Observe that some of the cycles of u act on empty ports

(resp. terminals) and can therefore be eliminated. Ir. the second

step we reduce the number of ports (resp. terminals) to k. by observing

that the ports (resp. terminals) of this resistor which belong to

the same cycle of p. are connected to the same node. Since all the

ports of (resp. terminals) of this resistor belonging to the same cycle

*iof p. are connected together we may replace them by one port (terminal).

Observe that this second step is the same as the reduction for multiport

(resp. multiterminal) resistors described in [11]. Repeat for all

other cycles of a.

This algorithm can be easily proved either directly from Cor. 1 of

Thm. 3 or from the algebraic reduction algorithm and the structure of

the matrices S(p) and S(Tr,o).

A general remark about the need for choosing reference nodes in

this algorithm is in order. There is no need to find a compatible set

of reference nodes at the onset of the algorithm. Of course as soon

as some terminals have to be complemented in step 2, we assume that

there is a reference node, which need not be further specified. The
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same is true in Step 3. If as a result of Step 3 the reduced network

Nq contains some complementations, then the reference node for the

corresponding connected set has to be the common third terminal of all

complementations. If there are no complementations in a connected set,

then the reference node of this connected is free. It can be shown

that any set of reference nodes found for N. generates a compatible set

of reference nodes for N, by choosing as reference nodes of N any node

of the cycle of p corresponding to a reference node of Nn.

To conclude this section let us derive the bisection technique of

Prop. 3 directly from this algorithm. In the case of Fig. 2(a) the

/© © ®\
symmetry node permutation isp=(_XX)=(0}KC2)(3)). In Step 2

\@ ® ©/ ^ W ^
nodes © and © are connected to each other. Step 3 shows that the

main task is the computation of the voltages and the currents of the

reduced network N~, which is the parallel connection of two identical

3-terminal resistors N1 with terminal 1 open and terminals 2 and 3

connected to each other. The currents in the terminals of any Nf

in Fig. 2(a) are half the corresponding currents of the reduced network

Nn and the corresponding voltages are the same. This implies Prop. 3.

Analogously in the case of Fig. 2(c) the symmetry node permutation is

/© ® ® ©\ ~
P=\©®®ffi/ =(®©)(®)(®)- Here the nodeS ® and ® °an
be connected together. The reduced network Nn consists of two identical

parallel connected four-terminal resistors Nf with terminals 1 and 4

connected to each other and terminals 2 and 3 open. This amounts to

solving the network of Fig. 2(d) and implies Prop. 3.

VI. CONCLUSIONS

In this paper we have presented the first general algebraic

definition of symmetry of nonlinear resistive networks. It is defined

-76-



as an invariance with respect to a network permutation and includes as

special cases all previous ad hoc definitions based on geometric

transformations and complementations. It is believed that this

definition of symmetry is the most general that could be devised, since

any relaxation of the conditions for a network permutation results in

the undesirable situation where the solutions of a network and of the

permuted network have no direct relationship.

The advantages of an algebraic definition are its generality and

independence from drawings. Moreover, the symmetry properties of the

solution can be easily derived. In this respect the cyclic decomposition

of a directed permutation [11] is a particularly useful vehicle.

In the course of the paper we solve the following problems:

(1) Find the group of all symmetries of a network. (2) Find reference

nodes for a symmetric network such that its unique solution exhibits

a symmetry. (3) Synthesize a symmetric multiport (resp. multiterminal)

resistor by making suitable port (resp. terminal) entries in a symmetric

network. (4) Use the network symmetry to simplify the network to be

analyzed or to reduce the number of equations to be solved. The

solutions to these problems generalize many results which had been

derived for special circuits or special symmetries or which have been

in use among circuit designers without rigorous justifications.
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FIGURE CAPTIONS

Fig. 1. (a) A reflection-symmetric network, (b) a complementary

symmetric network and (c) a network which is symmetric with

respect to a reflection followed by a complementation.

Fig. 2. Bisection of reflection symmetric and 180° rotational symmetric

circuits.

Fig. 3. A symmetric lattice network.

Fig. 4. (a) A multiport and (b) A multiterminal resistor with the

associated reference directions.

Fig. 5. The interconnections of the components in a network.

Fig. 6. The network diagram of a resistive network.

Fig. 7. (a) The phase-inverting ideal transformer, (b) a simplified

symbol and its use as complementation element for the following

items: (c) a terminal, (d,e) a port, (f) a multiterminal resistor

and (g,h) a node.

Fig. 8. A step-by-step derivation of the network diagram of a transformed

network of the network of Fig. 6.

Fig. 9. Simple examples of symmetric networks.

Fig. 10. (a) The symmetric push-pull amplifier and (b,c) a step-by-step

graphical analysis of the symmetry.

Fig. 11. Graphical detection of symmetries in a network.

Fig. 12. A symmetric network which does not allow a symmetric drawing.

Fig. 13. The symmetric lattice network with an artificial invariant node

©•

Fig. 14. The Eccles-Jordan multivibrator.

Fig. 15. Rotational symmetric network without invariant nodes.

Fig. 16. An example, illustrating the choice of a set of reference nodes

compatible with a symmetry.



Fig. 17. A 3-terminal resistor derived from a network N by making

terminal entries according to the terminal selection operator ^Q:

®> ®» ® - 1»2,3.

Fig. 18. A 2-port resistor derived from a network N by making a soldering-

iron port entry between nodes ® and © and a pliers-type

port entry in terminal 1 of the one-port resistor R

Fig. 19. Symmetric multiterminal resistor derived from symmetric networks.

Fig. 20. The symmetric rectifier considered as a symmetric resistive

network with two port entries.

Fig. 21. The nonlinear bridge circuit with two port entries.

Fig. 22. A symmetric one-port resistor derived from a network which is

not symmetric.

Fig. 23. A (1 1)(2)-symmetric two-port resistor derived from a network which

exhibits some symmetry when the part of the network enclosed

. in a box is replaced by an equivalent bilateral resistor R.

Fig. 24. Simple examples of reduction. The networks of (a)(d)(g)(j) are

reduced to those of (c)(f)(i)(£), respectively.

Fig. 25. Graphical reduction of a symmetric lattice network.
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