Copyright © 1978, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



~.A

A UNIFIED THEORY OF SYMMETRY FOR NONLINEAR

RESISTIVE NETWORKS

by

Joos Vandewalle and Leon 0. Chua

Memorandum No. UCB/ERL M78/45

July 1978

ELECTRONICS RESEARCH LABORATORY

_ College of Engineering
University of California, Berkeley
' 94720



A UNIFIED THEORY OF SYMMETRY FOR NONLINEAR
RESISTIVE NETWORKS

Joos VandewalleT and Leon 0. Chua

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory .
University of California, Berkeley, California 94720

ABSTRACT

Based on the interconnections and constitutive relations of
multiterminalvand/or multiport resistors, a general and purely algebraic
definition of symmetry of a nonlinear network is given. Examples
show that the network geometry, although frequently ﬁéeful in detecting
simple symmetries, can conceal or destroy more subtle forms of symmetries.

The main results of this paper are based on group theory and on
the decomposition of a directed permutation introduced.in [11]. These
results gene;alize many existing ad hoc techniques used for special
circuits having special symmetries:

(1) An algorithm is presented for checking whether a network
possesses any form of symmetry.

(2) It is shown that for a suitable choice of the reference nodes,
a symmetric ngcwork has a symmetric solution, provided the network has

a unique solution.
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(3) Techniques are described for creating terminal (resp., port)
entries iﬁ a symmetric network, in order fo obtain_a symmetric multiport
(resp., multiferminal),resistor.‘

(4) A reduction technique for symmetric networks .is described,
which generaliées the well-known bisection technique and.unifies various

‘algebraic and graphical reduction methods.



I. INTRODUCTION

In linear circuit theory many powerful results [1-7] have been
obtained for symmetric circuits. All of these rely on the superposition
principle and are therefore not applicable for nonlinear networks. This,
however, has not prevented engineers from designing symmetric nonlinear
circuits by ad hoc methods [8] (push-pull and parametric amplifiers,
vrectifiers, modﬁlators and detectors). Also the evolution of solid
state technology and especially the production of complementary elements

pushed toward an essehtially new type of symmetry, called complementary

szggeﬁrz. In short there is a lack of general results and systematic
approaches déaling with symmetry in nonlinear circuits. In this area a
few papers [9;10] have appeared recently. A unification of mirror and
complementary symmetry has been obtained in [9]. Usiﬁg group representa-
tioﬁs, ﬁesoer and Lo [10] showed how to reduce the nétﬁork equations
and how to simplify the stability conditions for periodic oscillations
in nonlinear dynamic networks. Our paper is the second of two papers,
dealihg with'symmetry in nonlinear elements and networks described by
algebraic equations. The first paper [11] is entitled, "A unified
theory of symmetry for nonlinear multiport and multiterminal resistors."
Our approacﬁ is unifying in the sense that it includes all types of
symmetry and that it generalizes many ad hoc results to arbitrary
symmetries. This approach also consolidates these ad hoc results by
giving precise and general definitions and rigorous proofs.

In order to give a feeling for the need for such aﬁ approach in
dealing with syﬁmetry in nonlinear resistive networks, ﬁé review some
ad hoc results. Usually two kinds of symmetry are defingd: geometric

symmetry and complementary symmetry [8].



A network N is said to be symmetric with respect to a transformation

T(+) such as a rotation, a reflection or a translation if it can be

drawn such that after making the geometric transformation T(-), we obtain
a new network T(N) which is identical to N, except possibly for some
labellings, i.e., N and T(N) have identical topology and the corresponding
elements have identical comstitutive relations. A network N‘is said

to be complementary symmetric if it is identical with its complementary

network N which is obtained by complementing all elements [8], i.e.,
multiplying all port voltages and currents in each element's constitutive

relation by minus 1. A network is said to be symmetric with respect

to both a complementation and a transformation if it is identical

with T(N). In Fig. 1(a) a network is given which is reflection symmetric
with respect to an :=1xis:L drawn through nodes @ @ @ .. The network

in Fig. 1(b) eihibits complementary symmetry if the operational amplifier
is complementary symmetric [10-11] and if R(l), R(z), and R(3) afe
biléteral. A two-terminal or one-port resistor is said to be bilateral
if it is identicél with its complement. In Fig. 1(c) a complementary
reflection symmetric network is given, i.e., a network which is

symmetric with respect to a complementation followed by a reflection

(1) (2)

about an axis through nodes (:)C) C) » provided that R and R are

bilateral resistors.

1Since this network is not planar a rigorous analysis of the symmetry

of this network should be done in the 3-dimensional space. This would

also solve the apparent difficulty in Fig. 1(a) where nodes () and ()

are not precisely reflected into each other. This observation demonstrates
one difficulty that could arise when checking the symmetry of a network

by inspection of its circuit diagram.
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If a port entry is made in a symmetric network between two suitably

chosen nodes of N, then the driving-point (DP) plot exhibits odd

symmetry. The case of a mirror symmetric, complementary, and
complementary mirror symmetric network has been dealt with in [11].

Proposition 1. DP plots of symmetric networks.

(a) The DP plot across a pair of driving-point terminals connected to
any pair of symmetrically located nodes of a reflection symmetric
network is odd symmetric.

(b) The DP plot. across any pair of driving-point terminals connected to
any pair of nodes of a complementary symmetric network is odd symmetric.
(c) The DP plot across any pair of driving-point terminals connected

to any pair of nodes located along the symmetry axis of a complementary
reflection symmetric network is odd symmetric.

Examples of DP plots ﬁaving properties (a), (b), and (c) can be obtained
by making a "soldering-iron" entry across nodes (&) and (® in Fig. 1(a),
across any pair of nodes in Fig. 1(b), and across n;)des @ and @ in

Fig. 1(c), respectively.

Proposition 2. v -versus-v. TC plots of symmetric networks:

(a) Let N be a reflection symmetric network having an input port across

two symmetrically located nodes. Then the V,oVS.VL transfer characteristic
(TC) plot is odd symmetric if v, is also measured across a pair of

symmetrically located nodes and is even symmetric if v, is measured
across a pair of nodes located along the symmetry axis.
(b) Let N be a complementary symmetric network. Then any v ~VE.-V

in
TC plot is odd symmetric.



(c) Let N be a complementary reflection symmetric network having an

input port across two nodes located along the symmetry axis. Then

the vo--vs.-vin TC plot is odd symmetric if v, is also measured across
a pair of nodes located along the symmetry axis.
Examples of TC plots having properties (a), (b), and (c) can also be
constructed using the networks in Fig. 1. The TC plot of a
symmetrically-driven‘differential amplifier (Fig. 1(a)) whose output
terminals are also symmetrically situated is odd symmetric. (b) Any
IC plot associated with Fig. 1(b) is odd symmétric. (c) The TC plot of
the push-pull amplifier driven across nodes @ - @ and whose output
is measured across nodes'C) - C) is odd symmetric.

The next proposition shows that the symmetry of a network can be
exploited to reduce the complexity of the analysis [8].

Proposition 3. If the reflection symmetric network of Fig. 2(a) has

a unique solution, then this solution can also be derived from the
bisected network in Fig. 2(b). An analogous result applies for the 180°
rotational symmetric2 network of Fig. 2(c) and its bisected network
in Fig. 2(d).

For the symmetric lattice a special reduction technique has been
developed called the symmetric lattice property [8].

Prqposition-4. If the symmetric lattice network (Fig. 3) with R(z) = R(3)
(4) (5)

and R = R has -a unique solution, then the currents and voltages
. . . . (2) (3) . .
associated with the identical resistors R and R are identical.

Similarly, those associated with resistors R(4) and R(S) are also identical.

2The network is invariant upon rotating it by 180° abcut an axis through node
> perpendicular to the paper.



The precéding definitions and results are not satisfactory in view
of the following observations:

1) The preceding definition of symmetry requires that the network
'be drawn in a specific form. This definition is undesirable because
symmetry is an inherent property of a network and shquld not depend on
how it is drawn. Furthermore, since a symmetry transfbrmation is one
which leaves all structural relations undisturbed [12, p.l44], a network

symmetry traﬁsformation should rely only upon the constitutive relations

and the interconnection of these elements. Since we deal with networks
with a finite number of nodes and resistors, these transformations can
be described by finite permutations. These ideas will lead to a more
general definition of symmetry in Section II.

2) No general results are available relating the properties of a
solution of a network to the symmetry properties of the network. Using the
algebraic definition of symmetry, we derive in Section III symmetry
properties of the unique solution of a symmetric network. This result
includes the symmetric lattice property (Proﬁ. 4) as a special case.

3) The results of Prop. 1 and 2 are restricted to mirror symmetric
networks and to even and odd symmetries. In extending the line of results

of Prop. 2 one would expect in case (c) that an even symmetric TC plot

would be obtained by measuring v, across a pair of nodes symmetric with
respect to the symmetry axis. This is indeed true and will be shown in
Section IV where we will deal with the general proBlem of making a
T-symmetric muitiport or multiterminal resistor from a symmetric
network by making suitable port (or terminal) entries in the network.
4) The preceding bisection technique (Prop. 3) is restricted to

reflection symmetric or 180° rotational symmetric networks where no
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resistors are located on the symmetry axis or on the rotation axis.
be will generalize this reduction techpique in Section V to all
symmetriés.

In this paper, we consider resistive networks obtained by inter-
connecting multiterminal and multiport resistors. These resistors can
be described by a set of admissible pairs, by a constitutive relation,
or by a hybrid representation. We will denote the multiport resistors
by R and the multiterminal resistors by‘JQ. Multiport resistors are
always assumed to be intrinsic (with internal isolation transformers
already imbedded if necessary) so that no problems arise in the
interconnection. All multiterminal resistors are assumed to be given
via their indefinite representation since we want to be able to find
all possible symmetries. If necessary it can always be recast into
this form using equations (39-40) given in [11]. Unless otherwise
mentioned, we always assume that associated reference directions are
chosen (Fig. 4). 1In general a rectangular box (resp., circular box)
represents a multiport (resp., two-terminal) resistors we use more
in the case of one-port (two-terﬁinal) resistors we use more
frequently the conventional symbol (as in Fig. 3). This avoids the use
of too many terminal labels, because the terminal at the darkened edge
is then the primed terminal 1' of the one-port or the terminal 2 of the
two—-terminal element. If there is no darkened edge, then the one-port
(resp., two-terminal element) is bilateral.

The mathematical tools are mainly combinatorial and are described
in Section II of [11]. As before, the key notions are the directed
permutation and its decomposition into cyclic components [11l]. To save

space, we refer all notations not defined explicitly in this paper
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to [11]. For the relevant mathematical techniques, we refer the

reader to [13].

IT. TRANSFORMED AND SYMMETRIC RESISTIVE NETWORKS

A resistive network is obtained by interconnecting multiterminal
and/or multiport resistors. In circuit theory this interconnection
is usually given by a circuit diagram. However the particular
configuration in which the network is drawn is irrelevant as long as the
reéistor terminals or ports are connected in the same way. In other words,
no other geometric aspects involved in the drawing of a network than the
network interconnection are relevant. Consequently, in this paper, we
give a rigorous and general definition of symmetry, which is only based
on the combinatorial aspects of the interconnection and the algebraic
aspects of the constitutive relations of the resistors. Our definition
is mainly graph-theoretic in nature and is in fact inspired by the
definition of isomorphic hypergraphs in [14, p.411].

A time invariant resistive network N is completely characterized
by the following three sets of information:

1) the time-invariant multiport resistors R(j), j=1,...,nm,
with ports [1,j], [Z,j],...,[nj,j] and with terminals
(l,j)(l',j)...(nj,j)(ni,j) and their associated sets of gdmissible
patrs (v 1)y

2) the time-invariant multiterminal resistors kclz(j),
j= m1+l,...,m, with terminals (l,j),...,(nj,j) and their associated

sets of indefinite admissible pairs (Y(j),g(j)), and



3) a set of nodes(N={ @ s @ ... @ } which is a

partition of the set of all resistor terminals into subclasses such
that all terminals belonging to a given subclass are connected together.

For example, the notation QD denoted by
® = {(1,3)),1p,3,)...} (1)

implies that terminal il of resistor jl’ terminal iz of resistor j2,
etc. are connected together and this terminal is called node ® . In
short, a network N is completely specified by N = (R(j),clz(j),g)U).

The advantage of this characterization is that it is independent of
the drawings and thus ideally suited for computer analysis. It also
allows a general definition of a network permutation and a network
symmetry to be given devoid of irrelevant detaiis. Observe that
the node interconnection equation (1) is just a formal way of specifying
the wiring instructions of a network; namely, join together terminal
il of resistor jl, terminal i2 of resistor j2, etc., and call it node

® (Fig. 5).
To illustrate the preceding method for describing a network,

consider the network characterized by R(l), R(z), R(3),<12(4), R(S)

with constitutive relations R(l)(-,-), R(Z)(','),.--,R(S)(','), and
the following node interconnections:
@ = {@a,1),1,2)} ® = {1',3),@1,5}
@ =1{a',1n,a1',2)} ® = {(2,4),(,5)} (2)
® = {(2,2),(1,3)} ® = {(2',2),(3,4)(1",5)}

The circuit diagram corresponding to these specifications is shown in

Fig. 6. We say that terminal il of resistor j1 is connected to node (k)

if (1,3 € ® .
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Observe that multiterminal and multiport resistors are denoted
and treated differently in this paper. The reason for this is that
the standard procedure of considering an n+l terminal resistor as a

grounded n-port resistor may destroy some element symmetries as

observed in [11].
The interconnection can also be uniquely characterized by a generalized

incidence matrix A. This is a "port or terminal-node incidence" matrix

and not the common branch-node incidence matrix. The generalized
incidence matrix A has.as many rows as there are nodes (C)), and as many
(3

columns, as there are ports of R or terminals ofclz(J), namely

r = ﬁi-nj.' Order the ports and terminal labels (i,j) and [i,j]
1exig;graphi_ca11y, i.e.(i;,5)) < (iz',jz)(resp., (il,jl) < (Iz,jz),[il,jll
< [iz,jzlor [11,3'1] < [iz,jz]) if il < i, and i £3,- If terminal
(1,j) of a multiterminal resistor is connected to node (:) then a +1
placed in the(:)—th row of the column corresponding to (i,j). Repeat for
all terminals of the multiterminal resistors. In the column corresponding
to the port [1,j] we set a +1 in the C)—mh. row if terminal (i,j) is
connected to node C) and a -1 in the ()-{h row if terminal (i'j) is
connected to node Q9 . Repeat for all ports. Let the remaining entries
of A be zero. Conversely any interconnection of the resistors is
completely characterized by any C)}crnmtrix A such that each column
corresponding to a port has only two nonzero elements +1; -1, and each
column corresponding to a terminal has only one nonzero element +1.

For example, iQ Fig. 6, the generalized incidence matrix A is given

by:
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1 1 0 0 0 0 0 0N

(3)
o o o0 o0 o 1 o0 1

0 0o -1 0 0 0 1 -1

— -

s
ONONCRONONEC)

[1,1]1{1,2](2,2][1,31(1,4)(2,4)(3,4)[1,5]

Observe that there are 6 rows and 8 columns since there are 6 nodes,
' 3 terminals (corresponding toclz(é)) and 5 ports (corresponding to
R(l), R(z), R(3> and R(S). Observe also that even though a one-port
resistor can also be considered as a two-terminal resistor, the former
is preferred since it is represented by only one column, compared to two
in the latter case, in the generalized incidence matrix A. Hence, the
total number of columns of A is therefore smaller.

Since our network may contain both multiport and multiterminal

resistors, and may have several connected components, it may be

necessary to specify more than one reference node with respect to which

the port voltages are measured. Clearly, every connected component of

the network needs at least one reference node. However, several

reference nodes may be needed in one connected component since the
reference node for one port of a multiport resistor need not have any
relationship with the reference node for another port. For example, the
network of Fig. 6 needs two reference nodes, say nodes @ and @ .
The following algorithm shows how to assign reference nodes:

1) Replace all n-port resistors by n uncoupled one-port resistors.

-12-



2) Identify the connected components of this new network. The
nodes of each connected component i in this new network form sets

QJUi’ i=12,...,%, which we call connected sets of nodes. These %

connected sets of nodes form a partition of the nodes of N; namely,
kNi ﬁwj = ¢ if 1 # j and élLNi = QN Clearly, any multiterminal
resistor has all its terminais connected to nodes belonging to one
particular QjUi'

3) For each connected set ‘Jui of nodes; choose one node
(arbitrarily) and call it the reference node forL)Ui. The voltage at a
node is always measured with respect to the referencg node associated with
the connected set of nodes. The terminal voltages of multiterminal
resistors connected to this same set of nodes are all measured with
respect to this reference node.

Definition 1. For a given set of references nodes, a solution of a network

N is any set of vectors (v,i,u), called the voltage and current distribution
v, i, and the node voltage u with

(1)
(4)

such that the following conditions are satisfied:
1) (v,i) is an admissible pair of resistors of N, i.e. the
(3 @, . e .
(y 1 ) is an admissible pair of resistor j of N,
2) KCL is satisfied, i.e., the sum of the currents leaving any
node is zero,

3) KVL is satisfied, i.e., any port voltage of a multiport resistor

is equal to the difference between the node voltages at its terminals and
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any terminal voltage of a multiterminal resistor is equal to the node
voltage at this terminal.

A network may have no solution, one solution, or many solutionms.
Using the generalized incidence matrix, KCL and KVL can easily be

formulated as follows

AL =0 (52).
T
Au =y (5b)

This can easily be proved using the definitions of A, v, i, u and noting
that associated reference directions are chosen. It is also easy to
show that the number of solutions is independent from the choice of
reference nodes.

A. Permuted network

Given a circuit diagram, let N and ﬁ be two ﬁetworks associated
with the same circuit diagram, i.e., two networks N and N whose elements,
nodes, and port (resp., terminal) labels of each internal multiport resistor
are assigned in two different ways. Since the same circuit diagram
is involved, the two sets of solutions are clearly related by a one-to-one
transformation. Although these two networks are isomorphic to the
eyes of the beholder,‘it is far from a trivial task to establish their
isomorphic nature if N and N were described not by a circuit diagram,
but by the algebraic methods described above. 1In fact, the only way
a computer could claim that N and N are isomorphic is to produce a
one-to-one transformation between the relevant data describing N and ﬁ;
namely, the port (resp., terminal) labels, the resistor number and the node
number. When such a tranéformation exists in the sense to be defined

shortly, we say N is the permuted network associated with N. It turns
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out that a completely rigorous and unambiguous study of symmetry in
nonlinear networks requires that we define the notion of permuted network
in precise terms.

Our definition of a network permutation will be based upon the
notion of a m-permuted multiport resistor and a w-permuted multiterminal
resistor [llj. To simplify our discussion, let us first introduce

the phase-inverting ideal transformer (Fig. 7(a)) which is defined

by vy =Y, and il = —12 (note the unconventional reference current

direction for 12). In order to simplify this symbol, we will hence-

fortﬁ drop the ground terminal and represent it by a small square box

(Fig. 7(b)). This element is a useful artifice for complementing the

(3)- -(3)
i

voltage vy and the current i of a terminal i of a resistor j

3 L4

(Fig. 7(c)). The free terminal (i,j) is then at a voltage vy

1)

carries a current _ii Consequently, it makes sense to call (I,j)
the complemented terminal of (i,j). Observe that our choice of the
unconventional current reference for 12 in Fig. 7(a) is motivated by

this complementation operation. Clearly, two complementations applied

in tandem results in the original voltage and current i.e., (?,j) = (i,3).
Observe also that complementation of two terminals of a port which is
followed by the interchange of the two terminals (Fig. 7(d)) also

results in the original port. This equivalence will be useful in many

instances. Algebraically this implies that in the description of a network

the following two sets of ordered pairs are equivalent
{(1,1), @D = {E",5),(1,N} (6)
Since we deal with many objects like currents, voltages, ports, terminals,

which have two possible orientations, the following notion of a
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"directed permutation" is indispensable in this paper. A directed
permutation # of "n" oriented objects is a transformation obtained
by first permuting some of these objects and then changing the

orientation (complementing) of some of them. The directed permutation

oooi.o.-j...-

) transforms object i into object i

T = -
...il...Jl...

1 and object i into the

complement of object j1 where i, j, il’ j1 represent objects with the normal
orientation. We write i1 = (i) and 31 = w(j). Corresponding to the directed

permutation m we define the directed permutation matrix P(w) by
— .

.
. .
.

B | P I

-

. e—jl
P(m) = S Q)
e.ol....0...
. . @il

— et

Hee= o o
oy o o

Definition 2. Given an n-port resistor R characterized by a set S

of admissible pairs (Y,g), and a directed permutation m of n objects,

we define the associated m-permuted n-port resistor R by the set of
admissible pairs (§,i) such that § = P(mv, i = P(m)i, where (yv,i) is

an admissible pair of R. We often denote R by w(R). .Given an n-terminal
resistor CQ characterized by a set 9 of indefinite admissible pairs

(v,i) and a directed permutation m which complements all n objects or

none, we define the m-permuted n-terminal resistorc12 by the set of

L

indefinite admissible pairs (v,1) such that § = P(my = P(mi,

where (v,i) is an admissible pairclz.- We often denotecié by ﬂGlQ}
Permuted resistors can be easily synthesized from the original

resistors by ?ermuting ports or terminals and introducing some

complementations. Observe that the complementgtion of a port, which

implies the complementation of the port voltage and current, can be

-16-



achieved in two different ways: by interchanging the port terminals,
or by complementing both terminals. If w transforms port i into port
11 and port j into port 51, we denote this operation on the corresponding

pair of terminals i, i', and j, j' by

(8a)

n
pel

ii, w(i')

w(i)

il’ w(di'") ii or w(i)

]

jp er m(d) =35, TG = 5. (8b)

m(3) =3, "GN

Note that we have abused our notation slightly by uéing the same
symbol 7 to denote the transformation of a port, as well as a terminal.

Recall that a terminal can be complemented by connecting a "complementation
123\
X . 231
resistor R associated with a given resistor R can be synthesized as shown
in Fig. 7(e). Similarly, the E E 3
231
associated with a given resistor CI? is synthesized in Fig. 7(f).
E E"'?)', the m-permuted
12...n
multiterminal resistor, henceforth called the complementary multiterminal

element" to this terminal. For example, the - permuted 3-port

- permuted 3-terminal resistor C[!

Observe that in the special case where 7 = (

resistor <12 s is obtained by simply complementing all terminals. Such

complementary elements, however, may also be available in intrinsic form,
as in the case of complementary transistors and FET's.

Since a resistive network N is characterized by é éet of resiétors
and a set of nodes, before introducing the notion of a pérmutéd network
ﬁ, let us first define two permutations, one involving the set of
terminals and ports of the resistors, and the other involving the set
of nodes.

Definition 3. The couple (m,0) is said to be a "port-terminal permutation"

of a set of m multiport or multiterminal resistors if

-17-



1) =m-= [ﬂ(l). .n(m)]T (3)

. where 7 is a directed permutation of the

~

terminals or ports of the j-th resistor,

2) o is a permutation of the resistors.
A directed permutation "p" which permutes and/or complements the nodes

of a network N is said to be a "node permutation". The complement of

a node ® = {(il,jl),iz,jz)...(in,jn)} (Fig. 7(g)) is defined by

® = ((.3),Ep5,) ... (1,3} (9

and is obtained by the complementation operation shown in Fig. 7(h).

Observe that (o) = (K
We see that as a result of the terminal and port permutation (E,c),
terminal (or port) i of resistor j is transformed into terminal (or port)

W(J)(i), of resistor o(j), and is denoted by

1,01, = ¢ Pay,0(9))

or

(m,0)[1,3] = (9 (1) ,0(1)1.

The port-terminal permutation (m,0) can also be written as

(1,1) ... [1,]3] oo

(1,0) = (10)

P y,e®y 1Dy oDy,

where the upper row is a list of all resistor terminals and ports.
Given two porﬁ-terminal permutations (gl,cl) and (52,02) such that

we can operate first with (El,ol) on a set of resistors and then with

(gz,oz) on the resulting set of resistors, we define the

composition (53,03) = (gz,az)o (gl,ol) to be the port-terminal

permutation obtéined by first applying (gl,ol) and then applying

(32,02). This product is given by

(3) _
LN T, omy 7,

G, = 0,00 (11a)



where

) @,
T = [ﬂk LN ] k =1,2,3 : (11b)
(0,(1) 03)
and exists if T, and nlj operate on the same number of objects for

all j. It follows from (1lla) that the inverse of (m7,0) exists and is

unique. It is given by

@

(111,0-1) (12a)
with

,",:Ec(j)) ‘= ('ﬂ'(j))—l. (12b)

We order the terminal and port labels (i,j) and [i,j] lexicographically.
According to this order they are mapped one-to-one into the integers

1,2,...,r. This allows us to define the rxr matrix P(m,0) as follows

o I A
O
1 |
P(m,0) = (:::) : g(n(j)): (:::) <« g(j)-th block (13)
! [

j-th block
The effect of the multiplication of a vector x by g(g;o) is to rearrange
variables of the ports and terminals of the old lexicographic order to that
of the new lekicographic order and then possibly comblementing some of
them.
Before giving the formal definition of a permu;ed network, we will
first introduce this notion on a nbntrivial network N (Fig. 6 and equation

(2)). Suppose we choose a "port-terminal permutation" (m,0) with
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) = (D (1), (2 (1 2) O (;) N (;gg) ’
<® 20606 @) e
ofelelolclors

above choice for (m,0) and p completely specifies the (E,o,p)—permuted

o= (; § 2 g i) and a 'node permutation" p =

network N. The recipe for constructing N from N consists of 4 steps:

(1) Replace each resistor j of N (Fig. 6) by an equivalent
resistor in Fig. 8(a) as follows. Let ﬁ(c(J)) (resp. CIQ(O’J)) denote the
e (3

~permuted resistor of the resistor R(J) (réép.cig(J)). Then resistor R

(resp.Ciz(j)) is the (n(j))ﬁl-permuted resistor of ﬁ(o(j)) (resp. Ccz(o(j))).
In Fig. 8(a) we synthesize resistor R(j) (resp.clz(j)) starting from
ﬁ(o(j)) (resp.ciz(c(j))) using the above described procedure for making a
pefmuted~resistor. Since N and this new network are equivalent, the
currents and voltages‘of Fig. 8(a) can be.derived immediately from those
of Fig. 6. Observe also that this implies that terminal i of resistor
R(j) (resp.<12(j)) becomes terminal ﬂ(j)(i) of resistor R(o(j))
(resp.‘jQ(c(j))). This map corresponds to the port terminal permutation
(m,0).

(2) Relabel each node (k) by p(®) (Fig. 8(a)). The only effect
of this operation on the solution is a directed permutation of the
node voltages.

(3) Looking carefully at the network of Fig. 8(a) and discarding
all lables related to the original network N we see that the new network

is composed of some phase-inverting ideal transformers and of the

resistors ﬁ(l), ﬁ(z), ﬁ(3), ﬁ(4),ci§(5) with ﬁ(l) = R(S), ﬁ(z) = R(l),
R - g @ @) L) () 5 Q) | @) R,

Observe also

that some nodes in Fig. 8(a) are complemented: @ @ @ @ . These
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éomplemented nodes can be eliminated as shown in Fig. 8(b) by using
the node complementation technique shown in Figs. 7(g) and 7(h).

(4) Using the fact that two complementations in tgndem are
equivalent to a short circuit and the fact that the complementation of a
port can be accomplished by complementing both terminals or by
interchanging two terminals , we can eliminate all complementation
elements and obtain the network of Fig. 8(c) which is the (f,o,p)—permuted
network ﬁ.

Observe that an arbitrary choice of the port-terminal permutation
(7,0) and node permutation p may not necessarily result in a network N
without complementation elements. In order to have this property for a

permuted network we will have to impose some consistency conditions on the

triple (m,0,p).

Observe alsc that the left part of this network N in Fig. 8(a) is
not complemented by (m,0,p) although the right part is. Hence we have
here a transformation which is more general than the ones given in the
introduction. With this motivation we are ready tovgive algebraic
definitions of a network permutation and of a permuted network.

Definition 4. Given a resistive network N = (R(J),<12(j),L)U) where

- each node bélonging tod’ = {® @} is as defined 'in (1). The tripie

(w,0,p) is said to be a network permutation if:

1) (w,p) is a port-terminal permutation of the ports and terminals
of the resistors of N.
2) p is a directed permutation of the nodes of N.

3) the following consistency conditions are satisfied: (a) All

terminals of multiterminal resistors comnected to any node (:) are either
all complemented by (w,c) if C) is complemented by p or all are

uncomplemented'by p if C) is not complemented by p. '(b) The two
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nodes associated with any port of a multiport resistor are either both

complemented by p, or both are uncomplemented. The (7,0,p)-permuted

network N = (ﬁ(o(J)),CJQ(G(J)),QJU) is then defined by

1) ﬁ(o(j)) (or<12(?(j))) is the ﬂ(j)—permuted resistor of R(j)
(or RI,

2) N-= {@D ... @} is the set of nodes resulting from

(3p) (3,
o(®) = {(w ' <il),a<jl)), (n 2

where eventually some complementations have to be removed by complementing

(iz),o(jz)),...} (14)

both sides of (12) using (9) and by using (6) at the ports.
Observe that the elimination of all complements in all nodes (14)
is always possible because of the consistency condition. Indeed condition
(3a) guarantees that an eventual complementation of (14) brings all
terminals of multiterminal resistors and p(C)) into the uncomplemented
form. Similarly, condition (3b) guarantees that any pair of terminals
(i,3) and (i',j) or port i of a multiport resistor ﬁ(j) appear as (i,j)
and (1',3j), or as (i,j) and (i',j) in nodes (:D an , or in nodes
@ @ and thus complemented port terminals can be eliminated using (6)
In terms of the incidence matrix, condition 3 of a network permutation

- implies that (m,0,p) are such that g(p)ég(g,d)T is again an incidence

matrix. This is precisely the incidence matrix A of N or
A = P(p)AP(m,0) (15)

Let us now derive the (w,0,p)-permuted network of N (Fig. 6), (2)
using definition 4 directly. Conditions 1) and 2) are obviously

satisfied for the above (71,0,p). The set of nodes from (14) is given by

~292-



@ =11,2,@1,3} ® = 11,4 (2,5}
® ={a',2,1",3) ® = ((3,5,1,1) (16)
@ = 1(2,3,0,4)) @ = 12',,d,5,a',1n}

Consistency condition 3(a) is satisfied since only the complements

@ R @ . @ , (1,5), (2,5), and (3,5) appear. Similarly, consistency
condition 3(b) is satisfied since (1,1), (1',1) appeér in @ CI) 3
(1,2), (1',2) appear in @ @ ; (2,3), (2',3) appear in @ @

and (1',4)(1, 4) appear in C) C) Using (6) and (9) to eliminate

all complements- in (16) we obtain

{(2,3),(1,4)}

@ =1{2,3,@1,%,0,)} @ =
@ = ((1,2),@1,3) ® - (Q7,6,(2,5) (17)
Q =ta',2,a',3) ® =1{(3,9,a',1)}

This node set together with the rcsistors gD (5), 82 - R(l),

HONENC IO NI OFONIE O JNNe O TN O I, YO NP

precisely the network shown in Fig. 8(c).
The incidence matrix A of f:his new network N can be derived from

A using (15) and is

1 0 0 1 0 1 0 0

0 1 1 0 0 0 0 0

(18)

0 0 0 0 -1 0 1 0

1 0 o o o o o 1]

- [1,1]01,2](1,3][2,3](1,41(1,5)(2,5)(3,5)
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0000—1”r11000000”r011'0|0l 0 M
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0 00 0 O01}{-1-1 00000 0 0|0|1010| 0
1000000110000+ %10 o _ _ _
] I 4
0-1 00 0/ 0O0O0O-11000 _?I_O__,_o_u_l_l__o__
' 1 | -
0 0-1 0 O 0 00001 0 1 ,l,l ,010
, oolo‘o 0 0 -1
0 0 0-1 0JlLO 0-1 0 0 0 1-1 l ' |
J I_l__l___l_-l_g__?
1 lo!' o | o | o

Our definition of a network permutation is very gemeral and contains

many special cases.

1) Choose n(l)_= I, 0 = I, then the network permutation performs a

relabeling of the nodes.
2) Choose 0 = I, p = I, then the network permutation performs a
relabeling of the terminals or ports.

3) Choose n(l) = i, c=1, p=

i

then the network permutation
performs a complementation. N is the complemented network denoted by N.

4) 1If (m,0) is a port-terminal permutation of a network N and
p is a node permutation and if both do not involve any complementations
then condition 3 is automatically satisfied and (g,o,p) is a network
permutation.

It is clear that condition 3) of Def. 4 requires a major subset of the
ports (terminals)and nodes of a network to be all or not complemented.
What is the smallest subset that is subject to this constraint? Our
next proposition shows that each such set of nodes is precisely a

connected set of nodes.
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Prqposition's. In any network permutation (w,0,p) of a network N the

node pérmutétion p either complements all or none of the nodes belonging
to a connected set of nodes. Conversely there exists a network
permutation, such that the node permutation P complements all nodes

of some connected sets of nodes and no other nodes.

Proof: From condition 3) it follows that terminals of multiterminal
resistors connected to one node have to be either all or not complemented
and that the two terminals of a port have to be either both complemented
or not complemented. From condition 1) it follows thét terminals of the
same multiterminal resistor have to be either all 6r not complemented.
These facts imply that nodes belonging to a connectéa set of nodes
have to be either all or not complemented. Since there are no other

conditions there exist network permutations complementing only the nodes

of some prescribed connected sets of nodes. ' -

Proposition 6. (a) G%ven a network permutation (gl,ol,pl) transforming
network N into network N and network permutation (Ez,ozfpz) transforming
N into N then the composition (32,02,02) o (gl,ol,pl)’ig a network
permuﬁation transforming N into N.

(b) Let N be a network containing ml multiport and m2 multiterminal

resistors. Assume N has n nodes and these nodes are made up of a union

of % connected sets of nodes. Let the j~th resistof‘be an n -port

3

resistor for j = 1,...,m, and an nj—terminal resistor for j = m +1,...,m,

1
" where m = ml+m2. Then the collection of all distinct network permutations

contains exactly M elements, where
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=

m - n, m ) V
M = (njt2 J) T njt) (@)@, (19)
j=1 j=ml+17

Proof: The composition of the two network permutations is
(1"3,0'3,‘)3) = (:’Iz’oz’pz) o (‘El’ol’pl) (203)
with

. (o, (3))
n§3) =, 1 0 nij) (20b)

0=0,00 (20c)

2°°% P3T P00
and is easily seen to satisfy all conditions. The total number of
distinct network permutationsis the product of the following items:
1)A the number of permutations of the my multiport resistors, 2) the
number of permutations of the m, = m-m, multiterminal resistors not
involving complementations 3) the number of the permutations of the
resistors, 4) the number of the permutations of the nodes not
involving complementations, 5) the integer 22 where £ is the number
of connected sets of nodes. "

The most important property of a permuted network ﬁ is that its
solution can be easily derived from that of the original network N.
Indeed, if we let v and i denote the voltages and currents of all
resistor ports and terminals, and let u denote the set of all
node-to-datum voltages, then we have the following:

Theorem 1. For any solution (v,i,u) of N, the associated (7,0,p)-permuted

network N has a solution

(¥,1,8) = (B(1,0)v,B(1,0)1,P(p)u) (21)
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Proof. Since (v,i,u) is a solution of N
1) (y(j),i(J)) is an admissible pair for the j-th resistor of N,
2) Al =0 and
T

3) u=v.

t

Using the orthbgonality of the directed permutation matrix, the definition
of the resistors of ﬁ, and (15), we obtain by applYiﬁg the appropriate
directed pgrmﬁtations the following relations:

1 (‘}(c(j))’i(c(j))) _ (13(,,(3>)Y(j>,g(ﬂcj))icj_))_is an adpissible

pair of the o(j)-th resistor of N,

2) Al= (?(p)élf(lf’cﬂ)lz(ﬁ,o)g = 0, and
e . ; A
3) é?~ = (g(E,U)é P(p) )E(p)g = P(T,p)v = V.

This implies that (21) is a solution of N where o} rgiétes the reference

nbde(s)'of the solution of N to the reference nodes of the solution of

fi. | . .
'It.should not be too surprising that the solution of permuted

networks can be derived from one another since a netwofk permutation

involves only opérations which permute and/or complement variables of

the solution.v‘No operation destroys solutions or introduces new ones.

This imp1ies thét N and ﬁ have the same number of soluﬁions.

Corollagzﬁ If (v,i,u) is a solution of a network N, then the complementary

network N has a solution (-v,-i,-u). |

This coiollary [8,9] is used extehsively inllogic cifcuits. It is a

common practicé’to obtain the solution of a circuit in. negative logic

by'complementing all currents and voltages of the solution of the

corresponding circuit in positive logic.
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As a result of this theorem it is easy to derive the solutions of
a permuted network N from those of N. So it makes sense to define

identical and isomorphic networks as follows.

Definition 5. Two networks N = (R(j),CIB(j),QjU) and N = (ﬁ(j),clz(j?LA])

are said to be identical if
1) R(j)(resp. CQ(j)) and ﬁ(j)(resp. Cﬁ(j)) are identical for all j.
2) the nodes of N and N are identical
Two networks N and N are said to be isomorphic if there is a network
permutation, so that N is identical with the permuted network of N.
In terms of network drawings two networks are identical if their
circuit diagrams can be made coincident such that corresponding nodes,

ports, terminals, and resistors have the same labels, and such that

‘the corresponding resistors are identical. That is, they are exact
duplicates in all aspects. On the other hand, if two networks differ
only by the labels assigned to the respective nodes, ports, terminals,
and resistors, then they are isomorphic to each othér.

B. Symmetric network

Definition 6. A network N is (g,o,p)-symmetric if N is identical to

its (m,0,p)-permuted network.

Examples.

1) Our first example demonstrates that there exist symmetric
networks whose associated symmetry permutations (n,0,p) has p = I.
In other words, the nodes are invariants of the transformations.
Consider the network N shown in Fig. 9(a), where we have considered
the two identical 1-Q resistors as two-terminal resistors (rather than
one-ports) in order to show the generality of the definition. This

network is described by
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Cp(l) :v](_l)-vél) = 1V, and _CD(i) :vii)-vgi) = i{i) = —i(i), i=2,3;
®= {(131)3(192),(1;3)} @ = {(231)9(2’2))(2:3)} ' (22)

It is easy to verify that N is invariant under an interchange of the

resistors CD(Z) and CQ(3), or more precisely, under the network permutation

(m,0,p) with 'n(j) = (i g) for i = 1,2,3 and o = (i § g) and p = (% %)

2) Our next example demonstrates that there exist symmetries which
are of the form (I,I,p). Consider the network N in Fig. 9(b) where the
tvio distinct nonlinear resistors R(l) and R(z) are considered as one-ports,
réther than two-terminal resistors. The two nodes are @ = {(1,1),(1,2)},

@ = {(1',1),(1',2)}. 1If we apply the network permutation (m,0,p)

.with 17(1) = 11(2)‘ =71 = (i), o=1-= (1 2) and p —<® ®), we would obtain
12 @O

a new network N which is ident1ca1 to the original. 1In fact this form of
symmet:ry always exists wheneyer the ports of two multiport resistors are
connected in parallei with each othef.

3) Consider next the complementary mirror-symnetric "push-pull
amplifier" circuit shown in Fig. 10(a).

This network is described by

FES

(1) (1) (l)
£,0v1 vy vg )

CIQ(l).:_iél)‘= (exp((v(l) (1))/ -1)) -‘Ics(exp((vil)-vél))/vT—l))

(1) _ (1))/v -1))

igl) (exp((v

-IES(exp((V( )—v(l)S/v -1)) +a_ I

R CS
IR

W, W, @ _
il + 12 + 13 =0
CQ(z) :Aig.z) = -fz(-—viz),-véz),-vg”), igz) = '§f3(-‘v](.2),-u§2),--v§2)),

(2) (2) | ,(2) _
LT ALY+ 1% =0
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A 2 1 2
RO L O O <y, 1B o O
RS D D O -
and
@ = {(1’1):(132)}, @ = {(391),(195)’(332)}9 @ = {(2,1)3(133)}9

{(2,3),(2,4),(2,5)}

®

The push-pull amplifier is symmetric with respect to the following

{(2,2),1,8)}, ®

symmetry transformation (w,0,p):

123 123 12 12
L8 2 ___),“(2)= ___),n(3)= __)’“(4)= ),
123 123 12 12
(5) 12 12345 SXCROJOLE
m =--’°=21435)’°=--——-- y
AL 2 QOB®OOG
As an illustration of the algebraic nature of the definition of
symmetry, we check this symmetry without using the circuit diagram. First
it has to be shown that (7w,0,p) is a network permutation. The first
two conditions are obviously satisfied and the consistency condition
requires in this case that all terminals and all nodes are complemented.

The (m,0,p) transformed network N is given then as follows:

The resistors are ‘

Cb(l) - D@Dy - PD, RD L DO PWy - RW,
ONNOPS ) ONIR (ON P - 3 @Dy - RD |
IOV ONIRGON

and the nodes are
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D = o@D = (P @,0, 6P @,0en) = (d,2),d,10)
D =o(@) = (P 3,0, W),000), P 3,62}
= {(3,2),(1,5),(3,1)}
A - (@) = (P2 ,02), 6D 1) 0@ = (E,1), )
@ = 0@ = (P @,0a0,¢P@,060} = (3,2),d,5)
® =o(® = (P @,0030),0" (2,000, 2,000}
= {(2,8),(2,3),(2,5)}

The complements of the nodes and the complemented terminals can be

eliminated by using (9):

It is now easy to check that N and N are identical since CQ(I) = CQ(]') = CQ(Z),
RD PP . PO P . QD N O O JORNG O
' CQ(S) =CQ(5). =C-D(5) and since the nodes are the same.

It is important to note that apart from the interconnection the

{(3,2)(1,5),3,1)}, @ = {(2,1),(1,3)}

{(1,2),1,1}, @

[}
1l

{((2,2),(1,8}, @ = {(2,4),(2,3),(2,5}

presence of t;he' above symmetry in the network depends critically on

three properties of the constitutive relations: (1) The resistor CQ(Z)
is the complemented resistor of Cp(l), i.e. Cp(z) = C-Q(l), This implies
that CQ(_Z)l is a pnp transistor which is the complement of the npn |
transistor CQ(]'), (2) The voltage sources CD(3) and CQM) are

the cbmplement of each other, (3) The resistor CQ,(S) is bilateral,

i.e., CQ(S) = 'Q(S), which follows from the linearity of CQ(S).

To provide additional insight we prevsent a graphical verification
of this symmetry. This involves the determination of the (E,o,p)

permuted network N of Fig. 10(a). A similar analysis as in Fig. 8
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produces via Fig. 10(b) the permuted network N of Fig. 10(c). Observe
thathé(l)(resp. Cté(z)) is a an npn (resp. pnp) transistor. Again using
the above three properties of the constitutive relations it is easily
established that the networks of Fig. 10(a) and 10(c) are identical.

4) 1If a network is symmetric with respect to (I,I,I), we call it

complementary symmetric. This corresponds to the definition given in

Sec. 1. It is easy to verify that a network is complementary symmetric
iff every component is complementary symmetric. In particular this
shows that any linear network is'complementary symmetric.

Observe that our definition of symmetry is extremely general
and contains as a special case the three ad hoc symmetries mentioned
in the introduction. It will be shown later that the definition of
geometric symmetry given in the introduction provides a useful
technique for detecting the presence of some form of symmetries in most
instances.

Let (m,0,p) be a network permutation. Observe that when ¢ permutes
two resistors which have a different number of terminals or ports, or
when p permutes nodes which are associated with a different number of
incident terminals, the resulting permuted network cannot be identical
to the original network.

Now consider a network ‘N with n nodes C) cee @D and m resistors.
Let the nodes be made up of % connected set of nédes, and let the j-th
(1)

for j = 1,...,m1

resistor CQ(J) for j = my+l,...,m. Let CP be the set of all network

resistor be an nj-port resistor R , Or an nj-terminal

permutations (m,0,p) of N which satisfy the following conditions:
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1) for j =1,...,m the resistors j and o(j) of N are either
both multiport resistors with the same number of ports, or both
multiterminal resistors with the same number of terminals,

2) for ® = @,...,@, the nodes ® and p((®) of N both
have the same number of incident terminals.

Proposition 7. Given a network N, the set Cp forms a finite group

(with "composition" as binary operation) containing

™

n m .

I (n,12 j) I n,! s,8,2" elements, where

= ; 172

j=1 J'—'m1+l

5, = (I number of i-port resistors) (Il number of i-terminal resistors)
' i ' i

8, = I number of nodes having n incident terminals.

i
Proof: It is easy to check that CP has indeed the predicted number of

elements. The composition (20) of two elements of Cp always exists and

is again an element ofcp(closure law). The networ_k.permutation (I,1,1)

wheré I is the unit permutation and where I = [I,..;,I]T,- is called the

unit network permutation. The composition of two netwotk permutations

belonging to CP is associative since the composition of permutations

in (20b,c)) iﬁs associative. By (12) and (20) every element‘of‘cp has

an inverse. This implies that Pisa group. , "
Now with regard to the network permutations ofv CP , we can apply

all results obtained in Section II of [11]. Among them the cyclic

decomposition of a directed permutation is the most :fmportant. Since

Cpis a finite group we call the smallest integer d such that

vd =V ovo...ov=(II,I) the order oﬁ the network permutation

v eCp. 'AnaAlogously we call the order e of a port-;erminal permutation

(m,0) of (m,0,p) € CP the smallest integer e such that (11,0)e = (I,1).
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Proposition 8. Given a network permutation (m,0,p) € CF), then we

have:

1) (g,g) can be written uniquely as a product of disjoint cycles

either of ports or of terminals,

(@0:0) = (0305 ppdpd e (a3 D) eee () (242)

2) o can be uniquely written as a product of cycles either of
multiport resistors where all resistors have the same number of ports,

or of multiterminal resistors where all resistors have the same number

of terminals, i.e.,

c = (jo,jl,...’js-l)..'(.)' (241b)

where 8 is a divider of q.

3) p can be uniquely written as a product of disjoint cycles

o = (@@...)...( ), (24¢)

such that all nodes of a cycle have the same number of incident terminals.

4) The order e of (m,0) is a multiple of the order of o, and the
order d of (m,0,p) is the least common multiple (2cm) of e and the
order of p.

Proof :

1) Since (7m,0,p) Gc:pthe composition (w,0) o (m,0) exists anq
performs a directed permutation of the set of ports and terminals. Hence,
(24a) follows from Theorem 1 of [11].

2) In (24a) we have from the definition of a port-terminal permutation
that (jo,jl,...,jq_l) is obtained by repeatedly applying o to jo' In
view of Theorem 1 of [11], the corresponding cycle of o must accordingly

be (j_>3;5-++53g_;)» where s is a divider of q.
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3) (24c) can be obtained immediately by applying Theorem 1 of
[11]. |

4) The order e of (7w,0) is the smallest integer such that
(gr,o)e = (},I). This implies 6% = 1 and thus e is a multiple of the
order of 0. Analogously it is easy to prove that t‘her\rder d of
(m,0,p) is a multiple of e and of the order of p. Call
g = fcm(e, order of p), then ('Lr,o,p)g = (I,I,I) and thus g = d. H

We say that a terminal i of resistor j is "incident at 'or' connected
to" node ® if (i,3) € ® or equivalently if (i,j) € Cl_c) . Using
the previous pfoposition, we obtain the following inferesting property. a

"Proposition 9. Let N be the (1,0,p)-permuted network of N with

(m,0,p) € CP If the i-th terminal of resistor j is connected to
node @ in N, then the ‘ﬂ'(j)(i)-th terminal of resistor o(j) is
connected to node p(®) in N. In other words, corresponding to the
cycles (@@ ) of p, ((io’jo)(il’j1)°"(iq-l’jq—l))
(7,0), and (jojl’”"js-l) of o, if terminal io of‘resistor jo is
connected to node @ , then s is a divider of q. Moreover, for any
integer d, teminal i 4 of resisgor j P is connected in N to node

» 1 2 ,
» where dl (resp. d ,d3) is the remainder of the division of d

2
by q (resp. by s,p) i.e. d = qql-i-dl with dl’ql integers and 0 < d1 < q.
Proof: Apply the definition of a network permutation to AN and use
Prop. 8. ' . n

A network may exhibit many distinct forms of symmétry. Again all

these symmetry permutations form a group, henceforth called the symmetry

group of a network.
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Proposition 10: The set S; of all network permutations with respect to

which a given network N is symmetric forms under the composition
operation a group, which is a subgroup of CP
Proof: It is easy to see that S; - CF’. By an analogous proof as
in Prop. 14 in [11], it can be shown that S; satisfies the closure
property and hence is a group. o
Corollary 1: a) Let 21 and v, be two symmetry network permutations of
a network N. Then vl o v2 and vi, with £ an integer, are symmetry
network permutatibns.

b) A network is v-symmetric iff it is v_l-symmetric.
Corollary 2: Let N be a (g,o,p)—symmetric network. If the i-th
terminal of resistor j is connected to node QQ in N, then also the
n(j)(i)-th terminal of resistor 0(j) in N is connected to node p((K)).
In other words, corresponding to fhe cycles (@ @ ) of p,
((io,jo)(il,jl),...,(iq_l,jq_l)) of (m,0), and (jgjj;5...53 ;) of o,
if terminal i of resistor j0 is connected to node QE) ,» then s is a

0

divider of q and for any integer d, terminal i, of resistor jd is

d
1 2
connected to node , where d1 (resp. dz,d3) is the remainder of
the division of d by q (resp. s,p).
Let us now apply this corollary and the cyclic decomposition technique

to the symmetry permutation of the network of Fig. 10(a). The cyclic

decompositions are:

@) = (@,1A,2) (2.0a,2)(6,0a6,2) (@,9d,0) (@, @)
(@9 d.9) (@.5a,5)
6= (D@D BB D), 0= A DG &),

The order of (g,0,p) is equal to 2,since the order of (w,0) and of p
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are both 2. The symmetry group consists of the urit permutation and the
above permutation. The predictions of Cor. 2 are that if terminal (1,1)
is connected to node () , then terminal (1,2) is connected to node

(]-) » or terminal (1,2) is connected to @ . Analogous observations
can be made at other terminals. The cyclic decompositions of (g,o)

o and p will also be useful in describing the symmetry properties of the

solution (Sec. 3) and in reducing a symmetric network (Sec. 5).

C. Useful techniques for detecting symmetries in a network

Often one is interested in the symmetry group of a network. This
problem can be attacked in essentially two different ways. The first
is the most common and is based on geometrical constructions: the
network is redrawn (on a plane or in the 3-dimensional space) such that
it completely coincides with itself (the graphs coincide and the resistors
are identical) after some geometric transformations (such as a reflection
or a rotation and/or some complementation. This is a useful technique
for detecting symmetries with pencil and paper for a simple network. It
is not suited for large networks where a computer must be used. This
geometric method gives also a justification for the ad hoc definition
of symmetry given in the introduction. However, this method is not
general enough. We will demonstrate later by an examﬁle that some
symmetries cannot be detected by this method. This is because the
3-dimensional space, and certainly the plane, does not possess enough
"rooms" for identifying certain symmetries. The second technique is
more algebraic since it relies directly on the algebraic definitions of
a network and of symmetry. Instead of checking all possible network
permutations, we first select all network permutations (a subgroup of<1))

which leave the graph or the incidence matrix.invariant, and then
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eliminate those resistors which are not identical and which are thus
electrically different. This technique is completely general and more
suited for computer detection of symmetries.

The geometric detection technique is based on the following result.

Proposition 11. Given a network N and its network diagram D in the plane

or in the 3-dimensional space. Apply the following operations: 1) Select
some connected sets Q)Ui of nodes and complement all multiterminal
resistors and all ports of multiport resistors incident at these nodes.
2) Apply an isometric transformation (such as a rotation or reflection
or both) on the resulting network diagram. If the original network
diagram D and the new network diagram B coincide with each other, and
if'corresponding resistors have identical constitutive relations, then
the network is symmetric with respect to (m,0,p), where n(j), o and p
are the directed permutations resulting from the complementation and the
matching of the coincident resistors (all nodes belonging to complemented
connected sets Q)Ui of nodes have undergone an implicit complementation
since all the incident terminals are complemented).
Proof: The set of directed permutations T,0,p form a network permutation
for N because 7,0 and p represent terminal ( resp. port), resistor and node
(directed) permutations respectively, and since the consistency condition
is guaranteed by the fact that all resistors connected to nodes of Ljui
are complemented. It follows then that the (g,d,p)-permuteﬂ network
N coincides with N. H

We illustrate this technique first with the network diagram D of
Fig. 10(a). 1In our search‘for a symmetry we can either choose everything
to be complemented or nothing since there is only one connected set of

nodes. In complementing everything we obtain the new network diagram
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of Fig. 11(a). Observe that 1) the complementation of an npn transistor
CIQ(I) is a pnp transistor identical with‘]Q(z), 2) the complementation
of a voltage source <12(3) is obtained by interchanging its terminals

and thus CQO) is identical with CQ(A) and 3) the linear resistor CD(S) is
identical with its complement Cié(s). We reflect this network diagram
with respect to the axis @ @ @ while preserving the labellings

and obtain the diagram D of Fig. 11(b). Using the above three facts

we see that the network diagrams D and D of Fig. lO(a) and 11(b) coincide
and that the corresponding resistors have identical constitutive equééions
and thus the network is symmetric. From the matching of the coincident
elements we obtain the symmetry network permutation (w,0,p). The top

row contains the labels of D and the lower row contains the labels of D

including the eventual complementations of terminals, ports, or nodes:

(@@@@@)
P = - _ _
@@

(11 »1)(2,1)(3,1)(1,2)(2,2)(3,2)(1,3)(2,3)(1, 4)(2 4)(1,5)(2,5)

(H’p) =
2)(2,2)(3,2)(1,1) (2,1)(3,1)(1,4) (2,4)(1,3)(2,3) (1,5) (2,5)

which is the same symmetry as found before.
Remarks: 1) Since we only consider networks with a finite number of
nodes and resistors, the classification theorem of isometries in space
[15] shows that we only have to consider reflections and rotations and
a combination of both;

2) Observe that it may be necessary to draw the network in the
3-dimensional space in order to identify certain fdrms of symmetry.
For example,rconsider the network N of Fig. 1l1l(c) as drgwn in the

3-dimensional space. Let us apply Prop. 1l by complementing first
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all resistors connected to nodes of the sets Q)UI and QJUZ and then
rotating it about the x-axis by 180°. Since the two drawings coincide
with each other, and since the corresponding resistors are identical

N is symmetric. The associated node permutation is given by

<®®@@@©) o
o . The g and « permutations can also be
QO0B®O®O

determined as soon as all resistors and terminals are labeled. Another
symmetry of the same network can be found as follows. First complement
everything that is connecte& to nodes @ and@ i.e. to nodes of LN]_
Next make a mirror reflection with respect to the plane x-y. The two

drawings are identical. The corresponding node permutations is

°%gg@@©§)
®0Q G

3) Observe also that it may be necessary to redraw a network
several times before uncovering any form of symmetry. For example,
the circuit shown in Fig. 11(d) with R(3) linear does not seem to
exhibit any form of symmetry at all. However, after interchanging
the location of nodes C) and C) (Fig. 11(e)), the line connecting
nodes @ and @ clearly forms an axis of symmetry.

A major drawback of this technique for detecting symmetries is

that it does not guarantee that all symmetries can be found. To show

this, consider the network shown in Fig. 12, where the one-port resistors
{R(l)R(Z)R(B)} (resp., {R(A),R(S) R(é),R”)}, {R(8),R(9),...,R(19)}) are

’

assumed to be identical, but need not be bilateral. The node set is

given by:
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{1',1,@1,2),(1',10),(1',11), (1',12),(1",13) }

{(1',2),(,3),(1',14),(1',15),(1',16) ,(1',17) }

= {(1’1),(1':3):(1"8):(1"9),(1'918)9(1',19)}

]

{1',4),(1,7,(1,9),(1,11),(1,14) } (25)

© ® © © 6

{(1,4),1',5),(1,8),(1,10),(1,15) }

{@,5),1,6),(1,12),(1,17),(1,19)}

Q ©

= {(196)’(1' »7),(1,13) ,(1,16) ’(1,18)}

It can be easily verified that this network is (f,c,p)=symmetric with

(3)

m =I,j=1,...,19,

G = (1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19)
2 31 56 7 41210 17 15 16 14 8 19 9 18 11 13/’

and p =<gg§gggg) = (OOO@®G®®). The difficulty

in drawing this network can be seen more clearly from the cyclic
decomposition of p. The two cycles imply that such a network diagram should
have two axes, one through the center of the triangle CD C) C) and

the other through the center of the square &) (& ® @, and the network
should ﬁe invariant under a 120° rotation about the first axis followed by

a 90°-rotation about the second axis. A similar problem arises when one
wants to draw in the two or three-dimensional space a symmetric multi-
terminal or mﬁltiport resistor such that its symmetry can be derived

from an isometric operation. A simple example where this is impossible

is a (1 2 3)(4 56 7)-symmetric resistor.
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The other symmetry detection technique is directly based on the
definition of symmetry: A network permutation (r,0,p) € CP is a
symmetry network permutation if and only if

1) P(o)AP (1,0) = A (26)

and

2) the resistor o(j) is the n(J)-permuted resistor of the resistor j.
The problem of finding the group of all symmetry permutations can

be solved sequentially as follows.

1) First solve the combinatorial problem of finding the group
of all network permutations such that (26) is satisfied.

2) Then check the condition on the resistors. Not all cases need
be verified exhaustively since we can use the algorithm described in
Appendix B of [11]. The first problem is equivalent to finding the
group of symmetry operations of a directgd hypergraph. In the case
of a planar graph Weinberg has described algorithms for finding the
symmetry group [16-17]. His algorithms are based on canonical codes
for the planar graph. In the general case more exhaustive techniques
are unavoidable, although the structure of the problem and the use of
the algorithm of Appepdix B in [11] allow great savings. We present

here such an algorithm. But first observe that (26) implies
P(p)AA" = aATR () | (27)

Algorithm for finding the symmetry group S; of a network N

Given a network N = (R(J), CQ(J),LN) find the group Q of all

(m,0,p) E(q) such that the network is (E,O,p)-symmetric.
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1) Find set Mk of nodes which have the same number k of terminals
for k = 1,2,... . Find the set Lk (resp. Lé) of multiport (resp.
multiterminal) resistors which have the same number k of ports (resp.
terminals) for k = 1,2,... . Find also the & connected sets of nodes
L)ka k=1,...,2. Then ffom the definition of CI! (m,0,p) has to be
such that p does not interchange elements of the Mk with different k,and ¢
does not interchange elements of the Lk (resp. Lé) with different k.

2) Find the group Gp of all permutations p such that (27) is-
satisfied. Mowéhowitz [18] has described an algorithm to find all
solutions in two steps: first solve §é§T = ééTX fer all complex X [19]
and then identify those solutions which are permutation matrices. Since
the second step is by nature exhaustive we prefer a direct exhaustive
procedure. Consider ééi as the hybrid matrix of a linear multiport
resistor and find the group Gp of all symmetry permutations of this
resistor using the algorithm of Appendix B of [11]. Observe that
only the permuﬁations which do not interchange eleménts of the sets Mk
are valid candidates as elements of Gp, since this condition implies that
the diagonal of AAT is invariant under p.

3) Find the group G of all permutations 7,0,p sucﬁ that
(m,0,p) € CI), p E Gp and P(m,0)A = AP(p). We use the Algorithm of
Appendix B of [11] to find for a given p € Gp all solutions of
P(m,0) = AP(p) for (m,0,p) € (1). Two important group theoretic
observations can greatly reduce the number p's to be considered. If
for a given p there is no solution then also for any po.such that

pg = p for some integer m there is no solution. Second if the solutions
172
by making the composition of the solutions for Py and Pye

for any pl and Py are found then any solution for p can be found
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4) As a result of the previous steps we have a group G of
permutations which leave all graph theoretic aspects of the network
invariant. Since the symmetry operations can complement any of the
% connected parts of the network the group G has to be extended to a
group G' of 22(#G) directed permutations. In other words, any permutation
contained in G gives rise to 22 directed permutations in G'.

5) Find the symmetry group S; C G'. For any directed permutation
(1,0,0) € G' check if the ﬂ(j)—permuted resistor of the j-th resistor
and the o(j)-th resistor of N are identical, for all j. Again the
number of elements of G' to be checked can be reduced significantly by
the following two rules: First, if p € G', p ¢_S; then for all
o € G' and plg = p for some integer msP & Q . Second, if ey € Q

and Py € S; , then Py 0Py € S; .

ITI. PROPERTIES OF SOLUTIONS OF A SYMMETRIC NETWORK
It will be proved in general in this section that if the solution

of a symmetric network is unique then this solution is symmetric if it

is measured with respect to suitable reference nodes. If we have
reference nodes which are invariant under the symmetry node permutation
p, this property follows almost immediately from Theorem 1 and is
stated in Theorem 2. We call a node C} invariant under p if

p(®) = & or p(@) = @ . Since it may not be possible in general
to find invariant nodes the remainder of this section is devoted to

a systematic procedure for introducing reference nodes and/or selecting
reference nodes such that the solution is symmetric.

Theorem 2. If the solution (v,i,u) of a (m,0,p)-symmetric network N

is unique and if the reference node(s) is (are) invariant under p, then
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P(m,0)i = 4 (28b)

(28¢c)
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{or
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=

Proof: From Thm. 1, the symmetry of N, and the invariance of the

reference node(s), we see that

(v,i,u) and (B(w,0) v,P(m,p)i,P(p)u)
are solutions of N with respect to the same set of reference node(s).
The theorem now follows from the uniqueness of the soiution. H
Corollary 1. Let N be a (E,c,p)—symmetric network having a unique
solution and reference nodes which are invariant under p.

1) If p has a cyclic decomposition

pros()easis ((:) (:) b CED) ... ( ), then the voltages at all nodes

belonging to each cyclic component and having the same orientation in the

cycle, say (:::> ,(:::> e (:::) are equal to each other. Similarly, the

voltages of the remaining nodes, say (iij) ,(::;) Sty nj , in the
k

same cyclic component (which must necessarily have the opposite
orientation) are equal to the negative of the voltage of the first
set of nodes.

2) Analogously for the cyclic decomposition

@ = )... ((il,jlmz,jz) o G ) ( ).

the voltages at all resistor terminals belonging to each cyclic component
and having the same orientation are equal to each other. Similarly, the

voltages of the remaining resistor terminals in the same cyclic
component (which must necessarily have the opposite orientation) are equal

to the negative of the corresponding voltages of the first set of terminals.
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3) Analogous statements also appl& to the resistor terminal
currents.

The symmetric lattice property (Prop. 4) in Sec. 1 can now be

proved with the help of Thm. 2 and the above Corollary. The one-port

(2) (4)

resistors R and R(3) (resp., R and R(S)) in Fig. 3 are identical.

The node set is:

@)
@ {(1"1)’(1':3)’(1"4)}’ @
(1)

The symmetry transfermation ismw = (i) for j=1,...,6, and )
- (53550 mee (2299
@0®O

is invariant under p. In order to apply Thm. 2 and Cor. 1, let us

{(1,1),(1,2),(@1,51}, ® =1a'.2),1,8,1,6)}

{(@,3),1',5,(1',6)} .

) . Observe that no node

introduce a phase-inverting ideal transformer (Fig. 7a), which is a

3-terminal resistor described by v = iz, i, -i +1 0.

1773 T V3TV 4y 172" T
By connecting this 3-terminal resistor to the symmetric lattice as shown

in Fig. 13, the symmetry is preserved and the currents and voltages

are not modified since terminal (3,7) does not carry. any current.

Nodes O @ and ) become
Q
®
®

{',2),(1,4,(1,6),1,7}

{(,3),@1',5,(1',6),(2,7)}

(3,71}

OXOJOROXE,
eJeJoleJo,
node (:) is now an invariant node‘and can be chosen as our reference

node. Since p' = (@D @)(® CZ))(@ @), it follows from Cor. 1 that

and the node symmetry operation is p' = < ) . Observe that
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the voltages at nodes @ and @ {resp., nodes @ and @} are the
negative of each other. Since (1',0') = CJ”JJ) ([1,2][1,3]) ([1,4][1,5])
([1,6]) ((1,7) (5,7)) ((3,7) (3,7)) , this implies, among other things,

(2) (3)

that the voltages and currents in resistors R and R are equal to

each other. This proves Prop. 4. As a result of this corollary we

see that the voltages of many nodes in the network are equal to each other,
or differ by‘a negative sign. The great advantage of the cyciic
decomposition is now obvious: it allows us to select these nodes
immediately. This observation will enable us to construct in Sec. V

a practical algorithm for simplifying a symmetric retwork.

Corollary 2. If a complementary symmetric network has a unique solution,
then all current and voltage solutions are zero.

Proof: Since ) - I, 0 =1, and p = I, we have P(p) = -1 and
P(m,0) = -1r; it follows from Thm. 2 that y = -y, i = -1, u = —g. "

A general remark concerning Thm. 2 and its corollaries is that the

uniqueness of the solution is essential to guarantee the symmetry of

the solution. Counterexamples such as the Eccles-Jordan multivibrator
(Fig. 14) show that this condition cannot be relaxed.

We have already seen that a symmetric network (such as Fig. 3) may
not have an invariant node. An artifice was then introduced as in
Fig. 13 which allows such a node to be generated without affecting the
solutions of the original network. Another common situation of a
symmetric network having no invariant nodes is given by the class of
rotational symmetric networks. The network in Fig. iS is a case in point.
We will now describe a general method for selecting reference nodes such
that the unique solution is symmetric. In order to do this, let us

first investigate the relationship between the connected sets of nodes
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Ljul,gjuz,..., and the symmetry node operation p. Let.a be called the

directed permutation of the connected sets of nodes and be defined by

N = (@) ® € N,3. ~ (29)

The following proposition then shows that p is indeed a directed
permutation and is the directed permutation induced by p on the connected

sets of nodes.

Proposition 12. Given a (1,0,p)-symmetric network N = (R(J), CIQQJ)’QJU)

with connected sets of nodes ()UI’QJUZ"'°’ then for any i there exists

a j such that

o( N = (Nj or JJJ. (30)
Proof: Any two nodes @ @of LN]'_ are interconnected via some ports
of multiport resistors and/or via some multiterminal resistors. Since
the network permutation preserves this interconnection, p(<:i)) and
p(<:)) are in the same way interconnected in the permuted network and

thus belong to the same consistent set of nodes. Since the nodes of

Q)Ui are either all or not complemented, we have

5(LNi) c (Nj or U“j'
Applying the inverse permutation ('Lr,c;f,p)_l which is also a symmetry

permutation, and repeating the previous argument, we obtain

~_l rvi
o (N, €N, or N,
ki i i
because p-l is the node symmetry permutation of (g,o,p)-l. n

This proposition implies that the connected set of nodes determine an

equivalence relation in the set of nodes, which is invariant under p

[13;p.166].
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Corollary 1. p is a directed permutation of the connected sets of

nodes and can thus be written as

Ny N, -

p = (31)
Ny Ny -
or by its cyclic decomposition
b= (N Nj--dC e (32)
Corollary 2. Given a connected set of nodes LAIi with cycle
0
N, N, ....N, ), (33)
i i i ,
0 1 m-1

then any node <f€:> € LJUi has a cycle
0 0

& (u) "

whose order k is a multiple of m, and <:::> € L)U1 , Where jl is the
34 '

remainder of the division of j by m.

Definition 7. Given a (m,0,p)-symmetric network N we call a set of

‘reference nodes of N compatible with the symmetry permutation (m,0,p) if

1) for all connected sets of nodes belonging to the same cyclic
component of ¢, the reference nodes also belong to the same cyclic
component of p, and

2) for any conmnected set of nodes L)Ui, the cycle of p, which
contains the reference node of Ljui’ only contains nodes which have
all the same orientation or which have all both orientations.

Constructively, these conditions imply the following. Choose
some cyclic components of p such that each connected set of nodes

L}Ui has one or more node(s) appearing each in qut one selected
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cyclic component of p. Then condition 1 is automatically satisfied,
if we choose the reference nodes among the nodes of the selected
components of p. Condition 2 requires additionally that for each

selected component Yj and for each connected set of nodes wi’ any

two different nodes @ and @ of LN:I. appearing in Yj can only

have the following orientations in this cycle @, @ » O @ . @

or @ ,@ ,@ ,@ . Thus the mixed cases @ ,@ and
are ruled out by condition 2. S;:) for example if @, @, @ € gNl,
@, 0, ®el,m @, @, @ €N, amdit

p = (@@@@@ @)(@ @@@ @), the component

(@ @ @ @ @ @) cannot contain reference nodes satisfying condition
2, while the component‘(@ @@ @) can. In fact the nodes

@ ’ , @ form a compatible set of references nodes.

Before showing that Thm. 2 can be extended to the case of a
network N with a set of reference nodes compatible with the symmetry,
we answer two important questions. Can a compatible set of reference
nodes always be found for any symmetry permutation and any network N?
And how can such a set of reference nodes be found? It is easy to see
that any set of reference nodes which is invariant under p is compatible
with the symmetry permutation and thus we are dealing with a larger
class than that of Thm. 2. However there exist networks which have

no set of reference nodes compatible with the symmetry permutation,

the network of Fig. 3 being a case in point. This difficulty has been
solved in Fig. 13 by adding a phase-inverting ideal transformer whose
terminal 3 is free. This does not modify the solution of the network

and preserves the symmetry. We now present a simple algorithm which
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extends this technique and shows that by adding some phase-inverting
ideal transformers a compatible set of reference nodes can always be
found.

Algorithm. Construction of a éompatible set of reference nodes. Given

a (71,0,p)-symmetric network N introduce phase-inverting ideal transformers
in order to obtain an equivalent symmetric network and find a set of

_ reference nodes compatible with the symmetry.

1) Find the cyclic decomposition of p, the directed permutation
p of the connected set of nodes and its cyclic decomposition. The |
assignment of reference nodes in each connected set of nodes and the
eventual introduction of phase-inverting ideal transformers are applied to
one cyclic component of p at a time. So step 2 has to be repeated for
all cycles of p. J

2) Consider the cycle B = ((_N LN ) of p. One can

i

choose arbltrarily any cyclic component y = (@Q .) of p
mu

such that € ‘Aji . Then by Cor. 2 of Thm. 2 k is a tiple of

mork=msand. @ @ .GLN:{
@ . - - and so on. If we

choose the reference nodes of d\li LN i cee among the nodes

of v, condition 1 of Def. 7 is automatically satisfied. The condition 2
of Def. 7, however, requires some further analysis of the cycle B.

It is clear that B can be of normal or of double order. If B is a normal-

3ob‘serve that J\l i (resp. @) may as well stand for a complemented
h|

connected set of nodes (resp. node) as for an uncomplemented set.
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order cycle then condition 2 is satisfied if we choose any node among

@ as reference nodes for (A[, and repeat
3

this for j = 0,1,...,m-1. If B is a double-order cycle then m is even

and = J‘ s
LNij m/2+5

considered according to the fact that and are the same
or not. a) If = then = -1, for j = 1,...,m/2-1,
. i .

m/2+j

and condition 2 is satisfied if we choose the reference node for LN
1.

J
arbitrarily among @ and repeat this for
j=0,1,...,m~1. b) 1In the éase#i we have then

for all j = 1,...,m/2-j and condition 2 of Def. 7 cannot

be satisfied. Therefore we introduce k/2 phase~inverting ideal

for j = 0,1,...,m/2-1. Two cases have to be

transformers Ti’ i=0,1,...,k/2 as follows. Select two nodes @

and @ of ¥ such that @ € JUi and @ € (A[i . Connect
0

m/2
terminals 1 and 2 of To to nodes Qﬂ) and <3> and leave terminal
3 of To open. Connect terminals 1 and 2 of T1 to nodes p(<::>) and
p( ) and leave terminal 3 open, and so on until terminals 1 and
2 of Tk/2 are connected to nodes pk/2_1(<::)) and pk/2-1(<::>) and
terminal 3 is left open. The new network has k/2 new nodes at the
third terminals of the Ti’ i=20,...,k/2. Since no current is flowing
in the Ti the solution of the old network can be immediately recovered
from the solufion of the corresponding part of the new network. The
new network has also a symmetry permutation which acts on the old
part of the network as the old symmetry permutation did on the old

network. The node permutation contains a new double-order ‘cycle of
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of the new k/2 nodes. Thus condition 2 is satisfied if we choose the

m reference nodes among these k/2 nodes.

Example. We apply the algorithm to the network of Fig. 16(a) with the
(1)

following resistors: the 5-port resistor R.'"’ which is

12453
(transistors) CQ(Z) and CQ(3), the identical 2-terminal resistors

Cp(4), CQ(S) énd CD(G). The node set is given by

12345
< ) -symmetric, the complementary 3-terminal resistors

@ = {1,1,3,2),(3,3)} ® = (4,1),(1,5}
@ =11"',1,(2,2),(2,3)} @ = {(5,1),(1,6)}
A = {(1,2),k2,1)} = {(3',1),(2,4)}
® = (@,n,e',n) ® = ((',1),(2,5)
® = {3,1,1,5} = {(5",1),‘(2,6)}.
This network is (w,0,p)-symmetric with |
D =<i 23 4 5) , o9 =<i _2_ 3) 5 =2,3and 1 = 1,5 = 4,5,6
' 12453 123
(122039, . P20060600060W
Dt 00000000®0®

In step 1 of the algorithm we find the consistent sets of nodes
N, =D, @, @, @), N, = (O, B} MN; = 1®, O},
N, = (D> @1 -

The directed permutation of the consistent sets is
~ LNl’ LA‘Z LA’B QMI;
p=1 =
Ny N3 Ny N2
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The decompositions in cycles are

(@ D@ DO DO O®D(OD @),
- (Jl1j1)<U“2kN3LN4)' |

In step 2 we try to find a reference node for (Nl with cycle

p

Ve
|

(wlwl)' We choose the cyclic component (@ @) of p. Since

(QNlﬁNl) is a double-order cycle and since () # @ -we have to

introduce a phase-inverting ideal transformer between nodes @ and @
(Fig. 16b). The reference node in LN]_ is then the new node @ .
Observe that this voltage divider need not be introduced if we had
chosen cyclic component (@ @). In step 2 for the cycle
(LNzLN3LN4) we search for reference npdes for the other consistent
sets. We choose a cyclic component ( @ .) of p containing nodes

in QMZJIN-MA’ Since (QNZQN%NZ;) is a normal-order cycle, condition
2 is automatically satisfied if we choose (8) (resp. @ s .) as

reference node for sz (resp. CNB’LNl»)'

It should be clear from this example that the number of phase-
inverting ideal transformers can be minimized by choosing as often as
possible the reference nodes in double-order cycles of p for connected
sets of nodes which appear in a double-order cycle of p.

Observe also that if no nodes are complemented by p no phase-
inverting transformers have to be introduced, since the cycles of p
and p contain no complements. |
Theorem 3. Given a (g,c,p)—symmetric network N with a set of reference
nodes compatible with the symmetry and with a unique solution (v,i,u)

then
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P(1,0)v = v (35a)
P(m,0)i = { (35b)
P(p)u=1u (35c)

Proof. The main problem is to remove the asymmetry in the location of
the reference nodes. Consider any connected set of nodes d’i and its

cyclic component in 5 Call r the number of connected sets of nodes

in this cycle. Then the order of the cycle is equal to r (resp. 2r) if
it is a normal-order cycle (resp. double-order cyclé). Consider the
cyclic component B of p which contains the reference node of LN i Now
pr has a cyclié component Yy which is composed precisely of the nodes

of B contained in LNi' Consider now the symmetry permutation (m,o ,p)r.
Since any cycle of pr is composed of every r-th node of a cycle of p

the chosen set of reference nodes is also compatible with (g,o,p)r. After
a relabelling of the nodes, node @ is the referenc2 node and this
cyclic component is y = (@@ @) ory = (@ @ .o @@@ .e. m)
with n odd. Observe that (D @ ... (@) cannot appear since the
reference nodes are compatible with (1_r,0,p)r. In general, the node
vector contains the following part [0 u@ u© u® jT. It follows
from Thm. 1 and the symmetry of the network with the relabelled nodes

that P(y) [0 u® u® ]T is also a valid part of the‘ node vector.

But this solution has reference node (2) . By making node @ again

the reference node and using the uniqueness of the solution we obtain

rO 7 r"o = PO =
-1 1 u u

® )
RS B 0N IR Y P (36)
-1 .1 u u |
5 ] Lo 9




In the case v = (@D Q... @) this reduces to

-
-1 _1] r“G;
1 -1
. Do) =0 (37a)
.-l -l

‘1 -2
and in the case y(@@ @@ @@) with n odd we have

. 2 Torn]
- u®
-1 1 .
. : = 0. (37b)
. -1 1 ' '
° u
-1 0
L _aL..®_.

Since matrix in (37) is of full rank, the only solution is

11C>= uCD.”. =,u()==0
Thié implies that nodes D) @ ...(@ can be connected to each other
and so the asymmetry in the reference node (:) is removed. After
repeating this process for all connected sets we obtain a network with
invariant reference nodes. Hence the theorem follows from (28). X
Cor. 1 of Thm. 2 can also be extended to this case.
Corollary 1. 1If a (m,0,p)-symmetric network N has a unique solution,
and if the reference nodes are compatible with the éymmetry permutation,
then we have the following propertieé:

1) 1In any cycle Y of the decomposition of p into cyclic components,
all nodes of y with the same orientation have the same voltage; nodes

with opposite orientations have opposite voltages.
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2) 1In any cycle § of the decomposition of (r,0) into cyclic
components, all the terminals of & with the same orientation have the
same voltage and carry the same current; terminals with opposite
orientations have opposite voltages and currents.

In the case of cycles of double-order we arriﬁe at the following
conclusion.

Corollary 2. If a (m,0,p)-symmetric network N has a unique solution,
and if the reference nodes are compatible with the symmetry permutation,
then we have the following properties:

| 1) In any cycle of p of double-order, all nodes have zero
voltage.

2) 1In any cycle of (m,0) of double-order all terminals have

zero current and zero voltage.

IV. SYNTHESIS OF A SYMMETRIC MULTIPORT OR MULTITERMINAL RESISTOR FROM
A RESISTIVE NETWORK.
In many practical situations, such as in signal processing, poft
entries are mgde in a network and loaded with one-port resistors.
The transfer characteristic from one entry to another{ or the voltage-
current driving-point characteristic at one entry, are’analyzed
[8,pp.228-236]. Interesting frequency separation properties can be
obtéined if there is some symmetry in the transfer characteristic [11].
Here we consider in general the problem of synihesizing a symmetrical
multiport or multiterminal resistor from a resistive neﬁwork. For the
case where the network is already symmetric, or nearly symmetric, an

easy method is described.
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Let us describe first how port entries and terminal entries can

be made in a resistive network.

Definition 8. Let N be a resistive network, and let(]; be an operator

which selects n nodes of N where external terminals are attached
(Fig. 17). The set of admissible terminal voltages and currents at
these n terminals determine an equivalent n-terminal resistor CI?,

henceforth called the n-terminal resistorc12 derived from the network

N by the operator CI;.

Observe that the "equivalence" applies only externally since there
need not be any relationship between the currents and voltages inside
two networks which give rise to the same multiterminal resistor.

Corresponding to the operatorCI; we can construct a selection matrix B.

B has n rows and a number of columns equal to the number of nodes of N
and has a 1 at entry i,j if the node (:) of N is connected to terminal
i of CIQ, and zero otherwise. With this selection matrix B we can

describe<12 algebraically as follows: (v*,i*) is an admissible pair

' . (m)T,T
ofclz if there exist vectors v = [Y(l)T...y(m)T]T and i = [é(l)T..'}(m) ]
such that

1) (y,i) is an admissible pair of resistors of N

2) Al = BTi*

T (38)
H Au=y

4) v* = Bu -

where A is the incidence matrix of N.
Port entries can be made in a network by two essentially different
methods: 1) The two terminals of the port can be soldered to an

arbitrarily chosen pair of nodes of the network. This entry is henceforth
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called a soldering-iron port entry. 2) On the other hand a port can

be inserted in series with an arbitrarily chosen terminal of a resistor.

This entry is henceforth called a pliers-type port entry.

Definition 9. Let N be a resistive network and le: (} be an operator
which maps a éubset of the union of all "node pairs'" and of all resistor
"terminals" in a one-to-one manner onto "n" external ports. The
selected node pairs correspond to the external ports created by '
soldering-iron entries, and the selected terminals cdrrespond to the
ports creéted b& pliers-type entries (Fig. 18). The set of all
admissible port VOltages and currents at these n-ports determine an

equivalent n-port resistor CI?, called the n-port resistor derived

from the network N by the operator (). The port current constraint can be

satisfied by connecting an isolation transformer,(or~by terminating the
port externally by a 2-terminal element.

Observe from the operator () we can construct selection matrices

gl and g2 as follows:
1) The matrix 91 has n rows and a number of columns equal to the
number of nodes of N, and has a +1 (resp. -1) at tbe entry i,j if node
CD is connected to terminal i (resp. i') of R, and é zero otherwise.
2) The matrix 92 has n rows and a number of coiumns equal to the
sum r = 55 n, of the number of terminals of multiterminal resistors
and port;—if multiport resistors of N. As before we order these terminais

and ports lexicographically. a) If port k is made by a pliers-type

entry in terminal (i,j) i.e. the i-th terminal of the j-th multiterminal

resistor then a +1 or -1 is placed in the k-th row of the column
corresponding to (i,j) of 92' The sign * depends on the polarity of the

port k. If terminal k' is nearer to the multiterminal resistor than
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terminal k we have a +1, and -1 otherwise. b) Analogously if port k
is made by a pliers-type entry in either terminal of the port [i,j],

i.e., the i~th port of the j-th multiport resistor, themn a + 1 or -1

is placed in the k-th row of the column corresponding to [i,j] of 92.
The sign * depends on the polarity of the port k and on the terminal
of port [i,j] selected for port entry. If the new port k and the
port [i,j] are connected to each other with terminals k and (i',j), or
with terminals k' and (i,j), we have a +1, or a -1 reépeCtiVGIY-

In the case where all port entries are of the soldering-iron type,

the admissible pairs (v*,i*) of R are described by the following equationms:

1) (v,i) are admissible pairs for the resistors of N

2) AL =t

T (39)
3) Alu=v

% =
4 vk =Cu

In case there are only pliers-type entries, the admissible pairs
(v*,i*) of R are described by the following equations:

1) (v,i) are admissible pairs for the resistors of N

2) Ai=0 ‘

o - (40)
3) é¢g =v + ~§y*
4) i* = 92%

In the most general case where both types of entries are made, it is
desirable to use a hybrid pair of variables (§*,¥*) in order to simplify

the algebraic formulations. The mixed vector x* consists of the voltages of
the soldering-iron type ports, and the currents of pliers—-type ports.

The other mixed variable vector y* contains the remaining variables.
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The admissible pairs of R in terms of these hybrid variables are then
described by the following equatioms:

1) (Y,g) are admissible pairs of the resistcrs of N.

2) AL= oy

T T (41)
3) Au= v+ 922*

% =
4) x Cu+ Cyd

A. Symmetric multiterminal resistor derived from a symmetric network.

Theorem 4. Given a (7m,0,p)-symmetric resistive network N and a terminal
selection operator (%;, the n-terminal resistorclg derived from the

network N by CB is p-symmetric if at any selected node @

BO(@) = o R(@) (42)

where o denotes the composition operation, and where k = CI;((:)) is

equivalent to k = CB( @).
Observe that (42) implies that BP(p) = P(u)B.

Proof: (vy*,1*) is a solution of (38). Applying the network permutation

(r,0,p), we obtain a new network N and a resistox‘clz derived from N

described by:

1) (g(g,o)y,g(g,o)g) is an admissible pair of the resistors of ﬁ,
2 (2@’ (1,0) (e(r,01) = ()8 1,

R T T ) (43)
n (208’ e) (20)u) = 2(r,0),
D v = (8270) 2(ody

Using the symmetry of N and (42), this becomes

1) (g(g,o)y,g(g,c);) is an admissible pair of the resistors of N,
2) AP(1,0)i = P(0)B'i* = B'R(n)1%,

P (44)
3) é g(p)‘;‘ = E(E,O)Y’

4) vk = gT(U)EE(D)B or P(u)v* = BP(p)u.
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Comparing (44) and (38) we see that (g(u)y*,g(u)i) is an admissible
pair of CI?. x|

Observe that (42) requires that only selected nodes of N
are permuted among each other by p. Examples of how this theorem can be

used to synthesize symmetric multiterminal resistors are given in Fig. 19.

The network in Fig. 19(a) is symmetric with p = (D @ @)I(O O® (D) (B)).
The selection operator is (() C) ())4-(1 2 3) and the resulting 3-terminal

resistor is (1 2 3)-symmetric. Similarly, the resulting 4-terminal

1234
resistor of Fig. 19(b) is{ _ _ _ _) -symmetric.
2341

B. Symmetric multiport resistor derived from a symmetric network

Again it is easy to find a method to derive a symmetric multiport
resistor from a symmetric network by appropriately choosing the port
entries via the selection operator (}.

Theorem 5. Given a (g,o,p)-symmetric resistive network N, then the
multiport resistof, dérived from N by the port selection operator (3,

is p-symmetric if at any selected soldering-iron port entry at node

pair @ @ , we have

Co(@® (@ =x 0o C(@.Q) (45a)

and at any selected pliers-type entry in port or terminal i of resistor

j, we have

Car'Pw),0(0) =u o Q@
or (45b)
Cir Py, o1 =nwo Qri,il.

Moreover, condition (45) now becomes

\

-62-



e

(46a)
C,B(m,0) = P(W)C, , (46b)

Proof: Using (41) and (46), the proof is analogous to that of
Theorenm 4. n
Corollary 1. Given a (7,0,p)-symmetric resistive network QJU . Make a
soldering-iron port entry at nodes C) ana CD s or.make a pliers-type
port entry in a terminal of a two-terminal resistor whose terminals are
connected to nodes C) and CD . Then the equivalent one-port resistor
is complementary symmetric if the cyclic decomposition of p contains the
cyele (@ @), or the cycles (@ @)(@ @).

Since the set of admissible pairs (v,i) form the driving-point plot
(DP plot) of'ﬁhe one port, this results in an odd DP plot. From this
corollary Properties 22, 25 and 26 of [9] on DP plots and our Prop. 1 in
Sec. 1 can be easily derived. Among other things, this proves that any
one port resistor obtained by making a port entry in a network composed
of complementary symmetric elements is complementary.symmetric.

The hypothesis of Cor. 1 is useful in many cases. We call it the

odd node conditions in the next definition.

Definition 10. Given a (g,o,p)-symmetric network N, then two nodes (:)

and (:) Qf N are said to satisfy the odd node conditions if either

1 @ =e(D) and I

(@) : (47a)

or

]
It

2) C:) p(@) and @

They satisfy the even node conditions if either

(@) (47b)

D@ =e(@) and § =0(Q) (48a)
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or .
2) @ =e(@) and @ = 0(Q) (48b)

Corollary 2. Given a (g,o,p)-symmetric resistive network. Let a port

be created‘via a soldering-iron entry across nodes @ and @ , OTr

~via a pliers-type entry in a terminal of a two-terminal resistor
connecting nodes @ and @ Let another port be created in the same

way but using nodes @ and @ . Then the equivalent two-port resistor is
(; ;) -symmetric, or complementary symmetric, if 1) nodes @ @of the
first port satisfy the odd node conditions and 2) also nodes ® @

of the second port satisfy the odd node conditions. The equivalent two-

12

port resistor is (1 2

port satisfy the odd node conditions and 2) nodes ®@ of the second

) -symmetric if 1) nodes () () of the first

port satisfy the even node conditionms.

Properties 23, 25 and 26 of [9] on TC plots, and our Prop. 2
in Sec. 1 follow from Cor. 2 as special cases: Two ports are extracted
and the first is driven by a voltage source Vin? and the second by a
zero-valued current source. The voltage v, at the second port is
measured as a function of Vin (TC plot).b

Many practical circuits make use of this corollary. The push-pull
amplifier discussed in [20] is a case in point. Another example is the
rectifier circuit shown in Fig. 20 with symmetric node permutation
p= (DD BB ®). Two port entries are made in this
network via the operator C: {(1,2),(@ @)} + {1,2}. in other words a
pliers-type port entry is inserted through a terminal of Rg connected
to nodes @ and @ . The second port entry is created via a soldering-
iron type across nodes @ and @ The quivalent two-port resistor is
12
(-]-_ 2) -symmetric.
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We will now pose the following problem to illustrate a nice
application of Cor. 2 of Thm. 5. Given a general bridge circuit
(Fig. 21) where two port entries are made via the operator (}:
{(® @),(@ @)} -+ {1,2}, find conditions on the resistors such
that the equivalent two-port resistor is (; i) -symmetric. As a
result of Cor. 2, we see that this condition is satisfied, if there
exists a network symmetry permutation such that @ , @ (resp. @ s @)
satisfy the odd (resp. even) node conditions. Since the nétwork
contains one connected set of nodes any network pefmutation either
qomblements all or no resistors and nodes. There are.two possible

symmetry permufations. The first is n(J) = (i) for j = 1,...,4,

o = (;‘ i Z g), and p = <®@ @ @ . Thi;s results in the condition

OJOJOJO
()

1 2 3 4 The second is =

(1234) andp=<@®©@
3412 Cj C><é§ Cj

R1 = R3 and R2 = R&' It can be checked that no other possibilities

- (:‘:L) for j = 1,...,4,

). This produces the second case

exist.

In Thms. 4 and 5 symmetric multiterminal and muitiport resistors
are derived from symmetric resistive networks by a sﬁitable choice of
the tgpminal and port entries. It is however not necessary at all for
a network to be symmetric in order to be able to derive from it a
symmetric multiterminal or multiport resistor. A simple example is
given in Fig. 22. If we make a soldering-iron port entry to this network
we obtain a complementary symmetric one port.

In fact the definitions of a symmetric multiterminal and multiport
resistor derived from a network imply that the whole network can be
replaced by one ejquivalent symmetric resistor. In many cases, however,

it is not necessary to replace the entire network by one equivalent
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resistor. In other words, some equivalence at an intermediate level is

sufficient. Some parts of the network are replaced by their equivalent,
and the resulting network is symmetric, and hence Thms. 4 and 5 can be
applied.

To illustrate this idea, Fig. 23 shows a 2-port resistor which
exhibits (1 1)(2)-symmetry. The original network does not exhibit
a symmetry satisfying Def. 6. However, after the series connection of
branches @ @ and @ @ is replaced by one equivalent bilateral

resistor ﬁ, the network exhibits a symmetry with symmetry node permutation

(@D)X(@)(Q @®). 1f we now apply Thm. 5 it follows that the resulting

two-port is indeed (1 1)(2)-symmetric.

V. REDUCTION OF A SYMMETRIC NETWORK

By making use of the symmetry of a network, the computation for
obtaining the unique solution can be greatly simplified. Most of the
results in the literature are described for linear networks [1]-[7].
Essentially two techniques are applied in the nonlinear case. The
first [10] uses symmetry to reduce the number of network equations to
be solved. The second [8] derives from the given network a new network
whose solution ié easier to compute. The solution of the original network
can then be derived from the solution of the new network. This second
technique is an adaptation of the bisection technique [2] for nonlinear
networks which is only valid for involution symmetric networks
(i.e. for v-symmetric networks with v2 = I). Here we unify the two
approaches and present a technique which applies to all possible

symmetries. As always, we assume that the network has a unique solution.

The procedure for finding the reduced network will be introduced

via simple examples.
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Network reduction examples

The network shown in Fig. 24(a) has a symmetry node permutation
= (@ O)X@D)(®). Since it has a unique solution, it follows
from Thm. 5 that the node voltages are symmetric with respect to p.
So nodes @ and @ can be connected together and we obtain Fig. 24(b).
Now identical resistors which are in parallel can be replaced by an
equivalent resistor and we obtain Fig. 24(c). This network has the

same voltagé distribution as Fig. 24(a), and a current which is doubled.
T T TeE

Fig. 24(c) is called the reduced network of Fig 2&(3) and is clearly
easier to analyze. The other networks Fig. 24(d) (g) (i) can be
respectively reduced to Fig. 24(f)(i)(R) by observing that their
symmetry node permutations are given respectively by (@ @)(@)(@) s
(@ @)(@ @) and (@ @)(@ ®). observe that the reduced network
in many cases contains open branches (Fig. 24(c)) and hinged loops
(Fig. 24(2)).'

- It is inétructive to consider also an example (Fig. 25(a)) whose
symmetry operation involves some node complementations. From previous

derivations we know that the symmetry node operation is

oYeYolo
©Jeyole

Since nodes @ and @ are not directly available, we introduce the

= (@O @) 1£ R® = g® g g® _ (5

complementation artifice (Fig. 7(g,h)) - to obtain the network diagram
shown in Fig. 25(b). By introducing a phase invertiﬁg ideal transformer
we obtain a reference node (node @') which is compatible with the
symmetry .(lf‘ig. 25(c)). By Thm. 5 nodes @ and @ and nodes (3) and
@ are at the same voltage and can thus be connected_'to each other

(Fig. 25(c)). Remember that the complementation element is connected
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to the reference node and thus the voltages at the two terminals
of any complementation element are symmetric with réspect to the

zero reference voltage. This implies that the voltage at node @ @
is V/2 and at node @ @ it is E/'Z.' Consequently, the voltage at node
@@ is -E/2. 1If R(z) nad R(a) are described by i = f(z) (v) and

i= f(A)(v) respectively, we have 1(2) = f(z) (V/2-E/2) and

1(4) = f(4) (V/24E/2). The circuit diagram reduces to Fig. 25(d) where
R(z) = R(Z)ﬂ R(3) is the parallel connection of resistors R(z) and R(3)

0. ;

(()4). Observe that a different way of writing the

and analogously for R
cyclic decomposition of p, such ' as (@ @)('@ @) , would have produced

a slightly different reduced network. All possible reduced networks

can be obtained from each other by complementating some nodes (just complement
nodes (3) CZ) in the case of (D @)(@ @)).

We extend the definition of the "port or terminal - node incidence

matrix" of Section II as follows to include the case of complemented

terminals as in Fig. 25(d). The same rules as before apply, but if a

terminal is complemented we have an additional multiplication of the
entry by -1. This implies that if the terminals (i,j) and (1,j) of
multiport resistor j are connected to the same node ®, then the
entry corresponding to port [i,j] and node (k) is 2.

In general an sxt matrix éO is an incidence matrix of a network
with s nodes, where t is the total number of ports and terminals (some
of the terminals may be complemented), if the following conditions
are satisfied: 1) Each column of 1}0 corresponding to a terminal contains
only one nonzero entry (either 1 or -1) and 2) In each column of éO

corresponding to a port, the only nonzero entries conmsist of {1,-1},

or {1,1}, or {-1,-1}, or {2} or {-2}. It is easily seen that under
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these conditions we can immediately derive from éO the interconnections

and the eventual complementations of the terminals, and vice versa.

It is easy to check that KVL and KCL are given by the same equatioms (5),
where éO replaces A. Call A (resp. éo) the incidence matrix of Fig. 25(a)
(resp. 25(d)), then we have

nc 53192

@E

CHCHCHRCONG)

; Thg node voltages at @ @ and @ @ can be easily derived using éO

and KVL: u@@‘) =V/2, u@ @ = E/2. The currents can be found using

the constitutive equations of Réz) and R54).

We will now describe in general the reduction teghnique algebraically,

ltheréby giving an algorithm for finding the incidence matrix 60 and the
constitutive relations of the resistors of the reduced network. It will
be shown that a reinterpretation of this algebraic reduction technique

allows us to devise a general combinatorial and graphical procedure for

obtaining the reduced network.

Definition 11. Given a (m,0,p)-symmetric resistive network N characterized

by: 1) a set of admissible pairs (Y,g) for the resistors i.e.

T T . .
v = [y(l)T. .v(m)T] and i = [g(l)T...g(m)T] with (Y(J),Q(J)) an

admissible paif’of the j-th resistor and 2) an incidence matrix A.
Construct matrices S(p) and S(m,0) from the cyclic decomposition of the

nodes and of the terminals (see Def. 4 of [11]). Observe that these

matrices are unique up to an unessential permutatior of the columns
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and a multiplication of any column by -1. Then the reduced resistive
network NO is characterized by: 1) the set of admissible pairs

such that4

(YO,}O) for the resistors of NO

(§(1j,o)yo,§(1r,0)[§T(1r,0)§(11,0)]—120) (49)

is an admissible pair of the resistors of N, and 2) the reduced incidence

matrix:

8, = 8 (0)As(1,9) [8"(1,0)8(1,0)17 (50)

- Let us show that the reduced incidence matrix defined by (50) is
indeed the incidence matrix of a network containing multiport and multi-

terminal resistors where some terminals may be complemented. From (50)

we derive (using the fact that the columns of S (m,p) are linearly independent).

88" (1,0) = 57 (P)A.
We claim that the right hand side of this equation satisfies the conditions
for such an incidence matrix. Indeed each column of §T(p)é corresponding
to a port can only contain {1,-1}, or {1,1}, or {-1,-1}, or {2}, or {-2}
as nonzero entries, and each column corresponding to a terminal can only
contain {1} or {-1} as nonzero entry. It follows from the structure
of §T(g,c) that the matrix A, must inherit these properties from é0§T(g,o).

The solution of the reduced network No is given by:

1) (YO,;O) is an admissible pair for the resistors of Ny (51a)

2) Ast, = 0 . (51b) _
T, =

3 8% = Y (5le) -

4Observe that the matrix §T(§,c)§(g,c) is always invertible by Cor. of
Prop. 9 in [11].
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The most important property of the reduced network is that from
its solution we can obtain the solution of the original network.
Theorem 6. Let N be a (7,0,p)-symmetric network and let the reference
nodes be compatible with the symmetry permutation. Let N have a unique
solution (Y,g,g). Then also NO has a unique solution (Yo,go,go). The

solution of N can be derived from the solution of the reduced network

NO by using
v = 5(m,0)y, (52a)
. . T -1 ’
i = 8(m,0)(S(m,0) $(m,0)] iy (52b)
u = 8(p)y,- : (52¢)

Proof. From Thm. 3 we know that the solution (v,i,u) of N satisfies
(35). This implies that v and i (resp. u) are eigenvectors of

P(w,0) (resp. P(p)) associated with the eigenvalue 1. From Prop. 9 of
[11] the columns of the matrices §(p) (resp. §(g,o)) form a complete

set of linearly independent eigénvectors of P(p) (resp. P(7,0)) associated
with the eigenvalue 1. Thus there exists a unique get-Of vectors (YO’%O
go) such that (52) is satisfied. Substituting (52) ;nto (5) we see.

that (YO’§0’96) satisfies (51) and thus is a solution of N Suppose

0
on the contrary that there is a second solution (Yé,gé,gé) of NO, then
(52) generates a second solution of N which is different from (Y,g,g)
since the columns of S(p) and S(m,0) are linearly independent. This
is clearly impossible. n
This theofem is very useful because it allows us.to devise an

algorithm for solving a symmetric network by solving the reduced network

which has a smaller number of nodes, resistors and terminals.

Symmetry Reduction Algorithm. Given a (1,0,p)-symmetric network N with
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admissible pairs (v,i) of the resistors v,i € R" and with nxr incidence
matrix A. It is also known that N has a unique solution (v,i,u).

1) Decompose (m,0) into cyclic components. Identify the normal-
order cyclic components and label them consecutively LCEACTERRES
Analogously we find for the directed permutation p of the nodes the

cycles of normal order 61,62,...,63.

2) Form the rxt matrix S(m,0) and the nxs matrix S(p) by

inspection using Def. 4 of [1l] and the cyclic components Y1o¥gseesY,

and 61,62,...,68.

3) Find the set of admissible pairs of NO’ i.e. the set of
(yo,go) with v,,1, € r* satisfying (49) and the sxt reduced incidence

matrix A. in (50).

0

4) Find the unique solution of the reduced network, i.e. find
the (VO’}O’EO) satisfying (51).

~

5) Substitute the solution (Yo,go,uo) in (52) in order to obtain

the solution (v,%,g) of N.

Let us apply this algorithm to our previous example; namely, the

symmetric lattice network in Fig. 25(a).

1) From the previously derived symmetry permutation we obtain

the cyclic decompositions:

(O OXO)
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2) We find the matrices

= - )]

P’l 0 1 0 0 O

s = [-1 0| , 8o = (0100
0 1 01 0 O

0 -1 0010

- = 0 010

0 0 0 1

- -

3) The set of admissible pairs (Yo,go) of Novis the set of

Vool € ®* such that

0
~ T [~ 1
1.0 0 0 1 00 0
01 0 0 01/20 0
010 0 01/20 0
o 01 0| Yoo o 01/20] %o
0.0 1 0 0 01/2 0
L? 00 %J 0 0 0 1]

is an admissible pair of N. Observe that this is equivalent to a

M g @
and R‘4). The reduced

parallel connection of two identical resistors R

(3)

, and.also
the parallel connection of two resistors R
incidence matrix éO is the same as that found before.

4) Thejsolution of the reduced network is given as follows:
From Yo = éggo'and the branch characteristics we obtain u, = [V/Z,E/Z]T.
From 90 all the branch voltages and currents can bg determined.

5) The solution of the original network N can be-found by using
(52). |

Observe that it is often difficult to check theAuniqueneSS condition.
In the case of two or more solutions one can easily prove that from any
solution (go,go,go) of NO’ a solution (y,g,g) of N can be found via (52).
However the existence of a solution of Ny for any sqiution of N cannot

be guaranteed.
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Let us now derive from this algebraic proceduré, a step-by-step
graphical reduction method which has already been introduced via the
examples at the beginning of this section. This technique is better
suited for graphical reduction of a symmetric network diagram, or for a
network whose combinatorial characterization (R(j),<I2(j),()U) is given.
Algorithm. Graphical and combinatofial construction of a reduced network.
Given a (m,0,p)-symmetric network N, which has a unique solution (v,i,u),
find a reduced network NO.

1) Decompose tﬁé directed permutations p, (m,0), and the permutation
o into cyclic components. Identify the normal-order cyclic components
of o as 61,82,...,Bq, those of (m,0) as A CTEERTA and those of p as
61,62,...,65.

2) Make all nodes available as they appear in the cycles of p,
i.e., if‘a node appears complemented in a cycle of p then complement it
using Fig. 7(g,h). TFor each cycle of p interconnect the nodes to each
other in the form in which they appear in the cycle. This implies
among other things that the nodes of a double-order cycle are all
connected to each other and to their complement. Thus this implies that
these nodes are at the reference voltage of the corresponding connected
part(s).

3) As a result of step 2 and of the symmetry each cycle By of
o consists of identical resistors all connected to the same nodes with
the corresponding terminals. Let zi be the order of Bi. Moreover all
terminals or ports of these resistors correspond to all terminals
or ports of some cycles in (7,0). Call this set of cycles €y- Connect
all ports (resp. terminals) of these resistors which appear in

double-order cycles of e to nullators (resp. via nullators to the
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reference voltage of the connected part). Let there be ki single-order
cycles in ei and'vl'e't’ui be the directed permutation with these cycles

as cyclic components. We now replace the zi multiport (resp. multiterminal)

. resistors of Bi by one equivalent resistor with k, ports (resp. ki

i

terminals). This can happen in two simple steps. First replace the 21

parallel connected identical resistors by one resistor. The new ports

(resp. terminals) can be labeled the same as those of any of the Ei

resistors. This new resistor may have more than ki ﬁorts (resp.

’

terminals). It is symmetric with respect to the directe@ permutation
uii. Observe that some of the cycles of uii act on éﬁpty ports
(resp. terminals) and can therefore be eliminated. Iﬁ the second
step we reduce phe number of ports (resp. terminals) to ki by observing
that the ports (resp. terminals) of this resistor which belong to
the same cycle of u:i are connected to the same node. Since all the
ports of (resp. terminals) of this resistor belonging-to the same cycle
of uii are connected together we may replace them by one port (terminal).
Observe that this second step is the samelas the redQctiOn for multiport
(resp. multiterminal) resistors described in [11]. Repeat for all
other cycles of o.

This algorithm can be easily proved either directly from Cor. 1 of
Thm. 3 or from the algebraic reduction algorithm and tﬁe structure of
the matrices §(§) and §(m,0).

A general remark about the need for choosing reference nodes in
this algorithm is in order. There is no need to find a éompatible set
of reference nodés at the onset of the algorithm. Of cQurse as soon

as some terminals have to be complemented in step 2, we assume that

there is a reference node, which need not be further specified. The
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same is true in Step 3. If as a result of Step 3 the reduced network
No contains some complementations, theﬁ the reference node for the
corresponding connected set has to be the common third terminal of all
complementations. If there are no complementations in a connected set,
then the reference node of this connected is free. It can be shown

that any set of reference nodes found for N, generates a compatible set

0

of reference nodes for N, by choosing as reference nodes of N any node

of the cycle of p corresponding to a reference node of NO.

T ——

To conclude this section let us derive the bisection technique of

Prop. 3 directly from this algorithm. In the case of Fig. 2(a) the

symmetry node permutation is p =<g g g>= (@D)X(D B). 1In Step 2

nodes (@) and @ are connected to each other. Step 3 shows that the
main task is the computation of the voltages and the currents of the

reduced network NO’ which is the parallel connection of two identical

3-terminal resistors N' with terminal 1 open and terminals 2 and 3
connected to each other. The currents in the terminals of any N'

in Fig. 2(a) are half the corresponding currents of the reduced network
N, and the corresponding voltages are the same. This implies Prop. 3.

0
Analogously in the case of Fig. 2(c) the symmetry node permutation is

0 =<%%gg) = (@ @)(@)(@). Here the nodes @ and @ can

be connected together. The reduced network N0 consists of two identical
parallel connected four-terminal resistors N' with terminals 1 and 4
connected to each other and terminals 2 and 3 open. This amounts to

solving the network of Fig. 2(d) and impliestrop. 3.

VI. CONCLUSIONS
In this paper we have presented the first general algebraic

definition of symmetry of ﬁonlinear resistive networks. It is defined
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as an invariancé with respect to a network permutation and includes as
'sﬁecial cases all previous ad hoc definitions based on geometric
transformations and complementations. It is believed that this
definition of symmetry is the most general.that could be devised, since
any relaxation:of the conditiqns for a network permutation results in

. thg undesirahlébsituation where the solutions of a network and of.the

permuted network have no direct relationship.

" The advantages of an algebraic definition are its generality and
independence‘from drawings. Moreover, the symmetry properties of the
shlution can be easily derived. 1In this respect the cyclic decomposition
of a directed permutation [11] is a particularly useful vehicle.

In the course of the paper we solve the following problems:
(1) Find the group of all symmetries of a network. (2) Find reference
nodes for a symmetric network such that its unique solution exhibits
a symmetry. (3) Synthesize a symmetric multiport (resp. multiterminal) .
resistor by making suitable port (resp. terminal) eh;ries in a symmetric
network. (45 Use'the network symmetry to simplify the.hetwork to be
'analyzed or to reduce the number of equations to be solved. The
solutions to these problems generalize many results which had been
derived for special circuits or special symmetries or which have been

in use among circuit designers without rigorous justifications.
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11.

12.

13.

14.

15.

16.

FIGURE CAPTIONS

(a) A reflection-symmetric network, (b) a complementary
symmetric network and (c) a network which is symmetric with
respect to a reflection followed byAa complementation.
Bisection of reflection symmetric and 180° rotational symmetric
circuits. |

A symmetric lattice network.

(a) A multiport and (b) A multiterminal resistor with the
associated reference directions.

The interconnections of the components in a network.

The network diagram of a resistive network.

(a) The phase-inverting ideal transformer, (b) a simplified
symbol and its use as complementation element for the following
items: (c) a terminal, (d,e) a port, (f) a multitgrminal resistor
and (g,h) a node.

A step-by-step derivation of the network diagram of a transformed
network of the network of Fig. 6.

Simple examples of symmetric networks.

(a) The symmetric push-pull amplifier and (b,c) a step-by-step
graphical analysis of the symmetry.

Graphical detection of symmetries in a network.

A symmetric network which does not allow a symmetric drawing.

The symmetric lattice network with an artificial invariant node
®.

The Eccles-Jordan multivibrator.

Rotational symmetric network without invariant nodes.

An example, illustrating the choice of a set of reference nodes

compatible with a symmetry.
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Fig.
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Fig.

17.

18.

19.

20.

21.

22,

23.

A 3-terminal resistor derived from a netwqu N by making

terminal entries according to the terminal selection operator CI;:
®, @, ® »1,2,3.

A 2-port resistor derived from a network N by making a soldering-
iron port entry between nodes @ and @_-and a pliers-type

port entry in terminal 1 of the one-port resistor R(S).

Symmetric multiterminal resistor derived from symmetric networks.
The éymmetric rectifier considered as a symmetfic resistive
network with two port entries.

Thé nonlinear bridge circuit with two port entries.

A symmetric one-port resistor derived from a network which is

not symmetric.

A QA i)(Z)—symmetric two-port resistor derived from a network which

exhibits some symmetry when the part of the network enclosed

. in a box is replaced by an equivalent bilateral resistor R.

24,

25.

Simpiefexamples of reduction. The networks of (a) (@) (g) (§) are
reduced to those of (c)(f)(i)(R), respectively.

Graphical reduction of a symmetric lattice network.
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