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ABSTRACT

The colored branch theorem (Minty 1960 [1]) is a result in graph

theory, which essentially says that the existence (resp., non-existence)

of a certain loop immediately implies the non-existence (resp., existence)

of a certain cut set.

Its relevance and use in circuit theory, however, has only recently

been recognized. Since it is expected that many more applications in

circuit theory will follow, the theorem is interpreted and proved in

a network setting. Many graph-theoretic corollaries are derived, which

may facilitate later use. It is illustrated that many results in

circuit theory can be simplified or given a simpler proof using this

theorem and its corollaries.
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I. Introduction

In 1960 Minty obtained a powerful result [1] in graph theory, which

is often called "the colored branch theorem". It essentially says that

the existence (resp., the non-existence) of a certain loop in a graph

immediately implies the non-existence (resp., existence) of a certain cut

set, and vice versa. Like Tellegenfs theorem this does not depend on

the type of elements or the coupling of elements in a network;^; it only

depends on the graph KA associated withcJVI.

Although Minty used his theorem first in his algorithm for solving

monotone networks [1,2] its main application was originally found

in transportation and network flow problems [3], as well as in matroid

theory [4,5] - In recent years, however, it has been used more and more

in circuit theory [6-11] and it seems likely that msny more applications

will follow.

Some of the reasons why this theorem is not so wall known among

electrical engineers are: (1) The theorem is usually formulated only

in a graph-theoretic framework and therefore it is difficult to adapt

to circuit problems. (2) The use of this theorem in several research

papers is in many cases obscured by the mainstream of ideas in the paper.

In this paper we wish to convince the reader that the colored

branch theorem is also a simple and powerful theorem in circuit theory.

In particular, the following is presented: (1) The theorem is made

plausible to the electrical engineer by substituting the branches by

simple elements, such as open and short circuits, ideal diodes, or a

resistor battery series combination.
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This interpretation produces a simple mnemonic tool for remembering

the theorem. (2) A rigorous proof is given directly using this network.

(3) It is illustrated that this theorem is very general: It is valid

for both linear and nonlinear networks as well as for resistive and

dynamic networks. Even couplings among elements are allowed. It shares

with KCL, KVL, and Tellegen's theorem the distinction of being among

the most general theorems in circuit theory. (4) The great generality

of the theorem still leaves much freedom to the user. We will show that

some particular choices lead to many nice and surprising properties.

In many cases this theorem can be used to give a painless proof of a

known result, or to generate equivalent conditions, which are easier to

check.

We only assume basic knowledge of the theory of directed graphs

[12]. We also assume that the number of branches and the number of

nodes are finite. Given a graph (j ,we say that a branch b is

removed if it is erased from the graph y. We say that a branch b

is coalesced or shrunk if the two nodes to which b is connected are made

coincident and b is then erased. Given a finite set A, we call any set

of subsets of A, (i.e. {A. ,A„,...,A } with A. Ca for 1 < i < n) , such
1 2 n l — —

that A = A. Ua„ ... U A , and A. Ha. = d> for i ^ i a partition of
12 n l j w x

A, where U denotes the union, H denotes the intersection and <}> denotes the

empty set. In other words {A.,A«,...,A } is a partition of A if each

element of A belongs to just one A .

II. The Colored Branch Theorem and Its Proof

Given a directed graph^ let it be colored as follows: every branch

of the graph is painted in one of three colors: red, blue or green.
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Moreover, one green branch is singled out by coloring it dark green .

It is clear that any directed graph Q can be colored in many different

ways. Any such graph will henceforth be called a directed colored graph

y . Given a directed, colored graph and a loop L, any subset of

branches in L is said to be "similarly directed" if they are all

oriented in the same direction. Likewise, given a cut set C, any subset

of branches in C are said to be "similarly directed" if they are all

oriented in the same direction.

2
The general colored branch theorem is then stated as follows [1]:

Theorem 1. Let y be a (not necessarily connected) directed colored

graph, then exactly one, but not both, of the following properties must

hold:

(1) The dark green branch forms a loop exclusively with the green

and/or red branches. Moreover, the green branches in the loop are

similarly directed.

(2) The dark green branch forms a cut set exclusively with the green

and/or blue branches. Moreover, the green branches in the cut set are

similarly directed.

It is worthwhile to pause here for a while to assess the degree of

generality of this theorem. The branches of the graph can be arbitrarily

colored as long as (1) each branch is colored red, blue or green

The sets of red, blue and green branches form a partition of the set
of all branches of the graph. Any set may be empty except the set of
green branches, which must contain at least the dark green branch.

2
For simplicity, the theorem is stated for a directed colored graph.
It will be clear in the context that only the green branches need to be
oriented.
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and (2) exactly one branch is colored dark green. Under these two

conditions the existence (resp., non-existence) of a loop satisfying

condition (1) immediately guarantees the non-existence (resp., existence)

of a cut set satisfying condition (2). Observe that the theorem does

not say that such a loop (resp., cut set) is unique; in fact, there may

exist many such loops (resp., cut sets). It is baffling that the

absence of a loop satisfying condition (1) (resp.> cut set satisfying

condition (2)) implies the existence of a cut set satisfying condition

(2) (resp., loop satisfying condition (1)). From an intuitive point of

view it seems likely that counterexamples of this theorem can be

contrived as follows. Starting from a given colored graph such that

condition (1) is satisfied but condition (2) is not, we re-color one

of the red branches of the loop in blue and repeat this for all loops

satisfying (1). So condition (1) must eventually be violated, while

we expect condition 2 will remain violated. The fact stands however,

that in whatever way we choose such a seemingly harmless recoloring

scheme, we always end up in the process with a cut set satisfying

condition (2), as predicted by the theorem! The reader is encouraged

to work out some examples to convince himself.

This theorem however is not counterintuitive if we look at the

following network interpretation. Given a directed colored graph y,

we replace the red branches by short circuits, the blue branches by

open circuits and the dark green branch by a series connection of a 1Q

resistor and a IV battery with the positive terminal of the battery located

at the arrowhead of the dark green branch. Let the remaining green

branches be replaced by ideal diodes such that positive current flows
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in the same direction as that defined by the green branch. As an

illustration we derive in Fig. 1(b) a network interpretation for the

graph of Fig. 1(a), where branches r~ and r are colored red, branches

b, and b_ are colored blue and branches g«, g., g_ and gR are colored

green with g* chosen as the dark green branch. It is clear in this

example (see Fig. 1(a)) that the branches {g?,g2»gA»gg} in tne looP

formed by {g?,g0,r0,g.,g_,r_} are similarly directed. This implies
1 2 J 4 o 7

in Fig. 1(b) that the branches g2, r3> g, , gg and r^ offer no resistance

to the battery in g*, and the voltage across g* is zero so that a current

of 1A must flow through the lfi resistor. This implies immediately that

there is no cut set of g*, diodes and open circuits such that all

diodes and g* are similarly directed. For, suppose there exists such a

cut set then every diode of the cut set must convey a non-negative

current, while g* carried a current of 1A, thereby contradicting KCL.

In general, given any directed colored graph there corresponds a

network containing open circuits, short circuits, ideal diodes, and a

lfi resistor IV battery series combination, and vice versa. In terms

of this network, the colored branch theorem suggests the following

simple and illuminating conclusion: The first possibility corresponds

to the case where the branch g*, consisting of the lfi lesistor in series

with the IV battery, supplies no current to the remaining branches, so

that there cannot exist a loop containing g*, forward-biased diodes,

and short circuits. In this case there must exist a cut set containing

reversed-biased diodes and open circuits. The second possibility

corresponds to the case where the branch g* supplies the maximum current

of 1A to the remaining branches, so that there exists a loop containing

only forward-biased diodes and short circuits which carry the 1A current.
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In this case there cannot exist a cut set containing g*, open circuits

and reversed-biased diodes.

Applications of this theorem to hydraulic networks and street

traffic networks have been mentioned by Minty [2]. The applications

to street network routings is particularly enlightening. The branches

here are two-way streets, one-way streets and blocked streets. The

conclusion of the theorem is then trivial: a point B can either be

reached from a point A or not at all. We will give shortly a completely

rigorous proof of this electrical network interpretation of the theorem

and thereby prove the colored branch theorem. If the branch g*

consisting of the 1U resistor IV battery series combination forms a

loop with ideal diodes and short circuits such that the diodes in this

loop allow a positive current to flow out of the positive terminal of

the battery, then we say that the diodes of the loop are similarly

directed. Analogously a cut set containing g*, ideal diodes and open

circuits is said to have similarly directed ideal diodes if the diodes

of this cut set allow a positive voltage to exist at all nodes n_...n
1 m

with respect to the nodes n,...n , where the removal of the branches of
1 m

the cut set creates two components: one component containing the

+ +
node at the positive terminal of branch g* and all the nodes n....n ,

1 m

and the second component containing the node at the negative side of

branch g* and all the nodes n-...n .
1 m

Theorem 2. Given a networkcjv (Fig. 2(a)) consisting of a branch g*

made up of a lfi resistor IV battery series connection and other branches

made up of ideal diodes, open circuits and short circuits.-, .then exactly

one but not both of the following properties hold:

-7-



(1) There exists a loop containing only g*, diodes and short circuits,

where all diodes are similarly directed. In this case i = LA and v = OV.

(2) There exists a cut set containing only g* diodes and open circuits,

where all diodes are similarly directed. In this case i = OA and v = -IV.

Proof: The basic strategy of the proof is to reduce the number of

internal nodes and branches of the one-port oW- (Fig. 2(a)) repeatedly

to arrive at one of the four cases listed in Fig. 2(b). It is easy to

see that the theorem is satisfied in each of the four cases. The two

circuits on the left contain a loop made up of the branch g* and a short

circuit, and a similarly directed diode, respectively. Observe that

there is no cut set formed by g* with an open circuit and/or a similarly

directed diode. On the other hand, the two circuits on the right of

Fig. 2(b) exhibit the opposite property. We will show that during this

reduction process, the existence or absence of a loop satisfying condition

(1), or a cut set satisfying condition (2) is preserved. We perform

the following reduction algorithm.

Step 1. Remove all open circuit branches and shrink (coalesce) all

short circuit branches. Replace each parallel or series connection of

two ideal diodes by its equivalent, which is again an ideal diode, an

open circuit, or a short circuit. Remove branches which form hinged

loops or self cut sets. Repeat these reduction techniques until

there are no more open or short circuit branches, and until there are

no more parallel or series connections of ideal diodes.

Step 2. Reduce the number of internal nodes in eAL by one by

substituting o\L with an equivalent one-port q^\J2 as follows. Single

out the internal node "n" to be removed (Fig. 2(c)). Node n is connected
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+ + +
connected to nodes n_, n_...rL with the diodes pointing toward n, and

to nodes n~, n~...n~ with the diodes pointing away from n. It is
j. z x>

easy to check that (^" of Fig. 2(c) is equivalent to ^Al 2of Fi8- 2^d^

(see for example [13,14]). This equivalence transformation removes

node n and may introduce some new parallel or series connections of diodes.

Step 3. Return to Step 1 as long as there remain any parallel or

series connections of diodes. Return to Step 2 as long as there remain

any internal nodes. If there are no more internal nodes, parallel and

series connections of diodes, hinged loops, or self cut sets, in o^,

then the resulting network must necessarily assume one of the four

cases shown in Fig. 2(b).

It remains for us to show that during the reduction steps the

validity of the theorem is preserved. Only the equivalence transformation

in Step 2 requires additional investigation. Of course, a loop satisfying

condition (1) (resp., a cut set satisfying condition (2)) and containing

no branches of cAI V is preserved in cAL* It: f°llows from the comparison

of Fig. 2(c) and (d) that for a loop which contains the diode between

nodes n, and n and the diode between nodes n and n, in Fig. 2(c), there
1 J

+ —
exists a loop containing the diode between n. and n. in Fig. 2(d).

Moreover, if the first loop satisfies condition (1), then likewise

the second loop must satisfy the same condition. A cut set satisfying

condition (2) and containing diodes of lAIV can only contain some diodes

connected to nodes n_...n, , or some diodes connected to nodes n^...n , but

not both, since the diodes in each group are similarly directed. Assume

that the diodes connecting n....n. to n belong to a cut set of Fig. 2(c)
s

satisfying condition (2). Now, by definition, the removal of all

-9-



branches of this cut set creates two connected components. One

connected component containing, among other nodes, the "+" node of g*

+ +
and nodes n ...n . The other component contains, among other nodes,

H s
node n and the "-" node of g*. It is now easy to see that a cut set

of Fig. 2(d) satisfying condition (2) is obtained if all diodes of

(^A)" connecting nodes n ...n to nodes n.. •.n are members of the

cut set formed by g* and those branches of cjv 1 belonging to the

original cut set in Fig. 2(c).

Conversely, the existence of a loop satisfying condition (1) in

Fig. 2(d) implies the existence of a loop satisfying condition (1) in

Fig. 2(c), and analogously for a cut set. n

Observe that the number of loops satisfying condition (1)

(resp., cut sets satisfying condition (2)) in u\l2 can be smaller

than in o\L . Hence in general a network may have several loops

satisfying condition (1) (resp., cut sets satisfying condition (2)).

The algorithm described in theorem 2 can be rendered more efficient

by the following two rules: (1) If oW- contains a loop of diodes all

biased in the same direction, then all branches of this loop can be

coalesced. (2) If (.All contains a cut set of diodes all biased from

one component to the other then only that component which contains branch

g* needs to be considered in the algorithm.

However, if one is only interested in the existence of a loop

satisfying condition (1) (resp., cut set satisfying condition (2)) and

not in the equivalent one-port cJ\L> one can proceed as follows [12].
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Algorithm: Check whether the branch g* made up of the 1ft resistor 1 volt

battery series combination forms a loop satisfying condition (1), or

a cut set satisfying condition (2) of theorem 2.

Step 1. Label the "+" node of branch g* with an asterisk "*".

Step 2. Consider all nodes which can be reached from a labelled node

via a short circuit, or via an ideal diode pointing away from the

labelled node. Label all these nodes also with an "*".

Step 3. Repeat Step 2 until no more nodes can be labelled or until

the "-" node of branch g* is labelled.

In the first case there is no loop satisfying condition (1) and in the

second case such a loop exists. The existence or non-existence of a

cut set satisfying condition (2) then follows from theorem 2.

To illustrate this algorithm, consider the graph shown in Fig. 3.

Applying the algorithm, we found that Step 3 terminates without

labelling the "-" node of branch g* and hence there is no loop

satisfying condition (1). By theorem 2 there must exist a cut set

satisfying condition (2). It is easily seen that {g£,b. ,g_ ,g. ,g_ A} is
I 4 j O ID

such a cut set.

To conclude this section recall that the graph in theorems 1 and 2

were not required to be connected. It follows, however, from the

formulation of these theorems, and from the definitions of "loop" and

"cut set", that only the connected component containing branch g* can

contain a loop satisfying condition (1) , or a cut set satisfying

condition (2).

III. Graph-theoretic Corollaries of the Colored Branch Theorem

The colored branch theorem is extremely general. By a clever

coloring (partition) of the branches and eventually a repeated use of
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the theorem, one can derive many surprising properties often

painlessly.

Corollary 1: Colored branch corollary 1. Let g* be any branch of

a graph y and label it the dark green branch. Color each of the

remaining branches arbitrarily either in red or in blue. Let B denote

the set of the blue branches, and let R denote the set of the red

branches. Then branch g* either forms a loop exclusively with branches

of R, or a cut set exclusively with branches of B, but not both.

Proof: If we choose the set of green branches in Theorem 1 to consist

of the single branch g*, then g* must be identified as the dark green

branch. Since there are no other green branches, the "similarly directed"

requirements on the green branches in Theorem 1 become superfluous here.

Hence the corollary follows by default. n

Corollary 2: Colored branch corollary 2. Let Q be a directed graph and

let g* be any branch of Q. Then g* either forms a loop with branches

of y such that all branches of the loop are similarly directed, or a

cut set with branches of y such that all branches of the cut set are

similarly directed, but not both.

Proof: Color all branches of Q green and color g* dark green.

Applying Theorem 1 with the sets of red and blue branches both empty,

we obtain the above result. n

It is important to distinguish the difference between the conclusions

of the colored branch corollaries 1 and 2: The branches of the loop

and cut set in corollary 1 need not be similarly directed. Observe that

except for g*, the branches in the loop and those in the cut set must

come from different sets. In corollary 2, on the other hand, all

branches come from the same set. In this case, however, the branches

The graph Q can be either directed or undirected.
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in the loop, and those in the cut set, must be similarly directed.

For example, consider the graph shown in Fig. 4(a). If we choose

R = {r_,r_,r.} and B = {bc,b£} as the sets of blue and red branches
2 J A jo

respectively, and identify the dark green branch as g*, then the colored

branch corollary 1 asserts only that g* must either form a loop with

branches in R, or a cut set with branches in B. In this case the

former holds, namely {g*,r ,r ,r,} form a loop. Notice that this

loop is not similarly directed. On the other, all branches are

colored green in order to apply the colored branch corollary 2.

Identify g* again as the dark green branch in Fig. 4(b) . Observe that

the branches of the loop {g?,g2,g,} are similarly directed. It can be

checked exha\istively that there is no cut set containing g* such that

all branches are similarly directed, as predicted by the colored branch

corollary 2.

A repeated application of the colored branch theorem allows us

to derive the following result:

Corollary 3: Colored branch corollary 3. Partition the branches of a

directed graph Q arbitrarily into three sets: A, B and C. We define

four subsets of A as follows: (1) Let D be the maximal subset of A

such that each branch of D_ forms a loop (resp., cut set) exclusively

with branches of A and/or C, and such that all branches of A in this loop

are similarly directed. (2) Let D? be the maximal subset of A, such

that each branch of D does not form a cut set (resp., loop) exclusively

with branches of A and/or B, and such that all branches of A in this

cut set are similarly directed. (3) Let E be the maximal subset of A

such that each branch of E forms a cut set (resp., loop) exclusively

with branches of A and/or B and such that all branches of A in this
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cut set are similarly directed. (4) Let E„ be the maximal subset of A

such that each branch of E« does not form a loop (resp., cut set)

exclusively with branches of A and/or C and such that all branches of A

in this loop are similarly directed. Then we have

D^D^D, E1 = E2 4E (1)

and

D U E = A, D H E = $. (2)

where <J> is the empty set. In other words, A is partitioned into D and

E.

Proof: First it has to be proved that the sets D-, D2, E. and E2

exist and are unique. We prove it, for example, for D- . Let D| and D"

be any two subsets of A such that each branch of D' (resp., D") forms

a loop exclusively with branches of A and/or C and such that all

branches of A in the loop are similarly directed. Then, D' U D" also

satisfies this property. So the maximal subset D- is the union of all

subsets of A satisfying the property, and is therefore unique. There

exists at least one subset of A satisfying the property since the empty

set (J> satisfies the property by default. Hence D. exists.

In order to prove D- = D- and E = E., we show that D- -* Do>

D- c D , E 3 E0, and E. c E . Let us prove, for example, D 3 D .
1212-LZ i. £•

Choose any branch g* in D. and color it dark green. Color the remaining

branches of A in green, the branches of B in blue and the branches of C

in red. Then g* does not form a cut set with the green and/or blue

branches such that all green branches of the cut set are similarly

directed. Hence, by the colored branch theorem it forms a loop with the

green and/or red branches such that the green branches in the loop are

similarly directed. Since D is maximal this implies g* €i D-.
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It remains to prove (2). Choose any branch of D. Since this

branch belongs to D = D„ it does not form a cut set with branches of

A and/or B such that the branches of A in the cut set are similarly

directed. Since E- is maximal this branch does not belong to

E = E. Analogously it can be proved that branches in E cannot be

present in D. Hence D H E = (f>. In order to prove D U E = A, choose

any branch of A which does not belong to D. Since D = D2 is maximal,

this branch forms a cut set exclusively with branches of A and/or B

such that all branches of A in the cut set are similarly directed.

Hence this branch belongs to E = E. Analogously it can be shown that

any branch which does not belong to E belongs to D. n

A similar corollary can be derived from the colored branch

corollary 1.

Corollary 4: Colored branch corollary 4. Partition the branches

of a graph Q arbitrarily into three sets: A, B and C. We define

four subsets of A as follows: (1) Let D be the maximal subset of

A such that each branch of D- forms a loop (resp., cut set)

exclusively with branches of A and/or C. (2) Let D? be the maximal

subset of A such that each branch of D? does not form a cut set (resp.,

loop) exclusively with branches of B. (3) Let E1 be the maximal subset

of A such that each branch of E forms a cut set (resp., loop) exclu

sively with branches of B. (4) Let E be the maximal subset of A, such

that each branch E does not form a loop (resp., cut set) exclusively

with branches of A and/or C.
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Then, we have

D1 = D2 4 D, E1 = E2 4 E (3)

and

D U E = A, D H E = <j> (4)

In other words, each branch of A belongs either to D. = D2 4 D or to

E = E- 4 E> Dut not to both.

Proof: The proof is analogous to that of the colored branch corollary 3.

We mention only the differences. In the proof of D 3 D , all branches

of A are colored red, except for the branch g* which is still dark

green. The colored branch corollary 1 is now invoked in order to

guarantee that g* forms a loop with branches of A and/or C. In all

instances the "similarly directed" requirements are dropped and the cut

sets mentioned in the definition of D« and E- consist only of branches

from B and thus cannot contain branches from A. H

Let us now compare corollaries 3 and 4. Assume that a directed

graph has been partitioned into three sets A, B and C as specified in

corollaries 3 and 4. It is clear from the definitions that set D. in

corollary 3 must satisfy more conditions (all branches of A in the

loop must be similarly directed) than set D in corollary 4. Thus set

D in corollary 3 is a subset of set D in corollary 4. Analogously set

E in corollary 4 is a subset of set E in corollary 3, as they should.

In order to assess the generality of the colored branch corollaries

3 and 4 and for further reference, we state some direct consequences

of these corollaries.
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Corollary 5. Partition the branches of a directed (resp. undirected)

graph y into three sets A, B and C.

(a) Call D the set D- defined in (1) of Corollary 3 (resp. Corollary 4),

then D is equal to V , and E 4 A-D is equal to both E and E , where

D?, E and E- are defined in (2), (3) and (4) of Corollary 3 (resp.

Corollary 4).

(b) Call D che set D? defined in (2) of Corollary 3 (resp., Corollary 4),

then D is equal to D , and E 4 A-D is equal to both E and E , where

D , E and E are defined in (1), (3) and (4) of Corollary 3 (resp.,

Corollary 4).

(c) Call E the set E defined in (3) of Corollary 3 (resp., Corollary 4),

then E is equal to E , and D 4 A-E is equal to both D- and D_, where

E„, D and D« are defined in (4), (1) and (2) of Corollary 3 (resp.,

Corollary 4).

(d) Call E the set E defined in (4) of Corollary 3 (resp., Corollary 4),

then E is equal to E , and D 4 A-E is equal to both D and D„, where

E , D and D« are defined in (3), (1) and (2) of Corollary 3 (resp.,

Corollary 4).

This corollary allows us to derive a nice property concerning

the existence of certain loops and cut sets obtained by partitioning

the twigs of a tree and the links of a cotree in a particular way.

There are three alternative formulations.

Corollary 6a. Partition the twigs of a tree J arbitrarily into two

sets ij and uL. Let yj- be the maximal set of links of the corresponding

cotree 3L such that each link of £3L forms a loop exclusively with

twigs of <J _. Let y._ be the set of the remaining links of ^..
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Then any twig of y' forms a cut set exclusively with links of

se2-
Proof: Set A= 3. ,B= Qf and.C = ((J2. It follows from part (c)

of Corollary 5 (with E = §P in definition (3) of Corollary 4) that

D. = §L_ is the maximal subset of 3u such that each branch of y.

forms a cut set exclusively with branches of SL and J„. However

each twig of J„ forms a fundamental cut set with ^C • Since 3c „

is maximal, each twig of <Cj~ forms a cut set exclusively with links

of a2-
An alternative statement of Corollary 6a can be formulated as

follows:

Corollary 6b. Partition the links of a cotree <3L arbitrarily into

two sets 3. - and ei-9» Let y„ be the maximal set of twigs of the

corresponding tree y, such that each twig of <J9 forms a cut set

exclusively with links of «*.«• Let y. be the set of the remaining

twigs of <J. Then any link of 3L forms a loop exclusively with

twigs of y .

Proof: The proof is the dual of that given in Corollary 6a and is

therefore omitted. a

A third formulation of this property does not assume the tree or

cotree to be given.

Corollary 6c. Partition the branches of a graph y arbitrarily into

two sets S- and S?. Let T. be the maximal subset of S- such that each

branch of T_ does not form a loop exclusively with branches of S .

Let L be the maximal subset of S. such that each branch of L. does not

form a cut set exclusively with branches of S«. Let T. be the maximal
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subset of S2 such that each branch of T does not form a loop exclusively

with branches of S . Let L be the maximal subset of S9 such that

each branch of L? does not form a cut set exclusively with branches of

S2. Then we have:

(1) S± = T1UL1, Tx nLl = * (5)

S2 = T2UL2, yy* (6)

(2) Each branch of L. forms a loop exclusively with branches of T
•*• 1

and each branch of T forms a cut set exclusively with branches of L .
z 2

(3) Let ^ 3Tx be any maximal subset of S such that each branch of

J1 does not form aloop exclusively with branches of ^J . Call ^
the remaining branches of Sr Let ^2 DL2 be any maximal subset of
S2 such that each branch of ^L2 does not form acut set exclusively

with branches of <£ 2. Call ^ the remaining branches of S. Then

^f =(tf1 u?T2 and S£= ^ 1U^2 form atree and cotree of the
graph y. Also each branch of §L forms a loop exclusively with

branches of J^ and each branch of y forms acut set exclusively with
branches of ^l„.

Proof: (1) Apply the Colored branch corollary 4. Identify A = S ,

B = S2 and C = <f>. Then (5) immediately follows. By identifying A = S ,

B = S± and C = <\> and applying the Colored branch corollary 4 we obtain

(6).

(2) This follows also from the application of the Colored branch

corollary 4 in (1).

(3) We prove that ^T4 ^ U^ does not contain any loop and
3L 4 a-jL uSl2 does not contain any cut set. Suppose the contrary

that there exists a cut set in £(?. Then since Qf is amaximal
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subset of S having no loops, any branch of 3l1 =S^ ^ must form

aloop with <3TL. Hence, by the Colored branch corollary 1any branch

of 92- cannot form a cut set with branches of J2 U^ U^. Thus

any cut set in 92can only contain branches of SL2« But this is

impossible by the definition of 9^. Analogously it can be proved that
^contains no loops. The properties about the branches of 3^ and <J2

follow from part (2).

Observe that by labelling the branches of 9^, 9l2» O-^ and J2

consecutively, we obtain in each of the three cases a fundamental loop

matrix B having the following structure [15]:

B =

L~*2"l -^2*2 ~*2ai ~*2J2J

*1
(7)

where the upper right submatrix is always a zero matrix.

Corollary 6c. guarantees the existence of a tree and a cotree having

certain properties in the case where the branches of a graph are

partitioned into two sets. The next corollary deals with the case

that the branches are partitioned into three sets.

Corollary 7. Let the branches of agraph Q be partitioned arbitrarily

into three sets X, Y and Z. Then there exists a tree <Jand acotree

92 of Q such that ^contains nx branches of X, where nx is equal to

the number of branches of X minus the number of independent loops in X;

and 92 contains nz branches of Z, where nz is equal to the number of
branches of Z minus the number of independent cut sets in Z. Let

x<3fcCJandz92c92, where xJcT is the maximal subset of branches
2 1 ^

of X, such that each branch of X^ does not form aloop exclusively
-20-



with branches of X, and where Z Sl is the maximal subset of Z, such that

each branch of Z gL does not form a cut set exclusively with branches

of Z. Partition the branches of J into the following four sets

xSStX^J9 Y^ ,and Z^ such that:

X^T UX^T =Xn^ and x£T DX^J =<J> (8)

Y^ =YH^ (9)

20T =zn^ do)

Partition the branches of the corresponding cotree 92 into the following

four sets x92 ,y92 ,Z.,92 ,and Z292:

x^=xn92 (ID

y92 =y n 92 d2)

z^ uz292 =znSfand Z]S£ nz292 =* (13)

Then each branch of X5L forms a loop exclusively with branches of

X-(J , and each branch of ZJ forms a cut set exclusively with branches

of z2S£ .
Proof: Recall that a tree Jand the corresponding cotree 92 form a

partition of the branches of a graph such thatycontains no loops and

5L contains no cut sets. Therefore the number n (resp., n ) of

branches of X (resp., Z) in any tree (resp., cotree) as defined in the

corollary is the maximum that can be attained. We construct an arbitrary

tree satisfying the specifications of Corollary 7 by partitioning

first the branches of X into three sets as follows: Remove any

branch from each independent loop of X, thereby eliminating all loops

in X. Denote this set of removed branches by x92 . The remaining

branches of X of course contain the set xM defined in the corollary,

-21-



and can therefore be considered as the union of two disjoint sets

X..y and X lJ. Thus X is partitioned into lu ,X J and x92 .

Next we partition the branches of Z into three corresponding sets

as follows: Shrink any branch from each independent cut set of Z

thereby eliminating all cut sets in Z. Denote this set of shrunk

branches by Zu . The remaining branches of course, contain the set

Z 92 defined in the corollary, and therefore can be considered as

the union of two disjoint sets Z92 and Z?92 . Thus Zis partitioned
into Z^ ,Z92 and Z92 . It follows then from these partitionings

of X and Z and from the definition of Z3L and X?J ,that each

branch of x92 forms aloop exclusively with branches of X^ and that

each branch of Z^forms a cut set exclusively with branches of %2

It remains for us to prove that there exists a tree J containing all

branches of X(cf uX^ UzQT,and acorresponding cotree 92 containing
all branches of x92 UZ^ UZ?92 . First we claim that
(xJ1 4 y^tJ uxST Uzu does not contain any loop and that

921 4 x92 uZSf Uz does not contain any cut set. We will prove

only the first claim, since the second follows by duality. Since each

branch of Z^ forms a cut set exclusively with branches of Z^ ,by

the Colored branch corollary 1, it cannot form a loop with branches

of X^ Ux5T Uz?, Since X^ Ux£T does not contain any loop
by construction,^ does not contain any loop. We now construct a

tree and a corresponding cotree inductively starting from U = O

and 92 =921 by adding branches of Y to ^ or 92 as follows. Consider

one branch y of Y at a time. If y forms no loop with y add it to J.

If y forms a loop with (3T, then by the Colored branch corollary 1 it
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forms no cut set with 92 and hence y is added to JL. Finally we

obtain a partitioning y ^ 92 of the branches of the graph such that J

contains no loop and 5L contains no cut set. a

Observe that by labelling the branches of X3L, Y3u, Zg., Z^gC,

Xy, Xy.Y^and zy consecutively the fundamental loop matrix B

assumes the following form:

X* y£ z^ V xp V Y3 z3

"l 0 0 0 ?15 0 0 9 " X£

0 1 0 0 ?25 he hi 0 x£

0 0 1 0 ?35 he hi 0 zx£

0 0 0 1 ?45 he hi V
z X

(14)

where the zero submatrices in the upper right part of B are caused by

the fact that each branch of x9l forms a loop exclusively with branches

of Xy and each branch of Z<J forms a cut set exclusively with

branches of Z_!3l .

Before we close this section, a general comment about equivalent

formulations of the statement of these graph-theoretic results is in

order. In many cases it turns out that a "reduced" graph obtained by

shrinking some, branches and removing some others can just as well be

used to express these results. This equivalent formulation may be

conceptually simpler or may enhance the efficiency of the associated

algorithms.

For example, we could check the Colored branch theorem immediately

on the reduced graph y obtained by shrinking the red branches and

removing the blue branches. If we do the same in Colored branch

corollary 1, then y only contains one branch and this branch forms
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either a self-loop or a self-cut-set. For Colored branch corollaries

3 and 4, we would obtain the same sets D. , D9, E and E_ if the branches

of B (resp., C) were removed and those of C (resp., B) were shrunk. In

defining T-, L-, y, and 92•,» in Corollary 6c, the branches of S2 can

be removed from the graph, such that <£f1 and 921 are merely atree and a
cotree in the resulting graph. Analogously the branches of S1 can be

shrunk from the graph in defining T2, L2, y2 and 922- ^^ corres
ponds to the formulation in [22].

IV. Applications of the Colored Branch Theorem and its Corollaries

in Circuit Theory

In this section we compile a list of applications of the Colored

branch theorem in circuit theory. Some applications are new while

other allow simpler proofs of known properties. Whenever an application

or a proof is new, a detailed treatment is given. Otherwise, we

simply refer to the relevant literature.

1. The Colored branch theorem and its corollaries 1 and 2, imply

that the existence (resp., non-existence) of certain loops or cut sets

is equivalent to the non-existence (resp., existence) of certain cut

sets or loops. Now, in an algorithm or in the formulation of a property,

one of the two equivalent properties may turn out to be simpler. This

observation allows us to find equivalent conditions for the non-existence

of a loop of capacitors or inductors (or a cut set of capacitors or

inductors) in an RLC circuit. It also allows us to check whether

a digital filter has a delay free loop or not. One simple illustration

of this idea is as follows. Check graphically whether a branch g* forms

a cut set with the blue branches of a non-planar colored graph.
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A simple example is given in Fig. 5. It is difficult to see at first

sight that g* forms a cut set with the blue branches b2, b, , b,, b^

and bQ. However it is trivial to see that g* forms no loop with any

subset of the red branches {r_,r ,rg,r _}.

2. The Colored branch theorem is the key for obtaining a no-gain property

[6,7,16,17] used in finding fundamental limits of dc-to-dc converters

and in deriving qualitative properties of resistive networks containing

three-terminal [10] and multiterminal elements [7]. We describe here

the generalized formulation found in [7] and present a unified proof.

Proposition 1: No-gain property for networks containing two-terminal

elements. Given a network containing independent voltage and current

sources, positive linear two-terminal resistors , short circuit elements

which do not form loops among each other, and open circuit elements

which do not form cut sets among each other. Then for any solution

of this network we have:

(1) The current magnitude through any element is not greater than the

sum of the current magnitude through all independent voltage and current

sources.

(2) The voltage magnitude across any element is not greater than the

sum of the voltage magnitudes across all independent voltage and current

sources.

Proof: Consider one solution of the network. The proposition is

trivially satisfied in the case where the branch considered (henceforth

called branch £) is a voltage source or a current source, or where its

A positive linear resistor has a resistance R restricted to 0 < R < «.
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branch voltage v = 0 or branch current i = 0. In order to prove

part (1) of the proposition for the case where branch I is a resistor,

an open circuit, or a short circuit, and has v, ^ 0 or i ^ 0, we

proceed as follows. All branches with v = 0 and i = 0 can be removed,

since they contribute nothing to the sum in (1). Moreover, they do not

alter the solution nor do they introduce any new loops. Let S be the

set of the remaining sources and let X be the set of the remaining

resistors, short circuit and open circuit elements. Since all resistances are

nonnegative we can define associated reference directions for all

branches in X such that the currents and the voltages in these branches

are nonnegative. The set up for the Colored branch theorem is now as

follows: The branches in X are colored green, those in S blue while

there are no red branches. We now prove that branch 9, does not form a

similarly directed loop exclusively with branches of X. If v > 0 the

voltages along such a loop would violate KVL. If v =0, then by KVL

all branches of such a loop have zero voltage. Since none of them has

zero current, all must be short circuit elements. But this is impossible

since there are no loops containing only short circuit elements. Thus by

the Colored branch theorem there exists a similarly directed cut set C

containing branch I and branches from X and S. Applying KCL to this

cut set, we obtain

E \ + E Vk= °> (15)

for some 6, = ±1. Since all i with k €= X are nonnegative, we have

|iJ=iol E K" E V-k- E K|. (16)
* * k^xnc K kesnc Rk k^snc k n

-26-



3. Wolaverfs three-basket theorem [16,17] is a similar result concerning

a partitioning of the branches of a network into 3 sets called baskets.

Using the Colored branch theorem a considerably simpler proof than that

of [16,17] can be given.

Proposition 2: Wolaver1s three-basket theorem. Let the branches of a

resistive network be partitioned into three sets (baskets) S , S- and

S«, such that each branch k of S„ has v, i, >^ 0. Then for any solution

of the network and any branch I of S_, both of the following expressions

cannot be simultaneously satisfied:

« 11.1 > £ Kl (17«)

(b) |v |> £ |v |. (17b)

Proof: Consider a solution of this network. Reverse the reference

directions of any branch in S_ if necessary until all voltages and

currents of branches in S„ are nonnegative. This entails no loss of

generality since vi, >_ 0 for k €E S_. Let the branches of S be colored

blue, those of S red, and those of S. green with branch I being

the dark green branch. Then it follows from the Colored branch theorem

that branch % forms either a similarly directed loop L exclusively with

branches in S and S3, or a similarly directed cut set C exclusively

with branches in S and S , but not both. If the first property holds,

then by applying KVL along the loop L we obtain

E• v + £ 6 v = 0, (18)
keiPs3 K k<ELOs2

for some 6, = ±1. Using the fact that v >_ 0 for k ^ S_, we have
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|vj <v£+ S "- E W<H hJ. (W
k?8A J ^ Z

which clearly contradicts (17b). Analogously it can be proved that the

existence of a similarly directed cut set C contradicts (17a). Hence

(17a) and (17b) cannot both be satisfied. n

This result can be refined as follows. By combining the proof of

this proposition with the Colored branch corollary 3, a graph-theoretic

method can be devised for partitioning the branches of S„ into two

sets S' and S" such that each branch of S' violates (17a) and each

branch of S" violates (17b). Assume that the polarity of the voltage

and current in all branches of S„ for a solution is given. Let S^

(resp., S") be the maximal subset of branches of S such that each

branch of S' (resp., S") forms a cut set (resp., loop) exclusively

with branches of S and/or S (resp., S ) and such that the branches of

Sq in the cut set (resp., loop) are similarly directed. It follows

from Colored branch corollary 3 that the branches of S^ and S!j form a

partitioning of S-. From the proof of Proposition 2 it follows that

each branch of S' violates (17a) and each branch of S" violates (17b).

4. In circuit theory it is important to know whether a certain property

P is closed under interconnection, i.e., an arbitrary interconnection of

multiports, each having property P results in a multiport which inherits

this property. For some useful properties such as strict passivity, this

is in general not true; but by imposing an additional topological

condition on the ports, the closure property is valid [8,11]. The

Colored branch corollary 1 is essential for proving this conditional

closure property.
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5. In order to find properties of RLC networks it is important

to be able co express the voltages and currents associated with the

inductor and capacitor ports as a function of the voltages and currents

at the remaining ports (resp., as an operator of the voltage and current

waveforms at the remaining ports). It is shown in [8] that it is

sufficient to require that the inductor and capacitor ports form no

loops or cut sets among themselves (resp., satisfy a topological

condition called the LC-hypothesis). The proof is once again based on

the Colored branch corollary 1 (resp., Colored branch corollary 4).

The reader will easily recognize the repeated implicit use that is made

of the Colored branch corollary 4 in the proof of Theorem 10 of [8].

6. In many cases state equations have to be derived for RLC networks

from KVL, KCL and the constitutive relations. Such a derivation is

usually based on the existence of a tree containing the maximum number

of capacitors (resp., inductors) and a corresponding cotree containing

a maximum number of inductors (resp., capacitors). Such a tree is called

a C-normal tree [18] (resp., L-normal tree) [9,19]. The existence of

such a tree and its properties constitute a direct application of

corollary 7. As usual, we assume that the independent voltage sources

do not form loops exclusively with each other or with capacitors

(resp., inductors) and that the independent current sources do not

form cut sets exclusively with each other or with inductors (resp.,

capacitors). Identify the sets X, Y and Z of Corollary 7 as follows:

Choose X to be the set consisting of all capacitors (resp., inductors)

and all independent voltage sources, choose Y to be the set of consisting

of all resistors, and choose Z to be the set consisting of all

inductors (resp., capacitors) and all independent current sources.
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It follows then from the preceding assumptions that all independent

voltage sources (resp., current sources) are included in X0J

(resp., Z-ei.). Hence, it follows from Corollary 7 that there exists

a tree which contains the maximum number of capacitors (resp., inductors),

all independent voltage sources and a minimum number of inductors

(resp., capacitors). Similarly, there exists a corresponding cotree

which contains the maximum number of inductors (resp., capacitors), all

independent current sources and the minimum number of capacitors

(resp., inductors).

7. Corollaries 6a, 6b and 6c provide 3 equivalent methods for

generating a complete set of variables for a graph in the following

sense. A set of branch voltages and currents is called a complete set

of variables for a graph if they can be assigned arbitrary values

without violating KVL and KCL and if they determine at least one of the

two variables (the voltage or the current) in each branch by using

VKL and KCL and without invoking the element constitutive equations

[20-21]. Such a complete set of variables is essential in the hybrid

analysis of a nonlinear network. By labelling the branch voltages and

currents in X). , \J,7, 9^-, ,9^9 as v ,v ,v ,v and i ,i
± z l z ^1^2*1*2 1 2

i ^ , i . respectively, and using the fundamental loop matrix B of
~* 1 ~x2
(7), v and i . emerge as a complete set of variables. Indeed KVL

"l ~X2
and KCL are not violated by assigning arbitrary values to v and

~ai
i^ . Moreover, v and i ~ are determined uniquely via KVL and KCL

as follows:

.T
v = -B.>~ v_, i„ =B- « iy. , (20)
*1 1^1 1 ^2 *2J2 ^2

where the submatrices of B are defined in (7).

-30-



The hybrid analysis proceeds then as follows: If the resistors in

O and 3L are voltage controlled and those in <T and 9l are

current controlled, then the KVL and KCL equations, and the constitutive

relations completely determine the solution of the resistive network

via a set of n„ + n equations with n + n * unknown variables
Jl X2 "l X2

v and i , where n (resp., n . ) is the dimension of v n
~ Jl ~**2 Jl £2 ~Jl
(resp., i ). The three different techniques for finding a complete

~**2
set of variables, which follow from Corollary 6a, 6b and 6c have been

used extensively. The approach taken in Corollary 6a and 6b corresponds

with that of [20,15,21], while the approach of Corollary 6c corresponds

to that of [22]. Observe that the notion of a "hybrid tree" [23] amounts

to another equivalent method of finding a partition of the branches

with the same properties. In general there are many distinct ways for

partitioning a network into U-,> uU, 9l.., and 9L. Any partition

which minimizes the number of n - + n . also minimizes the number of

°1 *2
equations required in the hybrid analysis. This unique number is called

the topological degree of freedom [22] and is completely determined by the

graph of the network.

V. Concluding Remarks

This paper is entirely devoted to a simple, yet not so well known

result called the Colored branch theorem. Perhaps the easiest method

for applying this theorem is via its network interpretations. In

particular, consider a network lAI (Fig. 2a) consisting of branch g* in

parallel with a one-port (J\j containing only diodes, open circuit

elements, and short circuit elements. Then exactly one, but not both,

of the following properties hold:
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(1) (J\L offers no resistance to the current i, in which case g*

forms a loop with short circuit elements and forward-biased diodes.

(2) lA)-, offers an infinite resistance to the current i, in which

case there exists a cut set of g* with open circuit elements and

reverse-biased diodes. To obtain the theorem, one simply replaces the

short circuit elements of (J\j by red branches, the open circuit elements

by blue branches, the diodes by "oriented" green branches, and g* by an

"oriented" dark green branch.

Due to its graph-theoretic nature this theorem is very general:

It applies to both linear and nonlinear networks, as well as to resistive

dynamic networks. Even couplings among elements allowed. A clever

use of the freedom in the choice of the sets of red, blue and green

branches allowed us to derive many useful graph-theoretic corollaries.

These corollaries greatly simplify the use of the Colored branch theorem

in circuit theory. Some new applications are discussed and simpler

proofs are given for existing properties. Many more applications are

expected to follow in nonlinear circuit theory, analog and digital

filter theory, and power networks. In other fields such as mechanical,

thermodynamic, and hydraulic systems, the corollaries are equally applicable.

In short, we conclude that the Colored branch theorem and its corollaries

are among the most general and fundamental tools in circuit theory. We

believe that the Colored branch theorem has not yet been fully

exploited and that its potential for future unconventional applications

in Circuit Theory should be quite promising.
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FIGURE CAPTIONS

Fig. 1. (a) A directed colored graph: branch g* is colored dark green,

branches g2> g,, g5 and gg are colored green branches r3 and rg

are colored red, and branches bfi and b_ are colored blue.

(b) Network interpretation of the directed colored graph in (a).

Fig. 2. (a) The network lAI corresponding to a general directed colored

graph, (b) The four possible equivalents of cAJ. (c) and (d)

By replacing cAI" of (c) by its equivalent oW2 of (d) the

internal node n is eliminated.

Fig. 3. Example illustrating the algorithm for detecting the existence

(resp.;, non-existence) of a loop satisfying condition (1), or

a cue set satisfying condition (2).

Fig. 4. An example illustrating the differences between Colored branch

corollary 1 for the graph in (a) and colored branch corollary 2

for the graph in (b).

Fig. 5. By simply checking that g* forms no loop with the set of red

branches {r3,r ,r ,r Q}, it follows that g* forms a cut set

with the set of blue branches {b2,b,,b,,b ,b }.
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