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ABSTRACT

Every reciprocal n-port resistor represented by a continuous n-dimensional

piecewise-linear function is shown to be realizable by a circuit containing only

2-terminal piecewise-linear resistors and a (p+q)-port transformer. An explicit

circuit realization is given along with illustrative examples. The necessary and

sufficient conditions under which this realization contains only passive elements

are also given.
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I. INTRODUCTION

The problem of synthesizing a dynamic nonlinear RLC n-port can be easily

reduced to that of synthesizing a resistive nonlinear n-port [1]. Using the

decomposition technique given recently in [2], this resistive nonlinear n-port can

in turn be realized using only reciprocal nonlinear n-port resistors and a

non-reciprocal linear n-port resistor. Since the latter can be realized by

well-known techniques [3], the most fundamental problem that remains to be solved

in the area of nonlinear network synthesis is that of realizing reciprocal nonlinear

n-port resistors using only "2-terminal nonlinear resistors" and "ideal transformers."

The solution of this basic synthesis problem will have far reaching significance not

only for nonlinear network theory [1], but also for device modeling. Observe that

our building blocks exclude controlled sources since we are concerned only with

reciprocal n-ports here. On the other hand, it is essential to include the ideal

transformer as a building block because the class of reciprocal nonlinear n-port

resistors which can be realized using only 2-terminal nonlinear resistors is

extremely small. To appreciate how restrictive this class is, one only needs to

observe that the class of nonlinear 2-ports that admits a A-Y equivalent trans

formation is almost nil [4]! Consequently, any general reciprocal nonlinear network

synthesis technique must allow at least one reciprocal linear n-port, such as the

ideal transformer, as a building block.

The above basic synthesis problem is known to be rather formidable and would

probably require many years of concentrated research before a completely general

synthesis technique could be developed. This paper presents a solution to this

problem for a subclass of nonlinear n-ports characterized by multidimensional

piecewise-linear functions which are affine over convex polyhedral regions bounded

by linear partitions [5]. This subclass is important in view of the following two

observations. First, every n-port made up of 2-terminal piecewise-linear resistors

and ideal transformers is described by such a multidimensional piecewise-linear

function [6]. Second, the most practical method for building a 2-terminal

nonlinear resistor is to approximate the resistor's i-v curve by means of a

piecewise-linear function [7], Therefore, it is desirable in practice to have an

n-port specification represented by a multi-dimensional piecewise-linear function

as in [5].

For the sake of clarity, the following theorems are stated and proved first

for two-ports, followed by a generlization to n-ports essentially using the same

techniques of proof. In Section II, the necessary and sufficient conditions on
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the "coefficients" defining a multi-dimensional piecewise-linear n-port resistor

N are given for N to be reciprocal. This reciprocity criterion is then used to

develop a synthesis technique using only 2-terminal piecewise-linear resistors

and a (p+q)-port transformer in Section III. The necessary and sufficient

conditions under which this realization is also passive are derived in Section IV.

II. RECIPROCITY CONDITIONS

For simplicity, we begin by considering a 2-port voltage-controlled resistor

described by 2-dimensional continuous piecewise-linear functions which are affine

over convex polyhedral regions bounded by linear partitions. Such a 2-port may

be described, as shown in [5], by:

mi

*1 =*1 +\vl +bl2V2 +2 SlkKk^l +alk2v2 " 6lk'
m2

H=a2 +b2 vl +b22V2 +g ^kKkJl +a2k2V2 - 62kl
(1)

A voltage-controlled 2-port resistor Is reciprocal if, and only if, its incremental

conductance matrix is symmetric at all operating points [1]. Consequently, our

2-port will be reciprocal if, and only if:

3il 3i2
—=• = —- (2)3v2 3vx (2)

for all v-, v« except at those isolated points for which the incremental conductance

matrix is undefined due to the absolute value signs in (1); i.e., at the breakpoints.

Substitution into (2) yields:

hl

b.\ +5l {^^[^^V^V2"^}
2

where

m

= b i+gi [82ka2kJS8n(a2k1Vl+a2k2Ve2k)]} (3)

sgn(x) = ( undefined, x = 0 (4)
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Theorem 1. Two-port reciprocity criteria.

A piecewise-linear 2-port described by (1) is reciprocal if, and only if, its

constitutive relation can be rewritten such that:

a) b = b
•"•2 zl

b)
*1 -2

C) °lk. = a

- m.

2k.

6lk = B2k

k = 1,2,... ,m_

k = 1,2,...,m_

k = 1,2,... ,m_

d) 8lkalk2 =82k°2k^ k=1'2—ni

(5)

(6)

(7)

(8)

(9)

Proof.

This result follows directly from the fact that a 2-port described by (1) is

reciprocal if, and only if, (3) is satisfied for all v , v except at those points

for which the sgn function is undefined. a

Example 1.

Consider a 2-port described by:

ix *13 + 6V;L + 4v2 + 2[6V;L -18v2 + 221 + 6|l4v1 + 7v2|-17 |v1 -4

i2 =22 + 4V;L + 2l|2v1 +v2| -12|3v1 -9v£ + ll| + 18|8v2 + 6|

To check the conditions in Theorem 1, we rewrite (10) as

±± =13 + 61^ + 4v2 +4|3v1 -9v2 + ll| +6|l4v + 7v2 -o|

- 17 |vx + 0v2 -4|+0|0vx + 8v2 +6|

i2 = 22 + 4V;L + 0v2 - 12 |3Vl -9v2 + ll| + 3\Uv1 + 7v2 - 0|

+ 0|v1 + Ov - 4| + 18|0v + 8v + 6|

Clearly (5)-(9) are all satisfied, indicating that the 2-port described by (10) is

reciprocal.

Let us now expand our results to the n-port case. Such an n-port may be

described, as shown in [5], by:

v(10)

^

(11)
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ml

*1 =al +\V1 +"-+ bl Vn +£ 8lkKknVl +-"+alk Vn "
1 n k=l 1 n

6iJ
m

n

i = a + b v, +...+b v + £ g |a , v +...+ a v -
n n n-. 1 n n **. °nk' nk- 1 nk n

1 n k=l 1 n
6nJ

(12)

A voltage-controlled n-port is reciprocal if, and only if, its incremental

conductance matrix is symmetric at all operating points. Consequently, our n-port

will be reciprocal if, and only if:

9i. 3i,

3vrt 3v.
A 3

(13)

for all i,l e U,2,...,n} and for all v ,...,v except at those isolated points for

which the incremental conductance matrix is undefined due to the absolute value

signs in (12); i.e., at the breakpoints. Substitution into (13) yields:

b v. +...+ a., v - B )
1 ik n jk

J n J 1}\+£ KxHx
= b

m.

Vl +' *'+ °ik Vn " V
n3 k»l L JL 1 ]} (14)

for all j,£ S {1,2,...,n}, where sgn(x) is defined as in (4).

Theorem 2. n-port reciprocity criteria

An n-port described by (12) is reciprocal if, and only if, its constitutive

relation may be rewritten such that:

(15)
a) \ =vJi 3

b) mi =mt

c) % =^ k = 1,2,...,m.
3

(16)

^

) (17)

jk Jlk
J n n

Bjk = 6Ak

k = 1,2,...,m.

k = 1,2,... ,m.
3

J

J J SL 3

for all 3,1 ^ {1,2,...,n}.

Proof.

This theorem is a direct extension of Theorem 1 and follows directly from the

fact than an n-port described by (12) is reciprocal if, and only if, (14) is

-5-
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satisfied for all v.,...,v except at those points for which the sgn function is
1 n

undefined. n

Example 2.

Consider a 4-port described by:

ix -1+ vx + v2 -|v3 + fv4 -9|8vx -5| +2|-vx +13v3| ^
-5^ -7v2 +8v4 + 6| +3|2vx -4v2 +4v3 +6v4 -l|

*2 ° Vl +V2 +2*3 ""K +8l12v2 ~6v4 +16l +7l5vl ~7v2 +8v4
+6\ -22|llv2 -3v3 +5v4 -8| -6^- 4v2 +4v3 +6v4 -l|

±3 =-4 -|vx +iv2 +v3 + v4 +7|9v3| -261 ^ +13v3|
+6|llv2 -3v3 +5v4 -8| +6|2vx -4v2 +4v3 +6v4 -l|

i4 «15 + ^ -|v2 +v3 +v4- 4|l2v2 -6v4 +161 -8|5v1 -7v£ +8v^
+ 6| - 10|llv2 - 3v3 + 5v4 - 8| +9 |2v1 -4v2 +4v3 + 6v4 - ltJ

To check the conditions in Theorem 2, we rewrite (20) as:

±1 =1+ v± + v2 -|v3 +|v4 -9|8vx +0v2 +0v3 +0v4 -5|
+2^ +0v2 +13v3 +0v4|- 5|5vx -7v2 +0v3 +8v4 +6|
+ 3|2v -4v + 4v + 6v - l|+0|0v + 12v + Ov -6v4 + 161

+0|0v +llv2 -3v3 +5v4 -81+0^ +0v2 +9v3 +0v4 -0|
±2 »0+V;L +v2 +|v3 -|v4+ 0|8Vl +0v2 +0v3 +0v4 -5|

+0|-v +0v2 +13v3 +0v4 -0|+7|5v1 -7v2 +0v3 +8v4 +6|
-6|2v1 -4v2 +4v3 +6v4 -l|+8|0v1 +12v2 +0v3 -6v4 +16|
-22|0vx +llv2 -3v3 +5v4 -8|+0|0v1 +0v2 +9v3 +0v4 -0|

±3 =-4 -|v1 +|v2 +v3 + v4 +0|8Vl +0v2 +0v3 +0v4 -5|
-26|-^ +0v2 +13v3 +0v4 -0|+0|5v1 -7v2 +0v3 +8v4 +6|
+612^ -4v2 +4v3 +6v4 -l|+0|0v1 +12v2 +0v3 -6v4 +16|
+6^ +llv2 -3v3 +5v4 -8|+7|0v1 +0v2 +9v3 +0v4 -0|

i4 =15 + |vx -|v2 + v3 + v4 +0^ +0v2 +0v3 +0v4 -5|
+0\^v± +0v2 +13v3 +0v4 -0|-8|5v1 -7v2 +0v3 +8v4 +6|
+9|2Vl -4v2 +4v3 +6v4 -l|-4|0v1 +12v2 +0v3 -6v4 +16|
-10|0v +llv2 -3v3 +5v4 -81+OlOVj^ +0v2 +9v3 +0v4 -0|

-6-
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It is easily verified that (15)-(19) are satisfied for all combinations of

3,% £ {l,2,...,n}, indicating that the 4-port described by (20) is reciprocal.

Remark.

For the n-port case, we have continually stated "for all j,Jt £ {1,2,...,n}."

However, if we check, say, j = 1, %= 2, then we needn't check j=2, £»1, since

all this does is reverse the equality in (13). Also, when j = I, (13) is obviously

always satisfied. Hence, we could instead write "for all j,£ £ {l,2,...,n},

where I > j."

III. SYNTHESIS TECHNIQUE FOR RECIPROCAL N-PORTS

As suggested in [1], it is reasonable to assume that the synthesis of

reciprocal n-ports will, in general, require the use of ideal transformers.

Consequently, during the development of a circuit topology which could be used

to synthesize any 2-port satisfying the conditions of Theorem 1 (resp., n-port

satisfying the conditions of Theorem 2), a (p-t-q)-port transformer [1,3] was

introduced into the synthesis, where q = 2 (resp., q = n). Connected to this

transformer are "p" 2-terminal continuous piecewise-linear resistors, the

1-dimensional analogs to our 2-ports described by (1) (resp., n-ports described

by (12)). To simplify our work, we further constrained these resistors to

contain only 2 segments in their respective i-v characteristic curves. Such

resistors can be described by [8]:

Ra :ia S aa + ba Va + ga lVa ~$a I.r€ {1,2,...,p} (22)
rr r rr rrr

For the'2-port case, the following theorem results.
2

Theorem 3. Synthesis of reciprocal two-ports.

A reciprocal 2-port described by (1) can be synthesized exactly using a

(p+q)-port transformer and p resistors described by (22), where p = m+3 and q = 2.

Proof.

Consider the configuration depicted in Fig. 1. For the (p+q)-port transformer

we have:

In fact, it can be shown that resistors with no more than 2 segments must be
used, in general, if an exact synthesis is to be performed. Due to its nontrivial
nature, however, the proof of this statement is not included since all we desire
to prove is that we can indeed synthesize reciprocal n-ports described by (12).

2
m = m- = nu when the equations describing the 2-port are rewritten so as to

satisfy the conditions of Theorem 1.
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KVL:

KCL:

kll k2l"

^2 k22 W
•

•

_V2_

IP k2P

kll k12 "'• klp

k21 k22 •'• k2p

(23)

(24)

P J

where k denotes the turns ratio of the Ath winding of the jth transformer.

Choose the coefficients of the p resistors described by (22) and the pxq

transformer turns ratios as follows:

a =a = ...» a =0
a0 a, a
2 3 p

a , k , and k. so as to satisfy:

k-.a « a.
11 a- 1 k21aax =a2

b =b =b = ... = b =0

al a4 a5 ap

ba »ba »k12> k13, k22> k23, so as to satisfy:

ba2(k12)2+ba3(k13)2=\
ba2k12k22 +ba3k13k23 =bl, =\

ba2(k22>2 +ba3(k23)2 =\
» = g = g = 0
al a2 a3

For example, a& =1, k^ « a^ and k„ = a2 will always work.

^These variables may always*be chosen as shown in Appendix 2 for n = 2.

-8-
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- .h£-mhs- r=l,2,...,m (30)
Sar+3 "l^ °2r2

6a _ =eir =62r *-1.2--" (31)
r+3

kl,m =alrx ="2^ r=1'2 m <32)

k2,r+3 =alr2 =a2r2 "l.*-"." (33)
Observe, from Theorem 1, that whenever a- (resp., a2 ) equals zero, g

1 2

(resp., g9 ) will also equal zero, thus yielding zero over zero in (30) which is
simply undefined.

Substituting (25), (27), and (29)-(31), along with footnotes (3) and (4),

into (22) yields:

R : i =1

al al

R : i = A, va2 a2 1 a2

R : i » X« va3 a3 2 a3

R :i = (g /o )|v -$ J r = 1,2,...,m
ar+3 ar+3 1 r+3

"N

>(34)

J

Substituting (23) into (34), noting the turns ratios given in footnotes 3 and 4

along with (32) and (33) , and then substituting the resulting equations into (24)

yields the general form of a reciprocal 2-port described by (1). n

Remark.

Observe that the first resistor R in (34) is simply a dc current source,
ai

whereas R , R , are linear resistors
a2 a3

Recall that dc current sources and linear resistors are just special cases of
nonlinear resistors.
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Corollary.

The synthesis suggested in Theorem 3 can be performed by choosing the

coefficients of the p resistors and (p+q)-port transformer's turns ratios as given in

(25)-(33).

Proof.

This result follows immediately from the Proof of Theorem 3. n

Example 3.

Recall the 2-port given in Example 1; i.e., equation (11). Following the synthesis

technique of the above Corollary we obtain the circuit given in Fig. 2, where:

R : i =1

al al

R : i = 8v

a2 a2 a2

R : i = -2v

a3 a3 a3

R :i = (4/3)|v + 11|
a4 a4 a4

R :i = (3/7)|v |
a5 a5 a5

R :i = -17|v - 4|
a6 a6 a6

R :i = (9/4)|v + 6|

^v

(35)

and where k
11
= 13, kon = 22, k10 = 21/5, k„ = 1/^5, k13 = 1//5 ,k„ =-2/^,

21 12 '22 k23

k14 =3' k24 =~9' k15 " 14' k25 =7' k16 ' lj k26 =^"k17 =°» k27 =*'
It is easily verified that this synthesis does indeed produce a 2-port

described by (11).

The results presented in Theorem 3 are expanded to the n-port case in the

following theorem.
6

Theorem 4. Synthesis of reciprocal n-ports

A reciprocal n-port described by (12) can be synthesized exactly using a

(p+q)-port transformer and p resistors described by (22), where p = m + n + 1

and q = n.

Jm = m- = m_ = ... » m when the equations describing the n-port are rewritten so
j. 2 n

as to satisfy the conditions of Theorem 2.
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Due to its length, the Proof of Theorem 4 is given in Appendix 1.

Corollary.

The synthesis suggested in Theorem 4 can be performed by choosing the

coefficients of the p resistors and the (p+q)-port transformer's turns ratios as

given in (A.3)-(A.10).

Proof.

This result follows immediately from the Proof of Theorem 4. n

Example 4.

Recall the 4-port given in Example 2; i.e., equation (21). Following the

synthesis technique of the above Corollary we obtain the circuit given in Fig. 4

where:

R

R

l10

lll

l12

i =1

al
i o v
a2 a2

i « 3v
a3 a3

i = -2v

= 2v

-(9/8)|v -5|

= -2lv

L = -1 v +6

a8 a'l8
i = (3/2)|v -1|a9 a 9

i = (2/3)|v +16|
a10 a10
ia --2|v -8|
all all
i = (7/9) |va12 i

12

> (36)

J
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and where 1^ =1, k^ =0, k31 =-4, k41 =15, k^ =f, k2£ =±, k32 =±
k oik -i k -i k - -i- k =-ik -I k - J: ,, -1K42 2' K13 2» 23 2' K33 2' 43 2, k14 " 2' k24~ I9 k34 " I'

k44 ""T' k15 =2' k25 "4' k35 ="P k45 =2' k16 =8' k26 =°' k36 =°'
k46 = °» k17 S -1' k27 " °' k37 = 13' k47 = °' k18 = 5' k28 "~7> k38 = °*

k48 = 8' k14 = 2' k29 --4' k39 = 4' k49 " 6' kl,10 = °' k2,10 " 12' k3,10 = °'

k4,10 = -6> kl,ll ' °» k2,ll =U' k3,ll S"3' k4,ll " 5' kl,12 = °' k2,12 =°»

k3,12 = 9» k4,12 = 0#

It is easily verified that this synthesis does indeed produce a 4-port described

by (21).

Remark.

Notice that the synthesis of reciprocal n-ports presented does not actually

use p nonlinear resistors described by (22), but instead uses 1 dc current source,

n linear resistors, and only m nonlinear resistors described by (22).

The specifications in both Examples 3 and 4 are active, thereby requiring

at least one active component in the circuit realization; namely, the dc current

source. If the specifications were passive, however, it would be desirable that

only passive components be used. Our objective in the next section is to

investigate the conditions under which this property is satisfied.

IV. PASSIVITY CONDITIONS

We begin our discussion by determining the criteria under which a one-port

(i.e., two-terminal) continuous piecewise-linear voltage-controlled resistor is

passive. Since our synthesis technique in the preceding section makes use of

only 2-terminal resistors with a maximum of two-segments in their respective i-v

curves, let us derive first the passivity conditions for a piecewise-linear

resistor described by (22). Now a two-terminal resistor is passive if, and only

if, its i-v curve lies exclusively in the first and third quadrants [1]. This

directly leads to the following theorem.

Theorem 5. One-port passivity criteria

A two-terminal continuous piecewise-linear voltage-controlled resistor

described by (22) is passive if, and only if:

a) aa =-ga |-6a | • (37)
r r r
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b)0<b +g < +« (38)
— a a

r r

c)0<b -g <+«> (39)
— a a

r r

Proof.

From [8] we have that

ba =i(™0-hnl) (40)
r r r

ga =I(^ -^ ) (41)
r r r

aa = *. (0) " 8a l8a I (42)
r r r r

where m. and m. are the slopes of the first and last segments of the i-v curve
r r

of R , respectively.
r

(a) Necessity. The i-v curve of a passive resistor must pass through the origin,

i.e., i (0) = 0. Substituting this into (22) yields:
r

0- aa + *a !-6a I (43>
r r r

which is simply (37). Furthermore, it is clear that if the i-v curve is to be

restricted to the first and third quadrants only, then we must satisfy:

6 <_ mQ < -H» (44)
r

0 <_ m < 4« (45)
r

From (40) and (41) we find that:

mQ - ba - ga (46)
r r r

"l =8a +ba (47>
r r r

Substituting (46) and (47) into (44) and (45), respectively, yields (39) and

(38), respectively.

(b) Sufficiency. Substitution of (37) into (22), and evaluating this expression

at v « 0, yields:
r

i (0) = 0 (48)
SL
r

-13-



Substituting (38) and (39) into (47) and (46), respectively, yields (45) and (44),

respectively. Thus, our resistor's i-v curve lies exclusively in the first and

third quadrants only (and passes through the origin) implying that it is passive.

n

Our next step is to expand our results to the case of reciprocal two-ports

described by (1) . Such a two-port must satisfy the conditions of Theorem 1 for

it to be reciprocal. Now an algebraic n-port resistor is passive if, and only if,

<v,i) >_ 0 for all (y,i) satisfying the constitutive relations of the resistor [1].
Hence, for the two-port case we have:

Vi + V21 ° (49)

for all v.,v2,i..,i- satisfying the constitutive relation of the two-port resistor.

Substituting (1) into (49) yields a complex expression from which it is

difficult to extract the necessary and sufficient conditions under which the

inequality is satisfied. Consequently, an alternate approach is used.

If our reciprocal two-port can be synthesized using only passive elements,

then clearly it too must be passive. Connecting p resistors satisfying Theorem 5

to a (p+q)-port transformer (q=2), as in Fig. 1, and examining the resulting

equations for the two-port yields the following theorem.

Theorem 6. Reciprocal passive two-port synthesis criteria.

A reciprocal continuous piecewise-linear voltage-controlled two-port

resistor described by (1) (i.e., a two-port resistor satisfying Theorem 1) may be

synthesized using only passive resistors described by (22) and a (p+q)-port

transformer in the configuration given in Fig. 1 if, and only if, i, and i2 can
be recast in the following manner:

pP

x. k=l

P

+ S
k=l

•£

*£ 'l Vl +
Ik

!ikiak1Vak2Vf5kl

t2 + £ b v +
k k=l Ik

k=l 1 2

£ bi
k=l 2k

2k

-14-
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where:

l) al = "8lkl"Bkl k * 1»2»-"»P
k

a2 = "g2k'"6kl k = 1*2>-"*P
k

b) 0<.b- + g cl < -H» k«l,2,...,p
Xlk lk kl > (52)

°-b2 + 82k\ < "^ k=l,2,...,p

c) 0<Dl ~ Slk\ < +°° k = l,2,...,p
lk 2

°lb2 ~ 82kak < "^ k = l,2,...,p

bl b2
d) b =b -OL ^=a --^ k =l,2,...,p (54)

±2k Zlk k2 \1 kl ak2
Proof.

(a) Sufficiency. We must show that if the conditions of Theorem 6 are met, then

the reciprocal two-port described by (50) can be synthesized using only passive

elements. Since our two-port is reciprocal, we know from Theorem 1 that:

8lkak = 82kak k = l,2,...,m (55)

where m = m. = nu. Furthermore, since both (1) and (50) describe the same two-port,

it is easily argued that one may always choose:

8lk = 82k = ° k = m+1»m+2» »P (56)

without affecting the ability of the two-port to satisfy the conditions of

Theorem 6. Consequently, we have:

8lk\ = 82kak k = 1»2>---»P (57)

The coefficients of the p resistors described by (22) are chosen as follows:

(51)

(53)

Note that condition (d) can still be satisfied when a, (resp., a. ) equals zero,
h k2

if b- (resp., b? ) is also zero, thus yielding zero over zero which is simply
lk z2k

undefined. If both a, and'a, are zero, an unrealistic if not contrived situation,
Kl k2

then b- - b9 must be equal to zero.
2k Zlk

-15-



6a "
r

$k r - k = 1,2,...,p

a =
a
r

al a2
k k

s r = k = 1,2,...,p
a, a, r

kl k2

b =
a
r

bl b21lk ^ Z2k _ . „
•»P

j ., r _ fc _ 1>Zj ##

(\ } (ak }
Kl k2

8a =
r

8lk 82k 1 n o= r = k = 1,2,...,p

ak kkl k2

(58)

(59)

(60)

(61)

As it initially appears that there may be some problems with zeros appearing

in the denominators of (59)-(61), we now discuss these equations individually.

The second equality in (59) may be rewritten as:

(62)
al ak = a2 ak\ k2 \ kl

k = 1,2,...,p

Substituting (51) into (62) yields (57), when multiplied through by -|-BkU which
we know always holds. In addition, whenever a, (resp., a, ) is zero,

kl K2
a (resp., a ) is also zero by (51), (56), and (57). Therefore, if a- /a^
\ \. T* 1 8

is zero over zero, then a is chosen to be the value of a. /a, , and vice-versa.
*k k k2

The second equality in (60) always holds, since multiplying it through by

o. a yields (54), which we have assumed is true. Footnote 7 explains why we
kl k2
will never have a, (resp., a ) equal to zero without b. (resp., b2 ) also

lk '2k

equal to zero. As before, if b /(a, ) is zero over zero, then b is chosen
2Hk kl 9 "k

to be the value of b. /(a, ) , and vice-versa.
Z2k k2

Finally, the second equality in (61) will always hold in light of (57) , while

g (resp., g01) will always be zero whenever a (resp., a ) is zero for reasons
'lk '2k

previously discussed. Consequently, if gnl/ct, is zero over zero, then g is
J.K k, a.

chosen to be the value of g91/at and vice versa. 10

The turns ratios of the (p+q)-port transformer (q=2) are chosen as follows:

Q

If both a. and a are zero, an unrealistic if not contrived situation, then
kl k2

a must be set equal to zero.

•k
9
If both a. and a. are zero, then b must be chosen to be zero.

10
If both a, and a, are zero, then g must be chosen to be zero.

kl k2 \

-16-



klk = \ k = 1»2»---»P

k2k * ak k = 1»2»'-->P

(63)

Substituting (63), (23), and (58)-(61) into (22) for r = l,2,...,p, and

then substituting the resulting set of equations into (24), yields (50).

Therefore, at least, our synthesis is correct. It remains to be shown that

all p resistors are passive. Substituting (58), (59), and (61) into (37) yields

(51), which we have assumed is true. Substituting (60) and (61) into both (38)

and (39) yields (52) and (53), respectively, which we have also assumed is true.

In conclusion, our p resistors all satisfy the conditions of Theorem 5 and are

therefore passive.

(b) Necessity. Here we must show that if we connect any p passive resistors
described by (22) to a (p+q)-port transformer (q=2) as in Fig. 1, then the con

ditions of Theorem 6 can be satisfied. It is easily verified that connecting

such resistors and the transformer as in Fig. 1 yields a two-port

P P

^= k?i **\+ k?i \(k-) vi+ k?i V*** v>
p

12=£ **\+ £ v-k- vi+ £ s>)2 v*

where (37)-(39) are satisfied for r « k = 1,2,...,p. Observe that (64) is in

exactly the same form as (50). Thus, we may write:

a_ — k-.a^ k = l,2,...,p

a2 * k2ka- k " i*2'---*?

"\

>(64)

* *"* "k ) (65)

k 2kak

bl = ba. ^1^ k = 1»2»---»P (66)
lk k.

bl2k =b2lk =\klkk2k k-1.2,... ,p (67)
2

b2 = ba_ ^Sk* k s l>2>-->? (68)
^2k \ Zk

-17-



8lk " klk8a, k = 1»2»-"»P
(69)

82k " k2k8ak k = 1»2»---»P

V = kik k s 1»2»---»P (70)

\ = klk k = l,2,...,p (71)

3k=3fl k = l,2,...,p (72)
*k

Substituting (65), (69), and (72) into (51) yields (37), which we have assumed

holds. Substituting (66) and (68)-(71) into (52) and (53) yields (38) and (39),

respectively, which we have assumed are true. Notice that the inequality signs
2 2are unchanged since (K/) and (k2k) are, of course, always positive. Finally,

substituting (66)-(68) into (54) shows that (54) is clearly satisfied. Thus, the

combination of p passive resistors described by (22) and a (p+q)-port trans

former (q=2) as in Fig. 1 always yields a two-port whose constitutive relation

can be recast such that (51)-(54) (i.e., the conditions of Theorem 6) are satisfied.11

The following corollaries result directly from Theorem 6 and its proof.

Corollary 1. Two-port passivity criteria.

A reciprocal continuous piecewise-linear voltage-controlled two-port resistor

described by (1) is passive if the conditions of Theorem 6 are met.

Proof.

The combination of only passive elements results in another passive element.
n

Corollary 2. Passive two-port synthesis technique.

The class of passive two-ports given in Corollary 1 to Theorem 6 may be

synthesized using the circuit interconnection of Fig. 1 by choosing the coefficients

of the p resistors as in (58)-(61) and the transformer's turns ratios as in (63).

Proof.

This corollary follows -immediately from the "sufficiency" proof of

Theorem 6. n

Remark.

In footnotes 7-10 we state that o, •= a, - 0 for some k is an unnatural
kl k2

situation. This is so because if we substitute this into (1), then we obtain

a term in the expression for i. (resp., i.) which is just 811J~&ic|
(resp., g |—S |) . Such a term is simply a constant and would normally be

included within the a (resp., a.) term in all but a contrived case.

-18-



To conclude this section, we extend Theorem 6 to reciprocal n-ports

described by (12).

Theorem 7. Reciprocal passive n-port synthesis criteria.

A reciprocal continuous piecewise-linear voltage-controlled n-port resistor

described by (12) (i.e., an n-port resistor satisfying Theorem 2) may be

synthesized using only passive resistors described by (22) and a (p+q)-port

transformer in the configuration given in Fig. 3 if, and only if, i^, i2,...,in
can be recast as follows:

P P P

h= £ al + S bl *!+...+ Z bl vn
^ k=l k k=l xlk k-1 nk

P

+ £ 8ikivvi+---+akV0ki
k=l

P
i = V a +Vb v- +...+ V b v

O

+ y g , Ia, v. +...+ ol v -6. |
/-» 6nk' k- 1 k n k1
k=l 1 n

11where:

a) a± =-8lkl-0kl k=l,2,...,p
k

\ =-gnkl-Bkl k-1.2,...,p
b) 0<_b + g . a < 4~ k = l,2,...,p

°^bnt +8nkak <+~ k"1.2.....P
nk n

c) 0<_D;L - glkak <4« k=l,2,...,p
IK A.

°iV -«nk«k <+~ k = l»2,...,P
nk n

"\

>(73)

(74)

(75)

(76)

Note that condition (d) can still be satisfied when a, (resp., a, ) equals

J *
zero, if b. (resp., b ) is also zero, thus yielding zero over zero which is

Jjk *£k
simply undefined. If both a, and cl are zero, then b, = b. must be

kj k£ j£k jk
equal to zero. -19-



b. b^
d) b. = b. —& = a, £k

3£k J£k ak. kj \,

for all 3,1 € {l,2,...,n}.
12

Proof.

k = 1,2,...,p (77)

This proof is stepwise identical to the proof of Theorem 6, with the minor

changes being obvious at each stage. n

Corollary 1. n-port passivity criteria.

A reciprocal continuous piecewise-linear voltage-controlled n-port resistor

described by (12) is passive if the conditions of Theorem 7 are met.

Proof.

The combination of only passive elements results in another passive

element. n

Corollary 2. Passive n-port synthesis technique.

The class of passive n-ports given in Corollary 1 to Theorem 7 may be

synthesized using the circuit interconnection of Fig. 3 by choosing the coefficients

of the p resistors as:

(78)

(79)

6a -
r

Bk
a. a

\ "k

r = k = 1,2,...,p

a =
a
r

1 n

1lk nnk

r = k s 1,2,...,p

b =
a
r

r = k = 1,2,...,p2 •...- o

1 n

8a =
r

8lk _ _fnk
V ak

1 n

r = k = 1,2,...,p

and the transformer's turns ratios as:

(80)

(81)

Recall the Remark following Example 2 which states that we may actually write
"for all j,Jt £ {1,2,...,n}, where I > j" to save computations when checking this
condition.

-20-



klk= \
•

•

Ki "" JL y +m y • • • y^

knk = \
n

k = 1,2,...,p

(82)

Proof.

This corollary follows immediately from the"sufficiency" proof of Theorem 7.
n

Remark.

Mathematically speaking, note that conditions (b) and (c) of Theorem 7

could be combined and rewritten as:

b, L l81Tr°v I k = i*2.---.?
1lk lk kl

bnt^l8nk\l k =1'2 p
nk n

(83)

Similar changes could also be made in Theorems 5 and 6. Implementing these

changes, however, would unnecessarily make the associated proofs more complex.

Observe that any resistor described by (22) which satisfies the conditions

of Theorem 5 is not only passive, but also locally passive since the resistor's

constitutive relation contains only 2 segments in its i-v curve. Therefore, any

n-port synthesized by using these type resistors and a (p+q)-port transformer as

in Theorem 7 will be locally passive as well as passive.

An example demonstrating the use of Theorem 7 and its corollaries is

included in Appendix 3 and Appendix 4, respectively.

V. CONCLUDING REMARKS

We have shown that every reciprocal n-port resistor represented by a continous

multi-dimensional piecewise-linear function as in (12) can be realized by a circuit

containing only 2-terminal continous piecewise-linear resistors and a (p+q)-port

transformer. We have also derived the necessary and sufficient conditions for our

n-port realization in Fig. 3 (where the resistors are all described by Eq.22)

to be passive. Since we have as yet been unable to prove that these same con

ditions must also apply to all other circuit configurations corresponding to

other methods of realization, our conditions so far are only sufficient for a

reciprocal, passive, and locally passive n-port to be realizable using only

passive and locally passive components. We have good reasons to conjecture,

however, that these conditions are necessary as well.

-21-



From the practical synthesis point of view, the 2-terminal piecewise-linear
resistors can be easily realized with high precision using the techniques
developed in [7]. The (p+q)-port transformer, however, would be highly impractical
if one insists on using an iron-core device, which is highly frequency dependent.
However, a (p+q)-port transformer can itself be simulated by relatively inexpensive
OP AMP circuits over a wide frequency and dynamic range.

-22-



APPENDIX

1. Proof of Theorem 4.

Consider the configuration shown in Fig. 3.

we have:

For the (p+q)-port transformer

KVL: V

ai kll k21

V

a2 k12 k22
• •3 • .

• • •

• • •

V
a

P
klp S

-

KCL:
r. -\

xi \l k12

•

s
k21 k22

• • •

k. knl n2

nl

n2

np n

-1

•lp

—. —<

l
a

1

"2p
i

a2
. .

. •

'np_
i

L a J
P

(A.l)

(A.2)

where k denotes the turns ratio of the Ith. winding of the jth transformer.

Choose the coefficients of the p resistors described by (22) and the pxq

transformer turns ratios as follows:

a =a =...=a =0

a2 a3 aP

a ,k ,k ,...,k so as to satisfy:
13

k_ia an, K01a — a0,...,k _a — a
11 a_ 1 21 a- 2 nl a. n

b = b = b

al an+2 an+3
= ... « b = 0

a

P

(A.3)

(A.4)

(A.5)

ba2'ba3'-"»ban+1' k12'k13"'*'kl,n+l>k22'k23''' "k2,n+l''' "kn2'kn3" *" 'kn,n+l

13
For example, a& = 1, ku =a^ k21 =V,,knl =an wil1 always work.
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so as to satisfy:
14

bQ (k10)2 +b (kn.)2 +...+ ba2 12 a3 13 a (k. ,J2 -b.
an+l 1'n+1 h

ba ki?k99 + b« kT*k9-* +-«-+ b k_ k0 ,n » b. = b,a2 12 22 a3 13 23 aR+1 l,n+l 2,n+l 12 <

b k.Jc + b k.Jc .+...+ b k. _k _,, = b, » b
a0 12 n2 a0 13 n3 a ,- l,n+l n,n+l 1 i

i 5 n+1 n

ba (k99)2 + b* (fc9^2 +--'+ b, (k9 4.1^ *b9a2 22 a3 23 an+1 2,n+1 22

ba k99k*9 + b* k9^k-aT +•••+ b k. k, . t = b0 = b.a2 22 32 a3 23 33 a - 2,n+l 3,n+1 2,

b„ k0_k + b k.Jc .+...+ b k„ ,-k ,, = fc = ba2 22 n2 a3 23 n3 ^n+l 2,n+1 n,n+l 2 n«
.

b, (^9^ + b, (k ^2 +"'+ feQ (k n4.i>2 °ba2 n2 a3 n3 an+1 n,n+l nn

g = g - ... = g

al a2 an+l
0

8lr 82r Snr

Sar+n+l alr a2r/"'Janr
12 n

r — 1,2,...,m

3 = 0-, " cc« = ... — a

ar+n+l lr 2r
r = 1,2,...,m

kl,r+n+l - alrjL =^ ='•• =anri r = 1,2,...,m

k9 ^a«a.i = an^ * a9^ = ••• = « „ r • 1,2,...,m
2 nr2

n,r+n+l lr 2r
n n

... = <x
nr

r = 1,2,...,m

^

)(A.6)

J

(A.7)

(A.8)

(A.9)

(A.10)

Observe from Theorem 2 that whenever a, (resp., a_ ,a0 ,...,a ) equals
lrl 2r2 3r3 nrn

zero, g- (resp., gn ,g0 ,...,g ) will also equal zero, thus yielding zero over
ir zr Jr nr

zero for that particular term in (30), which is simply undefined.

14
One possible solution to (A.6) is presented in Appendix 2,

-24-



Substituting (A.3), (A.5) , and (A.7)-(A.10), along with footnote 13 and

Appendix 2, into (22) yields:

R : i = 1

al al

R : i = X. v

aj+l aj+l 3 aj+l
j = 1,2,...,n

r+n+1 r+n+1 1 r+n+1

(A.ll)

Substituting (A.l) into (A.ll), noting the turns ratios given in footnote 13,
Appendix 2, and (A.10), and then substituting the resulting equations into (A.2)
yields the general form of a reciprocal n-port described by (12). n
2« One possible solution to (A.6) .

Rewriting (A.6) in matrix form gives us:

k12 k13 "• kl,n+l

k22 k23 ••' k2,n+l

_n2 n3*"* n,n+l„
V /

K

bl bl•""I X2

^_

... b.

n

b« b_ ... b«

1 2 n

b b

Lnl n2
. b

3*

0 ... 0

b ... 0

•a3- •
. . .

• . .

0 ... b

w-j

12

13

22

k
23

... JC
n2

n3

k k k
l,n+l 2,n+1 ... n,n+l

K

(A. 12)

We know from (15) that B is symmetric (and of course real). Therefore, B

is a normal matrix for which we can always find an orthonormal set of n eigenvectors

[9]. Denoting these eigenvectors as §,, £.,...£ , we may write:

h 5k-*jk j,k € {1,2,...,n} (A.13)

-25-



where:

6jk^ (A.14)

Next, let us denote the eigenvalues of Bas X^^ ^ such that eigenvector
§£ is associated with eigenvalue X^, I €{1,2,...,n}.

.'• ?§J = ij§j J° 1,2,...,n (A.15)

We now write:

»

. -

0

0 ... 0

x2 ... 0

-j

h :. h : ...

• -.n

a

0

* . .

. . .

. . .

0 ... X
n

=3 !ixi ; ^O^O • ...
3n n

Substituting (A.15) into (A.16) yields:

Xl 0 ... o

0 X ... 0

• h • ••• •

—

•

0

• • •

. . .

0 ... X
n_

B §i :: §2 . • • • ?n

If we postmultiply both sides of (A.17) by [£ •£9

we get:

• 2n and observe '.(A. 13)

?1 h. §n

rxi°
0 X

2 *

• • . .

J 1° ° n

-26-
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•J

Comparing (A. 18) and (A. 12), we see that we may always choose the k's in K

and the b fs in A as follows:
a

[kl,j+l k2,j+l "•• kn,j+l] fj

b = X.

aj+l J
j - 1,2,... ,n

j - 1,2,...,n

3. An example illustrating the use of Theorem 7.

Consider a 4-port, similar to the one in Example 2, described by:

in = 72 + 114v_ - 74v„ - 50vo + 55v. - 9 8v -5I
1 1 2 3 4 ' 1 '

+ 2|-v1+13v3| - 5|5v1-7v2+8vA+6|

+ S^v^v^v3+6v4-l|

i0 = 12 - 74v + 492v„ + 18v0 - 21v, + 8|l2vn-6v.+16|
2 1 2 3 4 ' 2 4 '

+ 7|5v1-7v2+8v4+6| - 22|llv2-3v3+5v4-8|

- 6|2v1-4v2+4v3+6v4-l |
i3 = -54 - SOv^^ + 18v2 + 587v3 +18v4 + 719v |

- 26|-V]L+13v3| +6|llv2-3v3+5v4-8|

+ 6|2vn-4v0+4v.+6v.-l|
'12 3 4'

i. = 183 + 55v_ - 21v. + 18v0 + 193v. - 4 12v0-6v.+16
4 12 3 4*24

-8|5v1 - 7v2 + 8v4 + 6|-10|llv2 - 3v3 + 5v4 -8|

+ 9|2v1-4v2+4v3+6v4-l|

-27-
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Following the same procedure as in Example 2, it is easily determined that this

4-port is reciprocal. To check the conditions of Theorem 7, we recast (A.21)

as follows:

*!-£ ai +(z bi k+(£ bi V2+(i bi V3 +(i bi K1 k=l \ \k=l ±lk/ L \k=l 12k/ L \k=l ^k/ J \k=l ±4k/ *
- 9|iBv1+0v2+0v3+0v4-51+ 2|-v1+0v2+13v3+0v4-0 |

- 5|5v1-7v2+0v3+8v4+6|+ 31 2v -4v2+4v +6v -11

+ 0|0v_+12vo+0vo-6v.+16|+ 0|0v_+llv„-3v._+5v/-8|
1 234' '1 234'

+0|0v1+0v2+9v3+0v4-0|+ 0|3v1-9v2-12v3-v4-0|

i2 =i a2 +(i> b2 Vi+(i b2 kns b2 K+(i b2k=l k \k=l zlk/ L \k=*l 2k/ z \k=l 3k/ J \k=l z4
+ 0|8vn+0vo+0vo+0v/-5|+ 0I-V.+0V-+13V.+0V.-0I

1234 12 34

+ 7 |5v -7vo+0vo+8v.+6 I- 6 12v -4v0+4v_+6v.-11
1234' '1234'

+8|0v +12v2+0v3-6v4+16 |- 22 10v1+llv2-3v3+5v4-8 |

+ 0 |0v.+0vo+9vo+0v, -0 1+ 0 |3v- -9v0-12v0-v. -0 I
12 34' '12 34*

i3- E a3 +(£ b3 K+fS b3 \24t b3 V3+(S b3
J k=l \ \k=l "W ± \k=l J2k/ z \k=l J3k/ J \k=l J41

+ 0 |8v.+0vo+0vo+0v,-5 I- 26 |-v.+0vo+13vo+0v.-0 I
'1234' '12 34'

+ 0 |5v.-7vo+0v-+8v.+6 1+ 6 |2v_ -4v0+4v-+6v, -11
1234' '1234'

+ 0 |0v1+12v«+0vo-6v.+16 |+ 6 |0v.+llvo-3v-+5v.-8 |
1 234 1 234

+ 7|0v.+0vo+9vo+0v. -0 1+ 0 |3v. -9v„-12v0-v. -0 1
'12 34' '12 34'

i4- £ aA +(2 b4 Vl+(£ b4 \2+(i b4 VsM^ b44 k=l \ \k=l 4lk/ L \k=l *2k/ Z \k«l 3k/ J \k=l ^
+ 01SVj+Ov^Ov^0v4-5 |+ 0|-v1+0v2+13v3+0v4-01
- 8|5v -7v2+0v3+8v4+61 + 912v]-4v2+4v3+6v4-l|
- 4|0v1+12v2+0v3-6v4+16|- 10|0v1+llv2-3v3+5v4-8|

+ 0|0v1+0v2+9v3+0v4-0|+ 0|3v1-9v2-12v3-v4-0|

where the terms within each summation are listed in Table 1.

-28-
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Having recast (A.21) as in (A.22) and Table 1, it is easy to see that the

conditions of Theorem 7 are all satisfied, thus implying that our 4-port can be

synthesized using only passive elements.

From Corollary 1 to Theorem 7 we know that this 4-port is of course

passive.

4. An example illustrating the use of Corollary 2 to Theorem 7.

Corollary 2 to Theorem 7 gives us the actual technique by which we can

synthesize passive reciprocal n-ports described by (12) using only passive elements

We now demonstrate this technique by synthesizing our 4-port in (A.21). The

coefficients of the p = 8 resistors described by (22) are determined from

(78)-(81) and are given in Table 2. Similarly, the (p = 8) x (q = n = 4) « 32

transformer's turns ratios are determined from (82) and are also listed in Table 2.

Substituting into (22) yields:

l8

45 . 9 9 i -
=T +8Vai "8\'5
= 2v - 2|v I

» 6 + v - v +6

a3 a3

La --Wv+flV1'4 4 4

32 . 2 . 2 | ,.,
l = - -r- + «*• v +TV +16
ac 3 3 a. 3 ' ac

= 16 + 2v

l6

- 2|v -8
a6

a 1 +1ay 9Va? 9
= v

l8 l8

>

\(A.23)

J

Fig. 5 shows the final circuit with the resistor's constitutive relations given

in (A.23) and the transformer's turns ratios given in Table 2. Substituting (A.l)

into (A.23) above, and then substituting the resulting set of equations into

(A.2) yields (A.21) , thus verifying that our synthesis is indeed correct. Using

Theorem 5, it is easily verified that each resistor in (A.23) is passive.

-29-



Note that the 4-port in (A.21) could also have been synthesized using the

technique given in the corollary to Theorem 4. Such a synthesis would not have

used only passive elements, however, and consequently would not have been nearly

as instructive.
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FIGURE CAPTIONS

Fig. 1. General circuit interconnection used in the synthesis of

reciprocal 2-ports described by (1).

Fig. 2. Synthesis of the reciprocal 2-port in Example 3.

Fig. 3. General circuit interconnection used in the synthesis of

reciprocal n-ports described by (12) .

Fig. 4. Synthesis of the reciprocal 4-port in Example 4.

Fig. 5. Synthesis of the passive reciprocal 4-port in Appendix 4
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TABLE 2

k

\
a

ak
b

\ \ kik k2k k3k k4k

1 5
45

8

9

8

9

" 8
8 0 0 0

2 0 0 2 -2 -1 0 13 0

3 -6 6 1 -1 5 -7 0 8

4 1
3

" 2
3

2

3

2
2 -4 4 6

5 -16
32

" 3
2

3

2

3
0 12 0 -6

6 8 16 2 -2 0 11 -3 5

7 0 0
7

9

7

9
0 0 9 0

8 0 0 1 0 3 -9 -12 -1
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