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ABSTRACT

An extensive discussion of the concept of passivity for nonlinear networks

is given. A particular definition of passivity is proposed which does not

require the existence of a state of "zero stored energy." This definition is

applied to specific classes of n-ports and equivalent passivity criteria are

derived. The definition of passivity proposed in this paper is shown to have

various representation independence and closure properties. An equivalent

view of this definition in terms of internal energy functions is presented, and

these functions are used to derive a basic result regarding the passive

realization of n-ports.
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I. Introduction

When we consider the central role that passivity plays in questions of

network stability and network synthesis, it comes as a surprise to find that

the concept has been given several conflicting definitions in the modern • -

literature [l]-[8]. The problem seems to arise from the long period in which

"network theory" meant essentially "linear network theory," since the various ; ,

definitions are nearly equivalent in the linear case.

The purpose of this paper is to clarify the meaning of passivity in

nonlinear network theory. It turns out to be a subtler concept that one might

initially expect. We have found a number of examples which show that certain

apparently reasonable definitions in the literature give odd or even non

sensical results if viewed critically. We will argue that a particular concept

of passivity which does not require the existence of a state of "zero stored

energy" is the proper one for nonlinear circuits. The definition of passivity

adopted in this paper has been given elsewhere in the literature in various

equivalent forms [l]-[5]; however, it has not been widely recognized that

our definition of passivity does not require the existence of a state of "zero

stored energy." Perhaps the clearest discussion of these matters was given by

Willems [1], whose excellent article was the inspiration behind this paper.

We will adopt a state space point of view; and since the concept of

"the state at T = -»" is problematic at best for nonlinear systems, we will

only consider behavior on a time interval [t ,+»). Our discussion will be

restricted to finite-dimensional time-invariant systems, largely for notational

asstimption of time-invariance implies that we can let

1R = [0,-H») be the time interval of interest without loss of generality, and

we shall do so from now on.

Although a large number of slightly different definitions of passivity

can be found in the literature, three distinct ideas can be isolated if we

overlook minor differences. The first definition considered below, Passivity 1,

is the concept of passivity adopted in this paper (however, see Sections II

and III for a more complete discussion of our assumptions and definitions).

In the context of time-invariant systems, these definitions can be stated as

follows.

Passivity 1. Let I denote the state space of a given state space representation

of an n-port. The n-port is passive if there exists a function E : I -*• 1R

such that, for everv x £ £,
~o
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[ <v(t),i(t)>dt + E(x ) > 0 (1-D

for all T > 0 and all admissible port voltage, port current pairs {y(-),i(*)}

consistent with the initial state x , where <•,•> denotes the usual inner
~o

, product on H .

•' We assume the usual associated reference convention throughout this
rT

paper; consequently, - ( <v(t),i(t)> dt is the energy extracted from the
/' Jo ~

ports during the time interval [0,T]. Notice that E(») is finite-valued because

it is required to take values in ]R (recall that 3R = [0,-H»), so +« is not
+ 1

an element of 1 ). It follows from these observations that Passivity 1 can

be stated in the following equivalent form: An n-port is passive if for

each initial state there is at most a finite amount of energy available at its

ports. As mentioned previously, Passivity 1 is the concept of passivity

adopted in this paper. It is essentially the definition given in references

[l]-[5]. Some of our reasons for adopting Passivity 1 will be given after we

consider Passivity 2 and Passivity 3; other reasons will be given in Section III

We attach no physical significance to the function E(«) appearing in

(1-1). If such a function exists, it is obviously not unique. For any n-port,

we define the available energy E : Z -»• m U {+«} by

E (x ) A sup /- I <v(t),i(t)> dt> (1-2)

where the supremum is taken over all T ^ 0 and all admissible pairs

{v(«) »i(0> consistent with the initial state xq. Clearly, Passivity 1
is equivalent to the condition that E (x ) < +» for every x € Z: If

E (x ) < +» for every x £ Z, then it follows from the very definition of
A ~o -o

E (•) that (1-1) can be satisfied by choosing E(«) = E (•); conversely, if
A A

(1-1) is satisfied, then it follows from (1-2) that Ea(xq) 1 E(XQ) <+"
for every x € z. This last relation shows that E (•) is the least function

which satisfies (1-1). Note that it is entirely possible for EA(x) to be
non-zero for every x £ Z; hence, there may not exist a state of zero

available energy.

''"This point requires some elaboration. We never consider +» or -« to be real
numbers, so if a function takes values in ]R , IR or IR , it is necessarily

finite-valued; however, it will be convenient to define a mathematical object
e

called the extended real number system [9], denoted H , which is obtained by

attaching +« and -« to 1. Specifically, IR = {-«} U IR U {-h»>.

-3-



Passivity 2. An n-port, storing no energy at t = 0, is passive if

-T

<v(t),i(t)>dt >.0 (I-3)
0

for all T ^0 and all admissible pairs {y(«),i(*)} [6], [7].
One difficulty with this definition is that it offers no operational rule

for determining the stored energy at t = 0. If we mean by the term "n-port"

a black box which we are not allowed to open, this is not a trivial objection.

Even if we had such an operational rule, the demand that we begin with a state

of zero stored energy is itself unclear. If for a given n-port we cannot find

such a state, is that n-port active or does it fall outside the scope of the

definition altogether? The capacitor with the constitutive relation v(q) = e

shown in Fig. 1 is a relevant example. In Section III we will show that

E (q) = eq for this capacitor (cf. Fig. 6), so E (q) > 0 for all q and it
A A

cannot satisfy inequality (1-3) for any initial state.

Passivity 3. An n-port is passive if whenever the state x at time zero is 0,

,T

<v(t),i(t)>dt >_0 (1-4)
0

for all admissible pairs {v(*),i(0> and all T >_ 0 [7], [8], [28].

According to this concept of passivity, we only need to know the zero-

state response of an n-port in order to determine if it is active or passive.

For example, it would force us to classify the linear 2-port in Fig. 2 as

passive. Likewise, it says that the capacitor in Fig. 3 is active even though
dv

its terminal behavior, i = — or

v(t) =v(0) +f i(x)dx (1-5)
Jo

cannot be distinguished from that of a 1-farad capacitor by any possible

voltage and current measurements. Finally, it cannot be applied at all to

elements for which the origin is not an element of the state space, such as

capacitors with the constitutive relations given in Fig. 4.

On a more abstract level the problem with this concept of passivity is

that it singles out the origin of the state space for a special role. This

is inappropriate in a general nonlinear theory. The reason is that in nonlinear

problems the state space must generally be viewed as a manifold and any

vector space structure it might possess cannot be used in the foundations of

a nonlinear theory.

J,

i
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Passivity 1 is the proper definition of passivity for nonlinear n-ports

because it does not single out any particular state in Z for special attention

and it does not require that a state of zero stored energy be found. As we

shall see in the body of this paper, Passivity 1 classifies the 2-port in

Fig. 2 as active and the 1-ports in Figs. 1 and 3 as passive. We shall express

the concept of passivity embodied in Passivity 1 in the following equivalent

form (cf. Def. 11): An n-port is defined to be passive if E (x) < -H» for

all x £ Z, where E (•) is the available energy function associated with the

given state space representation of the n-port. We prefer to define passivity

in terms of the available energy function because this definition is more

closely related to the approach taken by Willems [1].

II. Definitions and Assumptions

It is probably best to skim this section quickly the first time through

and then refer back to it as needed. The assumptions listed here are quite

restrictive and they eliminate from consideration many common elements in

nonlinear circuit theory. We have imposed these restrictive assumptions in

order to avoid a mass of abstract concepts and unfamiliar notation. Some of

these assumptions could be relaxed merely at the expense of notational

convenience, while others would require a fundamental extension of the theory.

We will discuss possible generalizations in Section VIII.

The n-ports dealt with in this paper are assumed to possess a state

representation; this is our fundamental assumption. Roughly speaking, a

state representation of an n-port (as we define it) is a state equation and

two read-out maps which give the port voltages and port currents as functions

of the input and state, together with a set of rules defining the class of

inputs which can be applied.

Definition 1. A state representation S for an n-port is a quintuplet

{U,Qi,Z,E,R}, where
(1) U C 1 is a nonempty set called the set of admissible input values.

(2) ^U. is a nonempty set of functions mapping 3R to U called the set of

admissible input waveforms.

(3) I C ]R is a nonempty set called the state space.

(4) E is a pair of equations

x = f(x,u) (2-1)

y = |(x,u) (2-2)

-5-



where £(•,•) maps Zx U •> lRm and g(»,«) maps Zx U -*- 3Rn . Equation (2-1) is
called the state equation and (2-2) is called the output equation.

(5) R is a pair of readout maps: V : Z x U -*• IR is called the port voltage

readout map and I : Z x U -*• ]R is called the port current readout map.

Definition 2. The power input function p : Z x U -* IR is defined by

p(x,u) = <V(x,u),I(x,u)> .

Definition 3. A choice of input and output variables u and y for an

n-port is called a hybrid pair if u and y are n-dimensional and for each

kG {l,...,n}, either u^. = v and y = :L or else u, = i and y = v. ,where
u, and y denote the k-th components of u and y, respectively, and v. and i,
k k. ~ k k

denote the k-th port voltage and current, respectively.

Let DCf be an open set. Recall that a function h :D •* ]Rq is said
0 k

to be C if it is continuous, and it is said to be C for some positive integer

k if each of its component functions possesses continuous partial derivatives

of all orders up to and including k.

Definition 4. Let jCi be an interval (possibly unbounded) . A

function u :J -*• 3R is said to be piecewise continuous (or piecewise C )

if there exists a countable set {t.} C j such that u(») is continuous at each

point t £ {tj, there are at most a finite number of points t. in any bounded

interval contained in J, and u(«) has finite right- and left-hand limits at

each point t . For each positive integer k, we define a function u(») to be
k v

piecewise C by the following inductive definition: u :J •* TR is piecewise C

if it can be written in the form

u(t) = u(t ) + j w(x)dx
~ ° Jt ~

o

where t £ J and w :J •*- IRn is piecewise C '.
o r

n k
Roughly speaking, u :J •* TR is piecewise C if its k-th derivative is

piecewise continuous.

Definition 5. A function u(») :B. •+ TRn is said to be locally LP.
1 <_ p < -H», if u(») is measurable and for every choice of a,b € IR+ y

.b

(Bu(t)l)Pdt < +•,
.

where !»!i is the Euclidean norm on lRn . We will let LP (3R+-^lRn) denote
j loc

the class of all such functions.

-6-
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Definition 6. Given a function u(0 :H -*- lRn and a real number x >_ 0,

let u (•) :3R+ -»• lRn be obtained from u(«) by translating u(0 t units to the
left, i.e., u (t) = u(t+x), Vt € m+ . We say thatQlis translation invariant
if u(.)G,CU=>ut(-) e^Jl Vt 10.

Definition 7. Given two functions u^C •) ,u2( •) :IR •*- TR and given a
real number t >_ 0, we define u12 :3R -> 3R by

fu (t), 0 <. t <_T

12T W(t-T), t > T.

We say thatQjlis closed under concatenation if for every u^O, u2^ E ^
and every x>0, u (•) is also an element of QJ. Moreover, if we redefine

u (•) at the point t=xso that u12t<t) =u2(0), we shall require that the
resulting function also be an element ofQiwhenQUs closed under concatenation.

Given an input waveform u(»), we will say that a function x(-) :IR -*- Z

is a solution of the state equation x = f(x,u) if x(.) is absolutely continuous [9]

and satisfies x(t) = f(x(t),u(t)) for almost all t.

Standing Assumptions on State Representations.

(1) The functions f(*,0. §(','), Y("»#), and I(-,0 are continuous.
(2) For every x G Z and every u(«) ^HAthere exists a unique solution

x(») :3R+ •* Z of the differential equation x = f(x,u) such that x(0) = xQ.
(3) If S is a state representation for an n-port and if the pair {u(«),x(*)}
is as described in (2), then the port voltage and port current of the n-port

when the initial state is x(0) =xQ and the input is u(-) are, respectively,
v(t) = V(x(t),u(t)) and i(t) = I(x(t),u(t)) .

(4) For every pair {u(0,x(0> as described in (2), the function t -> p(x(t),u(t))

is locally L .

(5) The set of admissible input waveformsHA is translation invariant and

closed under concatenation, and all functions in^Uare measurable.
The second assumption implies that x(») is defined and continuous on

IR+, so systems with finite escape times are ruled out. Since x(-) must take
values in Z, it follows that no admissible input can drive the state out of the

state space.

The third assumption merely states formally what should have been evident

from our notation and terminology — the port voltage readout map V(-,«) gives

These classes of functions are the same as the extended Lp spaces defined by
p a

Desoer and Vidyasagar [10] and denoted by Lne«

-7-



the port voltage and the port current readout map I(',') gives the port current.

If u and y are a hybrid pair, then the functions §(•,•), V(-,«), and I(",0
must satisfy the following condition: p(x,u) = <V(x,u),I(x,u)> = <u,g(x,u)>
for all (x,u) ^ Z x U. Since the port voltage v(«) and the port current i(-)

are the only quantities of interest, the reader might wonder why we have bothered

to introduce the output equation (2-2). The reason is that in deriving

passivity criteria for specific systems, some assumption on the form of the

function p(*,0 must usually be made. In these cases it is natural to introduce

the output equation (2-2) and to assume that u and y form a hybrid pair. Our

general theoretical discussion does not require that u and y form a hybrid pair;

in fact, it does not even require that the output equation (2-2) be introduced.

The output equation will be introduced only when deriving passivity criteria for

specific classes of systems. In these cases it will always be assumed that

u and y form a hybrid pair, and this assumption will be stated explicitly.

The fourth assumption implies that the input energy is finite over any

finite interval of time.

The assumption thatHilis translation invariant is a natural one for
time-invariant systems, and closure under concatenation means roughly that any

two input waveforms which can be applied separately can be applied in sequence.

Whenever the proof of a theorem or lemma requires that^Ube closed under trans
lation or concatenation, we will repeat that assumption explicitly in the

statement of the theorem or lemma. While we do not require thatQAbe avector
space, all the Lp spaces of functions mapping TR+ to lRn will satisfy assumption (5).

Definition 8. A state space trajectory is a function x : IR -*• Z which is

a solution of x = f(x,u) for some u(») ^Hil. If x(«) is a state space

trajectory with x(t ) = x and x(tj = x2, t^ <_ t2, we will call the restriction
of x(-) to [t.,t ] a trajectory from x to x . For convenience, the

restriction of x(») to [t1,t_] will be denoted by x(»)I[t-,t 1. Similar
notation will be used below. An input-trajectory pair is a pair of functions

u(*)^^Uand x:IR -> Z such that x(») is a solution of x = f(x,u) . If

{u(•)>?(•)} is an input-trajectory pair with x(0) = x', we call it an input-

trajectory pair with initial state x1. If {u(*),x(*)} is an input-trajectory

pair with x^) = x and x(t2) = x2, t i^, we call {u( •) ,x( •) }\[t ,t ]an
input-trajectory pair from ac, to x,. The energy consumed by {u( •) ,x( «)}| [t, ,t9]
is the quantity

-8-
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J
h

p(x(t),u(t))dt.

'l

It follows from standing assumption (4) that this quantity is always finite

when t1 and t« are finite.

Definition 9. Let {u(0,x(«)} be an input-trajectory pair. If

y(t) = g(x(t),u(t)) for all t ^ 0, then (u(«)»y(*)} is called an input-output

pair. If v(t) = y(x(t),u(t)) and i(t) = I(x(t),u(t)) for all t >_ 0, then

{y(«),i(')} is called an admissible pair. If x(0) = x1, then {u(«)>y(#)}

is called an input-output pair with initial state x1 and {v(»)»i(*)} is

called an admissible pair with initial state x1. We will adopt the notation

{v('),i(')}|[0,T] for the restriction of {v(«),i(')} to [0,T].
Note that assumption (5) implies that the class of admissible pairs is

translation invariant, but it does not imply that the class of admissible pairs

is closed under concatenation.

Finally, we shall often loosely use the term "system" to denote an n-port

^\\ along with a given state representation for ^j.

III. The Proposed Definition of Passivity and Some of its Consequences

3.1 Circuits and N-Ports

When we speak of a system as a "circuit" or as an "n-port," we actually

mean two slightly different things. By a circuit we mean a particular

interconnection of components, and we normally assume that we can make voltage

or current measurements at any node or branch. We reserve the term "n-port"

for a "black box" with n electrical ports, where the port currents and voltages

are related by a state representation S as described in Section II. The

n-port is viewed over the time interval IR = [0,+°°), and it is considered to

be "created" at t = 0 with an arbitrary initial state Xq ^ Z. We can investigate
the n-port over the time interval IR' only by applying signals and making

measurements at the ports. The response of the n-port to a given input depends

on the initial state x-.; hence, each n-port gives rise to a family of input-

output operators {0 },indexed by the initial state x .
-0

The distinction between a circuit and an n-port is an important one for

any serious study of passivity. If we think of passivity as a property of

a circuit, then presumably a circuit should be called passive if each of its

components is passive. But if we think of passivity as a property of an n-port,

then any decision about activity or passivity must be based solely on experiments

which could in principle be performed at the ports. Consider for example the

-9-



circuit in Fig. 5(a), where the operational amplifier is modeled by an ideal
linear controlled source having an infinite controlling coefficient. Although

we have not yet formally defined passivity and activity, it is clear that this

should be called an active circuit. But if we think of it as an n-port, the

proper classification may depend on which parts of the circuit are accessible
from the ports. The 1-port in Fig. 5(b) would presumably be passive since it

cannot be distinguished from a 1-n resistor by any experiment performed at the

port, but the 2-port in Fig. 5(c) should be called active.

We will adopt the point of view in this paper that passivity is an attribute

of an n-port, and we will try to do so consistently. This means that all our

definitions and criteria should not implicitly assume knowledge of anything more

than the state representation of the n-port under study. We do not care how the

n-port is realized; indeed, from our point of view the 1-port in Fig. 5(b) is
identical to a 1-ohm resistor and it should be classified as a passive 1-port.

Our assumption that the n-port is "created" at t = 0 with an arbitrary
3

initial state allows us to include uncontrollable n-ports in our theory.

Consider the uncontrollable 2-port shown in Fig. 2. The impedance matrix of

this 2-port tells us only of its rather tame zero-state response; however, it

is violently unstable when the initial conditions are nonzero. For any initial

voltage v across the capacitor, the voltage at port 2 is v2(t) = v^e
regardless of the input at either port. It is easy to see that if vco ^ 0, we
can extract unlimited energy from this 2-port simply by connecting a resistor

across the second port; hence, the 2-port in Fig. 2 should certainly be

classified as an active 2-port.

We have framed our theory in terms of a known state representation of the

n-port. Since an n-port can have many equivalent state representations, a

question of consistency arises. Is it possible for an n-port to have two

different state representations, one of which is active by our definition and

the other passive? We will show in Section V that if two state representations

really describe the port behavior of the same n-port, then this ambiguity

cannot arise. For the present we will frame our definitions in terms of

"an n-port^Jiwith state representation S," where the attribute of passivity,

3An n-T>ort is said to be uncontrollable if it is not completely controllable
(Def. 13).

-10-



etc., is considered to be a property of ^\j, but all the criteria are stated in

terms of S. We will postpone justifying the consistency of this approach

until Section V.

3.2 Available Energy and Passivity

Definition 10. Given an n-port(,^\jwith a state representation S, we

define the available energy E : Z -*• IR U {-h»} by

EA(x) &sup /- j <v(t),i(t)>dt> (3-1)
T>0

where the notation sup indicates that the supremum is taken over all T >^ 0

T>0

and all admissible pairs {v(*)>i(*)} with initial state x (Def. 9).

Since we have assumed that t •> (y(t),i(t)) is locally L (standing

assumption (4), Section II), the integral in (3-1) always exists and is

finite; however, it is possible for E (x) to be infinite for certain values

of x. Roughly speaking, the available energy at a particular state x is

the maximum energy that can be extracted from the system when its initial

state is x. Note that the above expression defines E»(•) exactly, not merely

to within an additive constant. Since the value T = 0 is allowed as an upper

limit of the integral in (3-1), E.(x) is the supremum of a set of numbers

which includes zero. Therefore E (•) is a nonnegative function, as claimed

in the definition.

Example 1. A 2-terminal capacitor characterized by a continuous function

v = v(q) has the natural state representation

q = i

(3-2)
v = v(q)

with Z = U = IR . Various choices for^Uare possible. In this discussion we

will letHAbe the class of all locally L waveforms i(») :IR -*- IR . (This

implies that q(*), and hence v(»), is bounded on every bounded interval;

therefore t -»• v(t)i(t) is locally L .)

It is well known that the energy extracted in driving a 1-port capacitor

from any initial state q to any final state q„ depends only on the end-points

q. and q„ and is given by

ECq^qj) =-I v(q)dq =J v(q)dq. (3-3)
ql q2

-11-



Therefore when S is in the form of (3-2), Def. 10 reduces to

E (q ) = sup {E(q ,q )}.
A ± q2em L Z

(3-4)

Let's briefly reconsider the constitutive relations in Figs. 1 and 3.

—«*! -,♦„«-,■» /"i—iN r.To V.OTTO Wrt n "s =c»l_o2 Taking theq-i q2
Substituting v(q) = e4 into (3-3), we have E(q ,q ) = e x - e

supremum over q„ we have E.(q.) = e , or E (q) = e4 (see Fig. 6).

The way to extract the maximum energy from such an element is to drive

the charge as far negative as possible. While there is no trajectory which

succeeds in reaching q = -» in finite time and extracting all the energy

possible, the supremum in (3-1) includes admissible pairs and values of T for

which the extracted energy approaches the value e . In fact we stated Def. 10

in terms of a supremum in order to handle precisely this type of situation — one

in which no finite-time energy-optimal control exists.
1 2

For the constitutive relation in Fig. 3 we have E(qn ,q9) = —(q_-l)
l'?2> 2VM.

12 1 2
- -r-(q--l) . Taking the supremum over q« we have E (q.) = "T^n"!) or

1 2E (q) = y(q-l) , as drawn in dotted lines in Fig. 3. Clearly an energy-

optimal control exists. It just drives q to the point q = 1.

Finally, let's leave the capacitive examples and reconsider the linear

2-port in Fig. 2. Considering the input to be the port current vector and

the output to be the port voltage vector, the state equation and output equation

become

v = v = Av + B
c c - c

fv, 1 rn i H.n1
— +

i

V. V u
U 2J U C-- L. J

= Cv + D
- c

r±.

2J

The impedance matrix is calculated by the usual formula to be

-1 P °1L 3 + D =

.0 0-

Z(s) =C^sJ-a) -4} +D=

(3-5)

(3-6)

(3-7)

This completely expresses its zero-state response. If v (0) = 0, then port 1

looks like a 1-Q resistor and port 2 looks like a short circuit, therefore

E.(0) =0. If v (0) ^ 0, then as we have shown in subsection 3.1 the available
A c

energy is infinite.

Definition 11. An n-port(-A)with a state representation S is passive

if for each x £ Z, E.(x) < +». Otherwisev^Alis active.

As shown in the Introduction, Definition 11 is equivalent to Passivity 1.

If for some initial state xfi there is no upper bound on the amount of energy
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which can be extracted, then EA(xQ) =-H« and so^is active; but if no such
state exists, thenoWis passive. Observe that passivity requires only that
E (x) be finite for each x ^ Z, and we do not consider infinity or any point with

one or more coordinates equal to ±- to be an element of Z. In particular, passivity

;* does not require that E (•) be a bounded function on Z (cf. Fig. 3 and Fig. 6).
Definition 11 classifies the capacitors in Figs. 1 and 3 as passive and

; ' it classifies the linear 2-port in Fig. 2 as active. In the case of Fig. 2
this outcome is completely natural and needs no further explanation. After

some reflection we have come to understand that any consistent theory for

n-ports, as described in subsection 3.1, must classify the element in Fig. 3
as passive. The reason is that its terminal behavior is indistinguishable
from that of a 1-farad capacitor, as we have pointed out in the Introduction,

and a 1-farad capacitor is passive by anybody's definition.

The nonlinear capacitor in Fig. 1 violates intuitive notions of passivity

because it has no state where EA(q) =0; nevertheless, it is passive by Def. 11.
The capacitor in Fig. 1 has no state where v(q) = 0, but it is important to

realize that the condition EA(q) >0for all qis not limited to capacitors with
no state of zero voltage. As a counterexample, consider the nonlinear capacitor

with constitutive relation v(q) =q(l-q2)e~q /2. This capacitor is unbiased,
in the sense that if q(0) =0and i(t) =0for t >. 0, then^t) =0for t>0.
Astraightforward calculation shows that EA(q) =(1+q )e"q ;therefore, this
capacitor is passive by Def. 11 and EA(q) >0 for all q. This example is

interesting because if |q(t)| remains sufficiently small for all t, then

v(t) = v(q(t)) * q(t); hence, this capacitor behaves locally at q = 0 as

though it were a 1-farad linear capacitor, yet it has no state of zero available

energy.

It is interesting to compare our treatment of the topic of passivity with

others that have appeared in the literature. The example described in the

preceding paragraph is a special case of the type of system considered by Moylan [8]
and Hill [28]; they would classify this capacitor as active because they adopted

the definition of passivity which we have called Passivity 3 in the Introduction

(note that Passivity 3 is equivalent to the condition EA(Q) = 0). Chua and
Lam [7] would classify the capacitor in Fig. 1 and the capacitor described in

the preceding paragraph as active, since both examples violate Passivity 2
and Passivity 3. [Incidentally, Chua and Lam [7] erroneously claimed that

Passivity 2 and Passivity 3 are equivalent for capacitors and inductors. The

simple example in Fig. 3 shows that this is not the case: it does not satisfy
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Passivity 3 because E (q) = (q-1) /2, and so E.(0) t 0; however, it would

presumably satisfy Passivity 2 if the initial charge is q(0) = 1. Chua and

Lam [7] did not realize that in constructing a state model for an n-port, the

identity of charges and fluxes as state variables is determined only to within

an additive constant. A complete discussion of this point is given in subsection

5.1.] Desoer and Kuh [5] began with Passivity 1 as their fundamental definition

of passivity for 1-ports. They then proceeded to "prove" that a 1-port charge-

controlled capacitor with constitutive relation v = v(q) is passive if and only

if f v(q)dq >_ 0 for all q. The condition j v(q)dq >_ 0 is equivalent to the
Jo Jo

condition E.(0) = 0, so Desoer and Kuh [5] were claiming that Passivity 1 and

Passivity 3 are equivalent for charge-controlled capacitors. Our capacitive

examples show that their "proof" was not correct, since none of these examples

satisfy E (0) = 0. Likewise, Hill and Moylan [11] erred when they claimed that

Passivity 1 and Passivity 3 are equivalent for the class of systems they

considered. The example in the preceding paragraph is a special case of the

type of system considered by Hill and Moylan [11], and E.(0) ^ 0 for this

example.

The preceding comments suggest that there is some confusion in the

literature over the concept of passivity for nonlinear circuits and systems.

Much of this confusion arises from the intuitive notion that a passive system

ought to possess a state of "zero stored energy," or more precisely, a state

of zero available energy. For this reason, we will define in subsection 3.4 a

narrower concept of passivity called strong passivity which is closer to

engineering intuition.

Passivity requires that E (x) < -H» for all x £ Z. Suppose we know that

EA(xQ) < -H» for a particular x £ Z. When can we conclude that E (x) < -H»
for all x £ Z? The following theorem and its corollaries answer this question,

but first we must define reachability and complete controllability.

There are several definitions of reachability and complete controllability

in the literature. The following ones are appropriate here because of our

standing assumptions that the n-ports under discussion are time invariant and

that'-U is translation invariant (Def. 6).

Definition 12. Given a state representation S, let x ,x £ Z. The

state x. is said to be reachable from xn if there exists a finite T >_ 0 and an

input-trajectory pair {u(•),x(»)}|[0,T] from x. to x (Def. 8). The state

space Z is said to be reachable from xn if every x £ Z is reachable from x~.
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Because of our standing assumption that t -*• <y(t),i(t)> is locally L ,
it follows that the transfer from x to x can always be effected with a finite

(positive or negative) amount of energy.

Definition 13. A state representation S is said to be completely controllable

if Z is reachable from x for every x £ Z.

Theorem 1. Given an n-porto\fwith a state representation S, wherecUis
closed under concatenation. Suppose that there exist two states Xq,^ £ Z
with x, reachable from x„. Under these conditions, if E (xj <-H», then

~1 ~U A U

EA(x-) < -H».
A -1

The proof is given in Appendix A, although Theorem 1 should be immediately

obvious since the transfer from xQ to ^ can be effected with a finite amount of
energy.

Corollary A for Theorem 1. Given an n-porto\lwith a state representation
S, whereQjlis closed under concatenation. Suppose that there exists a state xQ
such that Zis reachable from xQ. Under these conditions,^ is passive if and
only if EA(xQ) < -H».

Proof. Necessity follows directly from Def. 11. Sufficiency follows

from Def. 11, Def. 12, and Theorem 1. Q.E.D.

Corollary B for Theorem 1. Given an n-portoMwith a completely controllable

state representation S, whereHi is closed under concatenation. Let k £ £

be arbitrary and fixed. Under these conditions,lA) is passive if and only if

E.(xn) < -H».
A 0

Proof. Necessity follows directly from Def. 11. Sufficiency follows

from Def. 11, Def. 13, and Theorem 1. Q.E.D.

WhenoMbas a completely controllable state representation, Corollary B

tells us that we need only determine whether E^x^.) < +» at one arbitrary state

xn £ Z; if so, theno'VJis passive.

3.3 A Mechanical Example

In this subsection we will consider the two nonlinear capacitors whose

constitutive relations are shown in Fig. 4. The natural state representation

for these elements is that given in Example 1, except that in this case

^ = (_oos0) and i(») must be chosen^ so that q never leaves Z. Systems like

The condition

q + j i(t)dt < 0, VT >_ 0
0

implies than the class of admissible input waveforms depends on q^. This is
a technical violation of our assumptions about the nature of a state represen
tation, but it presents no problem in this case. See the discussion in
subsection 8.2.
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these constitute a rather severe test for any proposed definition of passivity.

One reason is that neither has a relaxed state (see subsection 3.4) or any

obvious candidate for a reference state. Another is that an independent line

of physical reasoning, based on their mechanical analogs, strongly indicates

that the dotted curve should be labelled passive. Presumably any correct

definition of passivity must also classify this element as passive.

These curves are taken from the piston and cylinder arrangements shown

in Figs. 7(a) and (b) , with q substituted for x and v for f. The reference

directions in Figs. 7(a) and (b) have been chosen so that fx is the instantaneous

power delivered to the system, corresponding to associated reference directions

for v and q. These are rather idealized mechanical systems because we suppose

that the cylinders are infinitely long, the walls are perfectly insulating,

the pistons are massless and frictionless, the external pressure is zero, the

gas behaves ideally and all motions are sufficiently slow that no internal

pressure gradients arise. Beginning in any initial state we can extract a

certain amount of energy from either system by allowing the gas to expand

against the external vacuum and extracting useful work from the resulting motion

of the piston. The question of interest to us is whether the energy we can

extract is bounded or not.

Let's first consider Fig. 7(a). Since the reservoir holds the gas tem

perature constant, the ideal gas law requires that the pressure and volume be

related by PV = NRT, where N is the number of moles of gas present and R is

the gas constant [12]. Since the piston has unit area and we have chosen the

origin of the x-axis to lie at the point where V = 0, the relation between force

and displacement becomes PV = -fx = NRT or f = -NRT/x. Except for the positive

multiplicative constant NRT, which will not turn out to be important, this is

exactly analogous to the constitutive relation v = -1/q of C- in Fig. 4.

It is not immediately obvious whether the system in Fig. 7(a) should be

called active or passive. The infinite heat reservoir itself is clearly an

active element, analogous to an ideal voltage source. As the piston is moved to

the left, heat is continually being extracted from it to compensate for the

tendency of the gas to cool on expansion, so on purely physical grounds the

possibility exists that the system is active. Writing E(x.,x ) for the energy

extracted in going from x to x_, we have

E(xrx2) =J2 -f(x)dx =j2̂ dx =NRT In (x^). (3-8)
xl xl

Keeping in mind that x. is negative and that x_ can take on any negative value,

we have
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w v<o rRTlnt^)r*°-
(3-9)

Similarly, for C± in Fig. 4we have E(q1,q2) =ln(q2/q1) and E^q^ =+~,
so these systems are active by our definition.

Now let's consider the closed system in Fig. 7(b). In this case the

gas will cool upon expansion and P will fall off more rapidly with increasing
Vthan before. The ideal gas law predicts that P=A/V5 where Ais apositive
constant, or f=-A/x5/3 [12]. On purely physical grounds this system should
be called passive because there can only be a finite amount of energy initially

stored in the gas and there are no other energy sources involved. Direct

calculation shows that

«v,>-£><"*i£r-(y,0l-
Keeping in mind that (l/x)2/3 =(3»^x)2 >0for negative x, we have E^x^
= 3A/2x 2/3, which is finite for each x € Z. Similarly, for the element

1 2/3
C in Fig. 4 we have E4(qJ = 3/2qn ' < -H», so both of these are passive by
2 A 1 1

Def. 11, as required by physical reasoning.

3.4 Relaxed States and Strong Passivity

We are convinced, and we hope we have convinced the reader, that Def. 11

is the appropriate definition of passivity for any consistent general theory of
nonlinear n-ports; however, there is no doubt that it is weaker than the concept

of passivity that one would gain from experience with common circuit elements.

In practice it is natural to associate with a passive element some sort of
"rest state" or "relaxed state" or state of "zero stored energy." As we

pointed out in the Introduction, several definitions of passivity found in the
literature are based on the existence of such a state [6], [7]. The constitutive

relations in Figs. 1 and 4 will produce severe problems for any such definition.

While we do not wish to found a theory on the existence of such states, it is

reasonable to try to incorporate relaxed states into our more general approach.

To be completely consistent, however, we cannot define a relaxed state as a

state of "zero stored energy." The reason is that it is not always possible to

determine the energy stored in an n-port by means of measurements performed at the

terminals alone. There might be, for example, a battery buried inside whose

effects are not evident at the ports. But it is_ consistent to define a relaxed

state as a state of zero available energy.
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Definition 14. Given an n-port^Mwith a state representation S, a point
x £ Z is said to be a relaxed state if E (x) = 0.

In Fig. 2 the only relaxed state is v =0, while in Fig. 3 the state q = 1

is relaxed. The systems in Figs. 1 and 4 do not have any relaxed states. Note

that even when a relaxed state exists it need not be unique. Consider, for

example, the nonlinear inductor defined by i = I sin k<J>; I_ > 0, k > 0, which

appears in most models of Josephson junction devices. It is not difficult to see

that every state of the form <j> = 2-im/k, n an integer, is a relaxed state for this

element.

Using the notion of a relaxed state, we can now define the following more

restrictive concept of passivity.

Definition 15. An n-porto\|with a state representation S is strongly

passive if

(1) lAI is passive Def. 11, and

(2) there exists a relaxed state x* £ Z.

The constitutive relation in Fig. 3 defines a strongly passive 1-port,

for example. The constitutive relation in Fig. 1 and C_ in Fig. 4 define

systems which are passive but not strongly passive. We will see in the next

section, however, that passivity and strong passivity are equivalent concepts

for linear, resistive, and memristive n-ports.

At first glance it might seem reasonable to say that an n-porto\)with
state representation S is strongly passive if there exists a relaxed state

x* £ Z, but the 2-port in Fig. 2 shows why we must explicitly require that oW

be passive in addition. The state v* = 0 is a relaxed state for this example,

but E.(v ) = +» for all other values of v . Therefore if we wish strong passivity
Ac c

to be a stricter requirement than passivity, we must include condition (1)

in Def. 15.

Suppose that we are given an n-port(^\)with a state representation S, and

suppose that there exists a relaxed state x* £ Z. If Z is reachable from x*,

and if^Uis closed under concatenation, then condition (1) of Def. 15 is

automatically satisfied; hence,oW is strongly passive. This is stated formally

in the following theorem, which also shows the relationship between strong

passivity and Passivity 2 (defined in the Introduction).

Theorem 2. Given an n-port^Mwith a state representation S, where HA

is closed under concatenation. Suppose that there exists a state x* such that

I is reachable from x* (Def. 12). Under these conditionsjC^AI is strongly passive

with relaxed state x* if and only if

Our use of the term "strongly passive" should not be confused with similar
terminology which has appeared in the systems literature (e.g., Moylan and
Hill [13]).
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T

<v(t),i(t)>dt >_0 (3-11)
0i

for all T >_ 0 and all admissible pairs {y(«),i(*)> with initial state x* (Def. 9).

Proof. Clearly, x* is a relaxed state if and only if (3-11) is satisfied;

hence, the necessity of (3-11) is immediate. Sufficiency follows from Corollary A

for Theorem 1. Q.E.D.

If an n-port is strongly passive with relaxed state x*, then by a change of

coordinates we can always assume that x* = 0 (see the discussion in subsection

5.1). In this way we can make sense out of Passivity 3, defined in the

Introduction.

IV. Necessary and Sufficient Conditions for Passivity of Several Classes

of N-Ports

For certain special classes of n-ports it is possible to find necessary

and sufficient conditions for passivity which can be verified directly by

inspection of the state equations. The classes we will investigate here are

resistive, generalized capacitive/inductive, generalized memristive, and linear

n-ports as well as n-ports with a 1-dimensional state space. Except for this

last class the conditions we derive will be familiar, but in the generalized

capacitive/inductive and linear cases they will differ in a subtle but important

way from those usually given in the literature.

4.1 Resistive N-Ports

The resistive n-ports considered here are completely characterized by

the relation y = g(u), where u and y are a hybrid pair (Def. 3). We can afford

to be quite undemanding about the details in this case, but we will present

them anyway for completeness. We let U be any nonempty subset of IR ;

g:U -*• ]Rn be any function, andHi.be the class of all functions u(«) :IR -*• U
such that t •* <u(t) ,g(u(t))> is locally L . Note thatHAis automatically

nonempty because it contains all the constant inputs.

It is unnatural to construct a state representation for a resistive element,

but in order to include such elements in our theory we will give them

representations of the form x = 0, y = g(u), with Z taken to be any nonempty

subset of IRm . We emphasize that Z has no real significance in this case: it

has been included only to show how resistive elements can be handled within the

framework of our theory. The resulting classification is obvious.

c

The resistive, generalized capacitive/inductive, and generalized memristive
n-ports considered in this section are special cases of the so-called algebraic
n-ports treated by Chua [14].
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Theorem 3. Let^\)be a resistive n-port with a state representation S as

described above. Then the following three statements are equivalent:

(i) <u,g(u)> > 0, Vu G U.

(ii) E (x) = 0, Vx € Z.

(iii) lA) is passive according to Def. 11.

It follows immediately that passivity and strong passivity are equivalent

for resistive n-ports. The proof, which is trivial, is given in Appendix B.

We now have the theoretical basis for our claim that the 1-port in Fig. 5(b) is

passive, since it is characterized by v. = i-. Similarly the 2-port in Fig. 5(c)

is active, since v. = i_ and v„ = -10 i-. We need only choose i- = i« = 1, for

example, to see that <v,i) =<(i-,-101-) ,(i-,i2)> = i_ -lOi-^ can be negative.
4.2 Generalized Capacitive/inductive N-Ports

A generalized capacitive/inductive n-port is an n-port with state and output

equations of the form

x = u

y = g(x)

where u and y form a hybrid pair. We call these generalized capacitive/inductive

n-ports since they reduce to n-port capacitors if u = i and y = v and to n-port

inductors if u = y and y = i. The relevant technical assumptions are that

Z=U=]Rn ,Qi =L^oc(]R+-»-IRn), and that g:TRn •*• lRn is continuous.
Theorem 4. LetoMbe a generalized capacitive/inductive n-port with a

state representation S as described above. Then

(1) lAI is passive ° g = Vxp where \\> :Z -»• IR is a C scalar function which

is bounded from below.

(2) lA) is strongly passive ° the above conditions hold and in addition iKO attains

its lower bound, i.e., Jx* £ Z such that ij>(x*) ± iKx), Vx £ Z.

The proof is given in Appendix C. The capacitor in Fig. 3 satisfies both

conditions (1) and (2); the capacitor in Fig. 1 and C« in Fig. 4 satisfy only

(1) ; and C. in Fig. 4 satisfies neither (1) nor (2).

It is easy to see that ifc.JVlis passive and I is the greatest lower bound

of iKO, then E.(x) = i|^(x) -£, Vx £ Z. An immediate consequence of Theorem 4

Note that our choice ofHiimplies that x(») is bounded on every bounded
interval, and since g is continuous it follows that y(*) is also bounded on
every bounded interval. Therefore t -*• (u(t) ,y(t)) is automatically locally
L1
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is that ifo\lis passive and g(«) is C , then the Jacobian matrix [Dg](x) is
symmetric at each point x € Z. By linearizing (4-1) about any state x, it is
easy to see that this symmetry condition is equivalent to reciprocity if
u = i or if u = v. But if u ^ i and u ^ v, i.e., if u contains both voltage

and currents, then symmetry of [Dg] is an entirely different condition from

reciprocity [14]. We have then the following simple corollary.

Corollary for Theorem 4. A passive n-port inductor or capacitor with a

C function g(») is reciprocal.

4.3 Generalized N-Port Memristors

By a generalized n-port memristor we mean an n-port with state and output

equations of the form
•

x = u ,
" - (4-2)
y = [R(x)]u

where u and y form a hybrid pair and where R(x) is an nxn real matrix which varies

with x. A system of this sort is, roughly speaking, a state-dependent linear

resistor. It is a special case of the class of memristive systems defined by

Chua and Kang [15]. In the 1-port current-controlled case, u = i and the

generalized n-port memristor reduces to the 1-port memristor [16] characterized
by <f> = f(q); or after differentiation, v = i= f'(q)q = f'(q)i- An n-port memristor
would be the same as Eq. (4-2) with the special assumptions that u = i and that

R(x) is the Jacobian matrix of some vector-valued function. We have chosen the

name "generalized" n-port memristor because we do not impose these last two

assumptions. The relevant technical requirements in our case are that Z = 3R ,

the entries of R(x) are continuous functions on Z, and that HA= Lloc(;iR "^ )•
Theorem 5. A generalized n-port memristor with a state representation as

described above is passive ** R(x) is positive semidefinite at each point

x € Z.

Proof. (<=) If R(x) is positive semidefinite, then for any input-output

pair {u(«),y(')> and any time t >_ 0, <u(t),y(t)> =uT(t) [R(x(t)) ]u(t) >_ 0.
Therefore, E»(x) = 0, Vx € Z.

(=*) SupposeoWis passive but R(x) is not positive semidefinite everywhere,
T

i.e., 3X* G z» \?* G u such that u* [R(x*)]u* = -a < 0. Since the entries of

8A.s in subsection 4.2, it follows automatically that t -*- <u(t) ,y(t)> is locally
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R(x) are continuous functions, 3e >° such that Hx-x*fl <_ e =* u*T[R(x) ]u*
<-a/2 < 0. Let u(«) be given by u(t) = (e/llu*ll)u* cos t, Vt >_ 0, let x(0
be the trajectory resulting from the input u(-) with initial state x*, and let
y(0 be the corresponding output. Then for all t^ 0

lx(t)-x*ll = III (e/llu*H)u* cos t dxD = e|sin t! < e,

so

T ~
u* R(x(t))u* < -a/2, Vt > 0.

Furthermore,

T T 2 / \

| -<u(t),y(t)>dt =-f (j^\ (u*T[R(x(t))]u*j

—(—~—1 IT J I cos t dt-=—> + « . (u-3)
\Ilu*ll/ \2/J0 T_HX>

Therefore EA(x*) = +» , contradicting our assumption thatu\jwas passive.
Q.E.D.

Corollary for Theorem 5. A generalized n-port memristor is passive if

and only if it is strongly passive.

4.4 Linear N-Ports

In this subsection we will discuss hybrid linear n-ports. We will

establish that the traditional positive real criterion for the hybrid matrix

transfer function is equivalent to passivity if we assume that the n-port is

completely controllable.

The following definition is standard [6] and we repeat it here merely for
reference.

Definition 16. Let H(«) be an nxn matrix of rational functions of a complex

variable s. Then H(») is said to be positive real if

1) Each entry of H(«) is analytic in the open right half complex plane.

2) Each entry of H(s) is real for all real positive s.

3) The matrix [H(s)+H*(s)] is positive semi-definite at each point s in the

open right half plane, where the superscript * denotes the complex-conjugate

transpose of a matrix.

The following lemma is also standard [6].
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Lemma 1, Let H(-) be an nxn matrix whose entries are all rational functions

of a complex variable s, with real coefficients. Then H(») is positive real iff

1) No entry of H(«) has a pole in the open right half plane.

2) The matrix [H*(ju>)+H(jaO ] is positive semi-definite for each real u),

provided that ju> is not a pole of any entry of H(*)»

3) If jcon is a pure imaginary pole of some entry of H(»)> it is at most a
simple pole. If we let K denote the residue matrix of H(«) at jo)n,

i.e., K= I** (s-ju )H(s) if o>0 is finite and K=^ *-j- if a)Q is
J 0

infinite, then K is positive semi-definite and K = K*.

The proof is given by Anderson and Vongpanitlerd [6].

Now consider the linear time-invariant finite dimensional state

representation
•

x = Ax + Bu

(4-4)
y = Cx + Du

where u and y form a hybrid pair; U = 3Rn and Z = 3R ; A, B, C, and D are real

constant matrices of appropriate dimension; andHAis taken to be the class of

all locally L functions u: IR -*• TR . It follows immediately from the con

volution integral relating u(«) and y(») that for any initial condition

x £ Z and any input u(») ^HA, the corresponding output y(0 is defined for all
~0 2
positive time and is itself locally L . It is well known [17] that the linear

system (4-4) is completely controllable (Def. 13) if and only if the matrix

[b;ab:a2b— iiTh]
has rank m.

Theorem 6. SupposeoWhas a linear, time-invariant, finite-dimensional state
representation S as in (4-4). If S is completely controllable, then the

following three conditions are equivalent:

(i) o\) is passive by Def. 11.

(ii) E.(0) = 0.
A -

(iii) The matrix transfer function

H(s) = Cfsl-A]"1 B+ D

is positive real.
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Slight variations on this theorem are well known [1], [18]. A complete

elementary proof is given by Gannett and Chua [18]. The example in Fig. 2 shows

that the assumption of complete controllability is essential: for that 2-port

Z(s) is positive real and EA(0) = 0, but it is active nevertheless.
" A -

4.5 Systems With a 1-Dimensional State Space

The class of systems considered in this subsection are those for which the

state space Z is contained in the real line. As far as we know, the results

given here are entirely new to the literature. We consider systems with a state

equation of the form

x = f(x,u) (4-5)

and we wish to find a necessary and sufficient condition which guarantees that

the available energy E(xQ) =sup J_ f p(x(t),u(t))dt> is finite for all xQ ^Z.
T>0

The technical requirements are that Z C jr , U is a closed subset of IR ,

andHjlis the set of all piecewise continuous functions mapping 3R to U. In most

examples, Z will be IR or an interval in IR . The functions f(»,») and p(#,')

are real-valued; and recalling our assumptions in Section II, they must be

continuous and f(»,») must satisfy enough conditions to ensure the existence and

uniqueness of the solution to (4-5); it is important to realize, however, that

we make no other assumption concerning the structure of these functions.

Definition 17. For each point x £ Z, let U be the set of all input values

u £ U such that f(x,u) > 0. Similarly, let U be all values of u such that

f(x,u) < 0.

So U is just the set of all input values that will drive the state to the

right from the point x, and U is all input values that will drive it to the
+ - x

left. Either U or U or both may be empty for certain values of x.
x x - e

Definition 18. We define h and h : Z ->- 3R by

p(x,u) _
sup -— r- , U f 4»

f(x,u) x
uQJ

X

h(x) = ( (4-6)
- «, if U~ = <{>

X
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r , p(x'u> ., TT+ , .

h(x) = < (4-7)

+ °°, if U+ = <j)
x

These functions will play a central role in what follows, so let's pause

a moment to give them a physical interpretation. Consider the first line in

(4-7). Before taking the infimum, the numerator is energy input per unit time

and the denominator is the distance the state moves to the right per unit time;

so the quotient is the input energy per unit distance Ax, in the limit as

Ax -»• 0 from above. Taking the infimum, we see that h(x) is the minimum energy

cost per unit displacement of x to the right, with the convention that

h(x) = +« if it is impossible to drive the state to the right from the point x.

Similarly, _h(x) is the maximum energy we can extract per unit displacement of

the state to the left from the point x, this time as Ax •> 0 from below: the

convention here is that h(x) = -» if we cannot move to the left from x. In

general, neither h(') nor h(*) will be continuous; however, h(») is lower semi-

continuous and h(«) is upper semicontinuous (see Appendix D).

Example 2. Consider the following memristive 1-port [15]:

x=ur
v-rWi (4"8)

where Z = U = TR J~\X consists of all piecewise continuous functions mapping
H to ]R , r(-) is a continuous function which is negative on the interval (0,1)

and zero elsewhere, and a is some positive real number.

It is clear that h(x) = -» for all x, since f(x,i) = |i| is never negative;

moreover, h(x) = 0 for all x outside of (0,1), since g(x,i) = r(x)i = 0 for

x £ (0,1). When x € (0,1), h(x) is the infimum over all i i* 0 of i r(x)/|i|a,
i.e., the infimum of r(x)|i| : if a = 2, this is just r(x); if a ^ 2, the

infimum is -°° since r(x) < 0.

For any state representation S and for any x £ Z, let R(x) denote the set

of states reachable from x (Def. 12). In the 1-dimensional case it will be

useful to define, for each xn ^ Z, R (xn) = {x £ R(xn): x < xfi} and
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R (xQ) = {x £ R(x ): x > x }. In Example 2, for instance, R~(x ) = $ and
R (xQ) = (xQ,-H»), for any x € Z.

We are now in a position to state the general passivity theorem for

1-dimens.ional systems.

Theorem 7. Letcjyjbe an n-port with a state representation S as given

in (4-5) and the paragraph following (4-5). ^AJ is passive if and only if all
three of the following conditions are satisfied:

(i) p(x,u) > 0 at every point (x,u) G Z x u such that f(x,u) = 0;

(ii) h(x) <_ h(x), Vx £ Z;

(iii) there exists a function W :Z -> 3R such that, for every x £ Z,

x

i
1

h(x)dx + W(xQ) ^ 0, Vx € int R (x ) (4-9)
X0

X0

h(x)dx + W(xQ) >_ 0, Vx2 G int R (xQ). (4-10)

The proof is given in Appendix D. Note that there is no need to actually

calculate w(xQ). Its existence is just another way of saying that the integrals
in (4-9) and (4-10) remain bounded from below as their upper limits are allowed

to vary in R (xj and R (xQ), respectively. The sense of the inequality in
(4-9) may be a little confusing initially. Since x < x , the integral will

be positive if the integrand is everywhere negative. No such problem occurs in

(4-10). Finally, if R (x ) is empty then (4-9) is satisfied automatically for

that value of x ; (4-10) is similar.

The reason for considering only values of x and x in the interior of

the reachable set is connected with the existence of the integrals in (4-9) and

(4-10). If x2 e int R (xQ), then h(x) j •*« for all xe [x ,x2] (Def. 18).
Since h(0 is upper semicontinuous and not equal to +» at any point in [xn,x ],
it follows that h(») is bounded above on [x_,x ] (Appendix D); hence, the integral

in (4-10) has a well-defined value, although that value may be -» (in which case,

yjvl is active). Analogous comments apply for the integral in (4-9): it has a

well-defined value (since x £ int R~(x0)), although that value may be -».
The physical interpretation of the three conditions in Theorem 7 is

straightforward and quite interesting. The first condition says that it is

impossible to extract power from '^Jwhile x stands still, i.e., while o\)
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remains in equilibrium. The second condition says that the maximum energy payoff
per unit displacement of x to the left is less than or equal to the minimum
energy cost per unit displacement to the right. This means that it is impossible
to extract energy by driving the state around a closed path. The integral in

(4-9) represents the minimum energy consumed while driving the system from xQ

to x , and the integral in (4-10) is the minimum energy consumed while driving

from x to x . If the system is to be passive, then it is clear that these

quantitites must be bounded from below as x1 and x2 range over all states
reachable from x . If (i) and (ii) are both satisfied, then the least function

W(») which satisfies (iii) is in fact the available energy EA(«).
It is intuitively clear that each of the conditions of Theorem 7 is

necessary for passivity. From the order properties of IR , it should also be

intuitively clear that these conditions are sufficient (see Appendix D for

more discussion). For a system with a 1-dimensional state space, there are

evidently only three possible ways to extract an unbounded amount of energy

beginning at some initial state xQ: sit still at xQ, drive x in a loop
repeatedly, or move away from xQ monotonically. If none of these strategies
yields an unbounded amount of energy, then EA(xQ) is finite.

Let's reconsider Example 2. Condition (i) is always satisfied because

m01 _ o=>i = 0=* r(x)i = 0. Since x can only move to the right, h(x) = -»
everywhere and int R~(xQ) = 4> for all xQ; hence, condition (ii) is trivially
satisfied and (4-9) always holds by default. If a = 2, then h(x) = r(x) and

(4-10) is satisfied by choosing for W(-) the constant function

8J1-J0
W = I -r(x)dx.

The interested reader might enjoy deriving EA(0, the least function W(») which
would work in (4-10). If a $ 2, then h(x) = -« for all x in (0,1), (4-10)

cannot be satisfied, and the system is active.

The conditions of Theorem 7 can be simplified if S is completely con

trollable (Def. 13).

Corollary for Theorem 7. Suppose that the n-port<^\|described in Theorem
7 is completely controllable, with Z an open interval in IR . Under these

conditions, ^\l is passive if and only if there exists a function E:Z + IR
and a measureable function h :Z -»• TR which is bounded on every compact subset

of I, such that
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(i) p(x,u) > f(x,u) • h(x), V(x,u) e Z x u,

ii) J h(ii) I h(x)dx + E(xQ) > 0, Vx0,X;L S Z.
X0

The proof is given in Appendix D. Note that Z may be an unbounded open interval,

or it may be IR itself; also, there is no assumption on the order of xQ and x

in condition (ii) . It may bother the reader that condition (ii) appears to be

unsymmetrical in xn and x ; however, condition (ii) is easily shown to be

Xl
equivalent to the condition E(x_) >_ I h(x)dx >_ -E(xQ) ,Vx_,x € I.

x°
In Theorem 7 we have answered the question of passivity for systems with a

1-dimensional state space in terms of properties of the functions f(»,«) and

p(#»") which can be verified by inspection. Ideally, we would like to have a

similar result for multi-dimensional systems: a necessary and sufficient passivity

condition in terms of easily verifiable properties of the functions f(*,*) and

p(«,») which does not make any prior assumption on the structure of these

functions. The existence of such a result is a question for future research — the

proof of Theorem 7 (Appendix D) is critically dependent on the order properties

of IR, therefore it cannot be generalized to multi-dimensional systems.

V. Representation Independence and Closure

5.1 Equivalent State Representations and Passivity

The definition of passivity in Section III is not based directly on the

physical properties of an n-port o\l, but rather on a certain function E (•)
which depends on the particular state representation we have chosen forcjv).

The following example will help make this point clear.

Example 3. When viewed as a 1-port, a 1-farad capacitor is completely

characterized by the relation i = -r- or

f2v(t2) = v(tx) + J i(t)dt, Vt2 >_ t1-
tl

Let's consider the following three state representations for such an element.

In all three cases we let Qi = L. (IR -*1R) .
loc
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AAA.

x=ix2=ix3=(cosx3)i

v=xv=x2-1v=tanx3

Z=IRZ2=IRZ3=(-ir/2,ir/2)

ToseethatS„representsthesame1-portasS.andS2>wecalculate

dvdvdx312
dF=dx7-3F——cosx31=1' 3cosx~

SinceS,S2,andSallrepresentsa1-faradcapacitor,wecertainly
hopethatE.(x),E(x),andE(x)willallbefiniteforeachvalueof

A-ij-A«Z"1

theirarguments.Otherwiseourdefinitionofpassivitywillbedependentonthe

particularstaterepresentationweselect.ForS.andS«wehavealready
22

calculatedinSectionIIIthatEA(x^=^/2andEA(x2)=(x2~l)/2,so

EA(xj<-f«°forallxn€zandE.(xj<-H»forallx^Z.Tocalculate
A.111A22zz

E(x«),notethatifv(0)=v,thenforanyT>_0andanyinputi(-)^HA>

theenergyextractedovertheinterval[0,T]is

TTT/2\

f-v(t)i(t)dt=|-v(t)v(t)dt=J-^•(•L/5i)dt:
1,22/mNN12

=2(v0-v(T))<2vQ.
12

ThereforetheavailableenergyasafunctionofvQis-jvQ.Writingitasa
functionoftheinitialstatexwehaveEA(x3)=y(tanx3),whichisfinite
foreachx_£Z,..

Soatleastinthisexample,theclassificationofthen-portasactive

orpassivedoesnotdependonwhichofthestaterepresentationswechoose.We

nowwanttoshowthatthisresultholdsingeneral,i.e.,thatwiththeproper

definitionof"equivalence,"equivalentstaterepresentationsofann-portwill

alwaysyieldthesameclassification.

Definition19.Twostaterepresentationsofann-port^,SandS2»are
definedtobeequivalentifthereexistsabijectivemapb:I.•*Z„suchthatfor

eachx£I.,theclassofadmissiblepairs{v(0,i(0>ofS1withinitialstatex
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is identical to the class of admissible pairs {y(.),i(-)> of S£ with initial
state b(x).

In Example 3, S^ S2, and S3 are all equivalent state representations. For
S2 and S1 the bijection bn :Z„ + l± is just x± =b21(x2) =x2 -1, and for S
and S1 the bijection b31 :*3 +^ is x± =b.^) =tan xy This definition of
equivalence is stated in terms of admissible pairs {v(«),i(-)} rather than
input-output pairs {u(.),y(-)>, since passivity is defined in terms of admissible
pairs (Defs. 10 and 11). It leaves open the possibility that the inputs may be
chosen differently for S± and S.; for example, S1 might be voltage-controlled
while S2 is current-controlled. Our definition of equivalent state representations
is very similar to the definition of equivalent networks given by
Sangiovanni-Vincentelli and Wang [19]; however, our definition is more restrictive
because it requires the existence of the bijection b(-). If the inputs for

Sl and S2 are the same and if 1? and v form a hybrid pair (Def. 3), then it
follows from Def. 19 and our standing assumption (2) that the input-output
behavior of S;L in any initial state xQ is identical to the input-output behavior
of S2 in initial state b(xQ); and under these conditions our definition of
equivalence is somewhat more restrictive than that given by Desoer [17] and

somewhat less restrictive than that given by Varaiya and Verma [20].

Example 4. Consider the two state representations whose state and output
equations are given below:

Sl S,

x! =!(?!»«) ?2 =f(x2,u) =f(x2+c,u)

y=fU^u) y=g(x2,u) &g(x2+c,u)

where u and y are a hybrid pair (Def. 3) and c G ]Rm is fixed. The functions

f(-,0 and §(•,-) are obtained by translating £(•,•) and g(»,'), respectively, in
the first variable. We assume that JJ± =̂ ,^=3^, and Z =I +£. It is
clear that {y(-),!(•)> is an admissible pair for S;L with initial state x' if and
only if {y(•),!(•)} is an admissible pair for S2 with initial state x' =x' -c.
It follows that S1 and S£ are equivalent by Def. 19, and the bijection
-:Zl "*" 12 iS Siven b>* b(?n) = X - C.

-30-



Both state representations in Example 4 give rise to the same port behavior,

so they are equally valid state models for the same n-port. In constructing a

state model for an n-port, Example 4 shows that the identity of the state vector

is determined only to within an additive constant. A special case of this result
for charges and fluxes was mentioned in subsection 3.2. If we are given a 1-port

capacitive constitutive relation v=v^q) ,then for any cG m the constitutive
relation v = v9(q) =v (q+c) gives exactly the same port behavior; in other words,
we can arbitrarily translate capacitive and inductive constitutive relations.

This constitutes a formal basis for our argument in subsection 3.2 that the

capacitors v = q and v = q-1 (Fig. 3) are indistinguishable as 1-ports. It might

seem "unnatural" to translate a constitutive relation as done in Fig. 3, and

it might seem that this ambiguity could be eliminated by always requiring the

constitutive relation v = v(q) to satisfy v(0) = 0. The constitutive relations

v.,(q) = q(q-l)(q-2), v«(q) = eq, and ±3W =sin $show that such an approach will
not work for a general nonlinear theory. In the first case, there are three

points where v-(q) = 0; in the second case, there are no such points; in the third

case i (kir) = 0 for all integers k, worse yet, we can translate the constitutive

relation by 2irk without changing its form in any way.

Lemma 2. Given an n-porteAlwith two equivalent state representations S1
and S9, let b:Z.. •* Z« be the bijection defined in Def. 19, and let EA (•) and

E (•) be the available energy functions for S1 and S2, respectively. Then
A2

E. (x) = E. (b(x)), Vx e e
A± ~ A2

The proof is immediate from Defs. 10 and 19.

Theorem 8. Suppose an n-portcAlhas two equivalent state representations S1
and S . Then Def. 11 applied to S classifiesLAJas passive ^ it classifies uM
as passive when applied to S«.

Proof. By Lemma 2, for any x£ ^ we have EA (x) <-H» •* EA (b(x)) <+*.

Since b(«) is a bijection, this concludes the proof. Q.E.D.

There is an immediate extension of Theorem 8 which shows that strong

passivity is also preserved under the change from a given state representation to

an equivalent one.
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5.2 Distinct N-Ports Made from a Multiterminal Element

So far the discussion in this paper has been directed toward the class

ification of n-ports, but it is important to realize that in engineering

practice one can obtain many distinct n-ports from a given multiterminal element.

For example, different n-ports can be made from a given (n+1)-terminal element

by choosing different datum nodes (Fig. 8); also, changing the orientation of a

given n-port (i.e., reversing the roles of inputs and outputs) can produce a

different n-port by modifying the state representation. It is reasonable to

expect that the distinct n-ports derived from a given multiterminal element will

all be passive or else all active, i.e., that the classification will be

invariant under a change of excitation and observation modes. It turns out that

a limited result of this sort holds, but it depends quite heavily on what happens

to the state representation when the modes of excitation and observation are

changed. A -1 farad capacitor with the input space restricted to the constant

functions will exhibit active behavior when excited with current sources, but

when excited with voltage sources it will exhibit passive behavior since v = 0.

Note that the difficulty arises because of the lack of a state representation

in the latter case. Difficulties can also arise because certain changes of

excitation and observation modes may not be permissible. Consider the 2-ports
shown in Fig. 2 and Fig. 5(c). In both cases the port currents can be taken as

the input variables, but an arbitrary voltage waveform cannot be applied at port 2
We begin by defining the class of allowable alterations that can be

performed on the excitation and observation modes of an n-port. Note that the
input-output pairs are always assumed to be hybrid pairs (Def. 3).

Definition 20. Let (u,y) be a hybrid input-output pair for a given n-port,
and let (u,y) denote a new hybrid input-output pair obtained from (u,y) by either

ul &_•
u2

Zl

12

h ,9

9 19!

I?"1 A

•_?* li

;?2 ll

:?J J2J

(5-1)

-32-



or

where

A

A

np ' o ' o ' pri

P ' 0 ' 0 ' P
~J±-Z i z i ~*

0 ' Q ' Q ' 0
- | ~Z | ~1 | -

«2

?1

J2.

?i ?2 9i

?3 E4

1

92

"q7

-1

(5-2)

(5-3)

and where uT =<u*,u*) ,yT =(y*,^), uT =<u![,u*) ,and yT =cg,^' The
transformation in (5-1) will be called an Excitation-Observation Mode Transformation

of Type 1 (EOMTl), and the one in (5-2) will be called an E0MT2.
EOMTl takes a linear combination of former inputs to create some of the new

inputs, and a linear combination of former outputs to create the remaining new
inputs, but never mixes former inputs with former outputs; similarly for the new
outputs. E0MT2 mixes inputs and outputs, but never from the same port.

The set consisting of EOMTl and E0MT2 is closed under matrix inversion; indeed,

(5-1) and (5-3) give

I1.
»2

'Si 0 0 ^ A

^29l 0 0 $
— — —

~T „T ~

*1
0 ^3 Si 0 ?1

—— —

_» —_

T „T ^

L?2. b ^4 P
~2

y l?2J

(5-4)

therefore the inverse of an EOMTl is an E0MT2. Similarly, (5-2) and (5-3) give

ys.
h2

?i

?2

=

'9i ! ?3 ! ? ! 9" ir
1 1 T 1 T0 Q Pi P.1

~ i ~ i ~2 i ~4 *2
l l T i T

0 j 9 , ?i , ?3 ?1

L?2 1sl ! 9 ! 9_ A.
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and so the inverse of an E0MT2 is an EOMTl.

Note that the set of EOMT's is not closed under the composition (matrix

product) operation. This may seem inconvenient, but it can be useful for showing

that passivity is preserved under more general excitation-observation mode

transformations (see the comments following Corollary C for Theorem 9).

Example 5. The two n-ports in Fig. 8,^\) and(_^J ,were obtained from the
same (n+1)-terminal element by selecting different datum nodes. We shall call

this a "datum-node transformation." For definiteness, we shall assume that both

(^\) and(^\frt are current-controlled. It is straightforward to verify the
following relation:

(B-y

where

r n
i

r-l 1 0 . .. 0^

-1 0 1 0
A

B =
•

•

•

\ • •

-1 0 0 . .. 1

_-l 0 0 . .. 0_

This shows that the datum-node transformation is a special case of either EOMTl

or E0MT2, with 0^ =B€]Rnxn and pj =b"1 G]RnXn.
Two classes of EOMT's which occur frequently in practice are

(i) when P ^ IR and nonsingular, i.e., only linear combinations of former

inputs are taken as new inputs. It follows that Q, G lRnxn with p7 = 0?. This
"*1 ~1 ^1

EOMT can be considered as either an EOMTl or an E0MT2, and it will be called

a "generalized datum-node transformation" because it generalizes the datum-node

transformation described in Example 5.

(ii) when P = I, Q = I, P = I, Q = I, and all other submatrices are zero.

In this case, a new orientation of the n-port is obtained with respect to some

ports, namely, those described by the pair (Urt,yn). When P, = Q, = I E mn*n ,
~2 ~2 ~4 ~4

a complete reorientation of the n-port is achieved.

The EOMT described in item (ii) above can destroy the state representation

of an n-port, as we saw in the case of the -1 farad capacitor and the 2-ports

in Fig. 2 and Fig. 5(c). This fact necessitates the following definition.
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Definition 21. Two n-ports,^ with state representation S^ and^j]^
with state representation S_, are said to be EOMT equivalent if

(i) ^ is obtained from^ by either an EOMTl or an E0MT2,
(ii) there exists a bijection b(«) which maps Z. of S onto Z^ of S^9
(iii) (u,y) is an input-output pair for^AI with initial state xQ ** (u,y) is an
input-output pair for^ with initial state b(x ),where (u,y) is related to

(u,y) by the appropriate EOMT.
nxn

Note that Def. 21 reduces to Def. 19 when P- = Q- = I ^ 3R

Theorem 9. Suppose that^M- andv^)2 are EOMT equivalent. Under these
conditions,^- is (strongly) passive <>J^2 is (strongly) passive.

Proof. Since the inverse of an EOMTl is an E0MT2 (and vice versa), we

will have the proof in both directions if we have it in the same direction for

EOMTl and EOMT2.

For EOMTl we have

<u(t),y(t)> = uT(t)9(t) = [u*(t) j?At)] \M'

L^2(t).

= [u*(t) lu*(t)]
L?3; \

T

9i|92

JsUL

Xl(t)

= uT(t)y(t) =(u(t) ,y(t)> ,for all t >_ 0.

Similarly, for E0MT2 we have

<u(t),y(t)> =[u^(t); u*(t)]

= [u*(t) jy*(t)]

•y^t)

Ly2(t)j

~?1 ?2~ T "9i

_s3

92~

?4.

-y^tf

u2(t)_
_?3 ?4-

= <u(t) ,y(t)> , for all t >_ 0

(5-6)

(5-7)

If E (•) and EA (•) are the available energy functions associated with the
Al A2

state representations of ^f and^^L, respectively, then it follows from Def. 21,

(5-6) and (5-7) that
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\
(b(xn)) = sup {-[ <u(t),y(t)>

~° b(xQ)-> ^->0
T>0

sup <- I <u(t),y(t)>dt) = E (x ).

-36-

Q.E.D.
xr • - "

T>0

Corollary A for Theorem 9. Suppose that the n-port<^N„ is a new orientation

of the n-port r^AI (partial or complete) and that(^\J- is EOMT equivalent to

(JVL. Under these conditions,^)- is (strongly) passive °Jvl_ is (strongly)
passive.

Proof. This is the special case mentioned in item (ii) of the paragraph

following Example 5; therefore, it follows directly from Theorem 9. Q.E.D.

Corollary B for Theorem 9. Suppose that the n-port o\L is obtained from the

n-portoJvJ- through a generalized datum-node transformation, i.e., P ^ IR and

P = Q . Under these conditions, (^\L is (strongly) passive ^ulfo is (stron§ly)
passive. v

Proof. In view of Theorem 9, it is only necessary to show that(-(A)1 and
(^\L are EOMT equivalent. Let S- denote the state representation of^^-, with
state the output equations

•

x = f(x,u)

y = g(x,u).

Let S denote the state representation of^\j . The state and output equations

of S? are then

x = fU^u) = f(x,u)

y = 9^(5,9^) = g(x,u)

LetQJL denote the set of admissible inputs for^^ ; then since Q- is nonsingular.
the set of admissible inputsQJL for<^\) can be defined as follows: u(*) eQjL
<* 9 u(«) e(3jL. It follows thato\l- and^ are EOMT equivalent, with the
bijection b : Z- + Z„ being the identity map. Q.E.D.

Corollary C for Theorem 9. Let the n-porto\f, with input-output pair

(u,y) be obtained from the n-portoMwith input-output pair (u,y) through



u >-*. u

=<p

k

where the matrix ^P = II ^P., each Cp. being either an EOMTl or an E0MT2. Suppose
i=l ~1 ~X

that for each i, the corresponding EOMT produces EOMT equivalent n-ports. Under

these conditions,^ is (strongly) passive ^oM is (strongly) passive.
Proof. Apply Theorem 9 k times. Q.E.D.

Using Corollary C, it may be possible to prove that passivity is preserved

under excitation-observation mode transformations ^r which do not have the

form of EOMTl or E0MT2. If it is possible to write ^Pin the form ^P = n t.,
" i=1 <T>and if each *~P. produces EOMT equivalent n-ports, then passivity is preserved under ^r.

5.3 Interconnections of Passive N-Ports

Definition 22. We say that an attribute of n-ports has the property of

closure if it is preserved under finite interconnections, i.e., if whenever

'^i-, y•••>lA)t, have the attribute and^^\)is obtained by interconnecting
(.^AL »• ••»lAIi_> thenoMmust have the attribute as well.

Linearity and time-invariance, for example, possess closure. Observability

and controllability do not. Does passivity have the closure property? In other

words, will a finite interconnection of passive n-ports always be passive? We

would certainly expect that for a reasonable definition of passivity the answer

will be yes.

The purpose of this subsection is to show that passivity as defined in this

paper does have the closure property, at least under certain assumptions. We

lett^AI-i >•••» oMv have state representations S ,... ,S with state spaces
Z1,...,Z, . Since we want to keep the discussion here relatively informal, we

will consider only the simplest case in whichcjVJhas a state representation S

which satisfies our assumptions in Section II and has the state space

Z = Z x...x Y , the Cartesian product of the individual state spaces. We will
1 K.

call such an interconnection admissible. Figure 9 is intended to convey this idea.

The interconnection of n-ports has been studied at great length by Ikeda and

Kodama [21], and we refer the reader to their paper for more details. It should

be emphasized that we are discussing only the non-pathological cases here, since

there are at least five ways an interconnection can fail to be admissible.

These are given in Appendix E. The reason for considering only these well-behaved

interconnections is that the following lemma and theorem can be proved without

invoking any elaborate technical machinery.
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Lemma 3. Leto\)with state representation S be an admissible inter

connection of^/\| ..sU\f as defined above. Let E :Z. -»• IR be the available
IK A.J

energy for<^\J., 1 <_ j <_ k, and E :Z = Z x... xZ -* IR be the available energy
foroM. Then if x=(x ,... ,3^) G I, we have E(x) <_E (x )+...+ E (x.) .

Proof. By Tellegen's theorem the power leaving the ports ofcjvlat any instant

is the sum of the power leaving the ports of (^ ,... ,o\L , and when^^j. has the
IK j

initial state x., the total energy leaving its ports is bounded above by E (x.).~J Aj ~j
Q.E.D.

Theorem 10. Let^\(with state representation S be an admissible interconnection

ofoV-L*- •• y^M^'
(1) If^^ ,...,q^J are passive, then(Jv)is passive.

(2) Ifc^AI-,» •••»lA)i. are strongly passive, then(J\lis strongly passive.

Proof. Statement (1) follows immediately from Lemma 3. If^)- ,..., <^\j-.
are strongly passive, then there exist states x.* £ Z. with EA (x.*) =0.

-J J A -j

Since x* = (x *,...,x, *) is in Z, we have from Lemma 3 that E (x*) = 0 and

statement (2) follows. Q.E.D.

VI. Internal Energy Functions and Passive N-Ports

Most of the results in this section have been stated and proved by Willems

[1]. Our purpose here is to make his work readily accessible to circuit

theorists by translating it into a more appropriate language and illustrating it

with a simple network example.

Definition 23. Given an n-portcjvlwith a state representation S, we say that

a function E :Z -*• IR is an internal energy function for<J\)if

M^V) "̂ (^V) - f2 P(;(t)»«(t))dt (6-1)
h

for all input-trajectory pairs {u(»),x(«)} (Def. 8) and all 0 <^ t. <_ t^,
where p(#,*) is the power input function (Def. 2).

9
In other words, an internal energy function is just a nonnegative function

on Z which increases along trajectories more slowly than the rate at which energy

9
We could equally well require only that Ej be bounded from below. The only
advantage in requiring that Ej be nonnegative is that it allows us to write

inequalities such as EA < ET < E„ . in a convenient way (see Theorem 12).
A — I — Rx* J

Note that E must be finite-valued* (see footnote 1).
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is delivered to the ports (or decreases more rapidly than the rate at which

energy is extracted from the ports). We shall show shortly (Theorem 11) that
under mild technical assumptions an n-portoWis passive if and only if there
exists an internal energy function forJW. It is clear from Def. 23 that if
E (•) attains its lower bound at some point x* £ Z, then the n-port (JV) is

strongly passive with relaxed state x*.

The following lemma gives an obvious sufficient condition for the existence

of a C internal energy function.

Lemma_4. Given an n-port^with state representation S. Suppose ZC m
is open and that ip :E -* ]R is C , bounded below, and satisfies

<Vif>(x),f(x,u)> ip(x,u)

for all (x,u) £ Z x U; then ip(»)-m is an internal energy function foroM, where
m is the greatest lower bound of *{>(•).

Proof. For any input-trajectory pair {u(«)>x(«)} and any times t^ >_ t^ >_0,

we have to
C2 diKx(t2)) -iKxCt^)) =J ^iKx(t))dt

hJ <ViJ,(x(t)),f(x(t),u(t))>dt
\
t.
'2

<

t

f p(x(t),u(t))dt. Q.E.D.
\

The next lemma gives a necessary condition that a C internal energy function

must satisfy.

Lemma__5. Given an n-portoMwith state representation S. Suppose that
EC 3Rm is open, thatQAcontains all piecewise constant functions mapping TR to U,
and that \p :Z •* IR is a C internal energy function foroM; then

<V^(x),f(x,u)> <_pCx,u)

for all (x,u) € z x U.

The assumption in Lemmas 4 and 5 that Z is open is needed so that ViJ>(x) can
be defined at each x £ Z. More generally, we can assume that iKO has a C1
extension to an open set containing Z.
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Proof. Let (x0,uQ) be an arbitrary point in Z xU and let {uQ,x(0} be an
input-trajectory pair with initial state xQ (i.e., x(0) = xQ and the input is the
constant function u(t) = uQ). It follows from Def. 23 that

<ty(x(t))
<!Mx0),f(x0,u0)> -—^~

*(x(t))-*(xn)
= lim

t=0 „+

1 (t<_ lim - I p(x(T),uQ)dT = p(x0,uQ).
t-K)

The last step is simply an application of the Fundamental Theorem of Calculus and

is justified because the integrand is continuous. Q.E.D.

Under the mild technical assumptions that Z C iRm is open and that Qj
contains all piecewise constant functions mapping IR to U, it follows from

Lemmas 4 and 5 that a C function 4> : E •*• ]R is an internal energy function if

and only if

<Vi|/(x),f(x,u)> lP(x,u) (6-2)

for all (x,u) £ Z x U. Note that we have made no claim about the existence or

uniqueness of such a function in general. In the case of an n-port made by

interconnecting linear passive resistors, capacitors, and inductors, the total

electrical energy in the storage elements would be one example of a C internal

energy function. But as the following example will show, there frequently exist

other choices as well.

Example 6. Consider the linear 1-port shown in Fig. 10. If we choose

the voltage as input, its state and output equations are

q = v - (G+l)q

i = v - q

and we suppose thatQ|= L- (IR ->-]R) .

Let's calculate all the possible internal energy functions of the form
2

*Kq) = a(q /2). Inequality (6-2) becomes in this case aq[v-(G+l)q] < v(v-q),
2 2 ~~

or v - [(a+l)q]v + a(G+l)q >^ 0, Vv,q € TR . It is simple to verify that this

inequality holds if and only if (a+1)2 - 4(G+l)a ^0; hence, a•(q2/2) is an
internal energy function if and only if
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aS [(2G+1) -2/G(G+l) ,(2G+1) +2/G(G+l)J • (6-3)
There are two features of this result worth noticing. The first is that there

is a range of possible values of a, and hence of internal energy functions, for

all G > 0. The second is that a = 1 lies in this interval for any value of

G >_ 0, as a simple calculation will verify. Therefore the electrical energy
2
q /2 is always a valid internal energy function.

The above results can also be derived using the general theory for linear

systems developed by Willems [1]. The algebraic Riccati equation for the system
2

in Example 6 is (a+1) - 4(G+l)a = 0. This scalar equation has two solutions,

of = 2G + 1 - 2/G(G+l) and a+ = 2G + 1+ 2/G(G+l). Willems' [1] theory shows
2 - +

that a(q /2) is an internal energy function if and only if a <_ a <_ a , and

this agrees with (6-3). But Willems' [1] theory goes beyond this: he shows how

to obtain the available energy function from the solutions to the algebraic

Riccati equation. When applied to Example 6, Willems' [1] theory shows that
2

E (q) = a (q /2), that is

EA(q) = [(2G+1) -2/G(G+l)J •(q2/2). (6-4)
This function is plotted in Fig. 11 for three different values of G. When

G = 0, i.e., when the shunt resistor is an open circuit, we can extract energy

from the capacitor with arbitrarily small losses by letting i be very small and
2

the discharge time very long. Therefore E (q) = q /2 when G = 0, in agreement

with (6-4).

Lemma 6. Leto\lbe a passive n-port with a state representation S, and

suppose that^-(Ais translation invariant and closed under concatenation. Under

these conditions, the available energy E.(0 is an internal energy function for

Jl.
Willems [1] has given the outline of a proof. Since it glosses over the

necessity of some assumptions on^(J[, we have included a complete and explicit

proof of Lemma 6 in Appendix F.

The following theorem shows why internal energy functions are of such

importance in the study of passivity.

Theorem 11. LetoAJbe an n-port with a state representation S, and suppose

that Hais translation invariant and closed under concatenation. Under these

conditions,o\)is passive <*• there exists an internal energy function E (•)

defined on E.
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Proof

("*) Lemma 6.

(*=) After rearranging (6-1) and choosing t =0, t? = T, we have
T

EI(x(0)) +f p(x(t),u(t))dt >-EI(x(T)) 10

for all input-trajectory pairs {u(«),x(«)} and all T >_0. Therefore

.T

<v(t),i(t)>dt <_E (x)-j.0
for all admissible pairs with initial state x and all T ^ 0, so

EA(?) 1EX(?) <*" (6-5)

for all x £ E. Q.E.D.

In view of Theorem 11, we could just as well take the existence of an

internal energy function as our definition of passivity. This is in fact the

approach that Willems [1] has adopted.

As shown in Lemma 4, a nonnegative C function i|>(*) defined on E is an

internal energy function if it satisfies (6-2). From Theorem 11 it follows

that the existence of such a function ^(') is a sufficient condition for passivity,

and this fact has been put to good use by Rohrer [2], But is it a necessary

condition? Or to put it negatively, is it possible for there to exist a passive

n-port satisfying the assumptions of this paper for which every internal energy

function fails to be differentiable at one or more points? Even if £(•»•) and
00

p(»,«) are C , we simply do not know. We have shown in Lemma 6 that E (•) is

an internal energy function, but there is no obvious reason why E (•) should

always be differentiable. Example 7 below shows that E (•) can fail to be

differentiable at a point, even though f(',*) and p(*,«) are C . There are often

other internal energy functions besides E (•)» but it is conceivable that none

of them is differentiable.

Example 7. Consider the 1-dimensional voltage-controlled 1-port with state

and output equations

x = f(x,v) = V

-1/4 2
tanh(v x)

where E = U = IR and^ttis the set of piecewise continuous functions mapping
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IR to IR . The power input function is p(x,v) = vg(x,v)

2/ 1 2\ "lM 2
= v I—rt— + x 1 tanh(v x). In the notation of subsection 4.5,

V +1 /
U~ = (ft and U = ]R\{0}, for all x. It follows that h(x) = -« for all x, and
xx —

h(x) = inf l^^l = inf /(-f- + x2 ) tanh(v2x)
v#) f(x'v) v^O v2+l /

= <"
x < 0

0 , x > 0 .
v^ —

It is easy to verify that the conditions of Theorem 7 are satisfied, so this is

a passive system. The available energy function is seen to be

(2v^x , x < 0

0 , x> 0.

The function E (•) in Example 7 is not differentiable at x = 0, and it is

1 dEAU)not even piecewise C since —•: • -« as x -*• 0 . This may not be the most

convincing counterexample because (a) the system is not completely controllable

(Def. 13) and (b) E (•) is not extremely pathological (it is C everywhere except

at x = 0). There may exist examples with multidimensional state spaces in which

E (•) exhibits a more pathological behavior, but this remains an open question.
A

Although it is not known whether C internal energy functions must exist

for the general passive system, this question can be answered for specific

classes of passive systems. Willems [1] has shown that C internal energy

functions always exist for passive linear systems in which the input and output

form a hybrid pair, and it can be seen that C internal energy functions exist

for the passive nonlinear systems considered in subsections 4.1-4.3.

We should mention the results of Hill and Moylan [22] (which are a

generalization of Moylan's [8] results). They considered nonlinear systems

which are linear in the control. Their necessary and sufficient algebraic

condition for passivity was obtained simply by applying inequality (6-2) to the

class of systems considered in their paper; however, their proof of the

necessity of (6-2) was based on the assumption that E (•) is C . The authc

of this paper believe that anyone attempting a truly complete proof of the
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1
necessity of (6-2) for a class of passive systems must prove that C internal

energy functions exist, and not merely assume that they exist.

Next, we are going to define the required energy functions. After listing

some of their properties, we will show that the required energy functions can

serve as internal energy functions under certain conditions. Recall from

subsection 4.5 that R(x) denotes the set of states reachable from x (Def. 12).

Definition 24. Given an n-porto\)with state representation S, we define

E :E x E -*- IR6 by
K

Vx0'x) "

M p(x(t),u(t))dt| ,if xe R(xo)

-h» , if ? £ R(xQ)

where the notation inf indicates that the infimum is taken over all T >_ 0 and

vx
T>0

all input-trajectory pairs {u(•),x(•)}|[0,T] from xQ to x (Def. 8); and for every
x. £ E we define the required energy (from xQ) , E :E •+• 3R , by

Roughly speaking, E_(x_,x) is the minimum energy required to drive the
R "U "

system from xA to x, with the convention that E (xn,x) = -H» if it is impossible

to drive the system from xQ to x.

We have listed below some obvious properties of the required energy functions:

(i) If E is reachable from x. (Def. 12), then E (x) < -H* for all x € E.-0 RxQ -

(ii) Ifu\)is passive, then E (x_,x) >-«> for all xQ,x € E.
(iii) If E (•) is an internal energy function, it follows from Def. 23 and

Def. 24 that

EI(x) - EI(x()) < ER(xQ,x) (6-6)

for all xn,x €= E;

(iv) Conversely, if tp : E -*• IR satisfies

iKx) " ^(xq) <.Er(xq,x)

for all x.,x ^ E, then iK») Is an internal energy function.
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(v) Ifo\(is passive and E is reachable from x , then

0iE^x) +EA(xQ) <+»

for all x £ E.

Property (ii) may require some comment. Note that the definition of the available

energy function (Def. 10) can be rewritten

CA(x0) =-inf ft
?0 ^ °
T>0

p(x(t),u(t))dt

Comparing this with Def. 24, it is then obvious that ER(xQ,x) >_-E^(xQ) for
all x ,x G E. This inequality, along with property (i), gives property (v).

Lemma 7. Suppose that an n-port^Mwith state representation S is passive,
suppose that E is reachable from some state xQ €= E, and suppose that Uis
translation invariant and closed under concatenation. Define co : E -»• TR by

?0

wx0(x) -^«+W-
Then to (•) is an internal energy function for<j\|.

Willems [1] has sketched a proof for this lemma, and we have included a

complete explicit proof in Appendix G. Note that if x is a relaxed state, then

Wx (0 = ERx (0*
x0 ~0

Consider Example 6 once again, and assume that G ^ 0. Since the state

representation is completely controllable and q = 0 is a relaxed state, it

follows from Lemma 7 that ER0(0 is an internal energy function for this 1-port.
Previously, we used Willems' [1] theory to obtain the available energy function

from a solution to the algebraic Riccati equation: his theory also shows that
+ 2the required energy E Q(«) for this 1-port is E (q) = a (q /2), that is

ER0(<1) = (2G+1) + 2/G(G+l) (q2/2). (6-7)

This function is plotted in Fig. 11 for three values of G. It is intuitively
?

reasonable that Eljn(q) = q"/2 when G = 0 because we can charge the capacitor with
RU

arbitrarily small losses by charging it very slowly.

The calculation of internal energy functions from a knowledge of the state

representation alone is a nontrivial problem which has been solved only for special

classes of systems, but it is easy to arrive at certain basic mathematical facts

about internal energy functions which are of a non-constructive nature. These

are summarized in the following theorem.

-45-



Theorem 12. Let^Wbe a passive n-port with state representation S. Then

the following statements are true.

(a) The set of all internal energy functions E (•) foro\) is convex, and
E (•) < ET(») for all possible E_(«).
A — I i

(b) Let xn £ E. For any internal energy function E^O such that E-^Xq) = 0,

(c) IfQiis translation invariant and closed under concatenation, then EA(»)
is an internal energy function. If, in addition, E is reachable from a

relaxed state x*, then E„ *(•) is also an internal energy function.
Rx*

Proof.

(a) The convexity of the set of internal energy functions is an immediate

consequence of (6-1), and we have shown in (6-5) that E (•) f.EI(»).
(b) This follows from (6-6) if we substitute ER(xQ,x) = E^ (x) .

(c) The statement about E (•) is just a restatement of Lemma 6, and the state

ment about E .(•) is a special case of Lemma 7. Q.E.D.
Rx5*

When all the assumptions under (c) hold, it follows that EA(«) and
E *(•) are extreme points [23] of the set of internal energy functions E (•)
Rx*

which satisfy E (x*) = 0, and it follows that EA(«) + (l-X)ERx^(«) is an

internal energy function for all X £ [0,1]. For example, all the internal
1 2energy functions of the form j aq for Fig. 10 can be written in this way. But

this does not imply that every internal energy function is a convex linear

combination of EA(«) and En .(•)• In the case that G = 1 in Fig. 10 it is easy
A Rx*

to verify that i|>(q) = o| q2 +qsin q+cos q-1) is avalid internal energy
function, and ijKO is clearly not a linear combination of EA(«) and ERQ(').

VII. The Passive Realization of N-Ports

The result discussed in this section is essentially the structural result

reported by Anderson and Moylan [24]. Suppose that we have a resistive

(m+n)-port(w>\| characterized by

- - -?(s.«) (7-1)
y = g(z,u)
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where the input vector (z,u) £ IR x IR and the output vector (w,y) £ IRm x lRn

form a hybrid pair, and suppose that we have a generalized capacitive/inductive

m-port(-AJ with state and output equations
• —

x = w

I ~ (7-2)
z = h(x)

where the input vector w €E ]R and the output vector z £ IR form a hybrid pair.

It is assumed that for each k £ {l,2,...,m}, the k-th components of w and w

are either both voltages, or both currents. We connect the m ports of^^ to
11

the first m ports of^M in such a way that w = -w and z = z. Under these

conditions, it follows from (7-1) and (7-2) that the resulting n-port has state

and output equations

x = f(h(x),u)

y = g(h(x),u).

Definition 25. The interconnection of^M and^AL described above is
said to be a realization of the state representation S given in Definition 1 if

f(x,u) = f(h(x),u) and g(x,u) = g(h(x),u) for all (x,u) £ Z x U; it is said to

be a passive realization if<^\| and(^A( are passive, where the inputs to^
are restricted to h[Z] x u C iRm x iRn .

Note that h[Z] is the image of Z under the mapping h:IRm •+ ]Rm .

We view the multiports ^MR and(^\( as given quantities — we are not
concerned with the difficult and unsolved problem of synthesizing these nonlinear

multiports. It is clear that any state representation S has a realization in

whicht^Af^ is linear: if each port of^MLC is either a1-farad linear capacitor
or a 1-henry linear inductor, whichever is appropriate, then h(x) = x and we

obtain a realization by choosing £(•,•) = £(•,•) and g(«,«) = g(«,0; in general

however, the resistive (m-hO-portQ^ will not be passive for such a realization.
K

The following theorem gives a sufficient condition for the existence of a
passive realization.

This can always be done. If the k-th component of w is a current, connect
the + terminal of the k-th port of^^A) to the + terminal of the k-th port of
(^\L; otherwise, connect + to -.

-47-



12
Theorem 13. Suppose that a state representation S (Def. 1) is passive,

that u and y form a hybrid pair, that Z = lRm , thatQjlcontains all piecewise
constant functions mapping IR to U, and suppose that there exists a C internal

energy function i^(«) for S and functions f(•,•), £(*,') such that

?(x>u> = ?(?*<*).")

g(x,u) = g(ViJ;(x),u)

for all (x,u) € ]R x u. Then S has a passive realization.

Remark. The functions £(♦,•) and £(•,•) always exist if V^(-) is one-to-one
We define f : Vi^fm"1] x U-* TRm and g: Vif^lR111] x U+ lRn by

f(z,u) - ^((V*)"1 (z),u)

g(z,u) = g((Vi^)"1(z),u).

Proof of Theorem. The m-port(^\( has state and output equations

x = w

z = V^(x)

where the internal energy function ip(«) is C and nonnegative. It follows from

Theorem 4 that^ is passive.

The (m+n)-portu\( is characterized by

w = -f(z,u)

y = g(z,y)

m

where (z,u) € Vi|>[3R ] x U. Let (z0»Uq) be an arbitrary point in V^[]Rm] x U,
and let x £ ]Rm be such that zQ = V^(x ). Then

r T Ti
[50'u0] J(VVj ^V^'^^V^VV*

= <u0,g(v^(x0),u0)> - <YKx0),f(yiKx0),u0)> 10,
the last step follows from Lemma 5. It follows from Theorem 3 that(AL is passive.

R

Q.E.D.
12
In this theorem we shall consider passivity and the existence of internal

energy functions to be attributes of the state representation S, rather than
attributes of an n-portc^AI. This is not consistent with our previous terminology,
but the meaning is clear.
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Theorem 13 shows that the recovery of a C1 internal energy function from a
given state representation S is an important first step toward obtaining a

passive realization of S.

VIII. Concluding Remarks

8.1 Weak Passivity and Strong Activity

After defining the required energy functions in Section VI (Def. 24), we
noted that for a passive n-port the function ER(»,0 satisfies E^x^x^) >-«
for all x ,x € E. One might be tempted to define a weaker notion of passivity

based on this condition, i.e., an n-port could be defined to be weakly passive

if E (x ,x ) > -« for all x-,x ^ E; notice, however, that a -1 farad capacitor

(with the current as the input) satisfies this definition. Since the classification
of a -1 farad capacitor as an active element is deeply entrenched in the literature,

it seems unwise to classify it both as an active element and an element which

is passive in some weaker sense. It would perhaps be better to define a stronger

notion of activity based on the negation of weak passivity, i.e., an n-port could

be defined to be strongly active if there exist at least two states ^ and x2 such
that E (x ,x ) = -». A -1 farad capacitor is then active but not strongly active.

R ~1 ~2
In balance, however, there appears to be very little reason to introduce these

new concepts.

8.2 Possible Generalizations

We have made the standing assumptions in this paper more restrictive than

necessary in order to avoid hiding our concepts under a mass of elaborate

definitions and unfamiliar notation. There are at least five possible general

izations which would not require a fundamental revision of our theory:

a) Our theory could be stated in terms of an abstract dynamical system [17].
This would enable our theory to handle infinite-dimensional systems, for example.

There are also obvious extensions to time-varying systems. Both of these

generalizations have been carried out by Willems [1].

b) We have required that p(x(t),u(t)) = <v(t),i(t)> , the instantaneous power
input. Nothing essential would be altered if we merely assume that p:E x U •> TR
is some arbitrary continuous function. This approach has been taken by Willems [1]:

he simply calls p(«,0 the "supply rate," and it might well be that a particular

n-port is passive with one choice of supply rate but active with another choice.

This type of generalization might prove useful for obtaining results in stability

theory. Note that such a generalization would normally invalidate our result in
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subsection 5.3 on interconnected systems, since Tellegen's theorem applies to

physical electric power but not to arbitrary functions.

c) We have only discussed systems in which problems of finite escape time do

not arise. It is important to note that these problems are not restricted to

active n-ports. Consider for example the 1-port formed of the series connection

of a 1-farad capacitor and a resistor characterized by vi = 1. This is

admittedly a strange 1-port because v. can never equal v , as this would imply

that v = 0, which is not an admissible voltage for this resistor. But it is

surely passive by some extended definition since it is made up of passive

elements, and i •*• » in finite time as we can see by solving its state equation

with v, =0 and q(0) ^0.
in ^

We could include such systems in our theory by altering Def. 10 so that T

ranges over only those nonnegative values which are less than the time of escape.

d) The capacitors in Fig. 4, which arise from the mechanical example in subsection

3.3, are a technical violation of our assumptions on state representations

because the set of admissible inputs over IR depends on the initial state

Qq = q(0); specifically, each input i(«) must satisfy the relation
,T

i(t)dt < 0, VT > 0.Wo1
This set of functions is not translation invariant and not closed under

concatenation, as simple counterexamples will show. It turns out that we can

define weakened forms of translation invariance and closure under concatenation

which cover this case and are sufficient for proving our lemmas and theorems

which require these properties. We suppose that the set of admissible inputs

depends on the initial state. LetQAbe a set of functions mapping IR to U
which is_translation invariant and closed under concatenation as in Defs. 6 and 7,

and letHA(') :E -*Ha be a map which gives the set of admissible inputs for each

initial state; specifically, if the initial state is xn, then the set of

admissible inputs over IR is 4l(xQ). Let {u.(«),x (•)) be an input-trajectory
pair (and hence un(0 eQjl(x-(0))) . Let x > 0 and define u, (•) to be the

~± ~1 — ~IX

translation of u (•) by t units to the left, i.e., u (t) = u (t+x) , t >_0.

If uiT(') e U(x (x)) for every x^ 0and for every input-trajectory pair
{u (•) ,x. (•) }, then we say that the mapQj((«) is weakly translation invariant.

Let (u-(•) »x. (•) }be an input-trajectory pair, let x^ 0, and let u2(«) e^U(x-(x)).
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Define u 0 (•) to be the concatenation of u.(») and u2(0 at x, i.e.,
~12x -1-

rU;L(t), o <. t <x
U12x(t) = |u2(t-x), t>x.

If 12^(0^01(^(0)) for all u2(0 ^Ql^W), all x>0,_and for all input-
trajectory pairs {u («),x (•)>. then we say that the map Qj(-) is weakly closed
under concatenation. These weak forms of translation invariance and closure under

concatenation are all that is required in the proofs of the various lemmas and

theorems in this paper which require these properties,

e) Consider a system of the form

z(t) = f(z(t),u(t),u(1)(t),...,u(k)(t)) (8-la)

y(t) = g(z(t),u(t),u(1)(t),...,u(k)(t)) (8-lb)

where u J (•) denotes the j-th derivative of u(-), with the convention

u (•) = u(-). We assume that k >_ 1 and that every input u(«) is piecewise

C . An example of such a system for the case k = 1 would be a voltage-controlled

n-port in which there is a loop consisting exclusively of capacitors and ports.

Since the first (k-1) derivatives of the input u(«) must exist and be continuous,

even at t = 0, u(») must satisfy the condition u^J^(0) = u J (0~) ,0 £ j <_ k-1,
where u J (0 ) denotes lim u ** (t) (since we must know the input before t = 0 in

t-K) ~
t<0

order to find u (0 ), we are violating our convention of viewing the system only

over the time interval TR ). Because system (8-1) requires continuous inputs,

even at t = 0, the set of admissible inputs cannot be translation invariant or

closed under concatenation as in Defs. 6 and 7; nevertheless, there is a way to

13
handle such systems along the lines described in part d) above.

Note that system (8-1) can be rewritten in the form

x(t) = f(x(t),u(k)(t)) (8-2a)

y(t) = g(x(t),u(k)(t)) (8-2b)

13For a linear system of the form (8-1), one could use distribution theory to
make some sense out of a discontinuous input; but as far as we know these concepts
cannot be extended to the general nonlinear system of the form (8-1).
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where

x0
-2

A
x =

• Xi
]R , i = l,2,...,k

z

*, (k). A
f(x,u ') =

„, (- _,(kn+m)
l ^ IR denote the state space of system (8-2). We define the

Xrt
~3

Xk

(k)

(k)

(k) A ~ (lc)g(x,u )= g(z,x1,x2,...,xk,uv y) (8-2e)

LetHAdenote the set of piecewise C functions mapping JR to U and let

map

Qjl(-) :Ef +01 as follows:

QJl(x) AA»(.)eqj[:

u(0)

u(1)(0)

u^O)

(8-2c)

(8-2d)

Xl

X2 (8-3)

A.

As in part d),HA(») is the map which gives_ the set of admissible inputs for each
tial state. It is easy to verify thatQj((«) is weakly translation invariantmi

and weakly closed under concatenation.

We illustrate the ideas of part e) with the voltage-controlled capacitor

q = q(v)> where q(«) is C . The current flowing through such a capacitor is

i = q'(v)v. Note that this expression gives the output i directly in terms of

the input v — no state equation is necessary. But to show how such a system can

be treated along the lines described in part e), we give it a state representation

as in (8-2) of the form
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X = v

i = qf(x)v

where, with^denoting the set of piecewise C1 functions mapping tt+ to U, we
define QJl(-) :3R ^Qi by

q}(x) = {v(0 ^Qi: v(0) =x}.

The five possible generalizations mentioned above would require only minor
alterations. One feature they would not change is our implicit assumption that
we can always choose a definite input and output. This has put elements such as
the algebraic n-ports defined by Chua [14] outside the range of our theory. The
ideal diode and the norator are examples of algebraic 1-ports which are neither
voltage-controlled nor current-controlled. Another example of an algebraic

2 2
1-port would be a capacitor with constitutive relation v +q < 1.

It is possible to include such elements by a major alteration which would
eliminate state equations from our theory altogether. Although our work has
been presented in terms of state equations because they are a familiar convention,
the essential idea does not require them. All we really need is a set of

initial states E and a map p(0 which assigns to each xQ € E]. the class of all
admissible pairs {y(-),i(')} which are compatible with that initial state. The
available energy would be defined by

EA(x.) =sup <( -<y(t),i(t)>dt
A *"U VT>0V.J0 J

V{v(-),i(0>e P(x0)

and the theory could then proceed along roughly the lines we have presented in

this paper.

8.3 Three Different Interpretations of Passivity

There are three different but logically equivalent ways of interpreting

passivity. Since they emphasize different facets of the concept, it is worth

while considering each in turn.

The first might be called "the thermodynamic point of view." Here we

consider an n-port as a possible energy source and concern ourselves with how

much energy we can hope to extract from it. The exact amount will generally

depend on the initial state and is denoted by EA(xQ). We have written this
paper from "the thermodynamic point of view," as Definitions 10 and 11 clearly

reflect. This approach seems to us to present the meaning of passivity in the

clearest possible light, but it does not make the potential links between

passivity and stability especially obvious.
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From the second perspective, which we might call the "input-output point of

view," we look on an n-port as a family of operators 0 , one operator for each

initial state x £ E. These operate on an input waveform u(#) to produce an

output waveform y(0* We will assume that u(») and y(») are a hybrid pair and
2 ~ + n ~

that the domain and image of 0 are in L. (IR -*-3R ) , since we wish to introduce
x loc

the family of inner products

»T

<u(0,y(-)> =f <u(t),y(t)>d
Jo

t.

We can then think of 0 as passive if (u(*),0 u(«)) is bounded below as u(«)

varies overalland T varies over IR , and we say that the n-port is passive if

0 is passive for each x £ E.

The thermodynamic and the input-output viewpoints are obviously logically

equivalent. The latter is extremely important as the setting for many stability

theorems from control theory which are based on functional analysis [10]. It

is important to note, however, that such theorems always require conditions which

are stronger than or distinct from passivity alone, e.g., strict passivity or

incremental passivity.

The third way of looking at passivity might be called "the internal energy

point of view." From this perspective we would say that an n-port is passive

if there exists a nonnegative function on the state space which decreases along

trajectories at least as rapidly as the rate at which energy leaves the ports.

We have shown in Theorem 11 that under mild technical assumptions this point of

view is equivalent to the first two. Many stability theorems in circuit theory

take this view of passivity because the internal energy function can often serve

as a Lyapunov function; it is important to note, however, that even a smooth

internal energy function need not be a genuine Lyapunov function because the

concept of passivity alone imposes no requirements on its shape. The internal

energy function in Fig. 6 is an example which shows that additional requirements

are necessary since it does not qualify as a Lyapunov function.
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APPENDIX

Appendix A: Proof of Theorem 1.

Since x is reachable from xQ, there exists a finite T^ 0 and an input-
trajectory pair {u(.),x(-)>|[0,T] from xQ to x±. Let u'<0 eQjbe an arbitrary
input, and let {u1(•),xf(•)} be an input-trajectory pair with initial state x±.
Define a waveform u"(») by

fu(t), 0 <t£T
u"(t) £ /

|uf(t-T), t > T.

SinceQJUs closed under concatenation, u"(0 ^Qj. Let {u"( •) ,x"(-)}be an
input-trajectory pair with initial state xQ; hence, x"(t) = x(t) for 0 <_ t£ T;
moreover, x"(t) = x1(t-T) for t > T since the state equation is time invariant.

From Def. 10 we obtain

JT+T*
p(x"(t),u"(t))dt (A-1)

0

for all T1 >_ 0. Separating the integral in (A-1) into two integrals, one over

the time interval [0,T] and one over the time interval [T,T+Tf], we obtain

Ea(xJ > " I P(x(t),u(t))dt
A ~° - Jo0

.T'

-[ p(x'(t),u,(t))dt (A-2)
'0

for all T' >_ 0. Taking the supremum over all uf (•) ^HA.and all Tf >_ 0,

we have

rT
EA(x0) >. -J P(x(t) ,u(t))dt +EA(X;L) . (A-3)

The integral on the right-hand side of (A-3) is finite by standing assumption (4) ;

hence, if EA(x_) < +°°, then E.(x-) < -H». Q.E.D.
A ~0 A ~1

Appendix B: Proof of Theorem 3.

(i) =*• (ii) . If <u,g(u)> >^ 0 everywhere, then

T T

f -<u(t),y(t)>dt =f -<v(t),i(t)>dt <0
•>0 J0

A-1



for all initial states x€ E, all inputs u(«) £QI, and all T >_ 0. Therefore
the supremum in Def. 10 is obtained by setting T = 0, and we have E (x) = 0

A ~

for all x £ Z.

(ii) => (iii). This follows immediately from the definition.

(iii) ** (i) • Supposeo\)is passive but that for some value u' £ U, we have
(uf»g(u'))= X < 0. Then consider the constant input u'(t) = u1. For any state
x £ Z we have

rTEA(x)lsup -<u'(t),g(u'(t))>dt
T>0 JO

= sup {-XT} = +» .
T>0

SocJvlis active, contradicting our assumption. Q.E.D.

Appendix C: Proof of Theroem 4.

Proof of (1).

(*=) Let I be a finite lower bound for iK')> let x £ Z be any state, and let

(u(0,y(#)} be any input-output pair with initial state x_. Then for all

T >_0 we have

T T

f -<u(t),y(t)>dt =-f <x(t),Vi|/(x(t))>dt
•'O Jo

= f -|^*(?(t))> dt =*(xQ) -*(x(T)) <*(xQ) -I. (C-1)
The third step is justified because x(») is absolutely continuous and if»(#) is C ,

which implies that ^ o x(») is absolutely continuous. It follows from (C-1) that

E (xQ) <_ iKXq) -I < -H». Since x^ was arbitrary,(Jvl is passive.
(=*) AssumeoMis passive. If § is not the gradient of a scalar function which
is bounded below, then two possibilities arise. The first is that g = Vij; where

^ is not bounded from below. The second is that g is not the gradient of any

scalar function at all.

We can easily eliminate the first possibility. If g = Vtfi where ip has no

lower bound, then for each real number r there is a point x € £ such that
i / **r

ij>(x ) < r. Let the input u (•) be defined by u (t) = x , 0 < t < 1 and u (t) = 0

otherwise. Let y (•) be the output which results from applying u (•) when the

initial state is 0. We have

14^ ; ; ~ . ,
We are ignoring physical units here and treating all quantities as dimensionless.
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r1 f1
I -<u (t),y (t)>dt = - <x ,g(x t))dt
Jo ~r ~r Jo

=' i \dt ^V0} dt =*(0) "̂ -r* >̂ (0) 'r'
Since r was arbitrary, E (0) = +°° contradicting our assumption that^Mwas passive.
This eliminates the first possibility.

Suppose that g(«) is not the gradient of any scalar function. It follows

[25, Theorem 7, page 82] that there exists a point x £ IR and a piecewise C

function Y:[0,1] •* TRn such that y(0) =y(l) = xQ and
.1

<Y(t),g(Y(t))>dt t 0 (C-2)
0 ~

(the image of [0,1] under the mapping y(') is a piecewise C closed curve through

x , and the integral in (C-2) is the line integral of g(») around this curve).

We assume without loss of generality that

.1 A
<Y(t),g(Y(t))>dt A r > o; (C-3)

0

for if (C-3) is not satisfied, then we replace y(') by a new function y(0 defined

by Y(t) = Y(l-t). Define an input u(«) as follows:

u(t) = Y(t-k), t e [k,k+l), k = 0,1,2,...

Since y(') is piecewise C ,u(») is an admissible input waveform. If the initial

condition is x(0) = x , it follows that

x(t) = Y(t-k), t € [k,k+l), k = 0,1,2,...

For each positive integer k, the energy extracted at time T = k is

-k fl
- I <u(t),g(x(t))>dt = -k <Y(t),g(Y(t))>dt = kr. (C-4)
Jo JO " "

Since r > 0 and k is an arbitrary positive integer, it follows from (C-4) that

E (xrt) = +», which contradicts the assumption that(Jv)is passive.
A ~0

Proof of (2).

M We need only show that x* is a relaxed state. To see this, let {u(«),y(*)}

be an input-output pair with initial state x*. Then for any T > 0 we have

-<u(t),y(t)>dt = *(x*) - *(x(T)) < 0;
Jo

A-3
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hence, the supremum in Def. 10 is obtained by setting T = 0, so E (x*) = 0, i.e.,

x* is a relaxed state.

(=*) AssumeoMis strongly passive. Then^Wis passive and so the conditions of
part (1) of the theorem must hold. Furthermore there exists a relaxed state

x1 £ Z. To see that </>(•) attains its minimum at x', let {u(«),y(*)} be any

input-output pair with initial state x1. Then

-T

-<u(t),y(t)>dt = i^(x') - iKx(T)).
0

Since xf is a relaxed state, E (x1) = 0 and we must have ^(x') - i/>(x(T)) 1 0,

or i|/(xf) <.^(x(T)). But x(T) could be any point of Z, so iJ/(0 must attain its

minimum at xf. Q.E.D.

Appendix D: The 1-Dimensional System.

(D.l) Definitions. Let Z C ]R t and let the topology of Z be the relative

topology that it inherits from IR (i.e., a subset G C e is open if and only if
15

there exists a set G which is open in IR such that G = G H E). A function
Q

f : E -»- ]R is defined to be upper semicontinuous if the set {x £ E : f(x) < a} is

open (in the topology of E) for all a £ TR . Likewise, f : E -* TR is defined to

be lower semicontinuous if the set {x £ E :f(x) > a} is open for all a £ 3R .

Note that f(») is upper semicontinuous if and only if -f(0 is lower semicontinous;

also, f(-) is continuous if and only if it is both upper and lower semicontinuous.

(D.2) Lemma. The infimum of any collection of upper semicontinuous functions

is upper semicontinuous. The supremum of any collection of lower semicontinuous

functions is lower semicontinuous.

Proof. Let {f :8 E B} be a collection of upper semicontinuous functions,

where the index set B may be finite, .countable, or uncountable. Let

f = inf{fft :g e B}. Then {x :f(x) < a} = U {x :f0(x) < a}. Thus {x :f(x) < a}
* 03} e

J,

Usually, the state space E is an open subset of IR (it may be IR itself), in
which case there is no reason to introduce the concept of relative topology.

These definitions of semicontinuity are taken from Rudin [26] . A more restrictive
definition of semicontinuity is the following [9]: f(«) is upper semicontinuous
at xQ E E if f(xQ) < +«> and f(xQ) >_ lim f(x) ,and f(«) is lower semicontinuous

x+x0

at x0 if f(xQ) > -°o and f(xQ) <_ lim f(x); f(») is upper (resp., lower) semi-
x^x0

continuous if it is upper (resp., lower) semicontinuous at each point x E E.

Rudin's [26] definition is more general and better suited to our purposes.
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is open for all a € TR , i.e., f is upper semicontinuous. The proof of the

other assertion is similar. Q.E.D.

(D.3) Lemma. Let f:E •*- lRe and let K C E be a compact set. If f(«) is

upper semicontinuous and f(x) ^ +» for all x E K, then f(») is bounded above on

K. If f(-) is lower semicontinuous and f(x) $ -» for all x £ K, then f(«) is

bounded below on K.

Proof. Let f:E -• TR be an upper semicontinuous function, and let K C E

be compact. Suppose f(x) £ +» for all x G K. For a € ]R , define

V = {x € E : f(x) < a}.

Thus each set V is open. The collection {V : a € TR} covers K. Since K is
a r a

compact, there exists a finite subcover {V ,...,V }. Let M = max{a_,...,a }.
r a, a In

1 n

Then f(x) < M < +» for all x € K. The proof of the other assertion is similar.

Q.E.D.

(D.4) Definitions. Let f(») be a real-valued function with domain contained

in TR . Then f(») is said to be continuous from the right at x_ if

f(x-) = lim f(x), and continuous from the left at x_ if f(xfi) = lim f(x). A

x>xQ x<x0

function s: [c,d] C ]R •+ TR is a step function if there exists a partition

c = xrt < x- < ... < x = d of [c,d] such that s(») is constant on each open
U 1 n

interval (x. -,x.), i = l,2,...,n, s(«) is continuous from right at c, continuous

from the left at d, and s(*) is continuous from either the right or the left at

x±> i = l,2,...,(n-l).
(D.5) Lemma. Let f:[c,d] C ]R -»• 3Re .

(i) Suppose f(«) is upper semicontinuous and f(x) $ +00 for all x E [c,d]. Let

M = sup{f(x) : x € [c,d]> (note that M < +• by Lemma (D.3)). Then there exists

a sequence (s ) of upper semicontinuous step functions such that '

M > s. > s0 > ... > f and lim s (x) = f(x) for each x E [c,d].
— 1 — 2 — — n

n-*»

(ii) Suppose f(-) is lower semicontinuous and f(x) ^ -» for all x ^ [c,d]. Let

m = inf{f(x) :x ^ [c,d]} (note that m > -« by Lemma (D.3)). Then there exists a

sequence (s ) of lower semicontinuous step functions such that m <^ s. <_ s« f_ .•• f_f

and lim s (x) = f(x) for each x €= [c,d].

Proof. Without loss of generality, assume [c,d] = [0,1]. If (i) is

satisfied, then M-f(«) is nonnegative and lower semicontinuous. If (ii) is

satisfied, then f(»)-m is nonnegative and lower semicontinuous. Hence there is
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no loss of generality in assuming tha^ f(») is ^onnegative and lower semicontinuous

Fix n and define m, = inf/f(x) : x £
k-1 _
2n ' 2n

n
for k = 1,2,...,(2 -1) and

define

Pkn = n "

ine m =<inf f(x) : x £ 1 - — , 1 >. Let p. = m, if m, < -H», and let

2nn V I 2n _)j ta ^" ^"
"kn

= -H». Define

Sn(0> "'in

Sn(1) " P2nn

aJ&) "^^ka'PCk+Dn1' k"1.2,-.-.(2n-D.
Clearly, each s (•) is lower semicontinuous and 0 <_ s- <_ s. <^

x € [0,1]. Suppose first that f(xQ) < +~ and let e > 0. The set
V = {x £ [0,1] :f(x) > f(xQ) - e} is an^ppen set (in the^topology of [0,1])

< f. Fix

containing X-. Choose n so large that
X° " 2n! xn+~0 2n n [o,i] c v. it is

easy to see that s (x.) > f(xrt) - e. Since e > 0 was arbitrary, this shows that
n u — u

s (x_) -»• f(x-) . Now suppose f(x_) = -H». For arbitrary N, define
n 0 0 U

V = {x € [0,1] : f(x) > N}. Then V is an open set containing x . Choose n so

large that n > N and
k0

N was arbitrary, this shows that s (x_) -»• +••

-^ •xo "^] n[0»1] cV Tbm ^V i

the value
E

N. Since

Q.E.D.

(D.6) Integration Conventions. The integrals appearing in this appendix

are Lebesgue integrals. Let f :IR -»• H be a measurable function, and define

f = max(f,0), f" = max(-f,0). Let ECl be a measurable set. The function

f(•) is said to be integrable in the extended sense over E, and I f is assigned
J17

ff=f f+ -ff", (D-1)
Je •'e •'e

provided that at least one of the two integrals on the right-hand side of (D-1)

is finite.

(D.7) Lemma (Change of Variable). Let g : [a,b] C B -+ TR be a monotonic

piecewise C function. Set c = min{g(a),g(b)}, d = max{g(a),g(b)}. Suppose

f : [c,d] -*• IR is either (a) upper semicontinuous and not equal to +» at any

point of [c,d], or (b) lower semicontinuous and not equal to -*» at any point of

[c,d]. Then
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f(x)dx =| f(g(t))g'(t)dt. (D-2)r
Jg(a) a

*g(b)

Remarks. The integral is understood in the extended sense: I f(x)dx - +»
fb •'g(a)

(resp., —) if and only if f(g1 (t))gf(t)dt = 4« (resp., —). The lemma holds
*a

more generally when g(*) is a monotonically increasing absolutely continuous function

and f(«) is a nonnegative measurable function [9]. Another version of the lemma,

familiar from basic calculus, shows that (D-2) holds if g(«) is continuously

differentiable (C ) and f(») is continuous on the range of g(") [27].

Proof. We shall only prove the case when g(») is monotonically increasing. The

other case can be derived from this. Since the integration can be broken down

into a finite number of intervals in [a,b] where g(«) is C , it can be assumed

without loss of generality that g(») is C . Let [c0,dQ] C [c,d], and let
(a ,bn) =g_1[(c ,d )]. Define astep function s(«) on [c,d] by setting
s(x) =1 for xS [c0,dQ] and s(x) =0 for x£ Uq,^]. Then

fd rbo
I s(x)dx =d0 -cQ =g(b0) -g(aQ) =J g'(t)dt
J n a.ao

-b

s(g(t))g'(t)dt. (D-3)
a

It follows from (D-3) that (D-2) holds for any step function. Let <sn> be a
sequence of step functions as described in Lemma (D.5). Then since g'(t) ^0
for all t G [a,b], the function given by s (g(t))g'(t) approaches monotonically

the function given by f(g(t))gf(t). It follows from (D-3) and the Monotone

Convergence Theorem [9] that

fd rd rd
I f(x)dx = lim j sn(x)dx = lim sn(g(t))g'(t)dt

<•

c •• n-+°° J c n-*50

j lim s (g(t))g'(t)dt
^c n-H»

A=J f(g(t))g'(t)dt. Q.E.D.

(D.8) Lemma, h(') is lower semicontinuous and h(«) is upper semicontinuous

(see Def. 18 and Def. (D.l)).

Proof. We shall prove that h(0 is upper semicontinuous. The proof of the
— e

other assertion is similar. For every u £ U, define h : E -*• TR by
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nu(x) k

"p(x,u) +
T7~ r , u €= U
f(x,u) ~ x

V +», u^ U\ U+ .
- x

It is clear that h(x) = inf{hu(x) :uG u}. Let u€ u and aG n be fixed. Then

{x e E:hu(x) < a} = {x € E:f(x,u) > 0} n {x € E:p(x,u) - of(x,u) < 0}.

(D-4)

From the continuity of the functions f(«,») and p(«,«), both sets on the right-
hand side of (D-4) are open, and thus their intersection is open. Hence h(«)

is the infimum of a collection of upper semicontinuous functions. It follows from

Lemma (D.2) that h(«) is upper semicontinuous. Q.E.D.
The functions h(-) and h(0 are continuous in the special case when

h(x) = h(x) for all x e Z (this follows from Lemma (D.8) and the comments in

Def. (D.l)). In general, however, neither h(«) nor h(«) will be continuous. The

following example shows that these functions can be quite bizarre.

(D.9) Example. Let <rn> be any enumeration of the rational numbers.
Consider the system

3
x = u

y = u sgn(u) 2 — exp(-u (x-r ) ),
^i oil n
n=l 2

where u and y form a hybrid pair and where sgn(u) = -"— , for u ^ 0, and
A lul

sgn(O) = 0. This system is passive because uy >_ 0 always. It follows from
(4-6) and (4-7) that

0, x irrational
h(x) =; 1

— , x = r
rtii n

since the supremum in (4-6) is found by letting u -»•-<» , and

0, x irrational
h(x) = J ±

— , x = r
«n n

since the infimum in (4-7) can be found by letting u -»- +». Notice that both

h(») and h(») are discontinuous at each rational number. It can be verified

that h(») is upper semicontinuous and h(«) is lower semicontinuous; moreover,
note that h(x) <_ h(x) for all x (this is one of the conditions for passivity
listed in Theorem 7).
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(D.10) Definitions. For every x €= E, let R(xn) denote the set of states
A +reachable from x . Let R (xQ) = {x G R(xQ) :x <xQ} and R (xQ)

={x e R(x ):x>xQ}. Note that R(xQ) =R~(x0) U {xQ} UR (X()) ,adisjoint
union. There are four possibilities for R (xQ) :R (xQ) = (-«>,x0) ;R (xQ) = (j>;
R~(x )= (a,x ); and R~(xQ) = [a,xQ); where -» <a <xQ. We emphasize that we
are considering only states which are reachable in finite time. The example

x = -u x shows that the fourth possibility, a closed end point, can indeed

occur (this system can be driven to the singular point x = 0 in finite time).

Likewise, R+(xn) can have one of four forms: R (xQ) = (xQ,+<»); R(xQ) =$;
R+(x )=(xQ,b); and R(xQ) =(xQ,b]; where xQ <b<-}-«>.

For any set B C ]R , let int B denote the set of interior points in B.

(D.ll) Lemma. Let h(0 and h(») be as defined in Def. 18. Then for each

xoe£)

h(x)dx,(i) inf {[ p(x(t),u(t))dt> =j h
VXlV° <> x0
x<0 for all x- ^ int R (xn)
a _ l u
t>0

-v x

(ii) inf (f p(x(t),u(t))dt> =j h(x)dx,
yx2Vo J \ +
x>0 for all x G int R (x.)
rt z u
t>0

where the infimum in (i) is taken over all t > 0 and all input-trajectory pairs

{u(0,x(«))| [0,t] from x to x with x(t) < 0 for almost all t € [0,t], and

the infimum in (ii) is taken over all t > 0 and all input-trajectory pairs

{u(0,x(-)}| [0,t] from x to x£ with x(t) >0 for almost all tG [0,t].
Remarks. The phrase "almost all t G [0,t]" means for all t £ [0,t] except

for some t which lie in a set of Lebesgue measure zero.

The integral on the right-hand side of (i) may be slightly confusing,
x

Since x <xn, f hwill be negative if h(') is positive on the interval
J-xr

x0
Lx,,Xq J•

Proof. We shall prove (ii) only. The proof of (i) is similar. Let

xn ^ E and let x? e int R (xn). By Lemma (D.8), h(*) is upper semicontinuous.

Since x is in the interior of R (xQ), it follows from Def. 18 that h(x) ^ +»
for all x G [x ,x ]. It follows from Lemma (D.3) that h(«) is bounded above on
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X2r 2

the compact interval [x^]. Thus I h(x)dx exists in the extended
x0

(see Integration Conventions (D.6)).

Now let {u(O,x(O)|[0,t] be an input-trajectory pair from x to x such
that x(t) > 0 for almost all t G [0,t]. It follows from Def. 18 that

p(x(t),u(t)) >_h(x(t))x(t), almost all tS [0,t]. (D-5)

Thus

p(x(t),u(t))dt > h(x(t))x(t)dt = h(x)dx. (D-6)
•'0 J 0 J-*

0

The use of the change of variables formula in (D-6) is justified by Lemma (D.7),
since x(«) is monotonically increasing and piecewise C , and h(«) is upper semi-

continuous and not equal to -H» at any point on the interval [x ,x ]. The fact that

x(«) is piecewise C follows since U is closed, f(»,») is continuous on ExU, and

the elements ofHtare piecewise continuous. In light of (D-6), it only remains
to show the following:

Case (a). J h(x)dx > -«. Then given e> 0, there must exist an input-
X0

trajectory pair {u(-),x(-)}|[0,t] from xQ to x. such that x(t) >0 for almost
all t E [0,t], which satisfies

r
Jn0 -x

0

X2

x2

p(x(t),u(t))dt ^J h(x)dx +e

sense

Case (b). J h(x)dx =-«. Then given K>0, there must exist an input-
X0

trajectory pair {u(-),x(.)}|[0,t] from xQ to x„ such that x(t) >0for almost
t G [0,t], which satisfies

I p(x(t),u(t))dt <_ -K.
•'O

We shall prove Cases (a) and (b) simultaneously by constructing a piecewise
constant "nearly optimal" control law.

Let <sn> be a sequence of upper semicontinuous step functions as in
Lemma (D.5) which satisfy M > s > s, > ... > h and lira s (x) = h(x) for

— l — i — — n
n-x»

each x- [xQ,x2], where M=sup{h(x) :xG [x^]}. It follows from the Monotone
Convergence Theorem [9] that

r2 x9
J h(x)dx =lim J s(x)dx. (D_7)
xQ n-*«» x0
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Let e > 0. If Case (a) holds, choose N so large that

JX2 X2
s(x)dx <J h(x)dx +e. (D-8)

x0 X0

Let K > 0. If Case (b) holds, choose N so large that

x.

/ sN(x)dx <-K. (D"9>
X0

Let xe [x ,x ]be such that sN(«) is continuous at x. Then there exists a
u- £ IK and an open interval I- containing x such that
~X X x

f(x,u~) > 0 for all x^ I. n [x_,x9] (D-lOa)
v '-x x 0 2

p(x,u-)

< sM(x) + e for all xG 1^ O [x ,x ]. (D-lOb)
c t \ N X U i.
f(x,u-)

~x

Thus we have associated an interval I- and an input value u- with each point
x ~x

x£ [x ,x ] where s (•) is continuous. Now consider the points where s^(')
is not continuous. Let {a. :0 <_ i <, p> denote the partition of [xQ,x2] associated
with s (•). Specifically, xQ =aQ <&1 < ... <ap =x^ s^(>) is constant on
each interval (a. ,,a.), and s (•) is continuous from either the left or the

right at each end point a.. Let b. denote the value of s^(>) on (a.^^),
i= l,2,...,p, and let A=min{a±-a ^,i = l,2,...,p}. To each point a±
associate an interval of the form I = (a -ae,a +ae), where a > 0. If a > 0

a, i l
i

is chosen sufficiently small, then the following conditions can be satisfied:

4 A> cte > 0, and for each a., i= l,2,...,p-l, there exists u e u+ such that
2 i ai ai

f(x,u ) > 0 for all x e I = (a.-ae,a +oe) (D-lla)
>~a. a. i i

l i

p(x,ya )

< maxib^b.^} + e, for all x e I (D-llb)
f(x,u ) i

~a.
l

Thus we have associated an open interval I- and an input value u- € U- with every

point x G [x_,x0]. The collection {I- :x ^ [x ,x9]> is an open cover of the
compact interval [x„,xj. Hence there exists a finite subcover {I- ,1- ,...,I~ >.

0 2 xl x2 q
*N A. A

We may assume that xn < x_ < ... < x and that
J 12 q

I- O 1^ ^ (j, for li-j I =1
x. x.

13 .i= <J> for |i-j| > 1.
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Now choose cJl* Oi; , i = l,2,...,q-l, and set c. = x_, c = x0. Define
x. x±+1 0 0 q 2

w(x) = u~ ,XG ^i.i^i)* i= l,2,...,q. (D-12)
i

The piecewise constant control law w(») transfers the state from x at t = 0

to x2 at some finite time t = t. Using (D-10) and (D-ll) gives

p(x(t),w(x(t)))dtj:
X0^2

t P(x(t),w(x(t)))
I x(t)dt
J(0 f(x(t),w(x(t)))

VX2

a. -ae art-ae

<J [sN(x)+e]dx +J [sN(x)+e]dx +...
xQ a-+ae

x0 - a.+ae{2 p-1 fi
[sN(x)+e]dx + £ J [max{bi,b }+E]dx

a ,+ae i=l •'a.-ae
P-1 1

x0 n a.+ae
2 P-1fZ W" f1= J [sN(x)+e]dx + 2 J [max{b.,b }-s (x)]dx. (D-13)

x0 i=l *'a.-ae 1
0

Note that

a.+ae

f1 [max{bi,bjL+1}-sN(x)]dx <_ ea(M-m), (D-14)
a.-ae

i

where M = sup{h(x) :x € [xn,x„]} and m = min{sM(x) :x ^ [xn,x„]}. Combining

(D-13) and (D-14) gives

f p(x(t),w(x(t))dt
J0

V*2

x2
<J [sN(x)+e]dx +ae(M-m)(p-l)

X0

X2
=J sN(x)dx +e[(x -x )+a(M-m)(p-l)]. (D-15)

x0
If Case (a) is satisfied, then it follows from (D-8) and (D-15) that
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j!

1

p(x(t),w(x(t)))dt <J h(x)dx +e[l+(x2-x )+a(M-m)(p-1)]. (D-16)
X0

VX2

Since e > 0 was arbitrary and a > 0 can be chosen arbitrarily small, this proves

Case (a). If Case (b) is satisfied, then it follows from (D-9) and (D-15) that

,t

p(x(t),w(x(t)))dt < -K + e[(x -x )+a(M-m)(p-l)]. (D-17)
0 l u

VX2

Since e > 0 and K > 0 were arbitrary, and since a > 0 can be chosen arbitrarily

small, this proves Case (b). Q.E.D.

(D.12) Lemma,

(i) For each xQ £ E and each x £ R (xn), define

E(x ,x ) = inf ( \ p(x(t),u(t))dt)
U x-^x^O J

x<0

t>0

where the infimum is taken over all t > 0 and all input-trajectory pairs

{u(0 ,x(«)}| [0,t] from xQ to x^^ with x(t) <0 for almost all t£ [0,t]. Then
for each xfi ^ E,

inf{E(x ,x_): x, € R"(x_)> = inf{E(x_,x.): x. ^ int R~(xn)}. (D-18)
Oil u uii u

+

(ii) For each x £ E and each x. e R (xft), define

E(x ,x ) = inf M p(x(t),u(t))dt>

VX2^ ° '
x>0

t>0

A,

where the infimum is taken over all t > 0 and all input-trajectory pairs

{u(0,x(*)}|[0,t] from x to x with x(t) > 0 for almost all t £ [0,t]. Then

for each x G E,

inf{E(xQ,x2): x£ GR+(xQ)}=inf{E(xQ,x2):xrt £int R+(X())}. (D-19)
Proof. We shall prove (ii) only. The proof of (i) is similar. Clearly,

the left-hand side of (D-19) is smaller than or equal to the right-hand side. We

need only show the opposite inequality. Suppose R (x_) = (xn,b], where

x_ < b < +» . Let {u(«),x(»)}|[0,t] be an input-trajectory pair from x to b

with x(t) > 0 for almost all t £ [0,t]. Then x(») is strictly monotonic over

the interval [0,t]. Define, for all t £ [0,t],
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Mu(#)(xQ,x(t)) =J p(x(T),u(x))dT. (D-20)

Note that M (.\(xrt,') is a well-defined function on the interval (xn,b]. For
every x2 G (xQ,b],

E(xQ,x2) lMu(.)(x0>x2); (D-21)

moreover, M ,.(xQ,') is a continuous function mapping (x_,b] to TR ; thus it
follows from (D-21) that

lim __ E(x ,x ) <M (x ,b). (D-22)
x^b u L -^ ) u

Taking the infimum over all such inputs u(») gives

lim E(x ,x ) <_E(x ,b). (D-23)
x^b" U Z °

Q.E.D.

(D.13) Observation. If the system described in subsection (4.5) is passive, then

,t

p(x(t),u(t))dt >_ 0,
0

where the notation Q) indicates that the input-trajectory pair (u(-),x(-)}

satisfies x(0) = x(t). For if this were not true, then we could extract an

unbounded amount of energy by driving the system repeatedly in a loop. Obviously,

this observation remains valid for the general m-dimensional system.

(D.14) Proof of Theorem 7. (Necessity). Suppose that the system is passive.

To prove (i), suppose that there exists some (xn,u_) £ E xU such that

f(x0,uQ) = 0. Now {uQ,x }|[0,t] is valid input-trajectory pair (from x to x)
for all t >_ 0. Thus, from Observation (D.13),

0<(f) p(x0,uQ)dT =p(x0,u0)t, for t>_0. (D-24)

It follows from (D-24) that p(x ,u ) >_ 0.

Note that (ii) is trivially satisfied anywhere that U~ = <f> and/or U = <j>.
x x

To obtain a contradiction, assume that there exists an x £ E such that

U3 * ♦» ut * ♦» and
X0 X0

h(xQ) > h(xQ).
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+ —
Then there exists u„ £ U and u~ G U such that-1 xQ -2 xQ

P(x0»^2^ p(-x0,Ul^

f(xQ,u2) f(xQ,u )

By continuity, there exists 6 > 0 such that

f(x,u ) > 0 for every x £ [x_,x +6]

f(x,Urt) < 0 for every x £ [x ,x +6]

p(x,u2) p(x,u )

f(x,u2) f(x,u1)
for every x £ [x ,x +<5].

Hence the constant input value u transfers the system from state x at t = 0 to

state xn + 6 at some finite time t- > 0. The constant input value u« transfers

the system from state x + 6 at time t to state x_ at some finite time t« > t .

Define an input u(«) as follows:

u(t) = u., t e [0,tl]

= u2, te (t.^].

Then if x(0) =x ,{u(•),x(«)}|[0,t ] is an input-trajectory pair from xQ to xQ.
We have

t t p(x(t),u1) t2 p(x(t),u2)
(t) p(x(t),u(t))dt = I x(t)dt + J
''O ~ •'o f(x(t),u1) Jt± f(x(t),u2)

?0+ p(x,u ) xQ p(x,u2) xQ+6 pp(x,u1) P(x,u2)
J dx +J dx =JX0 f(x,ux) xQ+6 f(x,u2) xQ

x(t)dt

dx < 0.

^(x,^) f(x,u2)_j

The last inequality follows because the integrand is strictly negative on the

interval [x ,x +6]. Observation (D.13) shows that the system is active. This

contradiction shows that condition (ii) must be satisfied.

Finally, if we choose W(x ) = E (x ), the available energy function (Def. 10),

then condition (iii) follows trivially from Lemma (D.ll).
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(Sufficiency) Suppose that conditions (i), (ii), and (iii) are satisfied.

It follows from conditions (i), (ii) and Def. 18 that

p(x,u) >^h(x)f(x,u) (D-25a)

p(x,u) >_h(x)f(x,u) (D-25b)

where we use the convention 0 • (±°°) = 0 when multiplying extended real numbers.

We shall call an input-trajectory pair {u(»),x(«)}|[0,t] a simple loop between x

and x if x(0) = x(t) = x , x(») is monotonic on the intervals [0,t_] and [t ,t]

for some t £ [0,t], and x(t-) = x . Suppose that there exist states x ,x £ £

such that x E R (xn) and x_ £ R (x..). Hence there exists a simple loop between

x0 and x . Moreover, from Lemma (D.3) and condition (ii), both h(») and h(») are

bounded above and below on [xn,x ]. Let {u(•),x(•)}|[0,t] be a simple loop
between x and x with x(t ) = x . From (D-25) we obtain

t

f p(x(t),u(t))dt = j p(x(t),u(t))dt +f p(x(t),u(t))dt
J0 ~ ''o ~ *t

t p X X

1 I h(x(t))x(t)dt + f h(x(t))x(t)dt = I h(x)dx + I h(x)dx
0 Jt x ^xu t1 xQ x1

x.

=J [h(x)-h(x)]dx >_ 0.
X0

The use of the change of variables is justified by Lemma (D.7) because x(») is
1

piecewise C and monotonic on [0,t_] and [t ,t] . The fourth step is justified

because h(») and h(«) are bounded on [x ,x ]. The final step follows from condition

(ii) . We have shown that the energy consumed along a simple loop is nonnegative.

Now consider the available energy function (Def. 10):

E(xn) =sup /- f p(x(t),u(t))dt\= -inf< f p(x(t),u(t))dt>. (D-26)
A ° x0- L J0 "• J xQAJ0 " J

t>_0 t>0

If R~(xQ) = R (xQ) = ({>, then f(x ,u) = 0 for all u£ U. It follows trivially from
condition (i) that E (xn) = 0. Now suppose that R (xn) ^ <J> and/or R (xn) ^ <J>. To

calculate E.(xn), the argument above shows that it is only necessary to consider

input-trajectory pairs {u(»),x(-)} for which the state trajectory x(») is monotonic,

because a nonmonotonic state trajectory would necessarily contain simple loops,
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and it has been shown that simple loops give a nonnegative contribution to the

energy integral. Moreover, we may assume that x(t) ^ 0 for almost all t, since

condition (i) shows that p(x(t),u(t)) ^ 0 wherever x(t) = 0. Therefore, if

E(«,») is the function defined in Lemma (D.12), then

EA(xQ) =max/sup(-E(x(),x1): x± SR(xQ)} ,sup(-E(x0,x2):x2 SR+(xQ)}>

Using the conclusion of Lemma (D.12) in (D-27) gives

E(x )=max<sup^-E(x0,x1): x1 €int R(xQ)} ,

(D-27)

sup{-E(x0,x2):x2 Sint R+(x0)}| . (D-28)
Using Lemma (D.ll) in (D-28) gives

f ft1:/sup<- I h(x)dx: x.E (x ) = max/sup<-J h(x)dx: x € int R (xQ)/,

W =

x

supj-j h(x)dx: x2 €int R+(xQ)^ (D-29)

Finally, substituting condition (iii) into (D-29) gives EA(xQ) <.W(xQ) <+».
Therefore the system is passive. Q.E.D.

(D.15) Proof of the Corollary for Theorem 7.

(Sufficiency). Condition (i) trivially implies condition (i) of Theorem 7.

Also, condition (i) and Def. 18 imply that h(x) £ h(x) <_ h(x) , which gives

condition (ii) of Theorem 7. Finally, the condition h(x) <_ h(x) <_ h(x) along with

(ii) gives condition (iii) of Theorem (7), with W(xQ) = E(xQ). Therefore the
system is passive.

(Necessity). Suppose that the system is passive. Since Z is open and the

system is completely controllable, it follows from Lemma (D.3) and condition (ii)

of Theorem 7 that h(») and h(«) are bounded above and below on every compact set

in Z. Fix zfl S E and define W :E+ TR by
x

| j h(x)dx : z£ [z0,xon, xQ > zQ

ft

sup<

A/ ^"z ' (D-30)

-inf< | h(x)dx: z e [x0,z0]> , xQ <_ zQ.
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Now define h : E -»- TR as follows:

fh(x) ,for x< zQ
h(x)=/ ^ (D_3i)

(^h(x) ,for x >^ zQ,

and define E : Z -*• TR by

E(xQ) = W(xQ) + W(zQ) + W1(xQ) (D-32)

where W (•) is defined in (D-30) and W(») is the function appearing in Theorem 7.

From Def. 18 and conditions (i) and (ii) of Theorem 7, it follows that

p(x,u) >^ f(x,u)h^(x) and p(x,u) ^ f(x,u)h(x). Therefore h(-), as defined in (D-31),

satisfies condition (i). It is straightforward to verify that E(»), defined in

(D-32), satisfies condition (ii). Q.E.D.

Appendix E: Five Ways that an Interconnection Can Fail to be Admissible

1) Some interconnections are forbidden altogether, e.g., a parallel connection of

a 1-volt source and a 2-volt source.

2) Some interconnections produce state constraints so that Z will not be all of

E- x...x E, . For example jQ^AJ might contain a loop of 1-farad capacitors, each of

which is viewed as a 1-port with state q., 1 <_ i <_ j, j _f_k. Then by KVL a

state (q_ ,... ,q.) can occur only if q. +...+ q. = 0.

3) The most natural state representation for^^\|may lump together distinct states

in E- x...x E, . Suppose for example thatch and(_^| 'are 1-farad capacitors and
oM is the 1-port consisting of ^\) and^Jv) in series. Then it is natural to
consider(J\|as a single capacitor with a 1-dimensional state space by identifying

(q1,q2) and (q{,q2) in E]L x E2 if q^^ + q« = q[ + q2-
4) It is possible that the interconnection makes sense as an electric circuit

but simply has no state representation at all. Suppose for example that^Jvl-i is
o 1

the active resistor characterized by v = i - i, (^ is a 1-farad capacitor, and

(Jvl is the 1-port consisting of(^\J and^^rt in parallel. Then no current-controlled
or voltage-controlled state equations exist for^JV).

5) An interconnection of n-ports, all of which satisfy the standing assumptions

in Section II, might violate those assumptions by, for example, having finite

escape time.

Appendix F: Proof of Lemma 6. It follows from Def. 10 that E.(•) is nonnegative.

SinceHAis translation invariant and since the state equations are time-invariant,

it sufficies to show that for any input-trajectory pair {u(*),x(»)} and any T >_ 0,
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EA(?(°))fL| -P(?(t),u(t))dt + EA(x(T)). (F-l)

Let {u(«),x(»)} be any input-trajectory pair, let x = x(0), and let x = x(T) .

It follows from Def. 10 that for each e > 0 there exists an input u'(-) ^QJland
a T1 >_ 0 such that

fT'J -p(x*(t),u'(t))dt >EA(?1) -e (F-2)

where {u1(•),x'(•)} is an input-trajectory pair with initial state x . Let the

waveform u"(») be defined by

fu(t) , 0 <_ t <_ T
u"(t) ={ ~

^u'(t-T) , T < t.

Then u"(0 eHL sinceQjlis closed under concatenation. Let x"(») be the state-space
trajectory produced by applying u"(0 with initial state x . Then

rT+T? T T'
EA(X0} - -P(x"(t),u"(t))dt = -p(x(t),u(t))dt + j -p(x'(t),u»(t))dt

•'0 -'O ^0

>J -p(x(t),u(t))dt +EA(x1) -e. (F_3)

Since (F-3) holds for each e > 0, this proves (F-l). Q.E.D.

Appendix G: Proof of Lemma 7.

It follows from property (v) listed in the paragraph preceding Lemma 7 that

co (•) is nonnegative. Since to (x ) - to (x ) = E (x ) - E_ (x_), since Qj.
x0 x0 X0 " -0 -0
is translation invariant, and since the state equations are time invariant, it

suffices to show that for any input-trajectory pair (u(«),x(»)} and any T > 0,

ERx (X(T)) " ERX (X(0)) - P(x(t),u(t)dt. (g-1)
-o -o -J 0

Let {u(«),x(»)} be any input-trajectory pair and T > 0 be any time. To

avoid confusion later, let x stand for x(0) and x for x(T). By Def. 24, for any

e > 0 there exists an input-trajectory pair {u1(•),x'(•)} and a time T1 >_ 0 such
that x'(0) = x0,x'(T') = x , and

,T'

p(x!(t),u'(t))dt < E_ (x.) + e. (G-2)rxo ~i/,
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Let the waveform u"(») be given by

{u'(t), 0 <_ t <_ T1

u(t-T'), T1 < t.

Then u"(«) e Qj[, sinceQiis closed under concatenation. Let x"(») be the

trajectory produced by applying the input u"(*) when the system is in initial

state xQ. Then x"(T') = x ,x"(T!+T) = x£, and
,Tf+T „T'

E Rv (?J 1f p(x"(t),u"(t))dt =f p(x'(t),u'(t))dt
Rxo 2 Jo " Jo

T T

+f p(x(t),u(t))dt £E_ (x.) +e+f p(x(t),u(t))dt. (G-3)
Jo ~o "1 Jo ""

Since (G-3) holds for each e > 0, this proves (G-l). Q.E.D.
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FIGURE CAPTIONS

Fig. 1. The constitutive relation v(q) = eq for a nonlinear capacitor.
Fig. 2. Judging from its impedance matrix alone, this 2-port would appear to

be passive. But is violently unstable and in any nonzero initial state

it can furnish unlimited energy to the outside world.

Fig. 3. The capacitive constitutive relation v(q) = q-1. The energy available
2

from such an element is given by E (q) = (q-1) /2.

Fig. 4. Two capacitive constitutive relations defined only for negative values

of q. While such elements would probably never arise in electronics,

their mechanical analogs in Fig. 7 are quite natural.

Fig. 5. (a) A simple active circuit based on an ideal operational amplifier.

(b) A passive 1-port.

(c) An active 2-port.

Fig. 6. The available energy for the capacitive element in Fig. 1.

Fig. 7. (a) A cylinder of ideal gas held at constant temperature through contact

with an infinite heat reservoir. The coordinate x measures the

distance from the piston face to the end of the cylinder. Since

the piston has unit area, the volume of the gas is the negative

of this coordinate, i.e., V = -x, and the pressure is equal to the

force required to hold the piston in place, i.e., P = f. The

ideal gas law P = NRT/V becomes f = -NRT/x in this case, producing

a constitutive relation analogous to that of C in Fig. 4.

(b) With insulating walls on the cylinder and the heat reservoir

removed, the gas heats up when compressed and cools when it expands.
5/3In this case the pressure varies as P = A/V , where A is a

positive constant. The system's constitutive relation is now
5/3f = -A/x , analogous to that of C9 in Fig. 4.

Fig. 8. Two different n-ports which can be constructed from a single (n+1)-terminal

element o.

Fig. 9. A composite n-port^A)produced by interconnectinglA)-, >lAL, and cjv) . We

assume thatcJVJcan be characterized by state equations x = f(x,u),

y = g(x,u) where x = (x^x^x )G E;L x E2 x E .



Fig. 10. The value of the shunt resistor is R = (1/G) ohms. The 1-port is of

course strongly passive provided G > 0.

Fig. 11. Available energy and required energy for the 1-port in Fig. 10, plotted

for several values of G. The solid line in the center represents the
2 2function q /2. Notice that EA(q) <q /2 <E Q(q) unless G = 0, i.e.,

unless the shunt resistor is an open circuit.
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